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Abstract. Current compute-intensive applications largely exceed the resources 
of single-core processors. To face this problem, multi-core processors along 
with parallel computing techniques have become a solution to increase the 
computational performance. Likewise, multi-processors are fundamental to 
support new technologies and new science applications challenges. A specific 
objective of the Lagarto project developed at the National Polytechnic Institute 
of Mexico is to generate an ecosystem of high-performance processors for the 
industry and HPC in Mexico, supporting new technologies and scientific 
applications. This work presents the first approach of the Lagarto project to the 
design of multi-core processors and the research challenges to build an 
infrastructure that allows the flagship core of the Lagarto project to scale to 
multi- and many-cores. Using the OpenPiton platform with the Ariane RISC-V 
core, a functional tile has been built, integrating a Lagarto I core with memory 
coherence that executes atomic instructions, and a NoC that allows scaling the 
project to many-core versions. This work represents the initial state of the 
design of mexican multi-and many-cores processors. 

Keywords: Multi- and Many-core, Multiprocessors RISC-V, Interconnection 
networks. 

1   Introduction 

The "Lagarto" project [1], developed by the Computer Architecture research team 
at the Computing Research Center of the National Polytechnic Institute of Mexico, 
aims to generate an open computing platform for academia and research to ease the 
understanding of fundamental concepts of Computer Architecture and Operating 
Systems. The project has two main branches of development: the first one is focused 
on the educational area, and the second one on the development of a high-
performance processors ecosystem, targeting both industry and HPC.  
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Around 2006, multi-core processors appeared in the market to overcome the 
"power wall". Multi-core processors increase compute power via parallelism, which 
rises dramatically the complexity of microprocessors design and programming. 

Considering the HPC segment, nowadays all systems rely on multi-core 
processors, often coupled with highly-parallel accelerators. The use of multiple 
interconnected compute nodes, each of them with several multi-core processors, 
allows to build supercomputers with high performance. HPC systems have been built 
with more than 10 million cores (for example, the Sunway TaihuLight of the National 
Supercomputing Center in Wuxi) and peak performance above 100,000 TFLOPs (for 
example The Summit of the Oak Ridge National Laboratory). Relevant information 
can be found in the Top500 list [3]. 

The first core designed in the Lagarto project is denoted Lagarto I. The Lagarto I 
core design supports different ISAs, including RISC-V [2]. RISC-V is an instruction 
set architecture (ISA) that is completely open and freely available to industry, license-
free and royalty-free. RISC-V is a RISC-based architecture; RISC-based processors 
lead the mobile and embedded markets, partially because of their characteristics of 
low energy consumption and small area. By contrast, the HPC market is nowadays 
dominated by traditional x86 processors. However, a growing share of HPC systems 
rely on the use of RISC designs. Some examples are the BlueGene systems, the Mont-
Blanc project and the Tibidabo cluster prototype, to name a few [4][5][6] [7]. 

In the Lagarto project, the main challenge to overcome in the second branch 
(industry and HPC)  is to design and develop an infrastructure that allows our 
processors to scale to multi- and many-cores. Such infrastructure is required to 
optimize and develop multi-core processors for the industry segment and many-core 
processors for HPC. The Lagarto project currently has two different core designs: the 
Lagarto I, which is a scalar core, and the Lagarto II, which is a superscalar core, both 
with a memory system that allows them to function as mono-core processors. To 
implement the parallelism required for HPC systems, it is necessary that the cores of 
Lagarto project can operate as multi-core system, this is, multiples core running 
multiple coordinated tasks in the same memory space. Scaling to many-cores requires 
to have a Network-on-Chip (NoC) that allows to transport messages and data between 
the cores and the memory system. The first objective of this stage of the Lagarto 
project is to develop the infrastructure required to implement many-cores processors, 
integrating a NoC into the memory system of Lagarto I core to allow scale to many-
core. 

This work shows the initial process to integrate the Lagarto I core (the educational 
version) into a multi-core system based on a Network-on-Chip. The design relies on a 
RISC-V development framework. We analyze the current RISC-V open-source 
ecosystem and discuss the selection of one of the available development frameworks, 
in order to select the most compatible with the Lagarto I core. The analysis of 
previous works between RISC-V and these platforms with NoCs were fundamentals 
to select a platform; Also, we show the final design of "Lagarto I" tile that we will use 
in our versions of multi and many cores. 
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The rest of the work is organized as follows. Section 2 presents the required 
background, including Atomic instructions, Cache coherence protocols, 
interconnection networks and relevant development tools. Section 3 presents an 
overview of the Lagarto Project and the architecture of the educational core “Lagarto 
I”. Section 4 discusses the selection of the tools to integrate and design the Lagarto I 
tile. Section 5 presents the fundamental modules of the architecture of Lagarto I tile. 
Section 6 discusses the advantages and disadvantages of Lagarto I tile final design, 
possible optimizations and the future work. 

2   Background 

This section presents the required background to understand the paper. First, the 
main fundamentals related to the design of multi-core processors are presented. Next, 
it discusses relevant development tools, covering both simulation tools and hardware 
development frameworks. 

Shared-memory multi-core CPU design mainly involves three aspects: 

a) Atomic instructions: used to atomically access data that is shared between 
cores. They are required to build synchronization mechanisms like 
mutex, semaphores or locks. 

b) Cache coherence protocols and memory consistency: essential to 
maintain coherence and consistency among shared data hosted in the 
private caches of each core. 

c) The interconnection network: to transport control messages and data 
between cores and the memory system. 

Despite dealing with different aspects of the design, they must be considered as a 
whole when designing the complete system. These aspects are discussed next. 
 
a) Atomic instructions 

During multithreaded execution, it is essential to synchronize the running 
subprocesses on the different threads. This is usually solved by executing "read-
modify-write" (RMW) atomic operations. An atomic operation refers to the execution 
of RMW in a single apparent step. This is implemented by carrying out the read and 
write operations consecutively, blocking the interruptions to prevent the interleaving 
of any other memory access with these read and write operations. This guarantees the 
atomicity of the memory access [8], without interleaving other accesses. 

The "A" extension of the RISC-V ISA is the subset of the architecture that 
describes atomic instructions. RMW atomic instructions are defined in this extension 
to support the synchronization of multiple RISC-V hardware threads running in the 
same memory space. It contains two sets of atomic instructions: load-reserved/store-
conditional and atomic fetch-and-op memory instructions.  
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RISC-V supports several consistency models such as: unordered, acquire, release 
and sequential consistency (SC). SC is a highly intuitive consistency model 
introduced by L. Lamport [9], who formulated that a multiprocessor is sequential 
consistent if it complies with the following: a) the result of any execution distributed 
in multiple cores must be the same as when all the executed instructions are run in a 
certain sequential order, and b) operations assigned to a specific kernel must maintain 
the sequence specified by the program. However, this simplicity significantly restricts 
the implementation of memory units and hinders performance. More relaxed memory 
models allow to reorder memory accesses and to implement less restrictions in the 
load/store units of the cores. This often translates into higher performance, at the cost 
of memory access rules which are harder to reason about and the requirement of 
explicit fences to delimit synchronization accesses. 
 
b) Cache coherence protocols 

The cache coherence protocol distributes the updates performed on each memory 
location to all the private caches in the system, guaranteeing that all the cores observe, 
at a given point in time, the updates to shared data.  

Snoopy based cache coherence protocols typically rely on broadcast mediums like 
buses or crossbars, where every every connected element listens to all the traffic. This 
kind of design offers a global vision of the memory accesses to every element 
interconnected, easing the implementation of the coherence protocol. However it 
becomes a bottleneck when it interconnects several cores, as all of them share the 
same network resources. This is the most common solution when the processor has a 
low number of cores, typically less than 10. 

By contrast, directory based cache coherence protocols are typically used with 
distributed cache memories and NoCs. This type of design follows a distributed 
philosophy, in which each of several directory controllers tracks the state of the data 
assigned to it. In other words, each directory acts as a server to data requests that 
belongs to its domain. This scheme, supports parallel requests to different directories, 
with the NoC transporting the messages with the result of these requests. Building a 
distributed cache memory system implies more complexity due to the lack of global 
information, requiring more complex coherence protocol implementations. However, 
it is a more scalable solution. 

c)  Interconnection networks 

The system networks are used in supercomputer and datacenters to interconnect 
multiple servers, each server with multiple cores. For each server (node) to 
communicate with other nodes, it can use electrical or optical cables to transfer the 
data packets. 

Similarly, the processor internal cores, memory controllers and peripheral 
controllers communicate through an on-chip interconnect. Typically, when cores 
work in parallel, they share data in the different shared-memory levels. The 
interconnection serves as a communication channel to transfer data between the levels 
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of the memory hierarchy and to maintain coherence between different copies of the 
same data. 

Buses and crossbars are frequently employed in the interconnections in multi-core 
CPUs. They are simple to design and perform well for a low amount of cores. 
Nevertheless, they do not scale well, and alternative solutions have been used when 
interconnecting tens of cores, which is typical in the HPC market. These alternatives 
are denoted Networks on Chip (NoC). 

NoC are scalable interconnects that typically rely on tile-based CPUs. Commonly, 
each tile has one or more cores with their private caches, plus a bank of a shared and 
distributed cache. Some of them have memory and peripheral controllers too. Such 
basic block is replicated multiple times to build a processor of the required size, 
including one router in each tile. Typical topologies for NoCs include rings and 
meshes. 

Rings have been used widely, for example by Intel in their Xeon processors. More 
recently, Intel has included meshes in their 72-core  Xeon Phi Knights Landing 
accelerator [10] and the newest Xeon processors. ARM also offers a mesh 
interconnect that supports up to 128 cores [11]. Meshes are gaining ground in the 
market as they are more scalable than rings, thought large designs might introduce 
more scalable topologies in the future, like torus or Flattened Butterflies. 
 
d) Development tools 

There are platforms dedicated to the design and simulation of multicore systems 
and interconnection networks. Standalone NoC simulators, such as Booksim or 
Garnet, typically employ traffic generators to create random requests to feed the 
network. However, some platforms allow to perform whole-system functional 
simulation at the software level, such as Spike and Gem5.  

Alternatively, there are platforms that perform RTL simulations with specific 
cores and synthesize multicore processor designs in FPGAs, supporting parameter 
configuration such as number of threads and cores, cache size, interconnection type, 
processor, etc. 

Table 1. shows some of the most popular platforms available. Some platforms 
offer processor designs for free, but the tools needed to work with the design are 
proprietary and require a license. This is the case of the Bluespec company, which 
offers a platform with two freely available RISC-V processors  called Piccolo and 
Flute. These processors are designed with the high-level language Bluespec (same as 
the company name), and it is necessary to acquire a Bluespec license to compile the 
processor codes. In addition, it offers commercial platforms such as RISC-V 
Verification Factory and RISC-V Acceleration Factory dedicated to the integration, 
verification and debugging of integrated systems and FPGAs. 

Other platforms are open source designs, but their tools can be open source or not 
and they can be part of their own platform or not. Both Pulp and OpenPiton are open 
source designs. They rely on a set of open source tools such as Icarus Verilog and 
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other proprietary tools as Mentor Graphics QuestaSim. Specifically, the users can 
decide between the compatible tools to design, simulate and implement their system. 

While some platforms are completely dedicated to RISC-V processors, some 
others also support other processor ISAs, such as Gem5 and OpenPiton platforms. In 
the case of Gem5, it employs a generic processor model which is configured with the 
parameters of the target processor. By contrast, OpenPiton gives some options about 
the processors to integrate into its platform, for example OpenSparc T1, PicoRV32 
and Ariane processors. 
 

Table 1. Popular platforms to simulation and implementation of multicore processors. 

Platform Simulation 
 

FPGA 
Implementation 

Processor Open 
Source 

 Functional RTL  RISC-V Other  

Spike simulator [12] ✔ - - ✔ - ✔ 

Gem5 simulator [13] ✔ - - ✔ ✔ ✔ 

Bluespec  [14] - ✔ ✔ ✔ - - 

LowRisc [15] - ✔ ✔ ✔ - ✔ 

Pulp [16] - ✔ ✔ ✔ - ✔ 

OpenPiton [17] - ✔ ✔ ✔ ✔ ✔ 

 

OpenSPARC T1 was the default core of the OpenPiton processor from the 
OpenPiton platform. Given the potential of the NoC and the protocols of coherency 
implemented in the cache hierarchy of the OpenPiton processor, in recent years, 
projects have emerged with the main goal of incorporating RISC-V cores into the 
OpenPiton processor. Some examples are Juxtapiton [18],  where the PicoRV32 core 
was integrated with the OpenPiton platform and inherited all the capabilities of the 
infrastructure, and the integration of Ariane core into the OpenPiton processor [19], 
started in 2019 by the ETH Zürich and the Wentzlaff Parallel Research Group. 

3   Lagarto I RISC-V architecture 

The computer architecture design team of the Microelectronic and Embedded 
System Laboratory of the Computing Research Center of the National Polytechnic 
Institute of Mexico has developed the Lagarto I core. Its main goal is to provide its 
users with a scalable low-cost development platform for hardware and software 
systems. These users could come from the academic field as well as the industry 
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sector. For the academic field, it will be possible for the students to understand the 
tradeoffs and challenges related to the microarchitecture design process; for the 
industry sector, it will grant the opportunity to use a customizable development 
platform.  

Lagarto I core is a scalar 64 bit RISC-V based processor, that supports the RV64I 
instruction set, the M extension for multiplication and division, and the A extension 
for atomic operations, the minimum requirements to support an embedded Linux 
booting process. Additionally, Lagarto I supports the RISC-V Privileged Architecture 
Version 1.7.  

Lagarto I core has been developed in Verilog, taking advantage of the hardware 
description language tools for designing, testing and verifying digital systems as 
robust as a SoC. The microarchitecture implements a six-stage pipeline and includes 
optimized modules for instruction processing. Additionally, Lagarto I includes a 
Memory Management Unit looking to allow not only the flow of data through the 
different memory levels, but also the implementation of multicore systems, 
establishing the guideline to explore massive processing systems for High 
Performance Computing. 

4   Design proposal for Lagarto Multi-core 

Currently, tiled architectures have gained ground in the design of multicores. They 
provide communication using shared memory and direct communication networks, 
allowing the flow of data and messages from one tile to another without the need to 
use system software [20]. 

The minimum requirements of a tile are the processor, L1 cache memory 
(including coherence support), private or shared L2 memory and an interconnection 
network. In order to have an infrastructure that allows the Lagarto I processor to scale 
to a large number of cores, its current design needs to be transformed to a tile 
implementation, which we denote the Lagarto tile. Starting from the single-core 
Lagarto I design, it requires a coherence protocol in the L1 cache memory, an 
interconnection network and a shared memory level. Likewise, it requires a chipset 
that hosts the memory controllers and the OS boot. It is also essential to incorporate 
the atomic instructions, a feature already implemented in the Lagarto I processor. 

The available open-source multi-core processor design platforms have been 
analyzed to determine if they can be used to facilitate the design of multi-core Lagarto 
processors. Three open-source platforms have been chosen for the analysis: Lowrisc, 
PULP and OpenPiton. Table 2. shows a summary of the analysis of the three 
platforms under the following headings: a) HDL language, which should be 
compatible with that used in Lagarto I core, b) interconnection network used, c) 
coherence protocol support, d) compatible with RISC-V and e) OS boot support. 
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The chosen platforms are suitable to be integrated into this work thanks to the fact 
that they have been developed with HDL, as well as Lagarto I core. LowRisc, in 
particular, has been developed in the high-level language Chisel. With respect to the 
interconnection network, only OpenPiton implements a NoC. The Pulp platform does 
not support a coherence protocol, since its designs are focused on hardware 
acceleration. The three platforms integrate at least one RISC-V processor and 
implement atomic instructions, although Pulp only implements atomic fetch-and-op 
memory instructions. 

OpenPiton has been selected as the most suitable platform for this work, mainly 
for its ability to scale the number of cores thanks to the implemented NoC. It is 
completely free, fully configurable (cache size, interconnection network, processor) 
and modular, exploiting the use of the Verilog language. It is a platform developed 
mainly in Verilog for hardware description and Perl + Python to integrate tools and 
build designs. In the most recent version, released in 2019, it supports three different 
processors: OpenSPARC T1 and two RISC-V based processors, PicoRV32 and 
Ariane, integrated from the PULP framework. 
 
 

Table 2. Analysis of Development platforms to be used with Lagarto I 

Platform Developers Language Interconnect Coherence  
Protocol 

Memory  
Levels 

Processor Linux  
boot 

   Crossbar Noc   RISC-
V 

Others Mono 
core 

Multi 
core 

LowRisc University of 
Berkeley and 
Cambridge 

Chisel ✔ - ✔ 2 ✔ - ✔ - 

Pulp ETH Zürich System 
Verilog 

✔ - - 2 ✔ - ✔ - 

OpenPiton Princeton 
University 

Verilog ✔ ✔ ✔ 3 ✔ ✔ ✔ - 

 
 
5   Lagarto I Multi-core 

This section presents the design decisions for the Lagarto Multi-core system. It 
first details the recent integration of OpenPiton with the Ariane processor. Next, it 
presents the implementation details required for Lagarto I. 

The most recent OpenPiton release integrates the OpenPiton project with the 
Ariane processor. This design has been used as a reference to build and design the 
Lagarto I tile. This design upgrades the RISC-V privileged extension from 1.7 to 
1.10; this is required to support more stable OS execution and boot, offers more 
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support to physical-memory protection (PMP) and Virtual-memory page faults. This 
upgrade has been analyzed to obtain enough experience to identify, recognize and 
adapt the required modifications for the upgrade. This design will be considered a 
reference to compare the execution of instructions and the flow of control messages 
within the NoCs, simplifying the debug process of the design.  

The original version of OpenPiton leveraged an OpenSPARC core to build a tiled 
NoC design. The OpenSPARC T1 processor implements 8 cores connected through a 
crossbar, using a write-through policy to guarantee cache coherency. However, such 
design does not scale to large core counts, since it relies on the centralized crossbar to 
serialize memory accesses and invalidate sharers.  

In order to scale the system, the OpenPiton approach implements an additional 
cache level between the private L1 and the shared L2. This new private memory level 
is denoted L1.5 cache, because it sits between the original L1 and the L2. Therefore, 
the design employs two private cache levels per core. The first level is called L1 and 
is part of the OpenSPARC T1 processor, operating with its write-through policy. The 
second level is the L1.5, which is a write-back private data cache that implements a 
MESI coherence protocol, allowing larger scalability. With this approach, the 
OpenSPARC T1 RTL is not modified and the L1.5 operates as a higher cache level 
above the L1. In scalable multicores, write-back caches operate more efficiently than 
write-through since the high write-bandwidth required by the write-through caches 
produces data congestion into the NoC and the memory hierarchy [21]. The 
OpenPiton L1.5 cache only has one input port, where both instruction and data 
requests are received. Both requests can be generated simultaneously in the same 
processor cycle, so the design requires an arbiter to determine the priority to send 
each request to the L1.5. In the design, instruction fetch requests always receive 
higher priority. 

The OpenPiton project has integrated two different processor cores with different 
approaches with respect to the coherence protocol. In [22] the PicoRV32 processor 
replaces the OpenSparc T1 in OpenPiton. In this case, the processor is directly 
connected to the L1.5 cache from OpenPiton, removing its original L1 cache. This 
represents a relevant improvement at the hardware level, because it avoids the 
duplication of caches, with the corresponding increase in area and latency. However, 
it only operates with virtual memory accesses since the L1.5 cache in OpenPiton 
doesn't include an MMU. In [24] the Ariane processor was integrated with OpenPiton. 
The implementation turns its L1 write-back cache into a write-through cache similar 
to the one in OpenSparc T1 L1, and adapts the interfaces between Ariane L1 write-
through cache and OpenPiton L1.5 cache using an arbiter. With this change, the 
Ariane cache system become similar to the one used by OpenSparc T1.  

Our work adapts the Lagarto I core to the OpenPiton project following a similar 
approach. The basic building blocks employed in our project are shown in Figure 1. 
Fig. 1 a) shows the design of the Lagarto tile. Each tile has a Lagarto I core, the L1 
cache from the Ariane processor and the related modules. Fig. 1 b) shows the 
OpenPiton structure, including caches, NoC routers and chipset. 
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Lagarto I core interacts with the L1 cache in its Fetch Stage (FS) to request 
instructions, and in its Memory Access stage (MA) to load/stores data in memory. It 
also interfaces with the Control and Status Registers (CSR) which are read or written 
by privileged instructions. The upgrade of the privilege extension to version 1.10 
requires to add and discard some registers within the CSR module, as well as adding 
hardware support for new instructions into the Lagarto core microarchitecture. 

Originally, the Lagarto I processor implements a Memory Management Unit 
(MMU) that includes L1 caches for data and instructions, with the L1 data cache 
operating with a write-back policy.  Considering the alternative approaches in 
previous works, the approach followed to merge with OpenPiton was similar to the 
most recent case of Ariane. The Lagarto MMU is preserved, to access the L1 caches 
using physical addresses. The L1 data cache is converted to write-through and 
connected to the L1.5 from OpenPiton. When adapting the interfaces, the alternatives 
are to adapt the L1 interface from Lagarto to the L1.5, or employ the caches from 
Ariane. We decided to employ the L1 caches from Ariane because they are already 
adapted to the bus arbiter interface and the L1.5. This design is suboptimal because it 
almost replicates the caches in levels L1 and L1.5, with the corresponding increase in 
area and latency. However, it allows for a faster design and a simpler integration with 
the other modules from OpenPiton, leaving the integration of both cache levels for 
future work.  

The final design of L1 cache system of the Lagarto tile integrates an instruction 
and data cache, MMU and an arbiter. The instruction cache has 16KB size and 4-way 
associativity, and the data cache has 8KB, 4-way associativity and a write-through 
policy for compatibility with OpenPiton. The main purpose of the MMU is to 
implement address translation and monitor memory accesses, to detect memory 
access faults. The MMU hosts the instruction and data Translation Lookaside Buffers 
(TLBs) and the Page Table Walker (PTW). The PTW is a hardware used to handle 
page faults: it listens to all incoming translation requests on both iTLB and dTLB, and 
in case of fault page on the TLB it will use the virtual address to start the search for its 
page translation in a table walk. 

The module Arbiter has two main goals; first, it arbitrates between requests from 
the FS or MA processor stages, with FS requests always receiving more priority; 
second, it generates and manages the request signals, as well as packages the request 
to be sent to the L1.5, using an interface that is compatible with OpenPiton L1.5 
cache. Likewise, the arbiter attends all responses from the L1.5 cache to the L1 cache 
system. 

The L1.5, L2 cache and NoC router are reused from the OpenPiton project [21]. 
The remainder of the chipset has been modified, only reusing the bootrom module 
and a fake memory DRAM controller. The bootrom module contains a minimal boot 
of the linux code and the fake DRAM controller simulates the operation of a DRAM 
controller. This fake controller simulates that the operating system loads the program 
code into the DRAM to be executed by the cores, but the program is actually loaded 
manually in this fake DRAM. In the current status of the design, the program code is 
placed into this module to be executed after loading the boot. 
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a) b) 

Fig. 1. Lagarto tile  a) Lagarto core connect to system cache of Ariane processor. b) Cache system, NoC, 
routers and chipset from Open Piton. 

Figure 2. shows the block diagram of a  multi-core architecture where the Lagarto 
tile is interconnected to others tiles through NoC routers in the P-Mesh by OpenPiton. 
OpenPiton provides scalable meshes of tiles on a single chip using, what they have 
called, a P-Mesh cache coherence system, which is capable to connect together up to 
8192 chips [23]. The NoC routers are also used to interconnect the Lagarto tiles to a 
chipset to access the bootrom and the fake DRAM controller. 
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Fig. 2. block diagram of a multi-core architecture with Lagarto tiles (based on 

[22])  
 

6   Conclusions and future work 

This work describes the initial process of adapting the Lagarto I core to a 
multicore system using a NoC. The Lagarto project wants to generate a high-
performance ecosystem based on RISC processors for the industry and the academic 
field in Mexico. For this goal, is necessary to develop an infrastructure that allows the 
Lagarto I processor to scale to multi- and many-cores. It has been decided to take 
advantage of several previous developments on multicore, which has led to perform 
various analysis of compatibility with the Lagarto I processor, as well as requirements 
for its adaptation. Consequently, the OpenPiton platform has been chosen to employ 
the NoC it integrates as well as the MESI protocol implemented in its memory 
system.  

For this first approach, it has been decided to follow the process of development of 
previous projects carried out with processors based on RISC-V and the OpenPiton 
platform, which involves modifying the L1 cache to operate as a write-through cache 
and connect it directly with the OpenPiton L1.5 cache and thus be able to exploit the 
MESI protocol and access the NoC.  

While effective and simpler to develop, this results in a suboptimal design because 
of the redundant modules. To achieve the main objective of the Lagarto project, it is 
desired to eventually get rid of the L1.5 memory and implement the MESI protocol in 
the L1 write-back memory integrated in the MMU of the Lagarto I processor. This 
will establish direct communication between the interface of the OpenPiton NoC to 
the Lagarto L1 cache, allowing direct access from the L1 cache to the L2 cache and 
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the Chipset, as well as reducing the latency and area of the tile. An additional 
advantage is to be able to process instruction requests and data accesses in parallel. 
Finally, it will be necessary to perform tests to guarantee memory consistency and to 
successfully execute a SMP Linux boot. 
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