
Received April 7, 2019, accepted April 29, 2019, date of publication May 9, 2019, date of current version May 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2915964

Applying the FAHP to Improve the Performance
Evaluation Reliability of Software
Defect Classifiers
HUSSAM GHUNAIM AND JULIUS DICHTER
School of Engineering, Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT 06604, USA

Corresponding author: Hussam Ghunaim (hghunaim@my.bridgeport.edu)

ABSTRACT Today’s software complexity makes developing defect-free software almost impossible.
Consequently, developing classifiers to classify software modules into defective and non-defective before
software releases have attracted great interest in academia and software industry alike. Although many
classifiers have been proposed, no one has been proven superior over others. The major reason is that while a
research shows that classifier A is better than classifier B, we can find other research that shows the opposite.
These conflicts are usually triggered when researchers report results using their preferable performance
evaluation measures such as, recall and precision. Although this approach is valid, it does not examine all
possible facets of classifiers performance characteristics. Thus, the performance evaluation might improve
or deteriorate if researchers choose other performance measures. As a result, software developers usually
struggle to select the most suitable classifier to use in their projects. The goal of this paper is to apply the
fuzzy analytical hierarchy process (FAHP) as a popular multicriteria decision-making technique to reliably
evaluate classifiers’ performance. This evaluation framework incorporates a wider spectrum of performance
measures to evaluate classifiers performance rather than relying on selected preferable measures. The results
show that this approach will increase software developers’ confidence in research outcomes and help them in
avoiding false conclusions and infer reasonable boundaries for them. We exploited 22 popular performance
measures and 11 software defect classifiers. The analysis was carried out using KNIME data mining platform
and 12 software defect data sets provided by the NASA metrics data program (MDP) repository.

INDEX TERMS Classifiers, data mining, empirical software engineering (ESE), FAHP, KNIME, perfor-
mance evaluation, software defect.

I. INTRODUCTION
Software defects are a serious threat to the success of software
development industry [1]. In average, billions of dollars are
lost every year because of software defects in the United
States alone [2], where the global loss is much larger than
this amount. Although defects can be detected by various
quality procedures, finding and fixing defects consume a sig-
nificant portion of the available resources [3]. Most software
defects are normally found within a relatively small number
of modules [4], [5]. Therefore, developing software defect
classifiers has become a promising methodology to iden-
tify defective modules before software release. The expected
returns are significant in terms of reducing the overall quality
assurance activities time and costs [1], [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Vijay Mago.

The major aim of software defect classifiers is to classify
software modules into defective dM and non-defective ndM.
This binary classification can be described as a mapping
function from a vector x ofM features, where xi ∈ RM , to one
of the classification classes yi ∈ {dM , ndM} [4].

f (x) : RM 7→ {dM , ndM} (1)

This model can be trained by a training data set S of N
instances,

S = {(xi, yi)}Ni=1 . (2)

Numerous techniques have been proposed to develop classi-
fiers, for instance, regression and logistic regression, neural
networks, decision trees, and many other machine learn-
ing algorithms [4], [7] with no superiority of any over the
rest [3], [8]. This is mainly caused by conflicted bench-
marking studies. Various software engineering research

62794
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-2859-2189

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

papers [1], [3], [9], [10] investigated and challenged the reli-
ability of software defect classifiers benchmarking studies.
The common finding among these studies was that while
one-study showed classifier A was better than classifier B,
we could find other studies that showed exactly the opposite.

Consequently, software practitioners face the problem of
how they can reliably evaluate the performance of defect clas-
sifiers to select the best performing classifier out of several
others [11]. Although there are many performance evaluation
measures, they usually provide contradicting results. This
contradiction is indeed expected as each of these measures
was developed to capture a specific aspect of classifiers’
performance. For example, recall, which is known as True
Positive Rate (TPR), represents the proportion of the actual
defective modules that are classified defective. Similarly,
precision, which is known as Positive Predictive Value (PPV),
represents the proportion of classified defective modules that
are actually defective [3], [12], and so forth. As a result,
the performance quality is highly dependent on the specific
measures being utilized!

This fact leads to the critical question; which perfor-
mance evaluation measure(s) practitioners should use? In
other words, how practitioners can evaluate classifiers in such
a way that they will always get reliable and valid results?
This essential requirement is motivated by two possible sce-
narios. Mistakenly classifying defective modules as non-
defective raises the risk of software failure. While classifying
non-defective modules as defective raises software quality
assurance activities time and costs. We believe that the pro-
posed evaluation framework will increase the reliability and
researchers’ confidence in the classifiers’ evaluation process
outcomes.

This paper is organized as follows, related work
Section discusses the problem of classifiers’ evaluation reli-
ability and its implications on software development indus-
try. Section III discusses the principles of Fuzzy Analytical
Hierarchy Process (FAHP). The classifiers’ performance
evaluation measures implemented in this research are pre-
sented and explained in Section IV. In data sets Section,
we describe several data quality issues that exist in NASA
data sets and the cleaning procedures that are performed.
In experimental setup design Section, we discuss how the
experiments and analysis are performed while Section VII,
the FAHP Application, describes in detail how we applied
FAHP to the classifiers’ performance evaluation. The results
Section discusses the paper results and conclusion Section
summarizes the conclusions.

II. RELATED WORK
The reliability of software defect classifiers was scrutinized
extensively in many published works [8], [11], [13], [14],
[15]. Nonetheless, it seems that there is a large room for
improvements. For example, performance quality measures,
such as, precision, accuracy, etc. can be improved by apply-
ing rigorous reliability and verification techniques [8], [11].
Additionally, many of these measures are borrowed from

other disciplines (e.g. Psychology and social sciences).
In many cases when these measures are used ‘as is’, they
usually have different implications [12].

It has become a common practice for practitioners and
researchers to select their most preferable statistics to sup-
port their point of view. Consequently, vague and misleading
conclusions might result. Forman and Scholz [16] concluded
in their study that comparing different research studies has
become complicated, and in many cases, the comparisons
have become not meaningful.

This paper emphasizes the fact that performance eval-
uation must be seen as a comprehensive strategy rather
than relying on preferably selected performance measure(s).
Shepperd et al. [3] conducted an extensive study to find the
reasons of variance in classifiers performance. Their study
included 600 experimental results published in many rep-
utable conferences and journals with low acceptance rates.
Surprisingly, researcher bias was among the major and wide-
spread influential factors. They found that it is extremely
difficult to choose the best performing classification tech-
nique because of this phenomenon.

To solve the problem of researchers’ bias, Inse et al. [17]
asserted that researchers should improve their research out-
comes reporting protocols. Kitchenham [18] also suggested
the need to enhance the communication and documentation
protocols to include sufficient explicit details about how
exactly classifiers were used and evaluated in research.

Fenton and Bieman [19] extensively discussed the con-
cept of research reliability. In general, he emphasized the
empirical validity procedures where researchers are required
to validate their findings by replications of experiments.
Empirical validation studies have become an essential part
in software defect classification research because usually we
lack the required theoretical validation. This fact has led us to
our paper contribution which is proposing a comprehensive
evaluation scheme that will provide proven better evalua-
tion outcomes compared to preferred selected performance
measure(s).

III. FUZZY ANALYTICAL HIERARCHY PROCESS (FAHP)
To avoid the researchers’ bias when evaluating the perfor-
mance of software defect classifiers, this paper proposes
the application of multicriteria decision making (MCDM).
MCDM is a set of very effective methodological tools for
dealing with complex problems in various domains, such as,
business, engineering, etc. Some examples are, AHP, FAHP,
TOPSIS, and many others [20]–[22].

The Analytical Hierarchy Process AHP technique is based
on expert judgment method to perform pairwise comparisons
between all implemented criteria. However, AHP suffers
from a critical criticism. AHP is unable to deal with the
impression and subjectiveness of the expert judgment when
performing the pairwise comparisons method [23]–[25].

In recent years, Fuzzy AHP–or for short, FAHP–gained
a noticeable attention as a superior substitute to the AHP
technique. The essence of FAHP method is based on the

VOLUME 7, 2019 62795

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

FIGURE 1. Membership functions used in FAHP.

ability to capture the uncertainty when performing expert
judgment method. Zadeh [26] introduced the fuzzy set theory
to compromise the human thought vagueness, which was
oriented to the rationality of uncertainty due to imprecision
or vagueness. That is, the consideration of the gradual mem-
bership of an element to a particular set of elements [23].

Peng [27] and Kabir and Hasin [28] applied AHP success-
fully in the field of classifiers performance evaluation. In this
paper, the authors apply FAHP in evaluating binary classifiers
performance as a more robust multicriteria procedure. Up to
our knowledge, this is the first time of such application.

In 1983, Laarhoven, et al. proposed the use of a triangular
fuzzy membership function as the best fit in performing
expert judgment, Fig (1.a) [29]. Other functions were pro-
posed as well to fit various uses, Fig (1.b and 1.c). We chose
to use the triangular membership method for its suitability to
software defect classifiers domain, Equation (3). The reason
for this choice is that we need only to provide two boundaries
to our judgment, upper and lower boundaries when com-
paring measures pairwise. Trapezoidal function for example
provides two middle values in addition to the upper and
lower boundaries. The is not the case in our research. Similar
arguments are applicable to other fuzzy membership func-
tions that might require unnecessary complications. Thus, for
simplicity, we made this choice.

µ(x|M̃) =


0, x < l
(x − l)/(m− l), l ≤ x ≤ m
(u− x)/(u− m), m ≤ x ≤ u
0, x > u

(3)

Throughout this paper, fuzzy quantities are differentiated by
placing a tilde ‘∼’ above symbols. A triangular fuzzy num-
ber (TFN) is denoted as (l,m, u), where l denotes the smallest
possible value, m denotes the most promising value, and u
denotes the largest possible value that describes a fuzzy event.
Readers interested in more detailed introduction to fuzzy
numbers and their algebraic operations are recommended to
read Harding et al. [30].

IV. PERFORMANCE EVALUATION MEASURES
To evaluate the classifiers’ performance, we followed the
common practice of using a confusion matrix, Table 1. The
first column shows the actual positive (AP) cases (defective
modules) and the second column shows the actual negative
(AN) cases (non-defective modules). Similarly, the first row

TABLE 1. Confusion matrix.

shows the predicted positives (PP) and the second row shows
the predicted negatives (PN). The bottom right cell shows the
total number of cases, T. While the optimum desired results
would be fp = fn = 0, the actual performance of classifiers
is still far away from achieving this goal. By utilizing these
four variables, the classifiers’ performance measures can be
calculated.

Numerous performance measures have been proposed and
utilized by researchers and practitioners to evaluate classi-
fiers’ performance. Table 2 shows the 22 performance mea-
sures exploited in our research [3], [27]–[33]. The selection
of these measures was based on their popularity in software
defect classification research [3], [12]. Since Cohen’s Kappa
is the only measure that needs more clarifications on how to
compute its probabilities (i.e. Pr (a) and Pr(e)), we added
those clarifications right after the table.

V. DATA SETS
As the requirement of research replication has become vital
for many researchers, we have decided to use the pub-
licly available and widely used NASA software defect data
sets [34]. One justifiable reason that explains this choice is
to support the ability to reproduce and verify the published
results, and to ease data sharing among researchers [35].

However, NASA data sets suffer from many data qual-
ity problems [36]. For clarity, we repeat here the common
assumptions about software data sets structure. NASA data
sets are organized as a matrix of rows and columns. Each
row represents one software module (i.e. case), and each
column represents one feature (i.e. attribute). One of the data
integrity issues that can be found in NASA data sets is the
identical values. This problem occurs when two or more
features have the same values for all cases. Similarly, if two
or more cases have the same values for all features including
the prediction label. Identical features present no additional
information and identical cases confuse learners, thus, both
were excluded from data sets. Conflicting values is another
problem that arises whenever there is a violation of a rela-
tional integrity constraint. For example, LOC_TOTAL cannot
be less than LOC_EXECUTABLE or LOC_COMMENTS.
Fan et al. [37] have discussed integrity constraints in more
details. Such data is untrustworthy and should not be included
in the data sets. Additionally, implausible values are any
negative or fractional values that do not make sense and
cannot be accepted. Similar to conflicting values, this data
is untrustworthy. Cases’ inconsistency, constant values and
missing values were among other data integrity issues that
were analyzed.

62796 VOLUME 7, 2019

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

TABLE 2. List of the 22 performance evaluation measures exploited in
the study.

Cohen’s kappa probabilities are calculated as follows:
• Pr (a) : is the observed agreement probability among
raters = tp+tn

tp+fp+tn+fn
• Pr (e) : is the agreement by chance probability among
raters = R1 (P)R2 (P)+ R1 (N)R2 (N)

• Rater1 percentage of positive responses

R1 (P) =
tp+ fp

tp+ fp+ tn+ fn

• Rater1 percentage of negative responses

R1 (N) = 1− R1 (P)

TABLE 3. Changes made to NASA data sets after applying the cleaning
strategy. ∗df% is the percentage of defective modules.

• Rater2 percentage of positive responses

R2 (P) =
tp+ fn

tp+ fp+ tn+ fn

• Rater2 percentage of negative responses

R2 (N) = 1− R2 (P)

Shepperd et al. [34] and [36] performed a comprehen-
sive cleaning strategy to remove all problematic cases and
features, Table 3. They published the cleaned-up data sets
resulted after removing all cases and features that had one
or more of the discussed data quality problems. These data
sets are available online at

https://figshare.com/collections/NASA_MDP_Software_
Defects_Data_Sets/4054940/1.

VI. EXPERIMENTAL SETUP DESIGN
We exploited eleven software defect classifiers, Table 4.
These classifiers have been chosen based on their popularity
in software defect research [4], [38]. The experiments were
carried out using KNIME [39], [40], a popular data mining
platform and twelve NASA software defect data sets.

KNIMEwas used to run the classifiers on all experimented
data sets. The corresponding confusion matrixes were con-
structed and utilized to calculate the classifiers’ performance
measures, that is, E[c × p] matrixes, where c is the number
of classifiers and p is the number of performance measures.
To validate the results, 10-fold cross-validation technique
was run on all experiments. Additionally, we normalized
all experimented data sets to avoid the dominance of some
attributes with large values.

Imbalanced data sets can degrade classifiers performance
and contribute to the results unreliability [35], [54]. It is quite
common in software defect data sets to have non-defective

VOLUME 7, 2019 62797

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

TABLE 4. Software defect classifiers.

modules as the majority class while the defective modules as
the minority class. Therefore, stratified sampling technique
was used to avoid sampling bias. Stratified functionality
guaranteed that all created cross-validation folds had class
distribution similar to the original data sets distributions, i.e.
the ratio of defective to non-defective modules.

For clarity, we start with presenting a summary of the
FAHP steps implemented in this study followed by more
detailed calculations in the following section, FAHP Appli-
cation.

Note: Matrixes are denoted by italicized capital letters,
and vectors are denoted by bold face italicized small letters.
Let,
c = 11, c is number of classifiers,
p = 22, p is number of performance measures,
d data set
D the set of 12 NASA data sets
1) Construct the fuzzy performance measures pairwise
comparisons Ã[p× p] matrix.

2) Compute the criteria fuzzy weight vector w̃ from
Ã matrix.

3) Compute the defuzzified criteria weight vector w.
for each d ∈ D do
4) Compute the classifiers evaluation matrix E[c×p].
5) Compute the classifiers scores S[c× p] matrix.

a. compute p number of B(j) matrixes
(classifiers pairwise comparisons) with respect
to each criterion j = 1, . . . , p
b. from each B(j), compute s(j) score vector
c. construct the S[c× p] matrix by combining
all s(j) vectors, column wise.

6) Compute the classifiers ranking v = S · w,
where viof the vector v represents the global score
(i.e. rank) assigned by the FAHP to the ith classifier.

7) Identify the highest performing classifier compared
to the list of experimented classifiers.

end for

TABLE 5. AHP and FAHP scores interpretations.

VII. FAHP APPLICATION
The following are the FAHP implementation steps [23], [27]:
Step 1:

Decompose the problem into three hierarchical levels,
Fig. (2).

- Goal: evaluating the performance of software defect
classifiers to select the best performing classifier

- Criteria: twenty-two performance measures
- Alternatives: eleven software defect classifiers

Step 2:
Perform fuzzy pairwise comparisons between all criteria

elements using the fundamental scale proposed by Saaty [22],
Table 5. At the end of this step, a criteria fuzzy weights vector
w̃ is computed. However, this scale is based on crisp eval-
uation values. As discussed in Section III, crisp evaluation
usually leads to unreliable results due to the expert judgment
uncertainty and vagueness. Thus, the scale must be modified
to meet FAHP requirements. That is, instead of evaluating the
criteria using the crisp scale values, we can use the Triangular
Fuzzy Numbers (TFN) to compromise for human uncertainty
and increase the reliability of the evaluation. Note that for any
fuzzy number ã, the reciprocal can be defined as

ã−1 = (l,m, u)−1 =
(
1
u
,
1
m
,
1
l

)
(4)

Table 5 entries are only suggestive to translate the decision
maker qualitative evaluations of the criteria into quantitative
values. It is possible to use other similar scales.

The authors use their extensive experience in the field of
binary classifiers evaluation measures to rank their relative
importance following Saaty fundamental scale of weights.
Additionally, the literature provides a large body of research
to evaluate the reliability and validity of each of these
measures. For brevity, a representing sample is cited in
this paper [13], [33], [12]. Table 6 shows the relative fuzzy

62798 VOLUME 7, 2019

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

FIGURE 2. FAHP hierarchical structure.

weights established by the authors judgments for these
measures.

By assuming that we have p performance evaluation mea-
sures (i.e. criteria), we can construct the criteria pairwise

comparison matrix Ã as follows:

Ã [p× p] =

 ã11 · · · ã1k
...

. . .
...

ãj1 · · · ãjk

 (5)

where j = 1 · · · p&k = 1 · · · p.
Every entry ãjk represents the importance of criterion j

relative to criterion k , where ãjk = (1, 1, 1)∀j = k .
Once matrix Ã is constructed, we can calculate the cri-

teria fuzzy weights vector w̃ by applying the Geometric
Mean method proposed by Buckley [55]. The method can be
applied by three steps:

Firstly, we calculate the fuzzy geometric mean value r̃j for
each row j in Ãj

r̃j =

((∏p

k=1
lk
)1/p

,
(∏p

k=1
mk
)1/p

,
(∏p

k=1
uk
)1/p)

(6)

Secondly, sum all fuzzy geometric mean values column wise
and find their reciprocal,

(
r̃1 ⊕ r̃2 ⊕ · · · ⊕ r̃j

)−1. The multi-
plication and addition of two fuzzy numbers operations are
defined as,

ã1 ⊗ ã2 = (l1,m1, u1)⊗ (l2,m2, u2)

= (l1 × l2,m1 × m2, u1 × u2) (7)

ã1 ⊕ ã2 = (l1,m1, u1)⊕ (l2,m2, u2)

= (l1 + l2,m1 + m2, u1 + u2) (8)

Lastly, calculate the criteria fuzzy weights vector w̃,

w̃j = r̃j ⊗
(
r̃1 ⊕ r̃2 ⊕ · · · ⊕ r̃j

)−1 (9)

To ease the comparisons of classifiers’ rankings, we can
defuzzify w̃ using the center of area COA concept [56],
Table 7.

wj =
(
l + m+ u

3

)
, j = 1 · · · p (10)

Step 3:
Perform pairwise comparisons between all classifiers with

respect to every criterion. At the end of this step, the classi-
fiers scores matrix S is constructed.

S [c× p] =

 s11 · · · s1j
...

. . .
...

si1 · · · sij

 (11)

where i = 1 · · · c & j = 1 · · · p.
Every entry sij of matrix S represents the score of

the ith classifier with respect to the jth criterion. To con-
struct the matrix S, we have first to compute classifiers
pairwise comparison B(j) matrixes with respect to every
criterion j.

B(j) [c× c] =

 b11 · · · b1h
...

. . .
...

bi1 · · · bih

 (12)

where i = 1 · · · c & h = 1 · · · c.
Each entry b(j)ih of the matrix B(j) represents the evaluation

of the ith classifier compared to the hth classifier with respect
to the jth criterion. We can compute b(j)ih by dividing the
performance evaluation of classifier i over the performance
evaluation of classifier h. If b(j)ih > 1, then the ith classifier
is better than the hth classifier, and if b(j)ih < 1, then the ith

classifier is worse than the hth classifier. When two classifiers
performances are equal, then b(j)ih = 1.MatrixB entries satisfy
the following properties:
b(j)ih · b

(j)
hi = 1 and b(j)ih = 1,∀i = h.

The matrix E[c × p] entries are utilized in computing
B(j) matrixes. The matrix E contains the performance eval-
uation of each classifier presented by the 22-performance
measures. In total we have 12 E matrixes for the 12 data
sets experimented. The process of computing E matrixes is as
follows:

1. Start KNIME
for each d ∈ D do BD is the set of 12 NASA data sets
and d is a data set

2. Load data set d

VOLUME 7, 2019 62799

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

TABLE 6. The relative fuzzy weights established for the evaluation measures, Ã matrix.

62800 VOLUME 7, 2019

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

TABLE 7. Computing the criteria weights vectors w̃ and w.

3. Run every classifier to generate its confusionmatrix
4.Use the generated confusion matrix to compute
the 22-performance measures

5.Construct the corresponding E matrix
end for

Once B(j) matrixes are computed, they need to be nor-
malized column wise. That is, divide each entry bih in a
particular column h over the sum of all entries of this column,

Equation (13). This operation is repeated for all columns in
matrix B(j).

bih =
bih∑c
i=1 bih

(13)

We use Equation (14) to find the scores vector s(j) that con-
tains the classifiers’ pairwise comparisons scores with respect
to every criterion j. The c-dimension column vector s(j) is

VOLUME 7, 2019 62801

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

TABLE 8. Classifiers ranks per every data sets.

computed by taking the averages row-wise for every row i
in B(j).

s(j) =
∑c

h=1 bih
c

(14)

Now, we can construct matrix S by combining all calculated
s(j) scores vectors,

S =
[
s(1) · · · s(j)

]
, where j = 1 · · · p (15)

Each column in the matrix S corresponds to one of the s(j)

column vectors.
Step 4:
Calculate the vector v of the classifiers’ priorities by mul-

tiplying the classifiers’ pairwise comparison scores matrix S
by the defuzzified criteria weights vector w, Equation (16).

v = S · w (16)

Each vi entry represents the score (i.e. rank) assigned by the
FAHP process to the ith classifier in comparison to all other
c− 1 classifiers.

VIII. RESULT
The experiments resulted in 12 E matrixes, 12 S matrixes,
and 264 B matrixes. For brevity, we will report the summary
of the results.

We can notice from Table 8 that every data set reveals
a unique order of the experimented classifiers perfor-
mance ranks. These results conform with much published
research that every data set (i.e. software project) is a
unique product and persists unique characteristics. Kastro
and Bener [57] concluded in their study that it is almost
impossible to have two identical software products in terms of
developing process, programming languages used, program-
mers’ experience, algorithm complexity, or even the devel-
opment methodology. Myrtveit et al. [8] reported similar
findings.

However, some interesting trends can be implied. Random
Forest (RF) has won the first rank 7 times and the second
rank one time. Fuzzy Rule () has won the first rank 2 times
and the second rank 6 times. This shows that those particular
classifiers perform very well. On the contrary, SVM has won

the last rank (i.e. the 11th rank) 12 times, which implies that
this classifier consistently performs poorly in these experi-
ments. Close to this performance is NB that won the 10th

rank 10 times, the 9th rank 1 and surprisingly won the 2nd

rank 1 time.
To make clearer final comparisons between all competing

classifiers, Table 9 shows the average rank for each classifier
over all experimented data sets. The procedure we follow
is to count the number of times each classifier achieves a
particular rank, then multiply this number by the rank itself.
The sum of these numbers is divided over the total number
of available ranks. Small average rank values indicate better
performing classifiers in comparison to classifiers that have
larger averages. Table 9 confirms our earlier observations in
this section.

On the other hand, we averaged the matrix E for the
12 data sets and applied FAHP on this one averaged matrix.
As expected, the final rankings are perfectly matching the
previous ones.

IX. THREATS TO VALIDIT
The first threat to validity comes from the fact that this paper’s
results and conclusions are biased based on the data sets
and classifiers we used [58]. However, we believe that by
choosing the publicly available NASA data sets, replication
should be possible and encouraged by other researchers. The
same argument applies for choosing the most common classi-
fiers in the field of software defect prediction [4], [38], [57].
Moreover, NASA data sets meet all the requirements that
would increase our research external validity stated by
Khoshgoftaar et al. [59], that is, increasing the generalization
of the results outside our experimental settings:

1) Be large enough to be comparable to real industry
projects

2) Developed in an industrial environment, rather than an
artificial setting

3) Developed by a group of developers rather than an
individual

4) Developed by professionals, rather than students

On the other hand, and in order to decrease the presence
of internal validity threats, we decided to use the cleaned-up

62802 VOLUME 7, 2019

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

TABLE 9. Averaged data sets ranks.

NASA date sets instead of the original ones, as discussed
earlier in the data sets section. This allows us to avoid the
noise sources that exist in the original NASA data sets.

Moreover, some data sets contain relatively small number
of modules, such as, MC2 and KC3. Especially when 10-fold
cross-validation technique is employed. Some classifiers that
are sensitive to the size of data sets might lose some of
their performance quality [60]. This effect might be increased
after performing the cleaning procedures on NASA data sets.
As Table 3 shows, this resulted in smaller number of obser-
vations for each experimented data set.

X. CONCLUSIONS
There is a substantial need to design and develop reliable
software defect classifiers that classify software components
into defective and non-defective. The benefit of this objective
is the ability to focus software defect detection efforts and
project resources on part of a system rather than testing the
whole system.

Nevertheless, themajor problem that software practitioners
face is how to reliably evaluate classifiers and how to select
the best fit for their software development projects. Since
the evaluation of software defect classifiers performance is
highly dependent on the specific measures employed, the per-
formance evaluation might improve or deteriorate if practi-
tioners choose different performance measures.

As we believe that performance evaluation must be seen
as a comprehensive strategy rather than relying on preferably
selected performance measures, Fuzzy Analytical Hierarchy
Process (FAHP) is implemented in this research to satisfy this
requirement. FAHP allowed us to combine a wider spectrum
of evaluation measures, in contrast to relying on preferably
selected one or two evaluation measures. Another strength
comes from the fact that FAHP employs fuzzy membership
function to account for human nature of uncertainty and
vagueness when evaluating and comparing performancemea-
sures against each other. The results show that this approach
will increase software developers’ confidence in research

outcomes and help them in avoiding false conclusions and
infer reasonable boundaries for them.

REFERENCES
[1] B. Turhan, A. Tosun, andA. Bener, ‘‘Empirical evaluation ofmixed-project

defect prediction models,’’ in Proc. 37th EUROMICRO Conf. Softw. Eng.
Adv. Appl., Oulu, Finland, Aug. 2011, pp. 396–403.

[2] D. Lo, S.-C. Khoo, J. Han, and C. Liu, Eds., Mining Software Specifica-
tions: Methodologies and Applications. Boca Raton, FL, USA: CRC Press,
2011, pp. 1–15.

[3] M. Shepperd, D. Bowes, and T. Hall, ‘‘Researcher bias: The use of machine
learning in software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 40,
no. 6, pp. 603–616, Jun. 2014.

[4] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul. 2008.

[5] L. Madeyski and M. Jureczko, ‘‘Which process metrics can significantly
improve defect prediction models? An empirical study,’’ Softw. Qual. J.,
vol. 23, no. 3, pp. 393–422, 2014.

[6] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘Evaluating defect prediction
approaches: A benchmark and an extensive comparison,’’ Empir. Softw.
Eng., vol. 17, nos. 4–5, pp. 531–577, 2011.

[7] R. S. Wahono, N. S. Herman, and S. Ahmad, ‘‘A comparison framework
of classification models for software defect prediction,’’ Adv. Sci. Lett.,
vol. 20, nos. 10–11, pp. 1945–1950, 2014.

[8] I. Myrtveit, E. Stensrud, and M. Shepperd, ‘‘Reliability and validity in
comparative studies of software prediction models,’’ IEEE Trans. Softw.
Eng., vol. 31, no. 5, pp. 380–391, May 2005.

[9] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, ‘‘A systematic
literature review on fault prediction performance in software engineering,’’
IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Nov. 2012.

[10] H. Wang, T. M. Khoshgoftaar, and Q. Liang, ‘‘A study of software metric
selection techniques: Stability analysis and defect prediction model perfor-
mance,’’ Int. J. Artif. Intell. Tools, vol. 22, no. 5, 2013, Art. no. 1360010.

[11] I. Myrtveit and E. Stensrud, ‘‘Validity and reliability of evaluation proce-
dures in comparative studies of effort prediction models,’’ Empirical Softw.
Eng., vol. 17, nos. 1–2, pp. 23–33, 2012.

[12] D. M. Powers, ‘‘Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness and correlation,’’ J. Mach. Learn. Technol.,
vol. 2, no. 1, pp. 37–63, 2011.

[13] N. Fenton and B. Kitchenham, ‘‘Validating software measures,’’ Softw.
Test., Verification Rel., vol. 1, no. 2, pp. 27–42, 1991.

[14] C. Andersson, ‘‘A replicated empirical study of a selection method for
software reliability growth models,’’ Empirical Softw. Eng., vol. 12, no. 2,
p. 161, 2007.

[15] L. J. White, ‘‘The importance of empirical work for software engineering
papers,’’ Softw. Test., Verification Rel., vol. 12, no. 4, pp. 195–196, 2002.

VOLUME 7, 2019 62803

H. Ghunaim, J. Dichter: Applying the FAHP to Improve the Performance Evaluation Reliability of Software Defect Classifiers

[16] G. Forman and M. Scholz, ‘‘Apples-to-apples in cross-validation studies:
Pitfalls in classifier performance measurement,’’ ACM SIGKDD Explo-
rations Newslett., vol. 12, no. 1, pp. 49–57, 2010.

[17] D. C. Ince, L. Hatton, and J. Graham-Cumming, ‘‘The case for open
computer programs,’’ Nature, vol. 482, no. 7386, p. 485, 2012.

[18] B. Kitchenham, ‘‘What’s up with software metrics?—A preliminary map-
ping study,’’ J. Syst. softw., vol. 83, no. 1, pp. 37–51, 2010.

[19] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical
Approach, 3rd ed. Boca Raton, FL, USA: CRC Press, 2014.

[20] B. D. Rouyendegh, ‘‘The DEA and intuitionistic fuzzy TOPSIS approach
to departments’ performances: A pilot study,’’ J. Appl. Math., vol. 2011,
Oct. 2011, Art. no. 712194. doi: 10.1155/2011/712194.

[21] T. L. Saaty, ‘‘Decision making with the analytic hierarchy process,’’ Int. J.
Services Sci., vol. 1, no. 1, pp. 83–98, 2008.

[22] T. L. Saaty, Analytical Hierarchy Process. New York, NY, USA: McGraw-
Hill, 1980.

[23] S. Kubler, J. Robert, W. Derigent, A. Voisin, and Y. Le Traon, ‘‘A state-of
the-art survey & testbed of fuzzy AHP (FAHP) applications,’’ Expert Syst.
Appl., vol. 65, pp. 398–422, Dec. 2016.

[24] B. D. Rouyendegh and T. Erkart, ‘‘Selection of academic staff using the
fuzzy analytic hierarchy process (FAHP): A pilot study,’’ Tehnicki Vjesnik,
vol. 19, no. 4, pp. 923–929, 2012.

[25] M. Z. Naghadehi, R. Mikaeil, and M. Ataei, ‘‘The application of fuzzy
analytic hierarchy process (FAHP) approach to selection of optimum
underground mining method for Jajarm Bauxite Mine, Iran,’’ Expert Syst.
Appl., vol. 36, no. 4, pp. 8218–8226, 2009.

[26] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[27] Y. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi, ‘‘Ensemble of software
defect predictors: An AHP-based evaluation method,’’ Int. J. Inf. Technol.
Decis. Making, vol. 10, no. 1, pp. 187–206, 2011.

[28] G. Kabir and M. A. A. Hasin, ‘‘Comparative analysis of AHP and fuzzy
AHP models for multicriteria inventory classification,’’ Int. J. Fuzzy Logic
Syst., vol. 1, no. 1, pp. 1–16, 2011.

[29] P. J. M. van Laarhoven and W. Pedrycz, ‘‘A fuzzy extension of Saaty’s
priority theory,’’ Fuzzy Sets Syst., vol. 11, nos. 1–3, pp. 229–241, 1983.

[30] J. Harding, E. A. Walker, and C. L. Walker, The Truth Value Algebra of
Type-2 Fuzzy Sets: Order Convolutions of Functions on the Unit Interval.
Boca Raton, FL, USA: CRC Press, 2016.

[31] Y. Jiang, B. Cukic, and Y. Ma, ‘‘Techniques for evaluating fault prediction
models,’’ Empirical Softw. Eng., vol. 13, no. 5, pp. 561–595, 2008.

[32] M. Vihinen, ‘‘How to evaluate performance of prediction methods? Mea-
sures and their interpretation in variation effect analysis,’’ BMCGenomics,
vol. 13, no. 4, p. S2, 2012. doi: 10.1186/1471-2164-13-S4-S2.

[33] C. Ferri, J. Hernández-Orallo, and R. Modroiu, ‘‘An experimental compar-
ison of performance measures for classification,’’ Pattern Recognit. Lett.,
vol. 30, no. 1, pp. 27–38, 2009.

[34] M. Shepperd, Q. Song, Z. Sun, and C. Mair. NASA MDP Soft-
ware: Defects Datasets. Accessed: Sep. 16, 2018. [Online]. Available:
https://figshare.com

[35] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013.

[36] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some com-
ments on the nasa software defect datasets,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208–1215, Sep. 2013. doi: 10.1109/TSE.2013.11.

[37] W. Fan, F. Geerts, and X. Jia, ‘‘A revival of integrity constraints for data
cleaning,’’ Proc. VLDB Endowment, vol. 1, no. 2, pp. 1522–1523, 2008.

[38] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, ‘‘A comparative
study of iterative and non-iterative feature selection techniques for software
defect prediction,’’ Inf. Syst. Frontiers, vol. 16, no. 5, pp. 801–822, 2014.

[39] N. V. Nenkov and I. Ibryam, ‘‘A survey of the open source platforms Rapid-
miner and Konstanz Information Miner (KNIME) for data processing,
analysis andmining,’’ Pedagogical College, Dobrich, Bulgaria, Tech. Rep.,
2013, pp. 124–129.

[40] M. R. Berthold et al., ‘‘KNIME-the Konstanz information miner: Ver-
sion 2.0 and beyond,’’ ACM SIGKDD Explor. Newslett., vol. 11, no. 1,
pp. 26–31, 2009.

[41] M. R. Berthold, ‘‘A probabilistic extension for the DDA algorithm,’’
in Proc. IEEE Int. Conf. Neural Netw., Washington, DC, USA, vol. 1,
Jun. 1996, pp. 341–346.

[42] J. Herrero, A. Valencia, and J. Dopazo, ‘‘A hierarchical unsupervised
growing neural network for clustering gene expression patterns,’’ Bioin-
formatics, vol. 17, no. 2, pp. 126–136, 2001.

[43] H. Enderton and H. B. Enderton, A Mathematical Introduction to Logic.
Amsterdam, The Netherlands: Elsevier, 2001.

[44] D. R. Cox, ‘‘The regression analysis of binary sequences,’’ J. Roy. Stat.
Soc., B (Methodol.), vol. 20, no. 2, pp. 215–232, 1958.

[45] R. Stuart and N. Peter, Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[46] B. V. Dasarathy, Nearest Neighbor (NN) Norms: Nn Pattern Classification
Techniques. Washington, DC, USA: IEEE Computer Society Press, 1991.

[47] M. Riedmiller and H. Braun, ‘‘A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,’’ in Proc. IEEE Int. Conf.
Neural Netw., San Francisco, CA, USA, Mar. 1993, pp. 586–591.

[48] J. C. Platt, ‘‘Fast training of support vector machines using sequential
minimal optimization,’’ in Advances in Kernel Methods. Cambridge, MA,
USA: MIT Press, 1999, pp. 185–208.

[49] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
‘‘Improvements to Platt’s SMO algorithm for SVM classifier design,’’
Neural Comput., vol. 13, no. 3, pp. 637–649, 2001.

[50] J. R. Quinlan, C4.5: Programs for Machine Learning. Amsterdam,
The Netherlands: Elsevier, 2014.

[51] J. Shafer, R. Agrawal, and M. Mehta, ‘‘SPRINT: A scalable parallel
classifier for data mining,’’ in Proc. Int. Conf. Very Large Data Bases,
Bombay, India, 1996, pp. 544–555.

[52] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees (The Wadsworth Statistics and Probability Series).
Belmont, CA, USA: Wadsworth International Group, 1984, p. 356.

[53] W.-Y. Loh, ‘‘Classification and regression trees,’’ Wiley Interdiscipl. Rev.,
Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 14–23, 2011.

[54] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme,
‘‘Preliminary comparison of techniques for dealing with imbalance in
software defect prediction,’’ in Proc. 18th Int. Conf. Eval. Assessment
Softw. Eng., London, U.K., 2014, p. 43.

[55] J. J. Buckley, ‘‘Fuzzy hierarchical analysis,’’ Fuzzy Sets Syst., vol. 17,
pp. 233–247, Dec. 1985.

[56] B. Schott and T. Whalen, ‘‘Nonmonotonicity and discretization error in
fuzzy rule-based control using COA and MOM defuzzification,’’ in Proc.
IEEE 5th Int. Fuzzy Syst., New Orleans, LA, USA, vol. 1, Sep. 1996,
pp. 450–456.

[57] Y. Kastro and A. B. Bener, ‘‘A defect prediction method for software
versioning,’’ Softw. Qual. J., vol. 16, no. 4, pp. 543–562, 2008.

[58] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[59] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, ‘‘An empirical study of
predicting software faults with case-based reasoning,’’ Softw. Quality J.,
vol. 14, no. 2, pp. 85–111, 2006.

[60] C. Catal and B. Diri, ‘‘Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,’’ Inf.
Sci., vol. 179, no. 8, pp. 1040–1058, 2009.

HUSSAM GHUNAIM received the B.Sc. degree
in physics and mathematics, in 1993, and the
M.Sc. degree (Hons.) in Internet engineering from
London South Bank University, U.K., in 2005.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with the Univer-
sity of Bridgeport, Bridgeport, CT, USA. He was
engaged in progressive career in education for over
20 years. He is an active Researcher in software
defect prediction modeling techniques and perfor-

mance evaluation procedures.

JULIUS DICHTER received the B.S. degree from
the University of Connecticut, the M.S. degree
from the University of New Haven, and the Ph.D.
degree from the University of Connecticut. He is
currently an Associate Professor of computer sci-
ence with the University of Bridgeport, Bridge-
port, CT, USA. His research interest includes
the optimization of parallel computing. He is a
member of the IEEE Computer Society, ACM,
International Society of Computers and Their

Applications, and UPE Computer Science Honor Society.

62804 VOLUME 7, 2019

http://dx.doi.org/10.1155/2011/712194
http://dx.doi.org/10.1186/1471-2164-13-S4-S2
http://dx.doi.org/10.1109/TSE.2013.11

	INTRODUCTION
	RELATED WORK
	FUZZY ANALYTICAL HIERARCHY PROCESS (FAHP)
	PERFORMANCE EVALUATION MEASURES
	DATA SETS
	EXPERIMENTAL SETUP DESIGN
	 FAHP APPLICATION
	RESULT
	THREATS TO VALIDIT
	 CONCLUSIONS
	REFERENCES
	Biographies
	HUSSAM GHUNAIM
	JULIUS DICHTER

