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Abstract

A fatigue process due to random loading that is progressively damaging a certain

structural detail will vary in the presence of mean stresses. The variations are

already considered in crack propagation laws and by applying equivalent 0-

mean stress ranges from the Palmgren-Miner linear rule. Nevertheless, if the

mean stress is intrinsic, instead of a direct consequence of the random loading,

other second-order effects will have to be taken into account. Those effects are

cycle quasi-ordering, histogram variations, and apparent mean tension, which

are identified and defined in this study and, finally, developed in a case study

for demonstrative purposes.
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1. Introduction1

Mean stress, σm, is a factor that can be determinate in fatigue. Its clear2

influence on the ultimate number of cycles, Nf , that a certain structural element3

or detail can withstand up until failure under ceteris paribus conditions, in terms4

Preprint submitted to International Journal of Fatigue September 14, 2019



of the stress range, ∆σ, and the cycle amplitude, has repeatedly been identified1

over recent years [1, 2, 3, 4, 5].2

Nevertheless, fatigue in practical structural engineering is still studied by3

means of the Palmgren-Miner linear rule [6, 7], which incorporates Wöhler4

curves [8]. Those curves are specified in standards such as the Eurocodes5

[9, 10, 11] derived from ECCS seminal work [12] and in various other stan-6

dards: AISC, ASCE, and AASTHO [13, 14, 15, 16, 17]. They are linearized in7

Basquin’s Law [18] as a log-log ratio, which also neglects the mean tension effect,8

as the curves are derived by testing under totally reversed loading conditions,9

i.e. with zero mean tension, σm = 0.10

Moreover, the alternative theoretical procedure, see [12], based on Paris’11

Law [19] with a failure criteria, also neglects mean stress. Examples are the12

procedures first proposed by Griffith [20] and Irwin [21], for analytical forecasts13

of fatigue failure by studying crack propagation. In fact, it is only considered14

when setting the stress intensity threshold, Kth, and the critical Kcr values.15

In other words, mean stress sets the initial or threshold crack size, ath, and16

the final or critical crack sizes, acr, but it is not included in crack-propagation17

calculations between both points.18

For instance, when referring to the crack propagation rate per cycle, da/dN ,19

in fatigue processes under axial tension, crack propagation will tend to run in20

a perpendicular direction to tension, while it will tend to propagate in parallel21

to axial compression. Hence, different geometric factors, such as Y (a) in Paris’22

law [19], will reflect different stress concentration laws and so on. It is therefore23

not a simple matter that is only limited to crack thresholds and critical sizes.24

Latest studies, like Choi et Al. [22] or Chandran [23], are considering mean25

stress in crack propagation models in deep consideration on this subject.26

2. Extrinsic and intrinsic mean stresses27

As already known, the term mean stress in a certain fatigue cycle refers to the28

stress value that is precisely midway between the minimum and the maximum29
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stress values.1

Thus, in structural engineering, typical dynamic loads such as wind, seis-2

mic activity, traffic, machine and human induced vibrations among others, tend3

to cause time-dependent forces, or actions, that proportionally induce time-4

dependent stresses in the corresponding structural details [24, 16, 13]. Those5

forces are independent of the structures, at least when disregarding non-linear6

interactions such as aeroelasticity, and will therefore tend to to be studied ac-7

cordingly. For instance, a cycle corresponding to a wind pressure variation from8

1 · kN/m2 to 2 · kN/m2 that causes a stress cycle. The mean stress, σm, of that9

stress cycle is produced by a mean pressure of 1.5 · kN/m2 with a stress range,10

∆σ, that is produced by a pressure variation of 1 · kN/m2, regardless of the11

concomitant mean stress. Hence, this decomposition is still suitable within the12

framework of the superposition principle in continuum mechanics, applied to a13

Hookean body under a linear elastic range, according to the theory of elasticity14

[25], and precisely in the case of high-cycle fatigue.15

Thus, some cycle counting methods in the state-of-the-art, such as the widely16

known Rainflow method [26], the most accurate according to [27], its direct17

derivatives [28, 29], its evolutions such as the 3-point ASTM rule [30, 31, 32],18

the 4-point modification [33], the recursive algorithm [34], and closer counting19

methods such as the Reservoir [11], are used to extract the stress range his-20

tograms of complex random dynamic loads, while keeping the information of21

the mean stress of each cycle [35]. They are then directly calculated in either22

the time domain by a simple quasi-static calculation or in the frequency domain23

with, for example, the Tovo-Benasciutti method [36, 37], which uses the such24

mean-stress information of each cycle, among several other methods, see Mrsnik25

[38].26

Hence, following the plain time domain calculation, each characteristic range27

interval in the histogram is cross referenced with its corresponding stress range.28

Then, with the number of cycles, the fatigue is calculated with the Palmgren-29

Miner [6, 7] linear rule and the corresponding Wöhler curve [8].30

The alternative is to use the frequency domain, a procedure that will now31
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be briefly reviewed. It starts by deriving the Power Spectral Density (PSD)1

function of a certain random dynamic action with a first Fast Fourier Trans-2

formation (FFT) or Direct Fourier Transformation (DFT), passing from the3

time domain to the frequency domain. It is then transposed into the structural4

response PSD with the use of the Frequency Response Functions (FRF) of the5

Multi-Degree of Freedom (MDOF) system, with lumped masses and consider-6

ing dynamic stationary and ergodic action [39, 40, 41]. Then, the stresses are7

derived from the displacements and the superposition principle of elasticity. In8

that way, the expected number of cycles per second is the root square of the 4th-9

order moment divided by the 2nd-order moment of the response PSD function.10

The expected fatigue damage can be derived by means of some methods that11

retain mean stress and ranges, such as the Tovo-Benasciutti method, among12

others [38].13

However, that fatigue calculation method only takes into account the effect14

of the dynamic load cycle mean stress. It is therefore not conservative when15

considering sources of mean stress in other elements. The approach is further-16

more based on extrinsic mean stress, implying that the source of mean stress is17

from the exterior of the structure.18

For instance, elements with concomitant permanent tensile loading, such as19

prestressed bolts, tendons, cables, rods, and beams under tension, among others,20

will present mean tensile stresses in the first place, even before any dynamic load21

has started to affect the structural elements, and cause intrinsic mean stress, or22

because of other underlying loads affecting it.23

This distinction between intrinsic and extrinsic mean stress might appear24

insignificant, but it is in fact very relevant when considering that extrinsic and25

intrinsic mean stresses are governed by different rules and dynamics; the former26

is related with fast processes and the latter with much slower ones.27

Structural elements under tension, for example, tend to be progressively de-28

tensioned by relaxation and/or creep, corrosion, or other time dependent and29

very slow processes that might affect them throughout their service life making30

them to loose stiffness, even fatigue itself [42]. Hence, a stiffer or tighter struc-31

4



tural element could present higher intrinsic mean stress at the very beginning1

of its service life, after which it will start to be detensioned and it will share its2

load with other collateral structural elements up to a minimum at the end of its3

service life. This means that a certain fatigue cycle, due to gusts of wind, for4

example, will present the same extrinsic mean stress, regardless of whether it5

is during the service life. It will therefore represent a fatigue process, as gusts6

of wind are a stationary, ergodic process. However, if a certain fatigue cycle7

occurs before or afterwards then the effects of the intrinsic mean stress will not8

be the same.9

3. Mean stress pushing factor10

Hence, it is clear that the total mean stress affects the fatigue damage of11

a certain cycle, regardless of its intrinsic or extrinsic nature. Thus, as most12

Whöler curves are derived from completely reversed zero mean-stress tests, (i.e.13

at σm = 0), [8, 11] and as the Palmgren-Miner linear rule states that a certain14

cycle block, i, damage, Di, under a constant stress amplitude (or ∆σ range),15

is the cycle amount in a given block, Ni, divided by the number of cycles until16

failure, Nf , under block stress range, Di = Ni/Nf , [6, 7], then those cycles17

until failure, Nf , must be calculated by considering that mean stress. Several18

methods have been proposed to do so. The most widely used, the Goodman19

approach [3], see equation (1), appears to be the most accurate when compared20

to its alternatives from Gerber and Soderberg [4, 5], shown in equations (2)21

and (3), respectively. Nevertheless, in some cases, like welded steel joints at22

σmax > σu/2, Gerber is more accurate despite being normally too conservative23

[43]. Besides, in terms of accuracy there are currently other promising proposals,24

such as the essential work Nieslony-Böhm [44]. Among others like modified25

SWT, as proposed by Ince-Glinka [45] or Karakas [46] for welding; or like the26

more accurate modified Walker criterion [47], that is clearly the better one under27

certain corrosive environments, as pointed out by Morgantini [48]. Nonetheless,28

Goodman is still widely used even as a comparative basis because of a balance29
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between good accuracy by the safety side and great feasibility.1

Thus, the Goodman equation (1) relates the stress range, ∆σeq, of an equiva-2

lent fatigue cycle at null mean stress (σm = 0) causing the same fatigue damage3

as the original cycle with its stress range, ∆σ, and mean stress, σm. In these4

three equations, σu and σy are, respectively, the ultimate and the yield stress.5

∆σeq =
∆σ

1− (σm/σu)
(1)6

∆σeq =
∆σ

1−
(
σm/σu

)2 (2)7

∆σeq =
∆σ

1− (σm/σy)
(3)8

Now, the existing mean stress will clearly alter the total number of cycles9

that a certain structural detail might undergo before failure within the same10

stress range. The Wöhler curves are derived at a constant mean stress level,11

typically, of 0 MPa, although it could be higher for a few structural details12

such as rebars. Some simple procedure is therefore needed to compute the13

calculations according to the Wöhler curves, while also taking into account the14

effects of mean stress.15

For instance, for a certain number of cycles, N, at a certain stress range, ∆σ,16

and mean stress, σm, then the number of cycles to failure, N0, will be derived17

from the structural detail characteristic of the Wöhler curve, but at zero mean18

stress (0-mean). So, the apparent 0-mean damage, D0, (remember that σm 6= 0)19

will be computed as the fraction between the number of cycles at such stress20

level and the number of cycles until failure, see equation (4). This procedure,21

will in practice neglect the influence of mean stress under fatigue when applied22

to structural elements with mean stresses other than 0.23

D0 =
N

N0
(4)24

In contrast, if the mean stress was anything other than 0, following the same25

keep-it-simple philosophy, previously mentioned in earlier works [49, 50, 51],26
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based on adaptation coefficients to consider other effects, then the Wöhler curves1

could be still applied, but only with an equivalent number of cycles, Neq, at null2

mean stress, σm = 0, and within the same stress range, ∆σ.3

Then, the equivalent fatigue damage Deq done by such equivalent number4

of cycles Neq, is obtained by the Palmgren-Miner [6, 7] linear rule by simple5

addition. See equation (5):6

Deq =
N

Neq
(5)7

Therefore, for a certain number, N, of cycles with a certain stress range,8

∆σ, and a certain mean stress, σm, there is a relationship between the fatigue9

damage estimate when neglecting the mean stress, D0, and when considering10

it through the equivalent damage, Deq, of cycles at σm = 0. This damage11

amplification due to mean stress can be considered by a mean stress pushing12

factor FMSP , the mathematical definition of which is shown in the following13

equation (6):14

Deq = D0 · FMSP (6)15

Nevertheless, having the equivalences previously defined by Goodman, Ger-16

ber and Soderberg in terms of equivalent stress ranges, ∆σeq, the question is17

why is it useful to consider it through a simple factor? The answer is that some18

procedures find the fatigue damage under random loadings by neglecting the19

mean stress. The proposed method can be used afterwards by simple multipli-20

cation of the result, block by block, which will be explained in the case study21

section 5.22

Thus, the mean stress pushing factor, FMSP , is the quotient of the equivalent23

damage at zero mean stress and the damage neglecting the mean stress and,24

substituting equations (4) and (5) into the relationship, yields equation (7):25

FMSP =
Deq

D0
=

N0

Neq
(7)26
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Then, Goodman’s equation (1) can be converted in the same nomenclature1

into equation (8):2

∆σeq =
∆σ0

1− (σm/σu)
(8)3

From that point, equation (8) can be operated into (9), simply by dividing4

each side by the bare cycle range, neglecting the mean tension, ∆σ0:5

∆σeq
∆σ0

=
1

1− (σm/σu)
(9)6

Now, recalling Basquin’s law [18], if the Wöhler curve [8] is placed in a log-log7

ratio, it can be seen that the number of cycles to failure Neq at an equivalent 0-8

mean stress range, ∆σeq, and the cycles to failure at the initial stress range N0,9

but simply neglecting the mean stress, ∆σ0, both present a linear relationship10

with the exponent, m, of the characteristic Wöhler’s curve, which turns a plain11

slope into a log-log ratio. See equation (10):12

log(∆σeq)− log(∆σ0)
log(N0)− log(Neq)

=
1
m

(10)13

So, recalling the property that relates the logarithmic difference with the14

logarithm of division, equation (10) can be operated upon by substituting equa-15

tions (7) and (9) into it, yielding equation (11):16

log(∆σeq/∆σ0)
log(N0/Neq)

=
log
[

1
1−(σm/σu)

]
log(FMSP )

=
1
m

(11)17

Finally, from the equation (11), undoing the logarithm leads to the mean18

stress pushing factor, FMSP : F19

FMSP =
[

1
1− (σm/σu)

]m
(12)20

Consistent with same fatigue theoretical framework and recent alternative21

approaches [52, 53, 54], this factor can be used with any existing method to22

derive only the fatigue damage within a ∆σ stress range, with the Palmgren-23

Miner linear accumulation rule, and with the log-log Wöhler curves according24
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to Basquin’s law. Thus, this approach can be used for feasible and safe predic-1

tions, but there are other approaches, like Sutherland-Mandell [55], combining2

Goodman at several stress range ratios R with non linear Palmgren-Miner mod-3

ifications looking for more accuracy at certain cases. The factor to introduce4

the mean stress effect, σm, can be adapted, if the cycle counting method con-5

serves the relevant information in the same way as the Rainflow method. The6

mean stress effect can also be introduced when it arises from other concomitant7

quasi-static loadings.8

4. Three second-order effects of intrinsic mean tension9

Nevertheless, it is never enough to consider the mean stress by simply adopt-10

ing the factor disclosed in equation (12), since the mean stress derived from11

mean tension induces at least three second-order effects in fatigue. Namely,12

cycle quasi-ordering, histogram variation, and second-order apparent mean ten-13

sion. These three second-order effects are disclosed in the following subsections14

4.1, 4.2, and 4.3, respectively.15

4.1. Cycle Quasi-ordering16

Looking at equation (12), it becomes clear that the existence of a concomi-17

tant mean tension that induces a corresponding mean stress, σm, will suppose18

an amplification of fatigue damage, D.19

A first derivative of that fact is that, when facing a time-dependent variation20

of that mean tension, then the amplification will also be time dependent, i.e. if21

σm = σm(t) then, accordingly, FMSP = FMSP (t).22

A second derivative of that previous fact, when applied to random loadings,23

generally treated as both stationary and ergodic stochastic processes, is that if24

the mean tension, σm, tends to decrease with time, then any amplification will25

also tend to decrease over time. This circumstance is a common occurrence, as26

when any existing tension in steel beams, rods, cables, tendons, etc. tends to27

relax, then creep and localized plasticity or hole slotting will tend to distribute28
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stresses around fatigue hot-spots. Besides, a progressively fatigue damaged1

structural element will tend to lose stiffness, sharing its load with other elements2

in the same structure that is usually hyperstatic. All these factors will contribute3

to induce a decreasing amplification behavior.4

Let us consider, for instance, a stochastic random loading stress, σ(t), de-5

composed into a summation of harmonics, σ(t) =
∑N

1

[
∆σi

2 · (sin(ωi · t)
]
, each6

with an angular frequency of ωi and an amplitude of half of the correspond-7

ing stress range, ∆σi/2, depending on the motion energy at each frequency.8

Then, by the distributive property of the multiplication, an amplification fac-9

tor, FMSP (t), applied to whole summation is also applied independently to each10

isolated harmonic. Therefore, for the sake of clarity, the quasi-order effect can11

be shown simply by looking at one single harmonic.12

Then, we can consider a few stress cycles of a certain isolated harmonic,13

with a range and an angular frequency of ∆σ and ω, respectively, as defined by14

equation (13). Purely for demonstrative purposes, if it had a linear decreasing15

mean stress, σm, descending from an initial value, σm,0, at an initial time, t0,16

to a final value, σm,f , at a final time, tf , then its definition will be reflected by17

equation (14). Finally, if that mean stress were constant over time rather than18

time-dependent, and with an equivalent mean value of σm = σm,f−σm,0
2 , then it19

may be defined by equation (15).20

σ (t) =
∆σ
2
· sen(ω · t) (13)21

σ (t) + σm (t) =
∆σ
2
· sen(ω · t) +

σm,f − σm,0
tf − t0

· t+ σm,0 (14)22

σ (t) + σm =
∆σ
2
· sen(ω · t) +

σm,f − σm,0
2

(15)23

The above equations, (13) to (15), are in fact three different cases: by appli-24

cation of the superposition principle of elasticity, adding 0 or null mean stress25

in equation (13), a linearly decreasing mean stress in equation (14), and a con-26

stant mean stress in equation (15). In Fig 1, the 0-mean stress case, σm = 0,27

10



Figure 1: Superposition effect of mean stresses, σm, in different cases.

is depicted for a few cycles (blue solid line), as is the linearly decreasing mean1

stress, σm = f(t), (green striped line) and, finally, the constant mean stress2

superposition (red dotted line).3

Now, Fig. 2 shows the Rainflow cycle-counting method applied to the case4

of linearly decreasing mean stress, σm = f(t), over a few cycles. The first step,5

depicted in Fig. 2 (green striped lines), is to count half cycles upwards starting6

at each valley. The second step is to repeat the first step, but looking for half-7

cycles downwards, starting at each peak, as depicted in Fig. 2 (red dotted line8

and amber striped-dotted line), the former with the first huge half-cycle from9

the first peak and the later for the following peaks. It is remarkable that, when10

neglecting the mean-stress effect, the cycle count identifies the same cycles for11

the three mean stress cases, with a previous and a single huge cycle covering12

the mean stress variation for the whole period of study.13

Hence, the stress range, ∆σ, and the mean tension, σm, of each cycle are14

linearly related, in order to introduce the effect of mean stress, σm, depending15

on the fraction of the period, T, and the mean stress slope or first derivative,16

σ′m = d[σm(t)]
dt , as shown in Fig. 3.17

Finally, it is transformed into its equivalent stress range, ∆σeq, by applying18

Goodman’s equation, (1), to the stress range, ∆σ, of each cycle, and the mean19

11



Figure 2: Rainflow cycle count with decreasing mean stress.

Figure 3: Determination of each cycle’s stress range, ∆σ, and mean stress, σm.

12



Figure 4: Transformation of each case by Goodman’s rule.

stress, σm, as depicted in Fig. 4. The 0-mean stress, σm = 0 case, (solid blue1

line) undergoes no transformation, while the constant mean stress, σm 6= f(t) 6=2

0, (dotted red line) undergoes constant amplification of the corresponding peak3

and valley stress range, ∆σ, values, while the linearly decreasing mean stress,4

σm = f(t), (striped green line), undergoes a stress range, ∆σ, amplification5

that is higher in former cycles and that progressively decreases. Besides, it6

remains valid considering aspects like the change in stress ratio R = σmax/σmin7

[52, 55, 48, 46, 53, 54], and conservative in pre-strained elements [56].8

The question is now whether the above is as a rule generalizable? For in-9

stance, for any random loading causing a fatigue process with a concomitant10

long-term decreasing mean tension, there will be a corresponding slow drop of11

the mean stress, σm, at least when compared to the mean frequency of the pro-12

cess. In such cases, the mean stress function can be discretized into small finite13

segments of constant slope, where this relationship remains true. Besides, if the14

random loading is both a stationary and an ergodic process and can be defined as15

an stochastic harmonic function in the shape of σ(t) =
∑N

1

[
∆σi

2 · (sin(ωi · t)
]
,16

any amplification factor derived from Goodman’s equation (1) and applied si-17

multaneously at any time to all harmonics composing the stochastic process,18

can be extracted as a common factor of the summation, by a simple distributive19

13



property of multiplication, in the same way as the mean stress pushing factor,1

FMSP .2

All of the above implies two things. First, an apparently disordered random3

loading can produce a quasi-ordered fatigue process. Second, mean stress am-4

plification can be derived for a continuous process for some discrete intervals5

within a certain period. Besides, the total fatigue has to include both the ampli-6

fication by the FMSP and the sequence effect, that can be achieved by applying7

the mean disorder pushing factor, FMDP , previously presented in [49].8

4.2. Histogram variation9

Fatigue is a pathology that is mainly, although not only studied in metallic10

structures, where mechanized or threaded details, unions, and abrupt changes11

of geometry, etc. constitute heterogeneities or discontinuities that affect the12

mechanical characteristics of the structural detail, making it susceptible to fa-13

tigue processes. This type of structure is generally light, constituted by slender14

elements. In these cases, there are second-order effects, such as buckling, that15

affect the stability of the structures.16

In fact, the stiffness of any element under flexural forces and in the presence17

of axial compression force will apparently decrease, even with the same geometry18

and inertia, because the deflection of the deformed shape is multiplied by the19

axial force generating second-order moments that are added to the bending20

moments, increasing the deformation to the point of equilibrium, if any; an21

effect that is called buckling and that could be the case of compression in beams22

of lattice girders, pylons, and columns.23

However, the same happens in the opposite case when the axial force is a24

tension. In that case, the deflection of the deformed shape is multiplied by any25

axial tension, giving rise to a negative moment that counteracts the bending.26

One example might be the deck of an upper arch of a bridge, where the horizontal27

component of the arch reaction is balanced by the tensility of the deck. The28

tension therefore assists stability by increasing rigidity.29

In view of the above, in cases of intrinsic mean tension, and in this type of30

14



slender metallic element, stiffness is highly conditioned by the existence of an1

axial force of tension or compression. The same is true for natural frequencies2

and vibrational behavior. So, if the axial force changes, then the rigidity will3

change as a direct consequence and likewise the natural frequencies.4

Supposing that the dynamic actions exciting the structure were independent5

of the internal structural dynamics that vary the axial effort, as in the case6

of intrinsic mean tension, it would mean that the dynamic response would7

change completely and could even trigger resonance phenomena. Examples8

could be cables, hangers, braces, etc. with an initial prestressing or tightening9

that decreases with time, if the length, mass and tension of the cable at a given10

moment had a frequency coupled with incident wind speed, imposed vibrations,11

and so on.12

One way of mitigating this possible effect would, first of all, be to find the13

input power spectrum PSD, Sx(f), and then the frequency response function14

FRF, |H(f)|, depending on the maximum and minimum tension of the process.15

If any of the peaks of both functions matched each other, the maximum output16

power spectrum, Sy(f), could be obtained as the product of both factors. In17

the intermediate situations, despite conservative estimates with a safety margin,18

the tension maximizing the response or output PSD, Sy(f), will be chosen. See19

Fig. 5.20

Hence, it is a question of identifying the predominant input frequencies with21

greater energy in the incident action and any coincident frequencies. In that22

case, the first strategy would be to avoid natural frequencies coinciding with23

these frequencies, either by designing the tension of the concrete elements, per-24

haps with stratified strategies, or by simply taking into account the worst situ-25

ation in the calculation and verifying compliance against fatigue.26

For instance, the case of a bi-supported, 6 m length, square hollow section27

SHS 100.5 profile is presented, in order to illustrate that effect. In addition to28

its own weight, it is loaded with 300 kg of uniformly distributed dead load. This29

profile has a decreasing tension from 100 to 0 kN and it is proposed to determine30

the natural frequencies as a function of the aforementioned tension. For the sake31
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Figure 5: Derivation of response power spectra.
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Figure 6: Bi-supported beam model.

of simplicity, an equivalent Single Degree of Freedom (SDOF) model is applied.1

An MDOF case is presented in the case study section 5.2

So, the first step is to determine the deflection caused by 1 kN at span center3

in a conventional bi-hinged model, such as the one shown in Fig. 6, following4

the virtual works method.5

In the case of a beam without tension, the deflection law is derived from the6

equation of elasticity (16), as a function of the x coordinate, as expressed in7

equation (17), for the domain of 0 ≤ x ≤ L/2, and the value of that equation is8

shown in equation (18) at span center:9

y′′(x) = −M(x)
E · I

(16)10

y(x) = − P · x3

12 · E · I
+
P · L2 · x
16 · E · I

(17)11
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y(L/2) =
P · L3

48 · E · I
(18)1

In the case of an axial load under tension, N, the differential equation to2

obtain the deflection law, y(x), is (19). By substituting (20), we arrive at3

equation (21), which will have to be solved:4

y′′ − N

EI
· y = −1

2
· P
EI
· x (19)5

α2 =
N

EI
(20)6

y′′ − α2 · y = −1
2
· P
EI
· x (21)7

Then, after decomposing the differential equation problem into an homo-8

geneous part, yGH , plus a particular solution, yPC , a general solution to the9

homogeneous part is equation (22), while the particular solution of the com-10

plete equation is in the form shown by equation (23). So, (24) represents a11

summation and the general solution of the complete yGC is shown below in12

equation (25):13

yGH = C1 · eαx + C2 · e−αx (22)14

yPC =
P

2N
· x (23)15

yGC = yGH + yPC (24)16

yGC = C1 · eαx + C2 · e−αx +
P

2N
· x (25)17

For instance, it is sufficient to impose the boundary conditions, shown in18

(26), in order to find the constants, C1 and C2. Then, deriving the values of the19

18



constants, as shown in the following equations (27) and (28), and substituting1

them into equation (25) above, will yield equation (29) that is shown below:2

y(0) = 0 ∧ y′(L/2) = 0 (26)3

C1 = − P

2N
· 1
α · (eα · L/2 + e−α · L/2)

(27)4

C2 =
P

2N
· 1
α · (eα · L/2 + e−α · L/2)

(28)5

y(x) =
P

2N
·
[

e−αx − eαx

α · (eα · L/2 + e−α · L/2)
+ x

]
(29)6

It can now be seen in Fig. 7 that the lower the the tension, then the closer7

are the values of derived equation (29) to those of equation (17).8

Fig. 7 shows the deflection value at several x positions for the case of a load9

P = 1 · kN , located at span center and at N = 0 · kN and at N = 100 · kN10

of tension load; a substantial change in the deflection value, in the form of11

increased stiffness, can be seen.12

Thus, the values of the natural frequencies, in Hz, for a Single Degree Of13

Freedom SDOF bi-supported beam model, are listed in the last column of Table14

1, related to the last row as a function of the tension load, N, shown in the15

first column. The other columns showing the flexibility v derived from beam16

deflection, the stiffness k as the inverse of flexibility, the beam stiffness to mass17

ratio k/m, and the corresponding SDOF angular and simple frequencies, ω and18

f. Accordingly, as can be seen, in a long process that is sustained over time,19

while the tension starts at 100 kN and is then reduced, due either to relaxation20

or other processes, to 0 kN, the natural frequency varies between 3.72 and 2.9421

Hz, see Fig. 8. This frequency change after loosing stiffness by detensioning is22

consistent with recent studies, such as Wu et Al. [42].23

One consequence is that, if the incident dynamic action, treated as station-24

ary, has a frequency of 3.5 Hz due to external causes, such as wind buffeting25

19



Figure 7: Deflection law y(x) in mm.

given the rugosity of the windward terrain, or traffic, or a pedestrian promenade1

area, etc. ., and if the calculation of the response power spectra, Sy(f), were2

under the initial or final tension conditions, then the response would spuriously3

be diminished, since the real fact is that the resonant response would be much4

more harmful and will certainly occur at a certain moment of the service life of5

the element.6

Three corrections are therefore needed for the situation described above to7

be applicable to a certain case study:8

1. Calculate the response power spectra, Sy(f), in the worst scenario, i.e.9

the one where the natural frequencies of the FRF functions, H(f), are co-10

incident with the dominant frequencies of the input power spectra, Sx(f).11

For instance, in the present case, it would be for tension loads of around12

70 kN. For a more complete analysis, the service life could be discretized13

into several sub-periods, with several tension load hypotheses and their14

corresponding frequencies.15
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Table 1: SDOF natural frequencies, f [Hz], depending on tension load, N [kN].

N v k k/m ω f

[kN] [mm/kN] [kN/mm] [(rad/s)2] [rad/s] [Hz]

0 7.52 0.13 342.08 18.50 2.94

10 7.09 0.14 362.64 19.04 3.03

20 6.71 0.15 383.17 19.57 3.12

30 6.37 0.16 403.68 20.09 3.20

40 6.06 0.16 424.15 20.59 3.28

50 5.78 0.17 444.60 21.09 3.36

60 5.53 0.18 465.02 21.56 3.43

70 5.30 0.19 485.42 22.03 3.51

80 5.09 0.20 505.79 22.49 3.58

90 4.89 0.20 526.14 22.94 3.65

100 4.71 0.21 546.46 23.38 3.72

Figure 8: Natural SDOF frequency depending on axial load f=f(N) in Hz.
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2. Consider the quasi-order due to detensioning, considering the full range1

of both maximum and minimum loads. In the present case, from 100 kN2

to 0 kN.3

3. Correct the average stress with the Goodman’s equation or the derived4

mean tension pushing factor, FMTP , considering the average tension caused5

by the higher tension of the following: the one giving the maximum re-6

sponse power spectrum, Sy(f), and the process mean value, (Nmax +7

Nmin)/2; in the present case, 70 kN.8

4.3. Second-order apparent mean tension9

The way that mean tension can generate second-order effects that alter the10

histogram has been described in the previous section. In this section, the same11

idea is expressed in reverse, drawing attention to how second-order effects such12

as buckling can cause induced medium tensions, which are not extrinsic, because13

they are not due to the action itself, nor essentially intrinsic, as they are not14

part of the element itself, but are intrinsic to the whole structural system.15

Indeed, if a constant action is maintained in the structural system, when a16

structural element is unloaded, then the structure seeks to maintain equilibrium,17

by a redistribution of its load among its constituent elements, causing increased18

mean tension among the others. This unloading, if due to effects such as the19

buckling of slender elements under compression, could induce different types of20

stiffness in the element, when induced by either compression or traction. So if21

a dynamic action is applied to the element with a completely reversed cycle, its22

load will be higher during the part of the cycle under tension and lower during23

the part of the cycle under compression, causing an effective apparent mean24

tension in the cycle.25

A clear example of this phenomenon would be the bracing frames of buildings26

that withstand the horizontal actions of wind and seismic activity by means of27

axial truss-like elements: i.e. the Concentrically Braced Frame CBF systems.28

Fig. 9 presents the most common typologies shown in Eurocode 8 [57], as stated29

in [58].30
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Figure 9: CBF bracing typologies to withstand lateral loading of buildings, as per Eurocode

8.

In those CBF systems, only the contribution of the tensioned diagonal braces1

is considered, Art. 6.3.1 (3) [57], completely neglecting the contributions of2

the diagonal braces under compression. It is not that they have no de facto3

collaboration, but the buckling reduces the effectiveness of any compression4

effort. Any consideration of that effort will, therefore, be conservative.5

By imagining a completely reversed horizontal dynamic action, in an ide-6

alized structure with no imperfections, the system will be antimetric and, at7

any one time, the tensile stress of a diagonal brace will be equal, in module,8

to the compressive stress of the other. Nevertheless, in reality, imperfections9

cause the diagonal braces to buckle under compression and, in order to rebal-10

ance the system, all the compression that one diagonal brace is not providing11

will be converted into tension in the other. When the cycle changes and the12

diagonal brace previously under tension is under compression, it will begin to13

buckle, losing compression and causing tension overload in the other diagonal14

brace previously under compression.15

Thus, if by an alternate action, at one extreme of the cycle, two idealized16

X-bracing diagonals were correspondingly loaded at 100 kN tension first and17

-100 kN compression, at the other extreme of the cycle they would logically18

be loaded at -100 kN and 100 kN, respectively, completing totally reversed19

cycles with a mean load of 0 kN and an amplitude of 100 kN. Nevertheless, the20

diagonal braces are never ideal in reality and the brace under compression at21

one extreme of the cycle will actually lose effort, with compression for example22

of up to -50 kN, which will overload the other diagonal brace under tension by23
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up to 150 kN, a situation that is reversed at the other cycle extreme. Hence,1

the diagonal would be initially tensioned at 150 kN and then compressed up to2

-50 kN compression. Therefore, in reality, despite the external reversed action,3

applied with 0-mean tension, in practice it causes cycles from -50 kN to 150 kN,4

with a mean tension of 50 kN and an amplitude of 100 kN, which is precisely5

the second-order apparent mean tension.6

Such an effect needs always to be considered, through the application of the7

appropriate mean tension correction coefficients FMSP , derived from Goodman,8

Gerber or Soderberg, as previously mentioned.9

5. Case study10

We will consider a 12-storey building with 8 planes of shearing bracing, made11

of X-type diagonals, 4 of which face each horizontal direction forces, x and y,12

with a length in plan view of 36 m, a width of 24 m and, finally, a height of13

37.2 m. The storey dimensions are regular, with a height of 3.1 m and a span14

between columns of 6 m, and a total effective mass at each storey of 151,20015

kg. See Fig. 10.16

The building faces wind loading, with a basic velocity of 29 m/s and a terrain17

category II, according to Eurocode 1 [24, 59], defining the terrain roughness for18

wind loading. Thus, under such conditions, the axial loading at the bottom19

storey, due to wind loading in the ultimate limit state is 291,85 kN, while the20

diagonal bracing profiles are UPN-100, the columns are HEB-180 profiles, and21

the crossbeams are HEB profiles, all made of S-275 steel [9]. The diagonal22

bracing connections are 6x M12 10.9 steel bolts, which attach the diagonal braces23

to a gusset plate welded at the HEB profile corner [10].24

At the time it was built, the shearing plane was executed by building the25

columns and crossbars first, completing the gantry, welding the gusset plates to26

each corner, and then attaching the diagonal braces. Nevertheless, when plac-27

ing the diagonal braces, their temperature was slightly higher than the gantry,28

but only by 10 ◦C. This difference might not seem very much, although when29
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Figure 10: Geometry of the building for the case study.

placing the braces and fixing the connections, the temperature tended towards1

equilibrium, so the diagonal braces tended to shorten, causing an equivalent2

mean tension. Note that a difference of 10 degrees is quite common for on-site3

works where completion can take several days. Nevertheless, even though this4

tension is unintentional in this case study, the diagonal bracing normally has a5

degree of pretensioning for proper performance. In this case, the temperature6

increment is equivalent to a pretensioning of 34.04 kN.7

Hence, two models are produced to represent a shearing plane under two8

hypothetical situations. A first one where the diagonal braces remain under9

tension, due to the temperature increment, ∆T = 10◦ C, in the execution10

phase, and a second situation when it loses its initial tension after several cycles11

and progressive hole slotting at bolt connections. In those models, the diag-12

onal braces are considered as non-linear elements, working only under tension13

and in no case under compression, with corresponding temperature gradients14

depending on the situation.15

These models where then used to represent an equivalent lumped mass,16

Multi-Degree Of Freedom MDOF, system, considering horizontal motion at17
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each storey at a total of 12 modes. A three-way 12x12 matrix was required,1

corresponding to mass, damping and stiffness matrix, to represent the system.2

The mass matrix was a diagonal matrix, with a storey mass at each diagonal3

element. The damping matrix is another diagonal matrix, with the damping4

at each storey, that can be considered almost but not completely regular and5

equivalent to a conservative figure of 2% damping. Finally, the stiffness matrix6

was the inverse of the flexibility matrix that was slightly more complicated.7

A force of F = 100kN was introduced at each storey in the model to obtain8

the flexibility matrix, registering the consequent displacements at each storey,9

but one force at a time, filling the 12×12 flexibility matrix f, in both situations.10

The stiffness matrix was therefore the inverse of the flexibility matrix. There was11

no need to reproduce the full matrix of both situations, but it was sufficient to12

show the stiffness increment, when the load was applied to the uppermost storey13

with diagonal bracing under tension. The consequent horizontal displacement14

at the uppermost storey was 102 mm, while it grew to 112.9 mm when applied15

without any load, implying a drop in stiffness.16

Then, the eigenvalues and eigenvectors of the flexibility matrix were found17

and the corresponding frequency response functions FRF of each mode i, Hi(f),18

were developed, to obtain the natural frequencies and the natural modes of19

vibration. Thus, with the FRFs, the frequency response function of the motion20

at the first storey, z1, caused by the force at each storey, i, was then derived by21

Hz1Fi(f).22

For instance, in the following Fig. 11, the frequency response function of23

the motion at the first storey is shown due to wind buffeting at the 12th storey24

with tensioned and detensioned diagonal bracing.25

The solid blue line represents the situation where the equivalent intrinsic26

tension corresponds to ∆T = 10◦ C, while the red striped line shows the sit-27

uation where any initial tension is lost. In reflection, it can be seen that this28

approach is not only about considering the mean stress through Paris’ law, or as29

it is considered in Goodman, Gerber and Soderberg, as it changes the structural30

response itself, varying the natural frequencies, in consistency with Wu et Al. at31
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Figure 11: Frequency response function of motion at the first storey, due to wind buffeting at

the 12th storey with tensioned and detensioned diagonal bracing.

[42] when loosing stiffness. Hardly significant under a broad band uniform pro-1

cesses, it is in narrow banded ones, if a peak at the input PSD could match the2

peak at the FRF during the detensioning process, because at this point it could3

develop resonance effects and very damaging fatigue. In this case, the natural4

frequencies tend to decrease, but their peaks become higher. One explanation5

could be the non-linearity, if the diagonal braces are only working under tension,6

or only under compression, because they need to surpass the pretension before7

buckling, which is relevant in terms of stiffness and effective damping elements.8

The wind load spectra were estimated with the method proposed by Dav-9

enport [60], which is widely used. As this is an external force, the extrinsic10

process applies to both situations. Accordingly, in Fig. 12 the normalized wind11

spectra (a), scaled to disregard mean wind velocity and frequency, is depicted12

and the PSD of the wind loading force at the first, the sixth, and the twelfth13

storeys (b).14

The power spectral density of the displacements at the first storey, caused by15

the wind loading at each storey can therefore be derived, see Fig. 13. Besides,16

the power spectral density of the stress at the joining bolts is directly derived17
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(a) Davenport’s normalized wind spectra.

(b) Power spectral density of wind loading force.

Figure 12: Wind loading spectra.
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Figure 13: PSD of the displacements at the first storey due to wind buffeting the whole

building.

from the displacement measurements, considering the relationship between dis-1

placement and axial load, and the relationship between axial load and stress at2

the bolts, considering their effective resistant sections.3

In both cases, the solid blue line depicts the spectra with tensioned diago-4

nal bracing, while the red dotted line depicts the scenario of the detensioned5

diagonal bracing. The power spectral density of the stress at the bolts is the6

required PSD.7

5.1. Cycle account and fatigue damage8

There are several methods applied to cycle counting starting with a wide-9

band stress spectra in random loading, such as the methods proposed by Zhao-10

Baker [61], Petrucci-Zuccarello [62], α75 [63], the very promising Tovo-Benasciutti11

[37, 35, 36], well fitted for broad-band Gaussian and non-Gaussian processes,12

as pointed out by Ding and Chen [64], and Dirlik [65], along with recent im-13

provements to consider somehow the mean stress effect [52, 53, 54]. Finally,14

there are recent interesting proposals too, like the bands method by Braccesi et15

Al. [66], dividing the broad band PSD in frequency bands, applying Rayleigh16

distribution [67, 68] at each band, and finally combining all damage.17
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Figure 14: PSD of the bolt stress at the first storey caused by the wind over the whole building.

Dirlik method will be used for this case study, as it is still regarded as the1

most accurate [69, 70, 71], but others could be applied. In fact, depending on the2

case, a recent comparison by Mrsnik [38] set Tovo-Benasciutti and Zhao-Baker3

as the preferred methods after Dirlik.4

Following this procedure, based on the PSD moments, the expected peaks5

per second were 1.49 and 1.44, respectively, with tensioned and detensioned6

diagonals, and the expected 0-stress crossings, were 0.73 and 0.7, likewise re-7

spectively. This difference might not appear very large, but it becomes clearer8

when deriving the range probability and histogram variation. See Fig. 15 and9

Fig. 16, respectively. In the interests of clarity, the cycle amount is calculated10

for a single year of the service life, considering total seconds, one cycle per peak,11

and peaks per second.12

The first thing brought to our attention is the second-order effect of an13

intrinsic mean tension in the histogram variation, already mentioned in sub-14

section 4.2. Among other things, such variation implies a further modification15

of Nieslony-Böhm [52, 53, 54] if adapting the PSD before applying a rainflow16

cycle distribution mehod such as Dirlik. The second issue is that, when barely17

applying the Palmgren-Miner rule, considering a detail category of 100 MPa at18
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Figure 15: Probability density of cycle ranges according to Dirlik’s method with tensioned

and detensioned diagonal bracing.

Figure 16: Cycle histogram by Dirlik method with tensioned and detensioned diagonal bracing.
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Table 2: Fatigue Damage with detensioned diagonals.

∆σ ni Ni Di

10 7.40E+06 2E+11 0.00%

20 8.35E+06 6.24E+09 0.13%

30 4.85E+06 8.21E+08 0.59%

40 2024607 1.95E+08 1.04%

50 1097274 6.38E+07 1.72%

60 788249 2.57E+07 3.07%

70 555819 1.19E+07 4.68%

80 3.55E+05 6.09E+06 5.83%

90 2.05E+05 3.38E+06 6.07%

2 · 106 cycles according to Eurocode 3, then the fatigue damage is 23.1% with1

tensioned diagonal bracing and 49.1% with detensioned bracing. See Tables 22

and 3.3

However, the tension range of each cycle was not taken into account in4

Dirlik’s method, since the element is unable to withstand compression forces5

because of buckling. Mean stress must therefore be considered, through the6

mean stress pushing factor previously defined in equation (12). In the first7

scenario, a temperature increment, ∆T = 10◦C, leads to a mean tension of T =8

34.02kN at the diagonal brace, causing a mean stress at each bolt of 67.5 MPa,9

each with a resistant section of 84mm2. Besides, on the safety side, each range,10

∆σ, is considered to start from that stress level, meaning an apparent mean11

stress of half the cycle range. Accordingly, Table 4 discloses the corresponding12

numerical results.13

In the second scenario, the detensioned diagonal braces presented no intrin-14

sic mean stress. Nevertheless, the non-linearity caused by compressed diagonal15

buckling led to an apparent mean stress of half the stress range, as it only works16

under tension. Accordingly, Table 5 discloses the corresponding numerical re-17

sults..18
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Table 3: Fatigue damage with detensioned diagonals.

∆σ ni Ni Di

10 5.10E+06 2E+11 0.00%

20 6.44E+06 6.24E+09 0.10%

30 5.40E+06 8.21E+08 0.66%

40 3161782 1.95E+08 1.62%

50 1580030 6.38E+07 2.47%

60 907748 2.57E+07 3.54%

70 662495 1.19E+07 5.58%

80 5.24E+05 6.09E+06 8.60%

90 4.02E+05 3.38E+06 11.90%

100 2.92E+05 2.00E+06 14.63%

110 2.00E+05 1.24E+06 16.13%

120 6.40E+04 8.02E+05 7.98%

Table 4: Fatigue damage considering intrinsic and apparent mean stress with tensioned diag-

onal bracing.

∆σ ni Ni Di σm FMSP Deq.i

10 7.40E+06 2E+11 0.00% 72.5 1.46 0.01%

20 8.35E+06 6.24E+09 0.13% 77.5 1.50 0.20%

30 4.85E+06 8.21E+08 0.59% 82.5 1.54 0.91%

40 2024607 1.95E+08 1.04% 87.5 1.58 1.64%

50 1097274 6.38E+07 1.72% 92.5 1.62 2.79%

60 788249 2.57E+07 3.07% 97.5 1.67 5.13%

70 555819 1.19E+07 4.68% 102.5 1.72 8.04%

80 3.55E+05 6.09E+06 5.83% 107.5 1.77 10.30%

90 2.05E+05 3.38E+06 6.07% 112.5 1.82 11.02%

33



Table 5: Fatigue Damage considering intrinsic and apparent mean stress with detensioned

diagonal bracing.

∆σ ni Ni Di σm FMSP Deq.i

10 5,10E+06 2E+11 0,00% 5 1,03 0,00%

20 6,44E+06 6,24E+09 0,10% 10 1,05 0,11%

30 5,40E+06 8,21E+08 0,66% 15 1,08 0,71%

40 3161782 1,95E+08 1,62% 20 1,11 1,80%

50 1580030 6,38E+07 2,47% 25 1,13 2,81%

60 907748 2,57E+07 3,54% 30 1,16 4,12%

70 662495 1,19E+07 5,58% 35 1,19 6,67%

80 5,24E+05 6,09E+06 8,60% 40 1,23 10,55%

90 4,02E+05 3,38E+06 11,90% 45 1,26 14,98%

100 2,92E+05 2,00E+06 14,63% 50 1,29 18,91%

110 2,00E+05 1,24E+06 16,13% 55 1,33 21,40%

120 6,40E+04 8,02E+05 7,98% 60 1,36 10,87%
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Thus, consideration of the mean stress value will raise the fatigue damage1

from 49.91% up to 92.9%, in the case of detensioned diagonal bracing, and from2

23.1% to 40.05%, in the case of tensioned diagonal bracing. Its consideration3

is therefore not optional, as the fatigue damage that is forecast will otherwise4

lead to unsafe predictions.5

Finally, cycle quasi-ordering needs to be considered as the mean induced6

order. For the tensioned diagonal bracing, the average cycle, calculated as simple7

weighted average in the corresponding histogram has an average stress range of8

25.58 MPa and an average mean stress of 80.29 MPa, meaning an equivalent9

stress range of 27.81 MPa at 0 mean stress in accordance with Goodman’s10

equation application (1). The average stress range of 31.74 MPa and the average11

mean stress of 15.87 MPa, for the detensioned diagonal bracing, implies an12

equivalent stress range of 32.25 MPa. The sequence effect coefficient proposed13

in [49] should be applied for its consideration. In this case it was negligible with14

a mean stress range decrease of only 5 MPa.15

As a final clarification, the three mentioned second-order fatigue effects are16

not specific for this case studied. Cables, say-cables, superior arch bridge decks,17

braces, hangers, rods, beams under tension (within a truss or a framed tube18

building), a curtain wall, pre-tightened bolts, tendons and the like are suscepti-19

ble to such effects. Generally speaking, anything under tension could experiment20

cycle quasi-order and histogram variation if gradually losing tension and stiff-21

ness accordingly. Besides, at any system supported by a plurality of elements22

(e.g. beams), when one of them start to loss stiffness, it is translated in a load23

sharing rearrangement within the others, causing apparent mean stress on them.24

6. Discussion25

The proposed procedure is well suited for structural details belonging to large26

infrastructures such as buildings, bridges, industrial facilities, towers, reservoirs,27

aerogenerators and the like, executed on-site and subjected to random loadings28

such as wind, traffic or low seismicity. Under these scenarios dealing with un-29
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certainty, the added value of a prediction lies in the balance between safety,1

actual material saves and cost effectiveness of the analysis. Accordingly, it is2

an evolved procedure based on the correction of frequency domain calculation,3

application of Dirlik’s [65] (or equivalent) method to deduce Rainflow cycle his-4

tograms [26] and fatigue damage calculation, to consider extrinsic and intrinsic5

mean stresses and its derived second-order fatigue effects.6

The case study revealed that, in some cases, the change in an intrinsic mean7

tension could lead to a change in the global system stiffness, changing the cycle8

histogram. In the case presented in the previous section, a tension due to a9

common difference of temperature left a difference in fatigue damage according10

to the plain Palmgren-Miner linear rule application of 23.1% to 49.1%. There-11

fore, an extrinsic mean stress could lead to different ranges but an intrinsic12

mean stress could lead to completely different fatigue loading. The way to deal13

with these differences is to discretize the linear process of detensioning, by con-14

sidering a half period with tensioned diagonal bracing and a half period with15

detensioned ones, which would yield predicted fatigue damage of 36.1%.16

There again, the non-linearity caused by buckling of the diagonal bracing17

leads to apparent mean tensions of 45 and as much as 60 MPa in the cases of18

tensioned and detensioned diagonal bracing, respectively. This apparent mean19

tension, in isolation, caused a pushing factor of 1.36 under detensioned diagonal20

bracing scenarios, while added to existing intrinsic mean stress lead to a mean21

stress pushing factor of up to 1.82, increasing fatigue damage substantially,22

which yielded an average fatigue damage of 66.48 kN.23

The sequence effect was calculated in this case, following the rule already24

disclosed in [49], considering the mean cycles from an average range of 27.8125

MPa to 32.25 MPa. However, it was negligible in this case. For instance,26

the ultimate stress of a 10.9 steel bolt was 1000 MPa, so the equivalence in27

accordance with Goodman’s ratio would be very much lower than in most cases28

for common structural details made of carbon steel.29
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Figure 17: SDOF testing system including variable intrinsic mean stress.

7. Future works1

Now, once the theoretical framework has been developed on the basis of the2

partial experimental evidences and previous works in literature, it is time to3

define at least the minimum experimental setup to research on the importance4

of such second-order fatigue effects. Indeed, the case study was developed in5

two situations with tensioned and detensioned diagonals, but the reality will be6

divided in several intermediate situations. This could lead, in one hand, to some7

intrinsic mean stress at whose frequency the sample starts to develop resonance,8

with very damaging effects to fatigue, meaning this before and after procedure9

underestimated the consequences. While, on the other hand, this intermediate10

resonance could lead to cycle quasi-ordering only from a certain stage to the end.11

Accordingly, the experimental setup shown in Fig. 17 discloses a SDOF testing12

system able to test a beam sample analogous to the one proposed in section 4.2.13

It is based on a rail fatigue test with an hydraulic pulsator imposing a variable14

force to a beam, but with a system able to tension it.15
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Figure 18: Cycle histogram by Dirlik method with tensioned and detensioned diagonal bracing.

The system to add variable intrinsic mean stress to the beam sample is1

divided in a passive and an active extreme. The next Fig. 18 shows in detail2

the active zone, while the passive is similar but up to the locking nut and washer.3

The active extreme is composed of a support a, to provide a vertical reaction,4

with a pin b attaching a hinged grip system. Then, with the anchoring nut and5

washer set c at one end of the threaded rod d, it is possible to transmit tension6

to the sample simply by pulling such rod d. In order to do it, at the other end of7

the threaded rod d, there is a set composed by a fixing nut and washer set j, that8

is pushed by the inner cylinder i of an hydraulic press h, whose reaction passes9

by the pressure plate g and the supporting disk f to a passive support. Finally,10

the last feature is the locking nut and washer e that enables the possibility to11

maintain a certain level of tension during a fatigue stage, when shutting down12

the hydraulic press.13

The experiment could consist in applying a variable force with the hydraulic14

pulsator at certain constant frequency, decreasing progressively the tension and15

intrinsic mean stress, possibly dividing it in stages. Thus, with an accelerometer16

and a potentiometer to measure frequencies and deflections, and the pressure17

plate to measure the tension at each moment, it is possible to test such effects18

and calibrate to avoid under or over estimations.19
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8. Conclusions1

The main contribution of this manuscript is to rethink the mean stress during2

fatigue life, dividing it into two components by source: extrinsic and intrinsic3

mean stresses, disclosing their implications. Besides, it defines a new mean4

stress pushing factor on the basis of Goodman equation, to be applied after5

the histogram is found. Moreover, three second-order fatigue effects derived6

from intrinsic mean tension are also identified and described: cycle quasi-order,7

histogram variation and apparent mean tension. Finally, as a case study a CBF8

system of 12 DOF is used disclosing the procedure to take into account each9

part of mean stress.10

1. The concepts of extrinsic and intrinsic mean stress have been presented.11

Extrinsic mean stress arises from the actual variable random loading that12

causes fatigue, while intrinsic mean stress is due to concomitant perma-13

nent loads or indirect structural responses, not directly related to the14

random loading.15

2. Extrinsic mean stress can be considered for any stress range, ∆σ, based16

on the fatigue damage forecast method, modified by an innovative mean17

stress pushing factor, FMSP , derived from Goodman’s ratio, as long as18

the cycle counting method that is employed registers such information in19

the same way as the Rainflow method.20

3. The same applies to intrinsic mean stress, although intrinsic mean stress21

usually arises from an existing concomitant tension tending to slowly de-22

crease with time, while that tension causes three second-order fatigue ef-23

fects, increasing expectable damage and must, therefore, be considered.24

4. The first second-order fatigue effect identified in this study is the cycle25

quasi-ordering, occurring when a random loading, defined as an stochastic26

stationary and ergodic process, is concomitant to a slowly varying mean27

tension. In such cases, the equivalent range, ∆σeq, at 0-mean stress, σm =28

0, will tend to be greater in earlier cycles than in later ones. As this29

amplification is verified and applied simultaneously to all the harmonics30
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in the stochastic process, then it is likewise for the summation by the1

distributive property.2

5. The second second-order fatigue effect is the histogram modification. It3

occurs because any existing tension changes the structural system effec-4

tive stiffness and, therefore, the natural frequencies and the Frequency5

Response Functions (FRF) will vary accordingly. Besides, it implies a6

change in the response power spectra, Sy(f), and the corresponding cycle7

counting. Moreover, as the tension tends to vary during the service life,8

the natural frequencies could become coupled to those of the input power9

spectra, causing resonance and near resonance effects at that time.10

6. The third second-order fatigue effect is the generation of an apparent mean11

stress, due to the unloading of some elements under compression, because12

of buckling, transferring such loading to other elements under tension.13

7. A case study based on the bracing system of a 12-storey building under14

wind loading has been developed, showing how to take into account the15

above-mentioned second-order effects and how to integrate their impact16

on fatigue calculations.17
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