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Abstract—Evaluating a community detection method involves
measuring the extent to which the resulted solution, i.e clustering,
is similar to an optimal solution, a ground truth. Different
normalized similarity indices have been proposed in the literature
to quantify the level of similarity among two clusterings where 1
refers to complete agreement and 0 refers to complete disagree-
ment between them. While interpreting the similarity score of 1
seems to be intuitive, it does not seem to be so when the similarity
score is otherwise (including 0) suggesting a level of disagreement
between the compared clusterings. That is because the there is
no agreed upon definition of what is considered dissimilar when
it comes to comparing two clusterings. In this paper, we address
this issue by first providing a taxonomy of the similarity indices
commonly used for evaluating community detection solutions.
We then elaborate on the meaning of clusterings dissimilarity
and the types of possible dissimilarities that can exist among two
clusterings in the context of community detection. We perform
an extensive evaluation to study the behaviour of the different
similarity indices as a function of the dissimilarity type with
both disjoint and non-disjoint clusterings. We finally provide
practitioners with some insights on which similarity indices to
use for the task at hand and how to interpret their similarity
scores.

I. INTRODUCTION

A core task in network analysis is to identify communities;
that is, to provide a clustering of the network nodes into
groups of nodes, also known as communities or clusters, based
on the explicit ties among these nodes and/or some common
attributes. Since members of a community tend to generally
share common properties, revealing the community structure
can provide a better understanding of the overall functioning of
the network. This had many applications in social media group
detection (1), second-order flow analysis in human mobility
(2), and topic detection in information networks (3), just to
cite a few.

Lots of efforts have been devoted in the last decade on
finding graph-like models for the different types of interactive
systems ranging from the very simple (one type of relation-
ships) to the very complex (multiple types of relationships and
actors) (4). Accordingly, new community detection methods
had to be developed to cope with the different levels of
complexity in the different models and this resulted on a large

number community detection, clustering, algorithms which
might differ from one another on how they define a community
structure, but no matter how differ in their complexity they all
agree on the structure of the output they produce, that is a
clustering C == {C1, C2, . . . , Ck} where C1, C2, . . . , Ck are
communities, clusters, over the node-set (the vertex-set that
constitutes the input graphs). For the rest of this papers we
might interchangeably use the term clustering and community
detection solution to refer to the same thing.

The growing number of community detection methods
resulted on an urgent need for tools to evaluate the pre-
dicted clusterings of these methods such that we can either
compare them with a reference clustering, a ground truth,
or we compare the different community detection solutions
among each other. For this goal, multiple normalized similarity
indices have been borrowed from other proposed or borrowed
disciplines to quantify the level of agreement between two
clusterings such that the score is 1 when the two clusterings are
identical and 0 when the two clusterings are dissimilar. While
the meaning of similar seems to be quite intuitive when the
similarity score is 1, it is quite unclear what is perceived as less
similar or completely dissimilar (when the score is 0) accord-
ing to these similarity indices. In this paper, we address this
issue by first providing a taxonomy of the similarity indices
commonly used for evaluating community detection solutions.
We elaborate on the meaning of clusterings dissimilarity and
the types of possible dissimilarities that can exist among two
clusterings in the context of community detection. We perform
extensive evaluation to study the behaviour of the different
similarity indices as a function of the dissimilarity type with
both disjoint and non-disjoint clusterings. We finally provide
practitioners with some insights on which similarity indices to
use for the task at hand and how to interpret their values.

The rest of this paper is organized as follows. We propose
our taxonomy in section II. We elaborate on the definition of
dissimilarity in both disjoint, and non-disjoint clusterings in
section III. We perform our evaluation and list our observations
in section IV. The observations are discussed in section V, then
we conclude our findings in section VI
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II. A TAXONOMY OF SIMILARITY INDICES USED IN
EVALUATING COMMUNITY DETECTION SOLUTIONS

Her we provide a taxonomy (Figure 1) of similarity indices,
i.e the metrics commonly used to quantify similarity among
clusterings identified by community detection methods. The
proposed taxonomy is constituted of three levels of comparison
among clustering similarity indices. The top-level distinction
is to specify whether the similarity index is used for comparing
disjoint clustering where clusters do not overlap (we will refer
to these indices as disjoint indices), or for comparing non-
disjoint clustering where clusters might overlap (we refer to
these indices as non-disjoint indices).

Fig. 1. A taxonomy of the similarity measures commonly used to evaluate
community detection solutions. * refers to different ways of normalization
(max, min, sqrt, mean, and joint)

The second level focuses on weather or not the similarity
index is adjusted to take into consideration the by-chance
agreement that can happen even between two randomly gener-
ated clusterings over the same node-set. The general formula
used for adjustment is suggested by (5) to be:

Adjusted Index =
Index V alue− Expected V alue

Max V alue− Expected V alue
(1)

Where Index V alue refers to the non-adjusted similarity
score calculated by the index, Max V alue refers to the upper
bound of the non-adjusted similarity score of that index,
and Expected index is a quantification for the by-chance
agreement.

The third level in our taxonomy is to differentiate among
three different techniques used in the literature to calculate
similarity among clusterings, namely (i) pair counting which
considers similarity on the level of node-pairs, i.e it counts
the existence of two nodes together the same number of times
in both clusterings as an agreement and then define similarity
as an average of these agreements over all the possible ones,
(ii) set matching which considers similarity on the set-level
meaning that it treats communities of within each of the two
compared clusterings as sets, and it define similarity as an

average of the similarity among sets of the first clusterings
with those of the other one, and (iii) mutual information
which is borrowed measures from information theory. It treats
each clustering C as a random variable X such that X is a
vector of community memberships for each of the nodes in the
considered node-set, then it maps the similarity between two
clusterings C,C′ into calculating the mutual information among
their relevant node membership vectors I(XC ,YC′ ), which is a
quantification in information theory of the extent to which
knowing a random variable XC contribute in reducing the
entropy, uncertainty, of the another one YC′ .

The leaves in our taxonomy tree are the chosen similarity
indices for our evaluation. For the sake of this paper, we
choose to focus only the clustering similarity indices that
are commonly used in the literature to evaluate similarity
between community detection solutions (or between a commu-
nity detection solution and a given ground truth). For further
details about the mathematical formulations of these indices,
we refer the reader to the original papers in which these indices
were proposed. As shown in Figure 1, we chose to consider
the following disjoint indices, Rand Index RI (6), Adjusted
Rand Index ARI (5), Normalized Mutual Information NMI
and Adjusted Mutual Information AMI (7), Fair Normalized
Mutual Information F-NMI which is a version of NMI that
penalizes the NMI score when differences in the number of
communities exist among the compared clusterings (8), and
Jaccard index (9), which is mainly meant to compare two
sets but not two clusterings. We implemented a clustering-
level Jacquard index by averaging the Jacquard coefficient of
each community in a clustering when these communities are
compared with the community in the ground truth with the
highest intersection. As regards the non-disjoint indices, we
chose to consider O-NMILFK (10), O-NMI with the different
normalization options proposed by (11) (i.e, Min, Max, Mean,
and Sqrt), and Omega index (12) which is an extension of
Rand Index for non-disjoint clusterings.

III. TYPES OF DISSIMILARITY AMONG CLUSTERINGS

When it comes to comparing two disjoint clusterings G
and C, we claim that five main types of disagreements are
possible to exist among them. Those are: (i) misplaced nodes
disagreement, i.e a fraction of nodes that are not placed
in the right community in C according to G, (ii) missing
nodes disagreement, i.e some nodes that do not exist in any
community in C but they do in G, (iii) merging disagreement,
that is when a fraction of communities in C are constituted
of some communities from G that are merged together, (iv)
splitting disagreement, that is when a fraction of communities
in G are split into multiple communities in C, and (v) random
disagreement, that is when a random combination of the
aforementioned disagreements happen between G and C.

To identify dissimilarity on the level of non-disjoint clus-
terings, we refer to two types of overlapping mentioned in
(13), namely crisp overlapping where each node belongs fully
to each community of which it is a member, and fuzzy
overlapping where each node belongs to each community with



a different probability. For the sake of this paper, we chose to
focus only on the first type of overlapping (crisp overlapping).
On a structural level, crisp overlapping can happen in various
ways. It can be (i) hierarchical where the overlapping is
represented by the existence of bigger communities that are
constituted of other smaller communities merged together ,(ii)
non-hierarchical where the overlapping is represented by either
partial intersections among different communities, or simply
by replicated communities within the clustering or a mix of
both partial intersection and replicas, or (iii) mixed overlap-
ping where both hierarchical and non-hierarchical overlapping
exit. Figure 2 summarizes the different types of overlapping
in non-disjoint clusterings.

Given the different types of overlapping discussed above, we
still can identify only one type of non-disjoint dissimilarity,
that is when the communities in a clustering C overlap
differently compared to those in G. To consider the different
types of overlapping, we chose to have a separate experiment
for each in our experiments as will be shown later.

Fig. 2. Types of overlapping in non-disjoint clusterings

IV. EXPERIMENTS

The main goal of our experiments is to study the behaviour
of the different similarity indices used to compare community
detection, clustering, solutions in different conditions. More
specifically, we are interested in answering the following
questions:
Q1 Do the different clustering similarity indices have the

same trends in any condition and can they be, as a result,
used interchangeably to compare community detection
solutions?

Q2 Are the different clustering similarity indices equally
sensitive to the different types of disagreements possible
to happen between two clusterings?

Q3 Are the different clustering similarity indices on an agree-
ment regarding what is considered dissimilar clusterings?

Q4 Given that these indices are normalized, is the relation-
ship between the similarity score of each of these indices
and the amount of disagreement between the compared
clusterings linear?

To answer these questions, two main stages of evaluation
were devised: one for similarity indices used to compare
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Fig. 3. Community size distribution for the clustering used as a ground truth
throughout the experiments in this paper (unless mentioned otherwise)

disjoint clusterings (section IV-A), and another for com-
paring similarity indices used with non-disjoint clusterings
(sectionIV-B). We report our observations in Section IV-C.

We create a reference disjoint clustering, a ground truth G,
with respect to which we compare other disjoint clusterings, by
detecting communities, using Louvain method (14), on a LFR
benchmark graph (15) with following parameters: number of
nodes n = 1000, power law exponent for the degree distribution
= 2.6, power law exponent for the community size distribution
=1.7, minimum degree = 2, maximum degree =n, minimum
size of communities = 40, and maximum size of communities
= n (using networkx Python package). This resulted on a
clustering with 18 communities of which the community size
distribution is illustrated in Figure 3. To have a non-disjoint
ground truth G′ with respect to which we compare other
non-disjoint clusterings, we use the disjoint ground truth G
to construct G′ as will be explained in each experiment in
section IV-B.

A. Comparing disjoint clusterings

To study the behaviour of similarity indices used to compare
disjoint clusterings with respect to each type of the disjoing
dissimilarities discussed in Section III, we construct a separate
experiment for each. Each of these experiments starts with
comparing two identical clusterings G, C, then at each step a
new different disjoint clustering Ci is created and compared
with G using the different disjoint similarity indices, namely
NMI, AMI, F-NMI, RI, ARI, Jaccard. To improve the read-
ability of the resulted figures in these experiments, we use only
one type of normalization , MAX as inferred from (16), with
the information theoretic indices (NMI, AMI, F-NMI). The
non-disjoint clustering for each experiment were constructed
for each experiment as follows:
• For the misplaced nodes disagreement experiment , a

clustering Ci was derived from the ground truth G by
choosing i nodes at random from G at each step i and
moving them from their original communities in G to
another randomly chosen community. Figure 4 reports
the similarity scores of these disjoint clusterings at each
step when compared with the ground truth G.

• As to the splitting disagreement experiment (Figure 5),
starting from the ground truth G communities, a new
clustering Ci was generated by splitting one community
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Fig. 4. Effect of misplaced nodes on disjoint similarity measures

from G chosen at random into two communities whose
sizes are also chosen at random. Then, at each step i,
a new clustering is generated by splitting a randomly
chosen non-singleton community from the clustering at
the previous step Ci−1.
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Fig. 5. Effect of a splitting disagreement on disjoint similarity measures

• As regards the merging disagreement experiment (Fig-
ure 6), starting from the ground truth G communities,
a new ground truth clustering G′ is derived from G
by performing a number of random splits (100 splits).
The goal from this step is to increase the number of
communities in the ground truth so we allow for more
merging possibilities and we can clearly see the effect
of merging on the similarity indices. Starting from G′,
a new clustering Ci was generated by merging two
different communities from G′ chosen at random. Then
at each step, a new clustering is generated by merging
two different communities chosen at random from the
clustering at the previous step Ci−1 until a clustering
Cfinal constituted of two communities is reached in the
last step.

• For the missing nodes disagreement experiment (Fig-
ure 7), a clustering Ci was derived from the ground truth
G by choosing i nodes at random from G at each step
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Fig. 6. Effect of a merging disagreement on disjoint similarity measures

i, and removing them from their original communities.
Since information theoretic indices do not account for
missing nodes by definition and they require the two input
clusterings node sets to be of the same size (XC , XG) so
that a community membership is assigned for each node
in G and C, we assign a unique community membership
in XC for each of the missing nodes instead of totally
removing the node.
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Fig. 7. Effect of missing nodes on disjoint similarity measures

• For the random disagreement experiment(Figure IV-A),
a clustering Ci is generated at each step i by applying
a sequence of up to four (the number is chosen at
random between 1 and 4) disagreements of misplacing
or missing nodes, merging or splitting communities on
the clustering of the previous step Ci−1. The goal of
this experiment is to generally see if non-disjoint indices
have similar trends when the clustering is constituted of
random sequence of disagreements with respect to the
ground truth (which might be the case in most real-
world scenarios). Since applying a sequence of random
disagreement at each step in this experiment does not
always guarantee creating a clustering Ci that has more
disagreement with the ground truth G, the scores of all
the indices are then ordered based on the ascending order
of the NMI scores for visualization reasons. To improve



the readability of this visualization, we split the figure
into separate figures (Figure 8a) , then we show the
best second order polynomial fit for all these indices
(Figure 8b).
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(a) A separate view for each two indices together
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(b) The best second order polynomial fit of the disjoint indices
visualized in Figure 8a

Fig. 8. main caption

B. Non-Disjoint clusterings

To consider the different types of overlappings mentioned
in section III on different levels, we devise five different
experiments to study the behaviour of non-disjoint similarity
indices in different conditions. For these experiments, we
create a non-disjoint ground truth G′ starting from the disjoint
ground truth clustering G used before, by randomly creating
overlappings among the disjoint communities. We remind our
reader that this step is not crucial for the validity of the non-
disjoint indices as they can also be used to compare disjoint
clusterings against non-disjoint ones, but we chose to do it to
for the consistency of our experiments. The experiments are:
• Pair-of-nodes level overlapping. The goal of this experi-

ment is to observe weather the pair-of-node level overlap-

ping affect pair-counting indices (i.e Omega) differently
than information theoretic ones (i.e O-NMI∗ and O-
NMILFK). Starting from the ground truth clustering G′, a
clustering Ci is created in each step i, by randomly choos-
ing a pair of nodes from a randomly chosen community
in Ci−i and adding them together to another community
so an overlapping is created on the level of pair-of-nodes.
Figure 9 reports the similarity scores between Ci, G′ in
each step.
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Fig. 9. Effect of pair-of-node level overlapping on non-disjoint similarity
indices

• Set-level overlapping. The goal of this experiment is
to observe weather the set-level overlapping affect pair-
counting indices (i.e Omega) differently than information
theoretic ones (i.e O-NMI∗ and O-NMILFK). Starting
from the ground truth clustering G′, a clustering Ci
is created in each step i, by randomly choosing two
different communities from Ci−1 and creating a random
intersection among them. Similarity scores among Ci and
G′ in each step are reported in Figure 10.
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Fig. 10. Effect of set-level level overlapping on non-disjoint similarity indices

• Hierarchical overlapping. The goal of this experiment is
to study the effect of hierarchical overlapping on non-
disjoint similarity indices. We start from G′, and at each
step i, a clustering Ci is generated by adding a new
community to Ci−1 constituted of two randomly chosen



communities from Ci−1. Similarity scores are reported in
Figure 11.
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Fig. 11. Effect of hierarchical overlapping on non-disjoint similarity indices

• Replication overlapping. The goal of this experiment is
to study the effect of replicated communities on non-
disjoint similarity indices. We start from G′, and at each
step i, a clustering Ci is generated by simply replicating a
randomly chosen community from Ci−1. Similarity scores
among Ci, G′ at each step are reported in Figure 12.

0 500 1000 1500 2000 2500 3000
Number of replicas

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y 
sc

or
e

Omega
NMI_MAX
NMI_SQRT
NMI_MEAN
NMI_MIN
NMI_LFK

Fig. 12. Effect of replication overlapping on non-disjoint similarity indices

• Random overlapping. Here we study the effect of ran-
domly chosen sequence of the aforementioned overlap-
ping types on non-disjoint similarity indices. We start
from G′, and at each step i, a clustering Ci is generated by
applying a sequence of up to four randomly selected types
of overlapping on Ci−1. The scores of all the indices are
then ordered based on the ascending order of the Omega
scores for visualization. Similarity scores among Ci, G at
each step are reported in Figure 13.

C. Observations

A general observation on the disjoint indices is that they
have different sensitivities with respect to the type of disagree-
ment among the compared clusterings. Another observation is
that rand index, in all cases, fails at quantifying dissimilarity
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Fig. 13. Effect of random sequence of overlappings on non-disjoint similarity
indices

among clusterings. Therefore, when we refer to disjoint indices
in our observations, we mean to all the disjoint indices except
rand index unless mentioned otherwise. Figure 4 suggests that
while the adjusted rand index ARI proves to be a better exten-
sion of rand index RI to quantify the disagreement resulted by
misplaced nodes, the adjusted mutual information AMI and
the normalized mutual information NMI show a converging
trend in this case. Moreover, it is important to notice that
even though all the indices show a similar behaviour properly
increasing the level of detected dissimilarity when a more
and more nodes are misplaced, some do not hit 0 when the
percentage of misplaced nodes is 100%. The figure shows also
that 25% of misplaced nodes is enough to cause a drop to the
half in the similarity scores suggesting a non linear behaviour
between the similarity score and the amount of disagreement.

As to the effect of merging disagreement on the disjoint
indices, Figure 6 reports that F-NMI is the most sensitive to the
merging disagreement showing a quasi linear behaviour with
respect to the number of merges in the compared clusterings
Ci compared to the ground truth communities G. The least
sensitive is RI, followed by NMI and Jaccard, followed by
AMI and then ARI. For NMI, jaccard and AMI, that show
a similar behaviour, similarity still scores remarkably high
(¿.8) when more than 50 merges have been performed. When
it comes to the opposite type of disagreements,i.e splitting
communities, Figure 5 shows a similar order in the sensitivities
except for Jaccard, which seems to be more sensitive to
splitting disagreements than to merging disagreements. In
addition, splitting disagreement suggests that AMI is a better
extension of NMI to identify this type of disagreements.

The last type of disagreement we have analyzed is the
removal of nodes. In this case, ARI seems to have a linear
behaviour (Figure 7). The same, approximately goes for Jac-
card index, and AMI. Both NMI and F-NMI are less sensitive
regarding missing nodes and it should be noticed how they
do not hit 0 when the percentage of missing nodes in the
clustering Ci is 100% with respect to the ground truth. That is
because to the missing nodes are seen as isolated communities
(instead of being totally removed).



The random disagreement experiment among disjoint clus-
tering (Figure IV-A shows generally similar trends among
disjoint indices when used to compare a ground truth G and
a clustering Ci derived from the ground truth by applying a
sequence of different types of disagreements. In most real-
world scenarios, the identified clusterings can be constituted
of random sequence of all the aforementioned disagreements
with respect to a ground truth. In this case, non-disjoint indices
can be interchangeably used if the goal is to compare the
level of similarity among different pairs of clusterings such
that the output is which pairs of clusterings are more similar
that others. However, it seems still that different indices have
different considerations about what is considered dissimilar.

As to the non-disjoint indices, a general observation is
that the ranking of sensitivity seems to be stable among the
different variations of O-NMI (with O-NMIMAX being the
most sensitive among O-NMI variations) and with Omega
being always the most sensitive among all.

While Figures 9 shows similar trends among non-disjoint
indices with different sensitivities, 10 reports a non-intuitive
behaviour for both O-NMIMIN , and O-NMILFK when they
start to increase again after a certain amount of set-level
overlapping while the other indices keep decreasing. The
explanation for this has been discussed by (11) and that is
when some hierarchies starts as a result of the random sets
overlapping.

Figure 11 shows that O-NMIMIN score is not affected at
all when the type of overlapping is hierarchical.

As to the replication overlapping, Figure 12 reports a 0
sensitivity with all O-NMI variations regarding this type of
overlapping. While Omega index seems to be the only index
that can be sensitive to this type of overlapping, still the level
of sensitivity is the least when compared to Omega index
sensitivity in other cases.

Even though the random overlapping experiment among
non-disjoint clustering (Figure 13 shows generally similar
trends among disjoint indices when used to compare a ground
truth G and a clustering Ci derived from the ground truth by
applying a sequence of different types of overlappings, we can
not claim that all non-disjoint indices can be interchangeably
used to compare non-disjoint clusterings given that they do
not seem to have convergent scores. Based on the previous
experiments we think that Omega index can be the most
informative in this case, and O-NMIMAX can be a good
compromise when the clustetings are big enough that the pair-
counting mechanism performance becomes expensive.

V. DISCUSSION

As mentioned in Section IV, the main goal of our ex-
periments is to study the behaviour of different similarity
quantification approaches used to compare clusterings iden-
tified by community detection methods. More specifically, we
are interested in observing whether the different similarity
indices have the same trends (Q1), analyzing their sensitivities
to different types of disagreements (Q2), verify whether or
not they agree on what is considered dissimilar (Q3), and

check if the relationship between these indices and the level
of agreement is linear (Q4). The ultimate goal is to provide
practitioners with some insights about which indices to use
for the task at hand and how to interpret their values.

As regards (Q1), different experiments show that similarity
indices are do not always follow the same trends and that
largely depends on the type of disagreement between the
ground truth and the predicted clustering. With non-disjoint
indices for example, the relationship among NMI, F-NMI,
AMI, and ARI is more evident when the type of disagreement
is a misplace-nodes disagreement. The is less evident among
non-disjoint indices based on our experiments, and Omega
index proves to be the most sensitive regarding all types of
overlapping with O-NMIMAX being a good compromise when
the given clusterings are too big such that the pair-counting
mechanism performance becomes expensive.

As regards (Q2), It is clear based on our experiments that
different indices have different sensitivities regarding the type
of disagreement. We claim that this feature can be used to
better understand predicted clusterings with respect to the
ground truth. For example, with the sensitivity of each index
reported in our experiments as a function of the type of
disagreement, one can look at the values of F-NMI, Jaccard
,ARI, and AMI together. If all these values are convergent, one
might expect that the type of disagreement between the ground
truth and the predicted clustering is largely misplaced nodes
disagreement. If these values are not convergent, one might
expect, depending on the different sensitivities of each index,
whether the type of disagreement is a splitting or merging
disagreement. The same analysis is trickier with non-disjoint
indices, given that the order of sensitivity among them seem
to be consistent in most experiments. This also answers (Q4)
stating that the relationship between similarity indices and the
amount of disagreement is not linear in general as they do
have different sensitivities regarding the type of disagreement.

Whether different indices are on an agreement regarding
what is considered dissimilar (Q3), it is evident that this not
the case as they do not always hit 0 together even though they
tend to have similar trends in most cases.

VI. CONCLUSIONS

In this paper, we discuss the meaning of dissimilar cluster-
ings in the context of community detection and we evaluate
different similarity quantification techniques used in the liter-
ature to evaluate clusterings resulted by community detection
methods. We propose a taxonomy for the similarity indices
based on their use with disjoint or non-disjoint clusterings,
weather they adjusted for the by-chance agreement or not, and
the technique they use to define similarity (pair counting, set
matching and information theoretic approach). We define the
different types of dissimilarities that can exist between two
disjoint-clusterings, or non-disjoint clusterings. Accordingly,
we provide an extensive evaluation of the different similarity
indices in with each type of dissimilarity.

Our experiments show that similarity indices do not always
have the same trends. They do not agree on what is considered



dissimilar, and they are not linear with respect to the amount
of disagreement. We report also different levels of sensitivity
among similarity indices used to compare disjoint clusterings
based on the type of disagreement, which can be used to have
more insights about the predicted clustering with respect to a
given ground truth. The same does not hold with similarity
indices used to compare non-disjoint clusterings showing that
Omega index is the most sensitive index with all levels of
non-disjoint disagreements.
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