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ABSTRACT
Quality Diversity algorithms (QD) evolve a set of high-performing

phenotypes that each behaves as differently as possible. However,

current algorithms are all elitist, which make them unable to cope

with stochastic fitness functions and behavior evaluations. In fact,

many of the promising applications of QD algorithms, for instance,

games and robotics, are stochastic. Here we propose two new ex-

tensions to the QD-algorithm MAP-Elites — adaptive sampling and

drifting-elites — and demonstrate empirically that these extensions

increase the quality of solutions in a noisy artificial test function

and the behavioral diversity in a 2D bipedal walker environment.
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1 INTRODUCTION
Traditional optimization algorithms attempt to find a single config-

uration that minimizes some error function. In contrast, Quality-

Diversity (QD) algorithms, inspired by natural evolution, attempt

to find a large set of high-performing and diverse configurations.

Two popular QD-algorithms are Novelty Search with Local Com-

petition [3] and Multi-dimensional Archive of Phenotypic Elites

(MAP-Elites) [4]. In this paper, we investigate the effect of noise

on diversity, performance, and robustness of the solutions found

by MAP-Elites, which has not been studied in depth despite most

real-world problems being noisy. To deal with the issues introduced

by noise we propose an adaptive sampling technique that gradually

increases the number of samples used in each solution evaluation.

We formulate the QD-optimization problem as the maximization

of M(x1, · · · ,xN ) =
N∑
i=1

E(F (xi )), where xi are the parameters of

the solution in cell i within a user-defined feature space divided

into N cells (or niches), F (x) = f (x) + δf (x), where f (x) is the
true performance/quality of x and δf is noise from an unknown

distribution. The features determining which cell x belongs to is

sampled from B(x) = b(x) + δb (x) and M(·) refers to the total

expected quality and is maximal when the archive is filled with

high-quality solutions.
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A common approach to deal with noise in evolutionary algo-

rithms is to evaluate each solution multiple times and take the

average of all the performance measurements, also known as ex-

plicit averaging [5]. For QD-algorithms, the same can be done to

determine the behavioral features. Explicit averaging introduces

several issues for an elitist algorithm like MAP-Elites: (1) The num-

ber of evaluation trials is usually found experimentally by balancing

between inaccurate estimations, leading to unstable solutions, and

longer running times for the algorithm, (2) domains with a high

level of noise require many trials to reach accurate results, which

require more computation, and (3) the algorithm will over time

over-estimate the fitness and thus prioritize unstable solutions.

2 METHODS
2.1 Adaptive Sampling & Drifting Elites
Intuitively, we need to re-evaluate more at the end of the evolu-

tionary process (to get precise results) than at the beginning (when

a rough approximate is acceptable). We thus propose an adaptive

sampling approach along with an early-stopping rule. Previous

adaptive sampling methods for EAs [1] are not directly applicable

to MAP-Elites. The approach for evaluating a solution is shown in

Algorithm 1, where lines in gray are unnecessary when B(x) = b(x).

Algorithm 1 MAP-Elites with adaptive sampling and drifting
elites for noisy performance measures and feature descriptors.

1: procedure Evaluate(x)
2: e ← ∅ ▷ The elite to challenge

3: V ← ∅ ▷ Visited cells

4: while e = ∅ or ( |xP | < |eP |) do
5: b , p ← Simulate(x ) ▷ Measure behavior and perf.

6: xB ← xB ∪ {b }, xP ← xP ∪ {p }
7: e ← A(x̄B ) ▷ Get current elite from archive A

8: c ← CellIndex(A, ēB ) ▷ The cell occupied by e
9: if e = ∅ then
10: return
11: else if x̄P < ēP then ▷ Mean perf. of x and e is compared

12: V (c) ← V (c) + 1 ▷ Increment visit count

13: b , p ← Simulate(e ) ▷ Re-evaluate e once

14: eB ← eB ∪ {b }, eP ← eP ∪ {p }
15: c ′ ← CellIndex(A, ēB )
16: if c , c ′ then
17: Remove e from cell c ▷ Elite is drifting

18: Evaluate(e ) ▷ Resume evaluation of e
19: e ← A(x̄B )
20: if e , ∅ and x̄P < ēP then
21: return
22: if V (c) > |V |

2
and |xP | < |eP | then

23: return

In this scheme, solutions are evaluated until one of the following

occurs: 1) The solution is estimated to be in an empty cell, 2) the

solution has been evaluated the same number of times as the corre-

sponding elite and the solution has a higher mean performance, or

3) the mean performance is lower than the corresponding elite’s.

If feature measures are noisy, case number 3 is only activated if

the solution has visited the current cell more than 50% of the time;
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we believe it has settled. In case 1 and 2, the solution is added to

the archive in the corresponding cell and in case 3 the solution is

discarded. When discarding a solution, the elite will be evaluated

one additional time to improve our estimations.

As solutions in the archive are re-evaluated over time and thus

their behavioral descriptors change, solutions will have to be moved

to new cells; i.e. they are drifting. A naive implementation of this

idea will leave behind an empty cell whenever a solution drifts. Our
solution to this is to store the k best solutions in each cell while

only treating the fittest one as the elite. When an elite is moved to

a new cell it will continue its evaluation procedure and the second

most-fit solution in the cell becomes the new elite. We observed

improvement by using k = 10 instead of k = 1 but saw no difference

when using k = 100.

3 EXPERIMENTAL SETUP
We test three domains: (1) 6-D Rastrigin with noisy performance

measures and deterministic feature measures: f (x) = 10n+∑n
i=1

[
x2

i − 10 cos(2πxi )
]
where x in [−5, 10], n = 6, F (x) = f (x) +

N(0, 625), and B(x) = b(x); where b(x) is equal to the two first

values in x . 2) 6-D Rastrigin with noisy performance measures

and noisy feature measures, such that F (x) = f (x) + N (0, 625) and

B(x) = b(x) +N(0, 0.01), and 3) the OpenAI Gym BipedalWalker
environment [2] which is stochastic and thus no artificial noise

is added. The variances of the added noise were determined by

randomly sampling the search space.

We use the CVT variant of MAP-Elites [6], a batch size of 100,

random initialization of 1, 000 solutions, and for the mutation oper-

ator, sigma iso was set to 0.01 and sigma line to 0.2, with 25, 000

samples to generate the CVT archive. We use 5, 000 niches in the

two Rastrigin experiments; for the BipedalWalker the number of

niches is set to 1, 000 and the neural network has 24 inputs, two

fully-connected layers of 256 tanh units, and 4 outputs. Initial pa-

rameters are sampled uniformly random within [−0.5, 0.5] ([0, 1]

for Rastrigin). We compare our approach to three baselines with

explicit averaging of n = 1, n = 10, and n = 100. Rastrigin exper-

iments were repeated three times each, while the BipedalWalker

experiment was executed once. To analyze the solutions found

by each algorithm we correct the archives by re-evaluating every

elite (either by using the true value for Rastrigin or re-evaluating

each elite 100 times for the BipedalWalker) and move them to their

correct cells. This sometimes leaves cells empty (see Figure 1).

4 RESULTS & CONCLUSION
Figure 1 shows the corrected collection size, total normalized qual-

ity (the sum of all solution qualities normalized from the range

[−250, 0] for Rastrigin and [−50, 300] for the BipedalWalker) and

the number of elite evaluation trials. For Rastrigin with noisy perfor-

mance measures our approach results in the best total normalized

quality compared to the three baselines. For the baselines on Rast-

rigin with noisy performance and feature measures, the collection

size and total quality degrade over time as unstable solutions pop-

ulate the archive. While it seems that n = 100 is best here, if we

were able to stop early, it requires many re-evaluations to monitor

the degradation. For the BipedalWalker the same trend is not as

apparent, only for n = 1. The best results here were obtained by

n = 10 followed by our approach. These results suggest that the

adaptive sampling approach needs to be controlled better as it may

be domain-specific and depend on other hyper-parameters. How

to control the growth of evaluation trials remain a challenge for

future work while our results demonstrate the potential of adaptive

sampling in elitist QD-algorithms.

(a) Rastrigin with noisy performance measures

(b) Rastrigin with noisy performance and feature measures
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Figure 1: The corrected collection size, total normalized quality,
and the mean number of elite evaluations for (a) Rastrigin with
noisy performance measures and (b) feature measures, and (c) for
the BipedalWalker which also shows the estimated and corrected
archives.
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