
The Group Inverse of the Nivellateur

R.E. Hartwig∗ P. Patŕıcio†

Abstract

We shall derive necessary and sufficient conditions for the Nivellateur to have

a group inverse over an algebraically closed field. We then extend these results to

arbitrary fields.
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1 The nivellateur

The matrix equation AX −XB = C can be written in column form as Gvec(X) = vec(C),

where vec(Y) =

 y1
...

yn

 when Y =
[

y1 . . . yn

]
, and

G = I⊗A−BT⊗I

is the nivellateur of A and B.
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Our aim is to find necessary and sufficient conditions for the existence of the group

inverse of this matrix in terms of A and B, and to provide expressions for this group

inverse.

We shall use r(X), ν(X), R(X), RS(X), N(X) to denote rank, nullity, range, row-

space, nullspace of X, respectively.

Throughout let A be m×m and B be n× n.

A matrix A has a group inverse if there exists a solution to the equations

AXA = A, XAX = X, AX = XA, (1)

in which case the solution is unique and is denoted by A#. We shall refer to this existence

as “A is GP”.

We begin with the easiest case, which is that of a closed field.

2 The closed field Case

Consider the matrices A and B over a closed field F, with characteristic polynomials

∆A(x) = |xI − A| =
s(A)∏
k=1

(x− λk)nk(A) =

n(A)∏
i=1

(x− αi)

and

∆B(x) = |xI −B| =
s(B)∏
k=1

(x− µk)nk(B) =

n(B)∏
i=1

(x− βi).

Here the λk, µr are distinct and the αi, βi may be repeated. Further let σ(A) = {λ1, .., λs}
be the spectrum of distinct eigenvalues of A and let τ(A) = (α1, ..., αm) be the list of all

of its m eigenvalues – repeated or not. Set T = σ(A) ∩ σ(B).

We denote the algebraic and geometric multiplicities of λk(A) by nk(A) and νk(A) =

dim[N(A− αkI)] respectively.

It is clear that
s(A)∑
k=1

nk(A) = n(A) = m and
s(B)∑
j=1

nj(B) = n(B) = n.

Furthermore, suppose that the minimal polynomial of A is given by

ψA(x) =
s∏

k=1

(x− λk)mk(A)

with mi(A) ≤ ni(A). We shall refer to the exponent mk(A) as the index ind(λk) of λk.

It is well known that the group inverse exists if and only if the geometric and algebraic

multiplicities of the zero eigenvalue are equal.
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We shall compute the algebraic multiplicity n0(G) and the geometric multiplicity ν0(G)

of the zero eigenvalue of G.

From Stephanos’ theorem (see [6, Theorem 1, page 411]) we know that the eigenvalues

of G have the form λij(G) = λi(A) − λj(B) with i = 1, . . . ,m and j = 1, .., n, counted

according to multiplicity. This immediately tell us that

n0(G) =
∑

γ∈σ(A)∩σ(B)

nγ(A)nγ(B). (2)

To get more information about G, we first reduce B to its Jordan form, via

Q−1BQ = JB = diag(Jq1(β1), .., Jqu(βu)),

where Jk(a) =


a 1 0

0 a 1

. . . . . . 1

a

 and Q is a suitable invertible matrix, made up of

Jordan Chains of generalized e-vectors. The βj may be repeated and u is the number of

Jordan blocks. The associated elementary divisors of B are given by

EB = {(x− βj)qj ; j = 1, . . . , u}.

Likewise the elementary divisors of A are given by EA = {(x− αi)pi ; i = 1, . . . , t} .

Transforming G we have

(QT⊗I)G[(QT )−1⊗I] = I⊗A− JTB⊗I = diag(G1, .., Gs),

where

Gi = I⊗A− JTqi(βi) =


A− βiI 0

−I A− βiI
. . . . . .

0 −I A− βiI


of block size qi×qi

(3)

which will also give (2).

We now observe that if Au = 0 and BTv = 0 then G(v⊗u) = 0. This means that

N(BT )⊗N(A) ⊆ N(G), (4)
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and hence on taking dimensions

ν(A) · ν(B) ≤ ν(G).

Consequently we have (product rule)

ν(G) = ν(A) · ν(B)⇔ N(G) = N(BT )⊗N(A). (5)

Let us now refine the block form of (3) to obtain:

(i) an expression for ν(G) in terms of A and B,

(ii) conditions for G to have a group inverse, and

(iii) give a formula for G#.

We shall then use the expression for ν(G) to show when precisely the product rule holds

and when ν(G) = n0(G), i.e. when G# exists.

We begin with

Lemma 2.1. Let R be a ring with unity 1, and suppose that

Jn(−a) =


a 0

−1 a
. . . . . .

0 −1 a

 and Kn(a) =



1 0

a 1

a2
. . . . . .

...

an−1 a 1


are over R with n ≥ 2. Then

(i) Kn(a)TJn(−a) =

[
0 an

I b

]
, where bT = [an−1, ..a2, a].

(ii) Jn(−a)# exists iff a−1 exists. In which case Jn(−a)# = Jn(−a)−1 =


a−1 0

a−2 a−1 0
...

. . .

a−n · · · a−1

.

Proof. (i) Clear.

(ii) Equating (2,1) entries in Jn(−a)2X = Jn(−a) and (n,n-1) entries in Y Jn(−a)2 =

Jn(−a) we see that a has both left and right inverses.
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From (3) we know that G# exists iff each of the blocks Gi has a group inverse. Now

when βi is not an eigenvalue of A then Gi is invertible and there is no contribution to

ν(G). So we only need to consider a common eigenvalue γ = αi = βj.

So let γ ∈ T = σ(A) ∩ σ(B) and assume that the associated elementary divisors are

EA = {(x− γ)p1(γ), . . . , (x− γ)pk(γ)}

and

EB = {(x− γ)q1(γ), . . . , (x− γ)qt(γ)},

respectively, where p1(γ) ≥ p2(γ) ≥ · · · ≥ pk(γ) ≥ 1 and q1(γ) ≥ q2(γ) ≥ · · · ≥ qt(γ) ≥ 1.

There are two cases that can happen.

(i) If qi > 1 then by Lemma 2.1 we know that G#
i exists iff (A− γI)−1 exists, that is, iff

γ /∈ σ(A). So this case cannot occur.

(ii) If qi = 1, i.e when we have a linear elementary divisor x− γ in EB , then G#
i exists

iff (A− γI)# exists. This happens exactly when γ is a simple root of ψA(x).

Thus,

Theorem 2.1. G# exists if and only if for every γ ∈ σ(A) ∩ σ(B) with qi = 1 (a 1 × 1

Jordan block) we have indA(γ) = 1.

In other words, for a common eigenvalue all associated elementary divisors for A and

B must be linear.

As a by-product we can compute the nullity ofG [5]. Indeed, suppose that A is in Jordan

form, say A = Aγ⊕X, where Aγ = diag(Jp1(γ), . . . , Jpr(γ)), and X contains Jordan blocks

with non common eigenvalues. Note that ν(Aγ) = r. Then I⊗Aγ − Jqj(γ)⊗I takes the

form

Gi,j =


Jp1(0) 0

−I Jp2(0)
. . . . . .

0 −I Jpr(0)


qj blocks

(6)

Now because ν[Jn(0)]k = min(n, k) we see that

ν(Gij) =
r∑
i=1

min{pi, qj} (7)

Repeating this for all common eigenvalues we arrive at, c.f. [5],
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ν(G) =
∑
γ∈T

r∑
j=1

r∑
i=1

min{pi, qj}. (8)

Let us now use this result to derive a couple of special cases.

If T = ∅, there are no common eigenvalues and ν(G) = 0. In particular 0 6∈ T and either

A or B is invertible. Hence ν(A) · ν(B) = 0 and the product rule holds.

If there are common eigenvalues, but 0 is not one of them, then ν(A) ·ν(B) = 0 < ν(G).

Lastly, if 0 is a common eigenvalue, then separating off the common zero eigenvalue we

get

ν(G) =

ν(A)∑
i=1

ν(B)∑
j=1

min{pi(0), qj(0)}+
∑

0 6=α∈T

∑
i=1

∑
j=1

min{pi(α), qj(α)} ≥ ν(A) · ν(B).

This we rewrite as

ν(G)− ν(A)ν(B) =

ν(A)∑
i=1

ν(B)∑
j=1

[min{pi(0), qj(0)} − 1] +
∑

06=α∈T

∑
i=1

∑
j=1

min{pi(α), qj(α)} ≥ 0.

(9)

Since all terms are non-negative, we see that ν(G) = ν(A).ν(B) if and only if there are

no common eigenvalues besides zero and for the zero eigenvalue∑
i=1

∑
j=1

[min{pi(0), qj(0)} − 1] = 0.

That is, min(pi, qj) = 1 for all i = 1, . . . , ν(A), j = 1, . . . , ν(B). Hence if some pi(0) > 1

then all qj(0) > 1 or if some qj(0) = 1 then all pi(0) = 1. That is, either all elementary

divisors of A associated with zero are linear or all those of B are. Thus the product rule

holds if and only if either ψB(x) = xf(x) or ψB(x) = xg(x), where (x, f) = 1 = (x, g). In

other words, the product rule holds if and only if A and B have at most the zero eigenvalue

in common and either A# or B# or both, exist.

Next we consider

n0(G)− ν(G) =
∑
α∈T

k(α)∑
i=1

t(α)∑
j=1

[piqj −min(pi, qj)] ≥ 0.

It thus follows that n0(G) = ν(G), i.e. G# exists, if and only if for each common eigenvalue

γ, piqj = min(pi, qj) ≥ 1, for all i = 1, . . . , k, j = 1, . . . , t. Next we note that if r, s ≥ 1,

then

rs = min{r, s} if and only if r = s = 1 (10)
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and conclude that G# exists if and only if for each common eigenvalue α, the elementary di-

visors are linear. In other words, if and only if γ ∈ T ⇒ ψA(x) = (x−γ)f(x) and ψB(x) =

(x− γ)g(x), where γ is not a root of f(x) or g(x).

Remarks

(i) If G# exists then γ ∈ T implies (A − γI)# and (B − γI)# both exist, yet A#

and/or B# may not exist. For example, if A is invertible and ψB = x2f(x) where

gcd(∆A, f) = 1, then the condition for G# to exist are satisfied, yet B# does not

exist.

On the other hand, if A# and B# both exist, then G# need not exist since they could

have common e-values other than zero.

(ii) We know that if G# exists then it is a polynomial in G, the coefficients of which can

be derived from ∆(G), which in turn can be found from the eigenvalues of A and

B. Since this becomes intractable, we shall proceed differently. First an alternative

proof of the above which is based on the property of Jordan blocks.

(iii) Since GT is similar to (AT⊗I − I⊗B) and ψA = ψAT we may interchange the roles

of A and B to deduce the desired symmetry of Theorem 2.1.

To compute G# suppose that βi /∈ σ(A), for i = 1, . . . , t, and βi ∈ σ(A), for i =

t + 1, . . . , v. Next let Q = [Q1, · · · , Qv] and Y = (QT )−1 = [Y1, · · · , Yv] so that BQi =

QiJqi(βi) and BT
i = YiJ

T
qi

(βi). Then

G# = (Y⊗I)



G−11 0
. . . 0

0 G−1t

0 G#
t+1

0
. . .

G#
v


(QT⊗I)

=
t∑
i=1

YiG
−1
i QT

i +
v∑

i=t+1

YiG
#
i Q

T
i .

Now G−1i is given as in (2.1) in which (A − βiI)−r can be calculated from the spectral

theorem [3]. Indeed,

(A−βiI)−r =
s∑

k=1

mk−1∑
j=0

[(x−βi)−r](j)λkZ
j
k =

s∑
k=1

mk−1∑
j=0

(−1)j
(r + j − 1)!

(r − 1)!
(λk−βi)−r−jZj

k. (11)
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Furthermore (A− βiI)# = g(A) where g(x) =

{
0 x = βi

1/(x− βi) x 6= βi
and so

(A− βiI)# =
s∑

k=1

mk−1∑
j=0

g(j)(λk)Z
j
k =

∑
λk 6=βj

mk−1∑
j=0

(−1)j

(λk − βi)j+1Z
j
k. (12)

Substituting these in the above yields G#.

Let us now turn to the case of an arbitrary field.

3 The Arbitrary Field Case

We shall now give conditions forG# to exist in term of the invariant factors {a1(x), .., ar(x)}
of A, and {b1(x), .., bs(x)} of B, and computeG# in terms of polynomial matrices associated

with A and/or B.

We begin by reducing A and B to their respective rational canonical forms and as such

reduce the problem to one where we have two companion matrices [3, p. 163], i.e.,

P−1AP = Ac = diag[L(a1(x)), . . . , L(ar(x))] and Q−1BQ = Bc = diag[L(b1(x), . . . , L(bs(x)].

The nivellateur becomes

(QT⊗P−1)G(Q−T⊗P ) = In⊗Ac −BT
c ⊗Im

We permute the diagonal blocks using the “universal flip” matrix – see [3] – to get

G ≈ ⊕ri=1⊕sj=1Gij,

where Gij = Ini
⊗L[ai(x)]− LT [bj(x)]⊗Imj

.

We now replaceG byGij and consider the “two-companion” case where G = In⊗L[a(x)]−
LT [b(x)]⊗Im, with b(x) = b0 + b1x+ · · ·+ bnx

n.

Following [3] we reduce xI − LT [b(x)] to its Smith Normal From via

R(x)[xI − LT (b)]K(x) =

[
b(x) 0

0 In−1

]
, (13)

whereR(x) =

[
βT (x) 1

−I 0

]
, K(x) is as in lemma (2.1) and [βT (x), 1] = [b0(x), . . . , bn−2(x), 1].

In this the bi(x) are the adjoint polynomials defined by [βT (x), 1] = [b1, . . . , bn]K(x). We

recall in passing that adj(xI −B) =
n−1∑
i=0

bi(B)xi. Solving this gives

[xI − LT (b)] = R(x)−1

[
b(x) 0

0 In−1

]
K(x)−1, (14)
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and subsequently replacing x by A = L[a(x)] throughout, these polynomial identities we

arrive at

G = R(A)−1

[
b(A) 0

0 In−1

]
K(A)−1 = PDQ. (15)

Since P and Q are invertible we may use [10, Corollary 2], which says that (PDQ)#

exists if and only if U = DQPDD− + I −DD− is invertible. Since

(1− ab)−1 = 1 + a(1− ba)−1b,

this is equivalent to U ′ = DQP + I − DD− being invertible, i.e. to W = D + (I −
DD−)R(A)K(A) being invertible.

Theorem 3.1. W is invertible if and only if G# exists.

To compute R(x)K(x) we define T (x) =

[
bT 1

−K−1n−1 0

]
, where bT = [b1, . . . , bn]. Then

T (x)Kn(x) = R(x) =

[
βT (x) 1

−In−1 0

]
and

R(x)K(x) = T (x)K(x)2 =

[
bT 1

−K−1n−1 0

][
K2
n−1(x) 0

? 1

]
=

[
γT (x) 1

−Kn−1(x) 0

]
, (16)

in which γT (x) = [b′(x),ρT (x)] and ρT = [b′0(x), . . . , b′n−3(x)]. These contain the formal

derivatives of the adjoint polynomials.

We next form

(I −DD−)R(A)K(A) =

[
I − b(A)b(A)− 0

0 0

][
[b′(A),ρT (A)] 1

? ?

]

=

[
[I − b(A)b(A)−]b′(A) C

0 0

]
,

where C = [I − b(A)b(A)−][ρT (A), I]. Adding in D =

[
b(A) 0

0 In−1

]
we arrive at

W =

[
b(A) + [I − b(A)b(A)−]b′(A) C

0 I

]
. (17)

This will be invertible exactly when b(A) + [I − b(A)b(A)−]b′(A) is invertible. Note that

b(A) and b′(A) commute, but that b(A)− need not be a polynomial in A.

We now need
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Lemma 3.1. Suppose R is a von Neumann finite regular ring and ah = ha.

If a+ (1− aa−)h is a unit then a# must exist.

Proof. Let u = a+ (1− aa−)h. Then ua = a2 + (1− aa−)ha = a2 + (1− aa−)ah = a2 and

thus a = u−1a2. Since R is finite we may conclude that a# exists.

Suppose now that W is invertible. Then b(A) is GP and we can replace b(A)− by

b(A)# = g(A) in W , implying that

Theorem 3.2. W is a unit if and only if b(A) is GP and f(A) = b(A)+[I−b(A)b(A)#]b′(A)

is a unit.

We shall now reduce these conditions to suitable polynomial results.

First we recall the trivial gcd result

Lemma 3.2. (u, d) = 1 if and only if (dm+ u, d) = 1.

and the group inverse result

Lemma 3.3. Suppose M has minimal polynomial ψM(x), and let f(x) be a polynomial

with d(x) = gcd(f(x), ψM(x)). The following are equivalent:

(i) f(M)# exists (ii) d(M)# exists (iii) (d, ψ/d) = 1 (iv) (f, ψ/d) = 1.

The proof is left as an exercise.

The latter says that if f = prf̃ and ψ = psψ̃ for some prime factor p, with (f̃ , p) = 1 =

(p, ψ̃), then r ≥ s. In other words, common factors of f and ψ occur with minimal degree

in ψM .

Since we may interchange L(a) and L(b) we must actually have that r = s. In other

words the common prime factors of any invariant factor a(x) of A and any invariant factor

b(x) of B must have the same multiplicity.

Now recall that ψA = a(x) and set (a, b) = d. Then b = db̃ and a = dã for some b̃, ã,

with (ã, b̃) = 1. Moreover b(A) has a group inverse if and only if (d, ã) = 1 or if (b, ã) = 1.

The existence of b(A)# also says that b(A)2g(A) = b(A) which holds iff a|b(1 − bg) iff

dã|db̃(1 − gb) iff ã|b̃(1 − gb). But (ã, b̃) = 1 and thus ã|(1 − gb) and conversely. We may

as such write 1 − gb = ãh, for some h(x). This ensures that (ã, b) = 1 = (ã, g) and gives

f = b+ ãhb′.

Next recall, by Hensel’s theorem [8, p. 21, Theorem 15.5], that f(A) is invertible if and

only if (f, a) = 1, i.e. if and only if (f, d) = 1 = (f, ã). First we observe that (f, d) = 1 if
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and only if (b + (1 − bg)b′, d) = 1 if and only if (db̃(1− gb′) + b′, d) = 1. By Lemma (3.2)

this happens precisely when (b′, d) = 1.

Next we note that because b = db̃ we have b′ = d′b̃ + d(b̃)′ and thus again by the

lemma, (b′, d) = 1 if and only if (d′b̃+ d(b̃)′, d) = 1 if and only if (d′b̃, d) = 1 if and only if

(d, d′) = 1 = (b̃, d) = 1.

Since (ã, b̃) = 1 it follows that (a, b̃) = (dã, b̃) = 1 so that b̃(A) is invertible.

We now cancel b̃(A) in d(A)2b̃(A)2g(A) = b(A)2g(A) = b(A) = d(A)b̃(A). This implies

that

d(A)2b̃(A)g(A) = d(A),

so that d(A)# exists and

d(A)# = g(A)b̃(A) and b(A)b(A)# = d(A)d(A)#.

The surprising fact is that the condition (f,ã) = 1 automatically follows if b(A) is GP.

Indeed, we have

b(a)# exists ⇒ (b, ã) = 1⇒ (b+ ãhb′, ã) = 1⇒ (b+ (1− bg)b′, ã) = 1⇒ (f, ã) = 1.

We recap in

Theorem 3.3. If G = In⊗L[a(x)] − LT [b(x)]⊗Im, then G# exists if and only if (d, ã) =

1 = (d, d′), where d = (a, b) and a = dã.

Now (d, d′) = 1 means that d only has simple prime factors. As a consequence, the

common invariant factors have simple prime factors. For the closed field case, this says

that all elementary divisors corresponding to common eigenvalues must be linear – as we

met in the previous section.

To compute the actual inverse of f(A) we observe that because (d, d′) = 1, we can find

s and t by Euclid’s algorithm, such that d(x)s(x) + d′(x)t(x) = 1. This means that

d′(A)t(A) = 1− d(A)s(A). (18)

Substituting for b′ we may rewrite f(A) = b(A) + [I − b(A)g(A)]b′(A) as f(A) =

b(A) + [I − d(A)d(A)#]d′(A)b̃(A), which we may invert to give

f(A)−1 = b(A)# + [I − d(A)d(A)#]b̃(A)−1t(A). (19)

Indeed, this follows because

[I − d(A)d(A)#]d′(A)b̃(A).b̃(A)t(A) = [I − d(A)d(A)#]d′(A)t(A)

= [I − d(A)d(A)#][I − d(A)s(A)]

= I − d(A)d(A)#.
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Remark We could have used the fact that (b′, d) = 1 which gives b′u = 1 − dv for some

v(x) and write f(A)−1 = b(A)# + [I − b(A)b(A)#]u(A). The computation of u, however, is

more difficult than that of t(x).

Since d(x) only has simple pime factors, the computation of t(A) can be done via

the gcd algorithm and the Chinese remainder theorem. Indeed, suppose d = p1p2 · · · pk,
where the pi are distinct prime polynomials. Further set Mi = d

pi
and gi = M−1

i mod pi.

Next we observe that if sd + td′ = 1, then t = (d′)−1 mod d, which is equivalent to

t = (d′)−1 mod pi for all i = 1, . . . , k. Because d′ = p′1M1 + p′2M2 + . . . we see that (d′)−1

mod pi = (p′iMi)
−1 mod pi = gi(p

′
i)
−1 mod pi. Using the Chinese remainder theorem we

may conclude that

t =
k∑
i=1

g2iMi(p
′
i)
−1 mod pi. (20)

4 Computation of G#

We may compute the actual group inverse of G via the formula [10],

G# = PU−2DQ = R(A)−1[I + (I −DK(A)−1R(A)−1)(U ′)−1DD−]2DK(A)−1

= R(A)−1[I + (RK −D)W−1DD−]2DK(A)−1,

in which (U ′)−1 = P−1Q−1W−1 = R(A)K(A)W−1 and W−1 =

[
f(A)−1 −f(A)−1C

0 I

]
.

First we see that

W−1DD− =

[
f(A)−1b(A)b(A)# −f(A)−1C

0 I

]
.
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Hence

R(A)K(A)W−1DD− =



b′(A) ρT (A) I

−I 0 0

−


A

A2

...

An−2

 −Kn−2(A) 0


[
f(A)−1b(A)b(A)# −f(A)−1C

0 I

]

=


b′(A)f(A)−1b(A)b(A)# −b′(A)f(A)−1C + [ρT (A), I]

−


I

A
...

An−2

 f(A)−1b(A)b(A)# −


I

A
...

An−2

 f(A)−1C +

[
0 0

−Kn−2(A) 0

]
 .

Recalling the definition of C we see that the (1,2) entry becomes

σT = [I − b′(A)f(A)−1(I − b(A)b(A)#)][ρ(A)T , I].

On the other hand,

DW−1DD− =

[
b(A)f(A)−1b(A)b(A)# f(A)−1b(A)C

0 I

]
=

[
f(A)−1b(A) 0

0 I

]
,

because b(A)C = 0.

Whence U−1 = I + (RK −D)W−1DD− takes the form

U−1 =


I + f(A)−1b(A)[b′(A)b(A)# − I] σT (A)

−


I

A
...

An−2

 f(A)−1b(A)b(A)# I −


I

A
...

An−2

 f(A)−1C +

[
0 0

−Kn−2(A) 0

]


This we substitute in

G# = R(A)−1[I + (R(A)K(A)−D)W−1DD−][I + (R(A)K(A)−D)W−1DD−]DK(A)−1,

which is not conducive to simplification.
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5 Open Questions and remarks

We end with some pertinent questions and remarks.

1. Squaring the matrix U−1 does not look appealing!

2. The expression for G# should be “symmetric” in L(a) and L(b), i.e a(x) − b(x)

symmetric, and as such there should be some simplification.

3. Can we find a good representation for (p′)−1 mod p for a prime polynomial p(x)?

4. Can we find the polynomial g(A) = A#?

5. Can Lemma (3.1) be extended to regular rings?

6. Can we use the invertibility of ag + 1− aa− to get a better result?
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