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ABSTRACT

USING BLOCKCHAIN TECHNOLOGY FOR THE ORGAN PROCUREMENT AND
TRANSPLANT NETWORK

by Utsav Jain

The organ donation system in the United States is centralized and difficult to audit by
the general public. This centralized approach may lead to data integrity issues in the
future. The Organ Procurement and Transplant Network (OPTN) was built and
maintained by a non-governmental organization called the United Network for Organ
Sharing (UNOS) under its proprietary UNet>™ umbrella platform. This platform is made
up of proprietary closed source software and does not provide the general public easy
access to the organ transplant data for auditing. This study investigates the feasibility,
challenges, and advantages of a blockchain-based OPTN. A prototype of a
blockchain-based OPTN was created using the Hyperledger Fabric framework. The
policies and guidelines issued by the United States Department of Health and Human
Services for UNOS and the OPTN were used as the basis of this prototype. Four factors
were identified to have a direct effect on the performance of this system, viz. max batch
time out, max block size, endorsement policy, and transaction rate. Additionally, two
variants of the blockchain chaincode were also developed. The first variant performed the
organ-candidate matching inside the blockchain (Scheme A), and the second variant
performed it outside the blockchain (Scheme B). Analysis of these data showed that
Scheme A outperformed Scheme B in all experiments for write-operations. However, the
read operations remained unaffected by any of the experiment variables in the given
environment. Based on these results, it is recommended to perform the organ-candidate

matching on the blockchain with the max batch time out close to the transaction rate.
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1 INTRODUCTION

Organ donation is the process of extracting an organ from an organ donor and then
surgically replacing that organ in a recipient. The donor can be living or deceased.
According to government figures [1], a deceased donor can save up to eight lives. On the
receiving side of the equation are the organ recipients. They come from a pool of
candidates, which is made up of patients who are suffering from ailments, treatment of
which requires replacement of one or more organs. Since the demand for the donated
organs grossly outstrips their supply, the candidates have to be placed on a long waiting
list. In fact, according to the same source, twenty people die every day waiting for an
organ transplant offer, and a new candidate is added to the waiting list every ten minutes.
Due to the high stakes involved and the significant disparity in the supply and demand of
transplantable organs, the fairness of the organ donation system is paramount. The
fairness of the system is associated with the medical information of the individual patient
as well as the organ allocation process.

In 1984, the United States Congress granted United Network for Organ Sharing
(UNOS) a non-governmental organization the exclusive responsibility to build and
maintain an Organ Procurement and Transplant Network (OPTN). This network consists
of various stakeholders in the organ transplant process, including but not limited to
transplant hospitals, organ procurement organizations (OPO), histocompatibility
laboratories, and the general public. This separation was done to prevent direct
government interference in the process of allocation of donated organs. However, the
United States Department of Health and Human Services directs the policies and bylaws
which govern the operation of the OPTN. Among many other things, these bylaws and
policies lay out the criteria for matching a particular donated organ with the most suitable

candidate. They provide a way to generate a numeric score for a candidate and describes



an algorithm to match an organ to the candidate. This “matching algorithm” makes the
process transparent.

Currently, UNOS uses its in-house proprietary digital platform called UNetS™. Tt is a
centralized service connecting all fifty-eight OPOs, two hundred fifty-four transplant
hospitals, and one hundred fifty histocompatibility laboratories [2]. This platform is an
umbrella for six different services providing essential services to healthcare providers to
enroll patients for the transplant candidature, match them with suitable donors and log the
required medical and personal information into the system over the internet. The next
section provides a more detailed description of these services.

One problem with this approach is that the security and veracity of this information
fall entirely on UNOS’s capabilities to keep their system secure and their ability to detect
intrusions and manage the damage (if any) caused by them. Even though there have been
no concrete allegations of wrongdoing against UNOS, the exactitude of the waitlist
information is entirely based on people’s trust in UNOS’s abilities to keep it safe from
hackers and corrupt employees. Blockchain is a technology that can eliminate this single
point-of-failure and at the same time, raise the bar for a nefarious entity to manipulate any
records.

A blockchain-based OPTN has the potential to solve these problems. First, a
blockchain-based network for organ transplants would be a peer-to-peer network. In such
a setup, all peers in the network have a copy of the entire ledger. This replication allows
all the peers to conduct their audits independently and verify compliance with the codified
policies and bylaws. Second, this eliminates the single point-of-failure problem. To
change some data, an attacker would have to crack many different nodes in the network

rather than just one, hence raising the bar for the attacker.



To design a prototype of the OPTN, the official OPTN Bylaws [3], and policies [4]
were studied. They were used to design the domain description and to write the chaincode
(smart contract) for the prototype blockchain network. This blockchain network was built
using the Hyperledger Fabric framework, and thus its official documentation [5] was also
studied.

That being said, there has been limited thorough academic research into blockchain
technology. Moreover, this technology has also acquired a bad reputation due to the
so-called “Blockchain Bros” who cook up unrealistic blockchain ideas, sometimes
intending to defraud investors. This work aims to alleviate this problem by proposing
OrganChain, a prototype of a potential design for a blockchain-based OPTN. Performance
metrics were calculated from this prototype to derive the results.

This research intended to ascertain the feasibility of a blockchain-based OPTN, as
well as to discover the impact certain factors have on the performance of a
blockchain-based OPTN. Since such a solution has not been explored by contemporary
research before, a large number of unknown variables affected the outcome of this
research. For example, the creation of the blockchain network proved to be a more
complex task than initially expected, forcing the author to restrict the extent of the
experiments that could be run in a limited time.

Based on initial exploration, four factors were identified to have a significant effect on

29 << 99 ¢

the proposed system. They are the “max batch time out,” “max block size,” “endorsement
policy,” and “transaction rate.” The first three are the delimiting factors for cutting a block
and the last one due to apparent reasons. Each of the four factors is organized as four
experiments in this document. Furthermore, each experiment is further divided into
sub-experiments. Additionally, the author initially hypothesized that executing the
matching algorithm outside the blockchain could show performance benefits. The

rationale was that since a chaincode runs in every peer, by taking this compute-heavy task



of executing the chaincode away from the peers, its load would reduce, and it could spend
all its capabilities in propagating the blocks.

Consequently, to test this hypothesis, two versions of the chaincode were created. In
the first one, the matching algorithm ran inside the blockchain, and in the second one, it
ran outside the blockchain network. These variants are referred to as Scheme A and
Scheme B in the rest of this document. Unfortunately, the data collected by the
experiments strongly favor Scheme A, thus rejecting this hypothesis. Additionally, a
positive correlation was found between the “transaction rate,” and the “max batch time
out.” All experiments were run using docker containers running inside a virtual machine
(VM) provisioned using the Google Cloud Platform (GCP).

The remainder of the thesis is structured as follows. Chapter 2 describes the concepts
of the organ donation process, blockchains, and Hyperledger Fabric. Chapter 3 describes
OrganChain, the blockchain-based prototype used to produce empirical data for this work.
Chapter 4 provides the details of the experiments and the observations determined from
them. Chapter 5 describes future work on this topic, and Chapter 6 concludes this thesis

along with the author’s closing remarks.



2 LITERATURE REVIEW

This section covers information about the process of organ transplantation, followed
by fundamentals for blockchain technology. It is laid out in four parts. First, it starts with
a description of the organ transplant process, which falls within the scope of this work,

including information about the current system, the UNetSM

platform. The second part
lays out the essential features of blockchain technology and the Hyperledger Fabric
framework. This framework was used to create the prototype for this research. Then, the
next two sections describe the advantages and limitations of using blockchain technology

for the OPTN, which is based on current research available to the author. Lastly, some

miscellaneous literature is mentioned.
2.1 The Organ Transplant Process

When a patient’s one or more organs have been damaged beyond repair, in some
instances, one or more donated organs can be used to replace them. This process of taking
an organ or a tissue from a donor person and using it to replace a damaged one of the

same type in a recipient is called organ transplant. It is also called grafting.
2.1.1 United Network for Organ Sharing (UNOS)

UNOS is the organization contracted by the federal government to manage the organ
transplant network. UNOS maintains a patient waitlist and tracks donated organs based on
well-defined policies in collaboration with various stakeholders using contemporary
communication technologies. This section describes the OPTN terminology pertaining to
this thesis. The complete OPTN guidelines and policies can be found at [4] and [3].

A candidate is any patient enrolled on the waitlist to receive one or more organs. A
candidate can be an active candidate, an inactive candidate, or a multi-organ candidate.
An active candidate is defined as a candidate who is currently eligible for an organ
transplant offer. This implies that there exists a reasonable chance of success in case a

donated organ is transplanted into this candidate.



Conversely, an inactive candidate is one who, for some reason, is currently ineligible
to accept an organ offer. For example, they may have contracted an infection after being
placed on the waitlist, and they must be treated for this infection before they can accept a
transplant offer. Lastly, a multi-organ candidate is one who is suffering from multi-organ
failure and requires multiple donated organs to make a full recovery.

Eventually, a candidate becomes a recipient when they receive a donated organ.
However, before that, they need to appear on a list of Potential Transplant Recipients
(PTR). This list of candidates is the result of a match run. The recipient at the top of this
list is the Primary Potential Transplant Recipient. This candidate is first made the offer
for a donated organ.

On the other hand, a donor is a patient who is the source of a donated organ. Based
on certain factors, multiple organs can be extracted from an individual donor. A donor can
be living, deceased, or a domino donor.

Healthy people can donate some organs and tissues. For example, a healthy human
can live a reasonably good life with just one kidney along with proper care. Such donors
fall under the category of living donors.

Deceased donors are patients who have been declared dead (“eligible death™) or
facing an “imminent neurological death,” criteria for which are clearly defined and strictly
followed. According to Penn Medicine [6], the most common myth about organ donations
is that doctors will treat patients differently if they are organ donors.

Additionally, in the case of a domino donor, due to some specific medical conditions,
a healthy organ needs to be separated from a living donor. This healthy organ can then be
donated to another person. For example, if a person is suffering from cystic fibrosis, a
lung disease, a heart-lung transplant can lead to an excellent outcome. The hearts of these
recipients can then be transplanted into patients who require a heart transplant with a high

chance of success [7].



According to the Centers for Medicare and Medicaid Services (CMS), [8], an OPO
has a significant role to play in an efficient and orderly transfer of a donated organ to its
intended recipient. A detailed list of responsibilities of an OPO is systematized in the
OPTN Policy document published by the Health Resources and Services Administration,
an agency of the Department of Health and Human Services [4].

In brief, an OPO is responsible for identifying potential organ donors in the zone in
which they operate, then procure as many organs as possible from the donor and transport
the organs to their selected candidate with the required care. A donor hospital is a
hospital where the organ donor is or was undergoing treatment, and a transplant hospital
is where the transplant surgery will be performed.

After a donor is added to the system by the host OPO, a match run is produced, and
the host OPO sends an organ offer to the transplant hospital of the Primary PTR. The
transplant hospital must respond with either of the following two responses. An Organ
Offer Acceptance starts the process of sending a matched organ to be transplanted to the
selected candidate. On the other hand, in the case of an Organ Offer Refusal, a new
candidate is given an offer based on the PTR list.

According to the OPTN Bylaws [3], a “histocompatibility laboratory performs
histocompatibility testing, including but not limited to, HLA typing, antibody screening,
compatibility testing, or cross-matching, and serves at least one transplant hospital
member or OPO.”

A matching system is a computerized application that finds the most suitable
candidate when an organ comes up for donation by performing a match run. A match run
is a process that generates an ordered list of suitable candidates for each donated organ.
The order of this list is based on a candidate’s medical compatibility and the type of
donated organ. The decision varies from organ to organ. Different organs can survive for a

different number of hours outside the donor’s body. The survival time ranges for each



organ are displayed Fig. 1, taken from [9]. However, some common factors need to agree,
for example, blood type, body size, etc. The complete set of policies for each organ is

codified in the OPTN Policy [4].

HEART PAMCREAS
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Fig. 1: Organ survival duration outside the donor’s body.

2.1.2  The UNet*™ Platform

This platform encompasses the following six services which, work in collaboration,
viz. “Waitlist™” “DonorNet®,” “DonorNet Mobile’M” “UNet*™M APIs,” “TIEDI®,” and
“TransNet>™” [2]. These services enable organ OPOs to offer donor organs and
information electronically. Waitlist>™ is the service that manages the medical records of
the candidates. This platform computes a numeric score for each candidate on the waiting
list by applying predefined policies on the patient’s medical records.

Using DonorNet>™, OPOs can add donors’ medical records and other pertinent
information to the network by using DonotNet>™. They can also perform “match runs”
and generate the PTR List and produce “Organ Offers” to the candidates on the list.

To enable the bidirectional flow of relevant data to and from a certified Electronic
Health Record (EHR) systems, UNetSM extends an application programming interface

(API). The Transplant Information Electronic Data Interchange or simply TIEDI®



provides OPTN members access to the relevant EHRs of the patients in the Organ
Transplant Network. Lastly, TransNet>™ is used by an OPO to create electronic package

labels. This uniform labeling and marking system lead to improved logistics.
2.1.3 Current Load

According to official statistics [1], on average, one patient is added every ten minutes
to the waiting list, and in total, there are currently one-hundred thirteen thousand patients
on the waiting list. Also, according to Harvey and Weigel in [10], the current size of the
data set holding the relevant information of the donors and candidates on the waiting list
is around nine gigabytes. This information is based on the data set acquired by Harvey

and Weigel in June 2014 and March 2015.
2.1.4  Criticism of the current implementation of the OPTN

The entire UNetSM platform is closed source. Thus, it is difficult to vouch for its
integrity. The author was unable to find a single Common Vulnerabilities and Exposure
(CVE) related to the entire platform. The absence of any CVEs could mean that either no
vulnerability exists in the system or no vulnerability has been found in the system. The
latter is more likely.

Second, the data sets held by UNOS are not easily auditable by the general public.
One can request for a copy of the data set from their online portal. However, the fee for
this is one thousand US dollars. Although for academic purposes, they charge a reduced
fee of two hundred fifty US dollars. Even so, UNOS ships a physical disk with historical
data, not up-to-date data. Making matters even worse is the fact that there is no means for
the person requesting the data to verify the veracity of the data. One has to have faith that
UNOS was not compromised.

According to this press release [11], UNOS conducts regular security training, but the
process is fiat of UNOS. A blockchain-based organ transplant system can provide better

accountability.



2.2 Blockchains

The Jul/Aug 2019 issue of the Wired magazine published a Venn diagram [12] which
portrayed blockchains as a “software platform” which is “complicated to explain” and
“vaguely applicable to any problem”. Nonetheless, simply put a blockchain-based system
would store a set of transactions encapsulated in blocks which are then sequentially linked
using advance cryptographic operations to form a chain of blocks. This chain is, in turn,
replicated on all nodes that are participating in the blockchain network.

According to Sultan and et al. in [13], the most salient features of blockchain
technology are immutable-ledger, decentralization, consensus-driven validation, and
transparency.

Data, once written, cannot be modified or removed from an immutable ledger.
However, delete transactions can be used to remove data logically. Still, the transaction
history cannot be changed. Advanced cryptographic techniques are used to enforce this
immutability, which makes it computationally infeasible to change any block in the
blockchain.

Blockchain applications are decentralized. Not to be confused with distributed, it
means that a single centralized entity does not control the decision to accept or reject a
transaction. Instead, a set of instructions known as a smart contract or chaincode run
individually and independently on nodes in a blockchain network to ensure that a
particular transaction is acceptable. This collaborative approach eliminates any single
point-of-failure.

An extension of blockchain’s decentralized property is its consensus-driven validation.
It implies that a subset of peers needs to agree to achieve a quorum for validating and
committing a transaction to the blockchain. Finally, a blockchain’s operation is
transparent, and thus, any activity on it is easy to audit since all peers in the network

contain a copy of the ledger.
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Any blockchain application is a distributed system of considerable complexity, and
each implementation has its method of dealing with this complexity. However, all
blockchain frameworks have a mechanism to create a smart contract, a consensus
algorithm, a ledger, and peers.

A smart contract is a piece of code that is automatically executed when a transaction
is initiated. This code is mainly used to determine the validity of the transaction rather
than provide any security. For example, a smart contract for a banking application would
have the code to reject a money transfer from an account if the money to transfer is more
than the account holder’s balance.

Every blockchain-based application requires a consensus mechanism because there is
no central authority that can execute some code to determine the validity of a read-write
request. An agreement needs to be reached by a subset of participating nodes to approve
or reject a transaction. This agreement may be achieved by a simple majority vote or a
more elaborate scheme.

A blockchain ledger is the actual data store. It is like an append-only linked list where
each block represents a node of the linked list. Additionally, the hash of the previous
block is stored in the next block. In this way, whenever a new block is created, it has
some mathematical relationship to all the previous blocks in the blockchain.

A peer is any participating node in the blockchain network. It is a machine, virtual or
bare-metal, which stores a copy of the ledger. It executes the smart contract and
determines consensus. However, each machine may be responsible for doing either or

both of these things.

2.3 Hyperledger Fabric Framework

Hyperledger Fabric is part of the Linux Foundation’s Hyperledger umbrella of
blockchain technologies. It is also the framework used to create the experimental

prototype for this research.
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2.3.1 Hpyperledger Fabric Domain Hierarchy

Since there are a large number of components involved in creating a blockchain
network, Hyperledger Fabric allows for the creation of hierarchical namespaces or
domains. A typical domain structure would include the fop-level domain, the orderer
domain, and the organization level domain.

The top-level domain is like a unique name given to the project. This name is similar
to Domain Name Space’s (DNS) top-level domain for a website. Below it is the orderer
domain, and it must be separate from any of the organization’s domain. All the nodes that
belong to the ordering service will have addresses from this namespace. Lastly, the
organization level domain is an organization’s namespace. This namespace is a
subdomain of the top-level domain. Each organization will allocate an address to their
“peers” and “certifying authority” services from this subdomain.

In Fig. 2, taken from [14], “example.com” is the top-level domain under which is the
orderer subdomain, “orderer.example.com.” At the same level as the orderer is an
organization’s subdomain, like “orgl.example.com” for Organization 1,
“org2.example.com” for Organization 2, and likewise. Each organization will then provide
a fully qualified domain name to their services from their subdomain, like
“ca.orgl.example.com” for the certifying authority service of Organization 1 or

“peerl.orgl.example.com” for a peer in the Organization 1.
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Fig. 2: Domains in Hyperledger Fabric. (Signature by author)

2.3.2  Architectural Components

The smart contract is known as the chaincode in Hyperledger Fabric. It contains the
transaction logic that represents some business logic. A Channel is the link joining the
members of the blockchain network before they can execute transactions among
themselves. Peer nodes join a channel, a chaincode is then installed on that channel, and
an endorsement policy is defined before transactions can be executed. Each member of
the channel is authenticated before joining the channel.

The Membership Service Providers (MSP) component of Hyperledger Fabric is the

mechanism responsible for user authentication. They act as Certificate Authorities who

13



generate and validate certificates. There can be more than one MSP in a network, and
each organization can have its MSP to validate the identity of its peers.

Hyperledeger Fabric sacrifices some decentralization in exchange for high
performance by having an ordering service that determines the order in which blocks are
added to the blockchain. It can be made up of a single (solo) or multiple nodes (kafka or
raft based).

Configuration Blocks are the initial blocks generated for a blockchain. They only
consist of metadata for the blockchain like the genesis block, channel configuration,
consensus requirements. An Endorsement Policy is specified while instantiating a
chaincode on a channel. It specifies the consensus requirements for a valid transaction.

The Gossip Protocol specifies the protocol for broadcasting a block. An elected leader
peer is defined for each organization that gets blocks directly from the orderer and is
responsible for updating all peers under its jurisdiction. The leader maintains a

health-checked connection with the ordering service.

2.3.3 Transaction flow in Hyperledger Fabric

According to the official documentation [5], Hyperledger Fabric has an
“execute-order-validate” model for transactions. This essentially means that the transaction
process can be divided into three distinct phases.

Typically, a transaction in Hyperledger Fabric can be divided into the following three
phases as illustrated by Fig. 3 taken from [15]:

» Proposal phase: all transactions start with a client application creating a transaction
proposal and sending it to the endorsing peers. Endorsing peers are a subset of all
peers in a network that executes the chaincode with the parameters mentioned in the
proposal and sign those proposals with their private key and sends it back to the

client.

14
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0 Transaction delivery to the peers

Fig. 3: Outline of transaction flow in Hyperledger Fabric.

« Endorsement phase: in this phase, the client collects the endorsed proposals. Once
the client has received the required number of endorsements, based on the
endorsement policy on the channel, the client sends the endorsed transaction to be
grouped into a block to the ordering service. Once the ordering service receives the
endorsed transactions, it verifies the signatures on the endorsements and then creates
the next block to be added to the blockchain. The decision of when to cut a block is
based on three factors. First is the batch time out. It is the maximum amount of time
a transaction can be held before cutting a block. Second is the batch size. It is the
actual size of a block. Hyperledger Fabric allows the setting of preferred size and
absolute maximum size for a block. If the size of a transaction is greater than the
absolute max batch size, that transaction will not be added to the blockchain. Last is
the maximum number of transactions that can be grouped in a block.

« Commit phase: once the orderer creates the block, it signs it and sends it to the leader
peers connected to it. The leader peers then broadcast the block to all the peers under

their jurisdiction. The peers then commit that block to their local copy of the ledger.
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Fig. 4 presents a typical three-phase transaction flow as described previously. This

figure was taken from the official documentation [5].
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Fig. 4: Typical transaction flow in Hyperledger Fabric.

2.4 Advantages of a blockchain-based OPTN

The author finds three significant advantages of a blockchain-based OPTN. First, it is
easier to audit. Antipova, in [16], states, “The government audit is designed to vouch for
the reliability of the financial statements, not the soundness of the finances they portray.”
Blockchains can help government auditors have access to immutable audit logs, which
can be easy to access. Using a blockchain-based OPTN would automatically generate
reliable logs in the form of timestamped and cryptographically linked blocks. This system
can increase the public’s trust in the organ transplant system and might increase the
public’s willingness to become organ donors.

Second, since a blockchain is a peer-to-peer network, there is no dependency on a

centralized source of truth or authority. All nodes in the network have their copy of the

ledger and have to reach a consensus to add new blocks to the blockchain. Even though
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there are some centralized components in some blockchain frameworks, like the ordering
service in Hyperledger Fabric, they perform mechanical tasks. Any tampering in those
tasks would be easily detected, thus reducing any impact of an attack on those
components. This decentralized nature of blockchain eliminates the single point-of-failure
problem.

Last, since a blockchain-based organ procurement system would not require a trusted
governmental organization for its legitimacy, it does not need to be restricted by national
borders. An international blockchain-based OPTN can have hospital members from

various countries and the logic to match organs.

2.5 Limitations of a blockchain-based OPTN

Three significant limitations were identified, viz. quantum computing, negative social
perception, and lack of a medical data interoperability standard.

First is quantum computing, which may seem like something from science fiction, but
it poses a severe threat to any blockchain. As suggested by Yang and et al. in [17],
bitcoins are vulnerable to quantum computing. One of the strengths of blockchain
technology comes from encryption such that it is computationally infeasible to decrypt
the blocks. When and if quantum computing becomes commercially viable, it can be used
to defeat the encryption on the blockchain, thus losing the confidentiality of data.
However, this can be overcome by the accurate selection of the encryption algorithm. As
noted in the same source, cryptosystems like “McEliece” and “New Hope” are not
vulnerable to quantum computers.

The second limitation is the social perception of blockchain. Medical and
governmental organizations are known to be slow in adopting new technologies. On top
of that, with all the negative publicity blockchains have been getting, due to its use by bad
actors for illicit purposes, have only compounded this problem. John Oliver in his

multiple Emmy winning show, “Last Week Tonight”” while covering blockchain
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technology mentioned “... I'm not saying that every blockchain company is [expletive]
what I am saying is in a speculative mania it can be incredibly hard to tell which
companies are for real ...”. Social perception will dissuade policymakers from using
blockchain for this purpose. Only strong scientific evidence can convince policymakers to
consider this project seriously.

Lastly, the lack of a widely used standard for keeping medical records makes the
automatic donor-candidate matching difficult. Mertz, in [18], throws light on the issue of
moving medical data from one clinic to another. Challenges like digital data formats and
protocols make it difficult to share medical data between different medical institutions.
However, in a blockchain-based organ procurement system, if a hospital wants to
participate in the network, it must have the ability to conform to the data format
acceptable to the blockchain’s chaincode. The existence of such a standard for the
medical data could have benefits for patients admitted for reasons unrelated to organ
transplants as well. It can help all patients by letting them move their health records from
one healthcare provider to another.

Zang, Kaiwn, and Hans, in [19], provided a proposal template comprising of a series
of questions and was used to design the prototype in this project. On the same theme,
Tyler, in [20] provides a taxonomy of utility concepts to determine whether a particular
application will benefit from a blockchain implementation. Some lesser-known
blockchain consensus protocols, like the Stellar consensus protocol, are introduced by
Shankar, Sindhu, and Sethumadhavan in [21]. Mertz, in [18], proposes a three-tier
approach for designing a blockchain application. These tiers are the presentation layer, the
middle layer, and the final layer, which represents the user frontend, off-chain
computation-backend, and the blockchain-based backend, respectively. In [22], Zhang,
and et al. warn about the potential challenges of a blockchain-based medical system’s

compliance with the Health Insurance Portability and Accountability Act (HIPAA). A
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fascinating medical record-keeping system that uses bitcoins as payment for moving
health records is introduced in [23]. Lewis in [24] provides a curated list of thirty exciting

innovations that use blockchain technology, including one about buying beer.
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3 METHOD

OrganChain is the prototype blockchain-based OPTN created for this study. This
prototype was built using Hyperledger Fabric Framework. The prototype has four
organizations, each corresponding to a UNOS permanent member type. These
organizations are “Hospitals,” “Histocompatibility Labs,” “Organ Procurement
Organizations,” and “General Public.” This section describes the domain hierarchy, the
network topology, the chaincode, and the environment setup steps of the OrganChain
prototype. The author’s first attempt at creating a prototype for a blockchain-based OPTN
was [25]. However, the approach taken in this work is entirely independent of the

previous work.

3.1 OrganChain Domain Hierarchy

The OrganChain prototype has “organ.com” as the top-level domain under which the
“orderer.organ.com” subdomain is used for the ordering service.
“histocompatibility.organ.com,” “gp.organ.com,” “opo.organ.com,” and
“hospital.organ.com” are the subdomains used for the organizations. In turn, each
organization contains subdomains for their peers. For example, “peer(0” and “peerl” in the

“gp” organization are identified by “peer(.gp.organ.com” and “peerl.gp.organ.com,”

respectively. This hierarchy is illustrated in Fig. 5.
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Fig. 5: OrganChain domain hierarchy.

3.2 OrganChain Network

The network topology of OrganChain is represented by Fig. 6. All the peer nodes are
docker containers running in a docker network called organ_chain_network. Each
organization has two peer nodes called “peer0” and “peerl,” and thus, there are eight peers
in the network. There is an additional orderer peer which runs the ordering service. All
the peers are connected to the same channel called the organ_channel. The “peer()”
of each organization is the designated anchor peer for its organization. The configurations

and steps required to bring up this network topology are explained in section 3.4.
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Fig. 6: OrganChain network.

3.3 OrganChain Chaincode

The chaincode comprises JavaScript methods, which represent logic behind a
transaction. The “fabric-shim” library was used to write the chaincode. The transactions
are used to create objects for donated organs and candidates. In the chaincode, there are
helper methods that are used to update and read the states of the organs and candidate
objects. The organ and candidate objects have three attributes. The first is a unique
identifier, the second is the type of the organ, and the last is the medical data. The medical
data are stores in a JavaScript Object Notation (JSON) object created using the

Self-Defining Text Archive and Retrieval (STAR) file provided by UNQOS, available in the
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author’s project repository [26]. For this thesis, simulated medical data were created for
only the intestine organ type and used for experiments. Two variants of the chaincode

were created.

3.3.1 Scheme A: Matching Inside the Blockchain

The initOrgan and initCandidate transactions were used for the matching process. The
initOrgan transaction was used to create a new organ. When invoked, it creates a list of all
available candidates and tries to match the new organ using this list of candidates. When
the medical data of the candidate and the donated organ have the same value sixty-five
percent of the time for the list of attributes in their medical data field, it is considered a
match. The candidate then becomes a recipient. The initCandidate transaction is similar to
initOrgan transaction but for a candidate. When invoked, it creates a list of all available

organs and then tries to find a match with the same criteria.

3.3.2 Scheme B: Matching Organs Outside the Blockchain

The assumption for this approach was that, since the integrity of the data is
guaranteed cryptographically, the compute-intensive matching could be taken out of the
chaincode. Since chaincode is executed at least the same number of times as required by
the consensus algorithm, moving the compute-intensive matching process out of the
chaincode could give a significant performance boost in the propagation time of a block.

In this scheme, the initOrgan and the initCandidate methods simply created the
candidate and organ object. A Python script was run to find a matching candidate-organ
pair. Then, a transferOrgan transaction was invoked to match a candidate-organ pair. This

transaction would change the state of these two objects and finish the matching process.

3.4 OrganChain Environment

This section describes the steps that were followed to run an instance of the

experiment OrganChain network. For each experiment, the parameters were changed
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accordingly in the steps described in this section. All relevant code is available in the
author’s GitHub repository [26].

Initially, the experiments were run on the author’s personal computer inside a VM.
The VM was created using the Virtual Box hypervisor. However, the data acquired from
that setup had a large number of anomalies, and sound conclusions could not be drawn
from them. Therefore, the experiments were run on a VM provisioned on the Google

Cloud Platform. The VM specifications are in Table 1.

Table 1: Specification of the Experiment VM

I Resource [ Value |
CPU 8 Core vCPU
Memory 30 GB
Storage 25 GB SSD
Operating System | Ubuntu 18.04

Before running the commands to bring up a network, the following three kinds of

configuration files were created in this order.

1) Configuration files for creating cryptographic material: This includes creating
certificates and key files for the organizations, i.e., Hospital, General Public,
Histocompatibility Laboratories, OPOs as well as the orderer organization. This
configuration file is written in the YAML format. A command-line interface (CLI)
tool called “cryptogen” was used to create these, and this YAML formatted
configuration file is given to it as an input. The output of this is the cryptographic
material in the format expected by Hyperledger Fabric.

2) Configuration files to create channel artifacts: This includes the creation of the
genesis block, a channel creation transaction block, and an anchor peer creation
block for each of the organizations. Another CLI tool called “configtxgen” was used
to create these artifacts. These are the configuration blocks that only store metadata,

as explained in the previous section.
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3)

Docker compose files for infrastructure: These files are “infrastructure as code” and
are written in YAML format. They describe the containers that run to create the
network, what docker images these containers instantiate, the environment variables
these containers contain, the ports and endpoints these containers expose, the
attached volumes to these containers, and other infrastructure-related information.
The docker-compose command takes this file as input along with some flags and to

bring up the infrastructure.

To bring up an instance of the OrganChain network, a series of commands need to

execute. Each step with its associated commands are described below:

1y

Generate cryptographic material for all peers.

rm -rf crypto-config
cryptogen generate —--config=./crypto-config.yaml

Create the genesis block for OrganChain.

export FABRIC_CFG_PATH=$PWD && mkdir channel-artifacts
configtxgen -profile OrganChainOrdererGenesis \
-channelID organ-sys—-channel \
—outputBlock ./channel-artifacts/genesis.block \

Create channel transaction artifacts for organ—channel.

export CHANNEL_NAME=organ—-channel && configtxgen \
-profile OrganChainChannel \
—outputCreateChannelTx \
./channel-artifacts/channel.tx \
-channelID $CHANNEL_NAME

Create configurations for anchor peer of each organization. Repeat this for all

organizations.

configtxgen -profile OrganChainChannel \
—outputAnchorPeersUpdate \
./channel-artifacts/HospitalMSPanchors.tx \
—channelID organ-channel -asOrg HospitalMSP
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5)

7)

Run docker-compose to create network components.

export COMPOSE_PROJECT_NAME=""
docker-compose -f docker-compose-cli.yaml up -d

Create organ—channel from the client container.

docker exec —-it cli bash

export CORE_PEER_MSPCONFIGPATH=/../Admin@gp.organ.com/msp

export CORE_PEER_ADDRESS=peerO.gp.organ.com:7051

export CORE_PEER_LOCALMSPID="GPMSP"

export CORE_PEER_TLS_ROOTCERT_FILE=/../peer(O.gp.organ.com/tls/ca.crt

export CHANNEL_NAME=organ—-channel

peer channel create -o orderer.organ.com:7050 \
—-c $CHANNEL_NAME -f ./channel-artifacts/channel.tx --tls \
-—cafile /../msp/tlscacerts/tlsca.organ.com—-cert.pem

Join all peers to organ—channel. Execute this from all peer containers.

peer channel join -b organ-channel.block

Update the anchor peers of all organizations.

peer channel update -o orderer.organ.com:7050 \
—c SCHANNEL_NAME -f ./channel-artifacts/HospitalMSPanchors.tx \
——tls —--cafile /../tlscacerts/tlsca.organ.com-cert.pem

Install the organcc chaincode on the organ—channel.

peer chaincode install -n organcc -v 1.0 \
-1 node -p /opt/gopath/src/github.com/chaincode/

Instantiate the organcc chaincode with an endorsement policy.

peer chaincode instantiate -o orderer.organ.com:7050 —-tls \
--cafile /../tlscacerts/tlsca.organ.com-cert.pem \
-C organ—-channel -n organcc -1 node -v 1.0 \
-c '"{"Args":["initOrgan","123", "heart", "This is donor info"]}' \
-P "OR('HospitalMSP.peer', '"OPOMSP.peer', 'HLMSP.peer', 'GPMSP.peer')"
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3.5 OrganChain Analysis

A Jupyter Notebook was used to invoke the chaincode after the network was entirely
created, as mentioned in the preceding paragraph. This notebook contains code to invoke
the read and write transactions using the peer chaincode invoke command. The
matching transactions were explicitly called only for Scheme B. After invoking a fixed
number of transactions, the docker logs of all the peer and orderer containers were stored
in a file using the same notebook. Then the entire network was destroyed.

Custom Python scripts were written to analyze the logs created by the docker
container representing nodes in the blockchain network. Each line in the log is
represented as a JSON object. Each of these JSON objects has 1og and t ime key, which
stores the log message, and its timestamp was done, respectively.

During the log analysis, the code looks for the log messages with Received
Block [,Validated Block [ and Committed Block [ strings. The
timestamps on these log messages are of importance to the research. These times are used
to determine the propagation time for each block and to plot graphs. To determine the
propagation time for a particular block (X), a list containing the times at which each node
received that block is created, RTx. A similar list is created for commit times of that
block, CTx. The difference between the smallest value in the receive time list and the

largest value in the commit time list is the propagation time for that block.

PropogationTime(X ) = min(RTx ) ~ max(CTy)
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4 EXPERIMENTS AND EVALUATIONS

The network was created thirty-two times with sixteen different combinations of the
four experiment parameters, as mentioned below. To investigate the effect of each
experiment parameter, four different values of each parameter were considered to generate
a combination. Then each combination was run with both the schemes of the chaincode.
Each run is referred to as a sub-experiment in this document. This section contains a

detailed evaluation of the results from these experiments.

4.1 Experiment Parameters

Transactions are grouped in blocks that are broadcasted throughout the network. The
number of times a block is created has a direct impact on the performance of any
blockchain-based application. In Hyperledger Fabric, the first three of the following are
responsible for the decision of when to cut a block. Hence, experiments with different
combinations of these values were run to determine their impact. The transaction rate
experiment was conducted for apparent reasons.

o Batch Time Out: It is the maximum amount of time (in seconds) the ordering service
waits to create a block. The values of two seconds, five seconds, ten seconds, and
fifteen seconds were used to run experiments.

» Preferred Max Block Size: Measured in kilobytes, this is the size at which the
ordering service creates a new block regardless of other factors. The experiments
were run with the preferred max block sizes of eight kilobytes, sixteen kilobytes, and
thirty-two kilobytes.

o Endorsement Policy: This configuration of consensus policy determines the number
and type of endorsements a client needs to submit to the ordering service to get a
particular transaction committed to the ledger. The “ALL AND,” “ALL OR,” “2
OutOf ALL,” and “3 OutOf ALL” endorsement policies were used. The “ALL AND”

endorsement policy requires at least one peer from each organization to endorse a
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transaction. Conversely, the “ALL OR” requires an endorsement of only one peer
from any of the organizations. “2 OutOf ALL” and “3 OutOf ALL” require one peer
from two and three out of all the organizations, respectively.

 Transaction Rate: It is the number of seconds between two consecutive transactions.
The transaction rates of one transaction per one second, two seconds, five seconds,

and fifteen seconds were used.
4.2 Test Load

For each of the thirty-two sub-experiment, fifty candidate objects and fifty organ
objects were created using the initCandidate and initOrgan transactions. Then
those fifty candidates and fifty organs were read using the readCandidate and
readOrgan transactions. Essentially, in every sub-experiment, one hundred
write-operations and one hundred read-operations were performed. For sub-experiments
running with chaincode in Scheme A, this translated to two hundred transactions in total
since the matching occurs by the chaincode. However, for Scheme B, each
write-operation of an organ or candidate requires a read of all the available candidates or
organs, respectively. These additional read-operations significantly increase the number of

transactions and consequently the number of blocks as well.
4.3 Observations

This section contains graphs plotted from the data collected from the logs of docker
containers that represented the nodes in the experiment setup. Then the observations
derived from these graphs are described. For each experiment, a table containing the
values of all the parameters’ combinations is presented, followed by the graphs plotted
using the data.

Experiment 1 (max batch time out): The batch time out values of two seconds, five
seconds, ten seconds, and fifteen seconds were taken while keeping the preferred max

block size, endorsement policy, and sleep between transactions fixed to eight kilobytes,
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“All AND” and ten seconds respectively. All four combinations of values were run using
both the chaincode schemes, as describes above.

Table 2: Experiment 1 (Max Batch Time Out) Experiment Parameters

H ‘ Batch Time Out ‘ Pref. Max Block Size ‘ Endorsement Policy ‘ Sleep Between Transactions H

Exp 1.1 2 sec 8 KB ALL AND 10 sec
Exp 1.2 5 sec 8 KB ALL AND 10 sec
Exp 1.3 10 sec 8 KB ALL AND 10 sec
Exp 1.4 15 sec 8 KB ALL AND 10 sec

Experiment 1 (max batch time out) observations: The max batch time out has a direct
impact on the number of blocks generated. In both schemes, the number of blocks
decreases with an increase in batch time out, which does not have a significant impact on
the propagation time of the blocks containing the transaction from only the
read-operations. Propagation times of these blocks varied only within the margin of error.
On the other hand, the write-operations showed a trend of linear increase for all the
sub-experiments in Scheme A. For Scheme B, the propagation time for blocks with
write-operations is higher than that of Scheme A since a write-operation in Scheme B
may include a large number of read-operations. Fig. 7 contains graphs plotted from data
generated from this experiment. Also, the differences in the propagation times for the

configuration blocks for this set of sub-experiments were insignificant.
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Experiment 2 (max block size): The preferred max block sizes of eight kilobytes,
sixteen kilobytes, and thirty-two kilobytes were used with the batch time out, endorsement
policy, and transaction rate of ten seconds, “All AND,” and one per two seconds
respectively for the first three sub-experiments. The fourth sub-experiment was done with
thirty-two kilobytes of the preferred max block size with “ALL AND” endorsement policy,

but with a transaction rate of five per second. This information is tabulated in Table 3.

Table 3: Experiment 2 (Max Block Size) Experiment Parameters

H ‘ Batch Time Out ‘ Pref. Max Block Size ‘ Endorsement Policy ‘ Sleep between transactions H

Exp 2.1 10 8 KB ALL AND 2 sec
Exp 2.2 10 16 KB ALL AND 2 sec
Exp 2.3 10 32 KB ALL AND 2 sec
Exp 2.4 10 32 KB ALL AND 5 sec

Experiment 2 (max block size) observations: First, the deviation between the
propagation times of configuration blocks for the sub-experiments was minuscule. Second,
the propagation times of the blocks containing transactions for the read-operations are
identical. This regularity suggests that within the bounds of these experiments, the
preferred max block size does not affect the read operations. Finally, the write-operation
in Scheme B took three and a half times more blocks to create the fifty organ objects, and
fifty candidate objects. This increase is because each write-operation in Scheme B triggers
a read of all available organs or candidates. This behavior also explains the wavy pattern
in the graph of the propagation times for the write-operation. The peaks represent the
blocks containing write transactions and the troughs representing the propagation times of
the blocks with only the read transactions. Fig. 8 contains graphs plotted from data

generated from this experiment.
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Experiment 3 (endorsement policy): The four endorsement policies that were studied
by this experiment in the order of being most restrictive to least restrictive were “ALL
AND,” “ALL OR,” “2 OutOf ALL,” and “3 OutOf ALL”. For all the eight
sub-experiments, the batch time out, preferred max block size, and a transaction rate of
ten seconds, sixteen kilobytes and one transaction per five seconds were taken

respectively. This information is tabulated in Table 4.

Table 4: Experiment 3 (Endorsement Policy) Experiment Parameters

H ‘ Batch Time Out ‘ Pref. Max Block Size ‘ Endorsement Policy ‘ Sleep between transactions H

Exp 3.1 10 16 KB ALL OR 5 sec
Exp 3.2 10 16 KB ALL AND 5 sec
Exp 3.3 10 16 KB 2 OutOf ALL 5 sec
Exp 3.4 10 16 KB 3 OutOf ALL 5 sec

Experiment 3 (endorsement policy) observations: First, the propagation times of the
configuration blocks were similar. It implies that the Endorsement policy does not have a
significant effect on them. Second, the blocks with the transactions of read-operations
were also within the margin of error for both the schemes. Last, the propagation times for
the write-operation blocks showed a similar increase in all four endorsement policies for
both the schemes. Also, again, Scheme B took three and a half times the number of
blocks than Scheme A. This observation implies that, under the current setup, the
endorsement policy does not have a significant impact on the propagation time of the
blocks containing transactions for the read and write operations. Fig. 9 contains graphs

plotted from data generated from this experiment.
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Experiment 4 (transaction rate): In this experiment, the transactions were issued at the
rate of one transaction per one second, two seconds, five seconds, and ten seconds. A
batch time out, preferred max block size and endorsement policy of ten seconds, thirty-six
kilobytes, and “ALL OR” was taken respectively. This information is tabulated in Table 5.

Table 5: Experiment 4 (Transaction Rate) Experiment Parameters

H ‘ Batch Time Out ‘ Pref. Max Block Size ‘ Endorsement Policy ‘ Sleep between transactions H

Exp 4.1 10 36 KB ALL OR 1 sec
Exp 4.2 10 36 KB ALL OR 2 sec
Exp 4.3 10 36 KB ALL OR 5 sec
Exp 4.4 10 36 KB ALL OR 10 sec

Experiment 4 (transaction rate) observations: First, the propagation times of the
configuration blocks did not show a significant variance. Second, the variance in the
propagation times of the read-operation blocks was within the margin of error for all eight
sub-experiments. This view suggests that the current experiment setup can handle all the
transaction rates equally. Last, as for the propagation time of the write-operation blocks,
the sub-experiment 4.4 for Scheme A performed better than the rest of the
sub-experiments. This result may occur because the transaction rate was equal to the
“batch time out”. This setup resulted in one transaction per block, which in turn lead to a
smaller payload than that of other sub-experiments in this experiment. Fig. 10 contains

graphs plotted from data generated from this experiment.
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S FUTURE WORK

Throughout this research, the author realized the great need for software process
automation firsthand. The author recommends the use of the following tools to automate
various repeatable tasks, which are better done programmatically than by hand, Terraform,
Ansible, ad-hoc Python scripts, and managed blockchains.

First, using Terraform for configuration management has various benefits such as
documentation of infrastructure, quickly reproducible infrastructure, and automatic
deployment of all the bits of infrastructure automatically ranging from an ‘“auto scaling
group launch configuration” to a “single firewall rule.” Using such a tool would allow for
easy and quick deployment and tear down of various configurations.

Second, Ansible can be used as a task runner and would enable quick and automatic
installation of all binaries, such as Hyperledger Fabric CLI, that are required to run the
applications. Various Ansible playbooks can be created containing several plays
representing a set of logically related tasks like bringing up a network, archiving logs of
servers, tearing down a network, and so on. These plays, in turn, can have more fine tasks
such as generating cryptographic material, creating channels, and creating anchor peers.
These tasks can either be performed using command-line instructions or ad-hoc Python
scripts.

Third, ad hoc Python scripts can be used to perform a repeatable set of tasks. In
particular, Python scripts can be used to divide the command reference file in [26] to
smoothen the network creation process. In this case, Python is preferred over Shell scripts
because much of the code is required to execute on remote servers, and Python libraries
like Paramiko would easily facilitate it.

Last, using a managed blockchain service can significantly reduce the amount of work
needed to bring up the network. Amazon Web Services (AWS), in its arsenal of services,

have now started to provide blockchain as a service as well under the banner of “Amazon
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Managed Blockchain.” With this service, creating a blockchain network becomes just as
easy as clicking a few buttons, like any other product provided by AWS. When combined
with AWS’s other services like “Elastic Cloud Compute” and “AWS Key Management
Service,” a large number of combinations of experiment setups can be easily created.
Moreover, each time an entirely new environment is created, keeping each experiment
isolated. When the author started this study, AWS did not offer this service.

Apart from process automation, it is necessary to run more experiments on a more
extensive network. The current prototype uses a virtual network created using docker
networks. However, the real-world scenario could have nodes of different kinds connected
by networks of variable throughput and latency. Given the constraints of this research, it
was reasonable to use a virtual network on a single host. Nonetheless, in the real world,
the network has a significant impact on the overall performance of the application. Hence,
experiments must be run on different network configurations to study its effects on
application performance. The use of automation tools, as mentioned in the previous point,
would be prudent.

Also, the chaincode needs to be improved to reflect the actual application. Organ
matching is a very complicated process. It is affected by numerous factors such as a
candidate’s waiting time as well as their medical compatibility. On top of that, each organ
has its matching criteria. The chaincode of the current prototype provides a good starting
point to create a complete matching algorithm. A prototype with a more elaborate
chaincode than the one created for this study will be helpful to convince policymakers in

favor of using blockchains for the organ transplant system.
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6 CONCLUSIONS

The current Organ Procurement and Transplant Network is a centralized system that
maintains a ledger of organ transplant candidates along with their medical information
and then matches them with a donated organ based on a set of well-codified algorithms
and practices. This study finds that blockchain technology can decentralize this process.
On top of that, it can also bring potential advantages like increased transparency, global
organ procurement, and easier auditing.

While conducting this research, the author perceived that the most complex,
error-prone, and time-consuming aspect of this research was designing and bringing up of
the nodes of the blockchain network for the OrganChain prototype. Accordingly, the
author proposes the use of various automation tools for future work. In contrast, the
implementation of the business logic, represented by chaincode, was much simplified by
the abstractions provided by libraries in Hyperledger Fabric.

The observations of all the thirty-two sub-experiments conducted in this research
leads to the conclusion that for the given set of experiment environments, Scheme A of
executing the chaincode is superior because it generated fewer blocks for a
write-operation as compared to a write-operation in Scheme B. Therefore, this study
endorses leaving the “match run” process in the chaincode. Additionally, the
read-operations seem unaffected by any of the parameters under the scope of this study.
However, the write-operations performed best when the “batch time out” period was close
to the transaction rate.

It is safe to assume that medical institutions, especially government-backed, would be
extremely circumspect in using any new technology. This empirical study concludes in
favor of continued research in using blockchains for this purpose. Nevertheless, there are
significant unanswered questions on issues such as data privacy and performance,

requiring more investigation.
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