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Abstract

Background: Self-monitoring using certain types of pedometers and accelerometers has been reported to be effective for
promoting and maintaining physical activity (PA). However, the validity of estimating the level of PA or PA energy expenditure
(PAEE) for general consumers using wearable devices has not been sufficiently established.

Objective: We examined the validity of 12 wearable devices for determining PAEE during 1 standardized day in a metabolic
chamber and 15 free-living days using the doubly labeled water (DLW) method.

Methods: A total of 19 healthy adults aged 21 to 50 years (9 men and 10 women) participated in this study. They followed a
standardized PA protocol in a metabolic chamber for an entire day while simultaneously wearing 12 wearable devices: 5 devices
on the waist, 5 on the wrist, and 2 placed in the pocket. In addition, they spent their daily lives wearing 12 wearable devices under
free-living conditions while being subjected to the DLW method for 15 days. The PAEE criterion was calculated by subtracting
the basal metabolic rate measured by the metabolic chamber and 0.1×total energy expenditure (TEE) from TEE. The TEE was
obtained by the metabolic chamber and DLW methods. The PAEE values of wearable devices were also extracted or calculated
from each mobile phone app or website. The Dunnett test and Pearson and Spearman correlation coefficients were used to examine
the variables estimated by wearable devices.

Results: On the standardized day, the PAEE estimated using the metabolic chamber (PAEEcha) was 528.8±149.4 kcal/day.
The PAEEs of all devices except the TANITA AM-160 (513.8±135.0 kcal/day; P>.05), SUZUKEN Lifecorder EX (519.3±89.3
kcal/day; P>.05), and Panasonic Actimarker (545.9±141.7 kcal/day; P>.05) were significantly different from the PAEEcha. None
of the devices was correlated with PAEEcha according to both Pearson (r=−.13 to .37) and Spearman (ρ=−.25 to .46) correlation
tests. During the 15 free-living days, the PAEE estimated by DLW (PAEEdlw) was 728.0±162.7 kcal/day. PAEE values of all
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devices except the Omron Active style Pro (716.2±159.0 kcal/day; P>.05) and Omron CaloriScan (707.5±172.7 kcal/day; P>.05)
were significantly underestimated. Only 2 devices, the Omron Active style Pro (r=.46; P=.045) and Panasonic Actimarker (r=.48;
P=.04), had significant positive correlations with PAEEdlw according to Pearson tests. In addition, 3 devices, the TANITA
AM-160 (ρ=.50; P=.03), Omron CaloriScan (ρ=.48; P=.04), and Omron Active style Pro (ρ=.48; P=.04), could be ranked in
PAEEdlw.

Conclusions: Most wearable devices do not provide comparable PAEE estimates when using gold standard methods during 1
standardized day or 15 free-living days. Continuous development and evaluations of these wearable devices are needed for better
estimations of PAEE.

(JMIR Mhealth Uhealth 2019;7(8):e13938)  doi: 10.2196/13938
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Introduction

Background
Physical activity (PA) has been reported to reduce the incidence
of and mortality because of several noncommunicable diseases,
including cardiovascular disease, stroke, and some types of
cancer [1-3]. To promote or maintain PA, self-monitoring using
pedometers and accelerometers has been considered effective
[4]. However, the validity of estimating the amount of PA or
PA energy expenditure (PAEE) detected using wearable devices
has not been sufficiently established. Previously, we
simultaneously examined the validity of total energy expenditure
(TEE) estimated by 12 wearable devices during 1 standardized
day in a metabolic chamber and 15 free-living days using the
doubly labeled water (DLW) method [5]. This study allowed
the ranking of daily individual TEE (ρ=.80-.88), but absolute
values varied widely among devices and differed significantly
from the criterion under free living. Moreover, it is better to
estimate accurately not only TEE but also daily PAEE because
TEE is mainly determined by the basal metabolic rate (BMR)
rather than PA [6].

Several studies have tested the validity of wearable devices for
estimating energy expenditure (EE) during some activities
[7-14]. However, most have compared EE estimated by wearable
devices and standard reference measures estimated by an expired
gas analysis during very short structured activities in laboratories
[7-9,11-13]. EE measured during such study designs also
included resting EE (REE) or BMR, which do not reflect net
PAEE. The BMR accounts for a substantial proportion of TEE
and is relatively constant from day to day. In contrast, PAEE
contributes to TEE to a lesser extent, but it is a fairly variable
component that allows the opportunity to increase TEE [6]. Due
to the relationship between the amount of PA and health
outcomes, accurate estimations of the net PAEE using wearable
devices are required, especially under free-living conditions
that use wearable devices. Various wearable devices are
available for consumer purchase [15], but little is known about
their validity.

Objectives
In this study, we evaluated the validity of consumer-based and
research-grade wearable devices for estimating PAEE values
without the BMR or REE. We developed 2 designs: (1)
standardized day for PAEE estimated using a metabolic chamber

and (2) 15 free-living days for PAEE estimated using the DLW
method.

Methods

Participants
A total of 21 healthy adults aged 21 to 50 years (9 men and 12
women) participated in this study. None of the participants had
chronic diseases that could affect their metabolism or daily PA.
Their body mass index (BMI) values were within the normal

range (18.5-25.0 kg/m2). Of 21 participants, 2 were excluded
from all analyses: 1 because personal information in the
JAWBONE UP24 (Jawbone, San Francisco, CA, USA) app
during the 15 free-living days experiment had been set
incorrectly, and the other because data from the metabolic
chamber during the 1 standardized day experiment was incorrect
because of instrument failure. Finally, 19 participants (9 men
and 10 women) were included in this analysis. All procedures
were reviewed and approved by the Ethics Review Board of
the National Institute of Health and Nutrition (kenei-4-02). All
participants provided written informed consent.

Wearable Devices
The consumer-based wearable devices used in this study were
selected based on the following criteria: they were the most
popular devices in Japan according to several marketing
websites based on their sales ranking (eg, Amazon, Japan
website[16] or kakaku website[17] as of December 1, 2014);
the app could be displayed in Japanese on a mobile phone or
website; and the clock settings of the app or device could be
manipulated. We needed to change the clock setting from 9:00
am to 9:00 am the next day to 12:00 am to 12:00 am the next
day to obtain the TEE for an entire day when participants used
the metabolic chamber. A total of 8 wearable devices, including
the Fitbit Flex (Fitbit, San Francisco, CA, USA), JAWBONE
UP24, Misfit Shine (Misfit Wearables, Burlingame, CA, USA),
EPSON PULSENSE (SEIKO EPSON, Nagano, Japan), Garmin
Vivofit (Garmin, Olathe, KS, USA), TANITA AM-160
(TANITA, Tokyo, Japan), Omron CaloriScan HJA-401F
(OMRON HEALTHCARE, Kyoto, Japan), and Withings Pulse
O2 (Withings, Issy-les-Moulineaux, France), were selected for
this study (Table 1). In addition, 4 research-grade wearable
devices, namely, Omron Active style Pro (OMRON
HEALTHCARE, Kyoto, Japan), Panasonic Actimarker EW4800
(Panasonic, Osaka, Japan), SUZUKEN Lifecorder EX
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(SUZUKEN, Aichi, Japan), and ActiGraph GT3X (ActiGraph,
Pensacola, FL, USA), were used in this study (Table 1). All
devices had a built-in accelerometer. Of 12 wearable devices,
5 (Fitbit Flex, JAWBONE UP24, Misfit Shine, EPSON
PULSENSE, and Garmin Vivofit) were placed on the
nondominant wrist, 2 (TANITA AM-160 and Omron

CaloriScan) were placed in a pocket, and 3 (Withings Pulse O2,
Omron Active style Pro, Panasonic Actimarker, SUZUKEN
Lifecorder EX, and ActiGraph GT3X) were placed on the waist.
The position on the wrist or waist was randomly chosen for
each participant, and each participant placed the devices in the
same position throughout the experiments.

Table 1. Wearable devices used in the present study, basal metabolic rates extracted from each device, and information about invalid days and
non-wearing time in 15 free-living days.

15 free-living daysBasal metabolic

ratesa (kcal/day),

average (SD)

PlacementDevicesNumber

Nonwearing time in valid dayInvalid daysb

kcal/dayc, average (SD)min/day, average (SD)

26.9 (23.4)42.4 (18.4)11360.4 (195.2)wristFitbit Flex1

25.4 (22.9)40.1 (13.0)01312.6 (157.1)wristJAWBONE UP242

26.1 (23.1)40.4 (13.2)151708.0 (245.9)wristMisfit Shined3

26.4 (22.3)42.2 (13.5)41616.8 (179.8)wristEPSON PULSENSEd4

25.2 (23.0)39.4 (12.9)01630.2 (234.8)wristGarmin vivofitd5

29.3 (29.0)42.6 (14.3)11410.4 (211.5)pocketTANITA AM-160d6

29.3 (29.0)42.6 (14.3)11291.7 (186.2)pocketOmron CaloriScand7

33.5 (30.8)45.5 (13.2)11608.9 (228.4)waistWithings Pulse O2d8

30.6 (31.3)43.1 (13.8)01304.5 (188.5)waistOmron Active style Prod9

30.6 (31.3)43.1 (13.8)01327.5 (172.4)waistPanasonic Actimarker10

30.6 (31.3)43.1 (13.8)01327.4 (171.9)waistSUZUKEN Lifecorder EX11

30.5 (31.4)42.9 (14.2)2—fwaistActiGraph GT3Xe12

aBasal metabolic rates were extracted from each app.
bTotal invalid days in 19 participants during 15 days.
cThe energy expenditure (kcal) in non-wearing time on a valid day was calculated based on time and METs reffered to the Compendium of Physical
Activities.
dP<.05 vs BMR in metabolic chamber (1355.0±234.9 kcal/day).
eActiGraph indicates only PAEE on its application.
fNot applicable.

Experimental Design
A total of 2 experiments were conducted to test the validity of
the wearable devices: 1 used the metabolic chamber method
during 1 standardized day, and the other used the DLW method
during 15 free-living days. These 2 methods were used as the
standard to determine TEE [18,19]. For the 1-day standardized
experiment, participants visited the laboratory 2 hours before
the start of the experiment (7:00 am) after an overnight fast of
at least 10 hours. Then, height, weight, and body composition
were measured. After setting and wearing 12 wearable devices,
participants entered the metabolic chamber before 9:00 am and
completed 24-hour metabolic chamber measurements (9:00 am
to 9:00 am the next day) using a standardized protocol that
included various activities common during daily life such as
eating 3 meals, watching television (TV), using a computer,

cleaning, and walking on a treadmill (Table 2). Each
participant’s energy intake for meal was calculated by
multiplying each BMR by 1.6, which was the PA level (PAL)
assumed for a standardized day. The meal was served 3 times
per day, and the total energy intake was equally divided into 3
times. The participants were instructed to eat all the meals that
were served, and they were not allowed to eat any other foods
in the metabolic chamber. However, they were permitted to
drink water freely. The average metabolic equivalents (METs)
estimated using the compendium of physical activities [20] and
previous studies [21-24] for this protocol was 1.37 METs, and
the mean PAEE estimated using the estimated METs×hour and
participants’ weight was 447.0±66.8 kcal/day. Participants wore
all the wearable devices during their waking hours without
removing them. The 5 devices on the wrist were worn even
while sleeping.
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Table 2. Timetable for metabolic chamber on a standardized day.

ActivityTime

Entry in the room8:45

TV watching09:00 – 09:30

Breakfast; rice, chicken soup, macaroni salad, and sausage09:30 – 10:30

Computer work10:30 – 11:00

Reading a book on a stand11:00 – 11:30

Folding the laundry11:30 – 12:00

Cleaning12:00 – 12:30

Walking (4.0 km/h), including 5 min of rest after walking12:30 – 12:30

Walking (5.6 km/h), including 5 min of rest after walking13:00 – 13:30

TV watching13:30 – 14:00

Lunch; stir-fried vegetables & seafood on rice, cooked beans, egg, and miso soup14:00 – 15:00

Computer work15:00 – 15:30

TV watching15:30 – 16:00

Desk work16:00 – 16:30

Cleaning16:30 – 17:00

Walking (4.0 km/h), including 5 min of rest after walking17:00 – 17:30

Walking (5.6 km/h), including 5 min of rest after walking17:30 – 18:00

TV watching18:00 – 18:30

Dinner; rice, hamburg steak, salad, ham, and, vegetable soup18:30 – 19:30

Computer work19:30 – 20:00

Reading a book on a stand20:00 – 20:30

Desk work20:30 – 21:00

Computer work21:00 – 21:30

TV watching21:30 – 22:00

Folding the laundry22:00 – 22:30

Readying oneself for sleep22:30 – 23:00

sleep23:00 – 07:00

lying07:00 – 07:15

Supine posture07:15 – 08:00

TV watching08:00 – 09:00

Exit from the room9:10

During the experiment involving 15 free-living days, participants
visited the laboratory in the morning after an overnight fast of
at least 10 hours and underwent measurements of height, weight,
and body composition. After collecting baseline urine samples,
DLW dosing was performed in the laboratory. A premixed dose

containing approximately 0.06 g/kg of body weight of 2H2O
(99.8 atom%; Cambridge Isotope Laboratories, MA, USA) and

1.4 g/kg of body weight of H2
18O (10.0 atom%; Taiyo Nippon

Sanso, Tokyo, Japan) was administered orally to each
participant. All participants collected their urine samples in
air-tight parafilm-wrapped containers at the same time on days
1, 2, 3, 8, 9, 13, 14, and 15 after the baseline day (day 0) during
free-living conditions.

Participants wore all the wearable devices when they were
awake, but they did not wear them during water-related physical
activities, physical activities during which the devices were
difficult to wear, or when the battery was charging. Of 12
wearable devices, 5 were worn on the wrist even while sleeping.
After 15 free-living days, all urine samples were collected and
stored at −30ºC until they were analyzed. Dietary assessments
using a brief self-administered diet history questionnaire [25]
were conducted to calculate the food quotient (FQ) after 15
days. Logs for time awake, time asleep, nonwearing time, and
PA during nonwearing time were completed for 15 days by
each participant. PAEE during the nonwearing time was
calculated based on the recorded time and METs that were
referred to the Compendium of Physical Activity [20].
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Data Reduction for Each Wearable Device
For the experiment involving 15 free-living days, the days were
considered valid when participants wore the wearable devices
for more than 10 hours/day [26]. However, we included 1 day
when a participant slept for more than 14 hours and, therefore,
did not wear the devices for more than 10 hours. The minimum
number of valid days was defined as 10 days, and all participants
fulfilled this requirement. The mean PAEE of valid days was
used for the experiment involving 15 free-living days.

The PAEE for each device (PAEEdev) was calculated by
subtracting the BMR and 0.1×TEE as diet-induced
thermogenesis (DIT) from TEE estimated by each device
(TEEdev). The PAL for each device (PALdev) was calculated by
dividing the TEE by the BMR. The BMR for each device
(BMRdev) was calculated using the app. The SUZUKEN
Lifecorder EX did not show the BMRdev on the app, but the
computation method for the BMR using the body surface area
and coefficient of the BMR was provided in its instructions;
therefore, we calculated the BMR according to those
instructions. Because some devices did not show the individual
predicted BMR in the device app, including the Fitbit Flex,
Misfit Shine, Omron CaloriScan, and Withings Pulse O2, the
TEE values of a day when the devices were stationary for the
entire day were used as the BMRdev. However, the Omron
CaloriScan provided information, indicating that the DIT is
included in the TEE when it was stationary for the entire day.
Therefore, we did not subtract the DIT when PAEE was
calculated using TEE. The ActiGraph GT3X showed only
PAEE, not TEE; therefore, we used only the PAEE shown by
the ActiGraph GT3X software.

Anthropometry and Body Composition
Height and body weight were measured on both experiment
days, and each profile was used for each experiment. BMI

(kg/m2) was calculated, and body composition was determined
using a bioelectrical impedance analysis (Inner Scan BC-600;
TANITA).

Measurement of Energy Expenditure on a
Standardized Day Using the Metabolic Chamber
An open-circuit, indirect metabolic chamber equipped with a
bed, desk, chair, TV, toilet, sink, and treadmill was used to
measure EE. The temperature and relative humidity in the room
were controlled at 25ºC and 55%, respectively. Oxygen and
carbon dioxide concentrations of the air supply and exhaust
were measured using mass spectrometry (ARCO-1000A-CH;
Arco System, Kashiwa, Japan). The flow rates of the exhausts
from the chamber were measured using pneumotachography
(FLB1; Arco System). Oxygen uptake (VO2) and carbon dioxide
output (VCO2) were determined based on the concentrations of
the inlet and outlet air flows from the chamber and the flow rate
of the exhausts from the chamber, respectively. TEE from 9:00
am the first day until 9:00 am the next day was estimated from
VO2 and VCO2 using Weir equation (TEEcha). The BMR was
measured in the supine position for 45 min during the morning
(BMRcha). The PAEE during 1 standardized day (PAEEcha) was
calculated by subtracting the BMRcha and 0.1×TEEcha from

TEEcha. The PAL during 1 standardized day (PALcha) was
calculated by dividing the TEEcha by the BMRcha.

Measurement of Energy Expenditure During 15
Free-Living Days Using the Doubly Labeled Water
Method
Gas samples for the isotope ratio mass spectrometer (IRMS)
were prepared by maintaining the equilibration of the urine

sample with gas. CO2 was used to equilibrate18O, and H2 was

used to equilibrate2H. The platinum (Pt) catalyst was used for

equilibration of2H. Gas samples for CO2 and H2 measurements
were analyzed using IRMS (Sercon 20-20; Sercon Ltd, Crewe,
UK). Each sample and its corresponding reference were

analyzed in triplicate. The2H and18O zero-time intercepts and
elimination rates (kd and ko) were calculated using the
least-squares linear regression method on the natural logarithm
of the isotope concentration as a function of the elapsed time
from dose administration. Zero-time intercepts were used to
determine the isotope pool sizes. A quality check was conducted
according to the International Atomic Energy Agency book
[27]. The memory effects of the IRMS were eliminated and
checked using additional samples when the expected isotope
ratio difference was high (eg, days 2-8), and the potential drift
of the IRMS was corrected mathematically using standardized
working criteria and checked for accuracy and precision using
another working criterion at regular intervals in a series of
measurements and between different measurement days. The
samples obtained from 1 participant were analyzed in 1 series
of measurements in 1 day to minimize the effects of day-to-day

variation. The dilution space ratio of2H (Nd) and18O (No) of all
21 participants was 1.036±0.010 (range 1.021-1.056), which
was an acceptable value according to a previous review of a
large database [28]. Therefore, total body water (TBW) was

calculated from the mean value or the isotope pool size of2H

divided by 1.041 and that of18O divided by 1.007. The carbon
dioxide production rate (rCO2) was calculated as follows:
rCO2=0.4554×TBW×(1.007 ko−1.041 kd), for which we
assumed that isotope fractionation applies only to breath water
using equation A6 by Schoeller et al [29] with the revised
dilution space constant provided by Racette et al [30]. The TEE
(TEEdlw) was calculated using a modified Weir formula based
on the rCO2 and FQ [31] as follows: TEE (kcal/day)=1.1
rCO2+3.9 rCO2/FQ.

The PAEE during free-living days (PAEEdlw) was calculated
by subtracting the BMRcha and 0.1×TEEdlw from TEEdlw. The
PAL during free-living days (PALdlw) was calculated by dividing
TEEdlw by BMRcha.

Statistical Analysis
Data were expressed as mean (standard deviation). The Dunnett
test, for which standard criteria were set as references, was used
for comparing variables estimated by wearable devices during
the use of the metabolic chamber method and the DLW method.
The mean absolute percent errors (MAPEs) relative to the PAEE
values estimated using standard methods were calculated to
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provide an indicator of the overall measurement error. The
Pearson and Spearman correlation coefficients were used to
examine the relationship between standard criteria and variables
estimated by wearable devices. Modified Bland-Altman plots
[32] were used to test proportional biases between standard
methods and devices, and the correlation coefficient of the
standard criteria and the differences between the standard criteria
and each device were examined for significance. During all
analyses, P<.05 was considered statistically significant. All
statistical analyses were performed with SPSS version 20.0 for
Windows (IBM SPSS Japan Inc, Tokyo, Japan).

Results

Descriptive Results
Participants were aged 32.3±9.6 years. Their BMI and

percentage body fat ranged from 18.5 to 24.8 kg/m2 and from
14.8% to 32.2%, respectively. Although there was no invalid
day during the standardized 1-day experiment, 25 invalid days
were identified during the 15-day free-living experiment (Table
1), which corresponded to 8.8% of all experiment days (19
participants×15 days). Invalid days often occurred with the
Misfit Shine because a few of these devices became loose
without the knowledge of the participant and with EPSON
PULSENSE because the battery quickly died. The average
nonwearing time except for sleeping for each device ranged
from 39.4±12.9 to 45.5±13.2 min/day, which corresponded to
25.2±23.0 to 33.5±30.8 kcal/day (Table 1). The most frequent
activities during nonwearing time were bathing and showering
(289 cases/19 participants×15days). There were 62 other
activities including TV watching, deskwork, dressing, and
exercise. The corresponding time and intensity for these
activities were 5 to 450 min and 1.3 to 6.3 METs, respectively.

The BMRcha was 1355.0±234.9 kcal/day. Several devices
showed higher BMRdev than BMRcha (P<.05), including the
Misfit Shine, EPSON PULSENSE, Garmin Vivofit, TANITA
AM-160, and Withings Pulse O2 (Table 1).

Metabolic Chamber Study
During the standardized day, the PAEEcha was 528.8±149.4
kcal/day. All devices except the TANITA AM-160 (513.8±135.0
kcal/day; P>.05), SUZUKEN Lifecorder EX (519.3±89.3
kcal/day; P>.05), and Panasonic Actimarker (545.9±141.7
kcal/day; P>.05) showed significant differences in PAEEdev

compared with PAEEcha (Figure 1). Moreover, 6 devices
significantly underestimated values, whereas 3 devices
significantly overestimated values. The Withings Pulse O2
(24.4±56.7 kcal/day) and Garmin Vivofit (29.5±34.0 kcal/day)
showed large gaps in PAEEcha, with MAPEs of 93.7±13.9%
and 92.8±13.1%, respectively. Moreover, all devices showed
systematic errors with high negative correlation coefficients on
the Bland-Altman plots (Figure 1).

No devices showed a significant correlation with PAEEcha

according to both Pearson and Spearman correlation tests
(Figure 2). Regarding PAL, all devices except the TANITA
AM-160 (1.51±0.07; P>.05), Panasonic Actimarker (1.56±0.08;
P>.05), and SUZUKEN Lifecorder (1.55±0.04; P>.05) showed
significant differences in PAL compared with PALcha

(1.56±0.17; Tables 3 and 4). No devices showed a significant
correlation with PALcha according to both Pearson and Spearman
correlation tests (Tables 3 and 4). PAEE/body weight also
showed similar results for PAL (Tables 3 and 4). Moreover,
similar results were obtained in partial correlation test using
body weight as a control variable.
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Figure 1. Differences between PAEEcha (physical activity energy expenditure) or PAEEdlw and each PAEEdev on a standardized day and 15 free-living
days. Note: (a) The correlations between PAEEcha or PAEEdlw in x axis and delta as PAEEdev - PAEEcha or PAEEdev - PAEEdlw in y axis were
showed. (b) P<.05 vs PAEEcha or PAEEdlw. (c) P<.05 in correlations. PAEE: physical activity energy expenditure; MAPE: mean absolute percentage
error; avg: average; SD: standard deviation.
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Figure 2. Correlation between PAEEcha (physical activity energy expenditure) and PAEEdev during 1 standardized day. Scattered plots between
PAEEcha (x-axis) and PAEEdev (y-axis) during 1 standardized day. There was no significant correlation according to Pearson and Spearman tests. n.s.:
nonsignificant.
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Table 3. The comparison between PALa
cha and PALdev, PAEEb

cha/wt (physical activity energy expenditure) and PAEEdev/wt.

A standardized dayDevices

PAEEcha/wt: 9.2 ± 2.4 kcal/kg/dayPALcha: 1.56 ± 0.17

Pearson correlationValue, average (SD)Pearson correlationValue, average (SD)

0.020.5 (1.0)c0.081.13 (0.04)cWithings Pulse O2

-0.370.5 (0.6)c-0.271.13 (0.02)cGarmin vivofit

-0.255.1 (1.5)c-0.191.30 (0.06)cMisfit Shine

0.075.4 (2.8)c0.081.32 (0.11)cEPSON PULSENSE

-0.145.6 (1.0)c-0.191.39 (0.06)cJAWBONE UP24

-0.267.2 (1.8)c-0.291.47 (0.09)cActiGraph GT3X

-0.108.8 (1.4)-0.131.51 (0.07)TANITA AM-160

-0.279.0 (0.8)-0.301.55 (0.04)SUZUKEN Lifecorder EX

-0.269.4 (1.5)-0.341.56 (0.08)Panasonic Actimarker

-0.3911.0 (1.2)c-0.381.63 (0.06)cFitbit Flex

-0.3012.7 (1.4)c-0.441.74 (0.07)cOmron Active style Pro

-0.2413.4 (1.2)c-0.291.78 (0.07)cOmron CaloriScan

aPAL: physical activity level.
bPAEE: physical activity energy expenditure.
cP<.05 vs PALcha or PAEEcha/wt.

Table 4. The comparison between PALa
dlw and PALdev, PAEEb

dlw/wt and PAEEdev/wt.

15 free-living daysDevices

PAEEdlw/wt: 12.8 ± 3.1 kcal/kg/dayPALdlw: 1.73 ± 0.21

Pearson correlationValue, average (SD)Pearson correlationValue, average (SD)

-0.140.2 (1.1)c-0.241.12 (0.04)cWithings Pulse O2

-0.070.0 (0.7)c-0.081.11 (0.03)cGarmin vivofit

0.112.9 (1.6)c-0.021.22 (0.06)cMisfit Shine

-0.054.7 (2.5)c-0.311.30 (0.10)cEPSON PULSENSE

-0.104.1 (1.4)c-0.301.31 (0.07)cJAWBONE UP24

0.255.2 (2.7)c0.111.37 (0.13)cActiGraph GT3X

0.108.1 (2.4)c-0.011.48 (0.11)cTANITA AM-160

0.078.7 (1.5)c-0.121.53 (0.08)cSUZUKEN Lifecorder EX

0.399.3 (2.1)c0.261.56 (0.10)cPanasonic Actimarker

0.139.8 (2.3)c-0.081.57 (0.11)cFitbit Flex

0.3512.4 (1.9)0.141.72 (0.10)Omron Active style Pro

0.1112.2 (1.7)-0.071.71 (0.09)Omron CaloriScan

aPAL: physical activity level.
bPAEE: physical activity energy expenditure.
cP<.05 vs PALdlw or PAEEdlw/wt.
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Doubly Labeled Water Study
During the 15 free-living days experiment, the PAEEdlw was
728.0±162.7 kcal/day. The PAEEs from all devices except the
Omron Active style Pro (716.2±159.0 kcal/day; P>.05) and
Omron CaloriScan (707.5±172.7 kcal/day; P>.05) were
significantly underestimated (Figure 1). Only 2 devices, the
Omron Active style Pro (r=0.46; P=.045) and Panasonic
Actimarker (r=0.48; P=.04), showed significant positive Pearson
correlations. In addition, 3 devices, the TANITA AM-160
(ρ=.50; P=.03), Omron CaloriScan (ρ=.48; P=.04), and Omron
Active style Pro (ρ=.48; P=.04), can be ranked in PAEEdev

(Figure 3). On the other hand, systematic biases indicated by
Bland-Altman plots were observed for all devices with negative
coefficients (Figure 1). Regarding PAL, all devices except the
Omron Active style Pro (1.72±0.10; P>.05) and Omron
CaloriScan (1.71±0.09; P>.05) showed significant differences
in PALdev compared with PALdlw (1.73±0.21; Tables 3 and 4).
No devices showed a significant correlation with PALdlw

according to both Pearson and Spearman tests (Tables 3 and 4).
PAEE/body weight also showed results similar to those of PAL
(Tables 3 and 4). Moreover, similar results with partial
correlation were obtained using body weight as a control
variable.

Figure 3. Correlation between PAEEdlw (physical activity energy expenditure) and PAEEdev during 15 free-living days. Scatter plots for PAEEdlw
(x-axis) and PAEEdev (y-axis) during 15 free-living days. Upper and lower values for r and ρ resulting from Pearson and Spearman correlation tests,
respectively, are shown. n.s.: nonsignificant.
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Table 5. The comparison between PAEEa
cha and the unique PAEE parameters extracted from each consumer-based wearable device.

Standardized day (PAEEcha: 528.8 ± 149.4 kcal/day ItemDevicesNumber

Pearson correlationValue, average (SD)

——cN/AbFitbit Flex1

0.30503.3 (77.9 )active energy expenditureJAWBONE UP242

——N/AMisfit Shine3

0.14416.2 (173.1)active energy expenditureEPSON PULSENSE4

0.32212.4 (44.4)exercise energy expenditure (web)Garmin vivofit5

0.39726.8 (168.7)active energy expenditureTANITA AM-1606

0.40774.3 (137.1)active energy expenditure (web)Omron CaloriScan7

0.23318.4 (54.8)activity energy expenditureWithings Pulse O28

aPAEE: physical activity energy expenditure.
bFitbit and Misfit Shine were not available for unique PAEE parameters in their app and website.
cNot applicable.

Unique PAEE by Consumer-Based Devices
On the standardized day, we also compared the PAEEcha with
the unique PAEE parameters obtained by 6 of the 8
consumer-based devices (Table 5). The absolute values from
each device were not compared with PAEEcha because we could
not find any information about these parameters and could not
define the value as PAEE. None of the parameters showed a
significant correlation with PAEEcha.

Discussion

Principal Findings
We examined the validity of 12 consumer-based and
research-grade wearable devices for estimating PAEE using a
metabolic chamber and the DLW method as standard methods.
On the standardized day, most of the wearable devices showed
significant differences in PAEE when compared with PAEEcha

(MAPE 26.5%-93.7%). Moreover, all wearable devices except
the Omron CaloriScan and Omron Active style Pro significantly
underestimated values during 15 free-living days (MAPE
19.4%-100.2%). These results were similar, even for PAL. The
number of wearable devices with significant differences in
PAEE compared with the standard criteria in this study was
greater than the number of devices with significant differences
in TEE in our previous study using same 12 devices; we found
that only 2 devices during the standardized day and 4 devices
during 15 free-living days showed significant differences in
TEE compared with the standard criteria [5]. These results
showed that wearable devices had lesser accuracy when
estimating PAEE than TEE, which included the BMR.

Comparison With Previous Studies
Several studies have evaluated the validity of EE estimated by
wearable devices during some activities [7-14]. Most of these
studies were conducted during very short structured activities
in laboratories. For the most studied device (Fitbit), there were
many inconsistent results such as overestimated EE [4,33,34],
underestimated EE [11,12], and comparable EE [8]. It has also

been reported that the EE estimations based on the Fitbit were
largely different depending on the activity types performed
during those studies [8,12]. These discrepancies may have been
dependent on the differences in the standard criteria, EE
assessment method, and selected activities. In this study, the
PAEE estimated by the Fitbit Flex was somewhat comparable
with standard PAEEs during a standardized day and during 15
free-living days in consumer-based wearable devices, which
was consistent with the results of the Fitbit Zip [11].
Furthermore, in this study, the JAWBONE UP24 underestimated
PAEEs during both experiments, which was consistent with the
results of previous studies [7,11]. However, the Misfit Shine
and Garmin Vivofit underestimated PAEE during this study but
overestimated PAEE during previous studies [7,9]. Attention
is necessary when directly comparing the present results of this
study with the previous results because what was used to
evaluate PAEE was slightly different. We evaluated
TEE−BMR−TEE×0.1 as PAEE (ie, net EE with PA); however,
most previous studies that evaluated EE included the BMR or
REE during experimental activities as PAEE. We also compared
the unique indices of PAEE provided by several devices as
PAEEcha (Table 5). These were indicated on the app as active
EE or exercise EE. However, no parameters were significantly
correlated with PAEEcha. Most evidence that demonstrated the
relationship between PA and risk reduction of disease based on
epidemiological studies were described as the amount of PA
but not as the TEE. Therefore, it is important to accurately assess
daily PAEE in terms of preventive medicine and public health.

Underestimation Under Free Living
In a comparison of the results of the standardized day and those
of 15 free-living days, all wearable devices except the Omron
CaloriScan and Omron Active style Pro underestimated PAEE
for 15 free-living days, whereas 6 devices underestimated PAEE,
and 3 devices overestimated PAEE on the standardized day.
Because TEE measurements using the metabolic chamber have
been reported as not significantly different from TEE measured
by DLW methods on the same days [35], our results were not
caused by different criteria for the TEE assessment.
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Underestimation by most devices during 15 free-living days
may have been partly caused by the nonwearing time. We
calculated the average PAEE during the nonwearing time
(PAEEnonwear) by multiplying the nonwearing time by MET
corresponding to the PA performed [20] based on the daily log
recorded by participants. Even if PAEEnonwear derived from each
wearable device were added to each PAEEdev, PAEE would
have remained underestimated. This means that many types of
PA are underestimated during free-living days.

It has been reported that cycling and washing laundry are
underestimated by wearable devices [8,12]. Moreover, standing
that does not produce acceleration may be classified as sedentary
behavior [36]. These types of PA during free-living days may
have caused underestimation of PAEE in this study. Although
early consumer-based wearable devices for estimating PA relied
on movement sensors alone (eg, accelerometers), more recently
developed wearable devices integrate several physiological or
geographical outputs, including heart rate, skin temperature,
galvanic skin response, and a global positioning system [37].
PAEE that cannot be captured by an accelerometer may be
accurately estimated using these multisensor wearable devices
in the future. Another reason for the underestimation of PAEE
during free-living days could have been transition in postures
(eg, sit-to-stand), transition in directions, and acceleration and
deceleration during movements. Recent studies have suggested
that significant additional EE is associated with changing
directions and/or changing postures [38-41], and those
transitions are often observed during free-living days [42,43].
However, those elements were not usually considered to
establish and validate PA monitors. To assess actual PAEE
during daily life, it is necessary to continuously evaluate the
validity of these sensors for estimating PAEE.

Perspectives
Wearable devices can be powerful tools that provide not only
individual information but also large-scale population data on
a global scale. Most wearable devices can connect to the internet
through an app on a user’s mobile phone and collect data. Using
68 million days of step count data from 717,517 users of the
Argus Smartphone app, Althoff et al [44] showed that inequality
in PA within a country was associated with the prevalence of
obesity in the population. Moreover, multiple aspects of health
behavior need to be monitored simultaneously and continually
because our health outcomes resulted from various health

behaviors that included not only PA but also daily diet, smoking,
and sleep [45]. Under such circumstances, it is important to be
able to properly evaluate the multilateral health behavior and
physiological parameters globally. However, some problems
have been highlighted by the continuous wearing of such a
device. One-third of owners of a consumer-based wearable
device stopped using it within 6 months [15]. Therefore, it is
necessary to enhance continuity and strive to maintain and
improve health outcomes through various other approaches.

Limitations
There were some limitations to this study. First, the sample size
was small and restricted to normal-weight individuals; therefore,
results cannot be generalized to obese or lean people.
Comprehensive validation extending to other populations with
various PALs is required. Because it was expected that some
types of PA were underestimated and some were overestimated
by wearable devices, different PA situations may lead to
different results. Second, we could not examine the validity of
all wearable devices for all types of activity during a
standardized day. Different settings using different intensities
and other types of activities may lead to different results. We
also need to confirm the results in different settings or examine
the validity of each activity performed during a standardized
day to reveal the causes of the underestimation and
overestimation. Third, BMR values estimated by several
wearable devices were obtained as whole-day values with stable
situation. This was not supposed by the manufacturers; therefore,
we might have used BMR incorrectly for several devices, which
might have led to erroneous estimations of PAEE because it
was calculated by subtracting the BMR from the TEE.
Therefore, comparisons of absolute values of PAEE for these
devices in this study must be interpreted with caution.

Conclusions
In conclusion, most wearable devices showed PAEEs that were
significantly different from those estimated using gold standard
methods during a standardized day and 15 free-living days. It
is possible that the PAEE of some PA is underestimated during
free-living situations by wearable devices. The development of
wearable devices that can accurately estimate PAEE will lead
people to use them as motivational tools. Moreover, this will
allow researchers to precisely understand PA in an observational
study or intervention study, thereby leading to public health
recommendations based on scientific evidence.
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