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ABSTRACT 

THE TOP-DOWN INFLUENCES OF CHARACTERISTIC SOUNDS ON VISUAL 

SEARCH PERFORMANCE IN REALISTIC SCENES 

 

by Ghazaleh Mahzouni 

The purpose of this experiment was to investigate whether meaningful sounds can 

facilitate visual search performance in the context of realistic scenes. It also aimed to 

determine whether the stimulus onset asynchrony (SOA) of sound and picture is a 

significant factor in enhancing performance. A 3 X 4 X 2 within subject design was used 

with independent factors sound congruency (congruent, incongruent and white noise), 

SOA (-1000, -500, 0, 300 ms), and target presence (present and absent). Participants were 

55 (34 female and 21 male) college aged students at San Jose State University. On each 

trial participants were presented with a word cue indicating the target object, then 

depending on the condition they either 1) heard a sound and saw a picture simultaneously 

(SOA 0), 2) heard a sound followed by a scene (negative SOA), or 3) viewed a scene 

followed by a sound (positive SOA).  The results indicated a congruency effect only at 

the negative SOAs, when the sound preceded the picture by 1000 or 500 ms. However, 

we did not observe a significant advantage of -1000 SOA over -500 SOA. Moreover, 

performance was significantly degraded at the positive SOA 300.  Overall, these results 

suggest that congruent characteristic sounds can enhance visual search performance in 

realistic scenes, provided that they are presented at least 500 ms before the picture. 
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Introduction 

Research Problem 

 
Traditional research has primarily focused on how unimodal sensory signals influence 

perception and behavior in isolation. However, we live in a multisensory world where 

different sensory signals from the environment are combined to form a coherent 

representation of the world. Sound, in particular, is a rich source of information that can 

convey object identity, meaning, or location in space. Research based on visual search 

performance suggests that presenting congruent characteristic sounds that provide no 

spatial information can facilitate finding the target object faster (Iordanescu, Guzman-

Martinez, Grabowecky & Suzuki, 2008). However, this phenomenon has not been 

investigated in visual search performance in realistic scenes. In addition, the optimal 

stimulus onset asynchrony (SOA) for presenting the characteristic sounds and picture of 

realistic scenes has not been addressed yet.  

Literature Review 

 
While there is a large body of psychological research dedicated to visual search 

performance, very few studies have looked at the multisensory nature of meaningful 

sounds on visual search in the context of realistic scenes. Consequently, this lack of 

investigation has resulted in limited understanding of the effects of multisensory 

integration in real life situations. For this reason, the current study aimed to extend the 

generalizability of prior findings by utilizing realistic pictures of real-world scenes and 

meaningful sounds.  
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Multisensory integration refers to the process of combining inputs from different 

sensory modalities. For a long time, it was believed that visual and auditory inputs from 

the environment are first processed independently within their primary cortices and only 

combined at later stages of cortical processes. However, Falchier, Clavagnier, Barone and 

Kennedy (2002) provided anatomical evidence for the connectivity of the primary visual 

cortex (v1 or area 17) and the auditory cortex of Cynomolgus monkeys. They injected 

retrograde tracers to the visual cortex of the monkeys and found that this area receives 

direct projections from the auditory cortex.  

Further neuroimaging studies have demonstrated the same connectivity in the human 

brain. For instance, Romei, Murray, Merabet and Thut (2007) applied transcranial 

magnetic stimulation (TMS) over the occipital pole of the human brain and measured 

behavioral responses to visual or auditory and visual stimuli. They found that TMS 

slowed reaction times to the visual stimuli, confirming that activity within the visual 

cortex was inhibited by the TMS pulse. However, reaction times to the visual stimuli 

were faster when the visual stimuli were paired with a simple auditory tone. This was 

taken as evidence that the activity within the primary visual cortex was enhanced in the 

presence of the auditory stimuli than vision alone. In other words, the brain areas that 

were inhibited by the TMS pulse were “disinhibited” when an auditory tone was present.  

The activation of visual cortex as a result of auditory input has a direct influence on 

perception. For example, Franssinetti, Bologinin and Ladvas (2002) presented a faint 

flash of green light at one of the several possible locations on the screen. The flash was 

either presented alone or with a simultaneous tone that was irrelevant to the task. They 
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found that visual sensitivity (d’) for detecting the flash was increased when the tone was 

present. Overall, these studies suggest that the visual cortex is excited in the presence of 

auditory information which can consequently enhance perception and cognitive functions 

such as attention.  

Given that our cognitive system is capacity limited, attention is required to select 

relevant information. Attention can be directed in two ways: 1. Bottom-up processing in 

which attention is captured automatically based on the properties of the stimuli. 2. Top-

down processing which is the voluntary allocation of attentional resources based on the 

observer’s goals, intentions and relevance to the goals. (Theeuwes, 1991; Wolfe, Butcher, 

Lee & Hyle, 2003). The following two sections reviews evidence of bottom-up and top-

down processing in multisensory settings.  

Bottom-up Processing in Multisensory Integration  

 
Most research on multisensory integration has focused on rudimentary auditory 

stimuli and their effect on perception. Research using simple tones suggests that auditory 

information can enhance visual perception in a bottom-up manner. For instance, Stein 

and London (1996) demonstrated that a brief auditory tone can significantly enhance the 

perceived intensity of LED lights. Similarly, Van der Burg, Oliver, Bronkhorst and 

Theeuwes (2008) demonstrated that a simple auditory “pip” can significantly reduce the 

search time for finding an otherwise hard-to-find target. They presented participants with 

a visual search array that contained several vertical and horizontal line segments. On each 

trial, the target and distractors changed colors continuously, making the target hard to 

find. Participants were required to make a speeded response to the orientation of the 
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target line. On some trials a simple auditory “pip” accompanied color change. The results 

indicated that reaction times for finding the target was significantly lower when the 

auditory “pip” was present. They argued that the auditory stimulation automatically 

makes the target object pop out in a bottom-up manner. In another study, Matusz and 

Elmer (2011) showed that multisensory integration enhances the saliency of sensory 

input which in turn enhances attentional capture to facilitate performance. They found 

that visual search performance was faster when the target cue (color change) was 

accompanied by a brief tone.  

Top-Down Processing in Multisensory Integration  

 
In contrast, some studies show that enhancement of visual and auditory processing is 

a result of top-down cognitive processes rather than automatic processes. For example, 

Talsma and Woldorff (2005) presented participants with random auditory, visual or 

audiovisual stimuli in two lateral spatial positions. The participants were instructed to 

attend to only one of the spatial locations. The event-related potential (ERP) analysis 

showed that when participants were instructed to pay attention to the unisenosry visual 

target, the N1 and P1 components, which are generally known to be related to attentional 

enhancement, were enhanced compared to when they were not paying attention. In 

addition, when they were paying attention to the unisensory audio target, the N1 

component was enhanced compared to when they were not paying attention. In the 

multisensory condition, when the stimuli were presented at the attended location, the 

audiovisual condition showed a greater amplitude for both the N1 and P1 component 

compared to either of the unimodal stimuli. The researchers also found that the 
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unattended location elicited considerably smaller N1 and P1 responses. This provides 

evidence that directing attention in a voluntarily manner can modulate the multisensory 

process.  

In a subsequent study Talsma, Doty and Woldorff (2007) presented participants with 

a rapid serial visual presentation (RSVP) task which included a stream of letters 

appearing above a fixation cross. Every 1-10 seconds the letter was replaced by a random 

digit that served as the target. Directly below the fixation cross there was either a visual 

stimulus, which was a horizontal square wave grating, auditory stimuli, a tone pip, or 

audiovisual stimuli which was a simultaneous presentation of the wave grating and the 

tone. The results showed that when participants were instructed to attended to both 

stimuli, the early component of the ERP (P50) was enhanced compared to attending to 

only the visual or auditory stimuli. This finding provides further evidence for the 

influence of top-down directed attention on responding to bimodal stimuli.  

Additionally, Lippert, Logothetis and Kayser (2007) showed that participants only 

showed improvement in performance when the sound carried information about the 

visual target that was not obtainable from the visual display. Furthermore, Laurienti, 

Kraft, Maldjian, Burdette and Wallace (2004), demonstrated that pairing visual objects 

with semantically congruent auditory stimuli can facilitate object recognition. For 

instance, recognition of a red or blue circle was improved only when the circle was 

presented simultaneously with the verbalization of the target congruent color. Moreover, 

object recognition was degraded in the presence of incongruent auditory stimuli. Overall, 
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these studies demonstrate that observers can guide their attention voluntarily based on 

their intentions and knowledge of stimuli in a multisensory stetting.  

The Effect of Meaningful Stimuli on Perception and Behavior  

 
Characteristic sounds. Although research has clearly established the effects of 

simple sounds on visual perception, little is known about characteristic sounds. 

Characteristic sounds are sounds that inform us about the identity of an object. For 

example, barking, meowing and keys jingling clearly identify specific objects: dog, cat 

and keys. Several behavioral and neuroimaging studies have shown that characteristic 

sounds can significantly enhance performance in cognitive tasks such as object 

recognition, categorization tasks and visual search performance. The idea is that when the 

meaningful sounds matches the target object (congruent), the semantic information from 

the characteristic sound excites the visual cortex, which then crossmodally enhances 

visual processes. Below we review neuroimaging and behavioral evidence of this 

process.  

Molholm (2004) measured high density event related potentials (ERPs) while 

participants performed an object recognition task. The task either paired pictures of 

animals with their characteristic sounds or the picture of the animal was shown alone. 

Participants made a speeded response to the appearance of the target animal. The ERP 

result indicated the activation of occipito-temporal cortices, which is part of the ventral 

stream, known for processing object recognition. Behavioral results showed that reaction 

times were significantly faster and more accurate at identifying the target animal when 

the picture and sound were congruent, than when the target was presented without sound. 
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This indicates that even if the target is easily identifiable through one sensory input 

(vision) input from another sense (sound) can interact to enhance object recognition. This 

shows that visual and auditory input interact to enhance ventral stream processing.  

Other behavioral studies have also shown that semantically meaningful sounds 

enhance object identification. Chen and Spence (2010) used an identification task to 

investigate audiovisual semantic congruency. Participants were briefly shown a line 

drawing picture of an animal, which was immediately masked by a scrambled picture. 

They then had to make an un-speeded response identifying the animal by typing the name 

of the animal on a keyboard. The stimulus onset asynchrony (SOA) of sound and picture 

were varied such that the characteristic sound could occur simultaneously with the picture 

(SOA 0) or 300 or 522 ms after the picture (positive SOA). They did not manipulate the 

negative SOAs (when sound occurred before picture) in this study. The results showed 

that picture identification was improved when the congruent characteristic sound and the 

line drawing were presented simultaneously (SOA 0) and when the onset of sound was 

delayed by 300 ms (SOA +300). Interestingly, no semantic congruency effect was 

observed when the onset of sound was delayed by 522 ms (positive SOA) This finding 

suggests that that the semantic congruency effect of characteristic sound is present at 

SOA 0 and can be extended with an auditory delay of 300 ms.  

In a subsequent study Chen and Spence (2011) used a picture detection task to 

investigate the influence of characteristic sounds when they occurred before the picture 

(negative SOAs). In this experiment, participants first saw a blank frame for 600 ms, then 

followed by either a frame of picture (line drawing) or another blank frame. The 
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congruent characteristic sound could occur simultaneously (SOA 0) or 345 ms before the 

picture (negative SOA). Positive SOAs were not manipulated in this study. The visual 

stimulus was then masked by scrambled drawing. Participant had to indicate whether 

they had seen a picture (regardless of its identity) right before the mask. Results showed 

that only characteristic sounds enhanced sensitivity to semantically congruent pictures 

when sound occurred 345 ms before the picture (negative SOA).  

Using a categorization task (living vs. non-living), Chen and Spence (2018) tested the 

congruency effect of characteristic sounds with 7 different SOAs (-1000, -500, -250, -

100, 0, 100 and 250). They found that responses were faster and more accurate only when 

the auditory cue was presented 250, 500, or 1000 ms before the visual pictures (negative 

SOAs). The congruency effect was not present with the simultaneous presentation of 

sound and picture (SOA 0).  The authors suggested that a when the sound precedes the 

picture a short-term buffer for semantic processing is necessary to allow for each sensory 

modality to access their meaning and integrate to enhance performance.  

Prior studies have shown that characteristic sounds that provide non-spatial 

information facilitate finding the location of a target object. Iordanescu et al. (2008) 

presented four pictures of common objects in quadrants and the search display was 

accompanied by the simultaneous presentation of characteristic sounds. The characteristic 

sounds were either consistent with the target, consistent with the distractor or a sound 

unrelated to anything on the display. The results showed that search was more efficient 

when the target was paired with target-consistent sound than a distractor-consistent or 

unrelated sound. Interestingly, while target consistent sounds facilitated search 
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performance, the target inconsistent sound did not impair performance relative to 

unrelated sounds. One criticism of this study is that random and unrelated pictures were 

used without any context. In real life however, objects do not appear randomly in their 

surroundings. Since there was no scene information, the ability to generalize these results 

to real-world situation is limited.  

While the above studies have provided compelling evidence for the enhancement of 

visual perception in the presence of sounds, two questions still remain unresolved: can 

characteristic sounds influence more realistic tasks such as visual search performance in 

real world scenes? Is temporal disparity between auditory and visual stimuli a significant 

factor in obtaining congruency effect in realistic scenes?  

Real-world scenes. Real-world scenes are complex, and attention is required for 

scene perception (Wolfe, Alvarez, Rosenholtz, Kuzmova & Sherman, 2011). Studies 

have shown that humans are particularly good in scene perception. In fact, significant 

information about a scene can be extracted in a very brief glimpse (Biederman, 

Rabinowiz, Glass & Stacy, 1974). For example, participants are able to accurately 

identify the scene type (outdoor vs. indoor) as quickly as 45-135 ms, by an analysis of 

global features (Henderson & Hollingworth, 1999). In addition, one can understand the 

meaning of a complex novel scene when the image is blurred (Schyns & Oliva, 1994). 

Moreover, the gist of a scene can be acquired in a single glance (Biederman, 1981; potter, 

1999). To illustrate, in a go/no-go task in which participants had to decide whether a 

photograph that was flashed for only 20 ms contained an animal, ERP measures revealed 

that this could be achieved in less than 150 ms (Thorpe, Fize & Marlot, 1996). 
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Understanding the gist of a scene allows one to access the schema representation of 

object identity and spatial location (Henderson, 2003).  

However, finding the location of objects within the context of a scene is generally 

more difficult and require more time than 150 ms (De Graef, 1990). De Graef (1990) 

argues that there are several stages in finding an object in a scene. The first stages of 

scene perception are for the scene specific information in which scene schemas are 

activated from memory and later stages are based on the object information. The 

cognitive guidance theory states that the most important factor that guides attention 

within a complex scene is meaning (Henderson & Hayes, 2018). This view holds that 

attention is directed by the cognitive system to the specific scene regions that are 

semantically informative and relevant to the observer’s goal. For instance, Eckstein, 

Koehler, Welbourne and Akbas (2017) mis-scaled some objects within realistic scenes 

such that they were significantly larger than other items in surroundings. They found that 

the mis-scaled target (ex. A giant parking meter) was missed because it was not part of 

the goal of the observer. This finding shows that the top-down cognitive factors such as 

the goal of the observer, are more important than bottom-up saliency in scene perception. 

Conceptual Short-Term Memory (CSTM) 

 
CSTM is a form of working memory in selective attention that helps access 

conceptual representation of stimuli in the environment (Potter, 1999). According to the 

CSTM theory when people observe a scene or hear a sound, a series of conceptual 

information regarding those stimuli are quickly activated and held in CSTM. This leads 

to the retrieval of additional relevant information from the long-term memory (LTM). 
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The relevant information is then dynamically structured together to achieve the goal of 

the observer. If information is not incorporated or selected it will be forgotten 

immediately. Potter (1993,1999) argues that the entire process is very quick and takes 

less than 1 second. Figure 1 shows a diagram representing the structure of this theory.  

 
Figure 1. A diagram representing the CSTM theory. Once the stimuli are identified a 

semantic representation of the stimuli is quickly activated. Relevant information is 

recruitment from long-term memory and linked to achieve the observer’s goal. Linked 

information can be consolidated into long-term memory and unused information is 

rapidly forgotten.  

 

In the present experiment the goal of the observer was to locate a known target object 

in a complex scene while hearing a characteristic sound (congruent or incongruent to the 

target) or white noise. The CSTM theory would suggest that the congruent characteristic 

sound provides coherent information regarding the identity and the location of the target 

object which enhance the consolidation of the scene stimuli. On the other hand, the 

incongruent sound activates a conceptual representation that is not helpful the goal of the 

observer and it will not be structured with the scene stimuli (Chen & Spence, 2010; 
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Potter,1999). Similarly, the white noise does not provide any relevant information, so it 

will not be linked with the scene stimuli.  

The Role of the SOA in Multisensory Integration  

 
The above studies show that the combination of sensory information from different 

senses about a common source enhances object identification, discrimination or 

localization. King (2005) argues that a necessary step for this process is for the sensory 

signals to bind together. He further argues that the co-occurrence of sensory stimuli is a 

powerful cue in this process. This is based on the idea that there are multisensory neurons 

in the brain (such as those in the superior colliculus) that are activated when sound and 

picture are presented simultaneously (Meredith, Nemitz & Stein, 1987). In this view, 

response to a visual stimulus is enhanced only if it is similarly accompanied by a sound.  

However other studies have shown that response to visual stimuli can be enhanced when 

the onset of sound is varied. The SOA refers to the amount of time between the start of 

one stimulus and the start of a second stimulus. Previous studies have shown 

contradicting results regarding the influence of the SOA on tasks involving visual and 

auditory stimuli. Some studies indicated that performance is enhanced when the 

characteristic sound precedes the picture, i.e., negative SOA (Chen & Spence, 2011; 

Chen and Spence 2018), while others have found that performance is also enhanced when 

the sound is lagged by 350 ms, i.e., positive SOAs (Chen, 2011; Meredith, Nemitz & 

Stein, 1987).  

These discrepancies can be attributed to the type of task used in each experiment. For 

instance, in the picture detection and picture categorization tasks where negative SOAs 
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have shown improvements, participants made a speeded response to a quickly shown line 

drawing. In this case when the characteristic sounds were presented before the picture, 

participants had enough time to access the meaning of the sound before completing the 

task, therefore, the sound could significantly enhance perception. However, in the same 

task at SOA 0, the sound did not have adequate time to access its meaning before the 

completion of task and could not influence perception.  In contrast, in the picture 

identification tasks, where positive and 0 SOA have shown improvements, participants 

made un-speeded responses to visual stimuli by simply typing the identity of the target on 

the keyboard. It can be argued that in this task participants were able to wait until the 

meaning of the sound was achieved before task competition, thus at positive or 0 SOA 

the sound could enhance performance. Overall, these studies seem to suggest that the 

time frame for characteristic sounds to influence visual perception is flexible and depends 

on the task at hand. It is not clear how the temporal dynamics of characteristic sounds 

will affect performance in a visual search task with more complex stimuli such as 

realistic scenes.   

Deficiencies in the Literature  

 
Although research on visual search is rich, studies have not looked at the 

multisensory nature of visual search performance in the context of realistic scenes. Thus 

far, characteristic sounds have only been shown to facilitate visual search among isolated 

pictures of unrelated objects. Currently, no published studies have investigated whether 

characteristic sounds that are spatially uninformative can facilitate finding an object in a 
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complex scene. In addition, no research has investigated the temporal dynamics of 

characteristic sound in a complex scene.  

Significance of the Study  

 
The current study utilized a cognitive task that is relevant to everyday life activity to 

investigate the top-down influences of sounds on performance. More specifically, we 

used characteristic sounds that provide information about an objects’ identity, but not its 

location in space, on finding that object in a complex and realistic scene. The results of 

this study enhance the ecological validity of prior findings and a better understanding of 

how attention is distributed among realistic stimuli.  

Research Question and Hypothesis  

 
In this study we were interested in answering the following questions: 

(1) Can congruent semantic information from auditory stimuli enhance visual search 

performance in realistic scene in a top-down manner? 

(2) Is there an advantage of presenting the auditory information first to allow proper 

sensory integration?  

(3) Is timing between the presentation of stimuli crucial for multisensory integration 

during complex scene searches.  

To answer these questions, we presented participants with a visual search task 

containing realistic scenes and characteristic sounds that can be either congruent or 

incongruent to the target objects or hear white noise or no sound. We also systematically 

varied the SOA to gain a better understanding of the influence of temporal disparity 

between each stimulus.  
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Hypothesis 1: Participants will be faster in finding the target objects when the scene is 

paired with a target-congruent sound compared to incongruent and white noise.  

Hypothesis 2: 

 (a) The congruency effect will be different at different levels of the SOA. 

Specifically, the congruency effect will only be present when the congruent sound is 

presented before the scene (negative SOAs) compared to when the congruent sound is 

presented after the scene (positive SOA).  

(b) In the congruent condition, RTs will be significantly different at each level of the 

SOA (SOA -1000 < -500 < 0 < 300). Whereas, in the incongruent condition and white 

noise condition, RTs will not be significantly different at each level of the SOA.  

(c) There will be a trend where longer and negative SOA will lead to stronger 

congruency effect. The longer negative SOA -1000 will lead to a stronger congruency 

effect than the shorter negative -500 SOA.  

Hypothesis 3: 

 Performance in the no sound condition will be higher than RTs in all congruent 

sound conditions. 

The rationale for the first hypothesis is that hearing a characteristic sound that 

matches the target object will guide one’s attention to the likely location that the target 

would appear in the scene, thus, making that object easier to find. To illustrate, in a study 

Iordanescu, Grabowecky, Franconeri, Theeuwes and Suzuki (2010) measured eye 

movements during visual search performance with congruent and incongruent 

characteristic sounds and found that the time it took for participants to saccade to the 
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target object was significantly reduced with the characteristic sound was congruent to the 

target object in comparison to when it was incongruent.  

The rationale for hypothesis 2a is that performance seems to be enhanced when sound 

precedes the picture by a certain amount of time. For instance, Chen and Spence (2011) 

found that the characteristic sounds give rise to semantic congruency effect in picture 

identification task only when the sound lead the picture by more than 346 ms. They argue 

that this amount of time is enough for the meaning of the sound to be fully accessed.  

The SOAs for the present experiment are -1000, -500, 0 and 300 ms. These specific 

SOAs were chosen based on the results of prior studies that used characteristic sounds 

and visual stimuli.  For instance, the SOA -1000, and -500 were chosen because Chen 

and Spence (2018) demonstrated congruency effect in a picture categorization task when 

the characteristic sound lead the pictures at SOA -1000 and -500. SOA 0 was chosen 

because Iordanescu, et al. 2008, found that search performance was enhanced when 

congruent characteristic sounds were presented simultaneously with the search display. 

Moreover, the SOA 300 was chosen because some studies have shown characteristic 

sounds still enhance object identification even if auditory stimuli briefly lagged visual 

targets. For example, Chen and Spence (2010) found that identification of masked picture 

was facilitated at SOA +300 but not +500. However, we argue that it is unlikely that our 

experiment would show a congruency effect at SOA 300 due to complexity of our visual 

stimuli. The realistic scenes used in our experiment is more complex, thus, the meaning 

of the scene cannot be held in the CSTM and bind to the characteristic sound when the 

scene appears before the sound.  
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The rationale for hypothesis 2c is that longer negative SOA (SOA -1000) would 

allow more time for the CSTM to access the conceptual representation of the 

characteristic sound and retrieve relevant information from long term memory to guide 

attention to the likely location of the target object.  

The rationale for hypothesis 3 is that evidence form behavioral and neuroimaging 

studies show that performance is facilitate when two congruent stimuli from different 

senses are combined. For this reason, we expect that the no sound condition will have 

higher reaction times than all the congruent sound conditions.  
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Method 

Participants 

 
Participants for this study were college aged students who self-reported normal or 

corrected-to-normal vision and hearing. All participants were recruited from the San José 

State University (SJSU) psychology pool and received course credit for participation. 

Written informed consent were obtained from all participants prior to participation in the 

study. This study was approved by the Institutional Review Board (IRB) at SJSU. The 

number of participants was determined prior to the study to achieve adequate statistical 

power. G*power suggested that a minimum of 48 participants were needed to conduct a 

within-subject analysis of variance (ANOVA) with an effect size of alpha = .25 and 

power = .85. A larger sample of 60 was included in order to account for technical 

difficulties and attrition rate. Six participants were excluded from the experiment due to 

technical difficulties with the computer; thus, the total sample size for this experiment 

was 55 (34 female and 21 male) students.  

Research Design  

 
This experiment was a 3 X 4 X 2 factorial design. The independent variables were 

sound (congruent, incongruent, white noise), SOA (-1000, -500, 0, 300 ms) and target 

presence (present and absent). The dependent variables were reaction time (RT) in 

milliseconds (ms) and proportion of correct responses. We also included a no sound 

condition which only included the target present and absent variables.  

In the congruent condition, the target object was always presented with its 

characteristic sound (e.g., picture of a dog in a park was matched with the sound of 



 19 

barking). In the incongruent condition the target object was presented with a sound that 

was not relevant to anything in the scene (e.g., a picture of a cat sitting on a bed was 

paired with the sound of toaster popping). In the control condition, the scene was paired 

with white noise. Additionally, in the no sound condition, the scene was presented alone, 

without any auditory input. The four SOAs and the no sound condition were divided into 

five separate blocks. Each SOA block contained six conditions of congruent/present, 

incongruent/present, white noise/present, as well as congruent/absent and 

incongruent/absent and white noise/absent. There were 20 trials in each condition, 

resulting in a total of 120 trials in each block. The no-sound block also contained 120 

trials but only included the target present and target absent conditions (60 target- present 

trials and 60 target-absent trials). The order of trials within each block was randomized.  

Apparatus and Stimuli  

 
The visual stimuli were presented on a 20-inch monitor at a resolution of 1920 x 1080 

with a 120 Hz refresh rate. Participants were seated approximately 57 cm away from the 

monitor. The auditory stimuli were presented via two loud speakers that were placed on 

each side of the computer monitor. The experiment was generated and presented via 

Opensesame (Mahot, Schreij & Theeuwes, 2012).  

Realistic scenes. The visual stimuli for this experiment consisted of 620 color images 

of realistic scenes that included various scene types such as bedroom, bathroom, living 

room, kitchen, street, office, and farm. Target objects within the scene were chosen such 

that they were placed in a reasonable location, easily recognized, and were not occluded 

by other objects. The target objects could be household objects, musical instruments, 
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animals, etc. There were 20 target objects in the experiment; a list of all target objects is 

included in Table 1.  

Table 1 

A list of target objects and their characteristic sounds that were used in the main 

experiment 

 

Target Objects Scene Types Characteristic Sounds 

Alarm Clock Bedroom Alarm ring 

Car Street Car engine 

Cat Indoor Meow 

Clock Living space Clock ticking 

Computer Mouse Office Mouse clicking 

Cow Farm Moo 

Dog Outdoor Barking 

Duck Lake Quack 

Egg Kitchen Egg cracking 

Faucet Bathroom Water 

Guitar Living space Strumming 

Keyboard Office Typing on keyboard 

Keys Living Space Jingling 

Motorcycle Street Motorcycle engine 

Phone Living Space ringing 

Piano Living Space Piano note 

Rooster Farm Crowing 

Shoes Living Space footsteps 

Toaster Kitchen Toaster popping 

Wine glass Kitchen Tapping on wine glass 

 

Pictures were selected from Google images and were presented only once in the 

experiment. In target present conditions, the target object was in a reasonable location 

within a relevant scene (e.g., an alarm clock was on a bedside table in a bedroom). In 

target absent condition, the scene was relevant to the target object that was indicated at 

the beginning of the trial, but it was not in the scene (e.g. picture of a bathroom with no 
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faucet). There were 30 different scenes for each of the target object; 15 unique scenes for 

target present and 15 unique scenes for target absent condition. For instance, the target 

object, toaster, appeared in 15 different kitchen setting; there were also 15 kitchen scenes 

that did not include a toaster. The target object within each scene could look different, 

however they were always the same type. For example, a phone was always a landline 

phone, never a smart phone, or the toaster was always a pop-up toaster and not a toaster 

oven.  

In order to control for the complexity of the pictures, participants were randomly 

assigned to three picture groups. Participants in group one saw the same set of scenes for 

the congruent, incongruent and white noise conditions. To illustrate, for one third of 

participants, the scene containing the target object keys on a blue lanyard was always 

paired with the congruent sound of jingling, regardless of the order of the SOAs. 

Additionally, the scene containing keys on a shelf was always paired with a random 

incongruent sound and the scene with keys on a nightstand was paired with white noise. 

In contrast, for participants in group two, the keys on the blue lanyard was paired with a 

random incongruent sound, while the keys on shelf was paired with white noise, and keys 

on nightstand was paired with the congruent jingling sound. For the last third of 

participants, the keys with blue lanyard was paired with white noise, keys on shelf with 

jingling sound and keys on night stand was paired with an incongruent sound. This 

allowed us to make sure that each scene was presented in all the congruency conditions 

regardless of the order of the SOAs, thereby reducing the influence of the picture 

complexity on performance. It is important to note that participants saw 15 unique scenes 
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for all the 20 target objects in each group. The order of the blocks was counterbalanced 

using Latin square.  

Characteristic sounds. The auditory stimuli for this experiment were 26 

characteristic sounds that represented the target objects. All sounds were downloaded 

from www.freesound.org. Only one sound was chosen to represent a target object. All 

sounds were trimmed to 850 ms. To ensure that the sounds were a good representation of 

the target objects, a pilot study was done with seven naive participants. The participants 

listened to each sound once and indicated the object that they thought the sound 

represented. All sounds that were chosen for this study reached 100% accuracy rate 

among the participants. In the congruent conditions, only the sound that matched the 

target object was used from the list. For the incongruent conditions, a sound that did not 

matched the target object was randomly assigned from the list of 26 sounds.  

Procedure  

 
 Participants were tested individually in a dark and quite room. The researcher read 

all instructions out loud to the participants. Participants completed 15 practice trials to 

familiarize themselves with the experiment. The target objects for the practice trials were 

the following: bird, blackboard, camera, paper, pig. Data from the practice trials were 

excluded from the analysis. Following the practice session, participants began the main 

experiment which included 4 blocks of SOA and 1 block of no sound condition, each 

containing 120 trials. Participants were given a mandatory 3-mintures breaks in between 

blocks to avoid eye strain or fatigue. During the breaks they were allowed to walk outside 
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of the lab, drink water or use the bathroom. The entire experiment lasted approximately 

one hour.  

Each trial began with a fixation cross at the center of the screen. After 500 ms a 

written word indicating the target object was presented at the center of the screen for 650 

ms. Then, depending on the condition, either a realistic scene was presented followed by 

the characteristic sound or a characteristic sound was heard followed by a realistic scene 

at varying SOAs. The characteristic sounds were presented for 850 ms and the scenes 

were presented for 500 ms (see Figure 2 for the structural of the trials).  

 

Figure 2. Structure of a single trial. Participants first saw a written cue. After 650 ms, 

depending on the condition, either a realistic scene or a sound was presented. This 

example shows a negative SOA where the sound was presented first. In the positive SOA 

the picture preceded the sound and in the 0 SOA condition the sound and picture were 

presented at the same time.  

The characteristic sounds could be either congruent or incongruent with the target 

object. The incongruent conditions did not have objects that could be associated with the 

incongruent sound. The possible SOAs for this experiment were -1000, -500, 0, 300 ms. 
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These SOAs represented the amount of time between the start of picture and the start of 

sound. A positive SOA indicated that the picture precedes the sound, while a negative 

SOA indicated that the sound precedes the scene. An SOA of 0 indicates the 

simultaneous presentation of the scene and the sound together (Figure 3). The target 

object could be present in 50% of trials or absent from the scene in the other 50%. 

Participants were asked to press the right arrow on the keyboard as soon as they found the 

target object and press the left arrow if the target was not present in the scene. They were 

given feedback of their performance at the end of each trial. Additionally, at the end of 

each block accuracy rate and RTs were presented on the screen. Once participants 

finished the experiment, they provided verbal answers to a brief questionnaire. 

 
 

a) SOA -1000 

 

 

b) SOA -500 

 

 
c) SOA 0 

 

 

d) SOA +300  

 

 
 
Figure 3. A schematic diagram representing the manipulation of the SOAs between 

realistic scenes and characteristic sounds. 
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Results 

Data from the 15 practice trials were excluded from the analysis. The average RT in 

ms were collected from all conditions. RTs less than 200 and greater than 3000 ms were 

considered outliers and removed from all analysis. This exclusion criteria removed .02% 

of all data. The number of correct trials was divided by the total number of trials to 

calculate accuracy rates in all conditions. Once accuracy rate was established, all the 

incorrect trials were deleted from the RT analysis. This removed 3.05% of the overall 

data. Thus, the main analysis only included RTs in correct trials and target present 

conditions. Greenhouse-Geiser correction was used to account for the sphericity 

assumption in all conditions with more than 2-levels.  

Three-Way ANOVA  

 
First, RT data were submitted to a three-way repeated measures ANOVA with factors 

SOA (-1000, -500, 0, 300 ms), congruency (congruent, incongruent, white noise) and 

presence (present and absent) to assess whether there is a main effect of target presence. 

All ANOVA analyses were conducted using SPSS Statistics Version 25. 

Results showed that there was a significant main effect of presence, F(1, 54) = 

212.334, p < .001. Reaction times were significantly faster in the present condition (M = 

797.39, SD = 156.72) than the absent condition (M = 1068.75, SD = 259.83). After this, 

all the absent trials were removed from the analysis as they are not helpful to our 

hypotheses.  
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Two-Way ANOVA 

 
Hypothesis 1: To test the hypothesis that hearing a target congruent sound will 

facilitate search performance, a separate repeated measures two-way ANOVA was 

conducted with variables SOA (-1000, -500, 0, 300 ms), congruency (congruent, 

incongruent, white noise), using only the RTs from the present and correct trials. In 

addition, we employed Bayes’ Factor (BF) calculations with default priors using JASP 

statistical software (JASP Team, 2019) in our post hoc comparisons. This test was done 

because we are making the assumptions that in some conditions RTs will be the same 

rather than different. BF calculations test how likely our data are under the alternative 

hypothesis (RTs in some conditions are different) compared to the null hypothesis (RTs 

are the same). Additionally, unlike traditional frequentist statistics, Bayesian statistics can 

provide evidence in support of the null hypothesis. As such, we included the BF 

calculation for all post hoc tests (Kass & Raftery, 1995). According to Kass and Raftery 

(1995) a BF value less than one provides evidence for accepting the null hypothesis. BF 

values between 1 and 3 are considered not worth more than a mention, BF 3 to 10 

provide moderate evidence, and BF > 10 provides strong rejecting the null hypothesis. 

Results showed that there was a Significant main effect of the SOA, F(1.8, 94.9) = 

15.24, p < .001, p2 = .220. Least significance difference (LSD) post hoc test was used to 

test the difference between the SOAs. It showed that RTs were significantly longer at 

SOA 300 (M = 887.27, SD = 250.31) than at SOA 0 (M = 765.17, SD = 164.82), SOA-

500 (M = 766.89, SD = 154.98), and SOA -1000, (M = 770.24, SD = 152.71), p <.001, all 

BF > 10, indicating “strong” evidence against the null hypothesis. The other comparisons 
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did not reach statistical significance, p > .05, BF < 1, which provides positive evidence 

for accepting the null hypothesis.  

Additionally, there was a significant main effect of congruency, F(2, 107.9) = 11.857, 

p < .001, p2 = .180. LSD post hoc showed that RTs in the congruent trials were 

significantly faster (M = 778.43, SD = 154.70) than incongruent sounds (M = 813.45, SD 

= 153.68), p < .001, BF > 10, and white noise (M = 800.30, SD = 170.41), p < .01, BF = 

2.56.  The difference between incongruent and white noise was not statistically 

significant, p > .05, BF = .23. This BF value provides positive evidence that the white 

noise and incongruent conditions are the same. The interaction between SOA and 

congruency did not reach statistical significance, F(4.9, 262.8) = 1.955, p = .088, p2 = 

.035.  

Simple Main Effect of Congruency in Each SOA Condition  

 
Hypothesis (2a): To understand whether the congruency effect was different at each 

SOA we looked at the simple main effect of congruency at each SOA. There was a 

significant simple main effect of congruency at SOA -1000, F(1.9, 101.1) = 7.560, p < 

.01, p2 = .123.  LSD post hoc analysis showed that at SOA -1000, RTs were significantly 

faster in the congruent condition (M = 736.80, SD = 143.11) than in the incongruent (M = 

785.34, SD = 164.43), p < .01, BF = 18.01 and white noise condition (M = 788.57, SD = 

186.23), p <. 01, BF = 10.49. The difference between incongruent and white noise did not 

reach statistical significance, p > .05, BF = .15. The BF value provides evidence in favor 

of the null hypothesis. This allows us to conclude that at SOA -1000, the RTs in 

incongruent and white noise conditions are the same. 
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The simple main effect of congruency at SOA -500 was significant, F(1.9, 102.5) = 

6.438, p < .01, p2 = .107. LSD post hoc analysis showed that at SOA -500, RTs were 

significantly faster in the congruent condition (M = 739.77, SD = 141.55) than RTs in the 

incongruent condition (M = 783.48, SD = 158.40), p < .001, BF = 54.91 and white noise 

condition (M = 777.43, SD = 191.09), p < .01, BF = 5.18. The difference between 

incongruent and white noise conditions was not statistically significant, p > .05, BF = .16. 

This BF value provides evidence in favor of the null hypothesis, which allows us to 

conclude that at SOA -500 the RTs in white nose and incongruent conditions are the 

same.  

The simple main effect of congruency at SOA 0 was significant, F(2.0, 105.8) = 

3.870, p < .05, p2 = .067. LSD post hoc analysis showed that the at SOA 0 the RTs in the 

congruent condition were significantly faster (M = 749.09, SD = 174.11) than 

incongruent (M = 790.38, SD = 190.05) condition, p < .05, BF = 2.99. The difference 

between congruent and white noise was not significant, p > .05, BF = .16. This BF factor 

provides positive evidence that at SOA 0 the congruent and white noise are the same.  

The white noise condition (M = 756.04, SD = 170.18) was significantly faster than 

incongruent, p < .05, BF = 1.00.  

The simple main effect of congruency at SOA 300 was not statistically significant, 

F(1.7, 89.4) = .435, p > .05. All BF comparisons were <1 supports the idea that the at 

SOA 300, the RTs in congruent, incongruent and white noise were the same. Figure 4 

depicts a graph comparing RTs in the congruent and incongruent conditions at each SOA 

condition. This effect was calculatd by subtracting the average RTs in the 
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incongruent/present conditiosn from congruent/present conditions in each SOA 

condition. The graph clearly shows  significant congruency efffect at SOA -1000, -500, 0 

but not SOA 300.  

 
Figure 4. A graph comparing RTs in the incongruent and congruent trials at each SOA 

condition.  

 

Simple Main Effect of SOA in Each Congruency Condition 

 
Hypothesis (2b): To understand the interaction better, we looked at the simple main 

effect of SOAs in each of the congruency condition. The results indicated that the simple 

main effect of SOA in the congruent condition was significant, F(1.6, 89.0) = 20.145, p < 

.001, p2 = .272. LSD post hoc showed that in the congruent condition, at SOA 300 (M = 

888.04, SD = 262.41) RTs were significantly longer than the RTs at SOA 0 (M = 749.09, 

SD =174.11), p < .001, SOA -500 (M = 739.77, SD = 141.55) and SOA-1000 (M = 

736.80, SD = 143.11), p < .001; all BF values for these comparisons were > 10. The 
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difference between other SOAs did not reach statistical significance, p > .05, all BF 

values were < 1.  

The simple main effect of SOA in the incongruent condition was also significant, 

F(2.4, 131.0) = 9.396, p < .001, p2 = .148. Similarly, LSD post hoc revealed that in the 

incongruent condition, RTs at SOA 300 were significantly longer (M = 894.62, SD = 

240.40) than SOA 0 (M = 790.38, SD = 190.05), p < .01, SOA -500 (M = 783.48, SD = 

158.40), p < .001 and -1000 (M = 785.34, SD = 164.43), p < .001, BF factors for these 

comparisons were > 10. The other comparisons did not reach statistical significance, p > 

.05, BF values < 1.  

The simple main effect of SOA in the white noise condition was significant, F(2.1, 

111.9) = 8.028, p < .001, p2 = .129. Similar to congruent and incongruent conditions the 

LSD post hoc showed that in the white noise condition the RTs were significantly longer 

at SOA 300 (M = 879.15, SD = 276.66) than SOA 0 (M = 756.04, SD = 170.18), p <.001, 

BF > 10, SOA -500 (M = 777.43, SD = 191.09),  BF = 6.31 SOA -1000 (M = 788.57, SD 

= 186.23), p < .01, BF = 7.51.  All the other comparisons did not reach statistical 

significance, p > .05, BF < .01.  

SOA -1000 vs. SOA -500 

 
Hypothesis (2c): To test whether there is trend where the longer and negative SOA 

leads to faster RT, we conducted a separate two-way ANOVA with SOA (-1000, -500) 

and congruency (congruent, incongruent, white noise). The results revealed that the main 

effect of SOA was not significant, F(1, 54) = .073, p > .05. However, the main effect 

congruency was significant, F(2.0, 107.6) = 13.635, p < .001, p2 = .202. LSD post hoc 
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showed that the congruent condition (M = 738.28, SD = 134.55) was significantly faster 

than incongruent (M = 784.41, SD = 147.86) and white noise (M = 783.00, SD = 173.89), 

p < .001, BF > 10. The difference between white noise and incongruent was not 

statistically significant, p > .05, BF < 1. The interaction between the SOAs and 

congruency was not statistically significant, F(1.9, 101.6) = .263, p > .05. 

Sound vs. No Sound 

 
It is also of interest to find out whether search performance was different in the no 

sound condition compared to the sound conditions. To answer this question, 12 

dependent samples t-tests were used to compare the RTs in the no sound/target present 

conditions to the sound/target present conditions (congruent, incongruent, white noise) in 

all SOAs (-1000, -500, 0, 300).  

The results showed that SOA -1000/congruent condition (M = 736.80, SD = 143. 11) 

was significantly lower than the no sound/target present condition (M = 785.96, SD = 

184.79), t(54) = 2.371, p < .05, BF = 1.07. Similarly, at SOA -500 congruent (M = 

739.77, SD = 141.55) RTs were significantly lower than the no sound condition, t(54) = 

2.241, p < .05, BF = 1.07.  All sound conditions at SOA 300 were significantly different 

that the no sound condition. The congruent (M = 888.04, SD = 262.41), t(54) = -3.655, p 

< .01, BF = .79, incongruent (M = 894.62, SD = 240.39), t(54) = - 4.759, p < .001, BF = 

1.28 and white noise ( M = 879.15, SD = 276.66), t(54) = -3.124, p < .01, BF = .51, were 

all significantly higher than the no sound condition. None of the other comparisons reach 

statistical significance, p > .05, BF < 1 (Figure 5). 
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Figure 5. Results of the two-way ANOVA that shows the interaction between congruency 

(congruent, incongruent, white noise) and the SOA (-1000, -500, 0, 300) conditions. A 

congruency effect was observed at SOA -1000, -500 and 0, but not at SOA 300. 

Additionally, RTs in the no sound condition were significantly higher than SOA -

1000/congruent and -500/congruent, but significantly lower than all the sound conditions 

of SOA 300.  

 

Accuracy Results 

Three-Way ANOVA 

 
To identify whether there was a speed accuracy trade off, the proportion of the correct 

responses were submitted into a three-way ANOVA with factors SOA ( -1000, -500, 0, 

300) and congruency (congruent, incongruent, white noise) and presence (present and 

absent). The results revealed a significant main effect of presence, F(1, 53) = 71.698, p < 

.001, p2 = .575. Accuracy rate was significantly higher in absent trials (M = .98, SD = 

.01) than present trials (M = .96, SD = .02). This shows that while participants were faster 
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in target present conditions, they were less accurate in finding the target objects. 

Likewise, participants were slower in target absent trials, but they were more accurate in 

finding the target object.  

Two-Way ANOVA 

 
Then, the data from the absent trials were excluded and proportion of correct 

responses were submitted into a two-way ANOVA with factors SOA (-1000, -500, 0, 

300) and congruency (congruent, incongruent and white noise). The results revealed that 

the main effect of SOA was not significant, F(2.80, 151.47) = 2.128, p > .05.  The main 

effect of congruency was also not significant, F(2, 106.6) = .334, p >.05. The interaction 

between SOA and congruency was not significant, F(5.4, 292.8) = 1.483, p > .05  

Accuracy with No Sound vs Sound 

 
To test whether accuracy rates were different in no sound and sound conditions, we 

conducted 12 dependent samples t-tests using the proportion of correct responses in all 

conditions. The difference between sound and no sound did not reach statistical 

significance, p > .05 (Figure 6). 

.  
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Figure 6. Accuracy graph that shows the results of the two-way ANOVA with factors 

SOAs and congruency. Accuracy rates were not statistically different in the different 

conditions. The three-way ANOVA that included the target presence condition indicated 

a speed accuracy trade-off between present and absent conditions such that target present 

trials were faster but less accurate than target absent trials. However, once the absent 

trials were removed for the two-way analysis, the speed accuracy trade off disappeared 

indicating that accuracy rates were similar across all conditions. 
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Discussion 

Hypothesis 1  

 
The purpose of this experiment was to investigate the multisensory nature of visual 

search performance in realistic scenes while systematically varying the SOA. First, we 

looked whether the effect of congruency was present in the visual search performance. 

Our results indicated a congruency effect in visual search performance; i.e., participants 

were faster in finding an object in a scene when it was matched with its characteristic 

sound. This finding supported hypothesis 1 that congruent sounds facilitates visual search 

performance compared to incongruent sounds or white noise. This finding is consistent 

with prior research that found the congruent semantic information from auditory stimuli 

can significantly enhance behavioral performance in visual tasks (Laurenti et al, 2004 

Chen, 2010, Chen, 2011). consistent with our hypothesis, our results also indicated that 

performance was similar in the incongruent and white noise conditions. This shows that 

the incongruent sound which provided misleading information about the target object did 

not impair performance compared to white noise. Iordenscu et al. (2008) showed similar 

results that congruent characteristic sound significantly enhanced visual search 

performance, yet the incongruent sound did not impair performance compared to white 

noise.  

Hypothesis 2a 

 
Second, we examined the influence of timing between the start of visual stimuli and 

auditory stimuli on the congruency effect. Hypothesis 2a predicted that the congruency 

effect would only be present at SOA -1000 and -500 and not SOA 0 or 300. Accordingly, 
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our results indicated that the congruency effect was dependent on when the auditory 

information was presented. More specifically, the congruency effect occurred not only at 

SOA -1000, -500 ms but also at SOA 0.  This finding is in line with prior studies that 

show enhancement of performance when sound precedes the picture by 1000 or 500 ms. 

(Chen, 2018, Chen and Spence, 2011). However, our results directly contrast those of 

Chen and Spence (2010) in which they show a congruency effect at the positive SOA. 

Moreover, Chen and Spence (2018) reported an absence of congruency effect at SOA 0. 

Chen and Spence (2010) argue that the meaning of the picture is kept in the CSTM for 

300 ms, therefore it can still bind with the sound and improve performance. However, we 

argue that the realistic scenes used in our experiment were more complex and required 

more time to retrieve relevant information from memory. For this reason, the meaning of 

the scene cannot be held in the CSTM and bind to the characteristic sound when the 

scene appears before the sound (positive SOA). On the other hand, the meaning of the 

characteristic sounds can be accessed quickly and easily. Therefore the characteristic 

sound is able to be maintained in CSTM and guide attention to the location of target in a 

subsequent scene (negative SOA). This view would explain the faster performance in the 

negative SOAs shown in our experiment.  

Additionally, neuroimaging and behavioral studies have found enhancement of visual 

processing with the co-occurrence of congruent auditory information. For instance, 

Molhom (2004) found that participants are faster in responding to a picture when it’s 

simultaneously presented with its characteristic sounds. Moreover, they noted a 
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modulation of ERP component N1, which is associated with object processing, as 

evidence for enhanced visual processing.  

 It is important to note that our results indicated that at SOA 0 the congruent 

condition produced similar RTs as the white noise condition. Since white noise does not 

provide any information regarding target’s identity or its location, we conclude that the 

meaning of the sound in the congruent condition was not responsible for enhancing the 

performance at SOA 0.  Therefore, it is reasonable to assume that the incongruent sound 

significantly impaired performance when it was presented simultaneously with the 

picture.  

Performance was equally bad in all congruency conditions of SOA 300. In this 

condition, the participant first saw the scene containing a target object and 300 ms later 

heard a sound. This does not support Chen and Spence (2010). One possible explanation 

for the lack of congruency effect when the sound is presented after the picture is that 

information from the two senses are processed separately. Whereas in negative SOAs and 

SOA 0, the visual and auditory information are combined to enhance perception, in the 

positive SOA the visual and auditory information are processed separately without 

influencing perception.  

According to the Unity Assumption Theory, a multisensory event can either be 

perceived as a single multisensory event or two (or more) separate events. The observer 

makes this assumption based on the consistency of the available information from the 

sensory inputs (Welch,1999; Spence, 2007). Accordingly, when the two sensory 

information appear consistent or “go together”, the observer is more likely to assume that 
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they share a common spatiotemporal origin and will bind them together as a single event 

as oppose to separate events (Bedford, 2001). Based on our results we argue that when 

participants heard a congruent sound 500 ms or 1000 ms before the scene, they made the 

assumptions that the sound and the scene “go together” and therefore were able to bind 

the sensory inputs into a coherent single multisensory event. Conversely when the sound 

was presented after the scene, binding of stimuli did not occur because they were 

perceived separately. Processing these two sources of information separately would take 

longer than if they were combined, which would explain the sharp increase in RTs at 

SOA 300. It is also possible that when the sound and picture were presented 

simultaneously (SOA 0) the congruent and white noise were perceived as single event, 

whereas the incongruent sound was perceived as a separate event.  

Hypothesis 2b 

 
Next, in order understand the interaction of SOA and congruency effect better, we 

took a closer look at performance in each congruency condition. In Hypothesis 2b we 

stated that in the congruent conditions there will be an incremental increase in RTs as 

SOAs got shorter (-1000 < -500 < 0 < 300), while RTs in the incongruent and white noise 

will be similar at each SOA (-1000 = -500 = 0 = 300). Our results partially supported this 

hypothesis. While we found that RTs were significantly longer at SOA 300, performance 

at SOA -1000, -500 and 0 were similar in the congruent condition. This finding contrasts 

our idea that more time is needed to access the meaning of both stimuli in order to 

enhance performance. As noted above, the congruency effect at SOA 0 cannot be 

attributed to the congruent semantic of the characteristic sound, because performance 
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with white noise was the same in that condition. Therefore, we conclude that the 

congruency effect occurs to the same extend at SOA -1000 and -500. Additionally, in 

contrast to our hypothesis RTs in the incongruent and white noise conditions were not 

similar across the SOA; SOA 300 produced significantly longer RTs than -1000, -500 

and 0 SOAs.  

Hypothesis 2c 

 
Hypothesis 2c stated that longer negative SOA -1000 will lead to a stronger 

congruency effect than shorter negative SOA -500. Our results did not support this 

hypothesis. We found that in the both negative SOAs the congruency effect occurred to 

similar extent.  One possible interpretation of this is that in negative SOAs the 

incongruent sound is suppressed before the presentation of the scene. In other words, it 

may be that the participant sees the written cue then hear the sound and quickly realize 

that the sound is not relevant to what they are supposed to look for, therefore they 

suppress the sound. In contrast, in the congruent conditions the matching sound has 

adequate time to activate a schema of the of the target objects or its likely spatial 

location, before the scene is presented. It can also be argued that at SOA 0, the 

incongruent sound is ignored in a similar fashion because it is not relevant to the picture. 

The realistic scenes encompass a large amount of information. The human cognitive 

system is limited in its ability to process all the information at the same time. Therefore, 

attention is needed to properly select the information that is relevant to goal of the 

observer. According to the Cognitive Guidance Theory, the most important factor that 

guides attention within a complex scene is meaning (Henderson, 2007, 2009). In this 



 40 

view, attention is directed to the regions of the scene that are semantically informative 

and relevant to the observer’s goal. Our results show that hearing a characteristic sound a 

few milliseconds before the scene can be guiding factor for directing attention to the 

likely location of the target object in a realistic complex scene.  

Hypothesis 3  

 
We also hypothesized that performing the visual search with no sound will produce 

longer reaction times than the congruent sounds. In line with our hypothesis, our results 

showed that finding the target object was significantly faster in the SOA -1000/ 

congruent, and SOA -500/congruent condition than no sound. However, Performance in 

the no sound condition was not different from the SOA 0/congruent condition. Moreover, 

the no sound condition produced significantly faster RTs than the SOA 300/congruent 

sounds. These results indicate an advantage of bimodal stimuli (congruent sound and 

picture) over unimodal (vision only), provided that the congruent auditory stimuli is 

presented -1000 or 500 ms in advance. This finding adds to the existing literature on 

multisensory integration where it is shown that two sources of relevant information from 

different modalities enhance perception compared to unisensory information (Murry 

2016, Chen and Spence 2018, Iordenscue 2008, 2010).  

Implications 

 
Overall, the result of our experiment provides evidence for the existence of top-down 

control of characteristic sound on realistic visual search task. We showed that hearing a 

characteristic sound that matches the target will facilitate finding that target in complex 

and realistic scenes. We further showed that the timing of the onset of the characteristic 
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sound is a crucial factor in enhancing performance. The implication of the current study 

is that we used stimuli and tasks that are realistic and relevant to everyday life activities. 

Previous studies have mostly focused on using basic stimuli such as line drawings, 

pictures of objects in isolation and simple tones to investigate multisensory integration. 

While basic stimuli allow researchers to conduct well-controlled experiments, they limit 

the extent of generalizability of results to real-world experiences. In our experiment we 

used real-world scenes comprising of background information and multiple discrete 

objects that were meaningfully arranged. In addition, the visual search task resembled 

everyday life activities such as looking for your keys, finding your car in a parking lot or 

searching for ingredients to make yourself breakfast. We combined this task with 

meaningful characteristic sounds that would normally be present in the environment. For 

these reasons, our results extend the ecological validity of prior findings. This study 

demonstrates that our perception of the world is influenced by the semantic component of 

sounds and the timing of sensory information.  

Limitations 

 
One limitation of the current study is that we did not control for the size of target 

objects that appeared in scenes. It is possible that some objects were easier or harder to 

find depending on the amount of space they occupied in the scene. For instance, the 

target object piano generally occupied more space within the scene, hence might have 

been easier to locate than a smaller object. In comparison, the target object alarm clock 

was significantly smaller in size and might have been more challenging to locate. In this 

view, it is possible that the larger target objects were found automatically due to bottom-
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up factors (saliency) and not cognitive top-down factors as we expected. A second 

limitation of our study is that we only used 20 target objects that were repeated in 

different scenes. The target object was usually placed in the same location within the 

scenes. For example, a toaster was always on the countertop in a kitchen, or an alarm 

clock was always next to a bed in a bedroom. Thus, it is possible that after repeatedly 

searching for the same target object in various scenes, participants already built an 

expectation of where to look for in the scene and did not rely on the congruent sound as 

much. The effect of repeated search in similar scenes on the congruency effect may have 

been less pronounced in the negative SOAs where participants heard the characteristic 

sound before the scene. However, when the sound was presented after or simultaneously 

with the scene, the expectation of where to look for might have influence the congruency 

effect to a greater degree. For instance, when participants saw the kitchen they knew that 

the toaster would be on the countertop (since that’s where it’s always been), therefore 

they did not need to use the subsequent characteristic sound to guide their attention.  

Future Direction 

 
Future research should look at the pattern of eye movements in a similar experimental 

design to confirm that the characteristic sounds influence the first saccade to the target 

object in realistic scenes. This would provide direct evidence for our finding that a 

congruent sound directs attention to the location of a target object in a complex scene. 

Moreover, future studies should look at the interactive nature of realistic scenes and 

sounds. It would be interesting to see if finding an object is enhanced by hearing its 

characteristic sound in an interactive situation, where the participants is allowed to walk 
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and move around; this would further enhance the generalizability of our laboratory results 

to real world situations.  Another factor that is yet to be investigated is individual 

difference in performance. Our study focused on neurotypical participant. It has been 

demonstrated that individuals with autism spectrum disorder (ASD) show 

hypersensitivity to sensory stimuli which can lead to enhanced perceptual processing 

(Foss-Feig et al, 2010). Some studies have shown that ASD individuals show superior 

visual and auditory perceptual discrimination. For instance, O’Riordon and Passetti 

(2006) used simple auditory tones in a pitch discrimination task and found that ASD 

individuals show better performance in discriminating two tones with similar frequencies 

relative to the neurotypical individuals. Is it not known whether this enhanced perceptual 

processing is only limited to basic stimuli or can be extended to more complex stimuli 

that resembles those in everyday life. Can individuals on the autism spectrum show the 

same or better congruency effect than we found in our experiment?  Extending our study 

to “neurodivergent” population such as ASD will enhance our fundamental understanding 

of how multisensory integration occur in different individuals, thus providing an avenue 

for better treatments for them.  
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Appendix A 

Consent Form 

Request for Your Participation in Research  

Title of Study: Visual Search Performance in Realistic Scenes  

 

Name of the Researcher: Ghazaleh Mahzouni, SJSU graduate student and Dr. Cary 

Feria, Faculty advisor 

 

Purpose: You have been asked to participate in a research study investigating finding 

objects within realistic scenes. Not all aspects about the purpose of the study are being 

shared at the outset but will be provided to you afterwards. 

  

Procedures: You will be asked to view computer displays showing pictures of realistic 

scenes and find a target object in that scene. You will answer a short questionnaire 

afterward. The study will last approximately one hour and will be done in Hugh Gillis 

Hall 246. Not all aspect about the study are being shared upfront but will be provided 

afterwards during a debriefing. This study will be done during Spring 2019. 

 

Potential Risks: This study presents no more than minimal risks of fatigue and eye 

strain. Participants will be allowed to take a break during the study.  

 

Potential Benefits: You will receive no direct benefits from participating in this study. It 

is possible that you may indirectly benefit by furthering the general knowledge of visual 

perception. 

  

Compensation: As a student in the psychology research subject pool, you will receive 

partial credit towards your Psychology class research requirements. Credit will be granted 

even if you decide to withdraw from this study at any time. No other compensation is 

provided for participation in this study.  

 

Confidentiality: Although the results of this study may be published, no information that 

could identify you will be included. The researchers are required to report cases of abuse, 

neglect and intent to harm self or others, when applicable.  

 

Participant Rights: Your participation in this study is completely voluntary. You can 

refuse to participate in the entire study or any part of the study without any negative 

effect on your relations with San Jose State University. You also have the right to skip 

any question you do not wish to answer. This consent form is not a contract. It is a 

written explanation of what will happen during the study if you decide to participate. You 

will not waive any rights if you choose not to participate, and there is no penalty for 

stopping your participation in the study.  
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Questions or Problems: You are encouraged to ask questions at any time during this 

study. For further information about the study, please contact Ghazaleh Mahzouni) at 

Ghazaleh.mahzouni@sjsu.edu. Complaints about the research may be presented to Dr. 

Clifton Oyamot (Chair, Department of Psychology, SJSU) at (408) 924-5600. For 

questions about participants’ rights or if you feel you have been harmed in any way by 

your participation in this study, please contact Dr. Pamela Stacks, Associate Vice 

President of the Office of Research, San Jose State University, at 408-924-2479.  

 

Signatures:  

Your signature indicates that you voluntarily agree to be a part of the study, that the 

details of the study have been explained to you, that you have been given time to read this 

document, and that your questions have been answered. You will receive a copy of this 

consent form for your records.  

_________________________         ________________________      __________  

Participant’s Name (printed)   Participant’s Signature  Date  

  

 

Researcher Statement:  

I certify that the participant has been given adequate time to learn about the study and ask 

questions. It is my opinion that the participant understands his/her rights and the purpose, 

risk, benefits, and procedures of the research and has voluntarily agreed to participate.  

 

_______________________________________     __________  

Signature of Person Obtaining Informed Consent     Date 

  

mailto:Ghazaleh.mahzouni@sjsu.edu
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Appendix B 

Questionnaire 

subject # ______  

Questionnaire  

The researcher asks questions #1-6 aloud to the subject and will writes down the subject’s 

responses.  

1. Please describe, in detail, what you were doing.  

 

2. Did you find any of the trials to be more difficult than other trials?  

 

3. Some trials included sounds; did you find these sounds helpful to your performance 

or distracting?  

 

4. During the experiment did you find yourself focusing more on the sound or the 

picture?  

 

5. Did any problems occur with the computer during the experiment?  

 

6. Is there any other aspect of the experiment you would like to comment on?  

 

For Question #7, the subject will write the answer themselves.  

 

Please circle your sex:    MALE    FEMALE  
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