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Abstract: In finishing processes, the quality of aluminum parts is mostly influenced by static and
dynamic phenomena. Different solutions have been studied toward a stable milling process attainment.
However, the improvements obtained with the tuning of process parameters are limited by the
system stiffness and external dampers devices interfere with the machining process. To deal with this
challenge, this work analyzes the suitability of elastomer layers as passive damping elements directly
located under the part to be machined. Thus, exploiting the sealing properties of nitrile butadiene
rubber (NBR), a suitable flexible vacuum fixture is developed, enabling a proper implementation in
the manufacturing process. Two different compounds are characterized under axial compression
and under finishing operations. The compression tests present the effect of the feed rate and the
strain accumulative effect in the fixture compressive behavior. Despite the higher strain variability
of the softer rubber, different milling process parameters, such as the tool feed rate, can lead to a
similar compressive behavior of the fixture regardless the elastomer hardness. On the other hand,
the characterization of these flexible fixtures is completed over AA2024 floor milling of rigid parts
and compared with the use of a rigid part clamping. These results show that, as the cutting speed
and the feed rate increases, due to the strain evolution of the rubber, the part quality obtained tend to
equalize between the flexible and the rigid clamping of the workpiece. Due to the versatility of the
NBR for clamping different part geometries without new fixture redesigns, this leads to a competitive
advantage of these flexible solutions against the classic rigid vacuum fixtures. Finally, a model to
predict the grooving forces with a bull-nose end mill regardless of the stiffness of the part support is
proposed and validated for the working range.

Keywords: vibrations; part quality; flexible vacuum fixture; AA2024 floor milling

1. Introduction

Monolithic aluminum components are widely employed in the aeronautical sector due to their
good strength-to-weight ratio [1]. The final quality of these parts is normally obtained or improved in
the finishing operation and it is influenced by static and dynamic phenomena [2].

On the one hand, from the static point of view, cutting forces and part clamping produce elastic
deformation that can lead to deteriorating the final dimension and the surface of the workpiece [3].
On the other hand, vibrations increase the roughness of the parts. These dynamic instabilities become
frequent in the milling operation and are produced by the lack of dynamic stiffness in one or more
components of the system [4]. The most characteristic vibrations appeared in the milling operation are
the self-excited vibrations or chatter [5,6]. However, even in the absence of chatter, it almost always
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exists forced vibrations derived from the periodic excitation of the intermittent cutting engagement of
the milling cutter on the workpiece [7].

Thus, in order to improve the part quality different approach has been studied. First, the tuning
of the cutting parameters can lead to static and dynamic improvements. Thus, a process forces
reduction leads to a decrease of the elastic deformation of the workpiece that it is reflected in the part
accuracy. For instance, Perez et al. [8] obtained a machining forces reduction and an improvement of
the compressive residual stresses with the increase of the cutting speed. On the other hand, in terms
of vibrations, different surveys have been developed for the improvement of the system dynamic
stability and the obtained surface quality. Different stability models have been developed for the
milling operations of compliant systems [9,10] and the effect of the cutting parameters on the process
damping have been analyzed [11]. However, these solutions are limited for the inherent stiffness of
the system.

The key element for the increase of the system stiffness is the workpiece clamping. Thus, different
part-fixture systems have been employed to guarantee a suitable part positioning and fixing [12].
Due·to the lack of dynamic stability of some of these solutions, different damping features have been
implemented in the system in order to improve the machining process. Thus, different active features
based on the use of eddy currents [13,14], pivot mechanism [15,16] and piezoelectric dampers [17] have
been studied. These solutions are cost efficient and their implementation is limited to certain applications.

The use of passive damping elements is increasing for milling operations as they are more
cost efficient compared to the active developments. The passive damping systems are based in the
implementation of different elements or fluids with outstanding damping properties to stabilize
dynamically the system. Thus, by employing electrorheological [18] or magnetorheological [19] fluids,
the vibration amplitude of the cutting processes varies and the part quality is improved. Moreover,
in order to increase the narrow vibration band of these passive dampers, Yang et al. [20] developed
a tunable passive devices. However, the industrial implementation of these passive solutions are
challenging as they interfere with the clamping of the workpiece and the machining process.

In the present study, the use of an elastomer layer employed as a passive damping element
is proposed and characterized. Elastomers, particularly rubber materials, are ideal materials for
vibrations isolation as they are low in cost with high internal friction [21]. Moreover, the industrial
implementation of these compounds for machining applications is feasible as they are employed
as passive control of vibration [22–24]. In fact, the damping properties of these elastomers have
been analyzed for low frequency [25] and high frequency applications [26], including under certain
machining operations. For instance, Kolloru et al. [27] employed neoprene layers combined with
torsion springs to reduce up to eight times the vibration in the milling process of circular thin-wall
components. On the other hand, Liu et al. [28] implemented a viscoelastic material in the toolholder to
increase by 99% its damping ratio. Nevertheless, there is no study of the direct application of rubber
materials as the clamping element of workpieces in milling operations.

In this case, in order to combine a fixture and a passive damping system the use of a nitrile
butadiene rubber (NBR) layer is proposed. This sort of elastomers is one of the most employed seal
component in the oil and gas industry [29], and the proposed development benefitted from these
outstanding sealing properties [30,31] to transform a flexible layer into a suitable vacuum table. Hence,
these solutions enable milling in aggressive environments, with capacity to clamp different geometries.
Moreover, as the passive damping element act as a fixture, its industrial implementation is feasible as
the interference with the rest of the machining system is reduced.

In order to characterize the behavior of these elastic polymers under the machining processes
loads, compression tests and milling tests have been performed. Thus, these flexible solutions have
been characterized in terms of chatter and forced vibrations performed by the milling tool.
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Regardless the milling strategy, the most aggressive machining zone is the entrance of each
pocketing where the tool machines with an axial pitch equal to its diameter. Thus, the analysis is
focused in the grooving application with depth of cuts defined by finishing operations. The suitability
survey is performed in terms of part quality. First, the machined depth is measured to quantify the
groove thickness error. Then, the floor roughness is measured and analyzed. Finally, the dynamic
behavior of each system is characterized, and a universal force model is developed for the grooving
operation in finishing applications.

2. Materials and Methods

Two different NBR layers were selected for the analysis as these passive elements are defined by
different vibration bands. The mechanical properties of both vulcanized rubber materials are shown
on Table 1. Besides the hardness and the density, the compounds ingredients are given, where the
carbon black is a form of elemental carbon that is used to increase the resistance of rubber and also to
improve the tensile strength [32].

Table 1. Materials mechanical properties.

Properties Rubber A Rubber B

Hardness (Sh·A) 65 90
Density (g/cm3) 1.45 1.43
Polymer (wt.%) 37.3 54.6

Carbon black (wt.%) 3.5 14.4
Other inorganic charges (wt.%) 59.2 31.0

The mechanical behavior of rubber depends on the amplitude, feed rate and frequency of the
applied load, combined with the temperature of the material [33]. In the case of milling operations,
the amplitude and feed rate of the applied forces are completely defined by the machining conditions.

Similarly, the load frequencies suffered by the part are generated by the milling tool rotation and
by the workpiece fundamental modes. Finally, the temperature of the material is influenced by the
heat generated on the cutting zone and the room temperature.

Based on the load application strategies employed on this survey, some simplifications were
considered. For instance, the decrease in stiffness during the first few cyclic loads, the so-called Mullins
effect [34], was neglected. Therefore, different loads prior to each test were performed over each
elastomer layer. The characteristics of these loads were defined in terms of the test to perform. Thus,
for compression tests, a compression load was performed prior to each test. Likewise, prior to each
milling test, a previous groove was performed to reduce the Mullins effect on the rubber and to level
the upper side of each slot.

Finally, due to the reduced compression loads during the machining operation and the wide part
area in contact with the elastomer layer, the expected strain amplitudes are minimal. Therefore, it is not
considered a rubber heat up due to material damping derived from large harmonic loads [33]. Hence,
due to the part thickness located between the cutting zone and the rubber layer, the temperature of the
rubber was considered as the room value.

Tests were performed in a standard 5-axis numeric control (NC) center. The selected geometry
for the elastomer layers was a 300 × 300 mm2. The mean value of the thickness for both cases was
14.2 mm with a tolerance of ±5%. In order to guarantee a uniform contact and clamping conditions
between the part and the elastic material, a slot grid was machined in each rubber layer (Figure 1a).
Thus, the vacuum clamping force was distributed along the contact area by means of the channels.
Then, the air was removed through a unique orifice and the part could be safely clamped during the
machining operation, as shown in Figure 1b.
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the part and the elastic element were attached to the force sensor with a synthetic rubber adhesive. 
This double-sided filmic tape TESA 64620 (Tesa Tape S.A., Argentona, Spain) guaranteed a 
homogeneous clamping due to the compressive nature of the axial loads in compression and milling 
tests. 

2.1. Compression Tests 

For most of engineering rubbers, material damping is caused by two different mechanism, 
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cycles on each rubber. In general, compression tests on rubber materials are performed with circular 
samples [37]. However, in order to include the effect of the slots in the material deformation, the tests 
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Figure 2. Compression test procedure: (a) set-up scheme. (b) Load application zone. 

The axial loads were applied by the machine head by means of a cylindrical punch and its 
position was monitored with a LVDT. The feed rates conditions were selected based on the most 
extreme cases tested in the milling tests. Three repetitions were performed for each condition and, in 
order to evaluate the strain accumulative effect, a 15 min relaxation period was guaranteed between 
the successive tests. 

Figure 1. Adapted rubber: (a) vacuum channels distribution. (b) Rubber layer implementation as a
vacuum fixture on milling tests.

Both, the compression of the rubber and the part profile before and after each milling tests were
monitored with a GT1000 type linear variable differential transformer (LVDT) gauging transducer (RDP
Group, Wolverhampton, UK). The forces were registered with Kistler 9257B measurement equipment
(Kistler Ibérica S.L., Granollers, Spain). In each test, following another similar set-up [35], the part and
the elastic element were attached to the force sensor with a synthetic rubber adhesive. This double-sided
filmic tape TESA 64620 (Tesa Tape S.A., Argentona, Spain) guaranteed a homogeneous clamping due to
the compressive nature of the axial loads in compression and milling tests.

2.1. Compression Tests

For most of engineering rubbers, material damping is caused by two different mechanism,
resulting in amplitude and rate dependent behavior [36]. Thus, the objective of these compression
tests is characterizing the effect of the feed rate on the strain and comparing the influence of the strain
cycles on each rubber. In general, compression tests on rubber materials are performed with circular
samples [37]. However, in order to include the effect of the slots in the material deformation, the tests
are implemented in the same elastic layer employed as vacuum fixture, see Figure 2.

Metals 2020, 10, x FOR PEER REVIEW 4 of 15 

 

  
(a) (b) 

Figure 1. Adapted rubber: (a) vacuum channels distribution. (b) Rubber layer implementation as a 
vacuum fixture on milling tests. 

Both, the compression of the rubber and the part profile before and after each milling tests were 
monitored with a GT1000 type linear variable differential transformer (LVDT) gauging transducer 
(RDP Group, Wolverhampton, UK). The forces were registered with Kistler 9257B measurement 
equipment (Kistler Ibérica S.L., Granollers, Spain). In each test, following another similar set-up [35], 
the part and the elastic element were attached to the force sensor with a synthetic rubber adhesive. 
This double-sided filmic tape TESA 64620 (Tesa Tape S.A., Argentona, Spain) guaranteed a 
homogeneous clamping due to the compressive nature of the axial loads in compression and milling 
tests. 

2.1. Compression Tests 

For most of engineering rubbers, material damping is caused by two different mechanism, 
resulting in amplitude and rate dependent behavior [36]. Thus, the objective of these compression 
tests is characterizing the effect of the feed rate on the strain and comparing the influence of the strain 
cycles on each rubber. In general, compression tests on rubber materials are performed with circular 
samples [37]. However, in order to include the effect of the slots in the material deformation, the tests 
are implemented in the same elastic layer employed as vacuum fixture, see Figure 2. 

  
(a) (b) 

Figure 2. Compression test procedure: (a) set-up scheme. (b) Load application zone. 

The axial loads were applied by the machine head by means of a cylindrical punch and its 
position was monitored with a LVDT. The feed rates conditions were selected based on the most 
extreme cases tested in the milling tests. Three repetitions were performed for each condition and, in 
order to evaluate the strain accumulative effect, a 15 min relaxation period was guaranteed between 
the successive tests. 

Figure 2. Compression test procedure: (a) set-up scheme. (b) Load application zone.

The axial loads were applied by the machine head by means of a cylindrical punch and its position
was monitored with a LVDT. The feed rates conditions were selected based on the most extreme cases
tested in the milling tests. Three repetitions were performed for each condition and, in order to evaluate
the strain accumulative effect, a 15 min relaxation period was guaranteed between the successive tests.
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2.2. Milling Tests

For the milling survey, the same adapted rubber layers were employed. The part samples to
be machined were 20 mm thick AA2024-T3 rigid blocks. These parts were 240 × 240 mm2 wide and
were located in the center of the elastic support. Hence, any rubber edge effect could be neglected,
and its local thickness tolerance was diminished from ±5% to ±3%. In order to reduce the vacuum
leaks a 290 × 290 × 0.7 mm3 sacrificial porous layer was included between the elastic element and the
specimen to be machined. Hence, the vacuum leaks depended on the part area and it was not influenced
by the part contour. Thus, different part geometries could be clamped without any fixture redesign.

The air from the channels was removed through the hole with a standard Venturi guaranteeing a
proper vacuum union between the rubber and the aluminum part sample for all the working range,
see Figure 3. Then, the rubber was held to the dynamometric table with the double-sided filmic tape.
In the tests with no rubber, the part sample was stuck directly to the Kistler by the same token.
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Groove milling was the selected machining operation. These slots were dry machined side to side,
in two steps. First, a previous 0.2 mm groove was performed in order to guarantee the same initial
profile between tests. Then, the test with each condition was milled. The separation between each
groove was 10 mm.

The selected tool was a two flutes bull-nose end-mill Kendu 4400 (Kendu, Segura, Spain), with
a diameter of 10 mm and a 2.5 mm edge radius. Table 2 shows the tests conditions. Therefore, the
effect of the depth of cut (ap), feed per tooth ( fz), spindle speed (n) or cutting speed (vc) and the tool
feed rate ( f ) on both elastic polymers could be studied and compared with the use of a rigid clamping.
Two different depth of cuts were selected based on the values employed in finishing operations in the
aeronautic field [38]. On the other hand, three different tool rotation values were studied in order to
reduce vibrations generated out of the tool-part system while two feed per tooth values were selected
for maintaining a suitable milling process of aluminum parts [9,38]. Hence, based on the feed per tooth
and spindle speed configurations, six different milling conditions were analyzed for each depth of cut.

Table 2. Machining tests conditions.

Parameters Level 1 Level 2 Level 3

Clamping material Rubber A Rubber B No rubber
ap(mm) 0.2 0.8 -

fz (mm/tooth) 0.06 0.1 -
n (rpm) 2000 4000 6000

vc (m/min) 63 126 189
f (mm/min) 240; 400 480; 800 720; 1200
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For each milling condition, three repetitions were performed in different random positions relative
to the center of the part. The analyzed zone was restricted to each groove middle area. Then, the
real machined thickness was evaluated by measuring the part profile beforehand and afterward each
milling operation. This measure was performed with the previously presented LVDT attached to the
machine tool head with an adaptor. Besides, the roughness of the floor of each slot was measured in
four different zones equally separated by 20 mm. Thus, the Ra value was evaluated with a Mitutoyo
Surftest SV-2000 (Mitutoyo, Kawasaki, Japan) roughness measure station. As a reference, the typical
tolerance values in the aeronautical industry were about ±0.1 mm for final thickness and under 1.6 µm
for the Ra [39].

2.3. Force Mechanistic Model in the Tool Axis Direction with a Bull-Nose Mill

In order to evaluate the stability for each set-up, stability lobe diagrams (SLD) were calculated in
the specimen center with an impact hammer test. A uniaxial PCB accelerometer model 352C22 (PCB
Piezotronics, Inc, Depew, NY, USA) with a measuring range from 1 kHz to 10 kHz and a sensitivity of
1.0 mV/(m/s2) was employed to register the tool and part vibration. The maximum acceptable ap in the
stable regime is calculated with the model described by Altintas and Budak [10]. The cutting forces
(tangential (t), radial (r) and axial (a)) over the cutting edge i could be considered as a function of the
friction coefficients (Kte, Kre and Kae) and the shearing cutting coefficients (Ktc, Krc and Kac)

∂Ft

∂Fr

∂Fa

 =


Kte

Kre

Kae

× ∂S +


Ktc

Krc

Kac

× fz × sinφi × ∂z (1)

In this equation, ∂S is the length of the differential chip edge, φi is the angular position of the
cutting edge i measured from axis Y, perpendicular to the tool feed direction, and ∂z is the depth of cut.

Compared with other tool geometries, bull-nose end mills have a variable radius and helix angle
along the tool axis. Likewise, the lead angle increases its value from 0◦ to 90◦ in the toroidal part, and
then kept constant and equal to 90◦ all along the flank [40].

This geometrical variation combined with cutting speed and the depth of cut leads to variable
cutting coefficients. This nonlinearity could be solved using a linear model to calculate the SLD [9].
However, Altintas [41], simplified a circular insert geometry taking an average edge angle of 45◦.

In this case, the model was oriented to the floor finishing application. For these cases machined
depths were usually focused in a range between 0.2 mm and 1.2 mm, mainly in low stiffness parts.
This means that the edge angle was located between 11◦ and 29◦. Thus, for this survey, the average
edge angle was defined as 20◦.

The friction and shearing cutting coefficients were obtained by solving the equation by using
the force values obtained in the milling tests. These coefficients were considered constant for all the
milling conditions. The model results were employed to predict the SLD for each flexible fixture and
compared with the use of a rigid clamping underneath the part sample. Moreover, with the axial forces
obtained in these tests, a model was proposed regardless of the hardness of the support.

3. Results

3.1. Rubbers Compressive Behaviour

The differences in the composition of each tested rubber led to a completely different stress-strain
behavior. In the Figure 4 it can be observed the strain variation of each rubber based on the stress and
feed rate evolution. This evolution is presented with a fifth-degree interpolation in order to visualize
the more linear behavior of rubber B compared with rubber A.
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(b) rubber B.

Both elastomers increased their elastic modulus as the feed rate rose. The rate effect was usually
attributed to the resistance in reorganizing the polymeric chains during the loading period. Since
this reorganization cannot occur instantaneously, the loss of energy is rate dependent [33]. Moreover,
the polymeric chains in the rubber A lacked time in the relaxing period to return to the original state
and, thus, the elastic modulus decreased for the second and third trial. This effect was not noticeable
in the rubber B. However, it can be observed that, as the feed rates increased, the behavior of both
elastomers tended to match for stresses under 0.4 MPa, which was within the work range for the
milling tests. Hence, regardless of the rubber composition, these flexible fixtures presented stress-strain
behavior influenced by the load amplitude and feed rate transmitted by the tool and by the previous
deformation implemented on the rubber.

3.2. Thickness Error

The thickness error is defined as the difference between the experimental and theoretical thickness.
In addition to the static and dynamic phenomena that occurred when applying loads over the elastic
layers, other effects such as the machine precision, repeatability and the thermal expansion of the
spindle had an influence over the real machined thickness. For instance, the repeatability for the rubber
A was within ±9 µm, for the rubber B was within ±19 µm and for the use of no rubber was within
±8 µm.

In order to analyze this parameter, an analysis of variance (ANOVA) was employed. Thus, the
influence of the main machining parameters in the thickness error was evaluated. Therefore, first, the
normal distribution of the data was checked by the Anderson-Darling (AD) test, and the variance
homogeneity with the Bartlett’s test. In both cases, the confidence interval of 95% (α = 0.05) was
employed. As it can be observed in the Table 3, for all the tests their p-values were over α and, thus,
were suitable for an ANOVA.

Table 3. Analysis of the suitability of the thickness error data.

Analysis Parameter Rubber A Rubber B No Rubber

Normal
distribution

AD 0.276 0.322 0.447
p-value 0.628 0.510 0.257

Homogeneity of
variance

Bartlett’s 4.480 5.160 2.310
p-value 0.723 0.640 0.941

On the other hand, a variance analysis was performed to determine the main parameters affecting
the machined depth inaccuracy. In this case, the null hypothesis was that the factors or their combination
have no influence over the thickness error. As it is detailed in the Table 4, from this survey it was
obtained that, with a 95% confidence, the null hypothesis was proved to be true. The only exception
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was the effect of spindle speed in the case of the rubber A as its p-value was under α, see Table 4 values
in bold.

Table 4. Analysis of variance of the thickness error data.

Factor Parameter Rubber A Rubber B No Rubber

n F-value 7.040 3.200 1.990
p-value 0.017 0.093 0.178

fz
F-value 0.680 0.430 0.350
p-value 0.420 0.520 0.562

ap
F-value 1.540 1.940 0.050
p-value 0.233 0.182 0.830

n× fz
F-value 0.000 0.080 0.090
p-value 0.990 0.787 0.770

n× ap
F-value 0.300 0.090 0.140
p-value 0.593 0.774 0.716

fz × ap
F-value 0.540 0.280 0.060
p-value 0.475 0.606 0.804

n× fz × ap
F-value 1.200 0.010 0.350
p-value 0.289 0.936 0.563

This result was coherent with the compression tests, as the rubber A was the most sensible to
strain changes. Furthermore, as it can be observed in the Figure 5, there was a global decrease in
the thickness mean error as the vc increased. In this case, the positives values meant that the system
was compressed, and the depth of cut was lower than programmed. This effect, as expected, was
more noticeable with the use of rubber as a support. In the other hand, if the thickness error had a
negative value, it meant that the tool machined more depth than expected. This last effect was mainly
caused by the thermal expansion of the spindle, as it increased combined with the revolutions [42].
This error can be compensated previous to the machining [43] or even with in-process tool position
adjustments [44,45].
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Another noticeable effect was that, as the cutting speed increased, the thickness errors tended to
equalize. This effect matched with the fact that, due to the cutting conditions tested, as the cutting
speed rose, the feed rates increased accordingly. Then, as it is observed in the compression analysis,
the elastic modulus of the rubbers rose as the feed rates increased, leading to a more rigid-like support.
This is aligned with the industrial implementation of this system in milling operations of aluminum, as
the productivity of these applications tend to the employment of these or even higher cutting speeds.
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Finally, there was a thickness error component that was caused by the system vibration and that
produced the difference in the variability of each system. This vibration was analyzed in terms of
roughness in the next section.

3.3. Roughness

In order to analyze the effect of the machining parameters on the floor Ra on the slots, another
ANOVA was performed. Likewise in the thickness error analysis, the data suitability was analyzed
with an AD and a Bartlett’s test. As shown in the Table 5, it was demonstrated that data met, with 95%
of confidence, the requirements for a valid ANOVA.

Table 5. Analysis of the suitability of the roughness data.

Analysis Parameter Rubber A Rubber B No Rubber

Normal
distribution

AD 0.251 0.497 0.305
p-value 0.694 0.181 0.528

Homogeneity of
variance

Bartlett’s 3.400 12.750 5.510
p-value 0.846 0.078 0.599

With this data, a variance analysis was replicated based on the effect of the machining parameter
on the roughness obtained on the groove floor. As it is can be observed in the Table 6 in bold,
compared with the thickness error, more parameters and their combination affected the part vibration.
This influence was more noticeable in the rubber A, as it happened with the thickness error, due to a
higher sensibility to strain variations.

Table 6. Analysis of variance of the thickness error data.

Factor Parameter Rubber A Rubber B No Rubber

n F-value 54.100 2.880 17.360
p-value 0.000 0.128 0.003

fz
F-value 42.240 13.910 4.850
p-value 0.000 0.006 0.059

ap
F-value 0.820 2.690 0.790
p-value 0.391 0.140 0.399

n× fz
F-value 16.740 2.280 2.990
p-value 0.003 0.170 0.122

n× ap
F-value 1.070 0.110 0.590
p-value 0.331 0.746 0.464

fz × ap
F-value 8.320 0.460 0.040
p-value 0.020 0.519 0.844

n× fz × ap
F-value 0.450 0.000 0.100
p-value 0.521 0.994 0.755

Despite the dependence on the machining parameters of the roughness, there was no direct
influence of a single parameter into the behavior of the three systems at a time. However, it was clear
that the most influential parameters were the spindle speed and the feed rate. Thus, in the Figure 6,
it can be observed the evolution of the roughness with the increase of the cutting speed and the feed
per tooth. In this case the repeatability for the rubber A was within ±0.13 µm, for the rubber B was
within ±0.17 µm and for the use of no rubber was within ±0.11 µm.

Results show that roughness obtained with rubber A tended to match the one obtained with the
part robustly clamped to the machine as the cutting speed increased. This effect, as explained in the
case of the thickness error, was caused by the increase of the elastic modulus. However, this increase in
the cutting speed has to be balanced with the feed rate in order to maintain the feed per tooth.



Metals 2020, 10, 289 10 of 15

Metals 2020, 10, x FOR PEER REVIEW 10 of 15 

 

 
 

(a) (b) 

Figure 6. Roughness evolution: (a) based on the cutting speed and (b) based on the feed per tooth. 

Results show that roughness obtained with rubber A tended to match the one obtained with the 
part robustly clamped to the machine as the cutting speed increased. This effect, as explained in the 
case of the thickness error, was caused by the increase of the elastic modulus. However, this increase 
in the cutting speed has to be balanced with the feed rate in order to maintain the feed per tooth. 

On the other hand, rubber B tests suffered higher roughness and wider variability. As the 
stiffness of rubber B was above the rubber A’s, the instability must be caused by the vacuum union 
between the part and the rubber. Thus, due to the higher hardness of the rubber B, the contact with 
the part did not perform proper clamping conditions as the rubber A. 

This analysis indicates that cutting loads applied by the machining tool did not affect exclusively 
the rubber compression but the clamping suitability as well. Despite rubber A having more variable 
compression behavior, its lower hardness improved the fixture clamping capacity and the obtained 
part quality. 

3.4. Force Model 

The SLD performed over the three systems, as shown in the Figure 7, presented the identical 
behavior of them. The reason was the combination of a hammer shot at a high feed rate and a wide 
supporting area of the rigid part. Then, as observed in the compression tests, these fixtures based on 
elastomers, at high feed rates behaved as a rigid system in terms of chatter vibrations. Thus, these 
results proved that there was no chatter on the performed milling tests as the maximum depths of 
the cut were below these curves. 

  
(a) (b) 

Figure 7. Stability Lobe Diagrams (SLD) variation: (a) complete and (b) zoomed on the studied zone. 

The analysis of the force harmonics, see Figure 8, confirmed that the vibration was mainly 
influenced by the tool cutting loads. The case of rubber A and no rubber had similar behavior, with 

Figure 6. Roughness evolution: (a) based on the cutting speed and (b) based on the feed per tooth.

On the other hand, rubber B tests suffered higher roughness and wider variability. As the stiffness
of rubber B was above the rubber A’s, the instability must be caused by the vacuum union between the
part and the rubber. Thus, due to the higher hardness of the rubber B, the contact with the part did not
perform proper clamping conditions as the rubber A.

This analysis indicates that cutting loads applied by the machining tool did not affect exclusively
the rubber compression but the clamping suitability as well. Despite rubber A having more variable
compression behavior, its lower hardness improved the fixture clamping capacity and the obtained
part quality.

3.4. Force Model

The SLD performed over the three systems, as shown in the Figure 7, presented the identical
behavior of them. The reason was the combination of a hammer shot at a high feed rate and a wide
supporting area of the rigid part. Then, as observed in the compression tests, these fixtures based on
elastomers, at high feed rates behaved as a rigid system in terms of chatter vibrations. Thus, these
results proved that there was no chatter on the performed milling tests as the maximum depths of the
cut were below these curves.
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The analysis of the force harmonics, see Figure 8, confirmed that the vibration was mainly
influenced by the tool cutting loads. The case of rubber A and no rubber had similar behavior, with
lower amplitudes and with the cutting per tooth as the main driver of the vibration. However, the
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forced vibrations at different harmonics were higher in rubber B. Once again, this evidence confirmed
that the union between rubber B and the part was not completely suitable.
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Figure 8. Fast Fourier Transform of the Fz signal for the test at fz = 0.1 mm/tooth and ap = 0.8 mm,
under different spindle speeds: (a) No rubber - 2000 rpm, (b) No rubber - 4000 rpm, (c) No rubber -
6000 rpm, (d) Rubber A - 2000 rpm, (e) Rubber A - 4000 rpm, (f) Rubber A - 6000 rpm, (h) Rubber B -
2000 rpm, (i) Rubber B - 4000 rpm and (j) Rubber B - 6000 rpm.
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Then, the main cutting forces in the axial direction were studied following an empirical approach
in order to provide a suitable model able to relate them with the machining parameters regardless the
part support. The repeatability for all the tests was within ±2 N. The process parameters were grouped
around the material removal rate (MRR), where N is the number of teeth, and ar is the radial depth
of cut:

MRR = n× fz × ap ×N × ar (2)

The model is based on a potential regression, see Equation (3). The R2 of this model is 0.984. This
equation emphasized, once again, the strong influence of the cutting speed on the machining process

Fz = 67.22× n−0.58
×MRR0.49 (3)

Figure 9 presents how the model fits with the analyzed data. As it can be observed, the main
forces could be modeled regardless of the part support. López de Lacalle et al. [46] noticed that the
cutting forces decreased due to the reduction of stiffness. However, by using a rubber underneath a
high stiffness part sample, the system flexibility can be considered not compromised as the cutting
forces are maintained.
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Finally, this model demonstrated that the process axial forces in finishing of the aluminum parts
did not depend on the material hardness or the accumulative strain state of the rubber. This facilitates
the implementation of these flexible fixtures in the industry and provides a calculation tool for the
improvement of the milling process productivity.

4. Conclusions

In this paper the effect of clamping high stiffness aluminum part samples over elastomer layers
was analyzed. The machining application was groove milling, simulating finishing conditions in the
aeronautic field. First, by a compression test the influence of stress amplitude, feed rate and cycles were
examined. Thus, the rise of the elastic modulus as the strain rates increased and the strong dependence
of the stress cycles were proved, especially for the soft rubber.

Then, the effect of cutting speed, tool feed and depth of the cut were analyzed in terms of the
machined thickness error, roughness and axial forces. The results show that, as the cutting speed
increases combined with the feed rate, the rubbers tended to behave like a rigid support, guaranteeing
the thickness and roughness tolerances required in certain aeronautic applications. Moreover, as on
these applications high speed machining operations were performed with higher cutting speeds and
feed rates, the results of this solutions could improve compared to the actual rigid clamping solutions.
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In terms of hardness, the softer rubber tended to provide more stable machining conditions due to a
better clamping capacity.

Finally, an axial force model was developed and validated regardless the support stiffness and
accumulative strain. This could lead to facilitate the implementation and improve the productivity of
this solution into certain industrial applications, including the milling of aeronautical aluminum parts.

Author Contributions: Conceptualization, A.R.-M., A.R. and A.L.; methodology, A.R.-M., E.U. and A.L.; software,
A.R.-M.; validation A.R.-M. and E.U.; formal analysis, A.R.-M.; investigation A.R.-M.; resources, A.R. and A.L.;
data curation, A.R.-M.; writing—original draft preparation, A.R.-M.; writing—review and editing, A.R.-M. and
E.U.; visualization, A.R.-M.; supervision, A.R., E.U. and A.L.; project administration, A.R. and A.L; funding
acquisition, A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Basque Government (Eusko Jaurlaritza) under the ELKARTEK Program,
SMAR3NAK project, grant number KK-2019/00051.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Herranz, S.; Campa, F.J.; De Lacalle, L.L.; Rivero, A.; Lamikiz, A.; Ukar, E.; Sánchez, J.A.; Bravo, U. The milling
of airframe components with low rigidity: A general approach to avoid static and dynamic problems. Proc.
Inst. Mech. Eng. Part B J. Eng. Manuf. 2005, 219, 789–801. [CrossRef]

2. Del Sol, I.; Rivero, A.; López de Lacalle, L.N.; Gamez, A.J. Thin-Wall Machining of Light Alloys: A Review of
Models and Industrial Approaches. Materials 2019, 12, 2012. [CrossRef]

3. Chen, W.; Xue, J.; Tang, D.; Chen, H.; Qu, S. Deformation prediction and error compensation in multilayer
milling processes for thin-walled parts. Int. J. Mach. Tools Manuf. 2009, 49, 859–864. [CrossRef]

4. Yue, C.; Gao, H.; Liu, X.; Liang, S.Y.; Wang, L. A review of chatter vibration research in milling. Chin. J.
Aeronaut. 2019, 32, 215–242. [CrossRef]

5. Eynian, M. Vibration frequencies in stable and unstable milling. Int. J. Mach. Tools Manuf. 2015, 90, 44–49.
[CrossRef]

6. Gurdal, O.; Ozturk, E.; Sims, N.D. Analysis of Process Damping in Milling. Procedia CIRP 2016, 55, 152–157.
[CrossRef]

7. Huang, C.-Y.; Wang, J.-J.J. A pole/zero cancellation approach to reducing forced vibration in end milling.
Int. J. Mach. Tools Manuf. 2010, 50, 601–610. [CrossRef]

8. Perez, I.; Madariaga, A.; Cuesta, M.; Garay, A.; Arrazola, P.J.; Ruiz, J.J.; Rubio, F.J.; Sanchez, R. Effect of
cutting speed on the surface integrity of face milled 7050-T7451 aluminium workpieces. Procedia CIRP 2018,
71, 460–465. [CrossRef]

9. Campa, F.J.; Lopez de Lacalle, L.N.; Celaya, A. Chatter avoidance in the milling of thin floors with bull-nose
end mills: Model and stability diagrams. Int. J. Mach. Tools Manuf. 2011, 51, 43–53. [CrossRef]

10. Altintaş, Y.; Budak, E. Analytical Prediction of Stability Lobes in Milling. CIRP Ann. 1995, 44, 357–362.
[CrossRef]

11. Huang, C.-Y.; Wang, J.-J.J. Effects of cutting conditions on dynamic cutting factor and process damping in
milling. Int. J. Mach. Tools Manuf. 2011, 51, 320–330. [CrossRef]

12. Gameros, A.; Lowth, S.; Axinte, D.; Nagy-Sochacki, A.; Craig, O.; Siller, H.R. State-of-the-art in fixture
systems for the manufacture and assembly of rigid components: A review. Int. J. Mach. Tools Manuf. 2017,
123, 1–21. [CrossRef]

13. Butt, M.A.; Yang, Y.; Pei, X.; Liu, Q. Five-axis milling vibration attenuation of freeform thin-walled part by
eddy current damping. Precis. Eng. 2018, 51, 682–690. [CrossRef]

14. Yang, Y.; Xu, D.; Liu, Q. Milling vibration attenuation by eddy current damping. Int. J. Adv. Manuf. Technol.
2015, 81, 445–454. [CrossRef]

15. Fei, J.; Lin, B.; Yan, S.; Ding, M.; Xiao, J.; Zhang, J.; Zhang, X.; Ji, C.; Sui, T. Chatter mitigation using moving
damper. J. Sound Vib. 2017, 410, 49–63. [CrossRef]

16. Matsubara, A.; Taniyama, Y.; Wang, J.; Kono, D. Design of a support system with a pivot mechanism for
suppressing vibrations in thin-wall milling. CIRP Ann. 2017, 66, 381–384. [CrossRef]

http://dx.doi.org/10.1243/095440505X32742
http://dx.doi.org/10.3390/ma12122012
http://dx.doi.org/10.1016/j.ijmachtools.2009.05.006
http://dx.doi.org/10.1016/j.cja.2018.11.007
http://dx.doi.org/10.1016/j.ijmachtools.2014.12.004
http://dx.doi.org/10.1016/j.procir.2016.09.012
http://dx.doi.org/10.1016/j.ijmachtools.2010.03.011
http://dx.doi.org/10.1016/j.procir.2018.05.034
http://dx.doi.org/10.1016/j.ijmachtools.2010.09.008
http://dx.doi.org/10.1016/S0007-8506(07)62342-7
http://dx.doi.org/10.1016/j.ijmachtools.2010.12.004
http://dx.doi.org/10.1016/j.ijmachtools.2017.07.004
http://dx.doi.org/10.1016/j.precisioneng.2017.11.010
http://dx.doi.org/10.1007/s00170-015-7239-3
http://dx.doi.org/10.1016/j.jsv.2017.08.033
http://dx.doi.org/10.1016/j.cirp.2017.04.055


Metals 2020, 10, 289 14 of 15

17. Zhang, Y.; Sims, N.D. Milling workpiece chatter avoidance using piezoelectric active damping: A feasibility
study. Smart Mater. Struct. 2005, 14, N65. [CrossRef]

18. Wang, M.; Fei, R. Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids.
Int. J. Mach. Tools Manuf. 1999, 39, 1925–1934. [CrossRef]

19. Ma, J.; Zhang, D.; Wu, B.; Luo, M.; Chen, B. Vibration suppression of thin-walled workpiece machining
considering external damping properties based on magnetorheological fluids flexible fixture. Chin. J.
Aeronaut. 2016, 29, 1074–1083. [CrossRef]

20. Yang, Y.; Xie, R.; Liu, Q. Design of a passive damper with tunable stiffness and its application in thin-walled
part milling. Int. J. Adv. Manuf. Technol. 2017, 89, 2713–2720. [CrossRef]

21. Shoyama, T.; Fujimoto, K. Direct measurement of high-frequency viscoelastic properties of pre-deformed
rubber. Polym. Test. 2018, 67, 399–408. [CrossRef]

22. Chung, D.D.L. Review: Materials for vibration damping. J. Mater. Sci. 2001, 36, 5733–5737. [CrossRef]
23. Ge, C.; Rice, B. Impact damping ratio of a nonlinear viscoelastic foam. Polym. Test. 2018, 72, 187–195.

[CrossRef]
24. Albooyeh, A.R. The effect of addition of Multiwall Carbon Nanotubes on the vibration properties of Short

Glass Fiber reinforced polypropylene and polypropylene foam composites. Polym. Test. 2019, 74, 86–98.
[CrossRef]

25. Zhao, X.; Yang, J.; Zhao, D.; Lu, Y.; Wang, W.; Zhang, L.; Nishi, T. Natural rubber/nitrile butadiene
rubber/hindered phenol composites with high-damping properties. Int. J. Smart Nano Mater. 2015, 6, 239–250.
[CrossRef]

26. Shit, S.C.; Shah, P. A Review on Silicone Rubber. Natl. Acad. Sci. Lett. 2013, 36, 355–365. [CrossRef]
27. Kolluru, K.; Axinte, D. Novel ancillary device for minimising machining vibrations in thin wall assemblies.

Int. J. Mach. Tools Manuf. 2014, 85, 79–86. [CrossRef]
28. Liu, Y.; Liu, Z.; Song, Q.; Wang, B. Analysis and implementation of chatter frequency dependent constrained

layer damping tool holder for stability improvement in turning process. J. Mater. Process. Technol. 2019, 266,
687–695. [CrossRef]

29. Patel, H.; Salehi, S.; Ahmed, R.; Teodoriu, C. Review of elastomer seal assemblies in oil & gas wells:
Performance evaluation, failure mechanisms, and gaps in industry standards. J. Pet. Sci. Eng. 2019, 179,
1046–1062. [CrossRef]

30. Mitra, S.; Ghanbari-Siahkali, A.; Almdal, K. A novel method for monitoring chemical degradation of
crosslinked rubber by stress relaxation under tension. Polym. Degrad. Stab. 2006, 91, 2520–2526. [CrossRef]

31. Da Rocha, E.B.D.; Linhares, F.N.; Gabriel, C.F.S.; De Sousa, A.M.F.; Furtado, C.R.G. Stress relaxation of nitrile
rubber composites filled with a hybrid metakaolin/carbon black filler under tensile and compressive forces.
Appl. Clay Sci. 2018, 151, 181–188. [CrossRef]

32. Mallipudi, P.K.; Ramanaiah, N. Effect of Carbon Black on the Performance of Nitrile Rubber For Analyzing
Free Layered Surface Damping Treatment. Mater. Today Proc. 2019, 18, 3371–3379. [CrossRef]

33. Olsson, A.K. Finite Element Procedures in Modelling the Dynamic Properties of Rubber; Department of Construction
Sciences, Structural Mechanics, Lund University: Lund, Sweden, 2007.

34. Mullins, L. Softening of Rubber by Deformation. Rubber Chem. Technol. 1969, 42, 339–362. [CrossRef]
35. Balasubramanian, P.; Ferrari, G.; Amabili, M. Identification of the viscoelastic response and nonlinear

damping of a rubber plate in nonlinear vibration regime. Mech. Syst. Signal Process. 2018, 111, 376–398.
[CrossRef]

36. Austrell, P.-E.; Olsson, A.K. Modelling procedures and properties of rubber in rolling contact. Polym. Test.
2013, 32, 306–312. [CrossRef]

37. ASTM D 395. Standard test method for rubber. In Philadelphia: Annual Book of ASTM Standards; American
Society for Testing and Materials: West Conshohocken, PA, USA, 1955.

38. Del Sol, I.; Rivero, A.; Salguero, J.; Fernández-Vidal, S.R.; Marcos, M. Tool-path effect on the geometric
deviations in the machining of UNS A92024 aeronautic skins. Procedia Manuf. 2017, 13, 639–646. [CrossRef]

39. Del Sol, I.; Rivero, A.; Gamez, A.J. Effects of Machining Parameters on the Quality in Machining of Aluminium
Alloys Thin Plates. Metals 2019, 9, 927. [CrossRef]

40. Engin, S.; Altintas, Y. Mechanics and dynamics of general milling cutters.: Part I: Helical end mills. Int. J.
Mach. Tools Manuf. 2001, 41, 2195–2212. [CrossRef]

http://dx.doi.org/10.1088/0964-1726/14/6/N01
http://dx.doi.org/10.1016/S0890-6955(99)00039-5
http://dx.doi.org/10.1016/j.cja.2016.04.017
http://dx.doi.org/10.1007/s00170-016-9474-7
http://dx.doi.org/10.1016/j.polymertesting.2018.03.011
http://dx.doi.org/10.1023/A:1012999616049
http://dx.doi.org/10.1016/j.polymertesting.2018.10.023
http://dx.doi.org/10.1016/j.polymertesting.2018.12.014
http://dx.doi.org/10.1080/19475411.2015.1131399
http://dx.doi.org/10.1007/s40009-013-0150-2
http://dx.doi.org/10.1016/j.ijmachtools.2014.05.007
http://dx.doi.org/10.1016/j.jmatprotec.2018.11.033
http://dx.doi.org/10.1016/j.petrol.2019.05.019
http://dx.doi.org/10.1016/j.polymdegradstab.2006.03.002
http://dx.doi.org/10.1016/j.clay.2017.10.008
http://dx.doi.org/10.1016/j.matpr.2019.07.263
http://dx.doi.org/10.5254/1.3539210
http://dx.doi.org/10.1016/j.ymssp.2018.03.061
http://dx.doi.org/10.1016/j.polymertesting.2012.11.015
http://dx.doi.org/10.1016/j.promfg.2017.09.134
http://dx.doi.org/10.3390/met9090927
http://dx.doi.org/10.1016/S0890-6955(01)00045-1


Metals 2020, 10, 289 15 of 15

41. Altintas, Y. Analytical Prediction of Three Dimensional Chatter Stability in Milling. JSME Int. J. Ser. C Mech.
Syst. Mach. Elem. Manuf. 2001, 44, 717–723. [CrossRef]

42. Chen, J.-S.; Hsu, W.-Y. Characterizations and models for the thermal growth of a motorized high speed
spindle. Int. J. Mach. Tools Manuf. 2003, 43, 1163–1170. [CrossRef]

43. Ratchev, S.; Liu, S.; Huang, W.; Becker, A.A. Milling error prediction and compensation in machining of
low-rigidity parts. Int. J. Mach. Tools Manuf. 2004, 44, 1629–1641. [CrossRef]

44. Rubio-Mateos, A.; Rivero, A.; del Sol, I.; Ukar, E.; Lamikiz, A. Capacitation of flexibles fixtures for its use
in high quality machining processes: An application case of the industry 4.0. paradigm. DYNA 2018, 93,
608–612. [CrossRef]

45. Bi, Q.; Huang, N.; Zhang, S.; Shuai, C.; Wang, Y. Adaptive machining for curved contour on deformed large
skin based on on-machine measurement and isometric mapping. Int. J. Mach. Tools Manuf. 2019, 136, 34–44.
[CrossRef]

46. De Lacalle, L.N.L.; Lamikiz, A.; Sánchez, J.A.; de Bustos, I.F. Recording of real cutting forces along the milling
of complex parts. Mechatronics 2006, 16, 21–32. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1299/jsmec.44.717
http://dx.doi.org/10.1016/S0890-6955(03)00103-2
http://dx.doi.org/10.1016/j.ijmachtools.2004.06.001
http://dx.doi.org/10.6036/8824
http://dx.doi.org/10.1016/j.ijmachtools.2018.09.001
http://dx.doi.org/10.1016/j.mechatronics.2005.09.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Compression Tests 
	Milling Tests 
	Force Mechanistic Model in the Tool Axis Direction with a Bull-Nose Mill 

	Results 
	Rubbers Compressive Behaviour 
	Thickness Error 
	Roughness 
	Force Model 

	Conclusions 
	References

