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ABSTRACT 

SYNTHESIS AND STUDY OF VERDAZYL STABLE FREE RADICAL 

SUBSTITUTED OLIGOTHIOPHENES FOR MAGNETORESISTIVE AND 

SPINTRONIC PROPERTIES 

 

By Amir Mansouri 

Interest in spin polarizing materials and their application in electronic devices in the 

field of spintronics has been steadily growing in recent years. The development of wholly 

organic spin polarizing materials has been of particular interest due to the material 

flexibility, solution processing, synthetic modifiability, and longer spin lifetimes of 

organics compared to inorganic analogs. One class of organic compounds with significant 

room for exploration is polyconjugated π systems coupled with stable radicals. We have 

explored the synthesis of oligothiophenes substituted with verdazyl stable free radicals 

with differing thiophene chain lengths, through a series of halogenation, borylation, and 

palladium catalyzed Suzuki-Miyarua coupling reactions. The characterization methods 

employed include IR, NMR, UV-Vis, ESR, GC/LC-MS, and X-ray crystallography. We 

have successfully synthesized two novel bisverdazyls with conjugated oligomer spacers 

and analyzed the magnetism, electrochemical redox potentials, crystal structure, and 

molecular packing of the aforementioned diradicals. We hope to build on this work by 

analyzing the bisverdazyls for their magnetoresistance, conductivity, and spin 

polarization properties. Furthermore, we also plan to synthesize more efficient 

bisverdazyl conjugated spacers utilizing EDOT units, which promise improved 

conductivity and spin propagation.
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Chapter 1: INTRODUCTION 

1.1 Push for Novel Materials in Electronics 

Given the steady pace of technological advancements, the development and 

integration of electronic components utilizing materials with novel physical properties 

affording improved performance is a highly sought after goal. Indeed, the quest for ever 

greater processing power is best illustrated with Moore's law, a predicted trend 

envisioning a doubling of computing prowess every two years. Moore's prediction 

derived from his observation of increases in transistor count and efficiency.
1
 Remarkably, 

this rate of computing enhancement has largely held true in the decades following 

Moore's statement, but there are indications that the current practice of increasing 

component counts and downsizing may be reaching its physical and economic dead-end. 

Limitations imposed by quantum mechanics at the scales of a few nanometers are the 

primary culprit preventing further physical downscaling. Even more detrimental though, 

is the increasing cost associated with R&D required to maintain Moore's law trajectory of 

improved computational efficiency, decreasing the viability of products for mass market 

consumption with increasingly less affordable products. 

Unsurprisingly, serious research is being carried out to develop new strategies for 

production of electronics that would sidestep the limitations of downsizing. The most 

promising approaches thus far can generally be placed into the three categories: 1. 

enhanced integration of logic and memory, 2. novel device architecture, and 3. the 

introduction of devices with novel physical properties not exhibited in conventional 

CMOS devices.
2
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The greater integration of logic and memory is being pursued through the 

development of monolithic 3D multilayer memory/logic systems equipped with variable 

specialized memory types that allow for accelerated memory access and storage. 

Research on new device architecture, on the other hand, seeks the implementation of 

novel designs and algorithms to overcome the so-called “Von Neumann bottleneck", that 

is the latency due to the sequential interaction between the processing unit and pre-stored 

device programming in memory units of conventional computing architecture
3
. Deep 

learning and neural algorithms, the latter inspired by neural functions in the brain, are 

particularly interesting alternatives to Von Neumann design.
2,3

 Finally, devices with 

material properties deviating from those of conventional CMOS devices are akin to the 

adhesive needed for the binding of the two areas discussed above. Some of the major 

benefits that may result from such devices are lower energy consumption and 

significantly lower device temperatures while under workload; the latter point is likely to 

be essential in the development of monolithic logic/memory systems.  

One class of devices gaining much attention is spin transport electronics, or 

spintronics. Spintronic devices utilize electron spin in addition to the charge of electrons 

utilized in conventional electronic devices, giving rise to radically new physical 

properties and applications. Spintronic devices have already found commercial use, most 

notably in memory devices in the form of magnetic hard drive read heads through 

magnetoresistance effects. But research concerning spintronics is still in its early stages, 

with hints that field holds promise for much greater and far reaching applications in the 

sciences and electronics, from minor alterations to existing technology, to more radical 
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applications such as quantum computing.
4
 The development of spintronic materials, or 

more precisely spin polarizing materials, is one of the main goals of the research 

discussed in this paper. But before delving into a detailed account of said materials and 

their synthesis, it's worth taking a look back at earlier electronic materials and devices, as 

well as fundamental concepts that would help elucidate our understanding of the science 

behind subjects discussed herein.  

1.2 Historical Overview of Electronic Components 

1.2.1 Vacuum Tubes 

While strictly speaking, electric devices have existed for multiple centuries, electronic 

devices did not properly take off to become commercially available until the latter half of 

the 19th century with the advent of vacuum tubes. The most basic vacuum tube (or 

electron tube) designs consist of a filament acting as a hot cathode placed alongside an 

anode, both encased in an evacuated glass bulb. These devices function through 

thermionic emission, an effect in which thermally induced emitted electrons flow from a 

heated cathode to the anode; this process is assisted by the electric field between the 

anode and cathode.
5,7

 Additionally, the vacuum in the tube prevents the formation of 

ionized gas particles that would lead to irregular electrical current in the device.
6
  

Incandescent light bulbs also utilize evacuated tubes, however unlike vacuum tubes 

which function through thermionic emission, incandescent light bulbs operate through 

thermally induced photon emission from a filament. Even so, the design of Incandescent 

light bulbs did play a part in development of vacuum tubes. Vacuum tubes came to 

dominate most electronic devices up to the mid-20th century. Many essential electronic 
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components such as amplifiers, rectifiers, oscillation modulators, and various detection 

and switching devices saw their first implementations with vacuum tubes,
7
 and it is from 

these components that advanced electronic devices such and radio receivers, television 

(cathode-ray tubes), computers, and telephones were developed. Despite being 

supplanted in most electronic devices by later technology, vacuum tubes are still used in 

some specialized applications (e.g. tube guitar amplifiers).  

1.2.2 Gas Filled Tubes  

Concurrent to the advances with vacuum tubes, the similar but distinct gas-filled 

tubes (also known as discharge tubes) were developed. Gas-filled tubes are akin to 

vacuum tubes but with inert gases at low pressures (10-55 mmHg). This apparently minor 

difference leads to significantly different electronic properties, as gas-filled tubes 

generally conduct a greater current due to the cascading ionization of the inert gas 

particles by the emitted electrons, which results in an increase in the charge carriers 

received at the anode. On the other hand, this also leads to reduced control over electrons 

in gas-filled tubes compared to vacuum tubes.
6
 

Gas-filled tubes fall into two categories of cold cathode or hot cathodes, with the 

primary distinction relating to whether the cathode is heated to induce thermionic 

emission (hot cathode) or that emissions are caused by natural background radiation in 

the environment (cold cathode). Because cold cathode gas tubes can maintain constant 

voltages, they have been used as voltage regulators, polarity indicators, electronic 

switches, and radio frequency field detectors, to name a few. Hot cathode gas-filled 

tubes, on the other hand, have primarily found use as rectifiers and electric switches.
6
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1.2.3 Solid State Electronics 

The next major revolution in electronics came about from the introduction of 

transistors. By the mid-20th century electronic devices began to shift away from electron 

tubes (vacuum tubes/gas-filled tubes) to solid state devices utilizing semiconductors. 

Conventional inorganic semiconductors are primarily made of silicon, germanium, and 

their respective oxides and alloys. Early development of semiconductors preceded solid 

state electronics for some time, but it was the utility of semiconductors in transistors that 

began the shift to solid state electronics. A more in-depth discussion of the nature of 

semiconductors will take place in section 1.3, but here it will suffice to mention that 

semiconducting materials in transistors allow for more advanced switching and 

amplifying functions in comparison to electron tube technologies. In parallel to the 

development of transistors, electronic devices began to be fabricated as integrated circuits 

(IC) where components are packed closely on top of a semiconductor sheet.  

In comparison to earlier electronic devices with discrete components, IC devices have 

a considerably reduced power consumption and smaller device sizes. In practical terms 

this means commercially available solid state electronic devices experience less frequent 

defects and could carry out more advanced operations at lower costs, both in terms of 

materials and power consumption, at successively smaller scales.
7
 We will next discuss 

some physical theories and properties that help explain the pre-eminence of 

semiconductors in modern electronics and how the development of organic 

semiconductor materials may further enhance the development of solid state devices.  
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1.3 Band Theory 

Electrical conductivity is the degree to which a substance allows the movement of 

charge carriers. Electrical conductivity is dependent on both the charge carrier 

concentration and the mobility of charge carriers in each substance. The conductivity of 

solid phase materials falls into the three categories of insulators, with little to no electrical 

conductivity; conductors, with a high degree of conductivity, and semiconductors with 

moderate and tunable conductivity. 

We can begin to understand how conductors, insulators and semiconductors differ in 

their conductivity by looking the simplest electronic configurations in the form of atomic 

orbitals. Atomic orbitals are discrete quantum mechanically allowed energy states for 

electrons bound by an atomic nucleus. If instead of individual atoms we regard a slab of 

solid phase matter with innumerable closely packed atoms and or molecules, we can 

begin to imagine the sum of the atomic and molecular orbitals forming a continuous band 

of allowed energy states. Band theory, posits that the lower electron energy band, the 

valance band describes the energy states for outer shell (valence) electrons bound by 

individual atoms and molecules of the bulk material, while the more energetic band, the 

conduction band, describes the energy state of electrons unbound from individual atoms 

or molecules and instead delocalized across the bulk material. When speaking of 

electrical conduction and the passage of electrical current, we are in fact speaking of the 

free movement of electrons or other charge carriers across the conduction or valence 

band. The variance in electrical conduction for various materials is due to both the band 

gap, the region of forbidden electron energy states separating the conduction band and 
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valence band, as well as the availability of empty energy states in the valence band which 

may act as electron acceptors. Figure 1.1 visualizes the differences in band gap of 

conductors, semiconductors and insulators.  

 

Figure 1.1 Band gap of solid materials. 

Conductors such as metals exhibit an overlapping of the valence and conduction 

band, thus, the absence of a band gap allows for high electrical conduction. What this 

means is that valence electrons in conductors can readily be delocalized to the conduction 

band as the energy requirements are close to or on par with that of valence band. 

Insulators on the other hand have a large band gap, such that under ordinary 

circumstances the energy demands for electron transition from valence to conduction 

band are too great to overcome, resulting in very little or no electrical conduction. 

Semiconductors have band gaps that are sufficiently small enough to allow electrical 

conduction under certain circumstances and can act as both insulators and conductors 

through modifications.
8
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When an electron is excited from the valence band to the conduction band through 

absorption of an appropriate amount of energy, the previous electron state is made vacant 

forming an electron-hole. While electron-holes mimic the behavior of positively charged 

particles, electron-holes aren't actual charged particles with mass, but rather the absence 

of a negatively charged electron in an allowed electron state of the valence band. This 

electron absence leads to a positive charge imbalance, as the positive charge of the 

nucleus now exceeds that of negative charges arising from electrons. The ultimate result 

of these effects is that the electron adjacent to a hole moves to fill the electron-hole, 

resulting in the generation of a new electron-hole in the electron state just vacated. This 

process is repeated giving way to the movement of electrons in the opposite direction of 

the electron hole movement. It can be understood then that electrical conduction does not 

occur only due to movement of electrons promoted to the conduction band, but can also 

result from the formation and movement of electron-holes in the opposing direction to 

electrical current.
8
  

While free electrons are the primary charge carriers for conductors, with 

semiconductors (and insulators) the generation of charge carriers begins through the 

excitation of an electron to the conduction band, forming free electrons and electron-

holes. If the electron excitation falls short of the energy requirements to form free charge 

carriers (electron or hole), a bound electron-hole pair or exciton can form. Excitons in 

part can undergo dissociation to form free electrons and holes with the absorption of 

energy. In general, semiconductor fall into the two categories of intrinsic and extrinsic. 

Intrinsic semiconductors are made of pure crystalline semiconducting substances such as 
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silicon, and exhibit an equal number of electrons and holes. Extrinsic semiconductors in 

contrast have added impurities from hetero-atoms. These impurities or dopants cause 

localized excess or deficiency of electrons in the crystal structure of the semiconductor 

leading to unequal populations of electrons and holes in extrinsic semiconductors. If the 

added dopants cause an excess of electrons, acting as electron donors, it will be an n-type 

semiconductor and electrons become the majority charge carrier. We see the inverse 

picture with p-type semiconductors, which have an excess of electron-holes and dopants 

acting as electron acceptors, leading to electron-holes becoming the majority charge 

carrier. The valency of dopants used for extrinsic semiconductors is entirely reliant on the 

semiconductor material and the type of (n or p-type) extrinsic semiconductor desired. 

The importance of the distinction between Intrinsic and extrinsic semiconductors is 

illustrated in Figure 1.2. 

 

Figure 1.2 Doped semiconductors (N, P-Type). 

With n-type semiconductors the addition of dopants yields excess electrons with 

energy states much closer to the conduction band (smaller effective band gap) than 
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intrinsic semiconductors, while p-type semiconductors give excess electron holes with 

energy states much closer to the valence band. Thus, both n-type and p-type Extrinsic 

semiconductors experience significantly greater electrical conduction compared to 

Intrinsic semiconductors, as charge carrier concentrations are elevated, while effective 

band gaps are reduced.
8
 

1.4 Organic Semiconductors 

Thus far our discussion of semiconductors has been focused on conventional 

inorganic semiconductors made of silicon, germanium, and their derivatives. But certain 

types of organic compounds can also act as semiconductors. Organic compounds 

consisting of hydrocarbons with π-bonded conjugated systems were first discovered to 

exhibit semiconductivity in the early 1970s.
10

 These organic semiconductors (OSC) come 

in two variants of elongated conjugated polymers or smaller conjugated molecules. In 

both forms, the semiconducting property stems from the delocalization of electrons 

across the conjugated structure due to the π-bonds from overlapping of p orbitals in sp
2
 

hybridization.
9
 However, while the forces involved in holding inorganic semiconductors 

together are strong covalent bonds, OSCs are held together through weaker Van Der 

Waals intermolecular interactions. This is more pronounced in smaller conjugated 

molecules, as the sheer number of interactions in larger polymers bestows strong overall 

intermolecular forces. The intramolecular conduction of conjugated systems increases 

with more extensive conjugation length (see top portion of Figure 1.3). This is because a 

more extensive conjugated length shrinks the effective band gap. It is worth noting 

though that conjugation length is not simply an elongation of the molecular structure, but 
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rather an elongation of a continuous delocalized π-bond system, and thus any 

discontinuity resulting from molecular geometry or bond order change will lead to a 

larger band gap and reduce conductivity.
11,12

 

 

 

Figure 1.3 Energy gap and doping in OSCs. 

With OSCs the highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) are discrete energy levels analogous to inorganic bulk 

semiconductor valence and conduction bands respectively. And just like inorganic 

semiconductors, OSC conductivity can be increased through doping by introducing 

impurities in the form of molecular segments (functional groups and or moieties) that can 

act as either acceptors or donors towards the primary organic semiconductor (see bottom 

portion of Figure 1.3).
10

  

While both organic and inorganic semiconductors exhibit tunable conductivity due to 

their semiconducting properties, there are a few key differences between the two material 
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types worth mentioning. First, organic semiconductors generally have larger band gaps 

and thus lower conductivity than their inorganic analogues. The primary reason for the 

larger organic band gaps is the weaker intramolecular forces of such substances. A 

secondary reason for the larger effective band gaps (specifically the transport band gap) 

in organic semiconductors is the higher exciton binding energy of organic materials. In 

semiconductors when an electron is excited to a more energetic state through thermal 

excitation or light absorption, depending on the magnitude of energy transferred, it may 

form a free electron and hole or a bound electron-hole pair (exciton), the latter of which 

has a lower energy state than an unbound free electron and hole. Exciton binding energy 

is the energy required to untether the electron and hole pair. The magnitude of the exciton 

binding energy is greater in organics compared to inorganics because of the lower 

dielectric constant of hydrocarbons, as the charge densities in carbon and hydrogen are 

comparatively less polarizable. This is clearly shown in the equation bellow, where the 

exciton binding energy (Eexciton) is shown to have an inverse relationship with the square 

of the dielectric constant (εr), while being proportional to Rydberg’s unit of energy (Ry). 

Additional terms in said equation include the reduced mass (μ), and mass of a free 

electron (me).  

Eexciton = - 
1μ Ry 

εr
2
me 

 

The greater exciton binding energy of organic materials also highlights the 

appreciable difference between optical gap and transport gap in organic semiconductors. 
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The optical gap is the energy required to form a bound exciton, while the transport gap 

accounts for the energy required to form free electrons, in other words the transport gap is 

the optical gap plus the exciton binding energy. As a result, in inorganic semiconductors 

the difference between transport and optical gaps are negligible due to small exciton 

binding energies, while organic semiconductors exhibit higher exciton binding energies, 

such that the difference between optical and transport gaps is significant, and one factor 

leading to larger band gaps in organic materials.
13

  

A second major difference between OSCs and inorganic semiconductors is the 

mechanism of charge transport. As previously discussed, inorganic semiconductors 

consist of tightly packed, covalently bonded atoms characterized by ordered structures, 

where the charge carriers are transported across the entire bulk seamlessly in the 

conduction or valence band with a high degree of charge mobility. While more ordered 

OSCs with single crystal structures can exhibit  similar band type charge transport 

mechanisms as inorganic semiconductors at lower temperatures (with charge movement 

between HOMO/LUMO levels), under more typical conditions with higher temperatures 

and less ordered morphology, OSCs experience more localizing effects, such that charge 

carriers are more limited to individual molecules and intermolecular (and to some degree 

intramolecular) charge transport takes on an incoherent hopping mechanism, which 

greatly diminishes charge mobility in comparison to inorganic semiconductors.
14

   

Considering the often-greater conductivity and charge carrier mobility of inorganic 

semiconductors compared to OSCs, one might question the viability of OSCs as an 

alternative to conventional inorganic semiconductors. But organic semiconductors outdo 
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their inorganic counterparts with some very useful properties. Because organic 

semiconductors are synthesized on a molecular level, the chemical structure of OSCs is 

highly tailorable and only limited by the compatibility of desired functional groups and 

the structural stability of the molecule. This means OSCs' chemical and physical 

properties can be adjusted through synthetic alterations. Similarly, because OSCs are 

made of organic molecules with weaker intermolecular forces, they are considerably 

more flexible and resistant to breakage than inorganic semiconductors, a feature that has 

already found widespread use in recent electronic devices in the form of flexible organic 

light emitting diodes (OLED). Additionally, many common organic semiconductors can 

be synthesized from cheap precursors and fabricated through solution processing, making 

OSCs commercially competitive with inorganic semiconductors in some areas.
13

  

In the context of this paper though, perhaps the most important feature differentiating 

OSCs from inorganic semiconductors is weaker spin-orbit coupling (SOC) in organics. 

Spin-orbit coupling is a quantum mechanical property that results from the interaction of 

an electron spin with its orbital motion under potential. This interaction is very important 

for the spin conservation of electrons, as will be further elaborated on in section 1.6.1. 

The weaker SOC interactions of organics are due to the elements hydrogen, carbon and 

nitrogen (primary atoms in organic semiconductors) being relatively low mass atoms at 

the top the periodic table. The further down the periodic table we go the greater the SOC 

effects as the nucleus has a greater positive charge and its influence on outer electrons is 

stronger. Thus, heavier inorganic semiconducting materials such as silicon and 

germanium experience comparatively stronger SOC than their organic counterparts.
15
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The weaker spin-orbit coupling of OSCs plays an integral role in maximizing the 

performance of said materials in devices utilizing electron spin which is a focus of the 

research discussed here.  

1.5 Magnetism 

Although magnetism is a commonly known phenomenon, its useful to review the 

basic theory of magnetism and its various types before we proceed to discuss the lesser 

known phenomenon of magnetoresistance. Magnetism in its simplest form can be 

described as attractive or repulsive forces applied to substances when in the presence of a 

magnetic field. A magnetic field itself arises from the passage of electrical current, which 

produces a magnetic field perpendicular to the direction of the electrical current. Figure 

1.5 (left) gives a visual representation of the right-hand rule and the directional relation 

between the magnetic force, magnetic field, and electrical current. However, magnetism 

is only one component of electromagnetism. The collective forces due to electricity and 

magnetism are referred to as the Lorentz force. The other component of the Lorentz force 

is the electric force and its direction is determined by the direction of the electric field 

and charge of the object the field is acting on, as illustrated by the right half of Figure 1.4.   

 

Figure 1.4 Electric and Magnetic force direction. 



16 
 

Just as electricity can produce magnetism through the passage of current, so too can 

magnetism produce electricity by moving a magnetic field across an object. The close 

link between electricity and magnetism is further highlighted by the fact that they are not 

observed as separate physical properties.
16

  

Of course, not all materials interact with a magnetic field in the same manner, instead 

the behavior of materials under a magnetic field is determined by the electron spin 

arrangement of a substance and therefore there are different types of magnetic materials. 

In Figure 1.5 we can see the five common types of magnetic materials. 

  

Figure 1.5 Types of magnetic materials. 

With diamagnetic materials, all electrons are paired with one another resulting in a 

net zero magnetic moment when unexposed to a magnetic field. Under a magnetic field 

diamagnetic materials exhibit a weak temporarily induced magnetic dipole and the 

substances experience a repellant force with respect to the magnetic field and are said to 

experience negative susceptibility. Paramagnetic materials contain unpaired electrons 

which are randomly oriented due to thermal motion, resulting in zero magnetic moment 
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in the absence of a magnetic field. In the presence of a magnetic field though, 

paramagnetic dipoles tend to align in the direction of the field, experiencing an attractive 

force and positive susceptibility. Ferromagnetic materials exhibit the strongest form of 

magnetism, and indeed this type of magnetism is often perceived as synonymous with 

magnetism.  In ferromagnetic materials, a significant number of electrons are not only 

unpaired, but also aligned such that the collective electron moments in ferromagnets 

produce a high degree of overall material magnetism. Under a magnetic field 

ferromagnetic materials are strongly aligned with the field, and have a large positive 

susceptibility, and may adopt permanent dipoles. Furthermore, in ferromagnets the spin 

magnetic moment and the orbital magnetic moment both align, which is one factor that 

leads to the strong magnetism of ferromagnetic materials. Antiferromagnetic materials 

also have unpaired electrons, but they are arranged in such a manner that the dipoles 

cancel out one another giving zero net magnetization. The last type of magnetic material, 

Ferrimagnetic materials, stand in between ferromagnetism and antiferromagnetism by 

similarly exhibiting ordered magnetism, but while in antiferromagnetic materials the 

opposing magnetic dipoles are equal in magnitude, ferrimagnetic materials have unequal 

opposing dipoles giving rise to a non-zero magnetization.
16,17

 Of course, a given material 

can exhibit more than one type of magnetism in different domains of a substance.  

1.5.1 Magnetoresistance 

In certain materials, an applied external magnetic field can alter the electrical 

resistance of the material, this effect is called magnetoresistance. Magnetoresistance can 

be both positive or negative in value, with positive values indicating an increase in 
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resistance and lowering of electrical current; while negative magnetoresistance will lower 

resistance and increase current. Magnetoresistive effects can largely be classified into 

five types, two of which are observed in single layer systems with a single type of 

magnetic material, while the other three are observed with multilayer systems with 

alternating layers with differing forms of magnetism.
18

  

A. Single Layer Systems 

1. Ordinary magnetoresistance (OMR) is observed in non-magnetic (diamagnetic) 

metals, where the repulsion of the electrons from the magnetic field due to the Lorentz 

force causes a positive increase in electrical resistivity proportional to the magnetic field 

strength. While OMR values are smaller than some other types of magnetoresistance, 

OMR does increase considerably at lower temperatures due to the lessening of thermal 

phonon scattering.
18

  

2. Anisotropic magnetoresistance (AMR) is observed with ferromagnetic materials 

and is highly dependent on the angle of the applied magnetic field with respect to the 

direction of electrical current. AMR is at its lowest when the magnetic field is 

perpendicular to the electrical current and at a maximum when the field is parallel to the 

current. The mechanism responsible for this form of positive magnetoresistance is 

thought to be electron scattering effects arising from spin-orbit interactions.
18

 

B. Multilayer systems 

3. Giant magnetoresistance (GMR) is a quantum mechanical effect observed in 

multilayer systems with alternating ferromagnetic and non-magnetic layers. The 

magnitude of GMR is increased when the ferromagnetic layers have anti-parallel 
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magnetization with one another, while GMR effect is lowered with parallel ferromagnetic 

layers. Figure 1.6 shows why GMR provides differing degrees of resistivity with anti-

parallel and parallel FM layer arrangements. 

 

Figure 1.6 Spin dependent electron scattering due to GMR. 

Anti-parallel ferromagnetic arrangements lead to greater electron scatter, as electrons 

with spin magnetic moments anti-parallel to magnetic dipoles in the FM layer will 

undergo more scattering, while electrons with the parallel spin will pass through 

unimpeded. As can be seen anti parallel layers will inevitably lead to more overall 

scattering of electrons irrespective of electron spin.
18

 GMR can be used to spin polarize 

current by favoring the transmission of one electron spin type, as seen in parallel FM 

layer arrangement of Figure 1.6.  

4. Tunneling magnetoresistance (TMR) is in many regards similar to GMR, but 

instead of alternating FM and non-magnetic layers, TMR occurs at a junction where two 

FM layers (electrodes) are separated by a thin insulating layer, collectively referred to as 

a magnetic tunnel junction. In TMR, electrons travel from one FM electrode to the other 

by tunneling through the insulating barrier while conserving their spin. Similar to GMR, 

anti-parallel magnetized FM layers generate high TMR, while parallel layer 
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magnetization results in lower TMR, and just as with GMR, this process can be used to to 

generate spin polarized current.
18

 

5. Colossal magnetoresistance (CMR) has thus far only been observed in manganite 

perovskites with magnetoresistance values that far exceed that of other magnetoresistance 

types. The mechanism behind CMR is still an open debate, but among the theories 

proposed are FM to paramagnetic phase transitions and electron phonon coupling.
18

  

We can see that a major application of the various types of magnetoresistance is 

electron spin manipulation, more specifically magnetoresistance can be used to increase 

the proportion of one electron spin compared to the other, a process termed spin 

polarization or spin filtering. Spin polarization is an essential property in the field of 

spintronics and will be further discussed in section 1.6.  

This brings us to one additional magnetoresistance type most relevant to this paper, 

organic magnetoresistance (OMAR). This type of magnetoresistance can be regarded as a 

subset of GMR but it differs from GMR in utility of organic semiconductors. OMAR can 

be generated through two different methods. The first is to have two FM layers with an 

organic semiconductor layer in between and inject spin polarized current through the FM 

electrode and have the OSC layer act as the spin transporting layer. The second more 

nascent method involves the application of a magnetic field directly to an OSC layer. 

This method does not utilize FM electrodes, instead non-magnetic conductive contacts 

are used, and the OMAR effect arises directly from the organic semiconductor itself.
18

 

The novel materials developed in our research are most likely to be employed in the 

second OMAR method. Interest in OMAR does not simply arise from its surprisingly 
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high magnetoresisance values, the ability of organic semiconductors to maintain a longer 

spin relaxation lifetime due to their weaker spin-orbit coupling and hyperfine interactions 

in comparison to inorganic FM materials, has arguably been an even more exciting 

prospect. This provides a great advantage to OMAR and organic semiconductors in the 

field of spintronics, and is why such materials are being researched more vigorously in 

recent years.  

An important mechanism that prolongs spin transport in OSCs arises from the 

formation of triplet excited states. As can be seen in Figure 1.7, excitation of electrons or 

excitons in OSCs can lead to either a singlet or triplet excited state. The Pauli exclusion 

principle state that no two electrons can have identical quantum configuration, so that for 

a given spatial quantum number only two electrons of opposing spin are allowed. 

Additionally, according to the spin selection rule, electron spin is conserved when 

undergoing radiative transitions between excited and ground states. A singlet excited 

state consists of two electrons of higher and lower energy states with opposite spin, thus 

the transition of the higher energy electron to the lower energy state is allowed at a rapid 

rate as the resulting ground state will have two paired electrons of opposite spins, 

satisfying the selection rule. A triplet excited state however has two electrons of higher 

and lower energy states but with the same spin and so the transition of triplet excited 

electron to the ground state is forbidden. 
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Figure 1.7 Excited states in OSCs. 

 

In order for an electron in the triplet excited state to transition to the ground state it 

typically undergoes the much slower non-radiative intersystem crossing transition to a 

singlet excited state, resulting in spin flipping of the excited electron before the transition 

to singlet ground state is allowed. This means that the generation of triplet excited 

electrons or excitons leads to a much longer spin lifetime and as such very beneficial in 

circumstances where the maximization of spin lifetime is desired. Once again this 

phenomenon is observed to a greater extent in OSCs because, the weaker spin-orbit 

coupling of organics leads to fewer intersystem crossing events that would allow the 

transition from triplet to singlet excited states. Of course, OSCs can be modified to 

generate more singlet excited states if greater recombination emission is desired. This 

tailorability is a major selling point of OSCs, and why OSCs have found plentiful use in 

both photovoltaics and OLED devices.
18

   

1.6 Spintronics 

There have already been several mentions of electron spin earlier in this paper, but we 

have yet to discuss the precise nature of this concept. Electron spin is short for the 
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intrinsic spin angular momentum of an electron. Electron spin is analogous to the angular 

momentum of a rotating charged macroscopic sphere about an axis, and much like its 

macroscopic analogue, electrons spin generates a magnetic moment. Unlike macroscopic 

objects though, sub-atomic particles such as electrons are governed by quantum 

mechanical properties, and one aspect of this is that electron spin is a fixed quantized 

value rather than the seemingly continuous range of magnitudes seen with everyday 

macroscopic measurements. 

The electron spin quantum number mS, is the quantum mechanical description of 

electron spin and alongside the principle quantum number n, angular momentum 

quantum number l, and magnetic quantum number ml, complete the electron quantum 

numbers, which quantum mechanically describe the positioning and motion of an 

electron.
19

 Electrons can only have two possible spin orientations with mS ±1/2 for spin 

up and spin down (see Figure 1.8), and no two electrons in a given system can have the 

same exact quantum numbers, including the spin quantum number. This means that if 

two electrons share the same value for the other three quantum number (n, l, ml), they 

must at least have opposite spin quantum numbers (+1/2 & –1/2).  

 

Figure 1.8 Electron spin up and down. 
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The utility of electron spin and its associated physical properties has given rise to the 

burgeoning field of electron transport electronics, or spintronics. Before discussing how 

spintronics works, its useful to learn the different types of current with respect to electron 

spin population, as visualized in Table 1.1. 

Table 1.1 Current types. 

 

Regular unpolarized electrical current used in conventional electronics, has an equal 

population of both up and down spin electrons, but when the population of up and down 

spin electrons is unequal, the current is said to be spin polarized, with the higher 

population spin acting as the majority spin and the lower population spin type is refered 

to as the minority spin.
20

 Electrical current can be spin polarized to a variable degree, but 
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if the current is only populated with one spin form, the current is said to be fully spin 

polarized, although in reality a small minority spin component is likely to still persist. In 

special circumstances, it is possible to generate pure spin current, which unlike other spin 

polarized current has no net charge transfer and is effectively only the transportation of 

electron spin. Pure spin current manifests when an equal number up spin electron and 

down spin electrons move in opposite directions such that the transfer of charge is zero, 

but there is transport of up spin electrons in one direction and transport of down spin 

electrons in the opposite direction. Pure spin current is particularly interesting as it 

eliminates electron charge as a variable and allows for the sole utility of electron spin to 

the exclusion of electron charge.  

The importance of current spin polarization lies in the fact that the magnetic 

properties of electron spin can only be employed with an imbalance of electron spin 

orientations, as otherwise the equal number of opposing spins counteract the magnetism 

of one another. Much like classical electromagnetism demonstrates the close link 

between electricity and magnetism, in spintronics, a close link is shown between electron 

charge and its spin, with methods such as the spin Hall effect and inverse spin Hall effect, 

which allow for the conversion of electrical current to spin current and vice versa 

respectively.
22

  

Some of the methods used to generate spin polarized current have already been 

discussed in section 1.5.1 when discussing various types of magnetoresistance effects, 

which are closely intertwined with spintronics. In this section, we will instead address the 
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process involved in generation of spin (polarized) current in more general terms (see 

Figure 1.9). 

 

Figure 1.9 Spin polarization in non-magnetic, Ferromagnetic and 

Ferromagnetic Half metal materials 

Non-magnetic materials have an equal preference for the conduction of either 

electron spin, and so any current passing through non-magnetic substances will have its 

spin population unperturbed. Magnetic materials, especially those displaying 

ferromagnetism exhibit greater conductivity for one spin over the other, thus, any current 

passing through magnetic materials will undergo at least some degree of spin 

polarization. Full spin polarization may occur with materials that behave like a conductor 

to one spin type, while behaving like an insulator or semiconductor to the opposing spin, 

these materials termed half-metals, can generate currents that are largely populated by 

only one spin type.
20
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The field of spintronics has already yielded many applications for the use of spin 

polarized current, a full account of which is beyond the scope of this thesis. However, 

possibly the most promising aspect of spintronics is its low power demand. In 

conventional electronics, power consumption has steadily risen as components have 

continued to downsize, but as the primary functionality of spintronic devices derive from 

the use of electron spin rather than the movement of electron charge, the former of which 

requires much less energy, comparatively spintronic devices require much less power to 

operate. The lower power consumption also side-steps some of the heat related wear 

associated with high power electronics, thus allowing more durable devices with less 

need for cooling systems. Furthermore, the lower power usage of spintronic devices also 

eases the physical limitations imposed on component downsizing observed in 

conventional electronics.
21

 Even so, the field of spintronics still faces a number of 

challenges that have prevented it from supplanting conventional electronics. Two major 

challenges are the short lifetime of spin polarized current and its diffusion length. Spin 

relaxation lifetime is the duration for which spin polarized current endures before the 

inevitable loss of its polarization due various scattering and dephasing effects arising 

from spin-orbit coupling and hyperfine interactions. Spin diffusion length is the distance 

spin polarized current can traverse before the loss of polarization. One might be inclined 

to believe that spin diffusion length is directly proportional to spin relaxation lifetime, but 

this neglects to consider spin mobility. It is very much possible for a substance to have 

long spin lifetimes but low spin mobility, such that spin diffusion lengths are modest. 

Indeed, this has been the case for many organic materials used for spin transport.
20

 



28 
 

Organic materials experience long spin relaxation lifetimes due to weak spin-orbit 

coupling, but due to the less ordered structure and morphology of many OSCs, such 

materials have low spin mobility and less impressive spin diffusion lengths. Inorganic 

semiconductors on the other hand often have low spin relaxation lifetimes, but high spin 

mobility and spin diffusion. An ideal spin transport material would then possess 

characteristics of both inorganic and organic semiconductors, with both high spin 

diffusion lengths and long relaxation lifetimes. Researchers have sought to make 

advances in this regard by either developing hybrid organic-inorganic materials, or 

wholly organic materials with improved spin mobility.   

1.7 Free Radicals 

Free radicals are atoms or molecules with one or more unpaired electrons. In most 

circumstances having unpaired electrons leads to extremely reactive species, because the 

octet rule is not met and the singly occupied molecular orbital (SOMO) holding the 

unpaired electron is in an elevated energy state.
23

 Because of this characteristic, most free 

radicals are very short lived species that rapidly react with other compounds or undergo 

decomposition. However, under some rare conditions free radicals can be stable. 

Generally, the more an unpaired electron is delocalized across a molecule the more stable 

it becomes. What this means, is that radicals with a higher degree of substitution and/or 

conjugation tend to be more stable. Additionally, as a trend, electron donating functional 

groups can contribute to radical stabilization by reducing the degree of electron 

deficiency of a radical. Interestingly though, the use of both electron withdrawing and 

electron donating functional groups in conjugation with one another has been found to 
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stabilize radicals even further due to the captodative effect, where the combination of the 

two groups allows for better delocalization of the radical electron cloud due to resonance. 

To a lesser degree, radicals may also be stabilized through steric effects, as bulky groups 

may prevent the access of potentially reactive compounds to the radical site. 

A major utility of stable free radicals is the indirect detection of unstable radicals. 

This process is called spin trapping and it involves a specially designed ionic precursor 

(spin trap) that can bind to a reactive radical to form a spin adduct. Spin adducts are 

stable, or more persistent radicals, which can be detect and characterized through the 

radical spectrometry technique, electron spin resonance spectroscopy (ESR).
24

 The five 

major families of stable free radicals are nitroxides, dithiadiazolyls, semiquinones, 

phenoxyls, perchlorotriphenylmethyls, and verdazyls.
25

  

Stable organic free radicals have many other uses beside spin trapping, much of 

which derives from the open shell nature of radicals. The most relevant property of stable 

radicals for this paper is the magnetism imparted by unpaired electrons. In non-radical 

organic compounds with fully paired electrons, the spin of each electron is counteracted 

by the opposite spin of the electron it is paired with, which is why non-radical organics 

do not demonstrate magnetism other than the weak diamagnetism present in all 

substances. But with unpaired electrons as in the case of radicals, the spin of the unpaired 

electron bestows a degree of paramagnetism to the radical species by creating a magnetic 

moment. This effect is often enhanced when coordinating radicals with transition metals 

which have more unpaired electrons available in their unfilled d-orbitals,
26

 and as 

previously discussed, materials with magnetism can exhibit magnetoresistance, and thus 
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can contribute to spin polarization. Because of these characteristics, the development of 

systems combining organic semiconductors with stable organic free radicals is seen as 

one possible route to developing wholly organic materials for the field of spintronics.  
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Chapter 2: RESEARCH GOAL 

2.1 Verdazyls  

Having discussed some generalities on stable radicals, we will now narrow our 

discussion to a single class of stable radicals most relevant to our research, the verdazyls. 

Verdazyls are among the most versatile of stable free radicals, and this versatility is 

largely due to the R-group substituents at the 1, 3 and 5 positions of the verdazyl ring. 

Despite this, verdazyls have been studied to a lesser extent than the better known 

nitroxide free radicals, even though nitroxides have fewer positions available (1-2) for 

substitution compared to verdazyls (3 positions). The primary means by which verdazyl 

radicals are stabilized is through delocalization of the unpaired electron across all four 

nitrogens of the verdazyl central ring, and this is supported through ESR measurements, 

which reveal nearly identical hyperfine coupling for the four nitrogens. The 

delocalization of verdazyl radicals is demonstrated in the four resonance structures seen 

in Scheme 2.1.
29

 

 

Scheme 2.1 Oxoverdazyl resonance structures.
31

 

2.1.1 Previous Work 

A fair amount of research has already gone into developing systems incorporating 

verdazyls for spintronic applications. A major highlight in this area has been hybrid 

organic-inorganic systems consisting of transition metals complexes with verdazyl 
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containing ligands. Hicks et al. reported the synthesis of a few verdazyl-transition metal 

complexes.
27

 In this study, the verdazyl-metal coordination complexes exhibited strong 

magnetic interactions between the transition metal center and the radical ligands. The 

magnetic interactions between the verdazyl ligands and the transition metals ranged from 

ferromagnetism to antiferromagnetism, with the transition metal element playing a 

defining role in the observed magnetic behavior. The magnetic interactions in the 

verdazyl-transition metal complexes arise from the orbital overlap between the SOMO 

orbitals of the verdazyl ligands and the d-orbitals of the transition metals. Interestingly, in 

cases where the radical SOMO orbital is orthogonal to that of the transition metal, 

ferromagnetic exchange is observed, while the absence of orthogonality generally leads 

to antiferromagnetic interactions. The strength of the observed ferromagnetic exchange 

interactions seen with some of the verdazyl-transition metal complexes sets them apart 

from other stable radical-transition metal complexes, which exhibit comparatively weaker 

interactions.
27

 In a closely related paper from Barclay et al., the synthesis of a similar 

verdayl-metal complex is explored, however in this case, tridentate ligands are utilized in 

place of the bidentate ligands seen in the Hick et al. paper mentioned above. It's 

noteworthy that the coordination of two tridentate verdazyl containing ligands with a 

nickel metal center led to an even stronger ferromagnetic interaction than that of 

previously reported verdazyl-metal complexes, which may suggest a greater importance 

for ligand denticity.
28

  

Several additional verdazyl coordination systems have since been prepared with 

different metal centers including the transition metals Cu (I, II), Ni (II), Mn (II), Ag(I), 
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Zn(II), and Ru (III), as well as lanthanides such as Tb
+3

, Dy
+3

 and Gd
+3

, though 

lanthanides were found to have weaker magnetic exchange interactions compared to 

transition metals due to their coordination through carbonyl oxygens.
29

  The surprisingly 

strong magnetic interactions of verdazyl-metal complexes make them attractive 

candidates for further development in the context of spin polarization. But spin 

polarization is only one aspect of spintronics, and the development of efficient spin 

transporting materials is just as important. Therefore, rather than synthesizing verdazyl-

metal complexes, we have instead sought to synthesize entirely organic systems that join 

the magnetic properties of verdazyl stable radicals with the conductive properties of 

organic semiconductors, to better serve as spin transporting materials.  

2.2 Fully Organic Spin Transport Material 

Organic semiconductors can take the form of either long conjugated polymers or 

smaller conjugated molecules. The two OSC forms excel in different ways, OSC 

polymers typically have higher electrical conductivity and structural strength due to their 

more extensive conjugation lengths, but as polymers they also have lesser defined 

structures because of the inherent variation in polymer length. Furthermore, polymers are 

often insoluble or poorly soluble in common solvents unless substituted with extensive 

pendant groups, which may alter the electronic and conductive properties of said 

polymers. OSC molecules, including conjugated oligomers, may exhibit more modest 

conduction than conjugated polymers, but they make up for this with well-defined 

identical structures because of controlled syntheses, which also allow for precise 

structural modifications. Additionally, because of the shorter length of conjugated 
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molecules, they are less prone to solubility issues than polymers, and require few or no 

pendant groups for complete dissolution. Considering the drawbacks and advantages of 

the two OSC types, conjugated molecules were judged to better serve our research goals, 

as the mild loss in conductivity is easily outweighed by features such as, greater synthetic 

freedom and control, easier characterization, and solution processing. 

The synthesis of conjugated molecules from individual aryl groups is well established 

with various named coupling reactions. However, since our intended product contains 

radical moieties, a greater selectivity is required to ensure the compatibility of reaction 

conditions with verdazyl stability. To this end, the Brook research group sought to 

establish the compatibility of Suzki-Miyaura coupling for cross-coupling reactions 

involving aryl-verdazyls in their 2017 publication.
30

 Suzuki coupling reactions are 

particularly convenient coupling reactions, as the reaction is comparatively eco-friendly 

and can be carried out in relatively mild basic conditions with easily obtained reagents. In 

the Brook group publication, a series of Suzuki cross-coupling reactions utilizing either 

halogenated (I, Br) aryl-verdazyls, or borylated aryl-verdazyls gave decent yields, except 

for a small number of reactants that contained bulkier substituents, or functional groups 

that bind competitively to palladium.
30

  

Given the ground work lain by the Brook research group in the Le et al. paper, we 

intended to build on this research by utilizing Suzuki coupling reactions to synthesize 

bisverdazyl diradical end-capped conjugated oligomer systems, with oligothiophenes 

acting as the bridging conjugated oligomer as seen in Scheme 2.2.  
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Scheme 2.2 Oligothiophene Bisverdazyls. 

In the subsequent sections of this chapter, we will discuss the synthesis strategy and 

characterization methods we employed for this class of radicals. 

2.2.1 Diisopropyl-verdazyl 

Verdazyls come in a few variants depending on the substituent at the 6 position of the 

verdazyl ring. Oxo-verdazyls have a carbonyl substituent at 6 position, and are favored 

for being less prone to unwanted disproportionation side reactions.
29

 All verdazyls types 

can be further stabilized through their substituents at 1 & 5 positions. Stabilizing 

substituents can either be aromatic or branched alkyl groups. Aromatic substituents 

increase the delocalization of the radical, while bulky alkyl groups increase steric effects 

which decrease reactivity. Since our target molecules will contain a conjugated oligomer, 

solubility of the target molecule requires consideration. To this end, substitution of the 1 

and 5 positions on oxo-verdazyl with isopropyl groups will not only assist in further 

stabilization of the verdazyl radical, but also aid in counteracting the stacking effect of 

the oligothiophene chain, and in the process, improve the diradical solubility in common 

organic solvents. The synthesis route for 1,5-diisopropyl-oxoverdazyls is shown in 

Scheme 2.3, and follows the procedure detailed in the Paré et al. paper, with minor 

modifications.
31
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Scheme 2.3 General synthesis scheme for 1,5-Diisopropyl-6-

oxoverdazyl.
31

 

2.2.2 Oligothiophene 

Thiophene is a heterocyclic five membered aromatic ring containing a sulfur. 

Thiophenes are comparatively electron-rich heterocycles because of the electron donating 

property of sulfur. As with all aromatic compounds, thiophene is a planar molecule, and 

conjugation across its polymer and oligomer forms is maximized by keeping the 

thiophenes in the same plane, and this is best achieved through α-α’ linkage of the 

thiophenes. In comparison to benzene, thiophene is less aromatic, with a smaller 

resonance energy. Surprisingly though, oligo-p-phenylene and poly-p-phenylene are 

generally less conductive than their thiophene counterparts, as benzene p-oligo/polymers 

have slightly twisted structures due to the repulsive effects of the ortho hydrogens of 

adjacent benzene rings, which reduce the planarity of the overall structure and its degree 
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of conjugation.
32

 α-Oligo/polythiophenes on the other hand are quite planar and thus 

experience greater conjugation than their p-phenyl analogs. Additionally, thiophenes are 

also more reactive in the context of electrophilic substitution because of their electron 

rich nature.
33

 In most circumstances substitution at 2, 5 positions of thiophenes is favored 

over the 3, 4 position, making the synthesis of α-oligothiophenes considerably more 

straightforward than that of benzenes, where substitution at para, meta and ortho 

positions requires more careful synthetic planning, all of which make oligothiophenes a 

more attractive candidate for our synthesis work.   

While poly/oligothiophenes are recognized for their conductivity in doped form, 

polythiophenes and oligothiophenes have also gained much attention for properties 

related to thiophene-thiophene conformations, which bestow a wide range of interesting 

physical and chemical properties. Polythiophene has thus far been employed in 

photovoltaics, organic field effect transistors, and various optical applications. 

Oligothiophenes have been noted for possessing many of the same properties as their 

polythiophene analogues,
34

 This makes oligothiphenes very attractive materials, so much 

so that even if our intended bisverdazyl-oligothiophene target molecule exhibits modest 

spin transporting properties, investigation of the molecule for additional properties will 

be well worth the effort.  

The synthesis of the oligothiophene chain will consist of a series of halogenation and 

borylation reactions to obtain the necessary reagents for subsequent Suzuki coupling 

reactions, which will join the thiophenes until the desired oligothiophene length is 

obtained.
35

 Here we have not pursued oligothiophene lengths greater than that of 
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tetramers, as even short oligothiophenes are noted for their poor solubility. The 

incorporation of diisopropyl-verdazyls is expected to enhance the solubility of the 

oligothiophene, but even so, we believe a quaterthiophene to be a fine initial compromise 

between oligomer length and solubility.   

2.3 Iridium Borylation of Verdazyls 

We previously discussed the work done by the Brook research group in the Le et al. 

publication, on the application of Suzuki Miyaura coupling for aryl-verdazyls.
30

 We 

believe we can build on this study in the area concerning the preparation of boronate-

aryl-verdazyls. In Le et al. paper, the boronate-aryl-verdazyls are prepared via Miyaura 

borylation, a closely related reaction to Suzuki coupling, that utilizes aryl halides and 

boronate sources in a palladium catalyzed reaction to form aryl-boronates.
36

 While this 

reaction serves its purpose well, the synthesis of a boronate-aryl-verdazyl from an aryl-

verdazyl would require 2 steps if Miyaura borylation is employed. First halogenation of 

the aryl group, second the Miyaura borylation step itself. Iridium catalyzed direct C-H 

borylation is a well-known alternative borylation method, which allows the direct 

addition of a boronate functional group to arenes, without the need for a halogenation 

step (see Scheme 2.4).
37

 Thus, the major secondary synthesis goal of our research here, is 

to carry out this type of iridium catalyzed borylation on aryl-verdazyls and confirm the 

compatibility of this reaction type for verdazyls. The accomplishment of this goal is 

significant as it will cut down on the number of reaction steps required for the synthesis 

of verdazyl-conjugated oligomer systems and in the process increase the yield of the final 

product. It is even suggested that success in this area may lead to the development of in 



39 
 

situ alternating borylation/Suzuki coupling reactions, that could allow the synthesis of 

longer chains without the need for intervening workup and purification steps, sharply 

reducing material costs, processing time and increasing yield.  

 

Scheme 2.4 Iridum direct C-H borylation reaction scheme.  

Consideration has also been given to the boronic acid source for our borylation 

reactions. We have found pinacol boronic ester to be best suited for our purposes, as this 

class of boronate is known for its air stability and compatibility for silica based 

chromatography. Furthermore, the methyl groups on the pinacol boronic ester aid in the 

solubility of said compounds in common organic solvents.
37

  

2.3.1 One Pot Double Suzuki 

Continuing with the theme of reducing reaction steps involved in the synthesis of 

oligothiophene, we have sought to explore the viability of a one pot double Suzuki 

reaction. A one pot double Suzuki involves a dihalide arene group that undergoes 

consecutive Suzuki coupling reactions with two equivalents of a boronate species.
38

 In 

this way, we can cut down on the number of separate steps involved in oligothiophene 

elongation, while also circumventing the production of less soluble oligothiphenes, as the 

successive addition of the end-capping verdazyls increase solubility of the final product.  

One pot double Suzuki reactions have already been in use with non-radical syntheses for 
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some time; we suspect that the use of this synthetic method will be just as successful as 

single Suzuki reactions involving verdazyls, but its confirmation will be another useful 

tool in the synthesis of verdazyl-organic semiconductor systems.  

2.4 Characterization of Thiophene-Verdazyl species 

Our planned synthesis route will yield a number of novel molecules in addition to our 

final target molecule, and we will use a range of characterization method for the study 

and identification of these compounds. For non-radical species, we will utilize proton and 

carbon NMR to decipher the molecules structure and connectivity, and corroborate those 

findings with molecular weight and fragmentation information provided by mass 

spectrometry (GC-MS or LC/HPLC-MS). Infrared spectrometry on the other hand will 

assist in identifying key functional groups of interest on our products.  

Radical species will also be characterized through mass spectrometry and IR, but 

radicals typically do not yield useful information through NMR, as the magnetism of the 

radicals severely broadens the spectral linewidth, rendering the spectra broad and 

featureless. Instead we will utilize ESR spectrometry, which not only verifies the 

molecule as a species with unpaired electrons, it also provides information about the 

behavior of the unpaired electron and its interactions with neighboring atoms and 

unpaired electrons. UV-VIS spectrometry can indicate changes in the electronic structure 

of molecules, especially when compared to preceding species. If crystalline samples are 

obtained, X-ray crystallography can give a three dimensional structure and the 

intermolecular packing of analyzed compounds, the latter of which can be rather 

significant for physical properties that involve intermolecular interaction, such as 
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conductivity. Finally, the characterization of both radical and non-radical species is 

rounded out with melting point measurements.  

2.5 Magnetism and Conductivity in Thiophene-Verdazyl species 

After the structural characterizations of novel compounds, we will begin to study the 

materials for interesting physical properties. We will carry out magnetic susceptibility 

measurements with a vibrating sample magnetometer, to determine the strength and type 

of magnetism in radical containing species, especially for our target diradical. 

Conductivity will be gauged through four-point conductivity measurements, this 

technique may also be used for certain magnetoresistance measurements under applied 

magnetic field.
39

 Depending on the above results we also hope to assess the spin transport 

capabilities of our synthesized materials. The traditional approach would consist of a thin 

layer of our synthesized substance placed between two ferromagnetic electrodes. Spin 

polarized current is then injected through one electrode, passes through our substance and 

is measured at the second FM electrode. The second method for studying the spin 

polarizing and transporting properties of our diradicals, is by directly applying a magnetic 

field to a cell that contain our bisverdazyl sandwiched between two conductive non-

magnetic contacts. Through these experiments we hope to assess viability of the 

diradical(s) for spintronics applications.  
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Chapter 3: EXPERIMENTAL 

3.1 General Methods 

All NMR samples were run in CDCl3 solvent (except for H-NMR and C-NMR of 2,4-

diisopropyl-6-thiophene-5-boronic acid pinacol ester-1,2,4,5-tetrazane-3-one (4'), which 

were run in benzene-d6), and spectra were recorded on a Bruker instrument at 300MHz, 

using TMS as reference. NMR spectra only encompass non-radical products. Mass 

spectroscopy for low molecular weight products was obtained with Agilent 5975B GC-

MS instrument with electron impact ionization, while higher molecular weight products 

(diradicals) were obtained with an Agilent 6520 Quadrupole TOF LC/MS instrument 

with electrospray ionization. ESR measurements were carried out with an X-Band 

spectrometer. Cyclic voltammetry runs were conducted in dichloromethane with 

tetrabutyl ammonium hexafluorophosphate as electrolyte at 0.2 V/s scan rate.  

Ferrocene/ferriciniym was used as an internal reference, with an Au working electrode 

and Ag/AgCl pseudo reference electrode. XRD data for radical species was obtained by 

Dr. Bruce Noll, Bruker AXS, and 3D structures were generated using the program 

Mercury.
49

 Melting point of  novel compounds was measured with closed capillary tubes 

and Mel-Temp instrument. Reactions requiring air-free conditions (Suzuki and borylation 

reactions) were carried out using a dual manifold vacuum/nitrogen Schlenk line. 

Experimental spectra not presented in text are provided in the appendices. 

Reaction steps involving the preparation of previously characterized starting materials 

for novel reaction steps were replicated from procedures outlined in previous papers. 

These include the synthesis of 5,5'-diiodo-2,2'-bithiophene from 2,2'-bithiophene and two 
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equivalents of N-iodosuccinimide, per procedure detailed in the supplementary 

information section of the Hwang et al paper,
40

 as well as all steps leading up to the 

formation of 2,4-diisopropylcarbonohydrazode bis-hydrochloride (1) from tert-butyl 2-

isopropylhydrazinecarboxylate, which follow the procedure outlined in the Pare et al. 

paper.
31

 Detailed procedures for novel reaction steps are as follows. 

3.2 Thiophene-Verdazyl 

3.2.1 Preparation of 2,4-Diisopropyl-6-thiophene-1,2,4,5-tetrazane-3-one(3) 

 

Scheme 3.1 Synthesis of compound (3). 

A 250 ml Erlenmeyer flask was charged with 4.13 g (17.0 mmol) of 2,4-diisopropyl 

carbonobishydrazide dihydrochloride 1, along with 1.98 g (17.0 mmol) of thiophene-

carboxaldehyde 2, and dissolved in the least amount of ethanol (~50 ml). Next, 2.8g (34.0 

mmol) of sodium acetate was added to the flask along with additional ethanol (70ml) and 

mixed with a magnetic stirbar for several minutes until complete dissolution. The 

solution was then allowed to stand in the hood overnight for 24 hours. The following day 

some precipitate had formed, which was removed by vacuum filtration and the solvent 

was removed from the filtrate using a rotary evaporator. The remaining crude solid was 

recrystallized from heptane to obtain 2.68 g (10 mmol, 59%,) of pale yellow tetrazane 3.  
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Mp (capillary) 150-153 °C. IR (cm
-1

) 3208 (N-H), 2967 (C-H), 1579 (C=O). H-NMR 

(300 MHz) 1.15 (d, 6H, J = 6.0 Hz), 1.17 (d, 6H, J = 6.0 Hz), 3.88 (d, 2H J = 12.0 Hz), 

4.68 (septet, 2H J = 6.0 Hz), 4.76 (s, 1H), 7.06 (dd, 1H, J = 6.0, 3.0 Hz), 7.21 (d, 1H, J = 

6.0 Hz), 7.34 (d, 1H, J = 6.0 Hz). C-NMR (300 MHZ) 18.39, 19.49, 47.77, 69.16, 125.31, 

126.08, 127.14, 138.15. MS for C12H20N4O1S1 calculated as 268, found as (GC-MS, 

electron ionization) M
+ 

= 268 m/z. MS fragmentation relative abundances in m/z, 268 

(20), 220 (100), 192 (50), 153 (51), 147 (23), 110 (95). 

3.2.2 Oxidation to 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4) 

 

Scheme 3.2 Synthesis of compound (4). 

2.68 g (10 mmol)  of 2,4-diisopropyl-6-thiophene-1,2,4,5-tetrazane-3-one 3 was 

added to a 500 ml round-bottom flask, along with 3.29 g (15 mmol) of quinhydrone and a 

magnetic stirbar. Next, 350 ml of toluene was added to the round-bottom and a reflux 

apparatus was setup with a condenser over a heated oil bath. After refluxing for an hour, 

the solution had changed color from pale yellow to a deep red. The reaction progress was 

monitored through TLC comparison of the starting tetrazane and reaction solution; the 

disappearance of the tetrazane spot from the reacting solution spot indicated reaction 

completion. The round bottom flask and its contents were allowed to cool to room 

temperature over 1.5 hours. At this point some hydroquinone had crystalized out of the 
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solution. To maximize the removal of the hydroquinone, the flask was placed in a freezer 

for an hour to force more hydroquinone out of solution. The chilled slurry was then 

vacuum filtered and washed with cold toluene. The filtrate solution was evaporated under 

a high vacuum rotary evaporator to give the crude product as a cherry red solid. Product 4 

was purified through several washes with cold hexane, vacuum filtration, and subsequent 

evaporation of the filtrate to give 1.62g (6.1 mmol) of red verdazyl 4 crystal with 61% 

yield. Mp (capillary) 57.0-60.0 °C. ESR run carried out in degassed hexane, with g = 

2.003, aN = 6 G as parameters. IR (cm
-1

), 2987 (C-H), 1675 (C=O). UV-VIS (nm) λmax1 

= 426 (ε1 = 1.2x10
3 

L/mol.cm), λmax2 = 514 (ε2 = 4x10
2
 L/mol.cm). MS for 

C12H17N4OS calculated as 265, found as (GC-MS, electron ionization) M
+
 = 265 m/z. MS 

fragmentation relative abundances in m/z, 265 (35), 223 (19), 181 (100), 110 (90). 

3.3 Iridium Borylation of Thiophene-Verdazyl 

3.3.1 Synthesis of 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-

oxoverdazyl (5) 

 

Scheme 3.3 Synthesis of compound (5). 

The iridium catalyst Ir(OMe)[COD]2 was prepared according to the procedure 

described in the supplementary information section of the Tajuddin et al paper,
41

 while 

the procedure for iridium catalyzed direct C-H borylation of 1,5-Diisopropyl-3-
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thiophene-6-oxoverdazyl 4 is a variation on the procedure described in the Ishiyama et al 

paper.
42

 

A two-neck 500 ml round-bottom flask was charged with catalytic amounts of 

[Ir(OMe)(COD)]2 (0.02 mmol, 0.013g) and its ligand, dtbpy (0.04 mmol, 0.011g), along 

with a magnetic stirbar. The round-bottom was then fitted with a septum on the side neck 

and the middle neck was attached to a condenser connected to a duel manifold 

vacuum/nitrogen Schlenk line. The round bottom was subsequently degassed and 0.64 g 

(2.5 mmol) of the boronate source, bis(pinacolato) diboron was added to the flask, 

followed by a second degassing. In a separate pear shaped flask, 20 ml of hexane was 

added and the flask was covered with a septum. One side of the septum was punctured 

with a needle connected to a nitrogen line, while a second open ended needle was placed 

onto the other side of the septum, enabling the purging of hexane over a 5-minute 

duration. While the first needle continues to pump the flask with nitrogen, the second 

needle was removed and attached to a syringe. The syringe needle was then inserted 

through the septum of the pear-shaped flask without touching the solvent and the syringe 

was filled and subsequently emptied of nitrogen multiple times before finally filling the 

syringe with the degassed solvent and immediately transferring the content to the first 

two necked round-bottom still under nitrogen. After further degassing of the round 

bottom, the mix was stirred and the flask lowered into an oil bath and heated at 50 
o
C for 

10 minutes.  

The catalyst was fully primed once the solution turned a dark red color. Meanwhile in 

the previously used pear shaped flask 1.19 g (4.5 mmol,) of 1,5-Diisopropyl-3-thiophene-
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6-oxoverdazyl 4 was added along with an additional 200 ml of hexane and the mix was 

stirred, degassed, and transferred to the main flask. After a final degassing, the two-neck 

round-bottom was lowered into the oil bath and allowed to stir at 50 
o
C for 24 hours. 

Once the reaction was completed, the solution was left to cool and subsequently extracted 

with hexane and water in a separatory funnel. The resulting extracted solution was dried 

over anhydrous magnesium sulfate, gravity filtered and the solvent evaporated using a 

rotary evaporator, giving a dark red crude product 

Purification was done through silica gel column chromatography, and eluted with 2:3 

dichloromethane-hexane solvent, followed by recrystallization with water/ethanol, giving 

0.25 g (0.64 mmol,) of compound 5 as fine red crystals, with a yield of 14.2 %. Mp 

(capillary) 121-133 °C.  ESR run was carried out in degassed hexane, with g = 2.0040 

and aN = 6 G as parameters. IR (cm
-1

), 2977 (C-H), 1681 (C=O). UV-VIS (nm), λmax1 

430 (ε1 = 1.3x10
3 

L/mol.cm), λmax2 520 (ε2 = 4.6x10
2 

L/mol.cm). MS for 

C18H28BN4O3S calculated as 391, found as (GC-MS, electron ionization) M
+ 

=
 
391 m/z. 

MS fragmentation relative abundances, 391 (63), 349 (18), 307 (100), 236 (50), 207 (34), 

177 (18), 154 (22), 136 (70), 110 (17), 83 (24), 56 (37).    
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3.4 Alternative Route for Borylated-Thiophene-Verdazyl 

3.4.1 Synthesis of 5-Formyl-2-thienylboronic acid pinacol ester (3') 

 

Scheme 3.4 Synthesis of compound (3'). 

To a 1L round-bottom flask 5.33 g (34.2 mmol) of 5-Formyl-2-thienylboronic acid 2’, 

and excess pinacol (43.0 mmol, 5.10 g) were added. Next, 750 ml of toluene and a 

magnetic stirbar were added to the same round-bottom, and the flask was equipped with a 

Dean-Stark/condenser apparatus and lowered into a heated oil bath at 120°C. The 

reaction mix was refluxed overnight, while the Dean-stark apparatus collected the water 

side product. The next day, the round-bottom was removed from heating and cooled to 

room temperature. The flask content was dried with anhydrous sodium sulfate and 

gravity filtered. The filtrate solution was evaporated with a rotary evaporator, giving 

brown colored crude solid. Product 3' was purified through recrystallization with heptane 

to give light brown crystals (21.0 mmol, 5.0 g) with a yield of 61.5%. H-NMR (300 

MHz), 1.37 (s, 12H), 7.67 (d, 1H, J = 3 Hz), 7.82 (d, 1H, J = 3 Hz), 9.99 (s, 1H). MS for 

C11H15BO3S calculated as 238, found as (GC-MS, electron ionization) M
+
 = 238 m/z. MS 

fragmentation relative abundances, 238 (80), 223 (96), 154 (69), 139 (100). 
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3.4.2 Synthesis of 2,4-Diisopropyl-6-thiophene-5-boronic acid pinacol ester-1,2,4,5-

tetrazane-3-one (4') 

 

Scheme 3.5 Synthesis of compound (4'). 

A 500 ml Erlenmeyer flask was charged with 4.65g (19.5 mmol) of 5-Formyl-2-

thienylboronic acid pinacol ester 3', and 4.80 g (19.5 mmol) of bishydrazide 1. A 

magnetic stirbar and 70 ml of ethanol were added to the above flask, and the content were 

mixed until all solids were dissolved.  Next, 3.21 g (39.1 mmol) of sodium acetate, along 

with an additional 350 ml of ethanol were added to the reaction flask, and the contents 

were stirred for an hour. After the mixing the solution was allowed to stand in the hood 

for 24 hours. The next day some precipitate had formed in the flask, this precipitate was 

removed through vacuum filtration and the remaining solvent was removed with a rotary 

evaporator, giving a pale-yellow crude product. Recrystallization from heptane gave 3.94 

g (10 mmol) of tetrazane 4' with a yield of 51%. Mp (capillary) 196-203 °C. IR (cm
-1

) 

3230 (N-H), 2975 (C-H), 1581 (C=O). H-NMR (300 MHz), 1.15 (d, 6H, J = 3 Hz), 1.17 

(d, 6H, J = 3 Hz), 1.36 (s, 12H), 3.90 (d, 2H, J = 12 Hz), 4.67 (septet, 2H, J = 6 Hz), 4.74 

(t, 1H, J = 12 Hz), 7.29 (d, 1H, J = 3 Hz), 7.57 (d, 1H, J = 3 Hz). C-NMR (300 MHz), 

18.09, 19.36, 24.51, 47.52, 69.13, 83.87, 126.61, 126.70, 137.28, 145.96, 153.62. MS for 
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C18H32BN4O3S calculated as 394, found as (GC-MS, electron ionization) M
+
 = 394 m/z. 

MS fragmentation relative abundances, 394 (41), 279 (42), 236 (100), 207 (42), 56 (42). 

3.4.3 Oxidation to 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-

oxoverdazayl (5) 

 

Scheme 3.6 Alternative synthesis of compound (5). 

3.68 g (9.3 mmol) of 2,4-Diisopropyl-6-thiophene-5-boronic acid pinacol ester-

1,2,4,5-tetrazane-3-one 4', 3.1 g (14.1 mmol) of quinhydrone and a magnetic sitrbar were 

added to a 500 ml round-bottom flask. Next, 400 ml of toluene were added to the round-

bottom and a reflux was setup by fitting the round-bottom with a condenser and lowering 

the flask into a heated oil bath. After an hour of reflux, the reaction solution had become 

dark red colored and the completion of the reaction was assessed through TLC. Once 

complete, the reaction solution was allowed to cool to room temperature over 1.5 hours, 

then placed in a freezer for an additional hour. The cold slurry was vacuum filtered and 

washed with cold toluene to remove most the hydroquinone byproduct. The resulting 

filtrate solvent was removed with a high vacuum rotary evaporator to give crude red 

solid. Product 5 was purified with several cold hexane washes, gravity filtration, and 

evaporation with a rotary evaporator to conclude the alternative synthesis with 2.72 g 

(6.96 mmol) of verdazyl 5 and 49% yield. Mp (capillary) 121-133 °C.  ESR run in 
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degassed hexane. IR cm
-1

 2977 (C-H), 1681 (C=O). UV-VIS (nm), λmax1 (430), λmax2 

(520). MS for C18H29BN4O3S calculated as 391, found as (GC-MS, electron ionization) 

M
+ 

=
 
391 m/z. MS fragmentation relative abundances, 391 (63), 349 (18), 307 (100), 236 

(50), 207 (34), 177 (18), 154 (22), 136 (70), 110 (17), 83 (24), 56 (37).  

3.5 Double Suzuki  

3.5.1 Synthesis of Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-quaterthiophene (6) 

 

Scheme 3.7 Synthesis of compound (6). 

One equivalent of 5,5'-diiodo-2,2'-bithiophene (0.38 mmol, 0.15 g) and two 

equivalents of 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-oxoverdazayl 

5 (0.82 mmol, 0.32 g), were added to a 100 ml two neck round-bottom flask, along with 

catalytic amounts  of palladium catalyst Pd(OAc)2 (0.053 mmol, 0.012 g), its ligand PPh3 

(0.17 mmol, 0.045 g), and a stirbar. The side neck of the round-bottom was fitted with a 

septum, while the main neck was attached to a condenser connected to a dual manifold 
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vacuum/nitrogen Schlenk line. The round-bottom and its content were degassed with 

multiple vacuum/nitrogen pump cycles.  

In a separate 100 ml pear-shaped flask fitted with a septum, 50 ml of THF was 

degassed through purging with nitrogen and vented with a second needle for 5 minutes. 

While the solvent was still being pumped with nitrogen, the THF was taken up with a 

previously vented syringe and the solvent quickly transferred to the main round-bottom, 

and the reaction mixture was subsequently degassed once more while stirring. In the 

previously used pear shaped flask, 0.20 g (1.5 mmol) of K2CO3 was added along with 20 

ml of deionized water. The flask was gently swirled until the base was completely 

dissolved, then purged with nitrogen. After degassing, the solution was carefully 

transferred to the main round-bottom flask with a degassed syringe. The content in the 

round-bottom was degassed a final time while stirring, the flask was then lowered into an 

oil bath and refluxed for 24 h, while still under a nitrogen flow.  

The following day the reaction flask was removed from heating and allowed to cool 

to room temperature. Next, the reaction solution underwent extraction with water and 

dichloromethane in a separatory funnel, and the resulting organic layer was evaporated 

with a rotary evaporator, giving a dark colored solid. Bisverdazyl 6 was isolated by silica 

gel column chromatography with 2:3 hexane: dichloromethane eluting solution, and 

subsequently recrystallized with heptane. The purified product 6 (0.24 mmol, 0.17 g) was 

a dark gray powder with a yellow tint, and a yield of 63 %. Mp (capillary) 172-174 °C. 

ESR run was carried out in degassed dichloromethane, with g = 2.0040, aN = 3.2 G, aN = 

2.64 G, aH = 0.89 G and linewidth = 0.7 G as parameters. IR (cm
-1

), 2983 (C-H), 1677 
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(C=O). UV-VIS (nm), λmax1 = 428 (ε1 = 5.5x10
4 

L/mol.cm), λmax2 = 592 (ε2 = 7.7x10
2
 

L/mol.cm). MS for C32H36N8O2S4 calculated as 692, found as (LC-MS, electrospray) M
+
 

= 695 (692 + 3H
+
). Magnetic Susceptibility C (Curie Constant) = 0.68 cm

3
.K/mol. 

3.5.2 Synthesis of Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-biphenyl-4,4'-

bithiophene (7) 

 

Scheme 3.8 Synthesis of compound (7). 

One equivalent 5,5'-diiodo-2,2'-bithiophene (0.036 mmol, 0.015 g) and two 

equivalents of 1,5-Diisopropyl-3-Phenyl-4-boronic acid pinacol ester-6-oxoverdazayl 5' 

(0.070 mmol, 0.027 g) were added to a 50 ml two neck round-bottom flask, along with 

catalytic amounts of palladium catalyst Pd(OAc)2 (0.0045 mmol, 0.001 g), its ligand PPh3 

(0.011 mmol, 0.003 g), and a stirbar. The side neck of the round-bottom was fitted with a 

septum, while the main neck was attached to a condenser connected to a dual manifold 

vacuum/nitrogen schlenk line. The round-bottom and its content were degassed with 

multiple vacuum/nitrogen pump cycles. 
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 In a separate 50 ml pear-shaped flask fitted with a septum, 20 ml of THF was 

degassed through purging with nitrogen for 5 minutes. While the pear-shaped flask was 

still under nitrogen flow, the solvent was quickly transferred to the main round-bottom 

with a previously degassed syringe, and the reaction mixture was subsequently degassed 

once more while stirring. In the previously used pear shaped flask 0.027 g (0.19 mmol) of 

K2CO3 was added along with 10 ml of deionized water. The flask was gently swirled 

until the base was completely dissolved, this was followed by degassing of the aqueous 

solution through purging with nitrogen. After degassing, the solution was carefully 

transferred to the main round-bottom flask with a degassed syringe. The content in the 

round-bottom was degassed a final time while stirring, and the flask was then lowered 

into an oil bath and refluxed for 24 h.  

The following day the reaction flask was removed from heating and allowed to cool 

to room temperature. The reaction solution underwent extraction with water and 

dichloromethane in a separatory funnel, and the resulting organic layer was dried with 

anhydrous magnesium sulfate, gravity filtered, and evaporated with a rotary evaporator, 

giving a crude orange solid. The product was further isolated by silica gel column 

chromatography with 2:3 hexane: dichloromethane elueting solution, and recrystallized 

with heptane, giving 0.010 g (0.015 mmol) of purified bisverdazyl 7 as an orange powder 

with a yield of 41 %. Mp (capillary) decomposition at 193-210 °C range. ESR run carried 

out in degassed xylene, with g = 2.0040, aN = 3.23 G, aN = 2.54 G, aH = 0.78 G and 

linewidth = 0.9 G as parameters. IR (cm
-1

), 2983 (C-H), 1668 (C=O). UV-VIS (nm) 
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λmax1 = 264, λmax2 = 398. MS for C36H40N8O2S2 calculated as 680, M
+
 not obtained 

experimentally. Magnetic Susceptibility C (Curie constant) = 0.56 cm
3
.K/mol. 
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Chapter 4: RESULTS & DISCUSSION   

4.1 Failed Reactions & Their Role in Designing Successful Reaction Routes 

Before delving into the results of our successful reactions, it would be helpful to first 

discuss some of the unsuccessful reactions over the course of our research. While these 

setbacks may not have yielded the desired products, the insights gained from these 

failures were key in designing the latter successful reaction routes. 

For our initial approach to synthesizing oligothiophene-verdazyl systems, we sought 

to first synthesize the oligothiophene backbone, and only couple the thiophenes to the 

verdazyl precursor in the final steps. The primary reasoning behind this approach was to 

postponed the use of the verdazyl precursor, bishydrazide 1, which requires a multistep 

synthesis to obtain. The lengthy synthesis of bishydrazide 1 is a serious limiting factor; 

thus, the final product yield is likely to be maximized with a delayed incorporation of 

bishydrazide in the synthesis route. To this end, we sought to make carboxaldehyde end-

capped quaterthiophene, through a double suzuki coupling reaction as seen in Scheme 

4.1; the carboxaldehydes are of course necessary to form end capped tetrazanes, which 

can then be oxidized to verdazyls.  

After several attempts at this reaction, with varying reaction conditions, we were 

unable to obtained the desired product. The failure of the above reaction can primarily be 

attributed to poor solubility. 5-formyl-2-thienylboronic acid was found to be poorly 

soluble in common non-polar organic solvents, likely because of its relative polarity of 

the boronic acid end of the compound. Non-polar Dibromo bithiophene, on the other 

hand, only dissolved in non-polar solvents. While both reagents do dissolve in non-polar 
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solvents at high temperatures, if boronic acids are left in basic conditions for extended 

periods, especially at elevated temperatures as with Suzuki coupling reaction conditions, 

they are known to undergo protodeborylation (loss of boronic acid functional group).
37

 

NMR and Mass Spectrometry results of the reaction mix indicated only the presence of 2-

thiophenecarboxaldehyde and 5,5'-dibromo-2,2'-bithiophene, the former of which is the 

deborylated product of our starting boronic acid, reinforcing the likeliness of 

protodeborylation.  

While in retrospect it may seem self-evident that the poor solubility of lightly 

substituted or unsubstituted oligothiophenes would make them intractable for most 

reaction types, we did not initially realize the full extent of this limiting factor. Indeed, 

even if we had succeeded in synthesizing the carboxaldehyde end-capped 

quarterthiophene, the product would still be unwieldy for the follow up reaction, which 

would require dissolution in ethanol.  

 

Scheme 4.1 Failed double suzuki coupling. 

The unsuccessful reaction above led us to reconsider our synthesis strategy, and 

instead opt for growing the oligothiophene backbone from the verdazyl moiety. To do 
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this, we coupled a single thiophene to the verdazyl precursor, which would give us our 

first novel molecule in the form of the thiophene-tetrazane characterized in the next 

section. This new approach alleviates the previously discussed solubility issues by 

equipping the prospective molecules with the isopropyl groups of the tetrazanes and 

verdazyls, which significantly enhance solubility for the entire molecule.  

The second notable reaction hurdle concerned the borylation of thiophenes, 

specifically our attempt to form a di(boronate) of bithiophene from its dihalide. 

Previously the Brook research groups' approach to borylation of arenes was to carry out 

Miyaura borylation of halo-arenes. This approach was generally successful as it involved 

only the borylation of a mono halide, but we found the results less promising with 

dihalide borylation.  

As seen in Scheme 4.2, the Miyaura borylation of one side of the dihalide can be 

followed up with unintended Suzuki homo/cross-coupling side reactions, between either 

the mono borylated product itself or the starting dihalide, yielding a number of undesired 

oligothiophenes of varying sizes. The reaction was replicated with different conditions, in 

the hopes that the Suzuki side reactions could be curbed, however, we were unsuccessful 

in this regard 
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Scheme 4.2 Miyaura di(borylation) of dihalide.  

This prompted a reassessment of our approach to thiophene borylation. Instead of 

borylating halides through Miyaura borylation, we could instead opt for direct C-H 

iridium catalyzed borylation of non-halogenated thiophenes, and thus avoid unwanted 

Suzuki side reactions. Furthermore, an earlier attempt at iodination of aryl-verdazyls 

demonstrated the incompatibility of the acidic iodination reaction conditions, which lead  

to the decomposition of the reacting verdazyl. Considering the above findings, we 
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concluded that the best approach to obtaining our target molecules would be to borylate 

aryl-verdazyls through iridium catalyzed borylation, while non-radical aryl groups would 

be separately halogenated to provide the necessary reagents for a follow up Suzuki 

coupling reactions that would grow the thiophene chain from the verdazyl. This approach 

ultimately proved successful for synthesizing target molecules, demonstrating the role 

failed reactions can play in devising successful reaction routes.  

4.2 Structural Verification & Spectral Analysis 

In this section, we will first discuss the experimental results relating to the structural 

verification of each individual novel compound, then collectively compare the spectral 

data relating to electronic and chemical properties of the radical products with UV-VIS 

spectroscopy and cyclic voltammetry. Physical properties of the diradicals, such as 

magnetic susceptibility and conductivity are discussed in the subsequent section. 

4.2.1: 2,4-Diisopropyl-6-thiophene-1,2,4,5-tetrazane-3-one (3) 

 

Figure 4.1 Recrystallized tetrazane (3). 

The H-NMR spectrum for tetrazane 3 exhibits typical 2, 4-diisopropyl tetrazane peaks 

(H-NMR 1, Appendices), among which are the peaks due to isopropyl methyl hydrogens, 

which consist of two closely placed doublets in the alkane region, integrating to 6 
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hydrogens each. The two methyl peaks are diastereotopic, and thus have slightly different 

chemical shifts.  Other peaks associated with this type of tetrazane include, the signature 

septet peak due to the hydrogens on the secondary carbon of the isopropyl groups, which 

integrate to 2 hydrogens; a single doublet with two hydrogen integration due to secondary 

amine hydrogens; and finally, a triplet peak near the earlier septet peak, arising from the 

tertiary carbon hydrogen at the 3-position, which integrate to a single hydrogen. The 

peaks specific to tetrazane 3 are seen in the aromatic region, with two doublet peaks and 

a single doublet of doublet peak, each integrating to a single hydrogen. These peaks are 

exactly what we would expect for a mono-substituted thiophene, and taken together with 

the typical cyclic diisopropyl tetrazane peaks, strongly suggests the formation of 

tetrazane 3.  C-NMR (C-NMR 1, Appendices) confirms the same structure with 9 non-

equivalent carbon peaks located in regions characteristic of diisopropyl tetrazane and 

thiophene. 

Results from IR spectroscopy further corroborate the formation of tetrazane 3 (IR 

Spectrum 1), with bands characteristic of 2, 4-diisopropyl tetrazanes at 3212 cm
-1

 for the 

amine bond (N-H), and a band at 1579 cm
-1

 for the carbonyl (C=O) bond.
31

 Mass 

spectrometry (GC-MS 1, Appendices) yielded a mass of 268 m/z, matching the calculated 

molecular weight for tetrazane 3 with the molecular formula C12H20N4OS. 
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IR Spectrum 1: 2,4-Diisopropyl-6-thiophene-1,2,4,5-tetrazane-3-one (3) 

& 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4). 

4.2.2: 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4) 

 

Figure 4.2 Recrystallized Verdazyl (4). 

A qualitative indicator for the oxidation of tetrazane 3 to verdazyl 4 is the drastic 

color change from pale yellow to deep red, seen in Figure 4.2. More definitive evidence 

1579 cm
-1

 

1675 cm
-1
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of verdazyl 4 formation is provided through spectral analysis. IR spectroscopy 

comparison of tetrazane 3 and its oxidized product (IR Spectrum 1) shows a clear 

leftward shift to higher wavenumbers for the C=O carbonyl bond, indicating a 

comparatively higher bond order for the oxidized product compared to the starting 

tetrazane. The difference in C=O band frequency between oxoverdazyls and their 

tetrazane precursors is well established, where tetraznes typically have C=O bands in the 

mid 1500 cm
-1

 range, while the oxoverdazyls have C=O bands in the mid 1600 cm
-1

 

range. Furthermore, the amine N-H band is no longer present in the oxidized product, as   

these amine hydrogens are removed in the oxidation process. Both IR changes are 

characteristic of oxoverdazyls. 

The mere fact that the oxidized product gives an ESR reading is a confirmation that 

the structure contains unpaired electron(s), and is hence a radical, but ESR Spectrum 1 

also provides structural information. The number of hyperfine coupling lines seen in an 

ESR spectrum depends on the atoms the unpaired electron interacts with. For a given 

element, the number of lines are given through the equation: 

Hyperfine line count = 2NI +1 

Here N is the number of atoms for a given element, while I is the nuclear spin of said 

element. In the case of a monoverdazyl, the unpaired electron primarily interacts with the 

four nitrogens, and since the nuclear spin of the most abundant nitrogen isotope is I = 1, 

the hyperfine line count for monoverdazyls comes to:  

2(4)(1) + 1 = 9 lines  
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If the unpaired electron(s) interact strongly with more than one type of element, the 

ESR spectrum will be the result of overlapping lines from each element type. 

 

ESR Spectrum 1: 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4). 

The relative intensities of the hyperfine lines follow Pascal's triangle, and indeed the 

ESR spectrum for the oxidized product fits the above description closely with nine lines, 

providing more evidence for the formation of an oxoverdazyl.  

Mass spectrometry (GC-MS 2, Appendices) of the oxidized product yielded 265 m/z. 

This mass value is 3 mass units lower than tetrazane 3 (268 m/z), which would be 

appropriate for its corresponding verdazyl C12H17N4OS, as the process of oxidation to 

verdazyls removes three hydrogens; two amine hydrogens, and one hydrogen at the 3 

position. The mass spectrum also provides a tidbit of structural information through 

fragmentation analysis. The first two fragments are 42 m/z, matching fragments due to 

ESR Intensity 

 (k.b) 
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isopropyl groups, a fragmentation pattern commonly observed for 1,5-diisopropyl 

oxoverdazyls. The structural verification of verdazyl 4 is rounded out with X-ray 

Crystallography (XRD). Figure 4.3 provides a 3D structural representation of verdazyl 4 

based on the data provided by XRD (XRD Data 1, Appendices). Besides providing 

confirmation for the overall structure of verdazyl 4, the 3D image also shows the torsion 

angle between the verdazyl moiety and the thiophene ring (23.66°). Furthermore, Figure 

4.3 shows a disorder of the thiophene ring, with the thiophene sulfur being present on 

both sides of the aromatic moiety. This suggests that both orientations of the thiophene 

with respect to the verdazyl ring are equally favored in the crystalline structure and 

chemically identical.   

 

Figure 4.3 Verdazyl (4) Structure XRD. 
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4.2.3: 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-oxoverdazayl (5) 

 

Figure 4.4 Recrystallized verdazyl (5). 

Structurally verdazyl 5 very much resembles verdazyl 4, only differing in the 

inclusion of pinacol boronic ester moiety at the end of the thiophene. Unsurprisingly, 

when comparing the IR spectra of the two verdazyls we see nearly identical spectra with 

only minor differences in the fingerprint region (IR Spectrum 2). The important take 

away though is that both radicals have the characteristic verdazyl carbonyl band.  
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IR Spectrum 2: 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4) & 1,5-

Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-oxoverdazayl (5). 

Similarly, ESR spectrum of the borylated product mirrors the non-borylated 

thiophene verdazyl (ESR Spectrum 2). This is to be expected, as the unpaired electron 

and its interactions are primarily limited to the verdazyl moiety and do not extend to the 

thiophene or the boronic ester, thus we see very similar ESR measurements. Fortunately, 

mass spectrometry can differentiate between the two verdazyls by providing the mass 

value 391 m/z (GC-MS 3, Appendices). This value does match the calculated molecular 

weight for verdazyl 5 chemical formula C18H29BN4O3S. Similar to verdazyl 4, we see the 

characteristic successive isopropyl fragments in the mass spectrum for verdazyl 5, 

confirming the product as a diisopropyl oxoverdazyl. 

1681 cm
-1

 1675 cm
-1

 



68 
 

 

ESR Spectrum 2: 1,5-Diisopropyl-3-thiophene-5-boronic acid 

pinacol ester-6-oxoverdazayl (5). 

The definitive proof for verdazyl 5 is provided by XRD (XRD Data 2, Appendices). 

As seen in the 3D structure of Figure 4, not only is the addition of the pinacol boronic 

ester confirmed, but we also see the angle between the thiophene, verdazyl ring and the 

boronic ester is fixed, unlike verdazyl 4. Interestingly, the torsion angle between the 

thiophene ring and the verdazyl ring has also been reduced in comparison to verdazyl 4, 

making the two rings more co-planar. The thiophene and the pinacol boronic ester are 

also largely planar with respect to one another.  

ESR Intensity 

 (k.b) 

Field/Gauss 
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Figure 4.5 Verdazyl (5) structure XRD. 

While the iridium catalyzed borylation of the thiophene-verdazyl did succeed in 

forming the desired product, the yields obtained through this reaction route proved 

modest. Two factors have been identifies as the likely culprit for the reduced yields. The 

first hurdle was the partial conversion of the thiophene verdazyl to its borylated form (50-

60%), in all but our final attempt (80-90% conversion). The product conversion was 

found to be tangibly improved with more rigorous degassing and higher catalyst loading. 

Unfortunately, the initial starting material had been consumed by this juncture. The 

second factor reducing yield was the difficulty of separating residual verdazyl 4 from 

verdazyl 5 product. Due to their very similar structure and polarity, flash chromatography 

of the crude product results in the overlapping of the two verdazyl components. 

Ultimately a portion of  product 5 eluted with residual verdazyl 4, lowering the purified 

yield further. An improved conversion percentage might allow for traditional 

recrystallization techniques in future attempts, which may circumvent the troubles of 

overlapping column elution, and increase final yield. All things considered though, while 

the successful iridium borylation of an aryl-verdazyl was an important milestone in our 
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research, our ultimate goal is the synthesis and study of conjugated bisverdazyls, hence 

ensuring a decent yield of verdazyl 5 was a major objective. Because of this we devised 

an alternative synthesis route where borylation occurs before tetrazane and verdazyl 

formation. 

4.2.4: 2,4-Diisopropyl-6-thiophene-5-boronic acid pinacol ester-1,2,4,5-tetrazane-3-

one (4') 

 

Figure 4.6 Recrystallized tetrazane (4'). 

We will not discuss the characterization 5-formyl-2-thienylboronic acid pinacol ester 

(3') in depth, as this product is commercially available (see Scheme 3.4 for structure). 

Instead we will merely verify its successful synthesis via H-NMR and Mass 

Spectroscopy. H-NMR 2 (Appendices) easily confirms the formation of carboxaldehyde-

boronic ester 3' with a singlet aldehyde peak in 10 ppm region integrating to one 

hydrogen, two doublet peaks in the aromatic region due to the thiophene hydrogens (1 

hydrogen each), and a large singlet peak in alkane region (integrating to 12 hydrogens), 

for the pinacol boronic ester methyl hydrogens. GC-MS 4 (Appendices) also confirms the 

structure with 238 m/z mass, matching the known molecular weight of 5-formyl-2-

thienylboronic acid pinacol ester (3'). Furthermore, a cursory fragmentation analysis 
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lends more support for the structure, with the first fragment of 15 m/z suggesting methyl 

fragments from the pinacol boronic ester end of the structure. Boronate 3' is not a novel 

compound, but its formation is significant in two ways. First, it is the result of converting 

less soluble boronic acid to its corresponding pinacol boronic ester, which improves its 

solubility in non-polar solvents, and is known for greater stability in silica based column 

chromatography. Second, boronate 3' provides the borylated aldehyde containing 

thiophene needed for the formation of our desired borylated tetrazane. 

Having established the formation of carboxaldehyde 3', we can now discuss the 

characterization of its resulting tetrazane. The first clue to the formation of tetrazane 4' is 

provided by H-NMR 3 spectrum (Appendices) with the disappearance of the aldehyde 

peak at 10 ppm range. Most peaks for this product mirror those of tetrazane 4, except for 

two peaks that allow us to differentiate the two tetrazanes. First, tetrazane 4' only has two 

doublet aromatic peaks, while tetrazane 4 has three aromatic peaks with one being a 

doublet of a doublet. This is of course because the thiophene in tetrazane 4' is substituted 

in both 2 & 5 position, while the thiophene in tetrazane 4 is only substituted at the 2 

position.  Second, with tetrazne 4' we see an additional singlet peak in the alkane region 

(integrated to 12 hydrogens) due to the methyl hydrogens of the pinacol boronic ester, 

which is absent in tetrazane 4.  A similar trend is observed with Carbon NMR, where C-

NMR 2 (Appendices) shows a very similar spectrum to that of tetrazane 4 except with 

two additional peaks (11 total, one appears hidden by solvent peak) due to the boronic 

ester moiety.  
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IR Spectroscopy of tetrazane 4' (IR Spectrum 3) is nearly identical to tetrazane 4, 

save for minor variances in the fingerprint region, which is in line with our expectation 

for this type of tetrazane, with characteristic bands for Carbonyl C=O in the 1500s cm
-1

 

range and amine N-H bands in 3200s cm
-1

 range. Concluding our structural verification, 

GC-MS 5 (Appendices) found the mass of tetrazane 4' to be 394 m/z. This mass would 

agree with the expected value for the corresponding tetrazane to verdazyl 5, where the 

mass is 3 mass units heavier than verdazyl 5 mass of 391 m/z.  

 

IR Spectrum 3: 2,4-Diisopropyl-6-thiophene-5-boronic acid pinacol 

ester-1,2,4,5-tetrazane-3-one (4'). 

A follow up oxidation step converts tetrazane 4' to verdazyl 5. We have not included 

a repeat of the spectra for verdazyl 5 in the Results and Appendices sections, however, 

1581 cm
-1
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it's worth emphasizing the greater yield obtained through this alternative synthesis route 

compared to the initial synthesis route involving Iridium catalyzed borylation of the 

thiophene-verdazyl (49% vs 14% respectively). We believe the greater yield to be at least 

in part due to the more facile purification of the verdazyl from its tetrazane precursor 

compared to two similar verdazyls. Thus, it can be concluded that for the synthesis of 

borylated-aryl-verdazyls, its preparation from a tetrazane precursor is likely to yield more 

product, although if such an option were unavailable, iridium borylation of the aryl-

verdazyl is still a viable option. 

4.2.5: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-quaterthiophene (6) 

 

Figure 4.7 Recrystallized Bisverdazyl (6). 

With the synthesis of a fair amount of borylated verdazyl 5, we could proceed with 

double Suzuki reaction to form our target diradical, bisverdazyl 6.  IR Spectroscopy 

confirms the product as a verdazyl (IR Spectrum 4) with the characteristic carbonyl C=O 

band, but cannot verify whether the structure is a monoradical or a diradical.  
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IR Spectrum 4: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-

quaterthiophene (6). 

Instead the evidence for diradical formation is provided by ESR spectroscopy (ESR 

Spectrum 3), where the spacing between the hyperfine coupling lines are nearly halved 

for bisverdazyl 6, compared to previous spectra for monoradicals.  

1677 cm
-1

 

C=O 
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ESR Spectrum 3: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-

quaterthiophene (6). 

The difference seen between the ESR spectra of bisverdazyls and monoverdazyls, is 

due to each unpaired electron interacting with 8 nitrogens in bisverdazyls, instead of only 

4 with monoverdazyls. The strength of the unpaired electron interactions with the 

nitrogens of the opposite verdazyl depends on the proximity of the two verdazyl moieties 

and delocalization of the separating spacer. A bisverdazyl can give an ESR spectrum very 

similar to monoverdazyls if the two verdazyls are separated by lengthily spacer molecules 

or an insulating moiety. Conversely very closely placed verdazyls would result in a 

broadening of the hyperfine lines. In the case of bisverdazyl 6, the two radicals do indeed 

interact, though relatively modestly.   

Mass spectrometry of bisverdazyl 6 (LC-MS 1, Appendices) yielded a mass value of 

695 m/z, which is 3 mass units greater than what would be expected for bisverdazyl 6. It 

ESR Intensity 

 (k.b) 
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is not uncommon for verdazyls to undergo reduction to leucoverdazyls under certain 

conditions, and here we suspect that the solvent matrix and LC-MS instrumentation may 

have led to reduction of bisverdazyl 6 to its bis (leucoverdazyl) equivalent, plus an 

additional reduction with an extra hydrogen. Despite the unintended reduction, the LC-

MS results further support the formation of bisverdazyl 6.  

The full Structure of bisverdazyl 6 was verified with X-ray crystallography. In Figure 

4.8 we can see the three-dimensional structure provided by XRD, where two diisopropyl 

oxo-verdazyls are separated by a thiophene tetramer spacer. Just as importantly the figure 

also shows the torsion angle between the thiophene units and the verdazyls. The torsion 

angles between the thiophenes are quite small, such that the thiophene chain can be 

regarded as roughly planar, and thus conjugation along the thiophenes is intact. But, 

unlike the conventional way thiophene chains are represented with trans orientation (seen 

with our structural schemes earlier), here each two thiophenes on either half of the 

structure have cis conformation, while only the central thiophenes have trans 

conformation with respect to one another. This gives bisverdazyl 6 symmetry with 

respect to a plane passing through the middle of the structure. Additionally, we can note 

that the verdazyl moieties are not entirely in plane with the thiophene chain.  
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Figure 4.8 Bisverdazyl (6) structure XRD. 

XRD also provides a look at molecular packing (not pictured). Monoverdazyls 4 & 5 

exhibited typical Herringbone packing (slanted head to tail), with intermolecular contact 

points primarily consisting of alkyl group hydrogens and carbonyl oxygens, this type of 

intermolecular packing is often detrimental to intermolecular conduction.
43

 Bisverdazyl 6 

on the other hand displayed a packing pattern which can be describe as an intermediate 

between planar and herringbone, this packing pattern indicates some degree of  -stacking 

due to the longer conjugated thiophene chain. Intermolecular packing is especially 

important for OSCs, which face some conductivity hurdles due to incoherent hopping 

charge transport mechanism. We will discuss the significance of packing further in our 

future works section. 
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4.2.6 Bis(1,5-diisopropyl-6-oxoverdazyl)-3-3'-bithiophene-4,4'-biphenyl (7) 

 

Figure 4.9 Bisverdazyl (7) in xylene. 

The Brook research group previously synthesized borylated phenyl-verdazyl 5' while 

working on the Le et al. paper.
30

 Given our success with the double Suzuki reaction when 

synthesizing bisverdazyl 6, we sought to synthesize a second bisverdazyl for comparison 

by reacting borylated verdazyl 5' and 5,5'-dibromo-2,2'-bithiophene in a double Suzuki 

coupling reaction. 

  

IR Spectrum 5: Bis(1,5-diisopropyl-6-oxoverdazyl)-3-3'-bithiophene-

4,4'-biphenyl (7). 

1668 cm
-1
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Just as with bisverdazyl 6, IR spectroscopy of bisverdazyl 7 (IR Spectrum 5) confirms 

the product as an oxoverdazyl with the characteristic carbonyl C=O band, while ESR 

Spectrum 4 identifies 7 as a bisverdazyl with a very similar spectrum to bisverdazyl 6. 

The small secondary splitting on top of the hyperfine lines of ESR Spectrum 4 are due the 

minor interactions of the unpaired electrons with the verdazyl isopropyl hydrogens, and is 

present in all diisopropyl verdazyl ESR spectra, but is more apparent here due to better 

sample degassing.  

We were unable to obtain XRD measurements for bisverdazyl 7, as the small amount 

of product prevented the effective growth of XRD grade crystals through diffusion 

recrystallization. However, studies with mixed thiophene/phenyl oligomer-diradical 

systems have shown that the inclusion of phenyl rings lead to decrease in oligomer chain 

planarity and conjugation.
44

 Phenyl rings in conjugated oligomers often adopt tilted 

conformations due to the sterics of the hydrogens on either side of the aromatic ring. This 

is less of an issue for thiophens, as they are considerably more compact with only two 

hydrogens on one side of the ring, and thus usually adopt planar conformation with one 

another in poly/oligomers.  
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ESR Spectrum 4: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-biphenyl-

4,4'-bithiophene (7). 

4.2.7 UV-VIS Spectra 

For organic molecules, absorption in the ultraviolet-visible range results from 

electronic transitions of valence electrons from ground states to excited states. While 

electronic transitions for valence electrons encompass σ→σ* transitions as well, the 

energy requirements for these transitions place their absorbances outside of typical UV-

VIS spectra ranges (200-700 nm). The most common transitions in the UV-VIS range are 

instead those due to conjugated systems with π→π* transitions, or unpaired/lone pair 

electron transitions such as n→π* or n→σ* as seen in Figure 4.10. Because our verdazyls 

have both unpaired electrons and conjugated components, all three of the transitions in 

Figure 4.10 may be present in their UV-VIS spectra, although n→σ* transitions are less 

prevalent.  

ESR Intensity 

 (k.b) 
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Figure 4.10 Electronic transitions due to UV-VIS absorption. 

UV-VIS Spectrum 1-4 (Appendices) show the spectra for each of the radical species, 

with absorption maxima and corresponding (likely) transition type labeled. The 

absorbance maxima for all radical species are listed in Table 4.1, along with the 

extinction coefficients (except for bisverdazyl 7).  

Table 4.1 UV-VIS peak maxima for radical species. 

 

Relation between the magnitude of photon energy and wavelength is inverse, what 

this means is that smaller energy gap transitions undergo absorptions in longer 

wavelengths, while larger gap transitions require shorter wavelength absorptions. 

Absorbances at higher wavelengths are due to transitions with either particularly high 

energy HOMO orbitals or low LUMO orbitals. Unpaired SOMO electrons are one such 
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high-energy non-bonding HOMO orbitals, with small energy gaps separating them from 

their respective LUMO orbitals, and so transitions for such electrons are often seen in 

high wavelengths, especially for n→π* transitions. Unfortunately, due to the low 

extinction coefficient of such transitions, their absorption peaks are difficult to identify as 

they are swamped by other transitions with much higher extinction coefficients such as 

π→π* transitions. Nevertheless, such transitions certainly occur for the verdazyl-

conjugated systems.  

The absorptions seen in Table 4.1 are all likely due to various π→π* transitions 

brought about due to the aromatic rings and conjugated oligomers. A look at the 

maximum absorbance values for verdazyl 4 & 5 makes it clear that the two radical 

systems have very similar transitions, with verdazyl 5 only slightly red shifted in 

comparison to verdazyl 4. This is very much expected, as the addition of a boronic ester 

is not likely to alter the electronic configuration of the thiophene or verdazyl to a 

noticeable extent.   

The bisverdazyls show a much stronger absorption with high extinction coefficients 

compared to the mono-radicals, it is also noteworthy that the second absorption for 

bisverdazyl 6 at 592 nm is significantly red shifted compared to the mono-radicals, which 

is likely due to the higher conjugation length shrinking band gap for this transition. 

Comparing the UV-VIS spectra of bisverdazyl 6 & 7, we see that the latter diradical is 

blue shifted in comparison to the former in the visible range. This is because 

quarterthiophene is more conjugated than biphenyl-bithiophene due to its planar 

structure, while the latter oligomer has a more twisted structure due to the phenyl rings.
32
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Interestingly though, bisverdazyl 7 exhibits a red shifted peak in the UV range (not 

pictured) compared to bisverdazyl 6, suggesting that a second more energetic transition in 

the UV range of bisverdazyl 7 may have a smaller gap than that of bisverdazyl 6. 

As a final point to conclude our UV-VIS discussion, the absorptions in the visible 

range not only determines some of the electronic properties of radical species, they also 

determine the observed color of substances. The color we witness is the reflected 

complementary colors to the visible light absorbed by substances (see Figure 4.11).    

 

Figure 4.11 UV-VIS-IR light spectrum by Fulvio314 - Own work, CC BY-

SA 4.0,https://commons.wikimedia.org/w/index.php?curid=50181281. 

For instance, verdazyl 4 absorbs visible light to various degrees in the range of 380-

600 nm. That leaves visible light in the 600-700 nm region to reflect off the solid, and 

thus we observe the radical as red colored. We see a very similar color for verdazyl 5 as 

well, which also agrees with its absorbance in the visible range. Bisverdazyl 6 is a bit 

more complicated, as it has a wide range of absorptions across almost the entirety of the 

visible range, so much so that the solid has a generally dark gray coloration as most of the 

visible light is absorbed. But, absorption beyond the high 500s nm are relatively small for 
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bisverdazyl 6, such that a mild yellow colored luster is observed with this diradical. 

Bisverdazyl 7 on the other hand has a shorter range of absorptions in the visible range up 

to ~580 nm and as such it is observed as a bright orange colored solid.  

4.2.8 Cyclic Voltammetry 

Cyclic voltammetry (CV) spectra display the current profile of a substance while it 

undergoes changes in its oxidation state as a result of potential sweeps by the working 

electrode. CV can be used to study electrochemical properties of a substance in a wide 

range of ways, from kinetics to concentration determinations. Our analysis of the spectra 

will however focus on redox half potentials E1/2, redox process reversibility, and product 

stability.  

Table 4.2 displays the E1/2, Epa, and Epc values, which are respectively the half wave 

potential, oxidation potential, and reduction potential for each CV wave of the novel 

radicals. Cyclic voltammetry can be used to estimate band gap and HOMO/ LUMO 

levels for organic materials. The difference between two successive half wave potentials 

for instance, can give a rough estimate of the band gap for an electronic transition within 

a given potential range. A cursory comparison of the only two CV runs with reversible 

redox waves in Table 4.2, verdazyl 4 and bisverdazyl 6, shows that the band gap of 

bisverdazyl 6 is notably smaller at 1.64 v, compared to 1.73 v for verdazyl 4. This result 

agrees with the findings seen in UV-VIS spectrometry, where bisverdazyl 6 absorbs in 

longer wavelengths, indicative of a smaller band gap transitions. Of course, the above 

results are to be expected considering bisverdazyl 6 is more extensively conjugated than 

verdazyl 4. 
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Table 4.2 Cyclic voltammetry potentials for radical species. 

 

Among the four novel radical-conjugated systems (see CV Spectrum 1-4 in 

Appendices), verdazyl 4 is the only product to exhibit full redox chemical reversibility 

for the given potential ranges, demonstrated by nearly identical forwards and backwards 

oxidation and reduction waves. The other three radicals exhibit at least some degree of 

irreversible chemical processes in the measured potential ranges. Verdazyl 5 undergoes 

reversible one electron reduction at 0.13 v (E1/2 = 0.37v), but experiences an irreversible 

reduction at 1.58 v. Bisverdazyl 6 on the other hand undergoes a mostly reversible 

oxidation at-1.20 v (E1/2 = 0.36v), but undergoes an irreversible oxidation at 0.50 v (E1/2 

= -1.28v), where the corresponding reduction wave appears to double in current output, 

suggesting a possible two electron  reduction processes. Bisverdazyl 7 appears to be the 

least reversible of the four, only experiencing reversibility for a reduction at 0.43 v (E1/2 = 

0.47v), While a non-reversible oxidation takes places at 0.99 v and a non-reversible 

reduction at -0.54 v, with the corresponding reduction and oxidation waves being absent.  

Generally, less reversibility in CV suggests lower analyte stability for redox reactions 

at the measured potential. This is because the analyte may be undergoing an irreversible 

chemical reaction while changing redox state in the forward sweep, such that the return 
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sweep redox change will not return the analyte to its initial state, as exemplified by 

Figure 4.12.  

 

Figure 4.12 Irreversible CV redox scheme 

Perhaps the most important take away though is the comparison between the redox 

potential of the conjugated oligomer and the verdazyl moiety. As previously discussed 

the conductivity of organic semiconductors is boosted considerably when 

electrochemically doped to form polaron and bipolaron transportation modes. If the redox 

potential (band gap) of the verdazyl moiety is smaller than that of the OSC's, it's likely 

the radical will undergo oxidation before the conjugated chain, preventing the formation 

of highly conductive doped OSC. This is arguably one of the most important hurdles 

preventing our synthesized diradicals from realizing their role as conductive spin 

transport materials. We will discuss possible solutions to this matter in the future works 

section.  

4.3 Diradical Physical Properties 

4.3.1 Magnetic Susceptibility 

Magnetic susceptibility is a measure of how strongly a substance interacts with the 

magnetic field, and provides a quantitative indicator of a substance's magnetic behavior. 

Magnetic susceptibility measurements of the bisverdazyls not only informs us about the 
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type of magnetism present in the substances, it also gives clues about how the two 

radicals interact with one another (singlet, triplet, or non interacting). 

If the magnetic susceptibility (χ) for a substance is negative, the substance is 

diamagnetic, and its interaction with the magnetic field causes a repulsive force. It's 

worth noting that all substances exhibit some degree of diamagnetism due to their paired 

electrons, but the overall magnetic susceptibility of non-diamagnetic materials is 

dominated by the larger susceptibility of other forms of magnetism. Small, but positive 

magnetic susceptibility with adherence to curie's law indicates paramagnetism, and such 

substances experience weak attraction to magnetic fields.  

Figure 4.13 and 4.14 show the plot of magnetic susceptibility vs T and 1/T 

respectively, for bisverdazyl 6. Both figures display characteristic magnetic susceptibility 

of a paramagnetic material, following Curie's law. The slope of the Figure 4.14 graph 

gives the Curie constant (C), which was found to be 0.68 (cm
3
.K/mol). This Curie 

constant value suggests that the two radicals of bisverdazyl 6 either do not interact or 

interact rather weakly, as the value is relatively close to 0.75 cm
3
.K/mol, the Curie 

constant for non interacting radicals. The lack of diradical interaction in bisverdazyl 6 is 

likely due to the quaterthiophene spacer. A shorter spacer would likely lead to stronger 

interaction between the diradicals, which we may consider exploring in future studies. 
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Figure 4.13 χ vs T Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-

quaterthiophene (6). 

  

Figure 4.14 χ vs 1/T Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-

quaterthiophene (6). 

The magnetic susceptibility of bisverdazyl 7 (Figure 4.15 & 4.16) is quite similar to 

bisverdazyl 6, with characteristic paramagnetic behavior that fits Curie's law. Bisverdazyl 
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7 has a smaller Curie constant at 0.56 cm
3
.K/mol, likely due to bisverdazyl 7 sample 

being less pure than the bisverdazyl 6 sample used for these measurements. 

 

Figure 4.15 χ vs T Bis(1,5-diisopropyl-6-oxoverdazyl)-3-3'-bithiophene-

4,4'-biphenyl (7). 

 

Figure 4.16 χ vs 1/T Bis(1,5-diisopropyl-6-oxoverdazyl)-3-3'-

bithiophene-4,4'-biphenyl (7). 
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4.4 Conclusion 

Our primary research goal was to develop bisverdazyl diradicals with oligothiophene 

spacers for novel physical properties, especially in the context of spintronics. Major 

hurdles to synthesis included unsubstituted oligothiophene poor solubility, and 

uncontrolled oligomerization. We succeeded in devising a synthesis strategy to 

circumvent the above issues by first forming thiophene-verdazyl then proceeding with 

borylation of the aryl-verdazyl through iridium borylation, the latter step of which is a 

significant development for the synthesis of future aryl-verdazyl systems that may utilize 

Suzuki coupling. We were also able to increase the yield of the borylated-thiophene-

verdazyl by forming the verdazyl from an alternative route with a previously borylated 

thiophene-tetrazane. The increased yield allowed us to proceed with double Suzuki 

coupling reaction of dihalogentated bithiophene and our borylated thiophene verdazyl, to 

obtain our target molecule bisverdazyl 6 with a thiophene tetramer spacer. The same 

double Suzuki coupling technique was used with previously developed borylated-phenyl-

verdazyl to obtain bisverdazyl 7. 

Several characterization methods were used to verify the structure of novel radical 

species. UV-VIS, CV and magnetic susceptibility measurements were respectively used 

to study the electronic, electrochemical and magnetic properties of said radicals. The 

synthesis strategy developed in this research will allow for the development of other 

similar conjugated-verdazyls systems. In the future works section we will be discussing a 

few pending analyses for bisverdazyls 6 & 7, as well as a particularly promising follow 

up project that will build on what we have learned in our work here. 
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Chapter 5: FUTURE WORK 

The development of fully organic materials with both spin polarizing and conductive 

properties, was the defining inspiration for our research project. Bisverdazyls with 

oligothiophene spacers were envisioned to exhibit such properties, and bis (1, 5-

diisopropyl-6-oxoverdazyl)-3,3'-α-quaterthiophene (6) was selected as an initial target 

towards this goal. We have since successfully synthesized bisverdazyl 6, characterized its 

structure and studied some of its properties through UV-VIS, cyclic voltammetry, and 

magnetic susceptibility. The analyses most relevant to our overarching goal, conductivity 

and magnetoresistance have yet to be carried out. Completion of the these analyses will 

be our foremost goal in future studies. 

 Even though our study of bisverdazyl 6 has yet to fully conclude, we already 

suspect conductivity limitations with this diradical due to its relatively short conjugation 

length. The conductivity prospects are further undermined by cyclic voltammetry data, 

which suggests that the quaterthiophene chain oxidizes with a smaller or equal potential 

magnitude to the verdazyl moiety, such that attempts at electrochemically doping the 

quaterthiophene may instead lead to a change in the oxidation state of the diradicals, and  

effectively eliminate of the unpaired electrons. This is a serious limitation, as 

oligothiophenes have modest conductivity unless doped to form polaron and bipolaron 

charge transport.  

We believe we can tackle the above issue by combining oligothiphene with the 

thiophene derivative, 3,4-ethylenedioxythiophene (EDOT). EDOT (Figure 5.1 for 

structure) is best known as the monomer of poly(3,4-ethylenedioxythiophene) and poly 
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(3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT: PSS), which are among the 

most conductive organic materials, with metal-like conductive properties.
45

 The 

extraordinary conductivity of the above polymers is due in large part to the considerable 

electron donor property of EDOT and the many intramolecular interactions (non-

covalent) between the oxygens and sulfurs of each monomer, the latter of which is very 

important in regards to morphology.  

 

 

Figure 5.1 EDOT structure. 

One major disadvantage of oligothiophenes is their poor solubility due to stacking 

effects and the ridged structure of thiophenes. This was seen with our earlier synthetic 

work, in which even a thiophene tetramer was poorly soluble. Oligomers consisting of 

EDOT, on the other hand, fare better in regards to solubility. This is because of the 

flexible cyclic ether portion of EDOT monomer, which allows the synthesis of soluble 

unsubstituted oligo-EDOT chains, with as many as 18 EDOT units.
46

 While we were able 

to form a soluble bisverdazyl with a thiophene tetramer spacer, the diradical was already 

experiencing some decrease in solubility, such that full dissolution required 

dichloromethane as solvent. Even a marginally longer thiophene chain could very well 

lead to a poorly soluble diradical. We believe that by combining EDOT and thiophenes as 
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co-oligomers, we can achieve better solubility and synthesize longer conjugated 

oligomers, with smaller band gaps and redox potentials, increasing overall conductivity. 

Turbiez et al. studied various arrangements of mixed thiophene-EDOT co-oligomers, 

and found the oxygen-sulfur interactions between EDOT and thiophenes lead to 

important differences in structural conformation (see Figure 5.2).  

 

Figure 5.2 Intramolecular interactions in thiophene-EDOT oligomers. 

Based on Turbiez et al. findings, we believe the best suited thiophene/EDOT 

arrangement for our purposes would be alternating thiophene-EDOT co-oligomers, as 

this arrangement was found to lead to planar anti conformation (for the aromatic moiety, 

as the ether end of EDOT is twisted) between the thiophene and EDOT units, which 

would maximize the extent of p orbital overlap and improve conjugation.
47

 Alternating 

thiophene-EDOT oligomers may be preferable to just oligo-EDOT, as EDOT oligomers 

can often undergo unintentional polymerization, as the alpha position on EDOT is 

particularly reactive. Furthermore, successive EDOT units imbue the structure with very 

small oxidation potentials, so that oligo-EDOTs can also undergo spontaneous 

oxidizations, making it harder to synthesize neutral forms of the conjugated system for 

more controlled electrochemical doping.
46
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The non-covalent oxygen-sulfur interactions of EDOT units extends beyond just 

intramolecular interactions to intermolecular interactions as well. The high proportion of 

regular intermolecular interactions leads to more organized planar π-stacking molecular 

motifs.
43

 This contrasts with herringbone π-stacking which we observed to some degree 

with our novel verdazyl compounds. Planar packing generally increases conduction, as it 

allows for better intermolecular overlap of energy levels, giving a more band like 

transport characteristic, while herringbone packing exhibits the more traditional 2D 

molecular transport mechanism, with more disordered mobility (Figure 5.3).
43

   

 

Figure 5.3 Molecular packing motifs. 
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Scheme 5.1 Synthesis plan for mixed thiophene/EDOT co-oligomer 

Bisverdazyl system.  

Scheme 5.1 shows our proposed synthesis route to obtain bisverdazyls with 

thiophene-EDOT co-oligomer spacers. The direct C-H coupling of halogentated 

thiophene with terminal EDOTs explored in Liu et al. paper, allows us to elongate the 

thiophene-EDOT chain with fewer steps and no boronic acid, save for the final reaction 

step joining the oligomer to the borylated thiophene verdazyl.
48

 We believe the proposed 
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synthesis will be a worthwhile follow up to the research presented here, and will build on 

what has been learned over the course of the project.   

 

Figure 5.4 Proposed spin propagation mechanism in conductive diradical. 

We conclude with Figure 5.4, which provides a simplified and speculative visual 

representation of how a conductive oligomer-bisverdazyl systems might act as materials 

for spin transport.  

 

 

 

 

 

 

 



97 
 

REFERENCES: 

1. Moore, G. E. P. IEEE. 1998, 86 (1), 82–85. 

2. Theis, T. N.; Wong, P. H. S. Comput. Sci. Eng. 2017, 19 (2), 41–50. 

3. Peper, F. New. Generat. Comput, 2017, 35 (3), 253–269. 

4. Kang, W.; Zhang, Y.; Wang, Z.; Klein, J.-O.; Chappert, C.; Ravelosona, D.; Wang, G.; 

Zhang, Y.; Zhao, W. ACM. J. Emerg. Tech. Com. 2015, 12 (2), 1–42. 

5. Guarnieri, M. Iee. Ind. Electron. M. 2012, 6 (1), 41–43. 

6. Mehta, V. K.; Mehta, R. Principles of Electronics; S Chand and Co. Ltd: New Delhi., 

2008; pp 28-47 

7. Nag, B. R. Indian. J. Radio. Space. 1990, 19, 306-308 

8. Weller, P. F. J. Chem. Educ. 1967, 44 (7), 391-393. 

9. Juster, N. J. J. Chem. Educ. 1963, 40 (10), 547–555. 

10. Coropceanu, V.; Li, H.; Winget, P.; Zhu, L.; Brédas, J.-L. Annu. Rev. Mater. 

Res. 2013, 43 (1), pp 63–87. 

11. Kertesz, M.; Choi, C. H.; Yang, S. Chem. Rev. 2006, 105 (10), 3448–3481. 

12. Dechun, Z. in Organic Light-Emitting Diodes (OLED); Buckley, A., Ed.; Materials, 

Devices and Applications: Cambridge, U.K., 2013; pp 114–142. 

13. Gregg, B. A.; Hanna, M. C. J. Appl. Phys. 2003, 93 (6), 3605–3614. 

14. Olivier, Y.; Lemaur, V.; Brédas, J. L.; Cornil, J. J. Phys. Chem. A. 2006, 110 (19), 

6356–6364. 

15. Schott, S.; Mcnellis, E. R.; Nielsen, C. B.; Chen, H.-Y.; Watanabe, S.; Tanaka, H.; 

Mcculloch, I.; Takimiya, K.; Sinova, J.; Sirringhaus, H. Nat. Commun. 2017, 8, 

1–10. 

16. Harris IR, Williams AJ. Magnetic materials. In: Rawlings RD, editor. Material 

science and engineering., 2009, 2, 49–84. 

17. Kolhatkar, A.; Jamison, A.; Litvinov, D.; Willson, R.; Lee, T. Int. J. Mol. Sci. 2013, 

14(8), 15977-16009 



98 
 

18. Gu, H.; Zhang, X.; Wei, H.; Huang, Y.; Wei, S.; Guo, Z. Chem. Soc. Rev. 

2013, 42 (13),  5907–5943 

19. Turro, N. J. Modern Molecular Photochemistry; University Science Books: Sausalito, 

CA., 1991. 

20. Joshi, V. K. Eng. Sci. Technol. Int. J. 2016, 19 (3), 1503–1513. 

21. Zhang, Y.; Zhao, W.; Klein, J.-O.; Kang, W.; Querlioz, D.; Zhang, Y.; Ravelosona, 

D.; Chappert, C. Des. Aut. Test. Europe. 2014, 1–6. 

22. Boona, S. R.; Myers, R. C.; Heremans, J. P. Energ. Environ. Sci. 2014, 7 (3), 885–910 

23. Togo, H.; Togo, H. In Advanced Free Radical Reactions for Organic Synthesis; 

Elsevier: Amsterdam, Netherlands, 2004; pp 1–37. 

24. Bačić, G.; Spasojević, I.; Šećerov, B.; Mojović, M. Spectrochim. Acta. Mol. Biomol. 

Spectrosc. 2008, 69 (5), 1354–1366. 

25. Vostrikova, K. E. Coordin. Chem. Rev. 2008, 252 (12-14), 1409–1419. 

26. Blundell, S. J.; Pratt, F. L. J. Phys.: Condens. Matter. 2004, 16, 771–828. 

27. Hicks, R. G.; Lemaire, M. T.; Thompson, L. K.; Barclay, T. M. J. Am. Chem. 

Soc. 2000, 122 (33), 8077–8078. 

28. Barclay, T. M.; Hicks, R. G.; Lemaire, M. T.; Thompson, L. K. Chem. Comm. 2000, 

No. 21, 2141–2142. 

29. Brook, D. J. R. Comment. Inorg. Chem, 2014, 35 (1), 1–17. 

30. Le, T.-N.; Trevisan, T.; Lieu, E.; Brook, D. J. R. Eur. J. Org. Chem., 2017, 2017 (7), 

1125–1131. 

31.  Pare, E.C.; Brook, D. J. R.; Brieger, A.; Badik, M.; Schinke, M. Org. Biomol. Chem. 

2005, 3, 4258-4261 

32. Tour, J. M.; Lamba, J. J. S. J. Am. Chem. Soc. 1993, 115 (11), 4935-4936. 

33. Szajda, M.; Lam, J. N. In Comprehensive Heterocyclic Chemistry II. a Review of the 

Literature, 1982-1995: The Structure, Reactions, Synthesis and Uses of 

Heterocyclic Compounds; Pergamon: Oxford, 1996; Vol. 2, pp 437–490. 



99 
 

34. Zhang, L.; Colella, N. S.; Cherniawski, B. P.; Mannsfeld, S. C. B.; Briseno, A. L. 

Oligothiophene Semiconductors: Synthesis, Characterization, and Applications 

for Organic Devices. ACS Appl. Mater. Interfaces. 2014, 6 (8), 5327–5343. 

35. Musick, K. Y.; Hu, Q.-S.; Pu, L. Synthesis of Binaphthyl−Oligothiophene 

Copolymers with Emissions of Different Colors:  Systematically Tuning the 

Photoluminescence of Conjugated Polymers. Macromolecules. 1998, 31 (9), 

2933–2942. 

36. Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-Catalyzed Cross-Coupling 

Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic 

Esters. J. Org. Chem. 1995, 60, 7508–7510. 

37. Lennox, A. J. J.; Lloyd-Jones, G. C. Selection of Boron Reagents for Suzuki-Miyaura 

Coupling. Chem. Soc. Rev. 2014, 43, 412–443. 

38. Song, J.; Wei, F.; Sun, W.; Cao, X.; Liu, C.; Xie, L.; Huang, W. Highly Efficient C–C 

Cross-Coupling for Installing Thiophene Rings into π-Conjugated Systems. Org. 

Chem. Front. 2014, 1, 817–820. 

39. Singh, Y. Electrical Resistivity Measurements: A Review. Int. J. Mod. Phys. 2013, 22, 

745-756. 

40. Hwang, E.; Lusker, K. L.; Garno, J. C.; Losovyj, Y.; Nesterov, E. E. Semiconducting 

Polymer Thin Films by Surface-Confined Stepwise Click Polymerization. Chem. 

Commun. 2011, 47(43), 11990–11992. 

41. Tajuddin, H.; Harrisson, P.; Bitterlich, B.; Collings, J. C.; Sim, N.; Batsanov, A. S.; 

Cheung, M. S.; Kawamorita, S.; Maxwell, A. C.; Shukla, L.; Morris, J.; Lin, Z.; 

Marder, T. B.; Steel, P. G. Iridium-Catalyzed C–H Borylation of Quinolines and 

Unsymmetrical 1,2-Disubstituted Benzenes: Insights into Steric and Electronic 

Effects on Selectivity. Chem. Sci, 2012, 3 (12), 3505–3515. 

42. Ishiyama, T.; Takagi, J.; Yonekawa, Y.; Hartwig, J. F.; Miyaura, N. Iridium-Catalyzed 

Direct  Borylation of Five-Membered Heteroarenes by Bis(Pinacolato)Diboron: 

Regioselective, Stoichiometric, and Room Temperature Reactions. Adv. Synth. 

Catal. 2003, 354, 1103-1106.  

43. Filo, J.; Putala, M. Semiconducting Organic Molecular Materials. J. Electr. Eng. 

2010, 61(5), 314–320 

44. Kolanji, K.; Ravat, P.; Bogomyakov, A. S.; Ovcharenko, V. I.; Schollmeyer, D.; 

Baumgarten, M. Mixed Phenyl and Thiophene Oligomers for Bridging Nitronyl 

Nitroxides. The J.  Org. Chem. 2017, 82 (15), 7764–7773. 



100 
 

45. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-

Ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. 

Mater. 2000, 12 (7), 481–494. 

46. Dai, Q.; Li, Y.; Zhai, L.; Sun, W. 3,4-Ethylenedioxythiophene (EDOT)-Based π-

Conjugated Oligomers: Facile Synthesis and Excited-State Properties. J. Photoch. 

Photobio. A., 2009, 206 (2-3), 164–168. 

47. Turbiez, M.; Frère, P.; Allain, M.; Videlot, C.; Ackermann, J.; Roncali, J. Design of 

Organic Semiconductors: Tuning the Electronic Properties of π-Conjugated 

Oligothiophenes with  the 3,4-Ethylenedioxythiophene (EDOT) Building 

Block. Chem. Eur. J. 2005, 11 (12), 3742–3752. 

48. Liu, C.-Y.; Zhao, H.; Yu, H.-H. Efficient Synthesis of 3,4-Ethylenedioxythiophene 

(EDOT)-Based Functional π-Conjugated Molecules through Direct C–H Bond 

Arylations. Org. Lett. 2011, 13 (15), 4068–4071. 

49. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; 

Towler, M.; Van de Streek, J. J. Appl. Cryst. 39, 453-457, 2006. 

 

 

 

  



101 
 

APPENDICES 

NMR Spectra 
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H-NMR 1: 2,4-Diisopropyl-6-thiophene-

1,2,4,5-tetrazane-3-one (3) 
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C-NMR 1: 2,4-Diisopropyl-6-thiophene-

1,2,4,5-tetrazane-3-one (3) 
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H-NMR 2: Synthesis of 5-Formyl-2-thienylboronic 

acid pinacol ester (3') 
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H-NMR 3: 2,4-Diisopropyl-6-thiophene-5-boronic 

acid pinacol ester-1,2,4,5-tetrazane-3-one (4') 
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C-NMR 2:  2,4-Diisopropyl-6-thiophene-5-boronic acid 

pinacol ester-1,2,4,5-tetrazane-3-one (4') 
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UV-VIS 

UV-VIS Spectrum 1: 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4) 

 

UV-VIS Spectrum 2: 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-

oxoverdazyl (5) 
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UV-VIS Spectrum 3: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-quaterthiophene (6) 

 

UV-VIS Spectrum 4: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-biphenyl-4,4'-

bithiophene (7) 
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Mass Spectroscopy 

GC-MS 1: 2,4-Diisopropyl-6-thiophene-1,2,4,5-tetrazane-3-one (3) 
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GC-MS 2 : 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4) 
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GC-MS 3: 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-   

 oxoverdazyl (5) 
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GC-MS 4: 5-Formyl-2-thienylboronic acid pinacol ester (3') 
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GC-MS 5: 2,4-Diisopropyl-6-thiophene-5-boronic acid pinacol ester-   

 1,2,4,5-tetrazane-3-one (4') 
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LC-MS 1: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-quaterthiophene (6) 
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Cyclic Voltammetry (CV) 

CV Spectrum 1: 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4) 

 

CV Spectrum 2: 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-  

  oxoverdazyl (5) 
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CV Spectrum 3: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-α-quaterthiophene (6) 

 

CV Spectrum 4: Bis (1, 5-diisopropyl-6-oxoverdazyl)-3,3'-biphenyl-4,4'-bithiophene (7) 
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ESR Bisverdazyl Overlays 

ESR Overlay 1: Quaterthiophene Bisverdazyl 

 

ESR Overlay 2: Biphenyl Bithiophene Bisverdazyl 
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X-ray Crystallography 

XRD Data 1: 1,5-Diisopropyl-3-thiophene-6-oxoverdazyl (4) 
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XRD Data 2: 1,5-Diisopropyl-3-thiophene-5-boronic acid pinacol ester-6-oxoverdazyl 

(5) 
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