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Juvenile neuronal ceroid lipofuscinosis (JNCL), also

known as Batten disease, is a fatal inherited neurode-

generative disorder. The major clinical features of this

disease are vision loss, seizures and progressive cogni-

tive and motor decline starting in childhood. Mutations

in CLN3 are known to cause the disease, allowing the

generation of mouse models that are powerful tools for

JNCL research. In this study, we applied behavioural

phenotyping protocols to test for early behavioural

alterations in Cln3Dex7/8 knock-in mice, a genetic model

that harbours the most common disease-causing CLN3

mutation. We found delayed acquisition of developmen-

tal milestones, including negative geotaxis, grasping,

wire suspension time and postural reflex in both homo-

zygous and heterozygous Cln3Dex7/8 preweaning pups.

To further investigate the consequences of this neuro-

developmental delay, we studied the behaviour of juve-

nile mice and found that homozygous and heterozygous

Cln3Dex7/8 knock-in mice also exhibit deficits in explor-

atory activity. Moreover, when analysing motor behav-

iour, we observed severe motor deficits in Cln3Dex7/8

homozygous mice, but only a mild impairment in motor

co-ordination and ambulatory gait in Cln3Dex7/8 hetero-

zygous animals. This study reveals previously over-

looked behaviour deficits in neonate and young adult

Cln3Dex7/8 mice indicating neurodevelopmental delay as

a putative novel component of JNCL.
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Juvenile neuronal ceroid lipofuscinosis (JNCL; Batten or
Spielmeyer–Vogt disease) is part of a family of fatal lysosomal

storage disorders. Progressive visual impairment is typically
the first clinical sign of this disease (Consortium 1995;

Kohlschutter et al. 1993), followed by seizures, cognitive
decline and motor dysfunction (Bennett & Hofmann 1999;

Raininko et al. 1990). Premature death normally occurs
around the third decade of life. These symptoms underscore

the severe consequences of the autosomal recessive inher-
itance of mutations in CLN3. The vast majority of JNCL

patients have a common 1.02 kb deletion in CLN3 leading
to the loss of exons 7 and 8 (Consortium 1995). CLN3

encodes a 438 amino acid membrane protein with several
proposed functions (Hobert & Dawson 2007; Holopainen

et al. 2001; Koike et al. 2005; Narayan et al. 2006; Osorio
et al. 2007; Pearce et al. 1999; Puranam et al. 1999; Ramirez-

Montealegre & Pearce 2005), but our understanding of JNCL
pathogenesis is still elusive. Four JNCL mouse models have

been developed, namely the Cln3Dex1-6 knockout mouse
(Mitchison et al. 1999), the Cln3Dex7/8 knockout (Katz et al.

1999), the Cln3Dex7/8 knock-in (Cotman et al. 2002) and the
Cln3LacZ b-galactosidase reporter model (Eliason et al. 2007).

The Cln3Dex7/8 knock-in is the only model that recapitulates
the most commonly observed 1.02 kb deletion, leading to the

loss of exons 7 and 8 (Consortium 1995; Cotman et al. 2002).
Transcript analysis in these mice showed that in addition to

Cln3 messenger RNA (mRNA) lacking exons 7 and 8, there

were additional variant transcripts that lacked exon 5, or
retained intron 1, 10 or 11, in combination with the loss of

exons 7 and 8 (Cotman et al. 2002). The current sparse
knowledge on JNCL pathological mechanism and CLN3

function limits our understanding on the possible relevance
that variant Cln3 transcripts might have. Therefore, the

Cln3Dex7/8 knock-in mouse is a model tool of election for
JNCL research. Presently, few efforts have been made in the

behavioural characterization of Cln3Dex7/8 knock-in mice, and
only gait and clasping behaviours have been evaluated in

10–12 months old animals (Cotman et al. 2002). As symp-
toms in JNCL emerge in childhood and several studies point

to early initiation of JNCL disease process (Cotman et al.
2002; Herrmann et al. 2008; Kovacs et al. 2006; Lake 1993),

special attention should be placed in characterizing behav-
ioural alterations at early ages. In addition, the heterozygous

Cln3Dex7/8 knock-in mice should also be characterized
because mild alterations have also been reported in JNCL

carriers (Gottlob et al. 1988; Sayit et al. 2002). Therefore, in
the present study, we have applied behavioural paradigms1These authors contributed equally to this work.
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suitable to study sensorial and motor capabilities in develop-
ing wild type, heterozygous and homozygous Cln3Dex7/8

knock-in preweaning pups. Furthermore, we analysed the
behaviour of young adult animals using tests to assess major

clinical features of JNCL, including alterations of selected
behaviour profiles (open-field, elevated plus maze and forced

swimming tests), visual function (visual cued version of
Morris water maze test) and motor capacity (rotarod test

and gate analysis).

Materials and methods

Animals

The strain used in this study was generated in the M. MacDonald
laboratory (Cotman et al. 2002). The original strain was backcrossed 16
times to wild-type C57BL/6J mice obtained from Jackson laboratory.
Micewere kept in an animal facility in a 12-h light : 12-h dark cycle (light
onset at 0730 h), with food and water available ad libitum. Male and
female heterozygous Cln3Dex7/8 animals were bred. A daily inspection
for the presence of new litters in the cages was carried out twice a day,
and the day of birth was annotated for each litter. After birth, animals
were kept in the home cage with their mothers and were then tagged
with non-toxic paint (green paste; Ketchum Manufacturing Inc., Brock-
ville, Canada) in one or two toes per feet at PND 3. Pupswere evaluated
daily (wild type, n ¼ 25; heterozygous Cln3Dex7/8, n ¼ 33; homozygous
Cln3Dex7/8, n ¼ 29 from 10 litters) in battery of test (approximately 8 min
per animal) to evaluate somatic parameters and neurological reflexes
until weaning at PND 21. At this point, the tip of the tail was cut for DNA
extraction, and genotyping was performed by a multiplex polymerase
chain reaction (PCR) analysis in a 20 ml volume that included autoclaved
ultrafiltered water, PCR buffer (1�), dNTP mixture (200 mM each),
primers (for details, see Table 1), Taq DNA polymerase (1 U/20 ml) and
approximately 50 ng genomic DNA templates. PCR cycling conditions
included 35 cycles of 15 seconds at 948C, 30 seconds at 558C and
45 seconds at 658C after a 10-min initial period of DNA denaturation and
enzyme activation at 948C. The amplified fragments had sizes readily
distinguishable by electrophoresis through a 2% agarose gel. Groups of
8-week-old animals from nine litters that had not been previously tested
in behaviour experiments were tested in different days in the open-field
(wild type, n ¼ 24; heterozygous Cln3Dex7/8, n ¼ 27; homozygous
Cln3Dex7/8, n ¼ 25), elevated plusmaze (wild type, n ¼ 28; heterozygous
Cln3Dex7/8, n ¼ 31; homozygous Cln3Dex7/8, n ¼ 27) and forced swim-
ming tests (wild type, n ¼ 10; heterozygous Cln3Dex7/8, n ¼ 13; homo-
zygous Cln3Dex7/8, n ¼ 13). Different groups of 8-week-old untested
animals were used for rotarod, gait analysis andMorris water maze tests
(wild type, n ¼ 9; heterozygous Cln3Dex7/8, n ¼ 12; homozygous
Cln3Dex7/8, n ¼ 15). The same observer, blinded for animal genotype,
evaluated each test performed. Tests were always made in the same
circadian period and whenever possible at the same hour of the day.
After completing the experiments, animals were euthanized by CO2 and
decapitated, thus minimizing their suffering. All animal experimentation
was conducted in accordance with the European Community Council

Directive, 86/609/EEC and National Institutes of Health (NIH) guidelines
on animal care and experimentation.

Somatic parameters

Body weight and the anogenital distance were measured daily from
PND 3 to PND 21. In addition, the day of eye opening and ear opening
as well as fur appearance were also evaluated.

Neurological reflexes

Neurodevelopment testing for surface righting, air righting, wire
suspension, negative geotaxis and postural reflexes was performed
with minor alterations from what had been previously described
(Mesquita et al. 2007; Santos et al. 2007). Briefly, animals were
separated from their mother at the beginning of each test session and
kept with their littermates in a new cage, under soft white light, with
towel paper and sawdust from their home cage. The mothers were
left in the same room as the pups during separation. Animals were
returned to their home cage once testing was finished.

Surface righting reflex
The neonate was placed in the supine position, and the time needed to
turn over and restore its normal prone position was recorded for
a maximum of 30 seconds. Complete acquisition of the reflex was
assumedwhen the animal could rotate 1808 around its longitudinal axis.

Air righting reflex
The neonate was held on its back 30 cm above a soft surface before
being released. The position in which the animals reach the soft pad
was recorded. The reflex was considered to be achieved when
neonate landed on the surface with all four paws.

Grasping and wire suspension test
A metal bar was suspended 30 cm above a soft surface. The animal
was held, and its forepaws were allowed to touch the bar. Complete
acquisition of grasping reflex was assumed when the animal was able
to grasp the bar with both forepaws. The time the animal was able to
hold on the bar using only its forepaws (wire suspension time) was
also recorded for a maximum of 30 seconds.

Negative geotaxis
The animal was placed on a grid, tilted 458 to the plane, with its head
facing downwards. Animals that could rotate a full 1808 and face up
within a maximum time of 30 seconds were considered to have
acquired this reflex.

Postural reflex
Neonateswere placed in a 15 � 15 cmbox and shaken left and right and
up and down. Animals that couldmaintain their original position in the box
by extending all four limbs were assumed to have acquired this skill.

Open field

Animals were placed in the centre of a 43.2 � 43.2 cm arena with
transparent walls (MedAssociates Inc., St Albans, VT, USA) and were
observed for 5 min. The arena was lighted by a 60 W bulb suspended
above the centre. Activity parameters were automatically collected by
the equipment (total distance travelled, speed, resting time, distance
travelled and time spent in a predefined 10.8 � 10.8 cm square in the
centre of the arena). The number of rears and the time that animals
spent exploring vertically were registered by the observer.

Rotarod

Mice were tested in a rotarod apparatus from TSE systems (Hamburg,
Germany). The protocol consisted of 3 days of training at the

Table 1: Primers used in multiplex PCR genotyping

Primer Sequence 50–30
Concentration

(nM)

Cln3 552F GAG CTT TGT TCT GGT TGC

CTT C

200

Cln3 Ex9R GCA GTC TCT GCC TCG TTT TCT 200

Cln3 WTF CAG CAT CTC CTC AGG GCT A 200

Cln3 WTR CCA ACA TAG AAA GTA GGG

TGT GC

200
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constant speed of 15 r.p.m. for a maximum of 60 seconds in four
trials, with a 15-min interval between each trial. At the fourth day,
animals were tested for each of six velocities (5, 8, 15, 20 and
24 r.p.m.) for a maximum of 60 seconds in two trials, with a 10-min
interval between each trial. The latency to fall off the rod was
registered.

Elevated plus maze

Mice were placed in an Elevated plus maze (EPM) apparatus consist-
ing of two opposite open arms (50.8 � 10.2 cm) and two opposite
closed arms (50.8 � 10.2 � 40.6 cm) raised 72.4 cm above the floor
(ENV-560; MedAssociates Inc.), and the time spent in each of the
arms was measured using a video-tracking system (Viewpoint,
Champagne au Mont d’Or, France).

Forced swimming test

Learned helplessness, as a measure of susceptibility to depression-
related behaviour, was assessed using the forced swimming test.
Mice were placed in cylinders (diameter: 37 cm; 55 cm of height)
filled with water (258C) to a depth where the animals had no solid
support for their rear paws. After a 10-min pretest session, animals
were rested for 24 h before being subjected to the actual tests, which
lasted 5 min. At the end of each test session, animals were placed on
a heating pad (15 min) before being returned to their home cages.
Cylinders were filled with fresh water after each trial. A video camera,
placed at the top of the cylinder, was used to record test sessions.
Recordings were later scored by an investigator blinded to the
experimental details to determine inactivity (passiveness – defined
as time spent either immobile or making righting movements to stay
afloat) vs. activity periods.

Gait analysis

Eight-week-old mouse were placed in an apparatus that consisted of
a wooden platform 90 cm long � 9 cm wide with a wooden box
(27 � 22 cm; 17.5 cm height) at one end of the platform; mice had
free access to the box from the platform through a small door. The
entire apparatus was elevated 11 cm from the bench, and paper
(9 � 90 cm long) was placed on the walking platform; the hind paws
of the mouse were dipped into non-toxic black paint and the forepaws
were painted with red paint. In the day of testing, individual mice were
placed on the end of the platform farthest from the box. As each
mouse traversed the platform, its gait was recorded as finger-paint
paw prints. Several parameters of the gait were measured, including
length of stride (distance between consecutive same footprints),
length of step (distance between consecutive alternate footprints)
and hind and forepaws displacement (distance between left and right
hind or fore paws).

Morris water maze with visual clues

The Morris water maze consisted of a black tank (diameter: 170 cm,
depth: 50 cm), divided into four quadrants by virtual lines and filled
with water (228C) to a depth of 31 cm. During testing, a visible
platform (12 � 12 cm; identified with a 10 cm2 square flag with
15 cm of height) was placed at a height of 30 cm, and extrinsic visual
clues were glued to the walls. Data were collected using a video-
tracking system (Viewpoint, Champagne au Mont d’Or, France).
Animals were tested for three consecutive days (four trials per day,
with a maximum of 2 min per trial). The visible escape platform was
placed in the centre of an arbitrarily defined quadrant. Test sessions
beganwithmice being placed, facing thewall of themaze, in a defined
start position and finished once the escape platform had been
reached. This procedure was continued in a clockwise fashion over
the subsequent trials. The time and distance to escape to the platform
were recorded. In cases in which the escape platform had not been
reached within 2 min, the experimenter guided the animal to the

platform. In either case, animals were dried and allowed to rest for
30 seconds before being returned to the maze for the remaining test
sessions.

Quantitative reverse transcription polymerase chain

reaction

For comparative gene expression studies, total RNA was extracted
from the cerebellum isolated from wild type, heterozygous and
homozygous Cln3Dex7/8 mice using Trizol reagent (Invitrogen, Carls-
bad, CA, USA) and treated using the Turbo� DNA-free kit (Ambion,
Austin, TX, USA) to reduce genomic DNA contamination. One micro-
gram of RNA was used as template for complementary DNA (cDNA)
synthesis using the High-Capacity cDNA synthesis kit (Applied Bio-
systems, Foster City, CA, USA) according to the manufacturer’s
protocol. A total of three mice per genotype were used for reverse
transcription polymerase chain reaction (qRT-PCR) analysis. Compar-
ative quantitative PCR was performed using gene-specific primers as
detailed in Table 1 using b-actin for normalization. Amplification was
carried out using Power SYBR Green master mix (Applied Biosys-
tems) containing appropriate concentrations of each primer (Table 2)
and 2 ml of cDNA in a 96 well plate on a Mx3005p real-time PCR
instrument (Stratagene, La Jolla, CA, USA) using the following cycling
parameters: 958C for 10 min, followed by 40 cycles of 958C for
20 seconds and 608C for 1 min. Specificity of the amplified product
was determined by melt-curve analysis immediately following com-
pletion of the final amplification cycle.

Statistical analysis

For each component of the test battery for physical maturation and
neuronal reflex acquisition, the average first day of adult-like respond-
ing was statistically analysed by analysis of variance (ANOVA), with
Tukey multiple comparison procedure. Further analysis of these data
was performed in different PND by comparing the percentage of
animals with and without adult-like response against two genotypes
(wild type vs. heterozygous and wild type vs. homozygous Cln3Dex7/8

mice) by the Fisher’s exact test (FET). Other statistical comparisons
were performed, in the case of two groups, through Student’s t-test
or, in the case of several groups, by ANOVA, with Tukey multiple
comparison procedure. When the homogeneity of variances was not
observed, non parametric testswere used,Mann–Whitney test for two
groups and Kruskal–Wallis test for several groups, with Bonferroni
correction for multiple comparisons. Relative gene expression and
statistical analysis of qRT-PCR data were calculated using the REST-XL
version 2 program (Pfaffl et al. 2002) and expressed as fold change vs.
wild type. Data from male and female animals were pooled together
when there was no sex effect and sex vs. genotype interactions as

Table 2: Primers used in qRT-PCR

Primer Sequence 50–30
Concentration

(nM)

Set 1 Cln3 ex1F TGA GAG GGA GGA

GAC CGA CTC AGA

400

Cln3 ex3R CCA AGA TCC AGA

AAC CCA CTG CA

400

Set 2 Cln3 ex6F TCT GGT TGC CTT

CTC TCA GTC AGT

300

Cln3 ex7/8R AGA CCA CCA TGA

GAT CAC AGC ACT

300

HSK ActB ex1F CTG TCG AGT CGC

GTC CAC CC

600

ActB ex2R CGT CAT CCA TGG

CGA ACT GG

600
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verified by the two-way ANOVA test. In rotarod experiments, homoge-
neity of variances was not observed (Levene’s test), and only male
animals were used. SPSS version 16 was used to analyse the data, and
statistical significance was set to P < 0.05.

Results

Preweaning neurodevelopment abnormalities in

Cln3Dex7/8 neonates

To evaluate the possible influence of Cln3Dex7/8 mutation in
the appearance of developmental milestones, we performed

daily analysis/scoring of physical growth, maturation and

acquisition of neurological reflexes in wild type, homozygous
and heterozygous Cln3Dex7/8 knock-in littermates from PND 3

to 21. Both homozygous and heterozygous Cln3Dex7/8 knock-
in exhibited delays in the achievement of developmental

milestones (Table 3). The greatest delays were observed in
the negative geotaxis and grasping reflex. The mean first day

of appearance on negative geotaxis reflex was significantly
different among the tree genotypes (F2,71 ¼ 3.180, P < 0.05)

and delayed in approximately 3.0 days for homozygous
Cln3Dex7/8 mice and 2.2 days for the heterozygous Cln3Dex7/

8 mice. In the grasping behaviour, there were also significant
differences between the genotypes (F2,72 ¼ 3.024, P <

0.05), and the delay was of approximately 2.5 days for the
homozygous Cln3Dex7/8 mice and 1.3 days for the heterozy-

gous Cln3Dex7/8 mice. The differences in the mean first day of
adult-like response did not reach statistical significance for

the other tests performed. Nonetheless, when analysing the
percentage of animals with adult-like response at the differ-

ent PNDs, in addition to finding significant differences in
negative geotaxis at PND 5 and 6 (FET, P < 0.05) and in

grasping at PND 6 (FET, P < 0.05), we also found significant
differences among genotypes in the percentage of animals

with postural reflex at PND 8 (FET, P < 0.05) (Fig. 1a).
Furthermore, the time of wire suspension was also signifi-

cantly decreased (F2,50 ¼ 3.748, P < 0.05) in homozygous
Cln3Dex7/8 at PND 16 when compared with wild-type controls

(Fig. 1b). These results indicate the presence of a delay in the
neurodevelopment of homozygous Cln3Dex7/8 mice that is

less severe but also present in heterozygous animals.

Juvenile Cln3Dex7/8 knock-in mice display reduced

exploratory behaviour

Having observed neurodevelopmental delays in Cln3Dex7/8

mice, we sought to evaluate the possible consequences of
this anomaly in the behaviour of postweaning 8-week-old

animals in the open-field test. A marked decrease in the
exploratory behaviour of homozygous and heterozygous

Cln3Dex7/8 mice, expressed by a significant decrease in the
number of ‘rearings’ performed (F2,73 ¼ 7.193, P < 0.05)

(Fig. 2a) and time spent in vertical exploration (F2,73 ¼
7.300, P < 0.05) (Fig. 2b), was found. Spontaneous locomo-

tion was not affected because no genotype-associated differ-
ences were found in the total distance travelled (Fig. 2c).

Interestingly, there were significant differences in the per-

centage of time heterozygous or homozygous Cln3Dex7/8

mice (F2,73 ¼ 5.926, P < 0.05) spent in the centre of the

arena when compared with wild-type animals (Fig. 2d). As
this could be indicative of anxiety-like behaviour, we then

tested the animals in the elevated plus maze test. There were
no significant differences neither in the percentage of time

spent in the open arms (Table 4a) nor in the number of open
arms entries (data not shown), indicating no evidence for

anxiety-like behaviour. This result suggests that the decrease
in the percentage of time spent in the centre of the field by

Cln3Dex7/8 knock-in mice is a consequence of the decreased
exploratory activity observed in these animals. Finally, the

forced swimming test gave no indications of depressive-like
behaviour because no differences were observed between

the different genotypes neither in the percentage of time
spent in immobility status (Table 4b) nor in the latency to

immobility time (data not shown).

Juvenile Cln3Dex7/8 knock-inmice do not havemarked

visual impairment

Visual impairment is typically the first clinical sign detected in

JNCL human patients (Kohlschutter et al. 1993). Therefore,
we performed an analysis of visual acuity in 8-week-old wild-

type, heterozygous and homozygous Cln3Dex7/8 animals. For
this purpose, we used a modified version of the Morris water

maze with visual clues to indicate the platform. Testing was
performed over 3 days (four trials per day), and our results

show no significant genotype-associated differences neither
in time needed (Table 4c) nor in the distance swam to escape

to the visible platform (data not shown).

Juvenile Cln3Dex7/8 mice show motor co-ordination

impairment and ataxia

Motor deficits have been established as one of the primary

clinical features in JNCL emerging early in disease progres-
sion (Raininko et al. 1990). To evaluate motor co-ordination,

Table 3: Developmental milestones of wild type, homozygous

and heterozygous Cln3Dex7/8 knock-in neonatal mice

Wild type Cln3þ/Dex7/8 Cln3Dex7/8/Dex7/8

Air righting

reflex, first day

14.78 � 0.90 15.32 � 0.92 15.87 � 1.23

Surface righting

reflex, first day

4.08 � 0.90 4.62 � 1.19 4.93 � 1.46

Eye opening,

first day

12.30 � 3.34 13.33 � 1.19 13.48 � 1.45

Ear opening,

first day

13.07 � 0.47 13.18 � 0.51 13.00 � 0.35

Negative geotaxis,

first day

4.50 � 0.85 6.71 � 2.78 7.52 � 3.38

Postural reflex,

first day

8.13 � 0.51 8.75 � 2.13 8.70 � 1.96

Grasping, first day 5.13 � 0.58 6.40 � 0.59 7.60 � 0.57

Data are presented asmean first day of adult-like response � SE (wild

type, n ¼ 25; heterozygous Cln3 Dex7/8, n ¼ 33; homozygous

Cln3Dex7/8, n ¼ 29).
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we started measuring the latency time required by 8-week-old
wild-type, heterozygous and homozygous Cln3Dex7/8 knock-in

mice to fall from rods rotating at the speed of 5, 8, 15, 20, 24
and 31 r.p.m. (Fig. 3a). Mean latency times were significantly

different between groups at the speeds of 15, 20 and 24
(Kruskal–Wallis test, w2ð2Þ ¼ 11.379, 9.254, 8.058, respectively,

P < 0.05). Cln3Dex7/8 homozygous mice present significantly
decreased latency times to fall at the speed of 15 (z ¼ �2.246,

P < 0.05), 20 (z ¼ �2.453, P < 0.05) and 24 r.p.m. (z ¼
�2.565, P < 0.05) when compared with the wild-type con-

trols. Cln3Dex7/8 heterozygous mice only have significantly
decreased latency time to fall from the rod when compared

with wild-type controls at the speed of 24 r.p.m. (z ¼ �2.380,
P < 0.05). We also analysed the ambulatory gait of Cln3Dex7/8

mice. Cln3Dex7/8 homozygous mice displayed decreased dis-
placement between hind paws (q ¼ 2.614, P < 0.05) (Fig. 3b)

and forepaws (q ¼ 2.414, P < 0.05) (Fig. 3c) when compared

with wild-type controls, while presenting no stride length or
stride matching differences (data not shown), which is indic-

ative of mild ataxia. Cln3Dex7/8 heterozygous only showed
decreased displacement in the hind paws (q ¼ 4.106, P <

0.05) (Fig. 3b). Collectively, these results indicate motor defi-
cits in 8-week-old Cln3Dex7/8 homozygous mice and less

severe motor deficits in heterozygous Cln3Dex7/8 mice.

Heterozygous Cln3Dex7/8 mice express intermediate

levels of wild-type and mutant Cln3 mRNA

Comparative qRT-PCR was used to determine the relative

expression of Cln3 mRNA transcripts in wild-type, heterozy-
gous and homozygous Cln3Dex7/8 mice. Previously, it was

shown that Cln3Dex7/8 mice express multiple variant tran-
scripts in response to the deletion of exons 7 and 8 from the

genomic sequence (Cotman et al. 2002). Because

Figure 1: Decreased percentage of animals with negative geotaxis, postural reflex and grasping behaviour in homozygous and

heterozygous Cln3Dex7/8. (a) The percentage of homozygous and heterozygous Cln3Dex7/8 mice positively scored was significantly

decreased for postural reflex at PND 8, for negative geotaxis at PND 5 and 6 and for grasping behaviour at PND 6. Data are expressed as

the percentage of animals achieving adult-like response (b) The time of wire suspension was also significantly decreased in homozygous

Cln3Dex7/8 at PND 16 when compared with wild-type controls. Mean values are plotted with SEM. *P<0.005. (wild type, n ¼ 25;

heterozygous Cln3Dex7/8, n ¼ 33; homozygous Cln3Dex7/8, n ¼ 29).

Genes, Brain and Behavior (2009) 8: 337–345 341

Early behavioural alterations in Cln3Dex7/8 mice



heterozygote animals have one wild-type allele and one
mutant allele, it is assumed that these mice would express

partial transcripts lacking exons 7 and 8 (mutant transcript) in
addition to the normal full-length transcript. To distinguish

between full-length wild-type and mutant transcripts, primers
were designed to detect either all Cln3 transcripts or only

full-length wild-type transcripts. Primer set 1 was designed to
amplify a region within exon 1 through exon 3 that is

upstream of the deleted region and thus is common to both
wild-type and mutant Cln3 transcripts. Primer set 2 amplifies

a region within exon 6 through exon 8 and thus would detect
only full-length Cln3 transcripts because mutant transcripts

Figure 2: Decreased exploratory activity in homozygous and heterozygous Cln3Dex7/8 mice. Eight-week-old animals were tested

in the open-field apparatus. Homozygous and heterozygous Cln3Dex7/8 mice have a significant decrease in (a) the number of ‘rearings’

performed and in (b) the total time spent in vertical exploration. (c) The total distance Cln3Dex7/8 mouse travelled during the test is normal

while presenting a significant decrease in (d) the percentage of time spent in the centre of the field. Mean values are plotted with SEM,

*P<0.05 (wild type, n ¼ 24; heterozygous Cln3Dex7/8, n ¼ 27; homozygous Cln3Dex7/8, n ¼ 25).

Table 4: Behaviour of wild type, homozygous and heterozygous Cln3Dex7/8 knock-in 8-month-old mice in the elevated plus maze (wild

type, n ¼ 28; heterozygous Cln3Dex7/8, n ¼ 31; homozygous Cln3Dex7/8, n ¼ 27) (a), forced swimming (wild type, n ¼ 10; heterozygous

Cln3Dex7/8, n ¼ 13; homozygous Cln3Dex7/8, n ¼ 13) (b) and visual cued water maze tests (wild type, n ¼ 9; heterozygous Cln3Dex7/8,

n ¼ 12; homozygous Cln3Dex7/8, n ¼ 15) (c)

Wild type Cln3þ/Dex7/8 Cln3Dex7/8/Dex7/8

(a) Elevated plus maze: time in open arms

(%) (mean � SEM)

14.43 � 2.617 13.80 � 2.125 13.25 � 2.444

(b) Forced swimming: immobility time (%) (mean � SEM) 59.48 � 8.531 75.76 � 2.364 65.71 � 4.192

(c) Visual cued water maze: escape latency time

(seconds) (mean � SEM)

Day 1 71.83 � 6.306 82.58 � 6.345 72.48 � 5.861

Day 2 33.15 � 5.281 35.58 � 5.048 30.71 � 3.879

Day 3 27.11 � 5.285 20.81 � 2.832 16.20 � 2.222
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Osório et al.



lack exons 7 and 8. Using primer set 1, which detects both
full-length and mutant Cln3 transcripts, we observed no

significant differences in Cln3 transcript levels in heterozy-
gote mice in comparison to wild type, but a 3.6-fold decrease

(P < 0.05) in transcript levels in the homozygous mice.
Because no changes in the overall level of Cln3 was

detected in heterozygotes, we sought to determine the
relative contribution of full-length transcripts to the overall

transcript level by using primer set 2, which is directed at the
deleted region of Cln3 such that mutant transcripts lacking

exons 7 and 8 are not detected. Using this approach, we
observed a 1.8-fold decrease (P < 0.05) in full-length tran-

scripts in heterozygotes and no detectable transcripts in
homozygote animals. These results suggest that in hetero-

zygote mice, approximately half of the transcripts present

are full length, with the remainder being mutant variant
transcripts lacking exons 7 and 8.

Discussion

The use of the Cln3lacZ reporter mouse model has shown that

Cln3 is expressed in the brain during embryonic and early
postnatal stages (Eliason et al. 2007), further supporting early

initiation of JNCL disease process (Cotman et al. 2002;
Herrmann et al. 2008; Kovacs et al. 2006; Lake 1993). In

addition, it has been suggested that mutated polypeptides
resulting from expression of Cln3Dex7/8, the most common

JNCL mutation, may have biological function (Kitzmuller et al.
2008). Therefore, we studied the early postnatal behaviour of

heterozygous and homozygous Cln3Dex7/8 knock-in mice. In

Figure 3: Evidence for motor deficits in homozygous and heterozygous Cln3Dex7/8 mice. (a) When tested in the rotarod,

homozygous 8-week-old Cln3Dex7/8 mice have a significantly decreased latency to fall off the rod at the speeds of 15, 20 and 24 r.p.m.,

while heterozygous Cln3Dex7/8 mice only exhibit decreased latency to fall at the speed of 24 r.p.m. (wild type, n ¼ 11; heterozygous

Cln3Dex7/8, n ¼ 13; homozygous Cln3Dex7/8, n ¼ 17). Mean values are plotted with confidence interval at a 95% level. Ambulatory gait

was also analysed, and homozygous Cln3Dex7/8 mice have a significantly decreased displacement of (b) hind and (c) forepaws, while

heterozygous Cln3Dex7/8 animals only present a decrease in (b) hind paws displacement (wild type, n ¼ 9; heterozygous Cln3Dex7/8,

n ¼ 12; homozygous Cln3Dex7/8, n ¼ 15). Mean values are plotted with SEM, P < 0.05.
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homozygous Cln3Dex7/8 mice, we detected a significant delay
in the acquisition of negative geotaxis and grasping reflexes

and also a decrease in the percentage of animals with
postural reflex at PND 8 and in the wire suspension time at

PND 16. Interestingly, we also detected alterations in hetero-
zygous Cln3Dex7/8 mice, including a less pronounced delay in

the achievement of negative geotaxis and grasping reflex and
a decrease in the percentage of animals with postural reflex at

PND 8. These tasks evaluate vestibular and motor functions
(Dierssen et al. 2002; Lake 1993), and our results suggest that

Cln3Dex7/8 induces a delay in the maturation of brainstem and
cerebellar structures not only in homozygous but also in

heterozygous Cln3Dex7/8 mice. This is the earliest description
of behavioural abnormalities in JNCL mouse models indicat-

ing delayed neurodevelopment as a putative novel compo-
nent of JNCL disease. Adult behaviour phenotypes can be

influenced by the deficit in one or more functional domains
during neurodevelopment. In fact, it is possible that the

detected developmental alterations are in the basis of the
reduced exploratory activity encountered in both homozygous

and heterozygous Cln3Dex7/8 young adult mice. When focus-
ing the behavioural characterization in tests that assess the

major and earlier clinical features of JNCL, we found no
evidence for visual impairment in young adult Cln3Dex7/8mice.

Visual loss is, commonly, the earliest symptom detected in
patients and has been associated with retinal degeneration

(Goebel 1977), but the use of the visual cued version of

Morris water maze pointed to the absence of marked visual
impairment in Cln3Dex7/8 mice at juvenile age. This result is in

accordance with previous reports showing minimal photore-
ceptor loss (Cotman et al. 2002; Seigel et al. 2002), normal

electroretinograms (Seigel et al. 2002) and alterations in
pupillary reflexes only in 24-month-old animals (Katz et al.

2008). Motor deficits are another major clinical feature of
JNCLwith early onset, which is mainly attributed to cerebellar

degeneration (Raininko et al. 1990). In accordance with data
from other JNCL mouse models (Eliason et al. 2007; Kovacs

et al. 2006), 8-week-old homozygous Cln3Dex7/8 mice exhibit
a marked motor impairment that is evident in the rotarod

test. Interestingly, Cln3Dex7/8 heterozygous animals show
a milder phenotype only detectable with increasing difficulty

of the test. Additionally, previous studies also showed that
10- to 12-month-old homozygous Cln3Dex7/8 mice exhibit

alterations in ambulatory gait (Cotman et al. 2002). Herein, we
show that gait alterations are already present in 8-week-old

homozygous Cln3Dex7/8 mice and are, again, present and
milder in the heterozygous Cln3Dex7/8 mice. As the rotarod

and gait analysis are highly influenced by cerebellar function,
these behavioural results suggest that, as expected, homozy-

gous Cln3Dex7/8 mice might undergo more pronounced cere-
bellar degeneration. The demonstration of behaviour deficits in

heterozygous Cln3Dex7/8 mice is a novel finding of the present
work because previous studies with the various JNCL murine

models had never compared wild-type, heterozygous and
homozygous animals (Cotman et al. 2002; Eliason et al.

2007; Katz et al. 2008; Mitchison et al. 1999). It has been
reported that Cln3Dex7/8 knock-in mice exhibit earlier and more

severe neurological disease (Cotman et al. 2002) when com-
pared with Cln3LacZ and Cln3Dex1-6 mouse models. This

observation could be suggestive that variant Cln3 transcripts

might contribute to the pathological alterations. Nonetheless,
the studies that support amore severe phenotype inCln3Dex7/8

knock-in mice might be influenced by strain background
effects and genetic modifiers because different strains were

used (Cotman et al. 2002; Eliason et al. 2007; Katz et al. 2008;
Mitchison et al., 1999). This hypothesis is supported by the

comparison of Cln3Dex7/8 knock-in mice with the Cln3Dex7/8

described by Katz et al. In these transgenic strains, exons 7 and

8 are deleted, albeit using differing strategies and targeted
regions would result in a predicted truncated protein without

exons 7 and 8. The Cln3Dex7/8(Katz) model exhibited a later
onset of pathological changes (Katz et al. 1999, 2008) in a time

frame more consistent with the Cln3Dex1-6 and Cln3LacZ mice.
This illustrates the need to perform a comprehensive charac-

terization of the available murine JNCL models on a standard
genetic background to allow proper comparison. We analysed

the transcripts present in Cln3Dex7/8 mice and found interme-
diate levels of wild-type and truncated Cln3 transcripts in

heterozygous animals. A recent study suggests that the
truncated CLN3 protein is unlikely to be expressed (Chan

et al. 2008). Therefore, it is likely that wild-type CLN3 levels
in heterozygous Cln3Dex7/8 animals are insufficient to maintain

the required CLN3 activity resulting in the anomalies found. As
previously suggested, a threshold for CLN3 activity might

exists before the onset of neurological disease (Cotman et al.
2002). Nevertheless, at this point, we cannot fully discard

a possible influence of alternative Cln3 transcripts on the

observed phenotype, and further studies at the biochemical
and molecular levels are necessary to increase our under-

standing on this aspect. Irrespective of the underlying mech-
anism, it is interesting to note that existing studies in human

patients have documented brain structural abnormalities and
functional ophthalmological changes in JNCL carriers (Gottlob

et al. 1988; Sayit et al. 2002), suggesting that heterozygous
human carriers may also exhibit mild neurological alterations.
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