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ABSTRACT

NON-INVASIVE HYPERGLYCEMIA DETECTION USING ECG AND DEEP
LEARNING

by Renato Silveira Cordeiro

Hyperglycemia is characterized by an elevated level of glucose in the blood. It is

normally asymptomatic, except for an extremely high level, and thus a person can live in

that state for years before the negative - sometimes irreversible - health impacts appear.

Unexpected hyperglycemia can also be an indication of diabetes, a chronic disease that,

when not treated, can lead to serious consequences, including limb amputations and even

death. Therefore, identifying hyperglycemic state is important. The most common and

direct way to measure a person’s glucose level is by directly assessing it from a blood

sample by pricking a finger, which causes discomfort and even pain. The constant finger

pricking can also lead to bruising and increases the possibility of infection. This thesis

presents a non-invasive technique of detecting hyperglycemia by using a person’s

electrocardiogram (ECG) and deep learning. The ECG signal is preprocessed to remove

noise, identify fiducial points, extract and adjust features, remove outliers and normalize

the data. This thesis applied a novel approach to feature extraction in which, instead of

just using fiducial amplitudes and intervals, a direct line was drawn between fiducial

points and its length and slope were used as features. The labeled features were used in

10-layer deep neural network and resulted in an area under the curve (AUC) of 94.53%,

sensitivity of 87.57% and specificity of 85.04%. Such strong performance indicates that

ECG carry intrinsic information that can be used to identify hyperglycemic state, enabling

the use of ECG-based hardware together with deep learning for non-invasive

hyperglycemia detection.
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1 INTRODUCTION

Hyperglycemia, also known as high blood sugar, is a physiological state in which

there is a high concentration of glucose in the bloodstream. This state naturally occurs

following meals but after a few hours, the body should return to a normoglycemic state

mainly due to work of the hormone insulin [1]. Hyperglycemia is usually defined as a

blood glucose concentration (BGC) of 100 mg/dl or higher in a fasting state. A person in

a constant state of hyperglycemia, especially when fasting, can be in a situation in which

the body is not able to process the glucose anymore. This is usually a consequence of

insulin resistance, a condition in which the body becomes insensitive to insulin and the

hormone is not able to decrease blood glucose concentration. Insulin resistance is a

marker for type 2 diabetes mellitus [2], a disease that when not treated, can lead to serious

health problems including blindness, limb amputation, heart diseases, and even death.

The traditional method for measuring blood glucose is via assessment of glucose

concentration in a blood sample. The sample can be a few drops of blood acquired by

pricking the finger or a larger amount obtained by health professionals. Both processes

are invasive and generate pain and discomfort, creating a barrier for their widespread use

as a screening mechanism. The exposure of blood also creates another under-recognized,

but still critical problem which is the possibility of bloodborne pathogen transmissions [3]

such as the hepatitis B/C virus (HBV / HCV), human immunodeficiency virus (HIV) or

others due to the sharing of blood glucose meters or accessories among infected

people. [4] states that 15 out of 18 HBV infections outbreaks since the year 1990 were

attributed to the improper use of blood glucose monitoring systems. Lastly, the use of

such invasive systems also creates a significant environmental impact due to the creation

of medical waste [5]. Therefore, a non-invasive method with little waste to detect

hyperglycemia would be useful for individuals and society in general.
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Machine learning is the process of automatically identifying useful patterns in data [6].

It is a cross-industry tool that enables the clusterization or classification of data based on

explicit or implicit characteristics of data called features. It has been largely used for

problems such as customer segmentation, behavior prediction, and others. Recently it has

been applied more often to healthcare to identify patterns of disease or biomarkers not

directly visible to the human eye. Deep learning models, which are a specific type of

machine learning models, have been achieving promising results in that area.

This thesis presents a deep learning model that is capable of identifying

hyperglycemia using an electrocardiogram (ECG). In addition, this thesis presents a novel

feature extraction mechanism from ECG signals focused on slopes and direct distances

between fiducial points. This resulted in a feature size reduction of 97% when compared

to a full ECG cardiac cycle.
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2 LITERATURE REVIEW

Several studies investigating the impact of blood glucose concentration on different

ECG metrics have been conducted. Amanipour et al. [7] analyzed the heart rate variability

(HRV) frequency domain components of a diabetic female subject under normoglycemic

and hyperglycemic conditions. They noticed a 6-fold decrease in the low frequency / high

frequency ratio. Although the study was limited to just one person, it corroborated the

results achieved by Fujimoto et al. [8] showing that the ratio was negatively correlated

with blood glucose concentration. Perpiñan et al. [9] assessed the impact of taking a 75 g

oral glucose test in subjects with metabolic syndrome. A control group was used and both

groups had their HRV monitored after drinking the glucose solution. After 30 minutes, the

metabolic syndrome group presented significantly higher HRV irregularity than the

control group. After 60 minutes of the glucose intake, the HRV irregularity in subjects

with metabolic syndrome decreased while that was not observed in the control group.

Another metric known to be impacted by blood glucose levels is the QT interval of

the cardiac cycle. Suys et al. [10] monitored the ECG and blood glucose concentration of

type 1 diabetic children by using a Holter and continuous glucose monitoring device.

They identified a prolongation of QT and QTc intervals (QT interval adjusted by Bazett’s

formula) with lower blood glucose concentration. Christensen et al. [11] also studied the

relationship between hypoglycemia and QTc interval in a group of type 1 diabetic adults

and identified a moderate increase in the QTc interval. Marfela et al.’s [12] research on

the impact of blood glucose in QT duration achieved a different result. More specifically,

they found that acute hyperglycemia in healthy patients resulted in a significant increase

in QTc interval, QTc dispersion, and PR interval. That apparent contradiction with

existing literature that shows QTc prolongation associated with hypoglycemia could be

explained by the fact that their study was composed only of healthy subjects instead of

diabetic patients.
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Nguyen et al. [13] analyzed the effect of hypoglycemia and hyperglycemia on several

ECG parameters, including HR, QTc, PR, RTc, TpTec (T-peak to T end). They identified

that low blood glucose was associated with prolonged RTc, QTc and TpTec. In contrast,

high blood concentration was related not only to a decreased RTc, QTc, TpTec but also to

an increased PR. In 2014, Naguyen et al. [14] went one step further by proposing a neural

network model to detect hyperglycemia using 16 features extract from an ECG. This ECG

features are summarized in Table 1.

Table 1
ECG Features List Used to Calculate Hyperglycemia

# Feature Type
1 HR Intervals
2 PR Intervals
3 QTc Intervals
4 RTc Intervals
5 TpTec Intervals
6 Mean RR interval Time-domain
7 Standard deviation of the

RR Interval index (SDNN) Time-domain

8 Root mean square of successive
RR interval differences (RMSSD) Time-domain

9 Percentage of consecutive RR intervals
that differ by more than 50ms (pNN50) Time-domain

10 HRV triangular index (HRVi) Time-domain
11 Baseline width of the RR interval histogram evaluated

through triangular interpolation (TINN) Time-domain
12 Very low frequency (VLF) Frequency-domain
13 Low frequency (LF) Frequency-domain
14 High frequency (HF) Frequency-domain
15 Total spectral power (TotalPw) Frequency-domain
16 LF / HF ratio Frequency-domain

Note: adapted from Nguyen et al. [14]

Their best model achieved moderate performance with a sensitivity of 70.59% and

specificity of 65.38%. The dataset used was also very limited since it was restricted to

only 10 subjects.
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To overcome the limitations of the aforementioned study, this thesis introduces a new

deep learning architecture along with a novel feature extraction technique and large

dataset to improve performance.
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3 THEORY BACKGROUND

3.1 Electrocadiogram

3.1.1 What is ECG

Electrocardiograms (ECGs) are recordings of cardiac electrical activity produced by

depolarization and repolarization of atria and ventricles during each cardiac cycle [15].

Human heart signals were first captured by British physiologist Augustus Waller in 1887

by using a capillary electrometer and in 1903, Dutch physiologist Willem Einthoven

created the first practical ECG machine based on a string galvanometer, a device that uses

the electromagnetic field to detect very small currents. His contribution to clinical

electrocardiography was recognized with the Nobel Prize of Physiology in 1924 [15].

ECG works by measuring the potential difference between electrodes placed in different

locations of the human skin. The quantity and location of the electrodes can vary and are

related to how many electrical views (also called ”leads”) are to be captured. Single-lead

ECG readers use two or three electrodes to capture one view of heart electrical activity.

This has been recently used on products for consumer use such as wristbands and smart

watches. Although those devices provide just one electrical view (single lead), this is

enough to provide HR and HRV calculation as well as detection of an arrhythmia.

Another common configuration is the 12-lead ECG that uses 10 electrodes, which is the

standard in clinical environments. More details about leads and the quantity and locations

of electrodes are provided in section 3.1.3.

The human heart is often referred to as a pump that sends blood throughout the body.

It is divided into 4 chambers as can be seen in Fig. 1. The top chambers are called the left

and right atria and the bottom chambers left and right ventricles. The left atrium receives

the oxygen-rich blood from the lungs which is passed to the left ventricle. From there the

blood is pumped to the rest of the body, returning to the heart via the right atrium. This

oxygen-depleted blood is then sent to the right ventricle and then to the lungs. A
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Fig. 1. Heart with a normal flow and its 4 chambers. Picture created by the author.

schematic of the blood flow inside the heart can also be seen in Fig. 1. Such movement is

a consequence of cardiac muscle contraction triggered by an electrical impulse regularly

generated by a group of cells located in the top part of the right atrium called the

sinoatrial node (SA node or sinus node), also often referred as the heart’s pacemaker [16].

The electrical impulse spreads through the heart cells making the atria and ventricles

contract and relax sequentially, sending the blood from the heart to the rest of the body

(organs and lungs). As mentioned before, it is possible to measure that electrical impulse

as it moves through the heart with the use of electrodes placed on top of a person’s skin.

3.1.2 ECG Signal and Main Components

The signal captured by ECG is a combination of waves that succeed each other in a

period manner as the heart goes through its cardiac cycles. An illustration of an ECG

signal can be seen in Fig. 2.
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Fig. 2. Electrical impulse captured by ECG. Picture created by the author.

Einthoven named each of the waves inside a cardiac cycle with a letter: P, Q, R, S, T

and U. That last one is not common and appears to be present in some people under

specific situations. Each of the waves reflects a different time of the electrical impulse

moving through the heart cells and abnormalities in the shape or duration of a wave can

indicate the presence of a heart disease condition. Each wave is further detailed below.

3.1.2.1 P-wave: The first noticeable wave in a cardiac cycle is called P-wave

and represents the contraction of the left and right atria due to a depolarization triggered

by the SA node. This phenomenon is also called atrial systole. The normal duration for a

P-wave is between 0.06 to 0.12 s and its amplitude falls between 0.02 and 0.03 mV.

3.1.2.2 Q-wave: After the electrical impulse propagates through the atria walls,

it moves downwards and reaches the atrioventricular node (AV node) located at the

interatrial septum. The Q-wave reflects the septal depolarization and has a duration and

amplitude of less than 0.04 s and 0.02 mV, respectively.

3.1.2.3 R-wave: The R-wave reflects the electrical impulse flowing through the

ventricular walls. It is the most prominent wave of the entire cardiac cycle and therefore

used as a base point for several analyses, including heart rate calculation via the R-R

interval.

8



3.1.2.4 S-wave: The Purkinje fibers are the last area to be depolarized and the

S-wave reflects that. Different from other waves, the S-wave does not present great

significance alone as an indicator of heart disease.

3.1.2.5 T-wave: Before the next heartbeat cycle can occur, the ventricles need

to repolarized and that is what the T-wave represents. The repolarization of the other areas

was already occurring concomitantly with the depolarization of the ventricles as can be

seen in Fig. 3.

3.1.2.6 U-wave: The last wave in the cycle is the U-wave. This is a peculiar one

since it is normally not seen and only has been reported to be present in some subjects

under the influence of alcohol [17] or antiarrhythmic drugs, or as a consequence of

electrolyte imbalances or drug toxicity [16]. Its origin is still not clear but it is believed

that it is due to repolarization of the Purkinje fibers [16].

Fig. 3. Cardiac cycle composition. Reprinted with permission from [15].
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3.1.2.7 QRS complex: The combination of the Q, R and S waves is known as

the QRS complex and it reflects the left and right ventricles’ depolarization. Its normal

duration is between 0.06 and 0.12 s [16].

3.1.3 Capturing ECG Signal

As mentioned in section 3.1.1, ECG uses electrodes to capture the electrical activity

of the heart. It works by measuring the potential difference between 2 electrodes, and

thus, that is the minimum quantity required to have one ECG signal.

The signal captured by a pair of electrodes represents a specific view of the heart’s

electrical activity and is dependent on the electrodes’ location on the body. That specific

view of the heart is also referred to as lead or angle. Therefore, a single-lead ECG reader

provides just one specific view of the heart. In the same way, a 12-lead ECG reader

provides 12 views. It is important to not confuse that lead (view) term with the actual

metal piece that is connected to the electrode, which is also called lead. Fig. 4 shows a

single-lead ECG reader with 3 electrodes.

Fig. 4. Single-lead ECG reader and 3 electrodes. Picture taken by the author.

3.1.3.1 12-lead ECG: The most common setting in hospitals and clinical

environments is the 12-lead ECG which is achieved by the use of 10 electrodes. Six of

those leads are called limb leads since they are obtained by using 4 electrodes placed on
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the person’s limbs (left arm, right arm, left leg, right leg). The remaining 6 leads are

called precordial leads and are obtained with 6 electrodes placed on the person’s chest.

Fig. 5 illustrate the location of all 10 electrodes.

Fig. 5. Location of electrodes in a 12-Lead ECG. Picture created by the author.

The 6 limb leads are named lead I, lead II, lead III, lead aVR, lead aVL and lead aVF.

The last 3 leads are actually virtual leads obtained from the combination of the former 3

leads (I, II, III) and starts with the prefix ”a” to indicate ”augmented”. The 6 precordial

leads are called V1, V2, V3, V4, V5, and V6. The ECG signals showed so far in this

thesis is the one provided by lead II, in which we have a P-wave with positive amplitude,

a complete QRS complex (small negative amplitude followed by a high positive one and

then by a negative one) with a T-wave with positive amplitude at the end of the cardiac
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cycle. The other leads would show some differences such as a P-wave with negative

amplitude or different wave amplitudes.

3.1.3.2 Single-lead ECG: A simpler setting is the single-lead ECG which

captures just one electrical signal with the use of 2 or 3 electrodes. That ECG view is

equivalent to the lead II of a 12-lead ECG. Several personal ECG handheld devices

available in the market, as well as other wearable and mobile devices with ECG reading

capabilities, are single-lead. Although having just one lead means less information from

the heart than the use of a 12-lead, it can still provide very useful information such as HR,

HRV and arrhythmia detection. Fig. 6 shows an example of a single-lead handheld ECG

reader manufactured by the company AliveCor.

Fig. 6. Single-lead handheld ECG reader. Picture taken by the author.

3.1.4 ECG Noise

ECG measures electrical activity and, as with any measurement of biological signals,

is subject to noise. In particular, ECG suffers from several types of noise [16], [18] that

are described below.

3.1.4.1 Respiration baseline wandering: This noise is generated by the

respiratory activity of the person. It is reflected as a low frequency signal ranging between

0.05 Hz and 1 Hz [18]. The use of a high pass filter with a frequency of 1 Hz or higher is
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usually enough to remove this type of noise. Fig. 7 shows the effect of respiration

baseline wandering in an ECG signal.

Fig. 7. ECG signal contaminated by baseline wandering noise.

3.1.4.2 Power line interference: ECG devices generate intrinsic noise due to

their capacitive and inductive coupling. The noise due to capacitive coupling is usually

centered at 50 Hz or 60 Hz [18] and therefore a low pass filter can be used to remove it.

The inductive coupling produces low frequency noise that overlaps with the actual

electrical signal being measured, making it difficult to remove without losing ECG

data. [19] shows that a low frequency cut of 0.5 Hz already impacts the ST segment

interpretation.

3.1.4.3 Muscle artifacts: Contractions of muscles near the heart can be captured

by ECG, showing up as waves with small amplitudes. Other muscle movements can also

be read and appear as normal noise. The former can be removed by preprocessing the

signal and taking into consideration all the expected waves and respective amplitudes and

duration inside a cardiac cycle. The latter can be difficult to remove [18].

3.1.4.4 Electrode motion artifacts: These artifacts are usually reflected as

amplitudes spikes and sometimes as baseline drifts and are due to a person’s movement

during the ECG. It is very difficult to remove such noise.
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3.1.4.5 Environment interference: The environment in which the person is

located during the ECG can interfere in the measurements. Fluorescent light and other

electronics such as cell phones can generate artifacts [16] and therefore it is recommended

that appropriate actions are taken to remove, or at least decrease, such interference.

3.2 Machine Learning

3.2.1 What is Machine Learning

Machine learning is the process of automatically identifying useful patterns in

data [6]. By identifying patterns, machine learning models can ”learn” from the data and

apply that learning to data not yet seen. The data given to the model must be a collection

of examples (also known as samples) that share one or more characteristics. A common

characteristic across samples is called feature. Machine learning is usually segmented by

its learning methods.

3.2.2 Learning Methods

Machine learning can be classified in 4 different methods: supervised learning,

unsupervised learning, semi-supervised learning and reinforcement learning. They mainly

differ in the data structure given to the model and the objective. A brief description of

each one is provided in the following subsections.

3.2.2.1 Supervised learning: In this method, the data used to train the model are

labeled, so for each sample, the model receives the features (input) and also the label

(output). The model treats that collection of inputs-outputs as conditions that it must try to

fulfill by optimizing its internal parameters. The label could be a discrete or continuous

value. If the former, it is said to be a classification problem, if the latter, a regression

problem.

3.2.2.2 Unsupervised learning: The unsupervised learning method receives

samples without labels, so the model works by finding similarities based on the features
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provided. This method is commonly used for clustering and association problems and also

for dimensionality reduction.

3.2.2.3 Semi-supervised learning: This method is very similar to unsupervised

learning, but with the difference that some of the samples are labeled. Possible usage

includes classification and clustering problems.

3.2.2.4 Reinforcement learning: Reinforcement learning works in a different

way compared to the other methods. It receives a set of instructions or goals that it must

achieve in a defined environment. The model tries to achieve that goal via trial and error.

Examples of application of this method include control systems and games.

3.3 Artificial Neural Networks

Artificial neural networks (ANN) are machine learning models inspired by the human

brain [6]. Neurons inside the brain are connected to each other in a structure that

resembles a network and communicates with each other via electrical and chemical

signals [16], [20]. Similarly, an artificial neuron is also connected to other artificial

neurons and exchange information with each other. Fig. 8 illustrates a human neuron and

an artificial neuron.

output
links

input
links

core

dentrites

nucleus

axon

axon terminals

Fig. 8. Human neuron and artificial neuron. Picture created by the author.
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The visual representation of an artificial neural network is composed of nodes and

edges, with the former representing artificial neurons and the latter illustrating the

existence of a connection between them.

3.3.1 Unit

The artificial neuron is also called node or unit. A unit receives inputs from other

units and each input is multiplied by a weight. The unit sums all the weighted inputs with

a bias and then passes the result into an activation function. An activation function has the

purpose of adding non-linearity to the data, allowing the model to approximate complex

functions. The result of the activation function is the output of the unit and is forwarded

to the next unit. Fig. 9 illustrates a unit and its components.

output

f(∑xiwi + bias)

x1 activation
function 

summation

w1
bias

w2

wn

x 2

x n

 ∑

Fig. 9. Unit with its input, weights and activation function. Picture created by the author.

3.3.2 Feed-Forward Neural Networks

When the neural network has all connections going in the same direction it is called a

feed-forward network [20]. Usually, the nodes are grouped together in layers and a node

in one layer only receives inputs from nodes from the previous layers and sends its output

to nodes in the next layer. An example of a 2-layer feed-forward network is shown in

Fig. 10.

The first layer of a network is the input layer and the last one is the output layer. If the

network has more than 2 layers, those extra layers are called hidden layers since they will

be between the input and output layers. Neural networks are usually used in supervised
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4 units
(relu)
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2 units

(softmax)

Fig. 10. Feed-forward network with 2 layers. Picture created by the author.

learning, although they can also be used in an unsupervised manner. In the former, the

model receives a collection of samples that have features and labels. The model then

starts learning from that data, a phase that is called training. During training, the model

optimizes its internal parameters which in this case are the weight values used to multiply

the inputs and also a bias which is a constant added to the weighted input. The model

usually starts with arbitrary weights and update its weights based on a loss function that is

calculated from the output of the model (predicted value) and the correct label (truth

value). Based on the loss, the model goes back and updates its weight in a process known

as back-propagation. This cycle repeats for a predefined number of loops (called epochs)

or until the model reaches a specific predefined loss value.

3.3.3 Deep Neural Networks

A neural network with more than 2 layers is called a deep neural network and it is

also classified as a deep learning architecture. The extra layers are denominated hidden

layers since they are located between the input and output layers. Deep neural networks

and deep learning, in general, have shown to be very effective in attacking complex

problems and is a very active area of research [21].
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4 HYPERGLYCEMIA DETECTION MODEL

4.1 Methodology

Extensive research and investigation of different fiducial features extraction methods,

classification models, ANN architectures and hyperparameters were performed with the

objective of identifying the best model to detect hyperglycemia from an ECG. A detailed

list of models and configurations tested, as well as their performance, is found in section

4.5. The model with the best performance was compared against [14], the best

hyperglycemia model in the literature. All of the work was done using the Python

programming language, Biosignal Processing in Python (BioSPPy) library, NeuroKit

framework for Python, Jupyter notebooks, Keras and Tensorflow.

4.2 Dataset

Several public ECG datasets are available for research purposes, specifically at the

Physionet bank [22]. Unfortunately, in order to detect hyperglycemia, the dataset must

include not only ECG data, but also glucose concentration measurements taken at the

same time as the ECG. This thesis worked with a dataset kindly shared by fellow

researcher Chun-Ming Chang from Academia Sinica, Taiwan. He had used this dataset in

his research on using ECG and photoplethysmography (PPG) to predict blood glucose

concentration [23].

The dataset was collected by the Research Center for Applied Sciences, Academia

Sinica, Taiwan based on the following protocol:

• Each subject participated in two recording sessions.

• Each session consisted of the recording of a 60-second single-lead ECG and blood

glucose concentration.

• ECG was acquired using Analog AD-8232 with a sampling rate of 1,000 Hz [24].

• Blood glucose concentration was measured using Accu-Chek Mobile blood glucose

monitoring system [25].
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A total of 1,119 subjects participated, composed of 386 females and 733 males with ages

varying from 38 to 80 years old. The overall profile of the participants and the distribution

of blood glucose concentration can be seen in Fig. 11. For this work, all 2,238 ECG

recordings were analyzed and those informed with low quality were discarded, resulting

in a dataset of 1,963 samples. The samples with glucose concentration higher than 100

mg/dl were labeled with hyperglycemia.
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Fig. 11. Distribution of the blood glucose concentration with different profile information
(age, height, weight, heart rate).

19



4.3 Preprocessing

A machine learning model is as good as the data it receives. Therefore, correctly

understanding and preparing the data that will be provided to the model is often

considered the most important part of a machine learning project. The preprocessing

phase in this work consisted of 6 steps as illustrated in Fig. 12. Each of these steps is

described in the following subsections.

Raw ECG Butterworth
Bandpass filter

[1-40Hz]

Preprocessing

Features
extraction

Fiducial points and 
Cardiac Cycles
 identification

Normalization
Outliers
removal

Features dataQT 
correction

Fig. 12. Preprocessing steps. Picture created by the author.

4.3.1 Filtering

The filtering step removes (or at least attenuates) the noise mentioned in section 3.1.4.

It is a fundamental task that improves the performance of the remaining preprocessing

steps, reducing processing time and fiducial points misidentification. In order to remove

eventual artifacts due to the setup and removal of the electrodes, the first and last 10

seconds of the raw ECG signal received were ignored. The remaining data were filtered

using a Butterworth bandpass filter order 4 with a frequency range of 1 Hz to 40 Hz.

BioSPPy library [26] was used to perform the filtering. An example of an ECG signal

before and after filtering can be seen in Fig. 13.

4.3.2 Fiducial Points and Cardiac Cycles Identification

The next filtering step is to process the signal to identify the cardiac cycles via fiducial

points. A modified version of the Hamilton-Tompkins algorithm [27] implemented in the

BioSPPy library was used for R-peaks identification. The remaining waves - P, Q, S, T -

were then identified with the help of the Neuro Kit library [28], which also computes the
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Raw ECG
Filtered ECG

Fig. 13. Raw and filtered ECG signal.

cardiac cycles with the help of the BioSPPy library. A second fiducial point identification

is done on each individual cardiac cycle in order to improve the peaks (and valleys)

location for each wave. A cardiac cycle with the waves detected is shown in Fig. 14.

Fig. 14. Cardiac cycle with the fiducial points P, Q, R, S and T identified.
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4.3.3 Feature Extraction

There are several different methods for feature extraction from ECG signals, ranging

from simple and direct measurements based on fiducial points to more complex ones that

are based on the entire wave morphology [29]. The former case includes amplitudes and

distances between points and is known as a fiducial-based method. The latter includes

wave frequencies and discrete wavelet transform (DWT) coefficients and is categorized as

non-fiducial-based method. In this work, several experiments were performed testing a

variety of fiducial-based features that could provide similar or better performance than

using the whole cardiac cycle data (600 data points) as the model input. A collection of

18 features composed of 9 lines directly connecting different fiducial points and the

respective slopes of such lines were found to accomplish that objective. Although slopes

have been used before as a feature for biometric authentication systems, the collection of

only 9 direct line lengths and 9 slopes used without any other fiducial data is a novel

approach different from existing feature extraction available in the literature. The direct

line length between two points, such as P and Q, was calculated using Euclidean distance

as shown in Formula 1.

distance(P,Q) =
√

PQx2 +PQy2 =
√
(Qx−Px)2 +(Qy−Py)2 (1)

And the slope was calculated using Formula 2:

slope(PQ) =
PQy
PQx

=
Qy−Py
Qx−Px

(2)

The list of all 18 features used in this work is shown in Table 2 and a detailed

calculation for each one of them is available in Appendix A.
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Table 2
Features Extracted from ECG

# Feature # Feature
1 PQ length 10 QR slope
2 PQ slope 11 QS length
3 PR length 12 QS slope
4 PR slope 13 QT length
5 PS length 14 QT slope
6 PS slope 15 RS length
7 PT length 16 RS slope
8 PT slope 17 RT length
9 QR length 18 RT slope

4.3.4 QT Correction

The QT interval is a metric that is known to have its value impacted by the subject’s

heart rate [30] but also from glucose concentration [31]. Therefore, to help the model

better detect the glucose impact, it is important to have the heart rate interference reduced

as much as possible. Several formulas have been developed to correct the QT interval for

heart rate. A study performed by Vandenberk et al. [31] analyzed 5 different QT

corrections techniques, including Bazett’s formula. Their conclusion was that the

Framingham formula provided the best correction and therefore that was used in this

work. Bazett’s formula, while still widely used, doesn’t always work efficiently since it

overcorrects when the heart rate is lower than 60 bpm and under-corrects when the heart

rate is higher than 60. Based on the Framingham formula, the QT interval can be

corrected by using Formula 3:

QT c = QT +0.154∗ (1−RR) (3)

where RR is can be calculated from the heart rate as shown in Formula 4:

RR =
60

heartrate
(4)

23



4.3.5 Outliers Removal

The features extracted in the previous step can present some outliers. Removal of such

non-consistent data contributes to faster training and better model performance. The

outliers were identified using the interquartile range (IQR) method which defines a lower

and upper bound based on the range between the first and third data quartiles. Formula 5

shows how IQR and the lower and upper bounds are calculated:

IQR = Q3−Q1

Lowerbound = Q1−1.5∗ IQR

Upperbound = Q3+1.5∗ IQR

(5)

where Q1 and Q3 are the first and third quartiles values respectively. Data points

located below the lower bound or above the upper bound values were removed. A high

number of outliers could be a consequence of a very noisy signal or also a poor fiducial

points identification technique. Therefore, it is important to not only remove that data but

also check the percentage of the whole data that were flagged as outliers. High

percentages may indicate a need for revision of the fiducial points identification algorithm.

The dataset used in this work had 68,274 samples and 16,756 were identified as having at

least one outlier feature and thus were removed, leaving 51,518 samples to be used in the

model. Removing the entire sample due to just one outlier feature is a very conservative

approach and was used since the number of samples left was still significant and enough

for training and testing. If a smaller dataset was used, different outlier removal approaches

could be used such as replacing the outlier feature with the average value of that feature

for that same subject.
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4.3.6 Normalization

The features extracted in the previous step don’t share the same unit, so it is very

important to standardize them not only to remove their mean but also scale them to unit

variance before feeding them to the machine learning model. Failing to do so can slow

down training and even hinder the learning process. The normalization process can be

done using Formula 6:

z =
x−µ

σ
(6)

where µ is the mean and σ is the standard deviation of the samples. That calculation

can be easily done with the help of the StandardScaler function available in Python

Scikit-learn library [32].

4.4 Training and Testing

The 1,963 ECG readings were segmented in cardiac cycles and then an equal

proportion of hyperglycemia and non-hyperglycemia were selected, resulting in dataset of

68,274. As mentioned in section 4.3.5, the outlier removal process purged 16,756 samples,

leaving a net of 51,518 samples to be used in the model. A split 80/20 was used to create

the training/testing dataset. Therefore, the training dataset contained 41,214 samples and

the testing 10,304 samples, with almost equal representation of hyperglycemia and

non-hyperglycemia samples.

4.5 Simulations & Results

Several machine learning models and configurations have been explored, including

logistic regression, support vector machine and artificial neural networks (ANN).

Extensive simulations of different ANN architectures were also performed in order to

identify the optimal hyperparameters combination. The AUC of the receiver operating

characteristic (ROC) curve was the performance metric used to compare the models since
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in binary classification problems, the threshold used to distinguish between the 2 output

labels have a direct impact in performance metrics such as accuracy, sensitivity and

specificity. The ROC plots the model performance in terms of true positive rate (TPR) and

false positive rate (FPR) across different thresholds. The area of that curve provides a

combined performance measurement of all those thresholds. For non-ANN models, the

simulations were configured with a maximum number of iterations of 10,000. For ANN

simulations, the models were trained with 1,000 epochs and early stopping when no loss

improvement has been achieved in the last 100 epochs. The training optimizer used was

stochastic gradient descent (SGD) with learning rate 0.0001, which was reduced by half

every time no improvement was obtained after 20 sequential epochs. Table 3 summarizes

the simulations with the best performance for those different models. A comprehensive

list of all models tested and their respective performance can be seen in Appendix B.

Table 3
Model Performance

Model AUC

10-layer DNN 94.53%
Logistic regression (C=5) 62.44%
SVM linear (C=50) 58.99%
SVM polynomial (d=6) 56.36%
SVM Gaussian (C=2) 52.03%

The deep neural network with 10 layers and 500 units per layer, except for the output

layer, provided the best performance among the models simulated. Its architecture and

loss training can be seen in Fig. 15 and Fig. 16 respectively.

The model presented a training AUC of 98.44% and testing AUC of 94.53% as can be

seen in the ROC curves in Fig. 17.
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Fig. 15. Deep neural network architecture that provided the best performance. Picture
created by the author.
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Fig. 16. 10-layer DNN training and validation loss.

A 10 k-fold cross validation, a technique that involves running the simulation with

different combination of testing and training datasets, was also performed in order to

verify the performance consistency of the model, resulting in average AUC of 93.65%.

The AUC for each k-fold round can be seen in Table 4.
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Fig. 17. 10-layer DNN ROC and AUC. A. ROC training dataset. B. ROC testing dataset

Table 4
10 K-fold Cross Validation (10-layer DNN)

k AUC k AUC

1 96.98% 6 97.17%
2 97.23% 7 97.43%
3 96.40% 8 98.23%
4 97.34% 9 96.94%
5 96.03% 10 95.49%

The 10-layer DNN model was also compared to the best model identified in the

literature. Since the work presented by [14] didn’t have AUC values, we compared the

model’s performances using the geometric mean of the sensitivity and specificity, a metric

available in their work. The binary classification threshold used in the DNN was 0.4426,

which is the one that provided the maximum geometric meanwhile also having a

sensitivity greater than the specificity, a characteristic often desired in screening devices.

The geometric mean of sensitivity and specificity of the model presented in this thesis

is 86.30% versus the 67.94% from the 3-layer NN [14], showing a performance

improvement of 27% as can be seen in Table 5.
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Table 5
Model Comparison

Sensitivity Specificity Geometric Mean

10-layer DNN 87.57% 85.04% 86.30%
3-layer ANN [14] 70.59% 65.38% 67.94%
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5 CONCLUSIONS

This thesis presented a novel approach for ECG feature extraction and also a

non-invasive hyperglycemia detection mechanism using ECG and deep learning. Its

performance of 87.57% sensitivity and 85.04% specificity is an excellent indication that

ECG signals possess intrinsic information that can indicate the level of blood glucose

concentration. In addition, the model performance is, in aggregate, 27% better than the

current best model in the literature to date [14]. The proliferation of consumer devices

with ECG reading capabilities such as smart watches, wristbands, and even handheld

ECG readers create an environment in which ECG acquisition becomes cheap and

accessible to everyone. The knowledge created by this research provides a way to

improve such devices to allow users to detect a hyperglycemic state in a quick, painless

and easy way, contributing to the identification of health issues that don’t manifest

themselves until it is too late. Professional health environments in which patients have

their ECG taken could also use this research to improve their devices to identify

hyperglycemia without any extra hardware. Lastly, patients in need of close monitoring of

their glucose levels such as pregnant women with gestational diabetes and diabetic

individuals could benefit from a painless screening device powered by this research.
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6 FUTURE WORK

The deep learning model presented in this thesis, a 10-layer deep neural network, was

developed with 2 characteristics in mind: performance and simplicity. But in machine

learning sometimes the best performance can only be achieved with complex models.

Therefore, different and more complex architectures such as long short-term memory

(LSTM), convolutional neural networks (CNN), recurrent neural networks (RNN),

block-based neural network (BBNN) and others could be tested.

The thesis also focused in contributing to the field with a novel set of ECG features.

Thus, experiments with established ECG fiducial features (intervals and amplitudes) and

non-fiducial ones could also be developed and the performance compared.

Extension of this model to detect hypoglycemia and even the shift from a classification

model to a glucose concentration prediction (regression) could also be sought after.
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[9] G. Perpiñan, E. Severeyn, S. Wong, and M. Altuve, “Nonlinear heart rate variability
measures during the oral glucose tolerance test,” in Proc. Computing in Cardiology
(CinC), pp. 1–4, Sept. 2017.

[10] B. Suys, S. Heuten, D. De Wolf, M. Verherstraeten, L. O. de Beeck, D. Matthys,
C. Vrints, and R. Rooman, “Glycemia and corrected QT interval prolongation in
young type 1 diabetic patients: what is the relation?,” Diabetes Care, vol. 29,
pp. 427–429, Feb. 2006.

32



[11] T. F. Christensen, L. Tarnow, J. Randløv, L. E. Kristensen, J. J. Struijk, E. Eldrup,
and O. K. Hejlesen, “QT interval prolongation during spontaneous episodes of
hypoglycaemia in type 1 diabetes: the impact of heart rate correction,” Diabetologia,
vol. 53, pp. 2036–2041, Sep 2010.

[12] R. Marfella, F. Nappo, L. De Angelis, M. Siniscalchi, F. Rossi, and D. Giugliano,
“The effect of acute hyperglycaemia on QTc duration in healthy man.,” Diabetologia,
vol. 43, pp. 571–575, May 2000.

[13] L. L. Nguyen, S. Su, and H. T. Nguyen, “Identification of hypoglycemia and
hyperglycemia in type 1 diabetic patients using ECG parameters,” in Proc. Annual
Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 2716–2719,
Aug. 2012.

[14] L. L. Nguyen, S. Su, and H. T. Nguyen, “Neural network approach for non-invasive
detection of hyperglycemia using electrocardiographic signals,” in Proc. 36th Annual
Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 4475–4478,
Aug. 2014.

[15] J. Malmivuo and R. Plonsey, Bioelectromagnetism - Principles and Applications of
Bioelectric and Biomagnetic Fields. Oxford University Press, 01 1995.

[16] C. Soto, ECG: Essentials of Electrocardiography. Cengage Learning, 2015.

[17] A. Lorsheyd, D. W. de Lange, M. L. Hijmering, M. J. M. Cramer, and A. van de
Wiel, “PR and OTc interval prolongation on the electrocardiogram after binge
drinking in healthy individuals.,” The Netherlands Journal of Medicine, vol. 63,
pp. 59–63, Feb. 2005.

[18] A. Su, “ECG noise filtering using online model-based bayesian filtering techniques,”
Master’s thesis, University of Waterloo, 2013.

[19] F. Buendı́a-Fuentes, M. Arnau-Vives, A. Arnau-Vives, Y. Jiménez-Jiménez,
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Appendix A

FIDUCIAL FEATURES

The detailed calculation of all 18 features used as input for the models simulated in

this thesis are detailed below.

A.1 PQ Distance and Slope

distance(P,Q) =
√

PQx2 +PQy2 =
√
(Qx−Px)2 +(Qy−Py)2 (7)

slope(PQ) =
PQy
PQx

=
Qy−Py
Qx−Px

(8)
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Fig. 18. PQ distance and slope

A.2 PR Distance and Slope

distance(P,R) =
√

PRx2 +PRy2 =
√
(Rx−Px)2 +(Ry−Py)2 (9)

slope(PR) =
PRy
PRx

=
Ry−Py
Rx−Px

(10)
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Fig. 19. PR distance and slope

A.3 PS Distance and Slope

distance(P,S) =
√

PSx2 +PSy2 =
√
(Sx−Px)2 +(Sy−Py)2 (11)

slope(PS) =
PSy
PSx

=
Sy−Py
Sx−Px

(12)
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Fig. 20. PS distance and slope

A.4 PT Distance and Slope

distance(P,T ) =
√

PT x2 +PTy2 =
√

(T x−Px)2 +(Ty−Py)2 (13)
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slope(PT ) =
PTy
PT x

=
Ty−Py
T x−Px

(14)
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Fig. 21. PT distance and slope

A.5 QR Distance and Slope

distance(Q,R) =
√

QRx2 +QRy2 =
√
(Rx−Qx)2 +(Ry−Qy)2 (15)

slope(QR) =
QRy
QRx

=
Ry−Qy
Rx−Qx

(16)
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Fig. 22. QR distance and slope
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A.6 QS Distance and Slope

distance(Q,S) =
√

QSx2 +QSy2 =
√
(Sx−Qx)2 +(Sy−Qy)2 (17)

slope(QS) =
QSy
QSx

=
Sy−Qy
Sx−Qx

(18)
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Fig. 23. QS distance and slope

A.7 QT Distance and Slope

distance(Q,T ) =
√

QT x2 +QTy2 =
√
(T x−Qx)2 +(Ty−Qy)2 (19)

slope(QT ) =
QTy
QT x

=
Ty−Qy
T x−Qx

(20)

A.8 RS Distance and Slope

distance(R,S) =
√

RSx2 +RSy2 =
√
(Sx−Rx)2 +(Sy−Ry)2 (21)

slope(RS) =
RSy
RSx

=
Sy−Ry
Sx−Rx

(22)
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Fig. 25. RS distance and slope

A.9 RT Distance and Slope

distance(R,T ) =
√

RT x2 +RTy2 =
√
(T x−Rx)2 +(Ty−Ry)2 (23)

slope(RT ) =
RTy
RT x

=
Ty−Ry
T x−Rx

(24)
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Appendix B

MODELS SIMULATIONS RESULTS

The Table 6 below shows the performance, measured as the area under the curve of

the testing dataset for different non-ANN models and C (or degree for SVN polynomial)

parameters.

Table 6
AUC Values for Different Models and C / Degree Parameter

C
or degree

Logistic
Regression

SVM
Linear

SVM
Gaussian

SVM
Polynomial

0.001 61.45% 58.02% 18.60% -
0.01 62.09% 53.86% 18.16% -
0.1 61.87% 42.17% 17.61% -
1 62.37% 57.36% 47.90% 55.92%
2 61.87% 44.01% 52.03% 55.14%
3 61.87% 57.57% 52.03% 42.74%
4 61.92% 43.47% 52.03% 48.17%
5 62.44% 42.22% 52.03% 41.85%
6 61.95% 41.88% 52.03% 56.36%
7 61.91% 41.96% 52.03% 50.15%
8 62.43% 44.88% 52.03% 50.00%
9 61.85% 50.16% 52.03% 50.00%
10 62.39% 41.37% 52.03% 50.00%
20 61.86% 57.93% 52.03% 50.00%
30 61.84% 48.64% 52.03% 50.00%
40 61.90% 41.66% 52.03% 50.00%
50 62.44% 58.99% 52.03% 50.00%
60 61.86% 57.56% 52.03% 50.00%
70 61.87% 56.22% 52.03% 50.00%
80 61.93% 51.63% 52.03% 50.00%
90 61.92% 56.93% 52.03% 50.00%
100 62.37% 42.46% 52.03% 50.00%
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For ANN models, Table 7 below shows the AUC for different number of layers and

number of units per layer.

Table 7
AUC Values for Different Number of Layers and Units per Layer

# of units per layer
(exc. output layer)

# of layers

100 200 300 400 500

2 49.96% 50.00% 50.00% 79.64% 50.00%
3 79.34% 50.00% 50.00% 50.00% 50.00%
4 80.46% 49.99% 88.68% 50.00% 89.25%
5 83.64% 87.02% 88.57% 90.76% 50.00%
6 82.94% 89.85% 91.68% 91.06% 92.53%
7 85.69% 90.78% 91.94% 92.43% 93.20%
8 86.57% 89.49% 92.76% 92.26% 93.44%
9 88.81% 89.96% 92.80% 92.91% 93.59%
10 89.06% 91.88% 92.29% 94.34% 94.53%
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