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ABSTRACT

NON-INVASIVE HYPERGLYCEMIA DETECTION USING ECG AND DEEP
LEARNING

by Renato Silveira Cordeiro

Hyperglycemia is characterized by an elevated level of glucose in the blood. It is
normally asymptomatic, except for an extremely high level, and thus a person can live in
that state for years before the negative - sometimes irreversible - health impacts appear.
Unexpected hyperglycemia can also be an indication of diabetes, a chronic disease that,
when not treated, can lead to serious consequences, including limb amputations and even
death. Therefore, identifying hyperglycemic state is important. The most common and
direct way to measure a person’s glucose level is by directly assessing it from a blood
sample by pricking a finger, which causes discomfort and even pain. The constant finger
pricking can also lead to bruising and increases the possibility of infection. This thesis
presents a non-invasive technique of detecting hyperglycemia by using a person’s
electrocardiogram (ECG) and deep learning. The ECG signal is preprocessed to remove
noise, identify fiducial points, extract and adjust features, remove outliers and normalize
the data. This thesis applied a novel approach to feature extraction in which, instead of
just using fiducial amplitudes and intervals, a direct line was drawn between fiducial
points and its length and slope were used as features. The labeled features were used in
10-layer deep neural network and resulted in an area under the curve (AUC) of 94.53%,
sensitivity of 87.57% and specificity of 85.04%. Such strong performance indicates that
ECG carry intrinsic information that can be used to identify hyperglycemic state, enabling
the use of ECG-based hardware together with deep learning for non-invasive

hyperglycemia detection.
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1 INTRODUCTION

Hyperglycemia, also known as high blood sugar, is a physiological state in which
there is a high concentration of glucose in the bloodstream. This state naturally occurs
following meals but after a few hours, the body should return to a normoglycemic state
mainly due to work of the hormone insulin [1]. Hyperglycemia is usually defined as a
blood glucose concentration (BGC) of 100 mg/dl or higher in a fasting state. A person in
a constant state of hyperglycemia, especially when fasting, can be in a situation in which
the body is not able to process the glucose anymore. This is usually a consequence of
insulin resistance, a condition in which the body becomes insensitive to insulin and the
hormone is not able to decrease blood glucose concentration. Insulin resistance is a
marker for type 2 diabetes mellitus [2], a disease that when not treated, can lead to serious
health problems including blindness, limb amputation, heart diseases, and even death.

The traditional method for measuring blood glucose is via assessment of glucose
concentration in a blood sample. The sample can be a few drops of blood acquired by
pricking the finger or a larger amount obtained by health professionals. Both processes
are invasive and generate pain and discomfort, creating a barrier for their widespread use
as a screening mechanism. The exposure of blood also creates another under-recognized,
but still critical problem which is the possibility of bloodborne pathogen transmissions [3]
such as the hepatitis B/C virus (HBV / HCV), human immunodeficiency virus (HIV) or
others due to the sharing of blood glucose meters or accessories among infected
people. [4] states that 15 out of 18 HBV infections outbreaks since the year 1990 were
attributed to the improper use of blood glucose monitoring systems. Lastly, the use of
such invasive systems also creates a significant environmental impact due to the creation
of medical waste [5]. Therefore, a non-invasive method with little waste to detect

hyperglycemia would be useful for individuals and society in general.



Machine learning is the process of automatically identifying useful patterns in data [6].
It is a cross-industry tool that enables the clusterization or classification of data based on
explicit or implicit characteristics of data called features. It has been largely used for
problems such as customer segmentation, behavior prediction, and others. Recently it has
been applied more often to healthcare to identify patterns of disease or biomarkers not
directly visible to the human eye. Deep learning models, which are a specific type of
machine learning models, have been achieving promising results in that area.

This thesis presents a deep learning model that is capable of identifying
hyperglycemia using an electrocardiogram (ECG). In addition, this thesis presents a novel
feature extraction mechanism from ECG signals focused on slopes and direct distances
between fiducial points. This resulted in a feature size reduction of 97% when compared

to a full ECG cardiac cycle.



2 LITERATURE REVIEW

Several studies investigating the impact of blood glucose concentration on different
ECG metrics have been conducted. Amanipour et al. [7] analyzed the heart rate variability
(HRV) frequency domain components of a diabetic female subject under normoglycemic
and hyperglycemic conditions. They noticed a 6-fold decrease in the low frequency / high
frequency ratio. Although the study was limited to just one person, it corroborated the
results achieved by Fujimoto et al. [8] showing that the ratio was negatively correlated
with blood glucose concentration. Perpifian et al. [9] assessed the impact of taking a 75 g
oral glucose test in subjects with metabolic syndrome. A control group was used and both
groups had their HRV monitored after drinking the glucose solution. After 30 minutes, the
metabolic syndrome group presented significantly higher HRV irregularity than the
control group. After 60 minutes of the glucose intake, the HRV irregularity in subjects
with metabolic syndrome decreased while that was not observed in the control group.

Another metric known to be impacted by blood glucose levels is the QT interval of
the cardiac cycle. Suys et al. [10] monitored the ECG and blood glucose concentration of
type 1 diabetic children by using a Holter and continuous glucose monitoring device.
They identified a prolongation of QT and QTc intervals (QT interval adjusted by Bazett’s
formula) with lower blood glucose concentration. Christensen et al. [11] also studied the
relationship between hypoglycemia and QTc interval in a group of type 1 diabetic adults
and identified a moderate increase in the QTc interval. Marfela et al.’s [12] research on
the impact of blood glucose in QT duration achieved a different result. More specifically,
they found that acute hyperglycemia in healthy patients resulted in a significant increase
in QTc interval, QTc dispersion, and PR interval. That apparent contradiction with
existing literature that shows QTc prolongation associated with hypoglycemia could be
explained by the fact that their study was composed only of healthy subjects instead of

diabetic patients.



Nguyen et al. [13] analyzed the effect of hypoglycemia and hyperglycemia on several
ECG parameters, including HR, QTc, PR, RTc, TpTec (T-peak to T end). They identified
that low blood glucose was associated with prolonged RTc, QTc and TpTec. In contrast,
high blood concentration was related not only to a decreased RTc, QTc, TpTec but also to
an increased PR. In 2014, Naguyen et al. [14] went one step further by proposing a neural
network model to detect hyperglycemia using 16 features extract from an ECG. This ECG

features are summarized in Table 1.

Table 1
ECG Features List Used to Calculate Hyperglycemia

#  Feature Type

1 HR Intervals

2 PR Intervals

3  QTc Intervals

4 RTc Intervals

5 TpTec Intervals

6  Mean RR interval Time-domain
Standard deviation of the . .

7 RR Interval index (SDNN) Time-domain
Root mean square of successive . .

8 RR interval differences (RMSSD) Time-domain
Percentage of consecutive RR intervals . .

9 ‘that differ by more than 50ms (pNNS50) Time-domain

10 HRV triangular index (HRV1) Time-domain

11 Baseline width of the RR interval histogram evaluated

through triangular interpolation (TINN) Time-domain

12 Very low frequency (VLF) Frequency-domain
13 Low frequency (LF) Frequency-domain
14 High frequency (HF) Frequency-domain
15 Total spectral power (TotalPw) Frequency-domain
16 LF/HF ratio Frequency-domain

Note: adapted from Nguyen et al. [14]

Their best model achieved moderate performance with a sensitivity of 70.59% and
specificity of 65.38%. The dataset used was also very limited since it was restricted to

only 10 subjects.



To overcome the limitations of the aforementioned study, this thesis introduces a new
deep learning architecture along with a novel feature extraction technique and large

dataset to improve performance.



3 THEORY BACKGROUND
3.1 Electrocadiogram
3.1.1 Whatis ECG

Electrocardiograms (ECGs) are recordings of cardiac electrical activity produced by
depolarization and repolarization of atria and ventricles during each cardiac cycle [15].
Human heart signals were first captured by British physiologist Augustus Waller in 1887
by using a capillary electrometer and in 1903, Dutch physiologist Willem Einthoven
created the first practical ECG machine based on a string galvanometer, a device that uses
the electromagnetic field to detect very small currents. His contribution to clinical
electrocardiography was recognized with the Nobel Prize of Physiology in 1924 [15].
ECG works by measuring the potential difference between electrodes placed in different
locations of the human skin. The quantity and location of the electrodes can vary and are
related to how many electrical views (also called "leads”) are to be captured. Single-lead
ECG readers use two or three electrodes to capture one view of heart electrical activity.
This has been recently used on products for consumer use such as wristbands and smart
watches. Although those devices provide just one electrical view (single lead), this is
enough to provide HR and HRV calculation as well as detection of an arrhythmia.
Another common configuration is the 12-lead ECG that uses 10 electrodes, which is the
standard in clinical environments. More details about leads and the quantity and locations
of electrodes are provided in section 3.1.3.

The human heart is often referred to as a pump that sends blood throughout the body.
It is divided into 4 chambers as can be seen in Fig. 1. The top chambers are called the left
and right atria and the bottom chambers left and right ventricles. The left atrium receives
the oxygen-rich blood from the lungs which is passed to the left ventricle. From there the
blood is pumped to the rest of the body, returning to the heart via the right atrium. This

oxygen-depleted blood is then sent to the right ventricle and then to the lungs. A
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Fig. 1. Heart with a normal flow and its 4 chambers. Picture created by the author.

schematic of the blood flow inside the heart can also be seen in Fig. 1. Such movement is
a consequence of cardiac muscle contraction triggered by an electrical impulse regularly
generated by a group of cells located in the top part of the right atrium called the
sinoatrial node (SA node or sinus node), also often referred as the heart’s pacemaker [16].
The electrical impulse spreads through the heart cells making the atria and ventricles
contract and relax sequentially, sending the blood from the heart to the rest of the body
(organs and lungs). As mentioned before, it is possible to measure that electrical impulse

as it moves through the heart with the use of electrodes placed on top of a person’s skin.

3.1.2 ECG Signal and Main Components

The signal captured by ECG is a combination of waves that succeed each other in a
period manner as the heart goes through its cardiac cycles. An illustration of an ECG

signal can be seen in Fig. 2.



Cardiac cycle

Fig. 2. Electrical impulse captured by ECG. Picture created by the author.

Einthoven named each of the waves inside a cardiac cycle with a letter: P, Q, R, S, T
and U. That last one is not common and appears to be present in some people under
specific situations. Each of the waves reflects a different time of the electrical impulse
moving through the heart cells and abnormalities in the shape or duration of a wave can
indicate the presence of a heart disease condition. Each wave is further detailed below.

3.1.2.1 P-wave: The first noticeable wave in a cardiac cycle is called P-wave
and represents the contraction of the left and right atria due to a depolarization triggered
by the SA node. This phenomenon is also called atrial systole. The normal duration for a
P-wave is between 0.06 to 0.12 s and its amplitude falls between 0.02 and 0.03 mV.

3.1.2.2 Q-wave: After the electrical impulse propagates through the atria walls,
it moves downwards and reaches the atrioventricular node (AV node) located at the
interatrial septum. The Q-wave reflects the septal depolarization and has a duration and
amplitude of less than 0.04 s and 0.02 mV, respectively.

3.1.2.3 R-wave: The R-wave reflects the electrical impulse flowing through the
ventricular walls. It is the most prominent wave of the entire cardiac cycle and therefore
used as a base point for several analyses, including heart rate calculation via the R-R

interval.



3.1.2.4  S-wave: The Purkinje fibers are the last area to be depolarized and the
S-wave reflects that. Different from other waves, the S-wave does not present great
significance alone as an indicator of heart disease.

3.1.2.5 T-wave: Before the next heartbeat cycle can occur, the ventricles need
to repolarized and that is what the T-wave represents. The repolarization of the other areas
was already occurring concomitantly with the depolarization of the ventricles as can be
seen in Fig. 3.

3.1.2.6  U-wave: The last wave in the cycle is the U-wave. This is a peculiar one
since it is normally not seen and only has been reported to be present in some subjects
under the influence of alcohol [17] or antiarrhythmic drugs, or as a consequence of
electrolyte imbalances or drug toxicity [16]. Its origin is still not clear but it is believed

that it is due to repolarization of the Purkinje fibers [16].

Bundle
branches

Purkinje
fibers

4

N >
Ventricular
muscle

T T T T T T 1
Time[ms]0 100 200 300 400 500 600 700

Fig. 3. Cardiac cycle composition. Reprinted with permission from [15].



3.1.2.7 QRS complex: The combination of the Q, R and S waves is known as
the QRS complex and it reflects the left and right ventricles’ depolarization. Its normal

duration is between 0.06 and 0.12 s [16].

3.1.3 Capturing ECG Signal

As mentioned in section 3.1.1, ECG uses electrodes to capture the electrical activity
of the heart. It works by measuring the potential difference between 2 electrodes, and
thus, that is the minimum quantity required to have one ECG signal.

The signal captured by a pair of electrodes represents a specific view of the heart’s
electrical activity and is dependent on the electrodes’ location on the body. That specific
view of the heart is also referred to as lead or angle. Therefore, a single-lead ECG reader
provides just one specific view of the heart. In the same way, a 12-lead ECG reader
provides 12 views. It is important to not confuse that lead (view) term with the actual
metal piece that is connected to the electrode, which is also called lead. Fig. 4 shows a

single-lead ECG reader with 3 electrodes.

& Go Direct” EKG

)

Vernier +4

T

Fig. 4. Single-lead ECG reader and 3 electrodes. Picture taken by the author.

3.1.3.1 12-lead ECG: The most common setting in hospitals and clinical
environments is the 12-lead ECG which is achieved by the use of 10 electrodes. Six of

those leads are called limb leads since they are obtained by using 4 electrodes placed on

10



the person’s limbs (left arm, right arm, left leg, right leg). The remaining 6 leads are
called precordial leads and are obtained with 6 electrodes placed on the person’s chest.

Fig. 5 illustrate the location of all 10 electrodes.

Fig. 5. Location of electrodes in a 12-Lead ECG. Picture created by the author.

The 6 limb leads are named lead I, lead II, lead III, lead aVR, lead aVL and lead aVF.
The last 3 leads are actually virtual leads obtained from the combination of the former 3
leads (I, II, IIT) and starts with the prefix ”a” to indicate “augmented”. The 6 precordial
leads are called V1, V2, V3, V4, V5, and V6. The ECG signals showed so far in this
thesis is the one provided by lead II, in which we have a P-wave with positive amplitude,
a complete QRS complex (small negative amplitude followed by a high positive one and

then by a negative one) with a T-wave with positive amplitude at the end of the cardiac

11



cycle. The other leads would show some differences such as a P-wave with negative
amplitude or different wave amplitudes.

3.1.3.2 Single-lead ECG: A simpler setting is the single-lead ECG which
captures just one electrical signal with the use of 2 or 3 electrodes. That ECG view is
equivalent to the lead II of a 12-lead ECG. Several personal ECG handheld devices
available in the market, as well as other wearable and mobile devices with ECG reading
capabilities, are single-lead. Although having just one lead means less information from
the heart than the use of a 12-lead, it can still provide very useful information such as HR,
HRYV and arrhythmia detection. Fig. 6 shows an example of a single-lead handheld ECG

reader manufactured by the company AliveCor.

Fig. 6. Single-lead handheld ECG reader. Picture taken by the author.

3.1.4 ECG Noise

ECG measures electrical activity and, as with any measurement of biological signals,
is subject to noise. In particular, ECG suffers from several types of noise [16], [18] that
are described below.

3.1.4.1 Respiration baseline wandering: This noise is generated by the
respiratory activity of the person. It is reflected as a low frequency signal ranging between

0.05 Hz and 1 Hz [18]. The use of a high pass filter with a frequency of 1 Hz or higher is

12



usually enough to remove this type of noise. Fig. 7 shows the effect of respiration

baseline wandering in an ECG signal.

LN L W
N el g

Fig. 7. ECG signal contaminated by baseline wandering noise.

3.1.4.2 Power line interference: ECG devices generate intrinsic noise due to
their capacitive and inductive coupling. The noise due to capacitive coupling is usually
centered at 50 Hz or 60 Hz [18] and therefore a low pass filter can be used to remove it.
The inductive coupling produces low frequency noise that overlaps with the actual
electrical signal being measured, making it difficult to remove without losing ECG
data. [19] shows that a low frequency cut of 0.5 Hz already impacts the ST segment
interpretation.

3.1.4.3 Muscle artifacts: Contractions of muscles near the heart can be captured
by ECG, showing up as waves with small amplitudes. Other muscle movements can also
be read and appear as normal noise. The former can be removed by preprocessing the
signal and taking into consideration all the expected waves and respective amplitudes and
duration inside a cardiac cycle. The latter can be difficult to remove [18].

3.1.4.4 Electrode motion artifacts: These artifacts are usually reflected as
amplitudes spikes and sometimes as baseline drifts and are due to a person’s movement

during the ECG. It is very difficult to remove such noise.

13



3.1.4.5 Environment interference: The environment in which the person is
located during the ECG can interfere in the measurements. Fluorescent light and other
electronics such as cell phones can generate artifacts [16] and therefore it is recommended

that appropriate actions are taken to remove, or at least decrease, such interference.

3.2 Machine Learning
3.2.1 What is Machine Learning

Machine learning is the process of automatically identifying useful patterns in
data [6]. By identifying patterns, machine learning models can “’learn” from the data and
apply that learning to data not yet seen. The data given to the model must be a collection
of examples (also known as samples) that share one or more characteristics. A common
characteristic across samples is called feature. Machine learning is usually segmented by

its learning methods.

3.2.2 Learning Methods

Machine learning can be classified in 4 different methods: supervised learning,
unsupervised learning, semi-supervised learning and reinforcement learning. They mainly
differ in the data structure given to the model and the objective. A brief description of
each one is provided in the following subsections.

3.2.2.1 Supervised learning: In this method, the data used to train the model are
labeled, so for each sample, the model receives the features (input) and also the label
(output). The model treats that collection of inputs-outputs as conditions that it must try to
fulfill by optimizing its internal parameters. The label could be a discrete or continuous
value. If the former, it is said to be a classification problem, if the latter, a regression
problem.

3.2.2.2 Unsupervised learning: The unsupervised learning method receives

samples without labels, so the model works by finding similarities based on the features

14



provided. This method is commonly used for clustering and association problems and also
for dimensionality reduction.

3.2.2.3 Semi-supervised learning: This method is very similar to unsupervised
learning, but with the difference that some of the samples are labeled. Possible usage
includes classification and clustering problems.

3.2.2.4 Reinforcement learning: Reinforcement learning works in a different
way compared to the other methods. It receives a set of instructions or goals that it must
achieve in a defined environment. The model tries to achieve that goal via trial and error.

Examples of application of this method include control systems and games.

3.3 Artificial Neural Networks

Artificial neural networks (ANN) are machine learning models inspired by the human
brain [6]. Neurons inside the brain are connected to each other in a structure that
resembles a network and communicates with each other via electrical and chemical
signals [16], [20]. Similarly, an artificial neuron is also connected to other artificial
neurons and exchange information with each other. Fig. 8 illustrates a human neuron and

an artificial neuron.

dentrlt\es axon terminals

/
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Fig. 8. Human neuron and artificial neuron. Picture created by the author.
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The visual representation of an artificial neural network is composed of nodes and
edges, with the former representing artificial neurons and the latter illustrating the

existence of a connection between them.
3.3.1 Unit

The artificial neuron is also called node or unit. A unit receives inputs from other
units and each input is multiplied by a weight. The unit sums all the weighted inputs with
a bias and then passes the result into an activation function. An activation function has the
purpose of adding non-linearity to the data, allowing the model to approximate complex
functions. The result of the activation function is the output of the unit and is forwarded

to the next unit. Fig. 9 illustrates a unit and its components.

X bias activation

W\l * function
w
X 5 2
. f(Sx;w; + bias)
% W/summation

n n

output

Fig. 9. Unit with its input, weights and activation function. Picture created by the author.

3.3.2 Feed-Forward Neural Networks

When the neural network has all connections going in the same direction it is called a
feed-forward network [20]. Usually, the nodes are grouped together in layers and a node
in one layer only receives inputs from nodes from the previous layers and sends its output
to nodes in the next layer. An example of a 2-layer feed-forward network is shown in
Fig. 10.

The first layer of a network is the input layer and the last one is the output layer. If the
network has more than 2 layers, those extra layers are called hidden layers since they will

be between the input and output layers. Neural networks are usually used in supervised
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input layer output layer
4 units 2 units
(relu) (softmax)

Fig. 10. Feed-forward network with 2 layers. Picture created by the author.

learning, although they can also be used in an unsupervised manner. In the former, the
model receives a collection of samples that have features and labels. The model then
starts learning from that data, a phase that is called training. During training, the model
optimizes its internal parameters which in this case are the weight values used to multiply
the inputs and also a bias which is a constant added to the weighted input. The model
usually starts with arbitrary weights and update its weights based on a loss function that is
calculated from the output of the model (predicted value) and the correct label (truth
value). Based on the loss, the model goes back and updates its weight in a process known
as back-propagation. This cycle repeats for a predefined number of loops (called epochs)

or until the model reaches a specific predefined loss value.

3.3.3 Deep Neural Networks

A neural network with more than 2 layers is called a deep neural network and it is
also classified as a deep learning architecture. The extra layers are denominated hidden
layers since they are located between the input and output layers. Deep neural networks
and deep learning, in general, have shown to be very effective in attacking complex

problems and is a very active area of research [21].
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4 HYPERGLYCEMIA DETECTION MODEL
4.1 Methodology

Extensive research and investigation of different fiducial features extraction methods,
classification models, ANN architectures and hyperparameters were performed with the
objective of identifying the best model to detect hyperglycemia from an ECG. A detailed
list of models and configurations tested, as well as their performance, is found in section
4.5. The model with the best performance was compared against [14], the best
hyperglycemia model in the literature. All of the work was done using the Python
programming language, Biosignal Processing in Python (BioSPPy) library, NeuroKit

framework for Python, Jupyter notebooks, Keras and Tensorflow.
4.2 Dataset

Several public ECG datasets are available for research purposes, specifically at the
Physionet bank [22]. Unfortunately, in order to detect hyperglycemia, the dataset must
include not only ECG data, but also glucose concentration measurements taken at the
same time as the ECG. This thesis worked with a dataset kindly shared by fellow
researcher Chun-Ming Chang from Academia Sinica, Taiwan. He had used this dataset in
his research on using ECG and photoplethysmography (PPG) to predict blood glucose
concentration [23].

The dataset was collected by the Research Center for Applied Sciences, Academia
Sinica, Taiwan based on the following protocol:

» Each subject participated in two recording sessions.

» Each session consisted of the recording of a 60-second single-lead ECG and blood
glucose concentration.

o ECG was acquired using Analog AD-8232 with a sampling rate of 1,000 Hz [24].

« Blood glucose concentration was measured using Accu-Chek Mobile blood glucose

monitoring system [25].
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A total of 1,119 subjects participated, composed of 386 females and 733 males with ages

varying from 38 to 80 years old. The overall profile of the participants and the distribution

of blood glucose concentration can be seen in Fig. 11. For this work, all 2,238 ECG

recordings were analyzed and those informed with low quality were discarded, resulting

in a dataset of 1,963 samples. The samples with glucose concentration higher than 100

mg/dl were labeled with hyperglycemia.
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Fig. 11. Distribution of the blood glucose concentration with different profile information
(age, height, weight, heart rate).
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4.3 Preprocessing

A machine learning model is as good as the data it receives. Therefore, correctly
understanding and preparing the data that will be provided to the model is often
considered the most important part of a machine learning project. The preprocessing
phase in this work consisted of 6 steps as illustrated in Fig. 12. Each of these steps is

described in the following subsections.

Preprocessing

Raw ECG Butterworth | |Fiducial points and Features data

Bandpass filter Cardiac Cycles Featur_es QT, Outliers Normalization
,_\[\KM\R [1-40Hz] identification extraction | | correction removal

Fig. 12. Preprocessing steps. Picture created by the author.

4.3.1 Filtering

The filtering step removes (or at least attenuates) the noise mentioned in section 3.1.4.
It is a fundamental task that improves the performance of the remaining preprocessing
steps, reducing processing time and fiducial points misidentification. In order to remove
eventual artifacts due to the setup and removal of the electrodes, the first and last 10
seconds of the raw ECG signal received were ignored. The remaining data were filtered
using a Butterworth bandpass filter order 4 with a frequency range of 1 Hz to 40 Hz.
BioSPPy library [26] was used to perform the filtering. An example of an ECG signal

before and after filtering can be seen in Fig. 13.

4.3.2 Fiducial Points and Cardiac Cycles Identification

The next filtering step is to process the signal to identify the cardiac cycles via fiducial
points. A modified version of the Hamilton-Tompkins algorithm [27] implemented in the
BioSPPy library was used for R-peaks identification. The remaining waves - P, Q, S, T -

were then identified with the help of the Neuro Kit library [28], which also computes the
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Fig. 13. Raw and filtered ECG signal.

cardiac cycles with the help of the BioSPPy library. A second fiducial point identification
is done on each individual cardiac cycle in order to improve the peaks (and valleys)

location for each wave. A cardiac cycle with the waves detected is shown in Fig. 14
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Fig. 14. Cardiac cycle with the fiducial points P, Q, R, S and T identified
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4.3.3 Feature Extraction

There are several different methods for feature extraction from ECG signals, ranging
from simple and direct measurements based on fiducial points to more complex ones that
are based on the entire wave morphology [29]. The former case includes amplitudes and
distances between points and is known as a fiducial-based method. The latter includes
wave frequencies and discrete wavelet transform (DWT) coefficients and is categorized as
non-fiducial-based method. In this work, several experiments were performed testing a
variety of fiducial-based features that could provide similar or better performance than
using the whole cardiac cycle data (600 data points) as the model input. A collection of
18 features composed of 9 lines directly connecting different fiducial points and the
respective slopes of such lines were found to accomplish that objective. Although slopes
have been used before as a feature for biometric authentication systems, the collection of
only 9 direct line lengths and 9 slopes used without any other fiducial data is a novel
approach different from existing feature extraction available in the literature. The direct
line length between two points, such as P and Q, was calculated using Euclidean distance

as shown in Formula 1.

distance(P, Q) = \/ PQx*> + PQy* = \/(Qx—Px)2+ (Qy—Py)? (1)

And the slope was calculated using Formula 2:

_PQy Qy—Py
~ POx Qx—Px

slope(PQ) 2)

The list of all 18 features used in this work is shown in Table 2 and a detailed

calculation for each one of them is available in Appendix A.
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Table 2
Features Extracted from ECG

# Feature #  Feature

1 PQ length 10 QR slope

2 PQ slope 11 QS length
3 PR length 12 QS slope

4 PR slope 13 QT length
5 PS length 14 QT slope

6 PS slope 15 RS length
7 PT length 16 RS slope

g PT slope 17 RT length

QR length 18 RT slope

4.3.4 QT Correction

The QT interval is a metric that is known to have its value impacted by the subject’s
heart rate [30] but also from glucose concentration [31]. Therefore, to help the model
better detect the glucose impact, it is important to have the heart rate interference reduced
as much as possible. Several formulas have been developed to correct the QT interval for
heart rate. A study performed by Vandenberk et al. [31] analyzed 5 different QT
corrections techniques, including Bazett’s formula. Their conclusion was that the
Framingham formula provided the best correction and therefore that was used in this
work. Bazett’s formula, while still widely used, doesn’t always work efficiently since it
overcorrects when the heart rate is lower than 60 bpm and under-corrects when the heart
rate is higher than 60. Based on the Framingham formula, the QT interval can be

corrected by using Formula 3:

QOTc = QT +0.154% (1 —RR) 3)
where RR is can be calculated from the heart rate as shown in Formula 4:

60

RR= ——
heartrate

“4)
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4.3.5 Outliers Removal

The features extracted in the previous step can present some outliers. Removal of such
non-consistent data contributes to faster training and better model performance. The
outliers were identified using the interquartile range (IQR) method which defines a lower
and upper bound based on the range between the first and third data quartiles. Formula 5

shows how IQR and the lower and upper bounds are calculated:

IOR =03 —-01
Lowerbound = Q1 — 1.5%xIOR )

Upperbound = Q3+ 1.5%I0QR

where Q1 and Q3 are the first and third quartiles values respectively. Data points

located below the lower bound or above the upper bound values were removed. A high
number of outliers could be a consequence of a very noisy signal or also a poor fiducial
points identification technique. Therefore, it is important to not only remove that data but
also check the percentage of the whole data that were flagged as outliers. High
percentages may indicate a need for revision of the fiducial points identification algorithm.
The dataset used in this work had 68,274 samples and 16,756 were identified as having at
least one outlier feature and thus were removed, leaving 51,518 samples to be used in the
model. Removing the entire sample due to just one outlier feature is a very conservative
approach and was used since the number of samples left was still significant and enough
for training and testing. If a smaller dataset was used, different outlier removal approaches
could be used such as replacing the outlier feature with the average value of that feature

for that same subject.
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4.3.6 Normalization

The features extracted in the previous step don’t share the same unit, so it is very
important to standardize them not only to remove their mean but also scale them to unit
variance before feeding them to the machine learning model. Failing to do so can slow
down training and even hinder the learning process. The normalization process can be

done using Formula 6:

(6)

where Ul is the mean and o is the standard deviation of the samples. That calculation
can be easily done with the help of the StandardScaler function available in Python

Scikit-learn library [32].

4.4 Training and Testing

The 1,963 ECG readings were segmented in cardiac cycles and then an equal
proportion of hyperglycemia and non-hyperglycemia were selected, resulting in dataset of
68,274. As mentioned in section 4.3.5, the outlier removal process purged 16,756 samples,
leaving a net of 51,518 samples to be used in the model. A split 80/20 was used to create
the training/testing dataset. Therefore, the training dataset contained 41,214 samples and
the testing 10,304 samples, with almost equal representation of hyperglycemia and

non-hyperglycemia samples.

4.5 Simulations & Results

Several machine learning models and configurations have been explored, including
logistic regression, support vector machine and artificial neural networks (ANN).
Extensive simulations of different ANN architectures were also performed in order to
identify the optimal hyperparameters combination. The AUC of the receiver operating

characteristic (ROC) curve was the performance metric used to compare the models since
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in binary classification problems, the threshold used to distinguish between the 2 output
labels have a direct impact in performance metrics such as accuracy, sensitivity and
specificity. The ROC plots the model performance in terms of true positive rate (TPR) and
false positive rate (FPR) across different thresholds. The area of that curve provides a
combined performance measurement of all those thresholds. For non-ANN models, the
simulations were configured with a maximum number of iterations of 10,000. For ANN
simulations, the models were trained with 1,000 epochs and early stopping when no loss
improvement has been achieved in the last 100 epochs. The training optimizer used was
stochastic gradient descent (SGD) with learning rate 0.0001, which was reduced by half
every time no improvement was obtained after 20 sequential epochs. Table 3 summarizes
the simulations with the best performance for those different models. A comprehensive

list of all models tested and their respective performance can be seen in Appendix B.

Table 3
Model Performance

Model AUC

10-layer DNN 94.53%
Logistic regression (C=5) 62.44%
SVM linear (C=50) 58.99%

SVM polynomial (d=6) 56.36%
SVM Gaussian (C=2) 52.03%

The deep neural network with 10 layers and 500 units per layer, except for the output
layer, provided the best performance among the models simulated. Its architecture and
loss training can be seen in Fig. 15 and Fig. 16 respectively.

The model presented a training AUC of 98.44% and testing AUC of 94.53% as can be

seen in the ROC curves in Fig. 17.
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Fig. 15. Deep neural network architecture that provided the best performance. Picture
created by the author.
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Fig. 16. 10-layer DNN training and validation loss.

A 10 k-fold cross validation, a technique that involves running the simulation with
different combination of testing and training datasets, was also performed in order to
verify the performance consistency of the model, resulting in average AUC of 93.65%.

The AUC for each k-fold round can be seen in Table 4.
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Fig. 17. 10-layer DNN ROC and AUC. A. ROC training dataset. B. ROC testing dataset

Table 4
10 K-fold Cross Validation (10-layer DNN)

k AUC k AUC

I 9698% 6 97.17%
2 97.23% 7 97.43%
3 9640% 8 98.23%
4 9734% 9 96.94%
5 96.03% 10 95.49%

The 10-layer DNN model was also compared to the best model identified in the
literature. Since the work presented by [14] didn’t have AUC values, we compared the
model’s performances using the geometric mean of the sensitivity and specificity, a metric
available in their work. The binary classification threshold used in the DNN was 0.4426,
which is the one that provided the maximum geometric meanwhile also having a
sensitivity greater than the specificity, a characteristic often desired in screening devices.

The geometric mean of sensitivity and specificity of the model presented in this thesis
is 86.30% versus the 67.94% from the 3-layer NN [14], showing a performance

improvement of 27% as can be seen in Table 5.
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Table 5
Model Comparison

Sensitivity Specificity Geometric Mean

10-layer DNN 87.57% 85.04% 86.30%
3-layer ANN [14]  70.59% 65.38% 67.94%
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S CONCLUSIONS

This thesis presented a novel approach for ECG feature extraction and also a
non-invasive hyperglycemia detection mechanism using ECG and deep learning. Its
performance of 87.57% sensitivity and 85.04% specificity is an excellent indication that
ECG signals possess intrinsic information that can indicate the level of blood glucose
concentration. In addition, the model performance is, in aggregate, 27% better than the
current best model in the literature to date [14]. The proliferation of consumer devices
with ECG reading capabilities such as smart watches, wristbands, and even handheld
ECG readers create an environment in which ECG acquisition becomes cheap and
accessible to everyone. The knowledge created by this research provides a way to
improve such devices to allow users to detect a hyperglycemic state in a quick, painless
and easy way, contributing to the identification of health issues that don’t manifest
themselves until it is too late. Professional health environments in which patients have
their ECG taken could also use this research to improve their devices to identify
hyperglycemia without any extra hardware. Lastly, patients in need of close monitoring of
their glucose levels such as pregnant women with gestational diabetes and diabetic

individuals could benefit from a painless screening device powered by this research.
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6 FUTURE WORK

The deep learning model presented in this thesis, a 10-layer deep neural network, was
developed with 2 characteristics in mind: performance and simplicity. But in machine
learning sometimes the best performance can only be achieved with complex models.
Therefore, different and more complex architectures such as long short-term memory
(LSTM), convolutional neural networks (CNN), recurrent neural networks (RNN),
block-based neural network (BBNN) and others could be tested.

The thesis also focused in contributing to the field with a novel set of ECG features.
Thus, experiments with established ECG fiducial features (intervals and amplitudes) and
non-fiducial ones could also be developed and the performance compared.

Extension of this model to detect hypoglycemia and even the shift from a classification

model to a glucose concentration prediction (regression) could also be sought after.
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Appendix A
FIDUCIAL FEATURES

The detailed calculation of all 18 features used as input for the models simulated in

this thesis are detailed below.

A.1 PQ Distance and Slope

distance(P,Q) = / PQx* + PQy? = \/(QX—PX)2 +(Qy—Py)? (7

PQy Qy—Py
) PQ) = = 8
slope(PQ) POx Ox—Px ©
R
p PQx
P 1 !
PQy
_/L\ PQ
Q Q
S
Fig. 18. PQ distance and slope
A.2 PR Distance and Slope
distance(P,R) = \/ PRx* + PRy? = \/(Rx — Px)2+ (Ry— Py)? )
PRy Ry—Py
l PR) = = 10
slope(PR) = P = Re—Px (10
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Fig. 19. PR distance and slope

A.3 PS Distance and Slope

distance(P,S) = \/ PSx* + PSy* = \/ (Sx—Px)% + (Sy — Py)?
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Fig. 20. PS distance and slope

A.4 PT Distance and Slope

distance(P,T) = \/PTx* + PTy? = \/(Tx — Px)?+ (Ty — Py)?
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Fig. 21. PT distance and slope

A.5 QR Distance and Slope

distance(Q,R) = \/ QRx? + QRy? = \/(RX — 0x)2+ (Ry — Qy)?
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Fig. 22. QR distance and slope
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A.6 QS Distance and Slope

distance(Q,S) = \/ QSx2 + QSy* = \/ Sx — 0x)? + (Sy — Qy)?

OSy Sy—0y
l S p— p—
slope(0S) 0OSx  Sx—0Ox
R
QSx
Q
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P u Qs
s

Fig. 23. QS distance and slope

A.7 QT Distance and Slope

distance(Q,T) = \/QTx*+ QTy? = \/ Tx—Qx)2+ (Ty— Qy)?

QTy Ty—Qy
OTx Tx—QOx

slope(QT) =

A.8 RS Distance and Slope

distance(R,S) = \/RSx* + RSy? = \/(Sx—Rx)2 +(Sy—Ry)?

RSy  Sy—

slope(RS) = oo = ¢y
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Fig. 24. QT distance and slope
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Fig. 25. RS distance and slope

A.9 RT Distance and Slope

distance(R,T) = \/RTx*>+ RTy?* = \/(Tx—Rx)2 +(Ty—Ry)?

RTy Ty—Ry
slope(RT) = p = T ke
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Fig. 26. RT distance and slope
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Appendix B
MODELS SIMULATIONS RESULTS

The Table 6 below shows the performance, measured as the area under the curve of

the testing dataset for different non-ANN models and C (or degree for SVN polynomial)

parameters.
Table 6

AUC Values for Different Models and C / Degree Parameter

C Logistic SVM SVM SVM
or degree Regression Linear Gaussian  Polynomial
0.001 61.45% 58.02% 18.60% -

0.01 62.09% 53.86% 18.16% -

0.1 61.87% 42.17% 17.61% -
1 62.37% 57.36% 47.90% 55.92%
2 61.87% 44.01% 52.03% 55.14%
3 61.87% 57.57% 52.03% 42.74%
4 61.92% 43.47% 52.03% 48.17%
5 62.44% 42.22% 52.03% 41.85%
6 61.95% 41.88% 52.03% 56.36%
7 61.91% 41.96% 52.03% 50.15%
8 62.43% 44.88% 52.03% 50.00%
9 61.85% 50.16% 52.03% 50.00%
10 62.39% 41.37% 52.03% 50.00%
20 61.86% 57.93% 52.03% 50.00%
30 61.84% 48.64% 52.03% 50.00%
40 61.90% 41.66% 52.03% 50.00%
50 62.44% 58.99% 52.03% 50.00%
60 61.86% 57.56% 52.03% 50.00%
70 61.87% 56.22% 52.03% 50.00%
80 61.93% 51.63% 52.03% 50.00%
90 61.92% 56.93% 52.03% 50.00%
100 62.37% 42.46% 52.03% 50.00%
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For ANN models, Table 7 below shows the AUC for different number of layers and

number of units per layer.

Table 7
AUC Values for Different Number of Layers and Units per Layer

# of units per layer 100 200 300 400 500
(exc. output layer)
# of layers

49.96% 50.00% 50.00% 79.64% 50.00%
79.34% 50.00% 50.00% 50.00% 50.00%
80.46% 49.99% 88.68% 50.00% 89.25%
83.64% 87.02% 88.57% 90.76% 50.00%
82.94% 89.85% 91.68% 91.06% 92.53%
85.69% 90.78% 91.94% 92.43% 93.20%
86.57% 89.49% 92.76% 92.26% 93.44%
88.81% 89.96% 92.80% 92.91% 93.59%
89.06% 91.88% 92.29% 94.34% 94.53%

o RSN AW

5=y
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