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Introduction

What we can observe by means of telescopes is the light emitted by stars, dust
and gas, but they are only the tip of an iceberg. According to the latest obser-
vational data, the Universe contains: only ∼ 5% ordinary matter, ∼ 27% dark
matter and ∼ 68% dark energy (e.g. [Ade et al., 2014, Aghanim et al., 2018]).

Dark matter (DM) is a type of matter hypothesized to account for effects
that appear to be the result of invisible mass. The existence and properties
of dark matter can be inferred from its gravitational effects on visible mat-
ter and radiation and from the observations of the large-scale structure of the
universe [Faber and Gallagher, 1979, Trimble, 1987]. Astrophysicists hypothe-
sized dark matter because of discrepancies between the mass of large astronom-
ical objects determined from their gravitational effects and the mass calculated
from the “luminous matter” they contain (stars, gas and dust). Many observa-
tions have indicated the presence of dark matter in the universe, including the
rotational speeds of galaxies in the 1960s−1970s [Faber and Gallagher, 1979,
Rubin et al., 1980, Bosma, 1981a, Bosma, 1981b], gravitational lensing of back-
ground objects by galaxy clusters such as the Bullet Cluster [Clowe et al., 2004,
Markevitch et al., 2004], the temperature distribution of hot gas in galaxies and
clusters of galaxies [Rees and Ostriker, 1977, Cavaliere and Fusco-Femiano, 1978],
and more recently the pattern of anisotropies in the cosmic microwave back-
ground (CMB) [Hinshaw et al., 2009, Ade et al., 2016]. Particularly, detailed
analysis of the anisotropies in the CMB observed by WMAP and Planck shows
that around five-sixths of the total matter is in a form which does not interact
significantly with ordinary matter or photons [Hinshaw et al., 2009, Ade et al., 2016].
Furthermore, the theory of Big Bang nucleosynthesis (BBN), which accurately
predicts the observed abundance of the chemical elements, indicates that the
vast majority of dark matter in the universe cannot be baryons [Copi et al., 1995].
Then, large astronomical searches for gravitational microlensing, have shown
that only a small fraction of the dark matter in the Milky Way can be hid-
den in dark compact objects composed of ordinary (baryonic) matter which
emit little or no electromagnetic radiation [Alcock et al., 2000]. The excluded
range of object masses is from half the Earth’s mass up to 30 solar masses
[Tisserand et al., 2007, Wyrzykowski et al., 2011]. All this points to the non
baryonic nature of dark matter.

Despite the evidences about the DM existence, this mysterious component
of the Universe is made primarily of a not yet characterized type of particle.
The search for this particle, by a variety of methods, is one of the major efforts
in particle physics today [Bertone et al., 2005].

Beside the DM, another relevant mystery in the Universe is the Dark energy.
It is a hypothetical form of energy which permeates all of space and tends to
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accelerate the expansion of the universe [Carroll et al., 1992], as indicated by
observation since the 1990s. Adding the cosmological constant Λ to cosmology’s
standard FLRW (Friedmann-Lemaitre-Robertson-Walker) metric leads to the
so-called Λ-CDM model, which also involves the most favourite candidate for
the dark matter, namely the collisionless Cold Dark Matter (CDM).

The Λ-CDM model has been referred to as the Standard Model of Cosmology
because of its precise agreement with observations on large scale structures (see
e.g. [Kolb and Turner, 1990, Mukhanov, 2005, Ellis et al., 2012, Aghanim et al., 2018]).

In this work, we focus our attention on the DM distribution in galaxies and its
relation with the luminous matter (LM) distribution. Particularly, we deal with
the structural properties of DM and LM in disc galaxies, rotating objects with a
rather simple kinematics, devoting special attention to the Low Surface Bright-
ness (LSB) galaxies. They are rotating disc systems which emit an amount of
light per area smaller than normal spirals, with a face-on central surface bright-
ness µ0 & 23mag arcsec−2 in the B band [Impey and Bothun, 1997]. They are
usually locally more isolated than other kinds of galaxies (e.g. [Bothun et al., 1993,
Rosenbaum et al., 2009]) and likely evolving very slowly with very low star for-
mation rates, characterised by sporadic small-amplitude events (e.g. [Das et al., 2009,
Galaz et al., 2011], [Schombert and McGaugh, 2014, Lei et al., 2018]). This is
suggested by colors, metallicities, gas fractions and extensive population synthe-
sis modelling (e.g. [van der Hulst et al., 1993, McGaugh, 1994, de Block et al., 1995,
Bell et al., 2000, Schombert and McGaugh, 2014]). As we see in radio synthesis
observations, LSB galaxies have extended gas discs with low gas surface densi-
ties and high MHI/L ratios (e.g. [van der Hulst et al., 1993, Du et al., 2019]),
where MHI is the mass of the HI gaseous disc and L is the luminosity. The low
metallicities make the gas cooling difficult and in turn the stars difficult to form
(e.g. [McGaugh, 1994]). LSBs are required to be dominated by DM, as shown
by the analysis of their Tully-Fisher relation (e.g. [Zwaan et al., 1995]), of their
individual (e.g. [de Blok et al., 2001], [de Blok and Bosma, 2002]) and stacked
rotation curves (RCs) [Di Paolo et al., 2019a]. Overall, the LSBs result to be a
different laboratory than the normal spirals to test the properties of the dark
and the luminous matter.

This thesis is divided into two parts:

• PART 1, mainly drawn from the REVIEW “Fundamental properties of
the dark and the luminous matter from Low Surface Brightness discs” (Di
Paolo & Salucci, to be submitted). It is based on:

a) the review of previous works by various authors on DM (Chapter 1),
disc galaxies (Chapter 2) and LSBs (Chapter 3);

b) the presentation of the recent main results on LSB disc galaxies pub-
lished in [Di Paolo et al., 2019a] (Chapter 4) and [Di Paolo et al., 2019b]
(Chapter 5), contextualized in the large DM phenomenon puzzle (Chapter
6);

• PART 2, which includes the works, above discussed, as appeared in the
journals. The published papers are:
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a) PAPER 1 (Chapter 7): “The universal rotation curve of low surface
brightness galaxies IV: the interrelation between dark and luminous mat-
ter” [Di Paolo et al., 2019a];

b) PAPER 2 (Chapter 8): “The Radial Acceleration Relation (RAR): Cru-
cial Cases of Dwarf Disks and Low-surface-brightness Galaxies” [Di Paolo et al., 2019b];

c) PAPER 3 (Chapter 9): “Phase-space mass bound for fermionic dark
matter from dwarf spheroidal galaxies” [Di Paolo et al., 2018].
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Chapter 1

Dark matter particles and
scenarios

After accepting the existence of dark matter, there is a spontaneous question:
what is the nature of dark matter? Several possibilities have been proposed.

Since dark matter has not yet been observed directly, if it exists, it must
barely interact with ordinary baryonic matter and radiation, except through
gravity. Or likely it has not been revealed till now because the experimental
researches could have not been set in order to reveal ”the” DM particle. At
any rate, it remains unknown whether it consists of a single particle species or
a larger collection of fields, like in case of the Standard Model. Among few
indications, probably DM particles are extremely long-lived or stable, with a
lifetime comparable to the age of the Universe, as suggested by the large cosmic
abundance of DM which must have been generated very early in the history
of Universe and survived unchanged until today (for a quantitative discussion
see Chapter 5 in [Kolb and Turner, 1990]) at least out of the innermost galactic
regions.

1.1 DM phenomenon in the particles framework

In the following, only few simple, but fundamentally different, categories of DM
particle candidates are presented. For a complete discussion of the various DM
models and existing constraints, see e.g. [Bergstrom, 2000, Bertone et al., 2005,
Garrett and Duda, 2011, Bauer and Plehn, 2017, Profumo, 2017].

1.1.1 Weakly interacting massive particles (WIMP)

Weakly interacting massive particles (WIMPs) are hypothetical particles that
are thought to interact via gravity and any other force (or forces), potentially
not part of the standard model itself, which is as weak as or weaker than the
weak nuclear force, but also non-vanishing in its strength. WIMP particles
make up the so called collisionless cold dark matter, which is involved in
the ΛCDM N-body simulations.

In more detail, WIMPs fit the model of a relic dark matter particle from
the early Universe, when all particles were in a state of thermal equilibrium.
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For sufficiently high temperatures (T � m
WIMP

), such as those existing in the
early Universe, the dark matter particle and its antiparticle would have been
both forming from and annihilating into lighter particles of the Standard Model
(DM+DM 
 SM+SM). As the Universe expanded and cooled (T . m

WIMP
),

the DM density is exponentially suppressed (∝ exp[−m
WIMP

/T ]), the average
thermal energy of these lighter particles decreased and eventually became in-
sufficient to form a dark matter particle-antiparticle pair. The annihilation of
the dark matter particle-antiparticle pairs (DM+DM ⇒ SM+SM), however,
would have continued, and the number density of dark matter particles would
have begun to decrease exponentially. Eventually, however, the number density
would become so low that the dark matter particle and antiparticle interaction
would cease, and the number of dark matter particles would remain (roughly)
constant as the Universe continued to expand. Particles with a larger interaction
cross section would continue to annihilate for a longer period of time, and thus
would have a smaller number density when the annihilation interaction ceases.
Based on the current estimated abundance of dark matter in the Universe, it
is required a self-annihilation cross section of 〈σv〉 ' 3 × 10−26cm3 s−1, which
is roughly what is expected for a new particle in the 100 GeV mass range that
interacts via the electroweak force.

Because supersymmetric extensions of the standard model of particle physics
readily predict a new particle with these properties, this apparent coincidence
is known as the “WIMP miracle”, and a stable supersymmetric partner has long
been a prime WIMP candidate [Steigman and Turner, 1985, Kolb and Turner, 1990,
Jungman et al., 1996, Munoz, 2017]. WIMP-like particles are also predicted by
Grand Unified Theory (GUT) [Ross, 1985, Arcadi, 2016] or models with addi-
tional dimensions [Servant and Tait, 2003, Hooper and Profumo, 2007], where
one or more of the many newly predicted particles could play the role of DM.

We highlight that because of their large mass, WIMPs would be relatively
slow moving. They are defined cold dark matter (CDM), characterized by non-
relativistic velocities since its decoupling time. Their relatively low velocities
would be insufficient to overcome the mutual gravitational attraction, and as a
result, WIMPs would tend to clump together. They could generate small struc-
tures (galaxies) and then they would be able to aggregate among themselves to
form larger structures (bottom-up theory). See Fig. 1.1.

In the current Λ-cold dark matter (ΛCDM) paradigm, the non-relativistic DM
can be described by a collisionless fluid, whose particles interact only gravita-
tionally and very weakly with the Standard Model particles [Jungman et al., 1996,
Bertone, 2010]. The N-body simulations in the ΛCDM give rise to structures
of virialized DM halos with a universal spherically averaged density profile
ρNFW (r) [Navarro et al., 1997]:

ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
, (1.1)

where the density ρs and the scale radius rs are parameters which vary from
halo to halo in a strongly correlated way [Wechsler et al., 2006]. Eq. 1.1 is
the so called Navarro-Frenk-White (NFW) profile. A very important
quantity involved in such profile is the concentration parameter c = rs/Rvir,
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Figure 1.1: Linear power spectra for ΛCDM (black line) and ΛWDM (coloured
lines) scenarios. The WDM models are labelled by their thermal relic mass
and corresponding value of the damping scale, α, in the legend. The WDM
transfer function is given by [PWDM/PCDM ]1/2 = [1 + (αk)2.24]−4.46; k is the
wavenumber. Image reproduced from [Kennedy et al., 2014].

where Rvir is the virial radius1, which practically encloses the whole mass of
the DM halo. The concentration parameter is a weak function of the halo mass
[Klypin et al., 2011], but it is a very important quantity in determining the den-
sity shape at intermediate radii. Finally, we highlight the cusp shape ∝ r−1of
the NFW profile for inner galactic radii and the behaviour ∝ r−3 for the outer
radii. See Fig. 1.2.

WIMPs are often considered one of the main candidates for cold dark matter.
However, they have not been detected till now. Furthermore, the CDM is chal-
lenged by the observations at small scales (see e.g. [Naab and Ostriker, 2017,
Bullock and Boylan-Kolchin, 2017]). This issue will be deal with in the end of
this chapter.

1.1.2 Scalar fields and fuzzy dark matter

Scalar fields like axions were introduced in order to solve the strong CP problem
in particle physics [Duffy and van Bibber, 2009]. Furthermore, beyond these,
other scalar fields as axion-like particles were introduced, motivated by string
theory [Kane et al., 2015]. In order to be DM, these scalars are required to
be non-relativistic and abundantly produced in very early Universe and to be
(subequently or always) decoupled from ordinary matter.

1The virial radius Rvir is defined as the radius at which the average DM mass density
within this radius is 100 times the critical density of the Universe.
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Among the scalar fields, ultra-light axions (ULA) seems to be particularly in-
teresting from the point of view of DM phenomenology [Weinberg, 1978, Hu et al., 2000,
Ringwald, 2012, Hui et al., 2017, Bernal et al., 2017]. Indeed, these hypotheti-
cal particles, of mass ma ∼ 10−22 eV, can mimic the behaviour of the cold dark
matter (CDM). Once in galaxies, however, the inter-particle distance is much
smaller than their de Broglie wave length: the particles move collectively as a
wave and their equation of state can lead to cored configurations like those ob-
served. This is the so called fuzzy DM scenario. The particles behave as Bose-
Einstein condensate (BEC) and the capability to detect scalar field dark matter
with the LIGO experiment is under analysis [Li et al., 2017]. Moreover, promis-
ing approach for detecting ULA might be by testing the shape of small scale mat-
ter power spectrum, as for example through the observations of Lyman-α for-
est [Iršič et al., 2017, Nori et al., 2019], 21-cm astronomy [Nebrin et al., 2019],
gravitational lensing [Vegetti and Koopmans, 2009, Bayer et al., 2018] or care-
ful study of galactic kinematics [Simon et al., 2019]. On the other hand, exis-
tence of axions is currently being probed through possible coupling with elec-
tromagnetic fiels [Sikivie, 1983, Asztalos et al., 2010, Graham et al., 2015].

1.1.3 Self-interacting dark matter (SIDM)

In astrophysics and particle physics, self-interacting dark matter (SIDM) as-
sumes that dark matter has self-interactions, in contrast to the collisionless dark
matter assumed by the Λ-CDM model. SIDM was postulated in 2000 to resolve
a number of conflicts between observations and N-body simulations (of cold colli-
sionless dark matter only) on the galactic scale and smaller [Spergel and Steinhardt, 2000].
According to the SIDM model, DM particles scatter elastically with each other
and are heated by elastic collisions within the dense inner halo and leave the
region: the central and nearby densities are then reduced, turning an original
cusp into a core. The collision rate is negligible during the early Universe when
structures form. SIDM, therefore, retains the success of large-scale structure for-
mation of the Λ-CDM scenario and affects the dark structures on small scales
only once they are already virialized. See [Zavala et al., 2013, Tulin et al., 2013,
Bellazzini et al., 2013, Boddy et al., 2014, Vogelsberger et al., 2014, Elbert et al., 2015,
Kaplinghat et al., 2015].

1.1.4 Warm dark matter particle (WDM)

Warm dark matter (WDM) particle decouples from the cosmological plasma
when it is still mildly relativistic. It seems to overcome the problem on small
scales (typical of the collisionless CDM) and, if we take into account the possi-
bility of a fermionic DM particle, it could also solve the cusp problem. Indeed,
given the mass ∼ keV of a WDM particle, its de-Broglie scale length is of the or-
der ∼ tens kpc, that is close to optical scale length in galaxies. Thus, a quantum
pressure emerges [Destri et al., 2013, de Vega et al., 2013, Lovell et al., 2014,
de Vega and Sanchez, 2017] and it can shape the inner DM density profile with
the possibility of forming a core distribution. A strong lower limit has been
put on the mass of the fermionic DM particle, taking into account the small-
est dwarf spheroidal (dSph) satellites of the Milky Way. Considerations on the
phase-space density and on the dynamical friction lead to a final lower bound
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of m & 100 eV [Di Paolo et al., 2018] (for detailed discussions, see PAPER 3 in
Chapter 9).

The WDM particles can be created in the early Universe as thermal relics
(with the same mechanisms described in the previous section for the WIMP par-
ticle, see Fig. 1.1) or it can be non-resonantly produced [Dodelson and Widrow, 1994,
Shi and Fuller, 1999, Kusenko, 2009]. In the latter case, the DM candidate is
the sterile neutrino, which is required in extensions to the standard model to
explain the small neutrino mass through the seesaw mechanism [Asaka et al., 2005,
Ma, 2006]. The sterile neutrino might be detected from the annihilatation prod-
uct: a monochromatic line at 2mWDM ' keV [Boyarsky et al., 2007, Bulbul et al., 2014,
Boyarsky et al., 2014]. For an up-to-date review of viable sterile neutrino DM
models see, e.g., [Drewes, 2013, Adhikari et al., 2017, Boyarsky et al., 2019].

1.1.5 Primordial black holes (PBH)

In 2015-2017 the idea that dark matter was composed of primordial black holes
(PBH), made a comeback following results of gravitation wave measurements
which detected the merger of intermediate mass black holes. It was proposed
that the intermediate mass black holes causing the detected merger formed in
the hot dense early phase of the universe due to denser regions collapsing. Their
behaviour on large scale is expected to be similar to the CDM particles, however
their nature is fundamentally different. Indeed, their production is generally
linked to the inflation.

1.2 In search for the dark particle

Many experiments to detect and study dark matter particles, primarily WIMP,
are being actively undertaken, but none has yet succeeded [Bertone et al., 2005].
See e.g. [Arcadi et al., 2018] for a detailed review. Fundamentally, there are
three possible ways to detect DM particles, that we resume below:

i) indirect detection, which refers to the observation of annihilation or decay
products of DM particles far away from Earth. Indirect detection efforts typi-
cally focus on locations where DM is thought to accumulate the most: in the
centers of galaxies and galaxy clusters, as well as in the smaller satellite galaxies
of the Milky Way. Typical indirect searches look for excess gamma rays, which
are predicted both as final-state products of annihilation, or are produced as
charged particles interact with ambient radiation via inverse Compton scatter-
ing. The spectrum and intensity of a gamma ray signal depends on the annihila-
tion products, and must be computed on a model-by-model basis. The γ-ray flux
with an energy of E from dark matter annihilation in a distant source within
a solid angle ∆Ω is given by Φ(E,∆Ω) ∝ [(〈σv〉/m2

DM )
∑
f bfdNγ/dE]J∆Ω,

where 〈σv〉 is the thermally averaged annihilation cross-section, mDM is the
mass of a single dark matter particle, and bf and dNγ/dE denote the branching
fraction of the annihilation into the final state f and the number of photons per
energy, respectively. Beyond the physical processes and the DM particle mass,
the γ-ray flux also depends on the spatial DM distribution in the source through
the J-factor =

∫
∆Ω

∫
los
dl ∆Ωρ2(l,Ω) in case of an annihilation process or the

D-factor =
∫

∆Ω

∫
los
dl ∆Ωρ(l,Ω) in case of a decay process [Gunn et al., 1978,

Bergstrom et al., 1998, Geringer-Sameth et al., 2015]. These factors correspond
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to the line-of-sight (los) integrated dark matter density squared for annihila-
tion and the dark matter density for decay, respectively, within solid angle
∆Ω. Experiments have placed bounds on DM annihilation and decay, via
the non-observation of an annihilation and decay signal. For constraints on
the cross-sections see (e.g.) Fig. 2 in [Hoof et al., 2018] (Fermi-LAT), Fig.
8 in [Archambault et al., 2017] (VERITAS), Fig. 1 in [Abdallah et al., 2016]
(H.E.S.S.), Fig. 5 in [Cui et al., 2018] (AMS-02), Fig. 4 in [Iovine et al., 2019]
(IceCube and ANTARES);

ii) direct detection, which refers to the observation of the effects of a DM
particle - nucleus collision as the dark matter passes through a detector in an
Earth laboratory. Since the WIMP carries no electric charge, in most scenarios
it will not interact with the atomic electrons but will instead elastically scatter
off the atomic nucleus. The momentum transfer gives rise to a nuclear re-
coil which might be detectable [Goodman and Witten, 1985, Schumann, 2019].
Although most DM particles encountering the Sun or the Earth are expected
to pass through without any effect, it is hoped that a large number of dark
matter crossing a sufficiently large detector will interact often enough to be
seen, at least a few events per year. There are currently no confirmed de-
tections of dark matter from direct detection experiments (e.g. XENON1T,
CDMSlite, DAMA, DAMA0, COUPP, PICO60(C3F8), PICASSO, PANDAX-
II, SuperCDMS, CDEX, KIMS, CRESST-II, PICO60(CF3I), DS50, COSINUS,
DarkSide-50), but only limits on the DM-Standard Model particle cross-section.
See (e.g.) Fig. 12-13 in [Schumann, 2019], Fig. 1 in [Kang et al., 2019];

iii) collider production, an alternative approach to the detection of dark
matter particles in nature, which attempts to produce DM in a laboratory. Ex-
periments with the Large Hadron Collider (LHC) may be able to detect dark
matter particles produced in collisions of the LHC proton beams. In this case,
the DM particle may be detected indirectly as missing energy and momentum
that escape the detectors [Kane and Watson, 2008]. See the constrains on the
DM particle mass (e.g.) in Fig.3 in [Trevisani, 2018]. Constraints on dark
matter also exist from the LEP experiment using a similar principle, but prob-
ing the interaction of dark matter particles with electrons rather than quarks
[Fox et al., 2011].

1.3 Issues with the main DM scenario and its
simplest solutions

The particle that till now has caught more attention as DM candidate is the
lightest supersymmetric particle, the lightest neutralino (see e.g. [Bergstrom, 1999]),
which behaves as a CDM (WIMP) particle in the evolving Universe. However
this particle has never been produced either detected. Moreover, there are astro-
physical evidences that the CDM has some issues in reproducing the observed
structures. Indeed, despite the fact that the N-body simulations in the ΛCDM
scenario produce results well in agreement with the large scale structure (espe-
cially when & 1 Mpc) in the Universe, we discover an overabundance of too small
structures not observed by recent surveys. This is the so-called missing satel-
lite problem (e.g [Klypin et al., 1999, Moore et al., 1999, Zavala et al., 2009,
Papastergis et al., 2011, Klypin et al., 2015]). A possible explanation for this
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Figure 1.2: Typical NWF density profile, with cusped halo in the center. Burk-
ert and isothermal (ISO) profiles are also represented as possible cored density
distributions. Note that the NFW and Burkert outer density profiles are ∝ r−3,
in agreement with observations; while, the isothermal outer density profile ap-
pears ∝ r−2, but this is inconsistent with the observations.

discrepancy is the existence of dark satellites that failed to accrete gas and
form stars either because of the expulsion of gas in the supernovae-driven winds
or because of gas heating by the intergalactic ionizing background. However,
larger haloes (among the smallest predicted by the ΛCDM) have deeper poten-
tial wells and should, in the absence of strong feedback, be able to retain gas
and form stars, nevertheless we do not observe the large number predicted by
the N-body simulations. This is the so called too big to fail problem (e.g.
[Ferrero et al., 2012, Boylan-Kolchin et al., 2012, Garrison-Kimmel et al., 2014,
Papastergis et al., 2015]).

Furthermore, the cusped DM halo predicted from the N-body simulations
is in contrast with the observed cored profiles, well described by the Burkert
profile (see Eq. 2.7 in Chapter 2). See Fig. 1.2. This is the so called cusp-core
proplem (e.g. [Salucci, 2001, de Blok and Bosma, 2002, Gentile et al., 2004,
Gentile et al., 2005, Simon et al., 2005, Del Popolo and Kroupa, 2009, Oh et al., 2011,
Weinberg et al., 2015]), that is well known in spirals of any luminosity (see
[Salucci, 2019]).

A solution prosposed to the ΛCDM contrasts is the introduction of the effect
of baryonic matter feedbacks on the DM distribution (e.g. [Navarro et al., 1996a,
Read and Gilmore, 2005, Mashchenko et al., 2006, Pontzen and Governato, 2014,
Di Cintio et al., 2014]): the baryonic feedback generated by supernovae explo-
sion blows the existing gas to the outer galactic regions, modifying the total
gravitational potential, then the initial collisionless DM density can get its cen-
tral cusp erased.

However, this process seems to be unable to produce the observed cored
DM distribution in dwarf and large spirals, in details for Rd . 0.5 kpc and
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Rd & 5 kpc [Di Cintio et al., 2014]. Furthermore, the halo response to the
stellar feedback is shown to be a strong function of the star formation threshold
[Dutton et al., 2019, Beńıtez-Llambay et al., 2019], rising doubts on the ability
to form cored DM distributions. Finally, the stellar feedback inefficiency in
modifying the inner DM halo distribution seems to be evident in large LSBs
[Kuzio de Naray and Spekkens, 2011], due to the fact that they are very slowly
evolving system and to their huge radial extension with respect to normal spirals
(see Fig. 4.1).

1.3.1 Issues with other DM candidates

It is interesting to note that also the alternative scenarios to the ΛCDM run
in difficulties after some simple considerations. The ULA is challenged in the
production of DM core radius with size & 10kpc [Hui et al., 2017], in contrast
with the large observed sizes (see e.g. the bottom panel in Fig. 4.2). The SIDM,
which is strongly constrained by clusters observations [Banerjee et al., 2019], re-
quires a strong and improbable velocity dependence in the cross section between
the dark particles. Then, despite the possibility to form core in the inner galactic
region, some challenges for the WDM emerge at high redshift [Iršič et al., 2017].
Finally, concerning the PBHs, increasingly strong limits on their abundance can
be inferred from the microlensing observations: a survey of about a thousand
supernova detected no gravitational lensing events, although about 8 would be
expected if intermediate mass primordial black holes accounted for the majority
of dark matter [Zumalacárregui and Seljak, 2018]. Furthermore, CMB and sev-
eral other probes, together seem to disfavour PBHs from constituting all of the
DM (see e.g. [Capela et al., 2013, Niikura et al., 2019]), at least the PBHs in-
tended as the very massive celestial objects (much larger than 1 M�) responsible
for the observed gravitational waves.
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Chapter 2

The dark and the luminous
matter distribution in
disc/LSB galaxies

One important way to investigate the DM properties is to study its distribution
in galaxies. This is quite relatively simple in rotational supported systems, such
as spiral galaxies, since they have a rather simple kinematics. Instead, it is
more difficult to investigate the DM distribution in elliptical galaxies. In this
case, we are talking about systems dominated by random motions rather than
by rotational motions and the analysis of the matter distribution involves the
velocity dispersion σ(r) rather than the circular velocity V (r). The kinematics is
more uncertain and, furthermore, the analysis is complicated by the presence of
the nuisance anisotropy parameter, which is font of degeneracy (see e.g. Section
4.4 in [Salucci, 2019]).

Concerning rotating disc galaxies, one method to infer the dark matter dis-
tribution is to model their circular velocity rotation curves V (r) (see Fig. 2.1),
taking into account that it rises as result of different matter components con-
tributing to the whole gravitational potential:

V 2
tot(r) = r

d

d r
φtot(r) = V 2

d (r) + V 2
HI(r) + V 2

bu(r) + V 2
h (r) , (2.1)

with the Poisson equation relating the surface (spatial) densities to the corre-
sponding gravitational potentials. Vd, VHI , Vbu and Vh are the contribution to
the total velocity rotation curve Vtot(r) by the stellar disc, the gaseous disc,
the bulge and the dark matter halo, respectively ([Faber and Gallagher, 1979,
Rubin et al., 1985] and e.g. [Salucci, 2019]). Once we know the contributions
from the observed luminous matter (i.e. Vd, VHI and Vbu), by fitting the ob-
served rotation curve V (r) with the model V 2

tot(r) in Eq. 2.1, we obtain infor-
mation about the Vh component, which involves dark matter halo parameters.
Thus, in order to infer the DM distribution, it is necessary to know the luminous
matter components Vd, VHI and Vbu.
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Figure 2.1: Velocity rotation curve of a typical spiral galaxy
[Corbelli and Salucci, 2000]: predicted based on the visible matter (dashed
line) and observed (solid line). The distance is from the galactic core.

2.1 The contributions to the circular velocity
rotation curves

In the following, the contribution to circular velocity rotation curves Vtot(r)
from the stellar disc, the stellar bulge, the gaseous disc and the DM halo, are
described.

2.1.1 The stellar disc

Caveat some occasional cases not relevant for the present topic, the stars in
rotating systems are mainly distributed in a thin disc with surface luminosity
[Freeman, 1970]:

µ(R) = µ0e
−R/Rd (2.2)

where µ0 is the central value and Rd is the disc scale length (see Fig. 2.2 and also
e.g. Fig. 1 in [McGaugh and Bothun, 1994], Fig. 7-11 in [Wyder et al., 2009]).
The light profile does not depend on galaxy luminosity; thus, the disc length
Rd sets a consistent reference scale in all objects. Moreover we are used to take
the optical radius Ropt = 3.2Rd as the stellar disc size, including the 83% of the
total luminosity1. The contribution to the circular velocity from the stellar disc
component is given by:

V 2
d (r) =

1

2

GMd

Rd
(3.2 r/Ropt)

2(I0K0 − I1K1) , (2.3)

where In and Kn are the modified Bessel functions computed at 1.6x, with
x = r/Ropt.

1Noticeably the total luminosity and the half-light radius R1/2 enclosing half of the latter
are good tags of the objects. The disc scale length and the half-light radius are simply related
by the equation R1/2 = 1.68Rd.
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Figure 2.2: The radial surface brightness distribution in R and the radial
HI surface density distributions of three LSB galaxies (UGC1230, UGC5999,
UGC6614). The image is reproduced from [van der Hulst et al., 1993].

2.1.2 The gaseous disc

Furthermore, a gaseous HI disc is usually present in rotating disc galaxies.
The contribution to the circular velocity VHI is obtained from the HI surface
density ΣHI(R) by solving the Poisson equation (Section (5a) in [Kent, 1986]).
Typical gas distributions are shown in Fig. 2.2. Very approximately, in the
external region, the gaseous HI disc shows a Freeman distribution (see e.g. Fig.
2.2 and also Fig. 2 in [van der Hulst et al., 1993]) with a scale length about three
times larger than that of the stellar disc ([Evoli et al., 2011, Wang et al., 2014]):

ΣHI(R) = ΣHI,0e
−R/3Rd . (2.4)

The contribution of the gaseous disc to the circular velocity is:

V 2
HI(R) =

1

2

GMHI

3RD
(1.1R/Ropt)

2(I0K0 − I1K1) , (2.5)

where MHI is the gaseous disc mass (correcting by a factor 1.3 in order to
account for the He abundance), In and Kn are the modified Bessel functions
computed at 0.53x.

Anyway, in first approximation this component can be neglected in terms
of mass modelling. In fact, the gas contribution is usually a minor component
to the circular velocities, since the inner regions of galaxies are dominated by
the stellar component and in the external regions, where the gas component
overcomes the stellar one, the DM contribution is largely the most important
[Evoli et al., 2011].

On the other hand, the HI disc is usually important as tracers of the galaxies
gravitational field, precisely because of its extension in the outer region where
we lack stellar observations. See Fig. 2.1.

Finally, inner H2 and CO discs are also present, but they are negligible with
respect to the stellar and HI ones [Gratier et al., 2010, Corbelli and Salucci, 2000].

2.1.3 The stellar bulge

Large disc galaxies are characterised by the presence of a central bulge, which
usually appear as a round ellipsoid, where old and new stars are crammed
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tightly together within few parsecs. Assuming that the innermost velocity mea-
surements are obtained at a radius rin, usually larger than the edge of the bulge,
we can consider the bulge as a point mass. Its contribution Vbu to the circular
velocity, relevant in the inner galactic region, can be expressed by the simple
functional form:

V 2
bu(r) = αbuV

2
in

(
r

rin

)−1

, (2.6)

where αb is a parameter which can vary from 0.2 to 1 (e.g. see [Yegorova and Salucci, 2007]),
Vin and rin are the values of the first velocity measurement closer to the galactic
center.

2.1.4 The DM halo

Since the luminous component is not able to fit the whole rotation curve ([Rubin et al., 1980,
Bosma, 1981b] and also [Bertone and Hooper, 2018]), we need to add a contri-
bution by a spherical dark matter halo. The density profiles ρ(r) that are
usually tested are:

i) the NFW profile, which is the result from the N-body simulation in the Λ-
CDM scenario described in Eq. 1.1, characterised by a central cusp ∝ r−1 and
by an external tail ∝ r−3 (see Fig. 1.2);

ii) the cored profile, characterised by a central constant density ρ(r) = const.
within a core radius r0 and by an external tail whose negative slope can vary ac-
cording to the specific adopted model. In particular a very successful empirical
model is the Burkert profile [Burkert, 1995]:

ρDM (r) =
ρ0r

3
0

(r + r0)(r2 + r2
0)

, (2.7)

where ρ0 is the central mass density and r0 is the core radius. This profile is
characterised by an external tail ∝ r−3 (see Fig. 1.2). Its mass distribution is:

MDM (r) =

∫ r

0

4πr̃2ρDM (r̃) dr̃ = (2.8)

= 2πρ0r
3
0 [ln(1 + r/r0)

−tg−1(r/r0) + 0.5 ln(1 + (r/r0)2)] .

The contribution to the total circular velocity is given by:

V 2
h (r) = G

MDM (r)

r
. (2.9)

The Burkert profile represents the (empirical) family of cored distributions,
which includes e.g. the pseudo-isothermal, degenerate fermionic particles (see
also PAPER 3 in Chapter 9), Bynney-Tremaine profile. To discriminate among
them the correct one is, currently, very difficult (see Fig.7 in [Salucci, 2019] and
the references therein).
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Particularly, among the family of cored distributions cited above, the pseudo-
isothermal profile is often used. It takes the form:

ρ(r) = ρ0
r2
0

(r2 + r2
0)

, (2.10)

where ρ0 is the central constant density and r0 is the core radius. This profile
is characterised by an external tail ∝ r−2 (see Fig. 1.2) and implies constant
velocities when r � Ropt, which however disagrees with the RC profiles at very
outer radii that show a decline with radius [Shankar et al., 2006].

iii) the Zhao halos profile [Zhao, 1996], which can assume both the form
of a cusped or a cored profile:

ρ(r) =
ρ0

(r/r0)γ (1 + (r/r0)α)
β+γ
α

. (2.11)

However it involves a large number of parameters: the density ρ0, the radius
r0, the α, β and γ parameters, which control the slope and the curvature of
the profile. This seems in disagreement with observations in spirals, ellipticals
and spheroidals that suggest that DM halos are one (two)-parameters family (as
described in the previous DM halo profiles). See also the discussion in Section
6 in [Salucci, 2019].

It is worth emphasizing that the tail of the cored Burkert profile, ∝ r−3 (as well
as the NFW case), is in agreement with the weak lensing observations, which
allow us to estimate the DM distribution of mass in the outer region of galaxies
[Schneider, 1996, Hoekstra and Bhuvnesh, 2008, Zu and Mandelbaum, 2015, Donato et al., 2009].

Furthermore, we highlight that the cored Burkert profile well reproduces,
in cooperation with the velocity components of the luminous matter, the in-
dividual circular velocities of spirals [Salucci and Burkert, 2000], dwarf discs
[Karukes and Salucci, 2017] and low surface brightness systems [Di Paolo et al., 2019a]
(PAPER 1 in Chapter 7), giving better results than the cusp profile (Dehqani
et al. in prep.).

2.1.5 Rotation curves modedeling

When modeling the rotation curves (RCs), in order to know the contribution
from the stellar component (disc and bulge), it is usually assumed that the
observed density of stars is proportional to the R-band light by taking into
account a guessed mass to light ratio M∗/L. Then, the contribution from the
gaseous disc can be evaluated from the resolved HI surface density and the
contribution from the DM halo (usually including two unknown parameters) is
given by the RC best fit.

Another way of considering the contribution to V (r) by the luminous matter
is the maximum disc model, based on the M∗/L tuning so that gas and luminous
stars account for as much as of the galaxy’s rotation as possible.

Furthermore, we can leave some free parameters (as e.g. Md or M∗/L) in
the luminous contribution to the circular velocity and find them directly by the
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r/Ropt

Figure 2.3: Coadded rotation curves from 3100 normal spirals, obtained by
plotting together the results by [Persic et al., 1996] and [Catinella et al., 2006].
The galaxies magnitude MI are indicated on the right of the rotation curves.

RC best fit.

When the rotation curves of disc galaxies are modelled, they can be studied
individually or by means of a stacked analysis, such as the “universal rotation
curve method”, described in the Sections 2.2-4.3.

2.2 The universal rotation curve (URC)

A very interesting feature of spiral galaxies is that the bigger they are, the more
luminous they are and the higher rotational velocities they show. Moreover,
when their RCs, with the radial coordinate normalised with respect to their
optical radius Ropt

2, are put together, they appear to follow a universal trend
(first shown in Fig. 4 in [Rubin et al., 1985], then in [Persic and Salucci, 1991,
Persic et al., 1996, Rhee, 1996, Roscoe, 1999, Catinella et al., 2006, Noordermeer et al., 2007,
Salucci et al., 2007, López Fune, 2018] and e.g. [Salucci, 2019]). From small to
large galaxies, the RCs have higher and higher velocities and profiles that grad-
ually change. See also Fig. 2.3-2.4. By means of the “universal rotation
curve (URC) method”, a stacked analysis which involves groupings of similar

2The details of this choice are expressed at length in [Persic et al., 1996].
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s−1) ≤ 150, which is very well sampled here: both the individual curves and the synthetic curves show a very steep slope

(∇ > ∇pred ≃ 0.2), in agreement with the global trend. The latter is very strong, and emerges clearly also in samples (as

in PS91) with many fewer (≃ 50) objects and lower observational accuracy (i.e., δ∇ ≃ 0.1). Thus, the observed RC profiles,

unlike the Flores et al. (1993) predictions, are generally very steep, and show a marked correlation with luminosity. Navarro

et al. (1996) show how an infall model à la Flores et al. may naturally reproduce the RC systematics highlighted in this (and

previous) paper(s).

6 CONCLUSION

In this paper we have investigated the main properties of the mass structure of spirals. To do this, we have used a very large

number (∼ 1100) of galaxy RCs, to construct: (a) a sample of 131 high-quality extended RCs; and (b) a sample comprising

616 medium-quality RCs that, co-added in 11 (× 2) synthetic curves, have thouroughly covered the whole luminosity (velocity

amplitude) sequence of spirals. Our analysis extends out to 2 optical radii and spans approximately 6 mag.

Both samples show that spiral RCs follow a common pattern: their amplitudes and profiles do not vary freely among

galaxies, but depend on luminosity. At low luminosities the RCs are steep for R∼< Ropt, and grow monotonically to a probably

asymptotic value at outer radii. At high luminosities the RCs are flat (and even decreasing) for R∼< Ropt, and gently fall, from

∼ Ropt outwards, to reach a probably asymptotically constant value farther out. They are very well represented by:

VURC(
R

Ropt
) = V (Ropt)

[(
0.72 + 0.44 log

L

L∗

)
1.97 x1.22

(x2 + 0.782)1.43
+ 1.6 e−0.4(L/L∗) x2

x2 + 1.52 ( L
L∗

)0.4

]1/2

km s−1 (14)

with x = R/Ropt). The Universal Rotation Curve in eq.(14) (see Fig.10) describes any rotation curve at any radius with a

very small cosmic variance. In fact eq.(14) predicts rotation velocities at any (normalized) radius with a typical accuracy of

4%.

On the other hand, by slicing the URC to match individual observed RCs we can derive galaxy luminosities and therefore

measure cosmic distances with a typical uncertainty of 0.3 magnitudes. The benefits of using the URC as a distance indicator

are discussed by Hendry et al. (1996).

A particular feature of the Universal Rotation Curve is the strong correlation between the shape and the luminosity

(velocity) established in previous papers and confirmed here over a factor 150 in luminosity (factor of 5 in velocity) and over

the variety of the RC profiles. This relationship sweeps a narrow locus in the profile/amplitude/luminosity space, implying

that the great majority of spirals belong to the same kinematical family. At high luminosity, the profiles of RCs are only

c⃝ 0000 RAS, MNRAS 000, 000–000

Figure 2.4: Universal rotation curve (URC) for spiral galaxies in the local volume
[Persic et al., 1996]. The velocity (V ) rotation curves are expressed as function
of the normalised radii R/Ropt and of the galaxies magnitude MI .

RCs and their mass modelling, it is possible to construct an analytic function
that gives a good description of all the rotation curves of the local spiral galax-
ies within a spherical volume ' (100Mpc)3. The URC method was applied
for the first time in [Persic and Salucci, 1991]. This was followed by a series of
three works: [Persic et al., 1996] (Paper I), [Salucci et al., 2007] (Paper II) and
[Karukes and Salucci, 2017] (Paper III) , where the URC method gave deeper re-
sults related to normal spirals, also called high surface brightness (HSB) spirals,
and dwarf disc (dd) galaxies. A subsequent work confirmed the above results
with up to 3100 disc galaxies and highlighted the existence of tight scaling rela-
tions among the properties of spirals with different size [Lapi et al., 2018].

The statistical approach of the URC analysis, based on the mass modeling of
stacked and suitably normalised RCs of similar luminosity, has some relevant
advantages over the individual fit of the RCs. Indeed, it increases the signal-to-
noise ratio, smoothing out small-scale fluctuations induced by bad data and/or
by physical features as spiral warps. Thus, it is possible to work on a large
sample of RCs, also including those curves characterised by a brute-force fit if
analysed individually. Furthermore, the considered stacked analysis leads us to
prefer a cored Burkert profile for the DM halo, giving rise to very good fit of
the RCs alongside the Freeman stellar disc (e.g. [Karukes and Salucci, 2017,
Di Paolo et al., 2019a]).

Let us underline that the concept of universality in the RCs means that all
of them can be described by the same analytical function as long as expressed
in terms of the normalised radius and of one global parameter of the galaxies,
such as magnitude, luminosity, mass or velocity at the optical radius (Vopt ≡
V (Ropt)). Therefore, the universal rotation curve (URC) is the circular velocity
at a certain radius r given by (e.g.) V (r/Ropt, L), where L is the galaxy’s lumi-
nosity. See Fig. 2.4. Obviously, the URC does not change even using, instead
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of Ropt, any other radial coordinate proportional to the stellar disc scale length
Rd

3.
The URC is a very powerful tool since, given the observation of few proper-

ties (such as Rd and L) of a certain galaxy, it is possible to deduce its rotation
curve and all its properties.

In this work, we investigate the concept of the URC, the resulting mass models
and the scaling relations in Low Surface Brightness (LSB) disc galaxies. We
compare the found scaling relations to the results obtained in previous works by
individual modelling of the LSBs RCs and to the results of other disc galaxies of
a different Hubble type, namely the spiral galaxies and the dwarf disc galaxies.

3The results of the paper remain unchanged for any chosen radial coordinate if expressed
in units of λRd, with any λ value ranging from 1 to 4.
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Chapter 3

Low Surface Brightness
(LSB) galaxies:
observational properties of
the luminous matter

LSB galaxies (see Fig. 3.1-3.2-3.3) are rotating disc systems which emit an
amount of light per area smaller than normal spirals, with a face-on central sur-
face brightness µ0,B & 23mag arcsec−2 in the B band (e.g. [Impey and Bothun, 1997])
and/or µ0,R & 21mag arcsec−2 in the R band (see e.g. Fig. 2.2 and also Fig.
1 in [McGaugh and Bothun, 1994], Fig. 7 in [Wyder et al., 2009]). The µ0,B

value is systematically fainter than the canonical µ0,B = 21.65mag arcsec−2

of normal spirals [Freeman, 1970, van der Kruit, 1987]. The LSBs are char-
acterised by diffuse, low-density exponential stellar discs [de Blok et al., 1996,
Burkholder et al., 2001, O'Neil et al., 2004], with typical average values Σ∗ '
12.3M�/pc

2 (see e.g Tab.2 in [Lei et al., 2019]), on average about 3 - 4 times
lower than than in HSB spiral galaxies, reaching sometimes also values ' 10
times lower.

3.1 Main LSBs observational properties

The observed LSBs cover the full population of galaxies, ranging from small
(' 107M�) to very large (more than 1010M�) stellar disc mass Md (see e.g.
Fig. 3.4 - 4.2 - 4.7), from small to large size, with stellar disc scale lengths
Rd spanning from fraction of kpc to tens of kpc (see e.g. Fig. 4.1). Their
typical magnitudes are: −20 . MB . −10 (see e.g. 3.5 and Tab. 2 in
[Du et al., 2019]), −15 . MV . −9 (see e.g. Fig. 10 in [Cohen et al., 2018],
Tab. E1 in [Prole et al., 2019]), −14 . MR . −23 (see e.g. Fig. 2 in
[Minchin et al., 2004]).

The LSB disc galaxies includes several morphologies (see e.g. Fig. 3.1-3.2-
3.3, Tab.1 in [Honey et al., 2016], Tab.1 in [Honey et al., 2018]), from irregulars
to spirals. They span from dwarfs to giant galaxies; the latter are often made
of a HSB disc embedded in a larger LSB disc extended till ' 100 kpc, as
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Figure 3.1: LSB galaxies. From left to right and top to bottom, the galaxies
are ordered by effective surface brightness in the V606-band. Image reproduced
from [Pahwa and Saha, 2018].
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Figure 3.2: A few representative galaxies of different morphologies of LSB galax-
ies in r-band. The disc central surface brightness (in units of mag arcsec−2) is
indicated on the top of each galaxy. The colour scale is same for all panels.
Image reproduced from [Cohen et al., 2018].

29



Figure 3.3: First panel: R-band image of the barred LSB galaxy UM163, repro-
duced from [Honey et al., 2016]. Second panel: image of UGC 1378 reproduced
from [Saburova et al., 2019], a giant low-surface brightness (gLSB) discy galaxy.
UGC 1378 has both a high surface brightness and an extended low surface
brightness discs. Third panel: image of the giant LSB galaxy Malin 1 (u, g, i, z
in blue, green, yellow, red, respectively) reproduced from [Boissier et al., 2016].

in Malin1 [Bothun et al., 1987, Impey and Bothun, 1989, Boissier et al., 2016]
(see Fig. 3.3). Most LSBs are without bars, but a small fraction of them
show bars (e.g [Honey et al., 2016], see Fig. 3.2-3.3). The largest LSBs usually
show a central bulge (e.g. [Das, 2013]). The LSB galaxies generally results to
be bluer than normal spirals (HSBs), with typical B-V color approximately in
the range [0.49; 0.52], lower than the typical average value B-V' 0.75 of the
HSBs spirals. See Fig. 3.5 and also e.g. the results reported in Fig. 7-11 in
[Wyder et al., 2009] and in [McGaugh and Bothun, 1994, de Blok et al., 1996,
Schombert and McGaugh, 2014, Pahwa and Saha, 2018, Du et al., 2019]. De-
spite the characteristic blue color of the LSB galaxies, sometimes it is possible to
observe them also as red objects (see Fig. 3.5 and also e.g. [O'Neil et al., 2000]).

An LSBs peculiarity is the lack of correlation between their surface brightness
µ0 and colors versus other galaxies properties, as the disc mass, the luminosity,
the disc scale length (e.g. [McGaugh and Bothun, 1994], see also e.g Fig. 6 in
[Bothun et al., 1997], Fig. 8 - 11 in [Pahwa and Saha, 2018]).

Radio synthesis observations show that LSB galaxies have extended gas discs
with massesMHI ranging on average between 108 and 1010M� (see e.g. [O'Neil et al., 2000,
Pahwa and Saha, 2018, Lei et al., 2019]), usually comparable with the stellar
disc mass Md (see Fig. 3.4 and also e.g. Tab. 2 in [Lei et al., 2019]). The LSBs
show large values ofMHI/L ratios (e.g. [van der Hulst et al., 1993, O'Neil et al., 2000,
Du et al., 2019]), which can result to be several times higher than in normal
spirals. See 3.5. Typical values of MHI/LB in LSBs range from ' 0.1 to '
10 [Burkholder et al., 2001, O'Neil et al., 2004, Du et al., 2019], reaching some-
times extremely high values like 50 [O'Neil et al., 2000]. The reason for these
values can be found both in the large mass of the LSBs gaseous disc and its
characteristic low density, which likely prevents an efficient star formation (e.g.
[Das et al., 2009, Galaz et al., 2011]). Indeed, the typical HI surface density
values in the LSB galaxies are ΣHI ' 5M�pc

−2 (see Fig. 2.2 - 3.6 and also
e.g. [de Blok et al., 1996, Lei et al., 2019]), on average lower (less than half)
than the values found in comparable high surface brightness galaxies. Accord-
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Figure 3.4: Mass of the stellar disc M∗ versus the HI mass MHI , reproduced
from [Pahwa and Saha, 2018].

ing to the Kennicutt criteria [Kennicutt, 1989, Kennicutt, 1998], the HI sur-
face densities in LSBs appear to be systematically below the star formation
threshold (see e.g Fig. 5 in [van der Hulst et al., 1993] and also [Schmidt, 1959,
Kennicutt, 1998, Boissier et al., 2016]), implying that the gas is not stable to
collapse and form stars [van der Hulst et al., 1993, Martin and Kennicutt, 2001,
Blitz and Rosolowsky, 2004, Robertson and Kravtsov, 2008, Wyder et al., 2009].
As result, the star formation rate (SFR) in LSBs is very low, usually. 0.1M�yr

−1,
at least one order of magnitude lower than in HSB spirals (see e.g. [de Blok et al., 1996,
van den Hoek et al., 2000], Tab. 3 in [Lei et al., 2018], Tab. 2 in [Lei et al., 2019]).
Typical values of the star formation surface densities are ΣSFR . 10−3M�yr

−1kpc−2

as reported in Fig. 3.6. See also Tab. 3 in [Lei et al., 2018]. The low star for-
mation in LSBs can be also due to a low star formation efficiency (only a few
percent than in HSB), as pointed by [Lei et al., 2018], noting that the LSBs
have much lower SFR and ΣSFR than star-forming galaxies, despite both of
them have similar HI surface densities (see Fig. 10 in [Lei et al., 2018]).

It is worth to note that the LSBs are characterised by low metallicity (<
1/3 solar abundance, see e.g. Fig.8 in [McGaugh and Bothun, 1994] and also
[Liang et al., 2010, Bresolin and Kennicutt, 2015, Honey et al., 2016]), with a
consequent lack of large amounts of molecular gas (due to inefficient cooling),
and by low dust content [Matthews and Gao, 2001, O'Neil and Schinnerer, 2003,
Hinz et al., 2007, Wyder et al., 2009], which are important factor in determin-
ing the slow evolution of LSB galaxies.
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Figure 3.5: Properties of LSB galaxies sample from [Du et al., 2019,
O'Neil et al., 2000, McGaugh and Bothun, 1994, de Block et al., 1995], repre-
sented by open circles, open squares, open triangles, asterisks respectively, com-
pared with HSB galaxies (purple stars) from [Ponomareva et al., 2017]. The
cyan, green and red open circles represent dwarf, moderate-luminosity and gi-
ant LSBs in the [Du et al., 2019] sample. The over-plotted black plus symbols
represent candidates of Ultra Diffuse Galaxies in the [Du et al., 2019] sample.
The LSBs which have very red color (B-V > 1.0 mag) but are low in luminosity
(M(B) > -17.0 mag) and gas-rich (MHI/LB > 1.0) are over-marked by open
diamonds. The image is reproduced from [Du et al., 2019].

3.2 LSBs evolution

The typical observed very blue colors of LSBs suggest that young stars are the
dominant population, while the old stars do not make a substantial contribution
(e.g. [Wyder et al., 2009, Schombert and McGaugh, 2014]). These properties,
together with the observed low Hα emission (e.g [Schombert et al., 2013]) and
the high gas fractions, indicate a hystory of nearly constant star formation, com-
pared to the declining star star formation models which match the properties of
HSB spirals and irregulars (e.g. [Vorobyov et al., 2009, Schombert and McGaugh, 2014]).
Furthermore, the LSBs typical very low content in metal and dust, which are
normally produced during the star formation process, also suggests that they
formed relatively few stars over a Hubble time (see e.g [Wyder et al., 2009,
Vorobyov et al., 2009]). The LSB stellar population appears to be uniformly dis-
tributed in the stellar disc, since there is no significant color gradient in the color
images of the bars (when present) [Honey et al., 2016]. Likely the star formation
is characterised by sporadic small-amplitude events (e.g [Schombert and McGaugh, 2014]).
Overall, the LSBs seems not to be the faded remnants of HSBs that have
ceased star formation, as also suggested by the absence of correlation between
µ0 and colors with other galaxies properties (see e.g. [Bothun et al., 1997]).
Rather LSBs are likely slowly evolving galaxies (e.g. [Vorobyov et al., 2009,
Schombert and McGaugh, 2014]).
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Figure 3.6: Star formation rate (SFR) surface density as a function of the total
hydrogen gas surface density. The colored symbols indicate the sample of 19
LSB galaxies from [Wyder et al., 2009] with SFRs measured from the UV with
no correction for dust attenuation. The gas surface densities are derived from
the HI data from [de Blok et al., 1996] (green circles), [Pickering et al., 1997]
(red triangles), and [van der Hulst et al., 1993] (blue stars) and assume that
the molecular fraction is negligible. The black pluses indicate the sample of
higher surface brightness galaxies from [Kennicutt, 1998] while the solid line
is the power-law fit to these points. The LSB galaxies tend to lie below
the extrapolation of the power-law fit to the higher surface brightness sam-
ple. The three dotted lines show the star formation efficiency (SFE) of 100%,
10%, 1% in a timescale of star formation of 108yr. Image reproduced from
[Wyder et al., 2009].
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3.3 The LSBs environment

The LSB galaxies are generally isolated systems, located on the edges of large-
scale structure [Bothun et al., 1997, Rosenbaum and Bomans, 2004, Galaz et al., 2011,
Kovács et al., 2019], in or near large-scale voids. Likely, forming them in un-
derdense regions minimizes the external processes like tidal interactions and
mergers, which are able to increase the gas density. The isolated environ-
ments are especially characterising the giant LSBs [Rosenbaum et al., 2009],
while the smaller LSB dwarf and irregular galaxies are found in both under-
dense regions [Pustilnik et al., 2011] as well as more crowded environments
[Merritt et al., 2014, Davies et al., 2016]. At any rate, beyond the systems iso-
lation, another way to keep the gas at low densities may also be to form LSBs
within high spin parameter halos (e.g. [Dalcanton et al., 1997a, Boissier et al., 2003,
Di Cintio et al., 2019]). The collapse of the disc is suppressed by high angular
momentum, leading to a galaxy with a larger disc size, lower gas surface density
and lower surface brightness than a low-spin galaxy of the same mass.

3.4 Further LSBs observations

It is important to note that LSBs seem to be not rare; they comprise & 50% of
the general galaxy population (e.g. [McGaugh et al., 1995, Bothun et al., 1997,
Dalcanton et al., 1997b, Trachternach et al., 2006, Greco et al., 2018, Honey et al., 2018]),
with some cosmological implications (see e.g. Section 5 in [Bothun et al., 1997],
Tab. 4 in [Minchin et al., 2004]).

However, the LSBs detection is challenging, due to their lower surface bright-
ness than their HSB counterparts. Thus, LSBs are more difficult to detect
against the sky [Disney, 1976, Williams et al., 2016], observational capability
and selection effects inevitably lead a bias to our understanding of the galaxy
formation and evolution. The first LSB galaxies samples were mainly composed
of LSBs in the bright end of surface brightness (e.g. [Schombert et al., 1992,
McGaugh and Bothun, 1994, de Block et al., 1995, Impey et al., 1996]). After-
wards, LSB galaxies that have fainter surface brightness (µ0,B ' 24−28mag arcsec−2)
were discovered (see e.g. [Williams et al., 2016, Trujillo and Fliri, 2016]). Since
the LSBs are mostly rich in HI gas, a promising investigation could come from
the radio observations (e.g. [Giovanelli et al., 2005]). Till now, more than 10000
LSB galaxies has been revealed (e.g. [Zhong et al., 2008]), mostly in the local
universe (z . 0.1− 0.2 [Williams et al., 2016]).
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Chapter 4

LSBs mass modeling and
scaling laws involving
luminous and dark matter

In this chapter we analyse a LSBs sample giving the results obtained in previous
works by the mass modelling of the rotation curves of individual objects and
the results obtained by means of the URC method (stacked analysis). The
latter is used to know the scaling laws between the luminous and the dark
matter properties. The found relationships are compared to those of galaxies of
different morphology. Finally, the universal rotation curve (URC) is established
for the LSB galaxies.

4.1 LSBs sample

Given the relevance of the URC method, in this work we show the result from
the analysis applied to a LSBs sample. In [Di Paolo et al., 2019a] (PAPER 1 in
Chapter 7), we consider 72 rotating disc galaxies classified as ”low surface bright-
ness” in literature (see Tab. B1 and Fig. I1-I2-I3-I4-I5 in [Di Paolo et al., 2019a]
in Chapter 8 for the references and for the RCs plots, respectively; the data are
available online as supplementary material in [Di Paolo et al., 2019a]). In the
very majority of cases the authors classify a galaxy as LSB when the face-on
central surface brightness µ0 & 23mag arcsec−2 in the B band. We select our
sample according to the following criteria:
i) the rotation curves extend to at least ' 0.8Ropt (when Vopt is not available
from observation, it can be extrapolated since from ' 1/2Ropt to 2Ropt, the
RCs are linear in radius with a small value of the slope);
ii) the RCs are symmetric, smooth (e.g. without strong signs of non circular
motions) and with an average fractional internal uncertainty lesser than 20%.
In short we eliminated RCs that in no way can be mass-modelled without huge
uncertainties;
iii) the galaxy disc scale length Rd and the inclination function 1/sin i are
known within 30% uncertainty.

The selected LSBs have optical velocities Vopt spanning from ∼ 24 km/s to
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Figure 4.1: Optical velocity versus disc scale lengths in LSB galaxies (red) and
in normal spirals (blue) [Persic et al., 1996]. The typical fractional uncertainties
are 5% in Vopt and 15% in Rd, as shown in the right-down corner.

∼ 300 km/s, covering the values of the full population. In Fig. 4.1, the values
of the stellar disc scale lengths Rd and the optical velocities Vopt measured in
LSBs are shown and compared to those measured in normal spirals. A larger
spread in the former case is clearly recognizable. This feature will be used later
to explain the need of introducing a new structural variable, the compactness,
in order to better describe the LSBs.

The sample of rotation curves consists of 1614 independent (r, V ) measure-
ments. When the RCs, expressed in normalised radial units, are put together,
see Fig. 4.13, they show an universal trend analogous to that of the the normal
spirals (Fig. 2.4). Then, given the observed trend in LSBs and the relevance of
the URC method, we search our sample of LSBs for a universal rotation curve
and for the related scaling relations among the galaxy’s structural parameters.
The results are shown in Sections 4.3-4.4-4.7, after a brief report in Section 4.2
of the individual RCs analysis of the same LSB sample performed in previous
works.

4.2 Mass modeling results from previous works
on individual LSB galaxies

The LSB galaxies were investigated some years ago by individual modelling of
their rotation curves. Most of the authors of the previous studies tested the
cusped NFW profile and a cored profile in order to describe the DM halo. The
cored profile usually involved was the pseudo-isothermal one (see Eq. 2.10).
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Figure 4.2: Data evaluated in previous works from individual modelling of
the LSBs rotation curves, taking into account the maximum disc model (blue
squares), the population synthesis model (red circles) and the free stellar mass
to ligth ratio M∗/L (green diamonds) for the disc contribution as indicated in
Section 4.2. The data are compared to the relationships found from the stacked
analysis of the URC method (red lines) [Di Paolo et al., 2019a], involving also
the LSBs galaxies with the shown data. In the upper panel the stellar disc scale
length vs the mass of the stellar disc data are reported and compared to Eq.
4.6; in the lower panel the core radius of the DM halo vs the stellar disc scale
length data are reported and compared to Eq. 4.2.
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Figure 4.3: Data evaluated in previous works from individual modelling of
the LSBs rotation curves, taking into account the maximum disc model (blue
squares), the population synthesis model (red circles), the free stellar mass to
ligth ratio M∗/L (green diamonds) and the minimum disc model (magenta trian-
gles) for the disc contribution as indicated in Section 4.2. The data are compared
to the relationships found from the stacked analysis of the URC method (red
lines) [Di Paolo et al., 2019a], involving also the LSB galaxies with the shown
data. The central density of the DM halo vs the core radius data are reported
and compared to Eq. 4.4.
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This density profile is part of the family of cored distribution (see Subsection
2.1.4) and, in the inner galactic region, can be easily compared to a Burkert
distribution (Eq. 2.7) with the same ρ0 value provided the relationship r0,Burk '
2r0,pseudo−iso exists. Concerning the contribution from the stellar disc, most of
the authors considered the maximum disc model, the minimum disc model and
the fixed stellar mass to light ratio M∗/L from the population synthesis model.

In most cases, despite the different method adopted to describe the stel-
lar disc, the cored DM profiles give rise to better fits than the cusped ones
(e.g. [de Blok and Bosma, 2002, Marchesini et al., 2002, Swaters et al., 2003,
Kuzio de Naray et al., 2006, Kuzio de Naray et al., 2008]). Furthermore, some-
times the NFW fits point to unphysical parameters in disagreement with the pre-
dictions from the ΛCDM numerical models (see e.g. Fig. 10 in [de Blok and Bosma, 2002],
Fig. 15 in [Swaters et al., 2003], Fig. 21 in [Pickering et al., 1997]).

In the following we compare the available data in literature to our results
obtained by means of the URC method (we anticipate here the scaling laws
found in [Di Paolo et al., 2019a] and later shown in Section 4.4).

In the upper panel of Fig. 4.2, we show the relation between the stellar
disc scale lengths Rd and the masses of the stellar discs Md. The data ob-
tained by involving the maximum disc model in the RCs fits are taken from
[de Blok and McGaugh, 1997, Pickering et al., 1997, van Zee et al., 1997, Swaters et al., 2000,
de Blok and Bosma, 2002, Swaters et al., 2003]. The data obtained by consider-
ingM∗/L from the population synthesis model are taken from [Carignan and Puche, 1990,
de Blok and Bosma, 2002, Kuzio de Naray et al., 2008]. Furthermore, we also
include the results from [Pickering et al., 1997], which involve a free M∗/L in
the RCs fit.

In the lower panel of Fig. 4.2, we show the relation between the DM halo core
radius r0 and the stellar disc scale lengths Rd. The results from the maximum
disc analysis include the data from [Pickering et al., 1997, van Zee et al., 1997,
de Blok and McGaugh, 1997, Swaters et al., 2000, de Blok and Bosma, 2002, Swaters et al., 2003,
Kuzio de Naray et al., 2008], while the results from the population synthesis
model include data from [de Blok and Bosma, 2002, Carignan and Puche, 1990,
Kuzio de Naray et al., 2008]. The results from the free M∗/L analysis obtained
by [Pickering et al., 1997] are also reported.

Finally, in Fig. 4.3, the relation between the central DM halo density ρ0

and the core radius r0 is shown. We include data from [Pickering et al., 1997,
de Blok and McGaugh, 1997, Swaters et al., 2000, de Blok and Bosma, 2002, Swaters et al., 2003,
Kuzio de Naray et al., 2008] for the maximum disc model analysis, data from
[de Blok and Bosma, 2002, Carignan and Puche, 1990, Kuzio de Naray et al., 2008]
for fixed M∗/L from the population synthesis method. Furthermore we in-
clude the data from free M∗/L analysis obtained by [Pickering et al., 1997]
and the data from the minimum disc model obtained by [Pickering et al., 1997,
de Blok and McGaugh, 1997, Swaters et al., 2003, de Blok and Bosma, 2002, Marchesini et al., 2002,
Swaters et al., 2003, Kuzio de Naray et al., 2006, Kuzio de Naray et al., 2008].

It is worth to note that the large LSB galaxy Malin 1 (see e.g. [Bothun et al., 1997])
is not part of our study because it seems to deserve separate considerations.
Malin 1 appears as a HSB disc embedded in a remarkably extended, opti-
cally faint, and gas-rich outer structure beyond its normal disc (see Fig. 3.3)
[Barth, 2007, Boissier et al., 2016]. There are also some other complex struc-
tures that require a separate and accurate study [Saburova et al., 2019] like e.g.
the giant LSB disc galaxy UGC 1378 (see Fig. 3.3) or the the Large Magellanic
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Figure 4.4: LSBs rotation curves (in normalised radial units) grouped in five
optical velocity bins. In this and in the following figures, purple, blue, green,
orange and red colors are referred to the rotation curves of the I, II, III, IV and
V optical velocity bins, respectively. The average optical velocity in each bin is:
〈Vopt〉 = 43, 73, 101, 141, 206 km/s, respectively. [Di Paolo et al., 2019a].

Cloud [Nidever et al., 2019].

4.3 LSBs mass modelling results from the URC
method

In [Di Paolo et al., 2019a] (PAPER 1 in Chapter 7), we apply the URC method
to the 72 rotating disc galaxies introduced in the above sections. Among the first
steps, the URC method [Persic et al., 1996] requires to make the galaxies RCs
as similar as possible (in radial extension, amplitude and profile) by introducing
the normalisation of their coordinates and an eventual galaxies binning. Let us
notice that the justification for these starting steps comes from the analogous
process performed in spirals and from a qualitative inspection of LSB RCs.
Finally, the goodness of the results will show the goodness of the method.

In the following we briefly describe the URC method, applied to our LSB
sample (for further details see [Di Paolo et al., 2019a]). The 72 RCs are ar-
ranged in 5 optical velocity bins according to their increasing Vopt as in Fig.
4.4; then, by normalising the radial units with respect to their disc scale length
Rd, their radial extensions are made more similar. Indeed, most of the data
are extended up to ' 5.5Rd. Furthermore, the RCs are comparable also in
their amplitude when expressed in double normalised units, by dividing their
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Figure 4.5: In each of the five panels the velocity best-fit models to the cor-
responding coadded RCs are shown. The dashed, dot-dashed, dotted and solid
lines indicate the stellar disc, the DM halo, the stellar bulge and the model
contribution to the circular velocities.

amplitude V with respect to their own optical velocity Vopt.
Overall, the optical velocity binning and the double normalisation makes

the RCs more similar in each of the five optical velocity bins. After that all
the RCs are double normalised, we perform a radial binning in each of the five
optical velocity bins and we evaluate the average velocity value in each radial
bin, giving rise to five coadded rotation curves.

In short, the above coadded RCs can be considered as the average rotation
curves of galaxies of similar properties as, e.g., Vopt. Particularly, the binning in
five groups is suggested by the fact that, since the sample includes 72 objects,
10-15 galaxies are the minimum number in each optical velocity bin in order to
create suitable coadded RCs (that will be described in the next paragraphs) and
to eliminate statistically observational errors and small non circularities from
the individual RCs. Similarly to the velocity binning process, we have chosen
the number of the normalised radial bins as a compromise between having a
large number of data for each radial bin and a large number of radial bins for
each coadded RC. Reasonable variations of the positions and amplitudes of the
radial bins do not affect the resulting coadded RCs.

It is worth emphasizing the advantages of these RCs: their building erases
the peculiarities and much reduces the observational errors of the individual
RCs. This yields to a universal description of the kinematics of LSBs by means
of 5 extended and smooth RCs whose values have an uncertainty at the level of
5%− 15%.

Then, by multiplying the previous coadded RCs by the corresponding 〈Vopt〉
(evaluated in each optical velocity bin from the individual galaxies), we obtain
the coadded RCs shown in Fig. 4.5. The difference in the profiles corresponding
to galaxies with different optical velocities is evident. This is explained by the
very different luminous and dark mass distributions in LSBs of different sizes
and optical velocities, as shown in the following by means of the mass modelling.

We model the coadded RCs data, as in normal spirals [Salucci et al., 2007],
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with an analytic function V (r) which includes the contributions from the stellar
disc Vd and from the DM halo Vh; for the fifth optical velocity bin (related to the
largest LSBs) we also introduce a bulge component Vbu ([Morelli et al., 2012,
Das, 2013]). The analytic functions take the expressions used in the previous
section: Eq. 2.3 for the stellar exponential disc (leaving the mass of the stellar
disc Md as a free parameter), Eq. 2.6 for the stellar bulge, Eq. 2.8-2.9 for the
spherical DM halo, finally the total RCs amplitude V (r) is given by the sum in
quadrature of the various contribution according to Eq. 2.1.

Let us stress that in first approximation the inclusion in the model of a
HI gaseous disc component can be neglected. In fact, the gas contribution
is usually a minor component to the circular velocities, since the inner re-
gions of galaxies are dominated by the stellar component and in the exter-
nal regions, where the gas component overcomes the stellar one, the DM con-
tribution is largely the most important [Evoli et al., 2011]. A direct test in
[Di Paolo et al., 2019a](Appendix F) shows that our assumption does not affect
the mass modelling in this work.

Concerning the dark matter component, the presence of cored profiles in
LSBs is well known from individual rotation curves (see e.g. [de Blok et al., 2001,
de Blok and Bosma, 2002, Kuzio de Naray et al., 2008], [Bullock and Boylan-Kolchin, 2017]
). In [Di Paolo et al., 2019a], we model the DM halo profile by means of the
cored Burkert profile ([Burkert, 1995, Salucci and Burkert, 2000]). This halo
profile has an excellent record in fitting the actual DM halos around disc systems
of any luminosity and Hubble Types (see [Salucci, 2019]; [Lapi et al., 2018],
[Memola et al., 2011], [Salucci et al., 2012]). In addition, the Burkert profile is
in agreement with weak lensing data at virial distances [Donato et al., 2009].

It is however worth to noticing that there is no sensible difference, in the
mass modelling inside Ropt, in adopting different cored DM density profiles
[Gentile et al., 2004]. Then, the Burkert density profile is adopted in modelling
the LSBs rotation curves.

By fitting the five coadded RCs by means of the URC model described above,
we obtain for each coadded RC the best values of three free parameters: the
mass of the stellar disc Md, the central constant density of the DM halo ρ0 and
its core radius r0. The evaluation of these parameters allows us also to evaluate
the baryonic and the DM contribution to the total velocity rotation curves V (r),
as shown in Fig. 4.5.

In Fig. 4.5 we realise that, in the inner regions of the LSB galaxies, the
stellar component (dashed line) is dominant; while, on the contrary, in the ex-
ternal regions, the DM component (dot-dashed) is the dominant one. Moreover,
the transition radius1 between the region dominated by the baryonic matter
and the region dominated by the dark matter increases with the normalised
radius when we move from galaxies with the lowest Vopt to galaxies with the
highest Vopt. A similar behaviour was also observed in normal spiral galaxies
([Persic et al., 1996, Lapi et al., 2018]).

Particularly, we can quantify the baryonic fraction as function of the radial
coordinate through the ratio between the baryonic contribution to the circular
velocity and the total contribution:

fb(r) = V 2
b (r)/V 2(r) , (4.1)

1The transition radius is the radius where the DM component, dot-dashed line, overcomes
the luminous component, dashed line.
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Figure 4.6: Baryonic fraction as function r/Ropt, derived by the URCs
of dd (black line, with 〈Vopt〉 = 40 km/s) [Karukes and Salucci, 2017]
and of LSBs (purple, blue, green, orange and red, with: 〈Vopt〉 =
43, 73, 101, 141, 206 km/s) [Di Paolo et al., 2019a].

where the baryonic contribution V 2
b (r) = V 2

d (r) + V 2
HI(r) + V 2

bu(r) takes into
account the stellar disc, (eventually) the gaseous disc and stellar bulge respec-
tively. The total contribution V 2(r) = V 2

b (r)+V 2
h (r) includes the baryonic plus

the dark matter component. The baryonic fraction as function of the normalised
radius r/Ropt is shown in Fig. 4.6, where the coloured curves refer to the five
LSBs coadded RCs and the black one refers to the unique coadded RC for the
dwarf disc galaxies studied by [Karukes and Salucci, 2017].

4.4 LSBs scaling laws

The mass models provided us with the structural parameters of the five coadded
RCs. They allow us to build the scaling relations characterising the LSB galaxies
and to retrieve the properties from the individual RCs by means of a denormal-
isation method, described in detail in [Di Paolo et al., 2019a]. The resulting
structural properties are reported in Tab. G1-G2 in [Di Paolo et al., 2019a] in
Chapter 8. In the following, our results are compared to those obtained in
the URC analysis of normal spirals [Lapi et al., 2018] and dwarf disc galaxies
[Karukes and Salucci, 2017].

4.4.1 Structural relationships

A particularly relevant relationship is shown in Fig. 4.7 (left panel): the stellar
disc scale length and the DM core radius of the five velocity models are strongly
correlated. The best linear fit in logarithmic scale is:

Log r0 = 0.60 + 1.42Log Rd , (4.2)
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Figure 4.7: Relationship between the DM halo core radius and the stellar disc
scale length (left panel) and relationship between the stellar disc mass and the
optical velocity (right panel). The large points refer to the values of the five
velocity bins, while the small points refer to the values of each LSB galaxy. The
LSBs best fit (solid line) is compared to that of the normal spirals(dashed line)
(e.g. [Lapi et al., 2018]). The black empty triangle represents the relationship
in dwarf disc galaxies [Karukes and Salucci, 2017].

The found result is comparable to that of previous works ([Persic et al., 1996,
Karukes and Salucci, 2017, Lapi et al., 2018]) and highlights a relevant entan-
glement between the luminous matter and the dark matter in galaxies of different
type.

Then in Fig. 4.7 (right panel) the relation between the stellar disc mass and
the optical velocity is shown. The LSB data are well fitted by:

LogMd = 3.12 + 3.47Log Vopt . (4.3)

This relationship, analogous to the Tully-Fisher relation, is also comparable to
the normal spirals’ one (with an average difference of 0.2 dex), while it differs a
bit from the dwarf disc data (0.7 dex).

Next, in Fig. 4.8 (left panel) we show the relation between the DM halo cen-
tral density and the core radius, which indicates that the highest mass densities
are in the smallest galaxies, as also found in normal spirals [Salucci et al., 2007].
We find:

Log ρ0 = −23.15− 1.16Log r0 . (4.4)

It is worth to note that the LSB best fit line lies 0.2 dex below the HSB one.
Despite the error-bars, probably this could be linked to an original DM density
lower in LSBs than in HSBs. Moreover, we find that the central surface density
follows the relationship:

LogΣ0 = Log (ρ0r0) ' 1.9 , (4.5)

Σ0 is expressed in units of M�/pc
2. See Fig. 4.8 (right panel). Remark-

ably, this relationship extends itself over 18 blue magnitudes and in objects
spanning from dwarf to giant galaxies ([Spano et al., 2008, Gentile et al., 2009,
Donato et al., 2009, Plana et al., 2010, Salucci et al., 2012, Li et al., 2019, Chan, 2019]).
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Figure 4.8: Left panel: the relationship between the central DM halo mass
density and its core radius. Right panel: surface density Σ0 = ρ0Rc versus their
optical velocities Vopt (LSBs in red points). Also shown the scaling relation
obtained by [Donato et al., 2009] (yellow shadowed area) and [Burkert, 2015]
(light blue shadowed area). The black empty triangle represents the dwarf discs
[Karukes and Salucci, 2017].

This result is hard to explain, unless a fine-tuned process in galaxy formation
or some unknown interaction exists, because it is a priori difficult to envisage
such relation (Eq. 4.5) across galaxies that have experienced significantly dif-
ferent evolutionary histories, including numbers of mergers, baryon cooling or
feedback from supernova-driven winds [Gentile et al., 2009].

We find positive correlation between the mass of the stellar disc Md and the
stellar disc scale length Rd (Fig. 4.9), described by the best fitting equation:

Log Rd = −3.19 + 0.36LogMd (4.6)

Analogously, we find a positive correlation also between the mass of DM halo
Mvir

2 and the core radius r0 (Fig. 4.9), described by the following best fitting
equation:

Log r0 = −5.32 + 0.56LogMvir . (4.7)

Then, we consider the baryonic fraction (complementary to the DM fraction) rel-
ative to the entire galaxies, namely, the ratio between the stellar mass M∗ ≡Md

in LSBs and the virial mass Mvir, that practically represents the whole dark
mass of a galaxy. Fig. 4.10 shows that the lowest fraction of baryonic con-
tent is in the smallest galaxies (with the smallest stellar disc mass Md). We
note that this ratio increases going towards larger galaxies and then reaches a
plateau from which it decreases for the largest galaxies. This finding is in agree-
ment with the inverse “U-shape” of previous works relative to normal spirals
[Lapi et al., 2018]. Furthermore, our result seems to follow a trend similar to
that found in [Moster et al., 2010, Moster et al., 2013], concerning all Hubble

2The virial mass Mvir is evaluated according to the usual relation Mvir =
4
3
π 100 ρcritR

3
vir, where Rvir is the virial radius and ρcrit = 9.3×10−30g/cm3 is the critical

density of the Universe.
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Figure 4.9: Left panel: relationship between the stellar disc scale length and the
stellar disc mass. Right panel: relationship between the DM halo core radius
and the virial mass.

Figure 4.10: Fraction of baryonic matter in LSBs versus their mass in stars
(points) compared with that of normal spirals (dashed line) [Lapi et al., 2018],
of other Hubble Types (black solid line) [Moster et al., 2010] and of dwarf discs
(black dot-dashed line) [Karukes and Salucci, 2017].

Types 3, including a large number of elliptical galaxies for higher M∗. Our
result points to a less efficient star formation in the smallest LSBs.

4.4.2 Comparison between the results from individual and
stacked (URC) LSBs analysis

Overall, the relationships found from the URC method in [Di Paolo et al., 2019a]
are quite in agreement with the results found in previous works by means of indi-
vidual modelling of the LSBs rotation curves (see Fig. 4.2-4.3). The differences
are mainly due to the two involved DM profiles, Burkert in the URC analysis
and pseudo-isothermal in the individual RCs analysis. Indeed, their differences
affect the evaluation of the galaxies structural parameters, especially when the

3In [Moster et al., 2010], the stellar mass M∗ can indicate the mass enclosed in a disc
and/or in a bulge).
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RCs data are extended up to ' 2Ropt (as in the LSB sample case).
Moreover, in most cases, the authors of the individual RCs analysis made use

of maximum disc model, population synthesis model or minimum disc model, in
order to take into account the stellar component, while in the URC method we
leave a free parameter (the mass of the stellar disc Md, assuming an exponential
Freeman disc) linked to the stellar disc contribution. Consequently, also the DM
halo parameters are affected by the above choice in the RCs fit, giving different
final results.

Then, the scatter between our URC results and the previous ones from
individual RCs analysis has also to be found in the low statistics: the URC
method involved 72 galaxies and they are compared to the results of only ∼ 30
of them analysed individually4.

Finally, we should also consider that the spread of data in the plots of Fig.
4.2-4.3 can be due to the relevance of a new parameter, the compactness, that
will be dealt with in Section 4.6.

4.5 Angular momentum

The LSB data allow us to evaluate the specific angular momentum (per unit
mass) of the stellar component j∗ by means of the relation j∗ = 2fRRdVopt
(see [Romanowsky and Fall, 2012]), where fR =

∫
dxx2e−xV (xRd)/2Vopt is the

shape factor (of order unity). In Fig. 4.11 (right panel), we show the relationship
between j∗ and mass of the stellar disc Md:

Log j∗ = −3.51 + 0.62LogMd . (4.8)

The LSB relation is in agreement with the results obtained for normal spirals
[Lapi et al., 2018] and with the relation with fixed slope j∗ ∝ M2/3 for pure
discs (black line) by [Romanowsky and Fall, 2012].

Then, we can evaluate the specific angular momentum of the DM halo jh. It
is defined as (see [Mo et al., 1998, Mo et al., 2010]) jh =

√
2λRhVh, where Rh ≡

Rvir, Vh is given by the relation V 2
h = GMvir/Rvir and λ is the spin parameter

of the host DM halo, with an average value 〈λ〉 ≈ 0.0035 nearly independent
of mass and redshift (from numerical simulation [Barnes and Efstathiou, 1987,
Bullock et al., 2001, Macciò et al., 2007, Zjupa and Springel, 2017]). Particu-
larly, the fraction between the j∗ and jh allow us to find the amount of the halo
angular momentum retained by the stellar component:

fj =
j∗
jh
' 0.55 . (4.9)

This quantity is nearly constant in the whole LSB sample, with individual values
ranging from 0.45 to 0.7. According to the standard and the simplest theory
of disc formation, the sharing and conservation of angular momentum between
baryons and DM should imply fj ≈ 1 (see e.g. [Romanowsky and Fall, 2012]).
However, the found value for LSBs is lower, as well as the result from normal
spirals fj ' 0.8 [Lapi et al., 2018]. From a theoretical perspective, fj values

4Sometimes, the same galaxies are studied by different authors and with multiple ap-
proaches in treating the stellar disc contribution. This is the reason of a number of data > 30
referred to the individual analysis in Fig. 4.2-4.3.
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Figure 4.11: LSBs stellar specific angular momentum (points) and best fit
(solid red line) compared to the normal spirals results (red dashed line)
[Lapi et al., 2018] and to the relation j∗ ∝ M2/3 for pure discs (black line)
by [Romanowsky and Fall, 2012].

below 1 can be due to inhibited collapse of the high angular momentum gas
located in the outermost region ([Fall, 1983, Shi et al., 2017]). Likely, in spirals
the inhibition is due to the stellar feedback processes (similarly also in Elliptical
galaxies, where the processes are especially strong and the biased collapse is also
involved) [Shi et al., 2017, Posti et al., 2018]. Probably, in LSBs the inhibition
of the high angular momentum gas collapse is mainly due to the very low gas
surface density and the (consequently) slow star formation, without involving
the very external region of galaxies.

4.6 The compactness in LSBs

We note that the above relationships show a large scatter, on average σ '
0.34 dex, more than three times the value (σ ' 0.1 dex in [Lapi et al., 2018],
[Yegorova and Salucci, 2007]) found in normal spiral galaxies for the respective
relations.

We can reduce the scatter in the LSBs scaling relations and proceed with
the URC building by introducing a new parameter, the compactness of the stellar
mass distribution C∗. This parameter was first put forward in [Karukes and Salucci, 2017]
to cope with a similar large scatter in the above scaling relations of the dd galax-
ies. In short the large scatter in the previous relationships is due to the fact that
galaxies with the same stellar disc mass Md (or Vopt) can have a very different
size for Rd (i.e. Log Rd can vary almost 1 dex). We define this effect with the
fact that LSBs have a different “stellar compactness” C∗; see Fig. 4.1 and Fig.
4.9 (left panel). We define C∗ starting from Eq. 4.6 (see left panel in Fig. 4.9)
and, according to [Karukes and Salucci, 2017], we set the stellar compactness
through the following relation:

C∗ =
10(−3.19+0.36LogMd)

Rd
, (4.10)
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Figure 4.12: Relationship between the compactness of the stellar disc and the
compactness of the DM halo (red points). The black triangles refer to the dwarf
discs of [Karukes and Salucci, 2017]. The solid and the dot-dashed lines are
the best fit relations for LSBs and dwarf discs.

where, let us remind, Rd is measured from photometry. By means of Eq. 4.10,
C∗ measures, for a galaxy with a fixed Md, the deviation between the observed
Rd and the “expected” Rd value from Eq. 4.6 (obtained by using the best fit
line in Fig. 4.9). In short, at fixed Md, galaxies with the smallest Rd have a
high compactness (Log C∗ > 0), while galaxies with the largest Rd have low
compactness (Log C∗ < 0).

The previous average scatter σ ' 0.34 dex of the 2D relations is reduced to
σ ' 0.06 dex when we also add the third variable C∗.The resulting scatter is
smaller than the typical values obtained for normal spirals (see [Di Paolo et al., 2019a]
for further details).

Finally, in analogy to C∗, we evaluate also the compactness of the DM halo
CDM , i.e. we investigate the case in which the galaxies with the same virial
(dark) mass Mvir exhibit different core radius r0. The Mvir vs r0 relationship
is shown in Fig.4.9(right panel) alongside with the best fit linear relation, de-
scribed by Eq. 4.7. Then, according to [Karukes and Salucci, 2017], we define
the compactness CDM of the DM halo as:

CDM =
10(−5.32+0.56LogMvir)

r0
, (4.11)

taking into account Eq. 4.7. Thus, at fixed Mvir, galaxies with smaller r0 have
higher compactness (Log CDM > 0), while galaxies with larger r0 have lower
compactness (Log CDM < 0).

Then, we plot the compactness of the stellar disc versus the compactness of
the DM halo in Fig. 4.12. We note that C∗ and CDM are strictly related:
galaxies with high C∗, also have high CDM . The logarithmic data are well
fitted by the linear relation:

Log C∗ = 0.00 + 0.90Log CDM . (4.12)
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Figure 4.13: LSBs universal rotation curve (URC), with compactness Log C∗ =
0, and the individual 72 LSBs rotation curves.

The results are in very good agreement with those obtained for dd galaxies
[Karukes and Salucci, 2017], whose best-fitting relation is given by: Log C∗ =
0.77Log CDM+0.03. In the figure we realize that the average difference between
the two relationships is just about 0.1 dex.

This result is remarkable because the same relation is found for two very
different types of galaxies (LSBs and dds). The strong relationship between the
two compactnesses certainly indicates that the stellar and the DM distributions
follow each other very closely.

4.7 The LSBs universal rotation curve

Finally, we establish VURC(r;Ropt, Vopt, C∗), the URC-LSB in physical units, as
in [Persic et al., 1996] but with the inclusion of the new parameter C∗. Straight-
forwardly, we find a universal function VURC(r/Ropt, Vopt, C∗).

This is easily evaluated by expressing Md, Rd, r0 and ρ0 as function of Vopt
and C∗ from the analysis of the LSBs data. The above quantities put in Eq.
2.1, which involves Eq. 2.3-2.8-2.9, give rise to the analytic expression for the
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Figure 4.14: Universal rotation curves (URC) in physical velocity units for
three different values of stellar compactness; low (Log C∗ = −0.45), standard
(Log C∗ = 0.00) and high (Log C∗ = +0.35) stellar compactness, respectively in
blue, yellow and red colors. The figure in the second panel corresponds to that
of the first panel when rotated by 180◦ around the velocity axis.

universal rotation curve (expressed in physical units):

V 2(x, Vopt, C∗) = 2.2x2 × 10f1(Vopt,C∗) × [I0K0 − I1K1] (4.13)

+1.25/x× 10f2(Vopt,C∗) ×
{−tg−1[3.2x× 10f3(Vopt,C∗))]

+ ln[1 + 3.2x× 10f3(Vopt,C∗)]

+0.5 ln[1 + 10.24x2 × 102 f3(Vopt,C∗)]} ,

where In,Kn are the modified Bessel functions evaluated at 1.6x, with x =
r/Ropt, and f1(Vopt, C∗) = 9.79 + 2.39Log Vopt + 0.05Log C∗, f2(Vopt, C∗) =
−0.55+2.65Log Vopt−1.67Log C∗, f3(Vopt, C∗) = 0.35−0.58Log Vopt+0.65Log C∗.
In Fig. 4.13 we plot the URC (Eq. 4.13) considering Log C∗ = 0, corresponding
to the case in which all the LSBs data in Fig. 4.9 were lying on the regression
line (or, analogously, the case in which the spread of LSBs data in Fig. 4.1
was small). The curve shown in Fig. 4.13 is in good agreement with the LSBs
rotation curves data. On average, the uncertainty between the velocity data
and the URC velocity predicted values is ∆V/V ' 19%, which can be reduced
to ∆V/V ' 8%, when the observational errors, the systematics, the small non
circularities and the prominent bulge component are taken into account in the
individual RCs. This result, approximately equal to that found in normal spi-
rals [Persic et al., 1996], highlights the success of the URC method also in LSBs
galaxies.

Finally, in Fig. 4.14 we show the URC obtained with three significant different
values of stellar compactness. The central yellow surface has Log C∗ = 0.00
(standard case) and the other two surfaces have Log C∗ = −0.45 (the mini-
mum value achieved in the LSB sample) and Log C∗ = +0.35 (the maximum
one). The three surfaces appear similar: the differences between the URC with
Log C∗ = 0.00 and the URC with the appropriate values of C∗ for each indi-
vidual object lie within the URC errorbars for most of the objects. See Fig.
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I1-I2-I3-I4-I5 in [Di Paolo et al., 2019a] in Chapter 8, where all the 72 RCs are
plotted alongside their URC fit highlighting the success of the URC method on
individual rotation curves, as also for dd galaxies in [Gammaldi et al., 2018] and
for HSB spirals in [Yegorova and Salucci, 2007] by means of the radial Tully-
Fisher relation (see also [Fune, 2018]).

Completing our analysis, we have discovered the relevance of C∗ in the LSB
galaxies. By resuming:
i) the compacteness is linked to the spread in the Vopt - Rd plot (Fig 4.1).
Galaxies at fixed Vopt can have smaller Rd (higher C∗) or larger Rd (lower C∗)
than the average. The range of Log Rd at fixed Vopt can reach almost 1 dex;
ii) the compactness is a main source for the large scatter (σ ' 0.34) in the 2D
scaling relations (see Fig. 4.7-4.8);
iii) the profiles of the various RCs can be affected by the compactness (see e.g.
Fig. 4.4). Thus, the spread in the profiles of the RCs in each velocity bin, is
not only due to the large width of the optical velocity bins, but it is also due to
the different values of the galaxies compactness.

Taking all this into account, we point out that in the URC-LSB building proce-
dure, having an improved statistic, the optimal approach would be considering
from the start to bin the available RCs in C∗ (obtained by the spread of data
in the Vopt - Rd plot in Fig. 4.1) contemporaneously to Vopt. Moreover, with
a sufficiently higher statistics, we can also increase the number of the velocity
bins and characterise each of them with a smaller Vopt range to reach the per-
formance of [Persic et al., 1996].

Finally, the LSBs URC provides us with the best observational data to test
specific density profiles (e.g. NFW, WDM, Fuzzy DM) or alternatives to dark
matter (e.g. MOND). Any mass model under test must reproduce scaling re-
lations among the luminous matter and the DM properties not only dependent
on the optical velocity Vopt, as in the normal spirals case, but also dependent
on the stellar compactness C∗.
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Chapter 5

Low Surface Brightness
galaxies and the
gravitational acceleration

The LSB galaxies, together with the dwarf disc galaxies, turn out to be impor-
tant in order to establish a universal relation between the radial gravitational
acceleration g, its baryonic component gb and the normalised galactic radius
x ≡ r/Ropt where they are evaluated. The relation that we found shows that
the result obtained in [McGaugh et al., 2016], involving a relationship between
the only two quantities g and gb, is a limiting case of a more extended relation
and can be interpreted in terms of the distribution of the luminous and the dark
matter in galaxies.

5.1 Test for g and gb

In [Di Paolo et al., 2019b] (PAPER 2 in Chapter 8), the relation between the
radial gravitational acceleration g and its baryonic component gb in LSBs and in
dwarf discs is analysed. It is found that the two quantities must be related also
to the radial coordinate x ≡ r/Ropt where they are evaluated, differently from
the result found few years ago by [McGaugh et al., 2016], hereafter McG+16.

In rotating systems, the galaxy gravitational potential Φtot and the radial accel-
eration g(r) of a point mass at distance r are linked by the following relationship:

g(r) =
V 2(r)

r
=

∣∣∣∣−
dΦtot(r)

d r

∣∣∣∣ , (5.1)

with V (r) the circular velocity. The baryonic component of the radial acceler-
ation is given by:

gb(r) =
V 2
b (r)

r
=

∣∣∣∣−
dΦb(r)

d r

∣∣∣∣ , (5.2)
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Figure 5.1: Relationship between the total acceleration g and its baryonic com-
ponent gb in disc galaxies found in [McGaugh et al., 2016]. Image reproduced
from [McGaugh et al., 2016].

where Vb is the baryonic contribution to the circular velocity (see the previous
section).

Obviously we have:

gh(r) = g(r)− gb(r) , (5.3)

where gh refers to the dark matter contribution to the radial acceleration g.
Notice that all these quantities depend on radius.

Particularly, in our work, we consider that in each galaxy with rotation
curve V (r), we have: g(r) = V 2(r)/r and gb(r) = fb(r)g(r), where fb(r) is
the baryonic fraction assumed to be the same in galaxies belonging to the same
optical velocity bin as in the URC method (see Fig. 4.6 in the previous section).
Notice that g(r) is totally observed, gb(r) has a part derived from the rotation
curve.

The emerging g vs gb results, obtained for dd and LSB galaxies, are shown
in Fig 5.2 and compared to the McG+16 results coming from the analysis of
153 galaxies, mainly normal spirals. McG+16 found that the radial acceleration
g(r) shows an anomalous feature: it correlates at any radius and in any object,
with its component generated from the baryonic matter gb(r) in a way that it
is i) very different from the g = gb relationship expected in the Newtonian case
with the presence of the only baryonic matter and ii) of difficult understanding
in the standard Newtonian + dark matter halos scenario. In more detail, the
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Figure 5.2: Relationship between the total acceleration g and its baryonic com-
ponent gb. x = r/Ropt. Red, magenta and blue points correspond to radial
bins with increasing distance from galactic center (see legend). Also shown: the
McGaugh et al. (2016) relationship (green line) [McGaugh et al., 2016] with
its 1σ errorbars of 0.11 dex (dashed green lines); the Newtonian relationship
Log g = Log gb (brown line).
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pairs (gb, g) found in their data analysis, are fitted by the following relationship:

g(r) =
gb(r)

1− exp
(
−
√

gb(r)
g̃

) , (5.4)

with g̃ = 1.2 × 10−10ms−2. See Fig. 5.1. At high accelerations, g � g̃,
Eq. 5.4 converges to the Newtonian relation g = gb; while, at lower accelera-
tions, g < g̃, Eq. 5.4 strongly deviates from the latter ([McGaugh et al., 2016,
Li et al., 2018]). An analogous result is also found in [Salucci, 2018] (hereafter
S18), analysing normal spirals with the same method described in the LSBs
case.

In Fig. 5.2, we realise that the universality of the g(gb) relation, holding
in normal spirals (McG+16, S18) breaks down in our samples. The scatters of
dd and LSB data with respect to the McG+16 relation are 0.17 dex and 0.31
dex respectively. The data relative to inner radii of galaxies (red data) are the
closest to the equality line Log g = Log gb, while data relative to more external
radii (blue data) of galaxies tend to depart from the equality line towards the
region covered by McG+16 relation, with Log g > Log gb. This is intrinsically
related to the mass distribution in galaxies: the higher is the baryonic fraction
fb, the more g is close to gb, and reversely the lower is fb, the more g overcomes
gb. This interpretation will be deeply deal with in the following.

5.2 The GGBX relationship

We realise that a relationship between g and gb necessarily must involve also
the position x, where the two accelerations are measured, and the Hubble type
of the objects. This is shown in our new 3D relationship, Eq. 5.5, (hereafter
GGBX relation) among the Log g − Log gb − x quantities. Starting from the
McG+16 relation (in order to have a straightforward comparison), we added
new terms to find the best fitting model for LSB data. The best and simplest
model that we found is:

Log g
LSB

(x, Log gb) = (1 + a x)Log gb (5.5)

+ b xLog [1− exp(−
√
gb(x)/g̃)] + c x + d x2 ,

where the fitting parameters a, b, c, d assume the best-fit values -0.95, 1.79,
-9.01, -0.05 respectively. The scatter of LSB data from the fitting surface is
considerably reduced, down to 0.05 dex, i.e. to a sixth of the scatter from
the McG+16 relation. Let us notice that the model used in Eq. 5.5 is just
an empirical function used to fit the data that recovers Log g → Log gb when
x→ 0.

In the case of dd galaxies, by simply applying translations and/or dilatations
to Eq. 5.5 along the three involved axes, we obtain the following best fitting
model:

Log g
dd

(x, Log gb) = Log g
LSB

(
x

l
+ h,

Log gb
m

+ n

)
+ q . (5.6)

We found a perfect fit of the data when the fitting parameters l, h, m, n, q
assume the best-fit values 0.49, 2.41 , 0.74 , 1.72 , 1.19 respectively. The scatter
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Figure 5.3: Relation among total acceleration g, baryonic acceleration gb and
normalised radii r/Ropt, from different angles. The magenta and blue points
refer to dd and LSB galaxies data respectively. The surfaces are the results
from the best fitting models.

of dd with respect to the fitting surface is considerably reduced, with a value of
0.03 dex, i.e. about a fifth of the scatter from the McG+16 relation.

We show in Fig. 5.3 the dd and LSB data in the g− gb−x space, with their
best fitting surfaces from Eq. 5.5-5.6. The result is extremely remarkable. It
shows a precise relation linking the total and baryonic acceleration, the galacto-
centric distance r/Ropt and even the morphology of galaxies. We highlight that
all our results are intrinsically related to the mass distribution in galaxies, de-
pending on the variation of the baryonic fraction fb(r) along the galactocentric
radius and on the fact that fb(r) changes when we consider galaxies of different
size and different Hubble Type.

In order to have a physical interpretation of the previous results, it’s useful
to study what happens in single galaxies when we consider their g(r) and gb(r).
Fig. 5.4 shows one dd galaxy and five LSB galaxies belonging to five different
families (optical velocity bins) characterised by an increasing size. We note that:

i) larger galaxies, with larger optical velocity, achieve higher values of both the
total and the baryonic acceleration (as also found in McG+16 and S18);
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Figure 5.4: Relation among total acceleration g (in ms−2), baryonic accelera-
tion gb (in ms−2) and normalised radii r/Ropt, for one dd galaxy (black) and
five LSB galaxies belonging to five different families (purple, blue, green, or-
ange and red refer to galaxies families with increasing Vopt). The magenta and
blue surfaces are the results from the dd and LSB fitting models (left panel);
the uppermost green and the lowest brown surfaces are the McG+16 and the
Newtonian relations (right panel).

ii) both the total and the baryonic acceleration, g and gb, increase going from
smaller to larger radii till r ∼ Rd (= Ropt/3.2) and decrease going beyond the
stellar disc scale length. This is a direct consequence of the baryonic and the
dark matter mass distribution in galaxies. Fig. 5.5 shows the behaviour of the
baryonic component of the gravitational acceleration gb = fb g, of the dark mat-
ter halo component gh = (1 − fb) g and of the total acceleration g as function
of normalised radius r/Ropt. Because of the gravitational potential generated
by the exponential stellar disc distribution and by the cored dark matter dis-
tribution, we expect to observe an increase of each acceleration component gi
(i = b, h) going from inner to external radii till the achievement of the typical
scale radius Ri, which includes the bulk of the i−component at higher density.
Beyond the typical scale radius, we expect that gi decreases because of the lower
and lower density of the i−component. This means that the baryonic compo-
nent increases till the peak associated to the stellar disc scale length Rd and
decreases for larger radii. Similarly, the dark matter component shows the peak
around the halo core radius r0. Finally the relation for the total acceleration
Log g − r/Ropt comes simply from the sum of the previous components.

Note that the peak in Log g−r/Ropt relation is usually close to Rd especially
in large galaxies, as highlighted in the last panel of Fig.5.5. This is due to the
high density and high fraction of the stellar component with respect to the DM
one, i.e. due to the dominance of gb (and gb peak) over gh (and gh peak), in the
region of available observable data. Instead, in small galaxies (see the first two
panels in Fig.5.5), the peak in the Log g−r/Ropt relation usually lies between the
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Figure 5.5: Relations between the normalised radii and the components of grav-
itational acceleration: r/Ropt−Log gb (orange line and points) , r/Ropt−Log gh
(magenta), r/Ropt − Log g (blue), where gb is the baryonic acceleration com-
ponent, gh is the dark matter halo component and g is the total acceleration.
The results in the three panels are shown respectively for a dwarf disc galaxy
(Vopt = 55 km/s), for a small LSB galaxy (Vopt = 37 km/s) and a large LSB
galaxy (Vopt = 240 km/s) .

stellar and the dark matter typical scale lengths, Rd and r0 ∼ Ropt, because the
dark matter density and fraction are quite relevant, i.e. both the gb and the gh
peaks are important contributions and are responsible for the resulting smoothed
peak of Log g − r/Ropt relation. We underline that small galaxies are denser
than the large ones and their DM core radius r0 is close to the optical radius
Ropt (see e.g. results in [Karukes and Salucci, 2017, Di Paolo et al., 2019a]);

iii) the deviation between g and gb is more evident in smaller galaxies (com-
pare the pictures of Fig. 5.5). This is again obviously due to the distribution
of baryonic and dark matter; it is sufficient to see that the transition radius1

between the region dominated by baryons and dark the region dominated by
DM is located in very inner region if we consider small galaxies, while it lies in
the most external region of the galaxies if we consider large galaxies (see Fig.
4.5). Indeed, we expect that the higher is the baryonic fraction fb the more g
is similar to gb and, on the other hand, the higher is the DM fraction, the more
g is detached from gb with the additional relevant contribution by dark matter
to the baryonic one (g � gb);

iv) the variation of the difference between Log g and Log gb, evaluated in the
radial range which spans from the innermost to the outermost observable region
of a galaxy, is especially high when the baryonic fraction fb(r) decreases visibly
in the same radial range (see Fig. 4.6-5.5). In simple words, a high decrease of
baryonic fraction fb(r) implies a more and more relevant contribution of DM to
the total gravitational acceleration g and obviously a more and more relevant
deviation of g from gb going from smaller to larger radii.

1The transition radius is the radius where the DM component (dot-dashed line in Fig.
4.5), overcomes the luminous component, (dashed line in Fig. 4.5).
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5.3 Consequences

From an analysis on individual galaxies, like those related to Fig. 5.4, a boomerang
shape emerges in the Log g − Log gb − r/Ropt space. This can be easily inter-
preted in light of Fig. 5.5 and of the explanations given above: the peaks of the
boomerangs, relative to single galaxies, are associated approximately to the disc
scale length Rd of the stellar component. In the second picture of Fig. 5.4, if we
move along the boomerangs from the g ' gb region to the upper region, where
g > gb, we are moving from the inner to the external radii of galaxies. Thus, the
first side (the lowest) and the second side (the highest) of each boomerang are
approximatively related to the galactic region inside and outside Rd respectively.

Specifically, we note a narrow boomerang shape, related to large LSB galax-
ies (e.g. red points in the second picture of Fig. 5.4), due to a slight decrease
of fb(r) around Rd = Ropt/3.2, as shown in Fig 4.6. Indeed, this corresponds
to a slight increase of DM distribution, which gives a relatively small contribu-
tion to the gravitational acceleration and implies that Log g slightly overcomes
Log gb, giving rise to a narrow boomerang. On the other hand, we find a wide
boomerang shape in small LSB galaxies (e.g. purple points in the second picture
of Fig. 5.4) due to a strong decrease of fb(r) around Rd. In fact, this corre-
sponds to a fast increase of the dark matter fraction around Rd and, thus, to a
relatively high contribution by DM to the gravitational acceleration, with the
direct consequence that Log g quickly overcomes Log gb (giving rise to a wide
boomerang).

Moreover, taking into account the dd sample, we note that g � gb already
starting from the inner galactic region, with r < Rd (e.g. black points in the
second picture of Fig. 5.4). The reason is the high fraction of dark matter in
the innermost region of dwarf discs, as shown in [Karukes and Salucci, 2017];
thus the dark matter is already relevant in the innermost galactic region, giving
an important contribution to the gravitational acceleration also in the inner
region of galaxies, so that g � gb. We also note a wide boomerang shape easily
explainable with the same argumentation used above for the small LSB galaxies.

As consequence of the above observations, we deduce that:
i) first of all, in order to see the two boomerang sides it is necessary to have

enough observative data both inside and outside the disc scale length Rd;
ii) the narrow or wide boomerang shape (related to the slow or fast decrease

of the baryonic fraction fb(r)) are typical of large or small galaxies, respectively.
Thus it’s much simpler to recognise the boomerang shape (in the Log g−Log gb−
r/Ropt space) in dwarf galaxies;

iii) given one spiral and one LSB, both with the same Vopt, they can show
very different fb(r). Thus, a fixed value of gb can often be found, in the spiral
and in the LSB, at very different radii and can corresponds to very different
values of g. This mainly explains the failure of the McG+16 relation in LSBs.
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Chapter 6

Hints for a direct
interaction between
luminous and dark matter
from structural properties
of the LSBs

The analysis of the matter distribution in galaxies leads us to realise the pro-
found interconnection which is present between the luminous component and
the dark component, which are linked by tight scaling relations (see e.g. Sec-
tion 4.4 and [Lapi et al., 2018]). Furthermore, galaxies of different morphologies
seem to follow analogous scaling relations despite their different star formation
history, as shown in Section 4.4.

It is especially of relevance the r0 −Rd relationship (left panel in Fig. 4.7),
where the DM core radius r0 and the stellar disc scale length Rd are derived in
totally independent ways: the former by means of accurate mass modelling of
galaxy kinematics, while the latter is directly derived from galaxy photometry.
The strong correlation we see in Fig. 4.7 can hardly be arisen spuriously and
is of difficult explanation in a collisionless DM scenario unless a fine-tuning in
the baryonic-feedback process exists in galaxies with different size, morphology
and star formation hystory (see also e.g. [Dutton et al., 2019]). Moreover, the
difficulties are enhanced when we take into account the case of the largest LSBs
(see the discussion in Section 1.3 and Chapter 3).

In the light of the above considerations, alongside the lack of detection of a
collisionless DM particle (the WIMP particle, which is the main candidate in
the ΛCDM scenario, has not yet been detected), we are motivated to suppose
that the dark and the luminous components can have interacted in a direct way,
other than through gravity, over the Hubble time in the inner regions of galaxies
(Salucci et al. in prep.). Furthermore, this hypothesis could easily explain other
observations related to the DM halo properties and other general open problems
in astrophysics and cosmology, as shown in the next subsection.
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Figure 6.1: Original (red) and present-day (blue) DM density profile ρDM around
galaxies as a function of radius r and halo mass Mvir.

6.1 The collisional DM scenario

In our collisional DM scenario, the DM particle - nucleon interactions (or/and
similar ones) have left behind, at galactic scales, a number of imprints including
the formation of cores in the DM density distribution and a strong entanglement
between the distributions of the dark and luminous components. Remarkably,
we can estimate how much dark mass has been involved in this process to form
the DM halo profiles we detect now around galactic stellar discs.

The following arguments are made for spiral galaxies, however we expect
them to be also valid for LSBs, since their scaling relationships are almost
identical to those of the normal spirals.

Halos around spirals were formed at high redshifts in a free fall time of
about 107−8.5 yr , i.e. in a time much smaller than the collisional time (here
assumed 1010 yr). So as soon as it gets virialized, the halo has a NFW profile
[Navarro et al., 1996b]. We can recover it by looking at the outermost regions
of the dark halos: [Salucci et al., 2007] have found that, for r > 2r0, i.e., outside
the region inside which the collisional interactions have mostly taken place in
the past 10 Gyr, the DM density profile is well reproduced by

ρDM,cusp(r, c,Mvir) =
Mvir

4πRvir

c2g(c)

x̃(1 + cx̃)2
, (6.1)

where Rvir is the virial mass, x̃ = r/Rvir is the radial coordinate, Mvir is the
virial mass enclosed in Rvir, c ' 14 (Mvir/(1011M�))−0.13 is the concentration
parameter and g(c) = [ln(1 + c) − c/(1 + c)]−1 (see [Salucci et al., 2007]). See
Fig. 6.1. This result is not surprising since we know from N-Body simulations
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that the NFW halo profile is the final virialized realization of any self gravi-
tating collisionless particle (e.g. [Lapi and Cavaliere, 2011]), as the present DM
particles. This allows us to obtain the primordial distribution of the DM halo
by considering Eq. 6.1 to hold since the center of the galaxy. In this way we
obtain the density distribution of the DM halo before that the DM-LM inter-
action takes place. In Fig. 6.1 one can see the primordial and the present dark
halos density distributions for the whole family of spirals. In each object the
amount of DM removed within the core radius ∼ r0 over the Hubble time is:

∆MDM (r0) = 4π

∫ r0

0

(ρDM,cusp(r,Mvir)− ρDM (r,Mvir))r
2dr . (6.2)

The amount of dark mass removed inside ∼ r0 by the dark-luminous collisional
interactions ranges from 40 % to 90 % the primordial one (Salucci et al. in
prep.). It is remarkable that the dark mass which has been removed from the
core region is only 1/100 of the (present) halo mass. All the intriguing features
we discover in the mass distributions of spirals are created by acting on a small
fraction of the whole amount of the dark halo particles.

This means that, if the DM particles are captured in the stellar disc or
scattered beyond the core radius, given the small fraction of the involved DM,
it is difficult to discriminate the two possibilities of interactions by the only
consideration of the matter distribution.

At any rate, one of the dynamical predictions of our scenario is that cores
in the DM density distribution are formed from the center out to the external
regions, as the time from the galaxy virialization goes by. Thus galaxies of fixed
virial mass, if observed at high red-shift z, should have smaller core radius than
those observed at z ∼ 0.

Moreover, we expect to observe some continuing interactions especially on
the edge of the stellar disc in z ∼ 0 galaxies.

It is interesting to note that the DM-LM interaction can likely also contribute
to solve some other open problems in astrophysics, as pointed in the following.

We could consider the DM-LM interaction, in the inner region of large galax-
ies (especially the ellipticals), as a possible catalyst able to accelerate the process
of the central massive black hole (BH) formation (an open problem nowadays).
Indeed, if the DM was captured by a forming massive BH in its initial stage, it
could exert further gravitational attraction on the surrounding matter, making
the BH accretion faster than in presence of the only baryonic matter.

Another consideration could be that, if the DM can be captured by the
densest stellar objects, such as stellar BH, the mass of the involved objects
could be enhanced with respect the value expected from the stellar evolution
theory.

6.2 Future observations and predictions

In this scenario, we consider the DM-LM interaction that can lead to a com-
pletely new kind of particle, but obviously we need strong proofs in order to
assess such interactions. On experimental point of view, without entering the
very complex issue of specifying the DM particle and predicting the detection
rates, it is important to stress that the interaction of such particle with the
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ordinary matter could be revealed. However, since the locations and the types
of this interaction are so numerous, we will specify only few particular cases by
claiming that also in the situations not considered below some signature of the
proposed interaction will occur (Salucci et al. in prep.).

We expect, in primis, that an indirect evidence of the particle will show
up from anomalies in the internal properties of the stars and in their photon-
neutrino emissions that would result in strong tension with the predictions of
the standard theory of stellar structure and evolution.

Furthermore, the open channel between the dark and the SM particles yields
other possibilities of detection through observations and experiments. As ex-
amples, out of many possibilities, the LM-DM interaction that would occur
on the surface of neutron stars and on the accretion discs on BHs could pro-
duce cosmic positrons and, therefore, to be a component of the PAMELA and
AMS detected positron excess [Adriani et al., 2009, Accardo et al., 2014]. On
this regard we should stress that any kind of DM-DM particles annihilation
process would produce a peaked gamma ray spectrum, never observed till now.
The positron/electron excess instead, with a cut-off spectrum, is perfectly in
line with any complex DM-SM particles interaction, where any kind of known
particles will definitely end up into electrons/positrons, neutrinos and gammas.

The interactions we propose could also produce diffuse energetic photons
detected by VHE gamma rays experiments such as Fermi telescope. The Moon
and the Earth atmosphere may also be source of DM generated radiation.

Moreover, such collisional particle, could be created in accelerators and de-
tected as missing momentum or missing masses in the particle flow of the inter-
action. At collider we must be open to the possibility that the interaction can
be of a completely different nature. A complete new sector coupled to electro-
week (EW) fields, for example, could be responsible for the DM-SM particles
interaction. New searches are ongoing in CMS/Atlas experiments enlarging the
analysis to more complex and different scenarios. Given this we can surely say
that exclusions made by LHC and underground experiments are not yet conclu-
sive for the actual DM particle we propose.

Obviously, future observations at low and high redshifts [Kaviraj, 2020] will
allow us to deep the knowledge on the evolution of the luminous and the
dark matter distribution, giving decisive proof on the DM scenario we have
started to develop here. Interesting probes come from the near future ra-
dio astronomy, analysing the 21-cm emission line from the HI regions and
thus providing us with new insights on the matter distribution over a broad
range of scales and redshifts. The future results will be able to constraint
the clustering properties of DM and eventually to find possible deviation (e.g.
[Sitwell et al., 2014, Carucci et al., 2015]) or confirmation of the standard Λ-
CDM scenario.
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Conclusions

For a century, astronomical observations have been pointing to the existence of
a large amount of matter, namely the DM, beyond the standard luminous (bary-
onic) matter. However the DM puzzle is still unresolved. In this work, we have
reviewed the main concepts concerning the knowledge of the DM properties,
with the related achievements and issues (Chapter 1). Then, we focused on the
Low Surface Brightness (LSB) galaxies recalling the results on their properties
collected over the last three decades (Chapter 3).

In this work, the LSBs are studied by means of the universal rotation curve
(URC) method (like in [Persic et al., 1996]). It consists of a stacked analysis
which allows us to give a universal description of disc galaxies, with a dependence
on few parameters, such as the optical radius Ropt and the optical velocity Vopt.
The analysis leads to a good description of the LSBs rotation curves by involving
in their mass modelling the contribution from a Freeman stellar disc and a
Burkert cored DM halo. The obtained universal rotation curve (Fig. 4.13-4.14)
is described by Eq. 4.13 and is affected by an error ∆V/V ' 8%, highlighting
the success of the URC method. The goodness of the result can be also realised
on the individual rotation curves in Fig. I1-I2-I3-I4-I5 in [Di Paolo et al., 2019a]
in Chapter 8.

Furthermore, the URC method allow us to infer tight scaling relations among
the luminous and the dark matter distribution properties as in [Persic et al., 1996,
Karukes and Salucci, 2017, Lapi et al., 2018]. Among the scaling relations we
highlight Eq. 4.2 involving the stellar disc scale length Rd and the DM core
radius r0, Eq. 4.4 involving the DM halo central density ρ0 and r0, Eq. 4.8-
4.9 related to the angular momentum in galaxies. These relations are almost
identical to those of the normal spirals (high surface brightness, HSB) and of
the dwarf disc galaxies. The found results seem hard to be explained unless
a fine-tuned process in galaxy formation or some unknown interaction exists,
across galaxies that have experienced different evolutionary histories.

Particularly, the found scaling relations also need the involvement of the com-
pactness C∗, a new parameter which is related to the spread of the Vopt − Rd
data (Fig. 4.1) and that results necessary for describing the LSB galaxies, as
well as the dwarf disc galaxies [Karukes and Salucci, 2017]. The dependence of
the scaling laws on this new quantity (beyond Ropt and Vopt) gives rise to a
new challenge for the N-body+hydrodynamical simulations in reproducing the
observed galaxies properties.

We have also analysed the relation between the gravitational acceleration re-
lation g and its component gb due to the presence of the only baryonic matter.
The analysis on LSBs (and on dwarf disc galaxies) leads to the necessity of also
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involving the galactic radius x ≡ r/Ropt where g and gb are evaluated. A deeper
analysis shows that the found GGBX relationship (and the g − gb relationship
found in previous work [McGaugh et al., 2016]) can be easily interpreted in light
of the luminous and dark matter distribution in galaxies.

Finally, we take into account that the most favoured ΛCDM scenario has some
relevant problems to cope with and that the solutions invoked in the previ-
ous years can hardly solve them (Section 1.3). Nevertheless, regarding the
cusp-core problem, optimistic ideas on the ability of the feedback process to
flatten the DM cusped halos, preserving the ΛCDM scenario, also exist. E.g.,
in [Dutton et al., 2019], despite the halo response is a strong function of the
star formation threshold in galaxies of different size, the authors relay on the
possibility that such threshold might derive from large differences in the gas
fractions and star formation rates. At any rate, the LSBs take the challenges
at higher levels. These galaxies show a cored DM halo distribution charac-
terised by r0 values which are correlated to Rd values according to Eq. 4.2, like
galaxies of different morphology. However, taking into account the very low HI
gas density of the LSBs, the high MHI/L, the extremely low star formation
rate characterised by sporadic events, the extremal extension of the stellar disc
(especially for the most luminous LSBs) and other peculiarities described in
Chapter 3, some doubts can arise about the ability of the baryonic feedback to
flatten the DM halo cusps (e.g. [Kuzio de Naray and Spekkens, 2011]) and to
produce results in agreement with Eq. 4.2. The above issue, plus the difficulty
in explaining the observed strong entanglement (well described by scaling laws)
between the luminous matter (LM) and the dark matter distribution in galaxies
of different morphology and different star formation history, plus the undetected
WIMP particle, lead us to suppose the existence of a direct LM-DM interaction,
other than trough gravity.

The LM-DM interaction might be a necessary key to understand the DM phe-
nomenon, to reproduce the observed core in the galactic DM halo and the empir-
ical relationships between the galactic properties. Probably this kind of particle
is not the ”only one”, but it needs to be mixed to other particles, likely to the
still known candidates.

In conclusion, further studies are needed in order to have a better understanding
about the LSBs, the galaxy formation/evolution and the DM phenomenon. In
particular, we need:

a) to enlarge the LSBs rotation curves sample and their resolution in order
to have a better knowledge of the LSB galaxies properties and of the LM and the
DM relationship, which may give us informations on the LM-DM interaction;

b) to study the giant LSBs, special objects which are often made of a HSB
disc embedded in a large LSB disc. Likely, dwarf and giant LSBs can have
different evolution history (e.g. [Matthews et al., 2001]);

c) to analyse some extreme cases of LSBs which show some peculiarities mak-
ing them different from most of the standard LSB discs. Indeed, most of them
are very blue, but some of them are also very red (e.g. [Burkholder et al., 2001]);
most LSBs have low metal content, but some of them show near solar abun-
dances [Bell et al., 2000]; they can be dwarfs, but also giants with different
properties than other LSBs (e.g. [Boissier et al., 2016]), also with bulges and
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AGN (e.g [Mishra et al., 2018]);
d) to enlarge the observations at low and high redshifts. This will allow us

to deep the knowledge on the evolution of the luminous and the dark matter
distribution, giving decisive proof on the DM scenario. Particularly, the future
observations will be useful to test the number of the small (LSB) galaxies giving
informations about the small-scale problems in the ΛCDM scenario.

Likely, decisive observations will come in the future from measurements from
radio telescopes like ALMA and SKA and from optical telescopes like VLT and
ELT.

67



68



Part II

69





Chapter 7

PAPER 1: “The universal
rotation curve of low
surface brightness galaxies
IV: the interrelation
between dark and luminous
matter”
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ABSTRACT
We investigate the properties of the baryonic and the dark matter components in low
surface brightness (LSB) disc galaxies, with central surface brightness in the B band
μ0 ≥ 23 mag arcsec−2. The sample is composed of 72 objects, whose rotation curves show an
orderly trend reflecting the idea of a universal rotation curve (URC) similar to that found in the
local high surface brightness (HSB) spirals in previous works. This curve relies on the mass
modelling of the co-added rotation curves, involving the contribution from an exponential
stellar disc and a Burkert cored dark matter halo. We find that the dark matter is dominant
especially within the smallest and less luminous LSB galaxies. Dark matter haloes have a
central surface density �0 ∼ 100 M� pc−2, similar to galaxies of different Hubble types and
luminosities. We find various scaling relations among the LSBs structural properties which
turn out to be similar but not identical to what has been found in HSB spirals. In addition, the
investigation of these objects calls for the introduction of a new luminous parameter, the stellar
compactness C∗ (analogously to a recent work by Karukes & Salucci), alongside the optical
radius and the optical velocity in order to reproduce the URC. Furthermore, a mysterious
entanglement between the properties of the luminous and the dark matter emerges.

Key words: galaxies: fundamental parameters – galaxies: kinematics and dynamics – dark
matter.

1 IN T RO D U C T I O N

Dark matter (DM) is the main actor in cosmology. It is believed to
constitute the great majority of the mass and to rule the processes
of structure formation in the Universe.1 The so-called Lambda
cold dark matter (�CDM) scenario, in which one assumes a
weakly interacting massive particle (WIMP) that decouples from the
primordial plasma when non-relativistic, successfully reproduces
the structure of the cosmos on large scales (Kolb & Turner 1990).
However, some challenges to this scenario emerge at small galactic
scales, such as the ‘missing satellite problem’ (e.g. Klypin et al.
1999; Moore et al. 1999; Zavala et al. 2009; Papastergis et al.
2011; Klypin et al. 2015) and the ‘too-big-to-fail problem’ (e.g.
Boylan-Kolchin, Bullock & Kaplinghat 2012; Ferrero, Navarro &
Sales 2012; Garrison-Kimmel et al. 2014; Papastergis et al. 2015).
Moreover, the galactic inner DM density profiles generally appear to
be cored, rather than cuspy as predicted in the �CDM scenario (e.g.

� E-mail: cdipaolo@sissa.it (CDP); salucci@sissa.it (PS)
1In this paper we adopt the scenario of DM in Newtonian gravity, leaving
to other works the investigation in different frameworks.

Salucci 2001; de Blok & Bosma 2002; Gentile et al. 2004, 2005;
Simon et al. 2005; Del Popolo & Kroupa 2009; Oh et al. 2011;
Weinberg et al. 2015), in spirals of any luminosity (see Salucci
2019). In ellipticals and dwarf spheroidals (dSphs) the question is
still uncertain (Salucci 2019).

These issues suggest to study different scenarios from the
‘simple’ �CDM, such as warm DM (e.g. de Vega et al. 2013;
Lovell et al. 2014), self-interacting DM (e.g. Vogelsberger et al.
2014; Elbert et al. 2015), or to introduce the effect of the baryonic
matter feedbacks on the DM distribution (e.g. Navarro, Eke & Frenk
1996; Read & Gilmore 2005; Mashchenko, Couchman & Wadsley
2006; Di Cintio et al. 2014; Pontzen & Governato 2014).

One important way to investigate the properties of DM in galaxies
is to study rotation-supported systems, such as spiral galaxies,
since they have a rather simple kinematics. The stars are mainly
distributed in an exponential thin disc with scale length Rd (Freeman
1970). Notice that related to this scale length, in this paper, we
will use the optical radius Ropt, defined as the radius encompassing
83 per cent of the total luminosity and proportional to the stellar disc
scale length: Ropt = 3.2Rd (the details of this choice are expressed
at length in Persic, Salucci & Stel 1996). In order to explain the

C© 2019 The Author(s)
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observed rotation curves (RCs) of disc systems, it is necessary
to assume the presence of a spherical DM halo surrounding the
galaxies (Faber & Gallagher 1979; Rubin et al. 1985; Salucci 2019).

A very interesting feature of spiral galaxies is that the bigger
they are, the more luminous they are and the higher rotational
velocities they show. Moreover, when their RCs, with the radial
coordinate normalized with respect to their optical radius Ropt, are
put together, they appear to follow a universal trend (first shown in
fig. 4 in Rubin et al. 1985, then in Persic & Salucci 1991, Persic et al.
1996, Rhee 1996, Roscoe 1999, Catinella, Giovanelli & Haynes
2006, Noordermeer et al. 2007, Salucci et al. 2007, López Fune
2018, and Salucci 2019). From small to large galaxies, the RCs have
higher and higher velocities and profiles that gradually change. See
also the top panel in Fig. A1 in Appendix A.

By means of the ‘universal rotation curve (URC) method’, which
involves groupings of similar RCs and their mass modelling, it
is possible to construct an analytic function that gives a good
description of all the RCs of the local spiral galaxies within a
spherical volume � (100 Mpc)3. The URC method was applied
for the first time in Persic & Salucci (1991). This was followed by
a series of three works: Persic et al. (1996) (Paper I), Salucci et al.
(2007) (Paper II), and Karukes & Salucci (2017) (Paper III), where
the URC method gave deeper results related to normal spirals, also
called high surface brightness (HSB) spirals, and dwarf disc (dd)
galaxies. A subsequent work confirmed the above results with up
to 3100 disc galaxies and highlighted the existence of tight scaling
relations among the properties of spirals with different size (Lapi,
Salucci & Danese 2018).

Let us underline that the concept of universality in the RCs means
that all of them can be described by the same analytical function as
long as expressed in terms of the normalized radius and of one global
parameter of the galaxies, such as magnitude, luminosity, mass, or
velocity at the optical radius (Vopt ≡ V(Ropt)). Therefore, the URC
is the circular velocity at a certain radius r given by V(r/Ropt, L),
where L is the galaxy’s luminosity. See the bottom panel in Fig. A1
in Appendix A. Obviously, the URC does not change even using,
instead of Ropt, any other radial coordinate proportional to the stellar
disc scale length Rd.2

The URC is a very powerful tool since, given the observation of
few properties (such as Rd and L) of a certain galaxy, it is possible
to deduce its RC and all its properties.

In this paper (IV), we investigate the concept of the URC, the
resulting mass models, and the scaling relations in low surface
brightness (LSB) disc galaxies, comparing them to the results of
other disc galaxies of a different Hubble type.

LSB galaxies are rotating disc systems which emit an amount of
light per area smaller than normal spirals. They are locally more
isolated than other kinds of galaxies (e.g. Bothun et al. 1993;
Rosenbaum & Bomans 2004) and likely evolving very slowly
with very low star formation rates. This is suggested by colours,
metallicities, gas fractions, and extensive population synthesis
modelling (e.g. van der Hulst et al. 1993; McGaugh 1994; de Block,
van der Hulst & Bothun 1995; Bell et al. 2000). As we see in radio
synthesis observations, LSB galaxies have extended gas discs with
low gas surface densities and high MH I/L ratios (e.g. van der Hulst
et al. 1993), where MH I is the mass of the H I gaseous disc. The
low metallicities make the gas cooling difficult and in turn the
stars difficult to form (e.g. McGaugh 1994). LSBs are required to

2The results of the paper remain unchanged for any chosen radial coordinate
if expressed in units of λRd, with any λ value ranging from one to four.

be dominated by DM, as shown by the analysis of their Tully–
Fisher relation (e.g. Zwaan et al. 1995) and of their individual
RCs (e.g. de Blok, McGaugh & Rubin 2001; de Blok & Bosma
2002).

The LSB sample used in this work involves 72 galaxies se-
lected from literature, whose optical velocities span from ∼24
to ∼300 km s−1, covering the values of the full population. Our
analysis of LSBs by means of the URC method is triggered by
the result shown in Fig. 1, from which we can see that the LSBs
RCs gradually change very orderly from small to large galaxies
(or equally from objects with small to large optical velocities Vopt).
Following the URC method, the sample of galaxies is divided in
different velocity bins, according to their increasing values of Vopt.
A double normalization of all the RCs is performed with respect to:
(i) their own Ropt, along the radial axis, and (ii) their own Vopt, along
the velocity axis. In these specific coordinates, in each velocity
bin, the RCs are all alike. Then, the double-normalized co-added
RCs, a kind of average RC for each velocity bin, are constructed.
The analysis continues with their mass modelling, yielding the
distribution of luminous and DM in structures with different Vopt.
This is followed by the denormalization process, which gives the
structural parameters of each object of the sample, and allows us
to obtain the related scaling relations for the LSBs. The internal
scatter of the found scaling relationships is larger (three times or
more) than the analogous ones in normal spirals. A similar finding
also emerged in the case of dd galaxies (Karukes & Salucci 2017).
Remarkably, the scatter in the dd relationships was reduced after
the introduction of a new quantity, the compactness of the luminous
matter distribution C∗, that indicates how the values of Rd vary in
galaxies with the same stellar disc mass. Therefore, such results
statistically suggest the introduction of the compactness also in the
analogous LSBs scaling relationships. The previous steps lead to
the construction of the URC for the LSBs, which is one of the main
goals of this work. Finally, in analogy to Karukes & Salucci (2017),
we also investigate the compactness of the DM distribution CDM

and its relation to C∗.
The structure of this paper is as follows: in Section 2, we describe

our sample of LSB galaxies; in Sections 3–5, the URC method and
the analysis of the LSBs structural properties are described in detail;
in Section 6 we obtain the LSBs scaling relations and we compare
them to those of other disc systems; in Sections 7–8, the concept
of compactness is introduced and the URC-LSB is built; finally, in
Section 9, we comment on our main results.

The distances are evaluated from the recessional velocity assum-
ing H0 = 72 km s−1 Mpc−1.

2 TH E L S B SA M P L E A N D T H E ROTAT I O N
C U RV E S U N I V E R S A L T R E N D

We consider 72 rotating disc galaxies classified as ‘low surface
brightness’ in literature (see Table B1 in Appendix B). In the very
majority of cases the authors classify a galaxy as LSB when the
face-on central surface brightness μ0 � 23 mag arcsec−2 in the B
band. We select our sample according to the following criteria:

(i) the RCs extend to at least � 0.8 Ropt (when Vopt is not available
from observation, it can be extrapolated since from � 1/2 Ropt to
2 Ropt, the RCs are linear in radius with a small value of the slope);

(ii) the RCs are symmetric, smooth (e.g. without strong signs
of non-circular motions) and with an average fractional internal
uncertainty lesser than 20 per cent. In short we eliminated RCs that
in no way can be mass-modelled without huge uncertainties;
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Figure 1. LSBs RCs (each one in different colour) ordered according to increasing optical velocities Vopt. Note that the radial coordinate is normalized with
respect to the disc scale length Rd. A universal trend is recognizable analogous to that emerged in normal spirals (see Fig. A1 in Appendix A).

Figure 2. Optical velocity versus disc scale lengths in LSB galaxies (red)
and in normal spirals (blue) (Persic et al. 1996). The typical fractional
uncertainties are 5 per cent in Vopt and 15 per cent in Rd, as shown in the
bottom right corner.

(iii) the galaxy disc scale length Rd and the inclination function
1/sin i are known within 30 per cent uncertainty.

The selected 72 LSBs have optical velocities Vopt spanning
from ∼24 to ∼300 km s−1; the sample of RCs consists of 1614
independent (r, V) measurements. When the RCs, expressed in
normalized radial units, are put together, see Fig. 1, they show a
universal trend analogous to that of the normal spirals (Fig. A1
in Appendix A). Then, given the observed trend in LSBs and the
relevance of the URC method, we search our sample of LSBs for
a URC and for the related scaling relations among the galaxy’s
structural parameters.

In Fig. 2, the values of the stellar disc scale lengths Rd and the
optical velocities Vopt measured in LSBs are shown and compared to
those measured in normal spirals. A larger spread in the former case
is clearly recognizable. This feature will be used later to explain the
need of introducing a new structural variable: the compactness.

Finally, it is useful to stress that previous studies on individual
LSB galaxies reveal in the mass profiles of these objects the presence
of an exponential stellar disc, an extended gaseous disc at very low
density (e.g. de Blok, McGaugh & van der Hulst 1996), and the
presence of a spherical DM halo, likely with a core profile (e.g. de
Blok et al. 2001; de Blok & Bosma 2002; Kuzio de Naray, S. & de
Blok 2008).

3 TH E C O - A D D E D ROTATI O N C U RV E S O F
LSB G ALAXI ES

The individual RCs (in normalized radial units) shown in Fig. 1
motivate us to proceed, also in LSB, with the URC method,
analogously to what has been done on the HSB spiral galaxies
(Persic et al. 1996; Lapi et al. 2018) and dwarf discs (Karukes &
Salucci 2017). It is useful to anticipate here that the average scatter
of the RCs data from a fitting surface (as the URC in Fig. 15) is
�V /V � 8 per cent (taking into account the observational errors,
the systematics, and the small non-circularities in the motion). This
small value gives an idea of the universality of the LSBs RCs
expressed in normalized radial units.

Among the first steps, the URC method (Persic et al. 1996)
requires to make the galaxies RCs as similar as possible (in radial
extension, amplitude, and profile) by introducing the normalization
of their coordinates and an eventual galaxies binning. Let us
notice that the justification for these starting steps comes from
the analogous process performed in spirals and from a qualitative
inspection of LSB RCs. Finally, the goodness of the results will
show the goodness of the method.

The characteristics of the RCs in physical and normalized units
are visible in Fig. 3:

(i) in the first panel, the RCs are expressed in physical units; they
appear to be different in radial extension, amplitude, and profile;

(ii) in the second panel, the RCs are expressed in normalized
radial units with respect to their disc scale length Rd. Their radial
extensions are made more similar. Indeed, most of the data are
extended up to � 5.5Rd;

(iii) in the third panel, the RCs are expressed in double-
normalized units with respect to their disc scale length Rd and optical
velocity Vopt, along the radial and the velocity axis, respectively. The
RCs in such specific units are comparable also in their amplitude.

Overall, the double normalization makes the 72 RCs more similar,
apart from their profiles. However, when these RCs are arranged
in five optical velocity bins according to their increasing Vopt as in
Fig. 4, we realize that the double-normalized RCs profiles belonging
to one of these bins are very similar among themselves but clearly
different from those of the RCs in other optical velocity bins (see
Fig. 5).

We have chosen to build five Vopt bins as a compromise between
having a large number of data for each co-added RC and a large
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5454 C. Di Paolo, P. Salucci and A. Erkurt

Figure 3. LSBs RCs (each one in different colour) in physical units (first panel), in normalized radial units (second panel), and in double-normalized radial
and velocity units (third panel). See also Appendix C.

Figure 4. LSBs RCs (in normalized radial units) grouped in five optical velocity bins. In this and in the following figures, purple, blue, green, orange, and red
colours are referred to the RCs of the I, II, III, IV, and V optical velocity bins, respectively.

number of co-added RCs. Particularly, the binning in five groups
is suggested by the fact that, since the sample includes 72 objects,
10–15 galaxies are the minimum number in each optical velocity
bin in order to create suitable co-added RCs (that will be described
in the next paragraphs) and to eliminate statistically observational
errors and small non-circularities from the individual RCs.

In detail, the number of galaxies in each bin, the span in Vopt, the
average optical velocity 〈Vopt〉, the average stellar disc scale length
〈Rd〉, the number of galaxies and of the (r, V) data are all reported
in Table 1.

We also point out Fig. D1 in Appendix D, where the RCs,
grouped in their velocity bins, are compared in physical and double-
normalized units.

After that all the RCs are double normalized, we perform the
radial binning in each of the five optical velocity bins. Similar to
the velocity binning process, we have chosen �11 normalized radial
bins as a compromise between having a large number of data for
each radial bin and a large number of radial bins for each co-added
RC. Moreover, we required that the inner radial bins (for r ≤ 2Rd)
and the outer radial bins (for r > 2Rd) included a minimum of 13 and
five measurements, respectively. In detail, for the I, the II, and the III
optical velocity bins, the radial normalized coordinate is divided in

12 bins: the first five have a width of 0.4 and the remaining a width
of 0.5. For the IV and the V velocity bins, for statistical reasons, we
adopt a different division of the radial coordinate. In the IV velocity
bin we adopt three radial bins of width 0.4, five of width 0.6, and the
last one of width 1. In the V velocity bin, we adopt five, four, and
two radial bins of widths 0.4, 0.5, and 0.8, respectively. The number
of data per radial bin is reported in Tables E1–E2 in Appendix E.
Reasonable variations of the positions and amplitudes of the radial
bins do not affect the resulting co-added RCs.

Therefore, for each of the five Vopt bins, in every k-radial bin we
built there are Nk double-normalized velocities vik, with i running

from 1 to Nk. Their average value is given by Vk =
∑Nk

i=1 vik

Nk
, as

in Persic et al. (1996). Then, by repeating this for all the radial bins
of each of the five Vopt bins, we obtain the five double-normalized
co-added RCs shown in Fig. 5. The standard error of the mean we
consider in this work is

δVk =
√∑Nk

i=1(vik − Vk)2

Nk(Nk − 1)
. (1)

In short, the above co-added RCs can be considered as the
average RCs of galaxies of similar properties as e.g. Vopt. It is
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The universal rotation curve of LSBs 5455

Figure 5. In each of the five panels: LSBs double-normalized RCs for each of the five optical velocity bins (grey points). Also shown are the corresponding
co-added RCs (larger coloured points) for each of these five bins. Notice that part of the scatter in the five profiles will be eliminated by introducing the
compactness in the URC. See Section 7.

Table 1. LSB velocity bins. Columns: (1) i - velocity bin; (2) range values
for Vopt; (3) number of LSB galaxies in each velocity bin; (4) average
value of Vopt evaluated from the individual galaxies; (5) average value of Rd

evaluated from the individual galaxies; (6) number of (r, V) data from the
individual galaxies.

Vopt bin Vopt range N. galaxies 〈Vopt〉 〈Rd〉 N. data
km s−1 km s−1 kpc

(1) (2) (3) (4) (5) (6)

1 24–60 13 43.5 1.7 151
2 60–85 17 73.3 2.2 393
3 85–120 17 100.6 3.7 419
4 120–154 15 140.6 4.5 441
5 154–300 10 205.6 7.9 210

worth emphasizing the advantages of these RCs: their building
erases the peculiarities and also reduces the observational errors
of the individual RCs. This yields to a universal description of the
kinematics of LSBs by means of five extended and smooth RCs
whose values have an uncertainty at the level of 5–15 per cent. In
Fig. 6 the five co-added RCs are shown together.

(i) in the first panel, they are expressed in double-normalized
units covering a very small region in the (V/Vopt, R/Ropt) plane;

(ii) in the second panel, they are expressed in physical velocity
units. These co-added RCs are obtained by multiplying the previous
co-added RCs by the corresponding 〈Vopt〉 (reported in Table 1).

(iii) in the third panel, the co-added RCs are expressed in physical
units both along the velocity and the radial axes. They are obtained
by multiplying the previous co-added RCs by the corresponding
〈Rd〉 reported in Table 1.

In Fig. 6 the difference in the profiles corresponding to galaxies
with different optical velocities is evident.3

3This is explained by the very different luminous and dark mass distributions
in LSBs of different sizes and optical velocities, as shown in the next section.

All the data shown in Fig. 6 can be recast by means of Tables E1–
E2 (in Appendix E) and Table 1.

4 TH E M A S S M O D E L L I N G O F T H E
C O - A D D E D ROTAT I O N C U RV E S

In this section we investigate the co-added RCs, normalized along
the radial axis (see second panel in Fig. 6), whose data are listed
in Tables E1–E2 in Appendix E. We model the co-added RCs data,
as in normal spirals (Salucci et al. 2007), with an analytic function
V(r) which includes the contributions from the stellar disc Vd and
from the DM halo Vh:

V 2(r) = V 2
d (r) + V 2

h (r). (2)

Let us stress that in first approximation the inclusion in the model
of a H I gaseous disc component can be neglected. In fact, the gas
contribution is usually a minor component to the circular velocities,
since the inner regions of galaxies are dominated by the stellar
component and in the external regions, where the gas component
overcomes the stellar one, the DM contribution is largely the most
important (Evoli et al. 2011). A direct test in Appendix F shows
that our assumption does not affect the mass modelling obtained in
this paper.

We describe the stellar and the DM component. The first one
is given by the well-known Freeman disc (Freeman 1970), whose
surface density profile is

�d(r) = Md

2πR2
d

exp(−r/Rd), (3)

where Md is the disc mass. Equation (3) leads to (Freeman 1970):

V 2
d (r) = 1

2

G Md

Rd

(
r

Rd

)2

(I0K0 − I1K1), (4)

where In and Kn are the modified Bessel functions computed at
1.6 x, with x = r/Ropt.
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5456 C. Di Paolo, P. Salucci and A. Erkurt

Figure 6. Co-added RCs for the five velocity bins in double-normalized units (first panel), in physical velocity units (second panel), and in physical units
along both the velocity and radial axes (third panel). The black empty triangles are the co-added RC for the dwarf disc galaxies (Karukes & Salucci 2017).

Finally, for the fifth optical velocity bin we will introduce a bulge
component (Das 2013).

Concerning the DM component, the presence of cored profiles
in LSBs is well known from individual RCs (see e.g. de Blok et al.
2001; de Blok & Bosma 2002; Kuzio de Naray et al. 2008, Bullock &
Boylan-Kolchin 2017). In this paper, we model the DM halo profile
by means of the cored Burkert profile (Burkert 1995; Salucci &
Burkert 2000). This halo profile has an excellent record in fitting
the actual DM haloes around disc systems of any luminosity and
Hubble Types (see Memola, Salucci & Babic 2011; Salucci et al.
2012; Lapi et al. 2018; Salucci 2019). In addition, the Burkert profile
is in agreement with weak lensing data at virial distances (Donato
et al. 2009).

It is however worth noticing that there is no sensible difference,
in the mass modelling inside Ropt, in adopting different cored DM
density profiles (Gentile et al. 2004). Then, we adopt the following
density profile (Burkert 1995):

ρDM(r) = ρ0R
3
c

(r + Rc)(r2 + R2
c )

, (5)

where ρ0 is the central mass density and Rc is the core radius. Its
mass distribution is

MDM(r) =
∫ r

0
4πr̃2ρDM(r̃) dr̃ =

= 2πρ0R
3
c [ln(1 + r/Rc)

−tg−1(r/Rc) + 0.5 ln(1 + (r/Rc)2)] . (6)

The contribution to the total circular velocity is given by

V 2
h (r) = G

MDM(r)

r
. (7)

We fit the five co-added RCs by means of the URC model
described above, which, for each co-added RC, is characterized
by three free parameters, Md, ρ0, and Rc, all set to be larger
than zero. Other limits for the priors of the fitting arise from the
amplitude and the profile of the co-added RCs themselves. We
require that: 106 M� � Md � 1012 M� from the galaxies luminosi-
ties, Rc � 200 Ropt

30 kpc kpc to avoid solid body RCs in all objects, and

10−26 � ρ0 � 10−22 g cm−3 (the lower limit guarantees that the dark
component is able to fit the RC allied with the luminous component,
the upper limit is to make the DM contribution important but not
larger than the RCs amplitudes). Notice that these limits agree well
with the outcomes of the modelling of individual RCs as found in
literature.

The resulting best-fitting values for the three free parameters (Md,
ρ0, Rc) are reported in Table 2 and the best-fitting velocity models

are plotted alongside the co-added RCs in Fig. 7.
In the case of the V velocity bin, we introduce a central bulge

(whose presence is typical in the largest galaxies) (Das 2013). We
adopt for the bulge velocity component the simple functional form:

V 2
b (r) = αbV

2
in

(
r

rin

)−1

, (8)

where Vin = 127 km s−1 and rin = 0.2 〈Rd〉 � 1.6 kpc are the val-
ues of the first velocity point of the V co-added RC. Since rin is larger
than the edge of the bulge, we consider the latter as a point mass. αb

is a parameter which can vary from 0.2 to 1 (e.g. see Yegorova &
Salucci 2007). By fitting the V co-added RC we found: αb = 0.8;
the other best-fitting parameters Md, ρ0, Rc are reported in Table 2.

In Fig. 7 we realize that, in the inner regions of the LSB
galaxies, the stellar component (dashed line) is dominant, while,
on the contrary, in the external regions, the DM component (dot–
dashed) is the dominant one. Moreover, the transition radius4

between the region dominated by the baryonic matter and the
region dominated by the DM increases with normalized radius
when we move from galaxies with the lowest Vopt to galaxies with
the highest Vopt. A similar behaviour was also observed in normal
spiral galaxies (Persic et al. 1996; Lapi et al. 2018).

5 D E N O R M A L I Z AT I O N O F T H E C O - A D D E D
ROTAT I O N C U RV E S

The mass models found in the previous section provided us with
the structural parameters of the five co-added RCs. Now, we
retrieve the properties from the individual RCs by means of the
denormalization method. It relies on the facts that, in each velocity
bin, (i) all the double-normalized RCs are similar to their co-
added double-normalized RC (see Fig. 5) and that (ii) we have
performed extremely good fits of the co-added RCs (see Fig. 7).
Thus, the relations existing for the co-added RCs are assumed to
approximately hold also for the individual RCs that form each of
the five co-added ones.

The first relation that we apply in the denormalization process is
shown in Fig. 8; the stellar disc scale length and the DM core radius
of the five velocity models are strongly correlated. The best linear
fit in logarithmic scale is

Log Rc = 0.60 + 1.42 Log Rd. (9)

4The transition radius is the radius where the DM component, dot–dashed
line, overcomes the luminous component, dashed line.
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The universal rotation curve of LSBs 5457

Table 2. Relevant parameters of the five co-added RCs. Columns: (1) i - velocity bin; (2) average value of Vopt; best-fitting
value of (3) ρ0; (4) Rc; (5)Md; (6) estimated halo virial mass according to equation (13); (7) fraction of baryonic component
at Ropt (equation 11); (8) k values defined according to equation (10).

Vel. bin 〈Vopt〉 ρ0 Rc Md Mvir α(Ropt) k
km s−1 10−3 M� pc−3 kpc 1011 M� 1011 M�

(1) (2) (3) (4) (5) (6) (7) (8)

1 43.5 3.7 ± 1.4 10.7 ± 4.3 (8.8 ± 1.8) × 10−3 1.0 ± 0.4 0.37 0.36
2 73.3 5.1 ± 1.1 12.8 ± 3.0 (3.8 ± 0.3) × 10−2 2.4 ± 0.9 0.49 0.44
3 100.6 3.7 ± 0.5 17.1 ± 1.9 (13.0 ± 0.5) × 10−2 4.0 ± 1.3 0.52 0.47
4 140.6 1.7+1.8

−1.1 30+40
−22 (4.2 ± 0.4) × 10−1 8.4 ± 3.5 0.76 0.63

5 205.6 0.8+0.7
−0.4 99+213

−87 1.7 ± 0.1 112 ± 55 0.82 0.70

Figure 7. In each of the five panels the velocity best-fitting models to the corresponding co-added RCs are shown. The dashed, dot–dashed, dotted, and solid
lines indicate the stellar disc, the DM halo, the stellar bulge, and the model contribution to the circular velocities.

The errors in the fitting parameter are shown in Table H1 in
Appendix H. The relation expressed by equation (9) means that
in each galaxy we can evaluate Rc from its measured Rd. It is worth
noting that a similar relation exists also in normal spirals (Fig. 8).

The second relation we use for the denormalization assumes that
for galaxies belonging to each Vopt bin:

G Md

V 2
optRopt

= k, (10)

where the k values are reported in Table 2. Ropt and Vopt are measured
for all the galaxies, thus equation (10) allows us to evaluate the
stellar disc mass Md for each of them.

As the third step in the denormalization process we evaluate at
Ropt, for each of the five co-added RCs, the fraction of the baryonic
matter:

α(Ropt) = V 2
d (Ropt)

V 2(Ropt)
. (11)

The α(Ropt) values are reported in Table 2; we assume that all the
galaxies included in each optical velocity bin take the same value
for α(Ropt). Then, for each galaxy, we write the DM mass inside the
optical radius as:

MDM(Ropt) = [1 − α(Ropt)]V
2

optRoptG
−1. (12)

Finally, by considering equations (6)–(12) together with the result

Figure 8. Relationship between the DM halo core radius and the stellar
disc scale length (points) and its best fit (solid line) compared to that of the
normal spirals (dashed line) (e.g. Lapi et al. 2018). The black empty triangle
represents the relationship in dwarf disc galaxies (Karukes & Salucci 2017).

from the first denormalization step, we evaluate the central density
of the DM halo ρ0 for each galaxy.

The structural parameters of the dark and luminous matter of the
galaxies of our sample, inferred by the denormalization procedure,
are reported in Tables G1–G2 in Appendix G. Moreover, we have
the basis to infer other relevant quantities of the galaxies structure
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5458 C. Di Paolo, P. Salucci and A. Erkurt

Figure 9. Relationship between the stellar disc mass and the optical
velocity. The large points refer to the values of the five velocity bins, while
the small points refer to the values of each LSB galaxy. The solid and the
dashed lines are the best fit for LSBs and normal spirals (e.g. Lapi et al.
2018). The black triangle represents the dwarf discs (Karukes & Salucci
2017).

that will be involved, in the next section, in building the scaling
relations. The virial mass Mvir that practically encloses the whole
mass of a galaxy is evaluated according to:

Mvir = 4

3
π 100 ρcrit R

3
vir, (13)

where Rvir is the virial radius and ρcrit = 9.3 × 10−30 g cm−3 is the
critical density of the Universe. The DM central surface density �0

is evaluated by the product ρ0 and Rc. The Mvir and �0 values for the
objects in our sample are shown in Tables G1–G2 in Appendix G.

6 TH E S C A L I N G R E L AT I O N S

In this section, we work out the scaling relations among the
structural properties of dark and luminous matter in each LSB
galaxy. Let us stress that for many of the scaling relations we
have no a priori insight of how they should be; in this case, the
goal is to find a statistically relevant relationship. Then we fit the
observational data with the simple power-law model. The errors
on the fitting parameters of the various scaling relations and their
standard scatters are reported in Table H1 in Appendix H. Hereafter,
the masses are expressed in M�, the radial scale length in kpc, the
velocities in km s−1, and the mass densities in g cm−3.

We start with the relation between the stellar disc mass and the
optical velocity. Fig. 9 shows that the LSB data are well fitted by

Log Md = 3.12 + 3.47 Log Vopt. (14)

This relation holding for the LSBs is similar but not identical to the
normal spirals’ one. See the comparison with Lapi et al. (2018) in
Fig. 9.

Next, in Fig. 10 (left-hand panel) we show the relation between
the DM halo central density and the core radius, which indicates
that the highest mass densities are in the smallest galaxies, as also
found in normal spirals (Salucci et al. 2007). We find:

Log ρ0 = −23.15 − 1.16 Log Rc. (15)

Moreover, we find that the central surface density follows the
relationship (see Fig. 10, right-hand panel):

Log �0 = Log (ρ0Rc) � 1.9, (16)

�0 is expressed in units of M�/pc2.
Remarkably, this relationship extends itself over 18 blue magni-

tudes and in objects spanning from dwarf to giant galaxies (Spano
et al. 2008; Donato et al. 2009; Gentile et al. 2009; Plana et al. 2010;
Salucci et al. 2012; Chan 2019; Li et al. 2019).

Then, we consider the baryonic fraction (complementary to the
DM fraction) relative to the entire galaxies, namely, the ratio
between the stellar mass M∗ ≡ Md in LSBs and the virial mass
Mvir, that practically represents the whole dark mass of a galaxy.
Fig. 11 shows that the lowest fraction of baryonic content is in
the smallest galaxies (with the smallest stellar disc mass Md). We
note that this ratio increases going towards larger galaxies and then
reaches a plateau from which it decreases for the largest galaxies.
This finding is in agreement with the inverse ‘U-shape’ of previous
works relative to normal spirals (Lapi et al. 2018). Furthermore, our
result seems to follow a trend similar to that found in Moster et al.
(2010), concerning all Hubble Types.5 The result points to a less
efficient star formation in the smallest LSBs.

Finally, we work out the relationships needed to establish VURC(R;
Ropt, Vopt), the URC-LSB in physical units (as in Persic et al.
1996). Straightforwardly, we are looking for the universal function
VURC(r/Ropt, Vopt),6 able to reproduce analytically the LSBs RCs in
Fig. 1.

This implies that Md, Rd, Rc, and ρ0 have to be expressed as
a function of Vopt. Thus, we use equation (14) and the following
relations, obtained after the denormalization process:

Log Rd = −1.65 + 1.07 Log Vopt

Log Rc = −1.75 + 1.51 Log Vopt

Log ρ0 = −22.30 − 1.16 Log Vopt, (17)

see Fig. 12. We note that the above relations (equations 14–17) show
a large scatter, on average σ � 0.34 dex, more than three times the
value (σ � 0.1 dex in Yegorova & Salucci 2007 and Lapi et al.
2018) found in normal spiral galaxies for the respective relations.
This poses an issue to the standard procedure (Persic et al. 1996) to
build the URC in physical units.

In the previous sections we have found a universal function to
reproduce the double-normalized RC of LSBs V(r/Ropt)/V(Ropt).
Now we are looking for a universal function to reproduce the RC
in physical units V(r). In spiral galaxies this is simple since Md, Rd,
Rc, and ρ0 are closely connected.

7 TH E C O M PAC T N E S S A S TH E T H I R D
PA R A M E T E R I N T H E U R C

We can reduce the scatter in the LSBs scaling relations and
proceed with the URC building by introducing a new parameter:
the compactness of the stellar mass distribution C∗. This parameter
was first put forward in Karukes & Salucci (2017) to cope with a
similar large scatter in the above scaling relations of the dd galaxies.
In short the large scatter in the previous relationships is due to the
fact that galaxies with the same stellar disc mass Md (or Vopt) can
have a very different size for Rd (i.e. Log Rd can vary almost 1 dex).
We define this effect with the fact that LSBs have a different ‘stellar
compactness’ C∗; see Figs 2 and 13.

5In Moster et al. (2010), the stellar mass M∗ can indicate the mass enclosed
in a disc and/or in a bulge.
6Hereafter, we express the normalized radial coordinate in terms of the
optical radius Ropt, instead of Rd, in order to facilitate the comparison with
previous works on the URC.
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Figure 10. Left-hand panel: the relationship between the central DM halo mass density and its core radius. Right-hand panel: surface density �0 = ρ0Rc

versus their optical velocities Vopt (LSBs in red points). Also shown is the scaling relation obtained by Donato et al. (2009) (yellow shadowed area) and Burkert
(2015) (light blue shadowed area). The black empty triangle represents the dwarf discs (Karukes & Salucci 2017).

Figure 11. Fraction of baryonic matter in LSBs versus their mass in stars
(points) compared with that of normal spirals (dashed line) (Lapi et al.
2018), of other Hubble Types (black solid line) (Moster et al. 2010), and of
dwarf discs (black dot–dashed line) (Karukes & Salucci 2017).

We define C∗, starting from the best-fitting linear relation (see
Fig. 13):

Log Rd = −3.19 + 0.36 Log Md (18)

and, according to Karukes & Salucci (2017), we set the stellar
compactness through the following relation:

C∗ = 10(−3.19+0.36 Log Md)

Rd
, (19)

where, let us remind, Rd is measured from photometry. By means
of equation (19), C∗ measures, for a galaxy with a fixed Md, the
deviation between the observed Rd and the ‘expected’ Rd value from
equation (18) (obtained by using the best-fitting line in Fig. 13).
In short, at fixed Md, galaxies with the smallest Rd have a high
compactness (Log C∗ > 0), while galaxies with the largest Rd have
low compactness (Log C∗ < 0).

The Log C∗ values for the galaxies of our sample are shown in
Tables G1–G2 in Appendix G and span from −0.45 to 0.35.

By introducing the compactness we reduce the scatter in the
relations needed to establish the analytical function of the URC-
LSB in physical units. This is highlighted in Fig. 14, where the data

are shown alongside their best-fitting plane.

Log Md = 2.52 + 3.77 Log Vopt − 1.49 Log C∗
Log Rd = −2.27 + 1.38 Log Vopt − 1.55 Log C∗
Log Rc = −2.62 + 1.96 Log Vopt − 2.20 Log C∗
Log ρ0 = −20.95 − 1.84 Log Vopt + 3.38 Log C∗. (20)

We find that, by using equation (20), the internal scatter of data with
respect to the planes is always reduced compared to the case in which
Md, Rd, Rc, and ρ0 were expressed only in terms of Vopt. The previous
average scatter σ � 0.34 dex of the 2D relations (equations 14–17),
in the 3D relations (equation 20), is reduced to σ � 0.06 dex smaller
than the typical values obtained for normal spirals.

We now evaluate the analytic expression for the URC (expressed
in physical units). By using equation (2) alongside equations (4),
(6), and (7) and expressing Md, Rd, Rc, and ρ0 as in equation (20),
we obtain:

V 2(x, Vopt, C∗) = 2.2 x2 × 10f1(Vopt,C∗)

× [I0K0 − I1K1] + 1.25/x × 10f2(Vopt,C∗)

×{−tg−1[3.2 x × 10f3(Vopt,C∗))]

+ ln[1 + 3.2 x × 10f3(Vopt,C∗)]

+0.5 ln[1 + 10.24 x2 × 102 f3(Vopt,C∗)]}, (21)

where In, Kn are the modified Bessel functions evaluated at 1.6 x,
with x = r/Ropt and

f1(Vopt, C∗) = 9.79 + 2.39Log Vopt + 0.05Log C∗
f2(Vopt, C∗) = −0.55 + 2.65Log Vopt − 1.67Log C∗
f3(Vopt, C∗) = 0.35 − 0.58Log Vopt + 0.65Log C∗. (22)

Finally, we plot in Fig. 15 the URC (equations 21–22) considering
Log C∗ = 0, corresponding to the case in which all the LSBs data
in Fig. 13 were lying on the regression line (or, analogously, the
case in which the spread of LSBs data in Fig. 2 was small). The
curve shown in Fig. 15 is in good agreement with the LSBs RCs
data. On average, the uncertainty between the velocity data and the
URC velocity predicted values is �V / V � 19 per cent, which can
be reduced to �V / V � 8 per cent, when the observational errors,
the systematics, the small non-circularities, and the prominent bulge
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Figure 12. LSBs relationships between (a) the stellar disc scale length, (b) the DM core radius, and (c) the central DM core density versus the optical velocity
(first, second, and third panel).

Figure 13. Relationship between the stellar disc scale length and the stellar
disc mass.

component7 (as in ESO534−G020) are taken into account in the
individual RCs. This result, approximately equal to that found in
normal spirals (Persic et al. 1996), highlights the success of the URC
method also in LSBs galaxies. The smallness of the uncertainty
achieved in the URC-LSB (physical) is evident is Appendix I, where
the individual RCs are tested. As a gauge we point out that F583-4,
NGC 4395, UGC5005, F568V1, ESO444−G074 have a value of
�V /V � 8 per cent. Moreover, in Appendix I, the individual RCs
are tested by assuming (i) Log C∗ = 0 and (ii) their values of C∗
(reported in Tables G1–G2 in Appendix G).

Finally, in Fig. 16 we show the URC obtained with three
significant different values of stellar compactness. The central
yellow surface has Log C∗ = 0.00 (standard case) and the other
two surfaces have Log C∗ = −0.45 (the minimum value achieved
in the LSB sample) and Log C∗ = +0.35 (the maximum one). The
three surfaces appear similar, however when we normalize them
with respect to Vopt along the velocity axis, their profiles appear
different, see Fig. 17. Nevertheless, the differences between the
URC with Log C∗ = 0.00 and the URC with the appropriate values
of C∗ for each individual object lie within the URC error bars for
most of the objects (see Appendix I).

7.1 The relevance of C∗ in LSB galaxies

Completing our analysis, we have discovered the relevance of C∗ in
the LSB galaxies. By resuming, this work shows that:

7The bulge component is taken into account in the co-added RCs modelling,
but not in the final URC, going beyond the scope of the paper.

(i) the compactness is linked to the spread in the Vopt–Rd plot
(Fig 2). Galaxies at fixed Vopt can have smaller Rd (higher C∗) or
larger Rd (lower C∗) than the average. The range of Log Rd at fixed
Vopt can reach almost 1 dex;

(ii) the profiles of the various RCs can be affected by the
compactness (see e.g. Fig. 17). Thus, the spread in the profiles
of the RCs in each velocity bin (see Figs 4–5) is not only due to
the large width of the optical velocity bins,8 but it is also due to the
different values of the galaxies compactness.

(iii) the compactness is the main source for the large scatter (σ
� 0.34) in the 2D scaling relations (see Figs 9–14).

Taking all this into account, we point out that in the URC-
LSB building procedure, having an improved statistic, the optimal
approach would be considering from the start to bin the available
RCs in C� (obtained by the spread of data in the Vopt–Rd plot in
Fig. 2) contemporaneously to Vopt. Moreover, with a sufficiently
higher statistics, we can also increase the number of the velocity
bins and characterize each of them with a smaller Vopt range to reach
the performance of Persic et al. (1996).

Finally, we stress that in the LSBs there is no one-to-one
correspondence among the optical velocity, the optical radius, the
luminosity, the virial mass, and other galaxies quantities. Then, if
we order the RCs normalized in radial units, according to quantities
different from the optical velocity (as in Fig. 1), they would not
lie on a unique surface but, according to the spread of the stellar
compactness among the objects, will give rise to a spread of RC
data lying on different surfaces.

8 TH E C O R R E L AT I O N BE T W E E N T H E
C O M PAC T N E S S O F TH E S T E L L A R A N D T H E
DM MASS DI STRI BU TI ONS

Following Karukes & Salucci (2017), we evaluate also the com-
pactness of the DM halo CDM, i.e. we investigate the case in which
the galaxies with the same virial (dark) mass Mvir exhibit different
core radius Rc.

The Mvir versus Rc relationship is shown in Fig. 18 alongside the
best-fitting linear relation, described by

Log Rc = −5.32 + 0.56 Log Mvir. (23)

8Given the limited number of available RCs, each optical velocity bin
includes galaxies with a certain range in Vopt, causing the corresponding
RCs to have (moderately) different profiles, analogously to normal spirals.
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The universal rotation curve of LSBs 5461

Figure 14. In the panels we show the relationships between (a) the stellar disc mass, (b) the stellar disc scale length, (c) the DM core radius, and (d) the central
DM core density versus the optical velocity and the compactness of the stellar distribution. The errors in the distance of galaxies, which propagates on Rc, Md,
Rd, ρ0, are negligible in the above for 3D relationships.

Then, according to Karukes & Salucci (2017), we define the
compactness CDM of the DM halo as:

CDM = 10(−5.32+0.56 Log Mvir)

Rc
. (24)

Thus, at fixed Mvir, galaxies with smaller Rc have higher com-
pactness (Log CDM > 0), while galaxies with larger Rc have lower
compactness (Log CDM < 0).

The values obtained for Log CDM are reported in Tables G1–G2
in Appendix G and span from −0.57 to 0.30.

Then, we plot the compactness of the stellar disc versus the
compactness of the DM halo in Fig. 19. We note that C∗ and CDM

are strictly related: galaxies with high C∗, also have high CDM. The
logarithmic data are well fitted by the linear relation:

Log C∗ = 0.00 + 0.90 Log CDM. (25)

The results are in very good agreement with those obtained for dd
galaxies (Karukes & Salucci 2017), whose best-fitting relation is
given by Log C∗ = 0.77 Log CDM + 0.03. In the figure we realize

that the average difference between the two relationship is just about
0.1 dex.

This result is remarkable because the same relation is found for
two very different types of galaxies (LSBs and dds). The strong
relationship between the two compactness certainly indicates that
the stellar and the DM distributions follow each other very closely. In
a speculative way, given the very different distribution of luminous
matter in an exponential thin disc and the distribution of DM in a
spherical cored halo, such strong correlation in equation (25) might
point to a non-standard interaction between the baryonic and the
DM, a velocity-dependent self-interaction in the dark sector, or a
fine-tuned baryonic feedback (e.g. Di Cintio et al. 2014; Chan et al.
2015).

9 C O N C L U S I O N S

We analysed a sample of 72 LSB galaxies selected from literature,
whose optical velocities Vopt span from ∼24 to ∼300 km s−1. Their
RCs, normalized in the radial coordinate with respect to the stellar
disc scale length Rd (or the optical radius Ropt) and ordered according
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5462 C. Di Paolo, P. Salucci and A. Erkurt

Figure 15. LSBs URC, with compactness Log C∗ = 0, and the individual 72 LSBs RCs.

Figure 16. URC in physical velocity units for three different values of stellar compactness: low (Log C∗ = −0.45), standard (Log C∗ = 0.00), and high
(Log C∗ = +0.35) stellar compactness, respectively, in blue, yellow, and red colours. The figure in the second panel corresponds to that of the first panel when
rotated by 180◦ around the velocity axis.

to the increasing optical velocity Vopt, follow a universal trend
(Fig. 1), analogously to the normal (HSB) spirals. This led us to
build the URC of LSBs as in Persic et al. (1996), i.e. to find an
analytic expression to reproduce any circular velocity by means of
only few observable parameters (e.g. Ropt and Vopt).

The building of the URC allows us to obtain the properties of
the stellar and DM distribution and to evaluate the scaling relations
valid for the whole population of objects. The analysis on the LSBs

RCs leads us to a scenario which is very similar qualitatively,
but not quantitatively, to that of the normal spirals. In detail, in
both cases, we observe that the main contribution to the circular
velocity, in the innermost galactic region, is given by the stellar
disc component, while, in the external region it is given by a cored
DM spherical halo. Moreover, the fraction of DM that contributes
to the RCs is more relevant as lower Vopt is, i.e. in smaller galaxies
(Fig. 7).
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The universal rotation curve of LSBs 5463

Figure 17. URC in double-normalized units for three values of the stellar compactness: Log C∗ = −0.45 , 0.00 , +0.35, respectively, in blue, yellow, and red
colours. Notice that the figure in the second panel corresponds to that of the first panel rotated of 180◦ around the velocity axis.

Figure 18. Relationship between the DM halo core radius and the virial
mass.

Figure 19. Relationship between the compactness of the stellar disc and
the compactness of the DM halo (red points). The black triangles refer to
the dwarf discs of Karukes & Salucci (2017). The solid and the dot–dashed
lines are the best-fitting relations for LSBs and dwarf discs.

The scaling relations among the galactic properties seem to follow
a similar trend in LSB galaxies and HSB spirals (Figs 8–10).

On the other side, there is a clear difference: we realize the
presence of a large scatter in the LSBs relationships with respect to
that found in normal spirals (see Lapi et al. 2018). Such difference
can be traced back to the large spread of the Vopt–Rd data (see
Fig. 2) or, analogously, to the large spread of the Rd–Md relationship

in Fig. 13. This finding leads us to introduce the concept of
compactness of the luminous matter distribution C∗, involved for
the first time in Karukes & Salucci (2017) to cope with a similar
issue in the case of dd galaxies.

We have that in galaxies with a fixed value for Md, the smaller
the Rd, the higher the C∗. By considering C∗ in the scaling relations,
the scatter is much reduced (it becomes smaller than that of the
normal spirals). By involving this new parameter, we proceed with
the building of the analytic universal expression to describe all the
LSBs RCs (in physical units, km s−1 versus kpc). The resulting
URC, V (r; Ropt, Vopt, C∗) in equations (21)–(22), well describes
all the RCs of our sample (Figs 15 and I1–I5). The average scatter
of the RCs data from the fitting surface in Fig. 15 achieves the
small value of �V /V � 0.08, taking into account the observational
errors, the systematics, and the small non-circularities in the motion.
This result remarks the success of the method leading to the URC
and of the relevance of C∗ in the RCs profiles (Fig. 17) and in the
scaling relations, which has been discovered in building the URC.

With larger statistics, one should subdivide the RCs according to
the galaxies C∗ and Vopt.

An important finding concerns the compactness of the DM
distribution CDM, indicating galaxies with the same virial mass
and different core radius (Fig. 18). We find a strong correlation
between C∗ and CDM as also found in Karukes & Salucci (2017)
(Fig 19): the distributions of stellar disc and of its enveloping DM
halo are entangled. In a speculative way, this finding appears to
be of very important relevance for the nature of DM. In fact, the
strong correlation between C∗ and CDM may hint to the existence
of non-standard interactions between the luminous matter and the
DM, or non-trivial self-interaction in the DM sector or a (hugely)
fine-tuned baryonic feedback on the collisionless DM distribution.

Finally, the LSBs URC provides us with the best observational
data to test specific density profiles (e.g. NFW, WDM, Fuzzy DM)
or alternatives to DM (e.g. MOND). The normal spirals’ URC, in
connection with the normal spirals’ Ropt versus Vopt relationship, is a
function of Vopt: VURC (ns)(r/Ropt, Vopt) (ns stands for normal spirals).
Therefore, to represent all the normal spirals’ individual RCs it is
sufficient to evaluate VURC (ns)(r/Ropt, Vopt) for a reasonable number
j of Vopt values, homogeneously spread in the spirals Vopt range. Any
mass model under test must reproduce the Vopt-dependent URC.
Instead, the LSBs URC, in connection with the LSBs Ropt versus Vopt

and C∗ relationship, is a function of two galaxy structural properties:
Vopt and C∗. In this case, to represent all the LSBs RCs we have to
build VURC (LSB)(r/Ropt, Vopt, C∗). We need a large sample of RCs
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5464 C. Di Paolo, P. Salucci and A. Erkurt

of galaxies of different Vopt and C∗ yielding a reasonable number
of RCs in each of the more numerous (Vopt; C∗) bins we have to
employ. The galaxies model under test must reproduce a much
complex (observational driven) URC than that of normal spirals
which depends on just the structural parameter Vopt.
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Catinella B., 2009, ApJ, 700, 1779
Zwaan M. A., van der Hulst J. M., de Blok W. J. G., McGaugh S. S., 1995,

MNRAS, 273, L35

MNRAS 490, 5451–5477 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/4/5451/5574405 by guest on 11 February 2020



The universal rotation curve of LSBs 5465

SUPPORTING IN F O R MAT I O N

Supplementary data are available at MNRAS online.

LSBdata.txt

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

APPENDI X A : UNI VERSALI TY IN NORMAL
SPIRALS

Fig. A1, from Persic et al. (1996) and Catinella et al. (2006), allows
us to appreciate the universality of the RCs in normal spirals after
the radial normalization. Let us point out the trend of the RCs from
small to large galaxies.

Figure A1. Top panel: co-added RCs from 3100 normal spirals, obtained by plotting together the results by Persic et al. (1996) and Catinella et al. (2006)
(originally in the slides by Salucci 2010). Also indicated are the absolute I-magnitudes. Bottom panel: URC (Persic et al. 1996).
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APP EN D IX B: LSB GALAXI E S SAM PL E AND
RE F ER EN C ES

In Table B1, we report the list of the LSB galaxies of this work with
their related references.

APPENDI X C : ROTATI ON C URVES IN
PHYSICAL UNITS

In Fig. C1, the 72 LSB RCs are shown in physical units. Here, all
the data are included, while the first panel of Fig. 3 includes only
data with r ≤ 30 kpc.

Table B1. LSB sample: galaxy names and references of their RCs and photometric data. Note that some galaxies have multiple RC data.

Galaxy Reference Galaxy Reference

NGC 100 de Blok & Bosma (2002) UGC 11557 Swaters et al. (2003)
NGC 247 Carignan & Puche (1990) UGC 11583 de Blok et al. (2001)
NGC 959 Kuzio de Naray et al. (2008) UGC 11616 de Blok et al. (2001)
NGC 2552 Kuzio de Naray et al. (2008) UGC 11648 de Blok et al. (2001)
NGC 2552 de Blok & Bosma (2002) UGC 11748 de Blok et al. (2001)
NGC 2552 Swaters et al. (2003) UGC 11819 de Blok et al. (2001)
NGC 2552 van den Bosch & Swaters (2001) ESO 186−G055 Pizzella et al. (2008)
NGC 3274 de Blok & Bosma (2002) ESO 206−G014 Pizzella et al. (2008)
NGC 3274 Swaters et al. (2003) ESO 215−G039 Palunas & Williams (2000)
NGC 3347B Palunas & Williams (2000) ESO 234−G013 Pizzella et al. (2008)
NGC 4395 de Blok & Bosma (2002) ESO 268−G044 Palunas & Williams (2000)
NGC 4395 van den Bosch & Swaters (2001) ESO 322−G019 Palunas & Williams (2000)
NGC 4455 de Blok & Bosma (2002) ESO 323−G042 Palunas & Williams (2000)
NGC 4455 Marchesini et al. (2002) ESO 323−G073 Palunas & Williams (2000)
NGC 4455 van den Bosch & Swaters (2001) ESO 374−G003 Palunas & Williams (2000)
NGC 5023 de Blok & Bosma (2002) ESO 382−G006 Palunas & Williams (2000)
NGC 5204 Swaters et al. (2003) ESO 400−G037 Pizzella et al. (2008)
NGC 5204 van den Bosch & Swaters (2001) ESO 444−G021 Palunas & Williams (2000)
NGC 7589 Pickering et al. (1997) ESO 444−G047 Palunas & Williams (2000)
UGC 628 de Blok & Bosma (2002) ESO 488−G049 Pizzella et al. (2008)
UGC 634 van Zee et al. (1997) ESO 509−G091 Palunas & Williams (2000)
UGC 731 de Blok & Bosma (2002) ESO 534−G020 Pizzella et al. (2008)
UGC 731 Swaters et al. (2003) F561-1 de Blok et al. (1996)
UGC 731 van den Bosch & Swaters (2001) F563-V1 de Blok et al. (1996)
UGC 1230 de Blok & Bosma (2002) F563-V2 Kuzio de Naray et al. (2006)
UGC 1230 van der Hulst et al. (1993) F563-V2 de Blok et al. (1996)
UGC 1281 Kuzio de Naray et al. (2006) F565-V2 de Blok et al. (1996)
UGC 1281 de Blok & Bosma (2002) F568-1 Swaters, Madore & Trewhella (2000)
UGC 1551 Kuzio de Naray et al. (2008) F568-3 Kuzio de Naray et al. (2006)
UGC 2684 van Zee et al. (1997) F568-3 de Blok et al. (2001)
UGC 2936 Pickering et al. (1999) F568-3 Swaters et al. (2000)
UGC 3137 de Blok & Bosma (2002) F568-6 Pickering et al. (1997)
UGC 3174 van Zee et al. (1997) F568-V1 Swaters et al. (2000)
UGC 3371 de Blok & Bosma (2002) F571-8 Marchesini et al. (2002)
UGC 3371 van den Bosch & Swaters (2001) F571-8 de Blok et al. (2001)
UGC 4115 de Blok et al. (2001) F571-V1 de Blok et al. (1996)
UGC 4278 de Blok & Bosma (2002) F574-1 Swaters et al. (2000)
UGC 5005 de Blok & McGaugh (1997) F574-2 de Blok et al. (1996)
UGC 5272 Kuzio de Naray et al. (2008) F579-V1 de Blok et al. (2001)
UGC 5272 de Blok & Bosma (2002) F583-1 Kuzio de Naray et al. (2008)
UGC 5716 van Zee et al. (1997) F583-1 Marchesini et al. (2002)
UGC 5750 Kuzio de Naray et al. (2006) F583-1 de Blok et al. (2001)
UGC 5750 de Blok & Bosma (2002) F583-1 de Blok et al. (1996)
UGC 5999 van der Hulst et al. (1993) F583-4 Kuzio de Naray et al. (2006)
UGC 7178 van Zee et al. (1997) F583-4 de Blok et al. (2001)
UGC 8837 de Blok & Bosma (2002) F730-V1 de Blok et al. (2001)
UGC 9211 van den Bosch & Swaters (2001) PGC 37759 Morelli et al. (2012)
UGC 11454 de Blok et al. (2001)
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Figure C1. The 72 LSB RCs in physical units (all data).

APPENDI X D : ROTATION CURVES IN
VELOCI TY BI NS

In Fig. D1 we show the LSBs RCs separately in the five velocity
bins, both in physical units and in double-normalized units (i.e.
along the radial and the velocity axes).

Figure D1. LSBs RCs belonging to each of the five optical velocity bins.

MNRAS 490, 5451–5477 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/4/5451/5574405 by guest on 11 February 2020



5468 C. Di Paolo, P. Salucci and A. Erkurt

A P P E N D I X E: C O N S T RU C T I O N O F TH E
C O - A D D E D ROTAT I O N C U RV E S

In Tables E1–E2 we show the data related to the five co-added RCs
obtained in Section 3. In detail, the first column describes the centre
of the radial bins represented by the coloured points in Figs 5–7.
The second column indicates the number of RCs data (grey points in
Fig. 5) belonging to each radial bin. Finally, the third and the fourth
columns show the velocity data and their error bars in physical units,
related to the co-added RCs in the second panel of Fig. 6 and in
Fig. 7.

Table E1. RCs for each optical velocity bin of LSB galaxies. Columns: (1)
centre of the radial bin; (2) number of data in each bin; (3) co-added velocity
for each bin; (4) velocity error. In order to express the radial coordinate in
physical units, the data of the first column relative to each velocity bin must
be multiplied by the respective average value of disc scale length 〈 RD〉,
reported in Table 1.

r/RD N. data V Error bar
km s−1 km s−1

(1) (2) (3) (4)

I velocity bin

0.2 15 7.3 1.2
0.6 19 16.7 1.7
1.0 18 25.6 2.4
1.4 19 34.2 3.1
1.8 13 37.1 1.6
2.25 13 42.4 1.4
2.75 10 41.9 2.1
3.25 13 45.5 0.9
3.75 5 48.4 0.7
4.25 5 51.1 1.4
4.75 5 49.9 1.1
5.25 5 56.4 4.2

II velocity bin

0.2 62 25.0 1.5
0.6 70 40.0 1.3
1.0 39 52.0 1.9
1.4 26 56.5 1.9
1.8 26 62.3 1.2
2.25 23 64.8 1.3
2.75 23 70.7 0.8
3.25 16 74.3 0.5
3.75 15 76.3 1.2
4.25 12 78.6 1.4
4.75 12 81.0 1.6
5.25 9 81.7 2.1

III velocity bin

0.2 86 25.3 1.8
0.6 56 53.7 1.9
1.0 46 71.8 2.7
1.4 45 81.1 2.8
1.8 35 89.9 3.2
2.25 39 93.6 1.3
2.75 29 97.2 1.7
3.25 20 101.3 0.5
3.75 10 104.0 0.8
4.25 8 106.9 1.0
4.75 10 107.8 1.4
5.25 6 107.9 2.0

Table E2. It continues from Table E1.

r/RD N. data V Error bar
km s−1 km s−1

(1) (2) (3) (4)

IV velocity bin

0.2 141 47.9 2.2
0.6 81 90.4 2.0
1.0 54 112.2 2.6
1.5 58 121.8 2.2
2.1 41 128.6 3.1
2.7 28 133.7 2.9
3.3 17 136.0 2.5
3.9 9 138.9 3.0
4.7 8 129.5 2.8

V velocity bin

0.2 71 127.1 7.2
0.6 32 148.7 6.1
1. 23 173.9 3.5
1.4 14 197.6 3.7
1.8 16 194.8 4.9
2.25 14 198.2 3.4
2.75 5 199.3 5.2
3.25 9 205.5 1.5
3.75 6 203.2 4.0
4.4 8 199.6 5.3
5.2 5 195.2 6.9

A P P E N D I X F: TH E G A S C O M P O N E N T I N T H E
ROTAT I O N C U RV E S

The gas disc component in galaxies is an additional component to
the stellar disc and the DM halo giving a contribution to the circular
velocities. At any rate, by performing a suitable test, it is possible
to realize that the gas is (moderately) important only in the first
optical velocity bin, where, in any case, in the inner regions the
stellar component overcomes the gaseous one, while in the external
region the DM component overcomes the gaseous one; thus, the gas
component gives a modest contribution to the RC. In Fig. F1, for
the first velocity bin co-added RC, we compare the mass–velocity
model fit that includes the contribution from a H I disc with the
velocity–mass model which does not. The estimated masses of the
stellar disc and of the DM halo show, in the two cases, only a
moderate change.

By modelling the co-added RC of the first Vopt bin by means of
the stellar/H I disc + DM halo model we get:

Md = 8.0 × 108 M�;

r0 = 10.7 kpc;

ρ0 = 3.2 × 10−3 M� pc−3;

Mvir = 8.2 × 1010 M�;

MH I = 1.0 × 109 M�.

By removing the gaseous disc, we get:

Md = 8.8 × 108 M�;

r0 = 10.7 kpc;

ρ0 = 3.7 × 10−3 M� pc−3;

Mvir = 1.0 × 1011 M�.
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Figure F1. I velocity bin RC best fitted with gas (left-hand panel) and without gas (right-hand panel). The dashed, dot–dashed, dotted, and solid lines stand
for the stellar disc, the DM halo, the gaseous disc, and the total contributions to the RC.

We remind that Md, r0, ρ0, MH I (all quantities inferred by the
fit) are the stellar disc mass, the DM halo core radius, the central core
mass density, the H I gaseous disc mass (including the correction
for the helium contribution), respectively. Mvir is the virial mass.
The differences in the values of Md, r0, ρ0, Mvir, when we include
gas or we exclude the gaseous component, are inside the error bars
reported in Table 2 related to the fit without the H I disc.

APPENDI X G : STRUCTURAL PROPERTIES OF
LSB G ALAXI ES

In Tables G1–G2 we report: the names of the LSB galaxies in
our sample alongside their distances D, the stellar disc scale
lengths Rd, and the optical velocities Vopt (all taken from literature).
Furthermore, the table shows the values of the stellar disc mass
Md, the DM core radius Rc, the central density of the DM halo
ρ0, the virial mass Mvir, the central surface density �0 = ρ0 Rc, the
compactness of the stellar mass distribution C∗, and that of the DM
mass distribution CDM, all evaluated in this work.

Table G1. Individual properties of LSBs. Columns: (1) galaxy name; (2) distance; (3) disc scale length; (4) optical velocity; (5) disc mass; (6) core radius; (7)
central DM density; (8) virial mass; (9) central surface density; (10) compactness of stellar mass distribution; (11) compactness of the DM mass distribution.

Name D Rd Vopt Md Rc Log ρ0 Mvir Log �0 Log C∗ Log CDM

Mpc kpc km s−1 107 M� kpc g cm−3 109 M� M� pc−2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

UGC4115 7.8 0.4 24.2 6.3 1.1 −23.57 1.6 1.63 0.06 − 0.15
F563V1 51.0 2.4 27.3 48 14 −25.30 27 1.01 −0.40 − 0.57
UGC11583 5.9 0.3 27.9 6.5 0.7 −23.17 1.6 1.88 0.17 − 0.00
UGC2684 8.2 0.8 36.7 29 2.9 −23.95 12 1.69 −0.00 − 0.10
F574-2 66.0 4.5 40.0 192 33 −25.57 171 1.13 −0.45 − 0.50
F565V2 36.0 2.0 45.2 110 11 −24.69 76 1.51 −0.19 − 0.21
UGC5272 6.1 1.2 48.8 77 5.2 −24.11 42 1.77 −0.02 − 0.04
UGC8837 5.1 1.2 49.6 79 5.2 −24.10 44 1.78 −0.02 − 0.03
F561-1 63.0 3.6 50.8 250 25 −25.15 244 1.41 −0.31 − 0.28
UGC3174 11.8 1.0 51.7 72 4.0 −23.88 36 1.89 0.04 0.04
NGC 4455 6.8 0.9 53.0 68 3.4 −23.75 33 1.96 0.08 0.08
UGC1281 5.5 1.7 55.0 138 8.5 −24.36 96 1.74 −0.08 − 0.05
UGC1551 20.2 2.5 55.8 211 15 −24.73 182 1.61 −0.18 − 0.14
UGC9211 12.6 1.3 61.9 165 5.9 −24.10 66 1.84 0.06 0.01
F583-1 1.6 1.6 62.0 201 7.8 −24.29 90 1.77 0.00 − 0.03
UGC5716 24.1 2.0 66.4 288 11 −24.45 150 1.75 −0.03 − 0.04
UGC7178 24.0 2.3 69.9 367 13 −24.54 210 1.74 −0.06 − 0.04
ESO400−G037 37.5 4.1 69.9 651 29 −25.09 502 1.55 −0.21 − 0.18
NGC 3274 0.47 0.5 68.0 75 1.5 −23.01 18 2.33 0.35 0.30
F583-4 49.0 2.7 70.5 438 16 −24.69 275 1.69 −0.10 − 0.08
F571V1 79.0 3.2 72.4 549 21 −24.83 382 1.66 −0.14 − 0.10
NGC 5204 4.9 0.7 73.1 115 2.2 −23.24 33 2.27 0.30 0.27
UGC731 8.0 1.7 73.3 298 8.5 −24.20 147 1.90 0.04 0.05
NGC 959 7.8 0.9 75.3 172 3.6 −23.57 60 2.15 0.21 0.21
NGC 100 11.2 1.2 77.2 233 5.2 −23.81 96 2.07 0.15 0.16
NGC 5023 4.8 0.8 78.4 160 2.9 −23.38 52 2.25 0.27 0.27
UGC5750 56.0 5.6 80.0 1171 46 −25.27 1125 1.56 −0.26 − 0.18
UGC3371 12.8 3.1 82.0 681 20 −24.69 494 1.78 −0.09 − 0.02
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Table G1 – continued

Name D Rd Vopt Md Rc Log ρ0 Mvir Log �0 Log C∗ Log CDM

Mpc kpc km s−1 107 M� kpc g cm−3 109 M� M� pc−2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 4395 3.5 2.3 82.3 509 13 −24.40 312 1.89 −0.00 0.05
UGC11557 23.8 3.1 83.7 710 20 −24.67 520 1.80 −0.08 − 0.01
UGC1230 51.0 4.5 90.0 1278 34 −24.99 1027 1.71 −0.15 − 0.07
ESO206−G014 60.3 5.2 91.3 1531 42 −25.12 1338 1.67 −0.19 − 0.10
NGC 2552 10.1 1.6 92.0 475 7.8 −23.97 213 2.09 0.14 0.18
UGC4278 10.5 2.3 92.6 691 13 −24.32 386 1.96 0.04 0.10
UGC634 35.0 3.1 95.1 984 20 −24.59 662 1.88 −0.03 0.05
ESO488−G049 23.0 4.4 95.3 1410 33 −24.92 1159 1.76 −0.13 − 0.03
UGC5005 52.0 4.4 95.5 1406 33 −24.92 1153 1.77 −0.13 − 0.03
UGC3137 18.4 2.0 97.7 669 11 −24.14 350 2.06 0.10 0.17
F574-1 96.0 4.5 99.0 1546 34 −24.91 1306 1.79 −0.12 − 0.01
F568-3 77.0 4.0 100.5 1416 29 −24.78 1130 1.84 −0.08 0.02
ESO322−G019 45.2 2.5 100.7 878 14 −24.32 528 2.01 0.05 0.14
F563V2 61.0 2.1 101.3 755 11 −24.15 412 2.07 0.10 0.18
NGC 247 2.5 2.9 106.6 1156 18 −24.42 784 2.00 0.02 0.13
ESO444−G021 60.7 6.4 107.4 2603 56 −25.17 2760 1.75 −0.19 − 0.05
F579V1 85.0 5.1 111.5 2223 40 −24.92 2134 1.85 −0.12 0.03
F568V1 80.0 3.2 115.8 1505 21 −24.44 1119 2.04 0.02 0.16
ESO374−G003 43.2 4.2 118.3 2084 31 −24.70 1856 1.97 −0.05 0.11
F568-1 85.0 5.3 130.0 4218 43 −25.13 1354 1.67 −0.03 − 0.10
UGC628 65.0 4.7 130.0 3740 36 −25.02 1132 1.71 0.00 − 0.07
UGC11616 72.8 4.9 133.2 4094 38 −25.04 1282 1.71 −0.00 − 0.07
ESO186−G055 60.1 3.6 133.2 3041 25 −24.76 813 1.81 0.08 0.00
ESO323−G042 59.7 4.4 138.7 4020 33 −24.91 1221 1.78 0.04 − 0.02
PGC37759 193.2 6.8 139.4 6195 60 −25.30 2318 1.65 −0.08 − 0.12
ESO234−G013 60.9 3.7 139.4 3425 26 −24.74 949 1.84 0.08 0.02
F571-8 48.0 5.2 139.5 4765 42 −25.05 1577 1.73 −0.00 − 0.05
F730V1 144.0 5.8 141.6 5523 49 −25.15 1953 1.71 −0.03 − 0.07
UGC11648 46.7 3.8 142.2 3620 27 −24.74 1022 1.85 0.09 0.03
ESO215−G039 61.3 4.2 142.9 4037 31 −24.83 1208 1.82 0.06 0.01
ESO509−G091 72.8 3.7 146.8 3735 25 −24.68 1050 1.89 0.11 0.06

Table G2. It continues from Table G1.

Name D Rd Vopt Md Rc Log ρ0 Mvir Log �0 Log C∗ Log CDM

Mpc kpc km s−1 107 M� kpc g cm−3 109 M� M�/pc2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

ESO444−G047 62.4 2.7 148.4 2809 16 −24.38 662 2.01 0.19 0.13
UGC11454 92.1 4.5 150.3 4787 34 −24.85 1525 1.85 0.06 0.03
UGC5999 45.0 4.4 153.0 4851 33 −24.82 1540 1.87 0.07 0.04
UGC11819 59.2 5.3 154.6 6578 43 −25.10 1490 1.70 0.04 − 0.08
ESO382−G006 65.4 2.3 160.0 3097 13 −24.29 449 2.01 0.27 0.13
ESO323−G073 69.6 2.1 165.3 2923 11 −24.14 398 2.08 0.32 0.18
NGC 3347B 46.2 8.1 167.0 11760 78 −25.43 3369 1.63 −0.05 − 0.14
ESO268−G044 49.9 1.9 175.6 3057 10 −24.01 406 2.16 0.36 0.23
ESO534−G020 226.7 16.7 216.6 40638 218 −25.86 17351 1.64 −0.17 − 0.18
NGC 7589 115.0 12.6 224.0 32831 146 −25.58 13657 1.75 −0.08 − 0.07
UGC11748 73.1 3.1 240.7 9418 20 −24.22 1911 2.26 0.32 0.31
UGC2936 43.6 8.4 255.0 28363 82 −25.09 10784 1.99 0.07 0.12
F568-6 201.0 18.3 297.0 83839 249 −25.67 49173 1.89 −0.10 0.01
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APPEN D IX H : ERRO R S A N D S C AT T E R I N THE
SCALING R ELATI O N S

In Table H1, the errors on the best-fitting parameters of the scaling
relations evaluated in this work are shown. The standard scatter σ

of individual galaxies data of the various scaling relations is also
reported. In the 2D scaling relations, it is evaluated according to:

σ =
√∑N

i=1(yi − f (xi))2/N , where N = 72, yi and xi are the loga-
rithmic data in the y and x axes, respectively, and f is the considered
scaling function (a line). In the 3D scaling relations, the standard

scatter is evaluated according to: σ =
√∑N

i=1(zi − f̃ (xi, yi))2/N ,
where zi, yi, xi are the logarithmic data in the z, y, and x
axes, respectively, and f̃ is the considered scaling function
(a plane).

APPENDI X I: LSB ROTATI ON CURVES W ITH
T H E I R U R C

We show in Figs I1–I5 the LSBs RCs data together with their
URC, taking into account equations (21) and (22) and the val-
ues of Ropt ≡ 3.2 Rd, Vopt, and C∗ reported in Tables G1–G2 in
Appendix G. We also show the URC for the case Log C∗ = 0 in
Figs I1–I5. In comparing the URC model with the 72 individual
RCs, in 21 of them we have assumed a random systematic error
running from � 3 per cent to � 16 per cent in their amplitudes
(velocity measurements). In Table I1, the changes applied are
specified. Removing such systematics improves fits which were
already successful. Let us stress that the URC can help determining
how well an individual RC correctly reflects the mass distribution
of the galaxy.

Table H1. Errors and scatters on the various scaling relations. Columns: (1) relation; (2)–(4) error bars on the first,
second, and third (when present) fitting parameters; (5) standard scatter of the 72 individual galaxies data from the
scaling relations.

Fitted relation � a � b � c σ

(1) (2) (3) (4) (5)

Equation (9): Log Rc(Log Rd) 0.15 0.26 – –
Equation (14): Log Md(Log Vopt) 0.25 0.12 – 0.24
Equation (15): Log ρ0(Log Rc) 0.07 0.05 – 0.21
Equation (17): Log Rd(Log Vopt) 0.25 0.13 – 0.24
Equation (17): Log Rc(Log Vopt) 0.36 0.18 – 0.34
Equation (17): Log ρ0(Log Vopt) 0.56 0.28 – 0.54
Equation (18): Log Rd(Log Md) 0.23 0.02 – 0.16
Equation (20):
Log Md(Log Vopt, Log C∗)

0.06 0.03 0.04 0.06

Equation (20):
Log Rd(Log Vopt, Log C∗)

0.02 0.01 0.02 0.02

Equation (20):
Log Rc(Log Vopt, Log C∗)

0.03 0.02 0.02 0.03

Equation (20): Log ρ0(Log Vopt, Log C∗) 0.15 0.07 0.10 0.13
Equation (23): Log Rc(Log Mvir) 0.26 0.02 – 0.15
Equation (24): Log C∗(Log CDM) 0.01 0.06 – 0.15
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Figure I1. LSBs RCs data with their URC given by equations (21)–(22). The solid line is obtained for the Log C∗ values reported in Tables G1–G2 in
Appendix G and is compared with the dashed line obtained for Log C∗ = 0. For each galaxy, we show the URC fit up to the farthest measurements (left) and
up to the virial radius (right).
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Figure I2. It continues from Table I1.
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Figure I3. It continues from Table I2.
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Figure I4. It continues from Table I3.
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Figure I5. It continues from Table I4.
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Table I1. List of galaxies in which we have left the amplitude of the RC to
freely vary by f per cent. Columns: (1) galaxy name; (2) correction to the
velocity values of the RCs data, expressed in f per cent.

Name f per cent
(1) (2)

UGC2684 + 10.9
F565V2 + 8.8
F561-1 − 7.9
UGC3174 − 9.7
UGC1551 − 14.3
UGC9211 + 4.8
F583-1 − 8.1
ESO400−G037 − 7.1
NGC 959 − 15.9
F574-1 − 8.1
ESO444−G021 − 9.3
F579V1 − 16.1
ESO374−G003 − 5.9
F568-1 − 9.2
UGC11616 − 7.5
PGC37759 − 10.8
F730V1 − 9.2
ESO215−G039 − 10.5
UGC11454 − 3.3
NGC 3347B − 6.0
ESO268−G044 − 5.7

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Abstract

McGaugh et al. have found, in a large sample of disk systems, a tight nonlinear relationship between the total radial
accelerations g and their components gb that have arisen from the distribution of the baryonic matter. Here, we
investigate the existence of such a relation in Dwarf Disk Spirals and Low Surface Brightness (LSB) galaxies on
the basis of Karukes & Salucci and Di Paolo & Salucci. We have accurate mass profiles for 36 Dwarf Disk Spirals
and 72 LSB galaxies. These galaxies have accelerations that cover the McGaugh range but also reach out to one
order of magnitude below the smallest accelerations present in McGaugh et al. and span different Hubble Types.
We found, in our samples, that the g versus gb relation has a very different profile and also other intrinsic novel
properties, among those, the dependence on a second variable: the galactic radius, normalized to the optical radius
Ropt, at which the two accelerations are measured. We show that the new far from trivial g versus g r R,b opt( )
relationship is a direct consequence of the complex coordinated mass distributions of the baryons and the dark
matter (DM) in disk systems. Our analysis shows that the McGaugh et al. relation is a limiting case of a new
universal relation that can be very well framed in the standard “DM halo in the Newtonian Gravity” paradigm.

Key words: dark matter – galaxies: fundamental parameters – galaxies: kinematics and dynamics – galaxies:
structure

1. Introduction

A recent study (McGaugh et al. 2016), hereafter referred to
as McG+16, claims an empirical discovery that would challenge
the idea of dark matter (DM) halos surrounding galaxies, or, at
least, it would revolutionize our knowledge about the nature of the
huge mass discrepancy therein. The standard paradigm relies on
collisionless nonluminous particles constituting about 25% of the
mass energy of the universe and playing a crucial role in the birth
and the evolution of its structures.

The relation, in rotating systems, between the galaxy
gravitational potential Φtot and the radial acceleration g(r) of
a point mass at distance r is

g r
V r

r

d r

d r
, 1

2
tot= = -

F( ) ( ) ( ) ( )

where V(r) is the circular velocity. The baryonic component of
the radial acceleration is given by:

g r
V r

r

d r

d r
, 2b

b b
2

= = -
F( ) ( ) ( ) ( )

where

V r V r V r V r 3b d
2 2

H
2

bu
2

I= + +( ) ( ) ( ) ( ) ( )
is the baryonic contribution to the circular velocity. In
Equation (3), the velocities V r d r dri i

1 2= - F∣ ( ) ∣ are
the solutions of the separated Poisson equations: ri

2 F =( )
G4 ip r . ρi is equal to the stellar disk, the H I disk and the bulge

mass densities and Φi are the gravitational potentials of the i-
components. Obviously we have:

g r g r g r , 4h b= -( ) ( ) ( ) ( )

where gh refers to the DM contribution to the radial
acceleration g.
McG+16 investigated 153 galaxies across a wide range of

Hubble types and luminosities with new high-quality data from
the Spitzer Photometry and Accurate Rotation Curves database.
The analysis includes (see Lelli et al. 2016 for details):

(i) near-infrared (3.6 μm) observations that trace the dis-
tribution of stellar masses under the assumption of 0.5
Me/Le for the value of the stellar mass to light ratio in
this band;

(ii) the 21 cm observations that trace the distribution of the
atomic gas and the velocity fields.

They found that the radial acceleration g(r) shows an
anomalous feature. It correlates at any radius and in any object,
with its component generated from the baryonic matter gb(r) in
a way that it is:

(i) very different from the g=gb relationship expected in
the Newtonian case with the presence of the only
baryonic matter;

(ii) claimed to be of difficult understanding in the standard
Newtonian + DM halos scenario.

In detail, the McGaugh relationship (see Figures 1 and 3
in McG+16) relies on 153 objects for a number of 2693
independent circular velocity measurements. Each of them
yields the pairs (gb, g), well fitted by:

g r
g r

Log Log
1 exp

, 5b

g r

g
b

=
- -⎜ ⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟
( ) ( ) ( )

( )
˜
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with g 1.2 10 ms10 2= ´ - -˜ . At high accelerations, g g ˜,
Equation (5) converges to the Newtonian relation g=gb;
while, at lower accelerations, g g< ˜, Equation (5) strongly
deviates from the latter (McGaugh et al. 2016; Li et al. 2018).

A recent investigation of the McG+16 relationship has been
performed by Salucci (2018a, 2018b) (hereafter S18) in three
very large samples of normal spirals by exploiting three
specifically devised methods of deriving gh (as shown in
Equation (4)). In these works, the stellar mass distribution is
estimated kinematically by means of the mass modeling of the
rotation curves, rather than being estimated from spectro-
photomery as in McG+16. The outcome is a g(gb) relationship,
with an rms of 0.15 dex and with a quite small systematical
difference of 0.2 dex from Equation (5) (Salucci 2018b).
These results, totally framed in the DM scenario and obtained
by means of novel methods of mass modeling, confirm the
McG+16 relationship in normal Spirals.

Recently, Karukes & Salucci (2017) and Di Paolo & Salucci
(2018) have obtained the radial distribution of the total,
baryonic matter and DM for 36 dwarf spirals, yielding 315
acceleration measurements, and 72 Low Surface Brightness
(LSB) galaxies, yielding 1601 acceleration measurements (see
also Appendix A for further details). These accelerations
occupy a region in the g–gb plane (see Figure 1) compatible
with that covered by previous works, but that, in addition:

(a) reaches smaller values along the vertical axis, considering
our smallest value of gLog m s 12.52 -- / (−14.5, see
Appendix A) and the McG+16 smallest unbinned value
of gLog m s 11.4;2 -- /

(b) pertains to different Hubble Types than the bulk of the
objects in McG+16; it is worth specifying that the sample
of McG+16 (153 rotating objects) has dwarf and LSB
disks alongside a large number of normal Spirals. In our

work, we have only dwarf disks (here called DD) and
LSB galaxies.

A very important element of our analysis is the baryonic
fraction fb(r), which varies in galaxies of different dimensions
and Hubble Types. It is pivotal to frame our data and those of
McG+16 and S18 within the standard “DM halo in the
Newtonian Gravity” paradigm. Moreover, we will understand
why the McG+16 relation is only a limit of a more complex
universal relation.
Let us define the distribution of stars in disk galaxies,

by means of their surface brightness, which is almost
always given, in disk systems, by r r R0 1.086 dm m= +( ) ( )
(Freeman 1970), where Rd is the exponential disk scale length
(μ(0) is variable object by object). In this work, the
accelerations are in meters per second squared and the
distances are in kiloparsecs. The optical radius Ropt is defined
as the radius encompassing 83% of the total luminosity;
Ropt=3.2 Rd. The optical velocity Vopt is the circular velocity
measured at Ropt. Let us note that in this paper, we will use
alternatively the quantities x and r/Ropt ≡ x. In addition, our
system of coordinates is r, j, z.
The work is organized as follows: In Section 2, we describe

the dwarf disks and LSBs samples. In Section 3, we briefly
describe the universal rotation curve (URC) method used in our
analysis. In Section 4, we build the g versus gb relation
followed, in Section 5, by a 3D analysis that involves the
baryonic fraction fb(r) and the additional variable x. Finally, in
Section 6, we report the consequences of our results.

2. The DD and LSB Samples

The sample of dwarf disks (Karukes & Salucci 2017) that we
use in this work is drawn from the Local Volume catalog
(Karachentsev et al. 2013). The faintest objects are 3 magnitudes
fainter with respect to the sample of spirals of McG+16
and S18. These galaxies explore quite smaller mass scales than
the normal Spirals. The criteria adopted to select the objects are
described in Karukes & Salucci (2017). In detail, the sample
consists of 36 galaxies (two among them are in common with the
LSB sample) whose structural properties span the intervals:

M19.9 14.2K - - , R0.18 kpc 1.63 kpcd  , and
V17 km s 61 km s1

opt
1 - - . All galaxies are bulgeless disk

systems in which the rotation, corrected for the pressure support,
totally balances the gravitational force.
The sample of LSBs consists of 72 disk galaxies. They are

objects that emit an amount of light per area much smaller than
normal spirals (McGaugh 1994; Impey & Bothun 1997;
de Blok et al. 1996) and do not lay on the L Rd

2µ relationship
of the latter. The sample of rotation curves is selected from
the literature (A. Erkurt et al. 2019, in preparation)4 and
characterized by objects whose optical velocities Vopt span
from ∼24 to ∼300 km s−1.
For both DD and LSB samples, the available photometry

and kinematics are of sufficient quality to allow us to obtain
a proper mass modeling, by means of the technique of the
URC (Persic et al. 1996).

Figure 1. Relationship between the total acceleration g and its baryonic
component gb. x r Ropt= . Red, magenta, and blue points correspond to radial
bins with increasing distance from the galactic center (see the legend). Also
shown are the McGaugh et al. (2016) relationship (solid green line) with its 1σ
errorbars of 0.11 dex (dashed green lines) and the Newtonian relationship

g gLog Log b= (brown line). See also Figure 6 in Appendix A for LSB data
with very low values of Log g and Log gb.

4 In Appendix F, we provide the references for the RC data and other galactic
properties (see Tables 1 and 2).

2

The Astrophysical Journal, 873:106 (13pp), 2019 March 10 Paolo, Salucci, & Fontaine



3. The Mass Distribution in Disk Systems by Exploiting
the URC

The URC compacts the structural properties of rotating
systems (Persic et al. 1996; Salucci et al. 2007). As a starting
point, all galaxies of a given sample are binned in different
groups/families according to their Vopt (in the case of our
samples) and then coadded in terms of x r Roptº , their radial
normalized coordinate. Galaxies inside a certain limited range
of Vopt all have, approximately, the same baryonic and DM
distribution, once they are expressed in normalized radial
coordinate x. For the present samples, the DD galaxies are
grouped in a single bin (Karukes & Salucci 2017) and the LSB
galaxies are grouped in five bins (according to their increasing
Vopt; Di Paolo & Salucci 2018).

The URC model is based on an exponential disk (Freeman
1970) for the stellar component and the Burkert density profile
(Burkert 1995) for the DM halo (preferred in disk systems, see
Salucci & Burkert 2000; de Blok & Bosma 2002; Karukes &
Salucci 2017). For the disk component, the Tonini et al. H I
disk (Tonini et al. 2006; Evoli et al. 2011) is considered in DD
galaxies and a bulge component (Yegorova & Salucci 2007) is
taken into account for the largest LSB galaxies (Das 2013).
Let us note that, for LSBs, the gas contribution to the circular
velocity can be considered negligible in view of the aim of this
paper. See Appendix C.

We fit with the URC the coadded rotation curves for each of
the 1+5 families. This provides us with V r R V,URC opt opt( )
and V r R V,bURC, opt opt( ), i.e., the circular velocity and its
baryonic component (see Appendix B for further details about
the URC method).

The baryonic fraction fb as a function of r Ropt for galaxies
tagged by Vopt is given by:

f r R V
V r R V

V r R V
,

,

,
. 6b

b
opt opt

URC,
2

opt opt

URC
2

opt opt

=( ) ( )
( ) ( )

See Figure 2. Note that, going from the inner to the external
radii and from the biggest to the smallest galaxies, the baryonic
component becomes less and less relevant than the DM one. It
is remarkable that a very similar behavior of f r R V,b opt opt( ) is
found also in Spirals (Salucci et al. 2007; Lapi et al. 2018).

Equation (6), recast in other terms, becomes V rbURC,
2 =( )

f r V V r,b opt URC
2( ) ( ) and, consequently, with Equation (1), we

have for each galaxy:

g r f r V g r, . 7b b opt=( ) ( ) ( ) ( )
Then, by summarizing: in each galaxy with disk scale length
R 3.2opt , rotation curveV r R, opt( ) with Vopt tag value, we have:
g r V r r2=( ) ( ) and g r f r g rb b=( ) ( ) ( ), where fb(r) is the
baryonic fraction (hereafter, for simplicity, we drop the family
tag Vopt). Notice that g(r) is totally observed, gb(r) has a part
derived from the baryonic component to the rotation curves
obtained by the baryonic mass distribution.

4. Results

The emerging g versus gb relationships, obtained for DD and
LSB galaxies, are shown in Figure 1. We realize that the
universality of the g gb( ) relation, holding in normal spirals
(McGaugh et al. 2016; Salucci 2018a) breaks down in our
samples. The scatters of DD and LSB data with respect to the
McG+16 relation are 0.17 dex and 0.31 dex respectively. This
big discrepancy cannot be due to observational or systematical
errors, in fact we have used high-quality rotation curves, so that
the observational uncertainties on V2(r), leading to g(r), are less
than 20%. Systematical errors are present only on the quantities
gb=fbg, due to fb. From the modeling of the coadded rotation
curves in Spirals, DD and LSBs, the quantity fb has fitting
uncertainties running from 10% at higher luminosity to 30% at
lower luminosity. This implies that the uncertainties on Log gb
lay in the range between 0.13 dex and at most 0.19 dex. In this
work, as those discussed in previous sections, the determination
of g and gb is not an issue. It is important to note in Figure 1
that there are many points strongly discrepant with respect to
the McG+16 relation along both axes: in detail 1 dex on the
Log gb axis and the same value on the Log g axis, where our
measurements can be considered almost error-free.
Let us stress that, as a consequence of the method employed

to derive gb, we cannot have: gb>g; only when we consider
the fitting uncertainties on gb, we obtain that this quantity can
(slightly) overcome g on average by a value of ∼0.1 dex at a 2σ
level of uncertainty (see Appendix D). This point is irrelevant
for the scope of this paper.
The data relative to the inner regions of galaxies (red data)

are the closest to the equality line g gLog Log b= , while
data relative to more external regions (blue data) of galaxies
tend to depart from the equality line toward the region covered
by the McG+16 relation and then go beyond, with
Log g>Log gb. This behavior is intrinsically related to the
mass distribution in galaxies: the higher the baryonic fraction
fb, the closer g is to gb, and reversely the lower fb is, the more g
overcomes gb.

5. The Universality of the GGBX Relationship

It is evident that, in both DD and LSB samples, pairs of
accelerations (g, gb) residing at different radii r Ropt do not
overlap. We realize that a relationship between g and gb
necessarily must involve also the position x, where the two
accelerations are measured, and the Hubble type of the objects.
This is shown in our new 3D relationship, Equation (8)
(hereafter GGBX relation), among the g g xLog Log b– –
quantities. Starting from the McG+16 relation (in order to
have a straightforward comparison), we added new terms to

Figure 2. Baryonic fraction as a function of r Ropt, derived by the
URCs of DD (black line, with V 40 km sopt

1á ñ = - ; Karukes & Salucci
2017) and of LSBs (purple, blue, green, orange, and red, with
V 43, 73, 101, 141, 206 km sopt

1á ñ = - ; Di Paolo & Salucci 2018). For the
uncertainties on the fb(x) see the text and Appendix D.
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find the best fitting model for LSB data. The best and simplest
model that we found is:

g x g a x g

b x g x g c x d x

Log , Log 1 Log

Log 1 exp , 8
b b

b

LSB

2

= +

+ - - + +

( ) ( )
[ ( ( ) ˜ )] ( )

where the fitting parameters a, b, c, and d assume the best-fit
values −0.95, 1.79, −9.01, and −0.05 respectively. The scatter
of LSB data from the fitting surface is considerably reduced,
down to 0.05 dex, i.e., to a sixth of the scatter from the McG
+16 relation. Let us note that the model used in Equation (8) is
just an empirical function used to fit the data that recovers

g gLog Log b when x 0 . Then the number of free
parameters of the x part in the above relation expresses only
our ignorance of the actual functional form of the relationship
and not the fact that the g g x,b( ) surface is not smooth and of
negligible thickness.

In the case of DD galaxies, by simply applying translations
and/or dilatations to Equation (8) along the three involved
axes, we obtain the following best fitting model:

g x g

g
x

l
h

g

m
n q

Log , Log

Log ,
Log

. 9

b

b

DD

LSB= + + +⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

We found a perfect fit of the data when the fitting parameters
l h m n q, , , , assume the best-fit values 0.49, 2.41, 0.74, 1.72,
and 1.19 respectively. The scatter of DD with respect to the
fitting surface is considerably reduced, with a value of
0.03 dex, i.e., about a fifth of the scatter from the McG+16
relation.

We show in Figure 3 the DD and LSB data in the g g xb– –
space, with their best fitting surfaces from Equations (8)–(9).
The result is extremely remarkable. It shows a precise relation
linking the total and baryonic acceleration, the galactocentric

distance x r Roptº , and even the morphology of galaxies. The
scatter of both LSB plus DD data (after the translation and
dilatations given by the parameters l h m n q, , , , ; see Figure 4)
from the GGBX surface is only 0.05 dex, about a sixth of their
scatter from the McG+16 relation (0.29 dex); moreover, it is
also lower than the scatter of 0.13 dex of the McG+16 sample
from the McG+16 relation. The statistical significance is
overwhelming, but its physical meaning is not immediate. Let
us stress that the data g g x, ,b form, for LSBs and DDs, two
very thin surfaces that can be overlapped through a simple
coordinate transformation. Again, the number of the fitting
parameters reflects our ignorance of the analytical representa-
tion of the g g x,b( ) relation, not the statistical relevance of the
surfaces defined by data.

5.1. Understanding the GGBX Relationship

Our relationship deviates both from the Newtonian and from
the McG+16 relationship. In particular, by considering the
LSBs, i.e., our most numerous sample, we observe that:

(i) the deviation from the Newtonian relation is more evident
at larger galactocentric radii and for smaller gb values.
See the left panel of Figure 5, which shows the
difference g x g gLog , Log Log ;b bLSB( )–

(ii) the deviation from the McG+16 relation is particularly
evident at smaller galactocentric radii and for smaller gb
values. See the right panel of Figure 5, which shows the
difference g x g gLog , Log LogbLSB McG 16+( )– .

We highlight that these results are related to the mass
distribution in galaxies: any gb(r) corresponds to very different
values of g(r) according to the tag velocity Vopt (or luminosity),
the normalized radius r/Ropt and the Hubble Type of the galaxy
in question. This is a consequence of the fact that
g r f r g rb b=( ) ( ) ( ) and that fb(r), related to the mass distribution

Figure 3. Relation among total acceleration g, baryonic acceleration gb, and
normalized radii r Ropt. The magenta and blue points refer to DD and LSB
galaxy data respectively. The surfaces are the results from the best-fit models.

Figure 4. Relationships among the total acceleration g, the baryonic
acceleration gb, and the normalized radii r Ropt for our two samples. The
magenta and blue points refer to DD and LSB data, alongside their best-fit
surfaces. The LSB measurements extend in the gLog m s 2- and gLog m sb

2-

range ∼[−12.5, −9.0]. The fitting surfaces also well represent the very low
acceleration data discussed in Appendix A.
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in galaxies, depends on the tag velocity Vopt (or luminosity), the
normalized radius r/Ropt, and the Hubble Type of the galaxy in
question (Figure 2).

It is worth showing how all the above results, including the
disagreements with McG+16, are evident when we plot the
GGBX relation in individual objects (see Appendix E).

In conclusion, straightforward facts are that:

(i) the same values of the pairs (g, gb) found in the outer
region of big spirals are replicated in the inner region of
small spirals, provided that approximately r�Rd. This
explains the genesis of McG+16 and S18 findings;

(ii) given one spiral and one LSB, both with the same Vopt

and then very similar fb(x), they can show very different
fb(r) in physical radial units. This happens because
LSBs usually have much more extended RD than spirals
(see Figure 9 in Di Paolo & Salucci 2018). Thus,
f r f rb b, ,LSB spiral

>( ) ( ). Then, at a fixed value of gb, very
different values of g can correspond, and vice versa. This
mainly explains the failure of the McG+16 relation
in LSBs.

6. Conclusion

The two accelerations relationship (Equation (5)) by McG
+16 has attracted a great deal of interest. It is claimed and
thought that it provides crucial evidence about the issue of DM.
In this work, we have investigated the gb–g relationship (found
by McG+16 for a sample dominated by normal spirals), in the
recent sample of 36 Dwarf Disks and 72 LSB galaxies, whose
optical velocities span from ∼17 to ∼300 km s−1, covering the
full population of galaxies sizes and luminosities. We analyzed
overall 1904 velocity data and modeled them by involving an
exponential stellar disk, a Burkert DM halo density profile (de
Blok & Bosma 2002; Karukes & Salucci 2017) and, in
particular, we also considered the Tonini et al. H I disks
(Tonini et al. 2006) in DD galaxies and a bulge component in
larger LSB galaxies (Karukes & Salucci 2017; Di Paolo &
Salucci 2018). Then, we have derived the 1904 (gb, g) pairs in
the same way as McG+16 with the difference that the disk
masses are obtained kinematically. This difference of methods,

however, leads to estimates of the disk masses that agree within
their uncertainties. The great discrepancy between the McG
+16 relationship and ours does not arise from the adopted
values of the stellar disk + H I disk masses.
In our objects gLog ms 2- lays in the range between −14.5

and −9. On the other hand, the unbinned data gLog ms 2- in
the McG+16 relationship range between −11.4 and −8. The
results of our tests involving the DD and LSBs samples show
empirically that the radial acceleration g in galaxies is not
simply a universal function dependent on the baryonic
acceleration gb (as claimed by McG+16 in Equation (5)), but
also depends on the galactic radius expressed in normalized
units r Ropt.
The emerging relationship mirrors the properties of the DM

in galaxies, whose fraction changes along the galactic radius,
becoming more dominant on the baryonic one in the external
regions, in a way that depends on the morphology and the
luminosity of the galaxy (Figure 2; Persic et al. 1996).
For each sample, we have established a universal relation

g=f (gb, x) (that we call the GGBX relationship), with x the
normalized radius with respect to the optical radius Ropt.
Moreover, we can go from the DD relationship to the LSB one
by means of translations and/or dilatations of the three
involved variables. The individual average scatter around these
GGBX new surfaces (created by g, gb, x data) is remarkably
reduced with respect to that around to the McG+16 relation,
more precisely it becomes a fifth and a sixth for DD and LSB
galaxy data, respectively.
Our relationship deviates both from the Newtonian and from

the McG+16 2D relationships. In particular, the deviation from
the Newtonian relation is more evident at larger galactocentric
radii and for smaller gb values, while the deviation from the
McG+16 relation is particularly evident at smaller galacto-
centric radii and for smaller gb values.
It is worth saying that the results are intrinsically related to

the mass distribution in galaxies, i.e., to the variation of the
baryonic fraction fb along the galactocentric radius and on the
fact that it changes when we consider galaxies of different
luminosity and different Hubble Type. This implies that, when
considering different galaxies, a same value of gb can be found
at very different radii r and can correspond to very different

Figure 5. Surface in left panel is given by the difference between the LSBs GGBX relationship (Equation (8)) and the Newtonian value gLog b. The surface in the
right panel is given by the difference between the LSBs GGBX relationship and the McG+16 relation (Equation (5)).
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values of g. This is the main explanation of the discrepancy
among LSBs, DD, and Spiral galaxies considered in McG+16
and S18.

In this paper a new relation among the dynamical quantities
in disk galaxies has emerged. The further investigation of the
origin of such a relation and the consequences in single objects
will be shown in a paper in preparation by C. Di Paolo et al.
(2019).

In conclusion, we find that the GGBX relationship
(Equations (8)–(9)) is universal and framed in the DM +
Newtonian gravity scenario. We point out that this relation
stems from the properties of V2(x) and fb(x). Therefore, it does
not pose issues to the ΛCDM + baryonic feedback scenario.

Crucial properties of the DM are instead unlikely to come
from the g–gb relationship, in fact the DM halo density profile
is r Gr g r r f r1 4 1d

dr b
2 2r p= -( ) ( ) [ ( ) ( ( ))] and crucially

depends on quantities not present in the g–gb relationship:
e.g., dV r dr( ) , V r df r drb

2 ( ) ( ) . Whether or not our GGBX
compacts all the structural properties of DM halos will be left
to a later work ( C. Di Paolo et al. 2019, in preparation).

We thank F. Nesti, A. Lapi, L. Danese, and A. Erkurt for
useful discussions. We also thank G. Costa for help that
improved the presentation of the results of this paper.

Appendix A
The Extended g–gb Plane

For completeness, we show all the LSBs data in Figure 6, in
order to highlight the extension of Log g and Log gb values to
∼−14.5 (with the argument expressed in ms−2). We highlight
that, originally, we had 1605 data for the LSB galaxies. Among
them, there are four “special points” that have very low values
of Log g and Log gb, in the range [−14.5, −12.5]; see Figure 6.
These data strongly support our result shown above, i.e., the
discrepancy of LSB accelerations from the McG+16 relation-
ship; however, we keep them separate from the rest of the data
because they are too few to cover the wide magnitude range
(only 4 points in a range of 2 dex).

Appendix B
The URC Method

The URC is derived, first, by luminosity/optical velocity and
normalized radial binning of a large number of individual
rotation curves that yield suitable coadded rotation curves5,6

Vco-add(x, λ) (see for details Persic et al. 1996; Salucci et al.
2007). For the present work, the DD galaxies are grouped in a
single family (Karukes & Salucci 2017), the LSB galaxies are
grouped in five families, each with increasing tag average
velocity Voptá ñ.
The coadded curves (RCs) are very well reproduced by a

suitable analytical velocity model that we call VURC (x, λ) (see
Karukes & Salucci 2017; Di Paolo & Salucci 2018).7

The URC method has been applied, so far, to Spirals, LSBs,
and dwarf disks. It consists of the sum in quadrature of four
terms, Vd,URC, VH ,URCI , Vbu,URC, and Vh,URC, each of them
describing the contribution from the stellar disk, the H I
gaseous disk, the central bulge, and the dark halo. Then:

V x V x V x

V x V x V x

, , ,

, , , , 10

d

h

co added
2

URC
2

,URC
2

H ,URC
2

bu,URC
2

,URC
2

I

l l l

l l l

=

+ + +

( ) ( ) ( )
( ) ( ) ( ) ( )

‐

where the lhs are the coadded RCs and the rhs is the analytical
model with which we fit the former.
For simplicity, hereafter, we drop the tag “URC” in the

model velocity components.
V x,URC l( ) fits extremely well all V x,co added l( )‐ (see

Figure 7) of spirals (Persic & Salucci 1991; Persic et al.
1996; Salucci et al. 2007), DD (Karukes & Salucci 2017), and
LSB (Di Paolo & Salucci 2018), and provides us with an
accurate analytical representation of the individual rotation
curves.
The stellar component is described by means of the well-

known exponential disk (Freeman 1970) with surface density
profile r r RexpD

M

R d2
d

d
2S = -

p
( ) ( ).

Caveat the distance of the galaxy, the gas contribution is
known from observations (e.g., see Evoli et al. 2011). This
component is described as follows: the total mass is obtained
from the 21 cm flux and its radial distribution is given by

r r Rexp 3M

R dH 2 3I
d

H I
2S = -

p
( ) ( )( ) (Tonini et al. 2006; Evoli

et al. 2011; Wang et al. 2014). Then:

V r
GM

R
r R I K I K

V r
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R
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1.1 11
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2
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2
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opt
2

0 0 1 1I
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where Md is the stellar disk mass, MH I is the gaseous disk mass
(correcting by a factor of 1.3 in order to account for the He
abundance), In and Kn are the modified Bessel functions
computed at 1.6 x and 0.53 x for the stellar and the gaseous disk
respectively.
Let us note that, in LSBs, the gas contribution to the circular

velocity is negligible for the scope of this paper (see also
Appendix C).

Figure 6. Relationship between the total acceleration g and its baryonic
component gb, for LSB data. x r Ropt= . The figure is analogous to Figure 1,
but also includes data through the lowest values of Log g and Log gb. The four
“special points” with very small values of Log g–Log gb are shown with their
1σ uncertainties.

5 x r R .opt=
6

λ is equal to Mk or Vopt, (i.e., λ is the galaxy’s family identifier).
7 For our objects we know the values of their Rd, so that we can express the
URCs in terms of their physical radial units VURC(r).
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In the largest velocity bin of LSBs, in the URC model we
have included a bulge component by adopting:

V r V r r , 12bbu
2

in
2

in
1a= -( ) ( ) ( )

where Vin and rin are values referred to the innermost circular
velocity measurements and αb is a parameter varying from 0.2
to 1 (see, e.g., Yegorova & Salucci 2007).

Therefore, for bulgeless DD galaxies we assume, as baryonic
contribution, V r V r V rb d

2 2
H
2

I= +( ) ( ) ( ), while for the LSBs
we assume V r V rb d

2 2=( ) ( ) for the four galaxies’ families
(velocity bins) characterized by the smallest Vopt and
V r V r V rb d

2 2
bu
2= +( ) ( ) ( ) for galaxies with the largest Vopt

(Salucci et al. 2000; Das 2013).
For the DM halo velocity contribution we adopt the cored

Burkert profile (Burkert 1995):

V r G
R

r
r r

tg r r r r

2 ln 1

0.5 ln 1 , 13

h
2

0
0
3

0

1
0 0

2

p r= +

- + +-

( ) [ ( )
( ) ( ( ) )] ( )

where ρ0 is the central mass density and r0 is the core radius.
By resuming, the coadded rotation curves Vco-added are very

well fitted by VURC (see Figure 7) and the best fitting
parameters M r, , ,d b 0 0a r result all as a function of λ (Vopt or
MK). We direct the interested reader to Karukes & Salucci
(2017) and Di Paolo & Salucci (2018).

Appendix C
The H I Component Effect on the g–gb Plane

We have investigated the g–gb plane by also including the
gas component in LSB galaxies when fitting their rotation
curves. For these galaxies, we assumed the contribution of the

gaseous component by means of the II relation of Equation (11)
and considering the mass MH I as a free parameter (MH I includes
H I + He components). The results are as follows: the gas is
important only in the first velocity bin; however, the inner regions
are quite dominated by the stellar component and the gas
component is of limited importance. In Figure 8, we fit the first
LSB coadded rotation curve (velocity bin) without/with the gas
contribution. In both cases, the resulting masses of the stellar disk
and of the DM halo, are similar. In fact, we have:

M M r

M M M

8.8 10 ; 10.7 kpc;

3.7 10 pc ; 1.0 10 .
d

8
0

0
3 3

vir
11r

= ´ =
= ´ = ´- -



 

While, by considering the stellar disk + the DM halo +
gaseous disk, we have:

M M r

M

M M M M

8.0 10 ; 10.7 kpc;

3.2 10 pc ;

8.2 10 ; 1.0 10 .

d
8

0

0
3 3

vir
10

H
9

I

r
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= ´ = ´
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In the above, M r M, , ,d 0 0 H Ir (the quantities obtained by
fitting V x V,co add opt( )‐ ) are the stellar disk mass, the DM halo
core radius, the central core mass density, the H I gaseous disk
mass (including the correction for helium contribution),
respectively. Mvir is the virial mass.
More importantly, we show in Figure 8 that the difference

in the crucial quantity fb in the two different cases is small.
There is only a slightly increase at outer galactic radii in the
latter case: the resulting data move further toward the
equality line (g= gb), making our results stronger; see
Figure 9.

Figure 7. Best-fit URC velocity models of the coadded RCs of the unique velocity bin representative of DD galaxies (black, with V 40 km sopt
1á ñ = - ) and of the five

velocity bins, representative of the LSBs (purple, blue, green, orange, and red with: V 43, 73, 101, 141, 206 km sopt
1á ñ = - ). The dashed, dotted, dotted–dashed, long-

dashed, and solid lines are the stellar disk, H I disk, dark matter, bulge, and total contributions to the circular velocities, respectively.
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Figure 8. Upper panels: I velocity bin (family) rotation curve fitted without and with gas. The dashed, dotted–dashed, dotted, and solid lines stand for the stellar disk,
the DM halo, the gaseous disk, and the total contributions to the rotation curve, respectively. Bottom panel: baryonic fraction without gas (dark purple) and with gas
(light purple).
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Appendix D
Fitting Uncertainties on fb: The Effects on the g–gb Plane

The error induced by the kinematical estimation of the stellar
mass Md is very small. Figure 10 shows the results in the g–gb
plane, taking into account ±2σ fitting errors on fb (which is the
main source of error). The outcome does not change. See
Figures 10 and 1.

Appendix E
The Analysis of the g–x and g–gb Relations in Individual

Galaxies

It is easier to understand what happens in the g–gb plane
and in the g–gb–x space by analyzing a number of single
galaxies. Figure 11 shows the rotation curves, its fits, g versus

Figure 9. Data resulting from galaxies belonging to the I velocity bin (family)
rotation curve fitted without gas (upper panel) and with gas (lower panel).

Figure 10. The g–gb relationship by assuming that fb is 2σ higher (upper panel)
and 2σ lower than the best value (lower panel).
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r/Ropt relationship and g versus gb relationship, for three
LSBs of different size. The disagreement of present data with
McG+16 relationship is evident galaxy by galaxy. Detailed
explanation on this will appear on C. Di Paolo et al. (2019, in
preparation).

Appendix F
The LSB Sample

In Table 1, we report the list of LSB galaxies used in this
work and the references of their rotation curve data and other
galactic properties.

Figure 11. First, second, and third rows refer, respectively, to the galaxies UGC 1281, F568V1, and ESO 234-G013. Each row shows the galaxy’s rotation curve with
the fit, the g vs. r/Ropt relationship, and the g vs. gb relationship. The green and the brown lines are the McGaugh relationship (with its 1σ uncertainties) and the
equality g=gb relationship, both independent on the radial coordinate r/Ropt.
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Table 1
LSB Sample

Galaxy M Filter Rd Vopt References
(mag) (kpc) (km s−1)

(1) (2) (3) (4) (5) (6)

NGC 100 −19.68 I 1.2 77.2 de Blok & Bosma (2002)
NGC 247 −18.01 B 2.9 106.6 Carignan & Puche (1990)
NGC 959 −18.53 V 0.93 75.3 Kuzio de Naray et al. (2008)
NGC 2552 −18.99 I 1.6 104.9 Kuzio de Naray et al. (2008)
NGC 2552 −18.99 I 1.6 111.0 de Blok & Bosma (2002)
NGC 2552 −18.99 I 1.6 92.6 Swaters et al. (2003)
NGC 2552 −18.1 R 1.6 92.5 van den Bosch & Swaters (2001)
NGC 3274 −16.7 R 0.5 79.7 de Blok & Bosma (2002)
NGC 3274 −16.6 R 0.45 63.2 Swaters et al. (2003)
NGC 3347B −21.76 I 8.1 167.0 Palunas & Williams (2000)
NGC 4395 −18.1 R 2.3 82.0 de Blok & Bosma (2002)
NGC 4395 −18.14 R 2.6 82.6 van den Bosch & Swaters (2001)
NGC 4455 −16.9 R 0.7 45.6 de Blok & Bosma (2002)
NGC 4455 −16.88 R 0.9 61.9 Marchesini et al. (2002)
NGC 4455 −16.88 R 0.9 51.5 van den Bosch & Swaters (2001)
NGC 5023 −19.18 I 0.8 78.4 de Blok & Bosma (2002)
NGC 5204 −17.3 R 0.66 75.2 Swaters et al. (2003)
NGC 5204 −17.28 R 0.66 71.0 van den Bosch & Swaters (2001)
NGC 7589 −21.9 R 13 224.0 Pickering et al. (1997)
UGC 628 −19.2 R 4.7 130.0 de Blok & Bosma (2002)
UGC 634 −17.7 B 3.1 95.1 van Zee et al. (1997)
UGC 731 −16.6 R 1.7 73.1 de Blok & Bosma (2002)
UGC 731 −16.6 R 1.6 73.5 Swaters et al. (2003)
UGC 731 −16.63 R 1.6 73.5 van den Bosch & Swaters (2001)
UGC 1230 −19.1 R 4.5 104.5 de Blok & Bosma (2002)
UGC 1230 −17.16 NUV 4.4 89.7 van der Hulst et al. (1993)
UGC 1281 −16.2 R 1.7 45.8 Kuzio de Naray et al. (2006)
UGC 1281 −16.2 R 1.7 56.9 de Blok & Bosma (2002)
UGC 1551 −19.7 B 2.5 55.8 Kuzio de Naray et al. (2008)
UGC 2684 −13.7 B 0.8 36.7 van Zee et al. (1997)
UGC 2936 −21.1 R 8.4 255.0 Pickering et al. (1999)
UGC 3137 −18.7 R 2.0 97.7 de Blok & Bosma (2002)
UGC 3174 −15.7 B 1.0 51.7 van Zee et al. (1997)
UGC 3371 −17.7 R 3.1 84.7 de Blok & Bosma (2002)
UGC 3371 −17.74 R 3.1 85.1 van den Bosch & Swaters (2001)
UGC 4115 −15.21 V 0.4 24.2 McGaugh et al. (2001)
UGC 4278 −17.7 R 2.3 92.6 de Blok & Bosma (2002)
UGC 5005 −17.8 B 4.4 95.5 de Blok & McGaugh (1997)
UGC 5272 −14.7 B 1.2 51.2 Kuzio de Naray et al. (2008)
UGC 5272 −14.7 B 1.2 46.4 de Blok & Bosma (2002)
UGC 5716 −16.3 B 2.0 66.4 van Zee et al. (1997)
UGC 5750 −19.5 R 5.6 58.5 Kuzio de Naray et al. (2006)
UGC 5750 −19.5 R 5.6 78.5 de Blok & Bosma (2002)
UGC 5999 −12.42 R 4.4 153.0 van der Hulst et al. (1993)
UGC 7178 −16.6 B 2.3 69.9 van Zee et al. (1997)
UGC 8837 −15.7 R 1.2 49.6 de Blok & Bosma (2002)
UGC 9211 −16.21 R 1.3 61.9 van den Bosch & Swaters (2001)
UGC 11454 −22.03 R 4.5 150.3 McGaugh et al. (2001)
UGC 11557 −19.7 R 3.1 83.7 Swaters et al. (2003)
UGC 11583 −15.48 R 0.31 27.9 McGaugh et al. (2001)

Note. Columns: (1) galaxy name; (2) magnitude, given for further information of the galaxies; (3) filter; (4) stellar disk scale length Rd; (5) optical velocity Vopt;
(6) references. Note that some galaxies have multiple rotation curve data, that we have homogenized.

11

The Astrophysical Journal, 873:106 (13pp), 2019 March 10 Paolo, Salucci, & Fontaine



References

Burkert, A. 1995, ApJL, 447, L25
Carignan, C., & Puche, D. 1990, AJ, 100, 641
Das, M. 2013, JApA, 34, 19
de Blok, W. J. G., & Bosma, A. 2002, A&A, 385, 816
de Blok, W. J. G., & McGaugh, S. S. 1997, MNRAS, 290, 533
de Blok, W. J. G., McGaugh, S. S., & van der Hulst, J. M. 1996, MNRAS,

283, 18
Di Paolo, C., & Salucci, P. 2018, arXiv:1805.07165v1
Evoli, C., Salucci, P., Lapi, A., & Danese, L. 2011, ApJ, 743, 45
Freeman, K. C. 1970, ApJ, 160, 811
Impey, S., & Bothun, G. 1997, ARA&A, 35, 267
Karachentsev, I. D., Makarov, D. I., & Kaisina, E. I. 2013, AJ, 145, 101

Karukes, E. V., & Salucci, P. 2017, MNRAS, 465, 4703
Kuzio de Naray, R., McGaugh, S. S., & de Blok, W. J. G. 2008, ApJ, 676, 920
Kuzio de Naray, R., McGaugh, S. S., de Blok, W. J. G., & Bosma, A. 2006,

ApJS, 165, 461
Lapi, A., Salucci, P., & Danese, L. 2018, ApJ, 859, 2
Lelli, F., McGaugh, S. S., & Schombert, J. M. 2016, AJ, 152, 157
Li, P., Lelli, F., McGaugh, S., & Schombert, J. 2018, A&A, 615, A3
Marchesini, D., DʼOnghia, E., Chincarini, G., et al. 2002, ApJ, 575, 801
McGaugh, S., Lelli, F., & Schombert, J. 2016, PhRvL, 117, 201101
McGaugh, S. S. 1994, ApJ, 426, 135
McGaugh, S. S., Rubin, V. C., & de Blok, W. J. G. 2001, AJ, 122, 2381
Morelli, L., Corsini, E. M., Pizzella, A., et al. 2012, MNRAS, 423, 962
Palunas, P., & Williams, T. B. 2000, AJ, 120, 2884
Persic, M., & Salucci, P. 1991, ApJ, 368, 60

Table 2
Continued from Table 1

Galaxy M Filter Rd Vopt References
(mag) (kpc) (km s−1)

(1) (2) (3) (4) (5) (6)

UGC 11616 −21.58 R 4.9 133.2 McGaugh et al. (2001)
UGC 11648 −22.95 KS 3.8 142.2 McGaugh et al. (2001)
UGC 11748 −23.02 R 3.1 240.7 McGaugh et al. (2001)
UGC 11819 −20.62 R 5.3 154.6 McGaugh et al. (2001)
ESO 186-G055 −20.62 R 3.6 133.2 Pizzella et al. (2008)
ESO 206-G014 −20.32 R 5.2 91.3 Pizzella et al. (2008)
ESO 215-G039 −21.72 I 4.2 142.9 Palunas & Williams (2000)
ESO 234-G013 −21.66 I 3.7 139.4 Pizzella et al. (2008)
ESO 268-G044 −21.19 I 1.9 175.6 Palunas & Williams 2000)
ESO 322-G019 −20.41 B 2.5 100.7 Palunas & Williams (2000)
ESO 323-G042 −21.56 I 4.4 138.7 Palunas & Williams (2000)
ESO 323-G073 −21.81 I 2.1 165.3 Palunas & Williams (2000)
ESO 374-G003 −21.36 I 4.2 118.3 Palunas & Williams (2000)
ESO 382-G006 −17.03 R 2.3 160.0 Palunas & Williams (2000)
ESO 400-G037 −20.96 I 4.1 69.9 Pizzella et al. (2008)
ESO 444-G021 −19.9 B 6.4 107.4 Palunas & Williams (2000)
ESO 444-G047 −21.11 I 2.7 148.4 Palunas & Williams (2000)
ESO 488-G049 −17.94 B 4.4 95.3 Pizzella et al. (2008)
ESO 509-G091 −21.01 I 3.7 146.8 Palunas & Williams (2000)
ESO 534-G020 −21.96 R 17 216.6 Pizzella et al. (2008)
F561-1 −17.8 B 3.6 50.8 de Blok et al. (1996)
F563-V1 −16.3 B 2.4 27.3 de Blok et al. (1996)
F563-V2 −18.2 B 2.1 98.8 Kuzio de Naray et al. (2006)
F563-V2 −17.6 B 2.1 98.0 de Blok et al. (1996)
F565-V2 −14.8 B 2.0 45.2 de Blok et al. (1996)
F568-1 −18.1 B 5.3 130.1 Swaters et al. (2000)
F568-3 −19.14 I 4.0 102.6 Kuzio de Naray et al. (2006)
F568-3 −18.3 B 4.0 97.9 McGaugh et al. (2001)
F568-3 −18.3 B 4.0 101.1 Swaters et al. (2000)
F568-6 −23.6 R 18 297.0 Pickering et al. (1997)
F568-V1 −17.9 B 3.2 115.8 Swaters et al. (2000)
F571-8 −17.6 B 5.2 139.4 Marchesini et al. (2002)
F571-8 −17.6 B 5.2 140.1 McGaugh et al. (2001)
F571-V1 −11.47 I 3.2 72.44 de Blok et al. (1996)
F574-1 −18.4 B 4.3 102.3 Swaters et al. (2000)
F574-2 −17 B 4.5 40.0 de Blok et al. (1996)
F579-V1 −18.8 B 5.1 111.5 McGaugh et al. (2001)
F583-1 −16.5 B 1.6 68.2 Kuzio de Naray et al. (2008)
F583-1 −17.06 R 1.6 65.2 Marchesini et al. (2002)
F583-1 −16.5 B 1.6 61.3 McGaugh et al. (2001)
F583-1 −15.9 B 1.6 53.3 de Blok et al. (1996)
F583-4 −16.9 B 2.7 83.9 Kuzio de Naray et al. (2006)
F583-4 −16.9 B 2.7 69.0 McGaugh et al. (2001)
F730-V1 −20.27 R 5.8 141.6 McGaugh et al. (2001)
PGC 37759 −21.88 Z 6.6 139.4 Morelli et al. (2012)

12

The Astrophysical Journal, 873:106 (13pp), 2019 March 10 Paolo, Salucci, & Fontaine



Persic, M., Salucci, P., & Stel, F. 1996, MNRAS, 281, 27
Pickering, T. E., Impey, C. D., van Gorkom, J. H., & Bothun, G. D. 1997, AJ,

114, 1858
Pickering, T. E., van Gorkom, J. H., Impey, C. D., & Quillen, A. C. 1999, AJ,

118, 765
Pizzella, A., Corsini, E. M., Sarzi, M., et al. 2008, MNRAS, 387, 1099
Salucci, P. 2018a, FoPh, 48, 1517
Salucci, P. 2018b, in Proc. 18th Lomonosov Conf. on Elementary Particle

Physics, ed. A. Studenikin (Singapore: World Scientific) arXiv:1807.08521
Salucci, P., & Burkert, A. 2000, ApJL, 537, L9
Salucci, P., Lapi, A., Tonini, C., et al. 2007, MNRAS, 378, 41

Salucci, P., Ratnam, C., Monaco, P., & Danese, L. 2000, MNRAS, 317, 488
Swaters, R. A., Madore, B. F., & Trewhella, M. 2000, ApJ, 531, L107
Swaters, R. A., Madore, B. F., van den Bosch, F. C., & Balcells, M. 2003, ApJ,

583, 732
Tonini, C., Lapi, A., Shankar, F., & Salucci, P. 2006, ApJL, 638, L13
van den Bosch, F. C., & Swaters, R. A. 2001, MNRAS, 325, 1017
van der Hulst, J. M., Skillman, E. D., Smith, T. R., et al. 1993, AJ,

106, 548
van Zee, L., Haynes, M. P., Salzer, J. J., & Broeils, A. H. 1997, AJ, 113, 1618
Wang, J., Fu, J., Aumer, M., et al. 2014, MNRAS, 441, 2159
Yegorova, I., & Salucci, P. 2007, MNRAS, 377, 507

13

The Astrophysical Journal, 873:106 (13pp), 2019 March 10 Paolo, Salucci, & Fontaine



Chapter 9

PAPER 3: “Phase-space
mass bound for fermionic
dark matter from dwarf
spheroidal galaxies”

113



MNRAS 475, 5385–5397 (2018) doi:10.1093/mnras/sty091
Advance Access publication 2018 January 15

Phase-space mass bound for fermionic dark matter from dwarf
spheroidal galaxies

Chiara Di Paolo,1‹ Fabrizio Nesti2,3,4,5‹ and Francesco L. Villante5,6‹
1SISSA/ISAS, Via Bonomea 265, I-34136 Trieste, Italy
2Dipartimento di Fisica, Theoretical Section, Università di Trieste, Strada Costiera 11, I-34151 Trieste, Italy
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ABSTRACT
We reconsider the lower bound on the mass of a fermionic dark matter (DM) candidate
resulting from the existence of known small dwarf spheroidal galaxies, in the hypothesis that
their DM halo is constituted by degenerate fermions, with phase-space density limited by the
Pauli exclusion principle. By relaxing the common assumption that the DM halo scale radius
is tied to that of the luminous stellar component and by marginalizing on the unknown stellar
velocity dispersion anisotropy, we prove that observations lead to rather weak constraints on
the DM mass, which could be as low as tens of eV. In this scenario, however, the DM haloes
would be quite large and massive, so that a bound stems from the requirement that the time of
orbital decay due to dynamical friction in the hosting Milky Way DM halo is longer than their
lifetime. The smallest and nearest satellites Segue I and Willman I lead to a final lower bound
of m � 100 eV, still weaker than previous estimates but robust and independent on the model
of DM formation and decoupling. We thus show that phase-space constraints do not rule out
the possibility of sub-keV fermionic DM.

Key words: elementary particles – neutrinos – galaxies: dwarf – dark matter.

1 IN T RO D U C T I O N

Dark matter (DM) is believed to be a main actor in cosmology,
to constitute the great majority of the mass in the Universe and to
rule the processes of structure formation. The so-called � cold dark
matter (�CDM) paradigm, in which one assumes a cold dark matter
(CDM) candidate that decouples from the primordial plasma when
non-relativistic, successfully reproduces the structure of the cosmos
down to scales ∼50 kpc.

A number of serious challenges to the �CDM paradigm have
emerged on the scale of individual galaxies and their central struc-
ture (see e.g. Weinberg et al. 2014 for a recent review). For instance,
collisionless N-body simulations predict that the DM density pro-
file of virialized objects has a negative logarithmic slope towards
the centre (Flores & Primack 1994; Moore 1994; Navarro, Frenk &
White 1996b, 1997; Moore et al. 1999a). Such a ‘cuspy’ distribu-
tion is not well supported by observational data of rotation curves
of spiral galaxies, which are better described by haloes featuring
a constant density core (Salucci & Burkert 2000). Moreover, the

� E-mail: cdipaolo@sissa.it (CDiP); fnesti@irb.hr (FN); villante@lngs.
infn.it (FLV)

number of DM subhaloes expected according �CDM paradigm is
much larger than the observed number of satellite galaxies in the
Milky Way (Klypin et al. 1999; Moore et al. 1999b), even account-
ing for the many recently discovered faint systems. It is still unclear
whether the above problems require major changes to the �CDM
paradigm. Models have been presented in which shallow DM cores
arise naturally in a �CDM cosmology as a results of supernova
(SN) feedback or dynamical friction (Navarro, Eke & Frenk 1996a;
Governato et al. 2010, 2012; Pontzen & Governato 2012). Alterna-
tive DM candidates, however, have to be considered with utmost
attention.

The hypothesis of warm dark matter (WDM) decoupling from
the plasma when mildly relativistic has been advocated as a solution
of the possible CDM issues. WDM introduces a non-vanishing free
streaming length below which structure formation is suppressed,
giving rise to the correct abundance of substructures at small scales
(Colin, Avila-Reese & Valenzuela 2000; Avila-Reese et al. 2001;
Bode, Ostriker & Turok 2001). Moreover, if we consider a generic
fermionic dark matter (FDM) candidate, like the typical massive
∼keV warm sterile neutrino, the limit on the phase-space den-
sity provided by the Pauli exclusion principle implies that DM
has a minimal velocity dispersion and, thus, resists compression.
As a consequence, FDM haloes naturally produce a cored density
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profile whose radius Rh (for a fixed halo mass Mh) is a decreasing
function of the mass m of the DM candidate, see next section for
details. Being the most DM-dominated astrophysical objects, dwarf
spheroidal (dSph) galaxies are the optimal candidates to test this
scenario.

The possibility to constrain the DM particle mass by determin-
ing the DM phase-space distribution was first considered in the
seminal work by Tremaine & Gunn (1979). In the hypothesis of
non-dissipative evolution, i.e. conservation of the maximal phase-
space density, it is possible to set a strong bounds on the DM mass
m > 300–700 eV (see e.g. Dalcanton & Hogan 2001). These bounds
stem from the primordial limit of the DM phase-space density, and
are not necessarily related to the fermionic nature of DM; indeed
they apply also if DM can be treated as a collisionless gas collapsed
via violent relaxation à la Lynden–Bell. However, they require the
knowledge of the initial DM phase-space density (and, thus, of the
DM production mechanism) and the assumption that baryonic feed-
back cannot alter the maximum of the DM distribution function. A
more general situation was studied by Gerhard & Spergel (1992)
that pointed out the importance of constraints by dynamical friction
on dSph galaxies in the Milky Way host halo, which as we will
show still play the most important role.

Subsequent analyses (Bilic, Tupper & Viollier 2001;
Chavanis 2002; de Vega, Salucci & Sanchez 2014) modelled truly
fermionic DM cores for instance by using a Thomas–Fermi self-
gravitating gas approach, suggesting that dSph galaxies host degen-
erate fermionic haloes while larger and less dense galaxies behave
as non-degenerate classical systems. Observational data on dSph
galaxies were used in Boyarsky, Ruchayskiy & Iakubovskyi (2009)
to derive bounds of the order of 400 eV. Finally, in a recent anal-
ysis (Domcke & Urbano 2015) it was claimed that the velocity
dispersions of the eight classical dSph galaxies of the Milky Way
are well fitted by assuming DM cores composed of fully degenerate
fermions with masses m � 200 eV and allowing for a non-vanishing
anisotropy of the stellar component.

The observation that kinematic properties of dSph galaxies may
be connected, in a relatively simple model, to the elementary prop-
erties of the DM candidate is extremely interesting. However, there
is at the moment no evidence in favour of degenerate galactic
cores. If all the smallest galactic cores were to be degenerate, their
masses and radii should follow a relationship Mh ∝ R−3

h , as ex-
pected for degenerate fermionic systems and univocally determined
by the mass m of the DM candidate. This behaviour in the plane
(Rh, Mh) is presently not observed; on the contrary, the observa-
tion that the estimated surface densities of diverse kinds of galax-
ies are approximately constant (Donato et al. 2009; Salucci et al.
2012), �0 ∼ Mh/R

2
h ∼ 100 M� pc−2, can only be supported by

non-degenerate cores, because this relation lies almost orthogonal
to the above degeneracy lines. Still, this argument cannot be used
to rule out the existence of degenerate cores, because they could be
present just in the smallest galaxies. These have a larger density,
and therefore are candidate to support or exclude the hypothesis of
fermionic DM with low mass.1

In this paper we take a conservative attitude and determine a ro-
bust lower limit on the mass m of a fermionic DM particle from the
properties of these smallest observed galaxies. We consider Will-

1 It is of course also possible that the evolution of structures is such that DM,
although fermionic, never forms degenerate cores; in this situation it is still
or even more important to assess the values of the DM mass that allows the
realization of this scenario.

Figure 1. Plane Rh–�0, describing the DM core. The shaded contours show
the values of DM core sizes allowed for Willman I, Segue I, and Leo II at
68 per cent CL by the LOS velocities, and respecting the bound from the
dynamical friction time.

man I (Willman et al. 2011) and Segue I (Simon et al. 2011), which
are among the smallest structures for which stellar velocity mea-
surements are available, and the ‘classical’ dSph Leo II from which
restrictive bounds on m where obtained by Boyarsky et al. (2009)
and Domcke & Urbano (2015). We determine bounds on the core
radius Rh, mass Mh, or surface density �0 of the selected galaxies by
performing a fit to the stellar line-of-sight (LOS) velocity dispersion
profile. The theoretical predictions are obtained through a standard
Jeans analysis, including the role of the unknown velocity disper-
sion anisotropy of the stellar component. Moreover, we refrain from
assuming that luminous matter traces the DM distribution, unlike
many of the recent works, and thus leave as a free parameter the
DM core radius.

We show in detail how, unless the anisotropy of stellar compo-
nent will be constrained independently, the observed stellar velocity
dispersion profiles lead to very poor constraints on the DM halo,
and the possibility of very large ∼kpc haloes cannot be ruled out.
However, such large haloes are at odds with their lifetime due to
the dynamical friction within the Milky Way (Binney & Tremaine
2008). This provides a further quantitative limit on the DM halo
size, allowing us to finally constrain the DM particle mass m. To
facilitate the reader, our results are anticipated in Fig. 1 that contains
a synthesis of our work before discussing the technical details.

The final limit that we obtain, m � 100 eV, is less restrictive but
more solid than previously quoted bounds (Boyarsky et al. 2009;
Domcke & Urbano 2015) that rely on the assumption that the DM
core radius is equal to the half-light radius, or analogously that
the escape velocity from the DM core is determined by the stellar
velocity dispersion. Moreover, our limit is fairly model indepen-
dent because it is based only on the present phase-space density of
DM particles and does not require any assumption on their initial
distribution or their evolution (see e.g. Boyarsky et al. 2009 for a
discussion of the model-dependent bounds that can be obtained for
a dissipationless DM candidate by considering specific production
mechanisms). Restrictive limits (m � few keV) on sterile neutrino
mass can be also obtained from the analysis of the Lyα forest data
(see e.g. Iršič et al. 2017 for a recent update). It should be noted,
however, that this analysis is not directly sensitive to DM particle
mass, as Lyα data essentially probe the power spectrum of density
fluctuations at comoving scales ∼Mpc, by constraining the DM free
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streaming length. Since this quantity can be related to the particle
mass only within a specific DM model, the Lyα bound cannot be ap-
plied to a generic fermionic candidate, unlike from the limit derived
in this paper.

The plan of the paper is the following. In Section 2 we describe
the physics relevant for degenerate fermionic DM haloes, while in
Section 3 we lay down the possible strategies to constrain the mass
of the DM candidate from the observational data. In Section 4 we
describe the results for the Leo II, Willman I, and Segue I dwarf
galaxies, by paying also attention to the possibility that some of
these galaxies are instead non-degenerate. We present also a con-
sistent estimate for the ensuing bound on the DM mass in the case
of the other known dSph galaxies. In Section 5 we summarize
the conclusions and possible outlook. Finally, for convenience we
briefly review in Appendix A the technicalities relative to degen-
erate fermionic haloes, as well as the Thomas–Fermi analysis for
non-exactly degenerate ones.

2 TH E F D M H Y P OTH E S I S

We consider the equilibrium configuration for an ensemble of self-
gravitating DM fermions of mass m and g internal (spin) degrees of
freedom. The assumption of fermionic particles implies the upper
limit for the DM phase-space distribution function that, as reviewed
in Appendix A, translates into a lower limit for the DM velocity
dispersion,

σ 2
DM ≥ σ 2

DM,min(ρ) = 1

5

(
6π2�3ρ

g m4

)2/3

= 7.56

(
km

s

)2 (g

2

)−2/3 ( m

1 keV

)−8/3
(

ρ

M� pc−3

)2/3

, (1)

as a function of the mass density ρ of the system. This bound
becomes effective and very stringent in the regions of high density.
As a consequence, fermionic DM haloes resist compression and
cannot have arbitrary size.

The strong degeneracy limit, in which the velocity dispersion is
assumed to have the minimal value σ 2

DM,min(ρ), represents the most
compact configuration for a self-gravitating fermionic halo. The
density profiles of such fully degenerate haloes are universal. They
depend only on one free parameter and can be expressed (apart from
a normalization factor and a scale radius that are related, see the
following) in terms of the solution of the well-known Lane–Emden
equation, see equation (A13). As shown in Appendix A, for our
purposes the degenerate profiles are very well approximated by the
function

ρ(r) = ρ0 cos3

[
25

88
π x

]
, x = r/Rh, (2)

where ρ0 is the central DM halo density. The halo radius Rh is
defined by the condition

ρ (Rh) = ρ0/4 (3)

and is related to the central density ρ0 and to the properties of the
DM particle by the numerical relation

Rh = 42.4 pc
(g

2

)−1/3 ( m

1 keV

)−4/3
(

ρ0

M� pc−3

)−1/6

. (4)

This value represents also the minimal admissible radius for
a fermionic structure since for smaller radii the gravitational
potential φ ∼ −G ρ0 R2

h is lower (in modulus) than σ 2
DM,min ∼

(ρ0/g)2/3 m−8/3 and the system is not stable.

Larger non-degenerate structures are admissible because they can
have σ 2

DM ≥ σ 2
DM,min that prevents gravitational collapse. Unlike in

the completely degenerate case, their properties cannot be univo-
cally predicted because the velocity dispersion is not determined by
the mass density and not directly linked to the DM particle prop-
erties. Isothermal haloes with arbitrary level of degeneration can
be studied by using the Thomas–Fermi approach as reviewed in
Appendix A. Interestingly, it is found that when Rh is just 2–3 times
larger than the minimal value (equation 4), the fermionic nature
of DM particles can be neglected, i.e. the resulting structures are
essentially indistinguishable from isothermal haloes obtained by as-
suming classical Maxwell–Boltzmann statistics and arbitrary large
values of the particle mass m.

For fully degenerate fermionic structures, by using equation (4)
one can predict their surface density �0 ≡ ρ0 Rh,

�0

M� pc−2
= 0.584

(g

2

)−2 ( m

1 keV

)−8
(

Rh

100 pc

)−5

, (5)

as well as their mass Mh, defined as the mass enclosed within the
radius Rh:

Mh

107 M�
= 1.18

(g

2

)−1/3 ( m

1 keV

)−8
(

Rh

10 pc

)−3

. (6)

The radius, surface density, and mass of degenerate haloes are not
independent quantities, being Mh � 2.02 ρ0 R3

h = 2.02 �0 R2
h for

the density profile (equation 2). For definiteness, we perform our
analysis in the plane (Rh, �0) but equivalent bounds are clearly
obtained by using any couples of the three quantities Rh, �0, and
Mh.

In Fig. 1 we have reported as grey dashed lines in the plane
(Rh, �0) the points relative to fully degenerate systems for se-
lected values of the DM particle mass m and assuming g = 2.
Equations (5) and (6) define the lower limits for surface densities
and masses of fermionic DM haloes. The regions to the left of the
grey lines in the plane (Rh, �0) are not compatible with the assump-
tion that the halo is composed of fermionic particles. Note that for
fixed surface density, the smaller is the particle mass, the larger has
to be the core radius. As a consequence, the observational determi-
nations of halo radii Rh and surface densities �0 can be translated
into lower limits for the mass m of FDM candidates:

m

keV
≥ 0.53

(g

2

)−1/4
(

�0

100 M� pc−2

)−1/8 (
Rh

100 pc

)−5/8

,

(7)

and we note the reduced dependence on �0.
If galactic cores were to be commonly degenerate, one

should arguably observe a clustering along the lines defined by
equation (5) in the plane (Rh, �0), at least for the smallest struc-
tures. This clustering is presently not observed. Instead, the esti-
mated surface densities of diverse kinds of observed galaxies ap-
pear to be approximately constant (Donato et al. 2009; Salucci et al.
2012), �0 ∼ 100 M� pc−2, a fact that can only be supported by
non-degenerate cores, because this relation lies almost orthogonal
to the degeneracy lines.

This argument cannot be used to rule out the fermionic nature of
DM, or the occurrence of degenerate haloes, because even if all large
galaxies host a non-degenerate DM halo, degenerate cores could be
present in the smallest objects, of limited number and maybe even
too small to be observed. Therefore, what one can do at present is
to obtain a lower limit on the mass of a fermionic DM candidate
from the existence of the smallest galaxies, once their properties
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(radius, mass, and/or surface density) are determined. It is our aim
to reassess in this way the present bound on m.

3 ST R AT E G I E S

The standard mass estimation methods applied to dSph galaxies,
like those described in Wolf et al. (2010), are not sufficient for
our purposes. In fact, they provide an estimator of the mass M1/2

enclosed inside the half-light radius R1/2, but this radius is not
necessarily representative of the DM distribution and might be in
principle (much) smaller than the halo size Rh. In other words, the
quantity M1/2 represents only a lower limit on the core mass Mh but
does not provide an upper constraint.

In e.g. Boyarsky et al. (2009) and Domcke & Urbano (2015)
lower bounds on the mass of FDM candidates were obtained by
assuming that Rh � R1/2, i.e. Mh � M1/2 and/or by assuming that
the stellar velocity dispersion can be used to estimate the escape
velocity from the DM core. This is only allowed if we assume that
luminous matter traces DM distribution. However, this assumption
may well be violated, especially in the considered scenario in which
the properties of the DM distribution are not only determined by
gravitational interactions but also by the fermionic nature of DM.
One may also recall that for larger galaxies, like the Milky Way or
elliptical galaxies, the scale lengths of stellar and dark components
can differ greatly, with the dark component extending typically
some factors more than the stellar one.

Along these arguments, in this work we proceed in more gener-
ality, treating Rh and Mh as independent properties of the DM halo.
We only use R1/2 and M1/2 in a preliminary stage to select, by using
the values tabulated in Wolf et al. (2010) and equation (6), the dSph
galaxies Willman I (Willman et al. 2011) and Segue I (Simon et al.
2011) as the most promising candidates for constraining m. In addi-
tion to these two galaxies, which are among the smallest structures
for which stellar velocity measurements are available, we also con-
sider the ‘classical’ dSph Leo II from which restrictive bounds on
m where obtained by Boyarsky et al. (2009) and Domcke & Urbano
(2015).

For each galaxy, we determine the DM halo properties, core
radius, and mass (or surface density) by performing a fit of the
stellar LOS velocity dispersion profile as predicted by the model
through the Jeans analysis, to the observed data. We also consider
the role of the possible stellar velocity dispersion anisotropy. As
was already suggested in the past (see e.g. Walker 2013) in most
cases the poor data and the unknown anisotropy lead to very poor
constraints on the DM halo, and the possibility of very large ∼kpc
halo cannot be ruled out. We then consider that such large haloes
would be associated with unphysically short orbital lifetimes due to
the dynamical friction within the Milky Way. This fact provides a
further quantitative constraint on the DM halo size, and thus allows
us to constrain the DM particle mass m.

3.1 Spherical Jeans analysis

Assuming that the stellar component is virialized within the grav-
itational potential dominated by the DM component, the standard
spherical Jeans equation
(

∂

∂r
+ 2β

r

)
(n∗σ 2

r ) = −n∗
GM(r)

r2
(8)

allows one to relate the velocity dispersion profile of stars to the DM
mass distribution M(r). In the above, G is the Newton constant, n∗(r)
is the stellar number density, σ 2

r is the radial velocity dispersion of

Figure 2. Stellar velocity dispersion profiles (solid) for representative DM
core radii and β = 0. The dashed curves show the LOS projected velocity
dispersion profiles.

stars, and β ≡ 1 − σ 2
⊥/σ 2

r is its anisotropy, which in principle can
depend on radius. We first discuss the case of zero anisotropy, and
later comment on its role. Our final results are obtained by treating
β as a nuisance parameter. A number of other aspects, like the
possible co-existence of more than one stellar component, or non-
complete virialization, are further factors of uncertainty that may
not be easily removed.

We model the density profile of the stellar component for each
dSph galaxy by means of a Plummer density profile with specific
scale radius R∗:

n∗(r) = n0

(
1 + x2

)−5/2
, x = r/R∗, (9)

and the central density n0 plays no role in the following. Clearly,
the applicability of this density profile to real and poorly known
galaxies is another element of uncertainty.

Equation (8) can be integrated in favour of σ 2
r , once the

DM mass distribution M(r) is determined by the DM density
equation (2). The resulting stellar velocity dispersion is shown in
Fig. 2, for three representative cases of Rh smaller, equal or larger
than the stellar scale radius R∗. The profiles shown are illustra-
tive and are obtained by normalizing to a fixed surface density
�0 = ρ0Rh = 1. In fact, once the radius Rh is fixed, the DM central
density ρ0 or the surface density �0 represents just a multiplicative
constant factor for the mass function M(r) and does not affect the
radial dependence of σ 2

r .
We see from Fig. 2 that if the DM halo is smaller than the

Plummer radius, Rh ≤ R∗, the stellar velocity dispersion starts to
fall as soon as the DM density vanishes, reflecting the decrease of
the gravitational potential. On the other hand if the DM distribution
is more extended than the stellar one, Rh ≥ R∗, the stellar velocity
dispersion has to increase in the regions where the Plummer density
drops. In few words, the slope of the stellar velocity dispersion
∂ ln σ 2

r /∂ ln r is related to the characteristic sizes R∗ and Rh of the
galactic components and could, thus, be used to constrain the DM
distribution.

In order to compare with observational data, one has also to con-
sider that only the velocity dispersion along the LOS is measurable:

σ 2
los(R) = 1

�∗

∫ ∞

R2
dr2 n∗√

r2 − R2
σ 2

r

[
1 − β

R2

r2

]
, (10)

where �∗(R) = ∫ ∞
R2 dr2 n∗(r)/

√
r2 − R2 is the projected stellar

(surface) density. In Fig. 2, we show with dashed lines the LOS
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velocity dispersion for the three cases described previously. They
retain the same behaviour of σ 2

r , showing that the observed LOS
velocity dispersion profile σ 2

los(R) can in principle be used to con-
strain the size of the DM core.

3.2 Analysis for the smallest objects

In order to obtain the most restrictive bounds on the mass of the
FDM particle, below we will consider Willman I (Willman et al.
2011) and Segue I (Simon et al. 2011) that are among the smallest
observed galactic structures. The problem with these objects is that
the number of stars for which a measure of velocity is available
and which pass quality cuts is quite small (i.e. less than 50). As a
consequence, it is not possible to determine the velocity dispersion
in radial bins sufficiently localized to be compared directly with the
profile in equation (10). One can still appreciate the characteristic
signature of a large DM core, i.e. an increasing slope of the stellar
dispersion velocity between r ∼ R∗ and r ∼ Rh, by determining
the velocity dispersion in few relatively large bins with dimension

r ∼ R∗.

In order to perform such analysis, we define the average LOS
velocity dispersion in a bin r ∈ [R1, R2],

σ 2
los(R1, R2) = 1

N∗(R1, R2)

∫ R2

R1

dr 2πr �∗(r) σ 2
los(r), (11)

where N∗(R1, R2) = ∫ R2
R1

dr 2πr �∗(r) is the cumulative number of
stars between two radii. Using equation (10), and assuming constant
β, we find

σ 2
los = 1

N∗(R1, R2)

∫ ∞

R1

dr 4πr2 n∗σ 2
r F (r, β; R1, R2) , (12)

where the adimensional function F (r, β; R1, R2) is

F (r, β; R1, R2) =
{[√

r2 − R2
1 −

√
r2 − B2

]
(3 − 2β)

3r

+ β

3r3

[
B2

√
r2 − B2 − R2

1

√
r2 − R2

1

]}
,

(13)

with B = min {r, R2}.2

For illustrative purposes, we show in Fig. 3 as solid lines the
behaviour of the average LOS velocity dispersion calculated in two
bins [0, R∗] and [R∗, 3R∗] as a function of the DM core radius Rh, for
β = 0. One can observe that the average LOS dispersion velocity in
the external bin overshoots the internal one as soon as Rh/R∗ � 2.
This demonstrates that even with two single bins, and provided the
uncertainties on the observed dispersion velocity are not too large,
one could constrain the DM core size. For instance, if the observed
dispersion velocities in two or more bins in the vicinity of r � R∗
are approximately the same, one could rule out the possibility that
DM extends much beyond the stellar component.

From the plot one can make also other remarks. Clearly, the more
the DM core extends beyond the stellar component (Rh/R∗ > 1),
the less its actual density profile beyond Rh is relevant for the stellar
physics, because the DM density is anyway constant in the region
where the stars trace the gravitational potential. On the other hand,
one can expect that if the DM core is smaller than the stellar scale
(Rh/R∗ < 1) the actual shape of the DM profile out of its core

2 The number of stars in a bin N∗(R1, R2) can be also calculated as
N∗(R1, R2) = ∫ ∞

R1
dr 4πr2 n∗(r) F (r, β = 0; R1, R2).

Figure 3. Averaged stellar velocity dispersion in two bins, taken here as
int = [0, r∗] (red) and ext = [r∗, 3r∗] (yellow), for β = 0. The dashed curves
show the same for a Burkert profile (non-degenerate fermions).

will influence the resulting stellar velocity dispersion. To show this
effect, we have repeated the analysis for Burkert DM profiles, also
reported in Fig. 3 as dashed lines, which confirms the dependence
on the profile shape for Rh < R∗. On the other hand, for Rh > R∗, the
solid and dashed curves are overlapping, i.e. the predicted dispersion
does not depend on the shape of the DM profile, making the analysis
more robust.

Unfortunately, as we shall discuss for the specific cases of Segue I
and Willman I, the analysis outlined in this section is considerably
hampered by the large uncertainties in each bin of the observed
velocity dispersion. In addition, it is also severely limited by the
unknown velocity anisotropy.

3.3 The role of anisotropy

As is well known and as we will see in detail, the unknown stellar
velocity dispersion anisotropy β limits severely the possibility to
extract the DM core radius Rh from observational data. Indeed, in
the absence of direct information, the quantity β has to be treated as
a nuisance parameter that has to be removed in order to compare a
mass model with observations (see e.g. Walker et al. 2007 and Ullio
& Valli 2016 for a recent critical discussion). The role of β can be
understood by rewriting the Jeans equation (8) in the form

∂ ln σ 2
r

∂ ln r
= − 1

σ 2
r

GM

r
− γ∗ − 2β, (14)

where γ ∗ = d ln n∗/d ln r is the slope of the stellar number density,
that runs from ∼0 near the centre to negative values out of R∗. Note
that the first two terms in the right-hand side (rhs) that are related
to DM and stellar distributions have opposite signs, being negative
the first and positive the second. In the case of zero anisotropy, the
slope of the velocity dispersion vanishes at the galactic centre, i.e.
∂ ln σ 2

r /∂ ln r = 0 for r = 0, since these two terms are both equal to
zero in the origin. If the DM halo extends outside the stellar scale
radius, the term γ ∗ starts to grow (in modulus) at r � R∗ while
GM(r)/rσ 2

r is still negligible, and determines the positive slope
of σ 2

r observed in Fig. 2. Whereas the observed stellar velocity
dispersion does not feature such a growth at large distances, one
can set an upper bound on the DM core radius, that cannot be much
larger than the stellar scale radius R∗.

The presence of a non-vanishing anisotropy can clearly alter this
scenario. In particular, a positive β can compensate the effect of γ ∗
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reducing the outer slope of σ 2
r , even in presence of a DM distribution

extending well beyond the stellar radius. However, this effect is
limited by the fact that the anisotropy parameter is limited to be less
than 1. As a result, the case β = 1 leads to weaker upper bound
on the core radius Rh, and basically the most conservative. The
opposite holds for negative β values that can give quite small slope
∂ ln σ 2

r /∂ ln r ≥ 0 even for mass models with Rh ≤ R∗. Because a
negative β is unconstrained, this limits the possibility of setting a
lower bound on Rh in dSph galaxies and assessing the cusp–core
problem at such short scales.

Note that, for the purpose of determining an upper limit for the
core radius Rh, it is not even necessary to consider a generic β(r)
since the most relevant fact is the presence of the upper bound β < 1.
In our analysis, we assume a constant anisotropy parameter β and
we treat it as a nuisance parameter.

In order to do this, we adopt the following philosophy: for each
set of DM core radius Rh and surface density �0 we scan over the
complete physically allowed range −∞ < β ≤ 1, and if there exists
a value of β that provides a good fit to the observational data, then
the hypothesis of a degenerate core with those parameters cannot
be rejected. Following a frequentist approach, the level of compat-
ibility with data is assessed by defining a standard χ2 function (see
Section 4.1). This is eventually minimized with respect to β. This
procedure allows us to obtain the most conservative bounds.

The comprehensive range in β that we adopt reflects our present
ignorance of the dispersion anisotropy. Clearly, if in the future
independent constraints on the anisotropy parameter will become
available, this procedure might be improved.

It should be noted that an additional source of uncertainty is
due to the slope of the density profile γ ∗. As a general rule (see
equation 14) the role of γ ∗ in the outer regions is similar to that of β:
the more negative γ ∗ is, the stronger is the rise in the external σ r and
thus the more restrictive the bound would be. The Plummer profile
that we adopt reaches quite steep values (−5) of the slope in the outer
region and thus can be taken as a reasonable benchmark. Because
in practice the precise slope of the density profile is extremely hard
to constrain from observations, especially for the smallest objects,
this additional uncertainty should be kept in mind.

3.4 Dynamical friction

The mass of dSph galaxies can be limited from above because they
are subject to dynamical friction in the Milky Way DM halo. Their
orbit decay with a characteristic time-scale that can be estimated
from the Chandrasekhar formula (Binney & Tremaine 2008):

tfric = 1010 yr

ln �

(
D

60 kpc

)2 ( v

220 km s−1

) (
2 × 1010 M�

Mh

)
, (15)

where v is the velocity of the dwarf galaxy and D is its distance
from the Milky Way centre. The Coulomb logarithm in the above
equation is given by

ln � = ln

(
bmax

bmin

)
, (16)

where bmax and bmin are the maximum and minimum impact param-
eters. These can be estimated as (Binney & Tremaine 2008; Just
et al. 2011)

bmax = −
(

d ln ρMW

dr

)−1

� D

γ
, bmin = max

{
Rh ,

GMh

v2
typ

}
,

(17)

Figure 4. Stellar LOS velocity dispersions for Leo II. The dashed line
represents the best fit, achieved for β = 0.6.

where vtyp is the virial velocity and we assumed that the Milky Way
DM density scales approximately as ρMW ∝ D−γ with γ � 2 in the
vicinity of the objects considered.3

Chandrasekhar’s formula (15) is known to fail when the mass
Mh of the satellite becomes comparable to the mass of the host
system that lies interior to the satellite’s orbit and/or the den-
sity of host system is constant (see e.g. Read et al. 2006). In the
cases of our interest, however, none of these conditions apply and
equation (15) provides a remarkably accurate description. By re-
quiring tfric � 1010 yr, and by considering that the typical velocity
of satellites should be of the order of the Galactic virial velocities
at those distances ∼220 km s−1 (Nesti & Salucci 2013), one finds
a bound on the mass Mh that depends on the distance of the dwarf
galaxy from the Galactic Centre.

Note that the existence of an upper limit for Mh does not imply by
itself the possibility to constraints the FDM scenario. It was noted,
however, in Gerhard & Spergel (1992) that if the DM density of
dSph galaxies can be determined from velocity dispersion data, the
upper bound on Mh can used to obtain an upper limit on Rh, thus
constraining the mass m of hypothetical FDM particles.

4 R ESULTS

4.1 A small classical dwarf – Leo II

As a paradigmatic case, we first analyse the case of Leo II, the
smallest among the so-called ‘classical’ dSph satellite galaxies of
the Milky Way. The stellar number density of Leo II is well modelled
by a Plummer profile with scale length R∗ = 177 pc. In Fig. 4
we report the observed stellar LOS velocity dispersion, σ 2

i ± δσ 2
i ,

measured in 11 bins centred at the radii ri. We compare these data
with the LOS velocity dispersion predicted in equation (10) for the
fully degenerate fermionic DM halo, σ 2

i ≡ σ 2
los(ri), by defining a

standard χ2 test:

χ2(Rh, �0, β) =
∑

i∈bins

(
σ 2

i − σ 2
i

δσ 2
i

)2

. (18)

3 For degenerate cores, the halo radius Rh defined in equation (A14) is
sufficiently close to the half-mass radius of the DM distribution.
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Figure 5. Leo II – left: contours of compatibility with data at 68 per cent probability (χ2 �12.6, for 11 dof) as a function of the degenerate DM core parameters,
for various values of the dispersion anisotropy β. Right: contours of best χ2 in the plane (Rh, �0) after eliminating the anisotropy β. The light shaded region is
compatible with the observational data at 68 per cent CL (χ2 � 11.5, for 11 − 1 = 10 dof). The darker shading shows the region preferred by data at 68 per cent
CL (
χ2 = 2.3), if one assumes the FDM hypothesis as true.

The model parameters are the DM core radius Rh and surface density
�0 ≡ ρ0 Rh, plus the anisotropy β.

Our results are shown in Fig. 5. In the left-hand frame, we plot
the χ2 contours in the plane (Rh, �0), corresponding to 68 per cent
confidence level (CL) exclusion for 11 degrees of freedom (dof),
obtained by assuming fixed values of β = −0.5, . . . , 1. In the right-
hand frame, we eliminate the nuisance parameter β. As discussed
in Section 3.3, we use a conservative approach that does not require
the introduction of a prior on the anisotropy distribution. Namely,
for fixed model parameters Rh and �0, we minimize the χ2 over
the admissible range −∞ < β ≤ 1; we then compare the minimal
value with a χ2 probability distribution with 11 − 1 = 10 dof to
possibly reject the assumed parameters. The light shaded area in
the right-hand frame of Fig. 5 corresponds to χ2 = 11.5 that gives
68 per cent CL exclusion.4

The best-fitting model (which has χ2
bf � 2.5) is obtained with

β = 0.6 and is relative to a core size Rh � 400 pc and surface density
�0 � 75 M� pc−2. It provides a very good fit to the observational
data, as it is shown by the velocity dispersion profile in Fig. 4.
Being this a fully degenerate halo, the couple of parameters (Rh, �0)
corresponds to a well-defined mass m of the FDM candidate, which
for the best fit corresponds to m � 0.23 keV, in good agreement with
the value suggested by Domcke & Urbano (2015).

On the other hand, a non-degenerate fermionic core can have
generic radii Rh larger than the minimal (degenerate) value as found
from equation (5):

Rh,min = 90 pc
(g

2

)−2/5 ( m

1 keV

)−8/5
(

�0

M� pc−3

)−1/5

, (19)

4 Because we are interested in a bound on m by excluding a region of the (Rh,
�0) plane, we use the absolute χ2 to determine the level of compatibility
with observational data. If instead one assumes that the FDM hypothesis
is correct, the 68 per cent CL allowed region in the plane is determined by

χ2 ≡ χ2 − χ2

bf = 2.3 (for 2 dof). For completeness, we show this region
with dark shaded area in Fig. 5.

which is shown as grey dashed lines in Fig. 5 for selected values
m. By using the inequality Rh, min ≤ Rh, one would like to obtain a
lower bound on the DM particle mass directly from the constraints
on the halo parameters Rh and �0, as in equation (7). However, one
can see that unless the anisotropy β is constrained independently,
velocity dispersion data do not allow to set limits on m. In particular,
for maximal values of β ∼ 1, i.e. radial motion of stars, very small
values of m are allowed by the data and are relative to multi-kpc
haloes, as it seen in Fig. 5. This situation is most likely not realistic,
being unplausible that such a huge DM halo host a stellar system of
just few hundredths pc and small velocity dispersion. It is however
not possible to give at this stage a quantitative support to this com-
ment, using dispersion data alone. Indeed, in the upper right-hand
part of the plots, the χ2 becomes flattish for Rh � R∗ because the
limited extent of the stellar component does not permit to constrain
a much larger DM halo.

The above conclusion can be made more quantitative by produc-
ing a one-dimensional χ2 profile as a function of m. This is shown
in Fig. 6 that is built as follows.

First, we obtain the red dashed curve, relative to fully degenerate
models, by expressing the core radius (Rh = Rh, min) as a function of
the mass m through equation (19), and then minimizing the χ2 with
respect to �0, in addition to β. From this curve one finds directly
that no lower limit on the particle mass m can be obtained, even at
68 per cent CL that would require χ2 > 10.4 (for 11 − 2 = 9 dof).
The curve also becomes flattish for m � 50 eV, corresponding to the
fact that for small masses the DM core becomes much larger than
the stellar component, whose properties can only probe the central
density of the DM distribution, but not its extension. Incidentally,
this also means that the stellar velocity dispersion can be equally
fitted by non-degenerate cored DM profiles with the same central
density, the outer profile being irrelevant.

Then, on the rising part of the red dashed curve, towards large
values of m, we note that while the fit worsens progressively as
the degenerate core shrinks, one cannot set an upper bound on m,
because the size of a degenerate core is just a lower limit, and any
good fit with a given radius can also be produced with higher m
as a non-degenerate configuration. Indeed, the mass m has to play
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Figure 6. Leo II – the χ2 as a function of the particle mass m with different
assumptions for the DM distribution. The red dashed line is obtained, after
minimization with respect to �0 and β, for fully degenerate cores with
radius Rh = Rh, min(m, �0). The blue dotted line is similarly obtained for a
non-degenerate cored (Burkert) profile with radius Rh = 2 Rh, min(m, �0).
The light-red solid line and the shaded region represent the overall minimal
χ2(m), obtained by considering that DM cores with generic radii Rh ≥
Rh, min(m, �0) are allowed for a fermionic DM candidate.

no role in the non-degenerate regime. Thus, the final χ2 has to be
thought as independent from the DM mass, i.e. flat, starting just
beyond the minimum of the degenerate case. This is depicted as a
light-red solid line and by the shaded region in Fig. 6.

This argument is confirmed by repeating the whole analysis with
a non-degenerate cored density profile (we adopt the Burkert den-
sity profile taking a core radius two times larger than the minimal
value, Rh = 2 Rh, min, see Appendix A). This gives the blue dotted
curve in Fig. 6. As expected, the non-degenerate profile leads to
better fits for large masses while the χ2 slowly converges to the
degenerate case at the left-hand end of the plot. This test could be
repeated by considering other admissible non-degenerate profiles,
and/or different Rh > Rh, min, and the envelope of the relative curves
will produce the overall minimal χ2 as depicted as the red solid
line.

Even if stellar velocity dispersion data, taken alone, do not al-
low to obtain a limit on m, the mass of the DM particle can be
constrained by considering that the halo decay time due to dynam-
ical friction (equation 15) becomes unacceptably small for very
large objects. Indeed, in the limit Rh � R∗ the quantity directly
constrained by stellar velocity dispersion data is the halo central
density ρ0 = �0/Rh. Therefore, by moving along the χ2 flat direc-
tion at increasingly larger radii in Fig. 5, the halo mass increases
as R3

h and eventually reaches values Mh that correspond to unac-
ceptable friction times (equation 15). This constraint is reported in
Fig. 5 by cutting the region where friction times are unphysical.

In conclusion, the interplay between dynamical friction and
velocity dispersion data allows us to determine an absolute up-
per bound on the halo size, and thus a lower bound on the
DM mass. For Leo II, this results in a very weak constraint,
m � 25 eV.

4.2 Smallest dwarf spheroidals: Willman I and Segue I

Let us apply the above strategies to the case of the Willman I and
Segue I dSph galaxies (Simon et al. 2011; Willman et al. 2011)
that are among the smallest galaxies for which LOS velocities are
available. Their stellar distributions are fitted by Plummer profiles

Figure 7. LOS velocity dispersion in Willman I (green squares) and Segue I
(blue circles).

with very small radii, given by R∗ = 25 and 29 pc, respectively. We
use the stellar velocity data to determine the averaged LOS velocity
dispersion, equation (12), in three bins with extension comparable
to the Plummer radii. The results obtained are reported in Fig. 7
as a function of the projected distance from the galactic centre. We
compare these observational results with the theoretical predictions
by repeating the procedure adopted for Leo II, i.e. we minimize
χ2(Rh, �0, β) in the full range −∞ < β ≤ 1 of the anisotropy
nuisance parameter.

Our results are reported in Fig. 8, where we show the contours
corresponding to 68 per cent CL exclusion for 3 − 1 = 2 dof for
Willman I in the left-hand frame and for Segue I in the right-hand
frame (χ2 ≡ 2.3).

We note that no significant constraint on the halo radius is ob-
tained for Willman I. Indeed, a good fit is achieved also for Rh �
R∗ by allowing the anisotropy β to be increasingly negative. The
fit worsens for large core radii but the χ2 becomes flattish beyond
Rh ∼ 300 pc, not sufficiently large to give a significative exclusion
of larger halo sizes. This is clearly due to the limited radial exten-
sion of the stellar data sample, ∼75 pc. The best fit is obtained for
Rh � 30 pc, �0 = 473 M� pc−2 and β = −0.2 and corresponds to
χ2 � 0, as it is expected by considering that we have only three bins
and three free parameters.

Again, even if the DM radius is not constrained, the fits provide
a useful determination of the central density of the system that
defines the flat direction in the plane (Rh, �0) for Rh � R∗. Similarly
to Leo II, by requiring that the dynamical friction decay time for
Willman I is not unphysically small, we can exclude large core radii
beyond ∼kpc in the upper right-hand shaded region in Fig. 8 and
obtain a robust lower bound on the DM mass, m � 80 eV.

A similar analysis holds for Segue I, whose binned velocity dis-
persions are reported with blue circles in Fig. 7. The three bins
show that Segue I presents a different profile with respect to other
dwarfs, with the velocity dispersion rising beyond ∼40 pc. This
behaviour, which has already been noted in the literature as a pos-
sible evidence of a large DM halo (or an indication against its
regularity/virialization), is consistent with the expectations from a
scenario with Rh � R∗. Consistently, small radii Rh � 40 pc can-
not be accommodated by the fit, even assuming a stellar anisotropy
parameter β ≤ 0. The best fit is obtained for Rh ∼ few kpc and
no upper limits can be derived from Jeans analysis. Neverthe-
less, the central halo density is determined and the halo exten-
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Figure 8. Contours of χ2, after minimizing on the free range of β. The left-hand panel is for Willman I, while the right-hand panel refers to Segue I. The light
shaded regions give the region of compatibility with data at 68 per cent CL (χ2 = 2.3, 2 dof). Notice that no upper limit on the confidence interval on the radius
can be placed for either galaxy.

sion is limited again by the constraint on the dynamical fric-
tion time, as shown in Fig. 8. The resulting lower bound on the
DM mass is slightly better to that derived for Willman I, m �
100 eV, mainly due to the fact that Segue I is closer to the galactic
centre.

4.3 Other dwarfs

As a cross-check, we note that the results presented above from
the Jeans analysis are indeed compatible with the fits performed
in the recent work from Hayashi et al. (2016) where the authors
also consider the possibility of triaxial haloes and arbitrary density
profile slope at the centre. While their analysis does not consider
degenerate fermionic haloes, their results confirm that for most
dwarf galaxies the DM halo radius is quite poorly constrained, and
haloes of few kpc size appear to be allowed by data, even if this is
most likely unphysical. For our purposes, as discussed above, what
drives the bound on the DM mass is the interplay of the dynamical
friction constraint with the central halo density ρ0, which is the
quantity constrained by observations in the limit of large halo size.
Because this central density is largely independent on the (outer)
halo shape, we can take advantage of the results of Hayashi et al.
(2016) to estimate the DM mass bound for all objects presented in
that work. The bound is in fact driven by the central DM density and
the distance of the dwarf satellite. As we see from Table 1, by using
the central fitted values of the densities, our result of Segue I and
Leo II is confirmed, so that the results given in this work represent
the most conservative bound around m � 100 eV, with a possibly
slightly stringent bound from the Triangulum II galaxy.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this work we have reassessed the lower bound on the mass of a
FDM candidate, independently from particular models of its pro-
duction or history of its clustering. The quantum nature of such light
fermionic candidate implies an upper bound on the phase-space den-
sity in currently observed objects, and the knowledge of the density
can be turned into a lower bound on the mass, à la Tremaine–Gunn.
We have reconsidered the smallest dwarf spheroidal galaxies that

Table 1. Estimated lower bound on the fermionic DM mass
m from a number of dSph galaxies, adopting the central
densities as determined in Hayashi et al. (2016).

dSph Log ρ0 d0 Lower bound
(M� pc−3) (kpc) on m

Triangulum II 0.3 30 127 eV
Segue I −0.4 32 100 eV
Leo T −0.6 417 26 eV
Reticulum II −0.8 32 89 eV
Ursa Major I −0.8 106 49 eV
Coma Berenices −0.8 44 76 eV
Sculptor −0.8 86 54 eV
Fornax −1.1 147 38 eV
Ursa Major II −1.2 32 80 eV
Leo I −1.3 254 27 eV
Canes Venatici II −1.4 151 34 eV
Hercules −1.4 132 37 eV
Pisces II −1.5 180 30 eV
Leo IV −1.7 158 31 eV
Leo II −1.7 233 25 eV
Draco II −1.9 20 82 eV
Sextans −2. 86 38 eV
Canes Venatici I −2.2 224 22 eV
Carina −2.2 106 33 eV
Bootes I −2.4 66 39 eV
Leo V −2.6 178 22 eV
Draco −2.7 76 33 eV
Hydra II −3.1 134 22 eV
Segue II −3.2 35 43 eV

according to kinematical data are believed to host the largest den-
sities of DM, thus constituting the ideal candidates to set a lower
bound on the DM mass m.

Such a bound must be set in the hypothesis that the DM halo of
some of these objects is composed of a completely degenerate gas
of fermions, whose density profile is defined by the Lane–Emden
equation. We have performed a fit of the stellar velocity disper-
sion predicted by the gravitational potential generated by such DM
halo versus the observed stellar dispersion velocity and density pro-
file of the Willman I, Segue I, and Leo II galaxies. In our analysis,
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differently from recent works on the subject, we have not assumed
that luminous matter traces the DM distribution, thus we have con-
sidered the DM core radius and surface density as free param-
eters. Moreover, we have taken into account the effect of the un-
known anisotropy of the stellar velocity dispersion and marginalized
over it.

As we have shown, the nuisance due to the stellar velocity
anisotropy β seriously hampers the possibility to efficiently con-
strain the DM halo parameters. In practice, one finds equally ac-
ceptable haloes of very small sizes and negative β (where the total
DM halo mass is determined) or very large sizes ∼few kpc and
anisotropy near 1 (in which case the inner DM spatial density is de-
termined). This latter scenario effectively corresponds to low phase-
space densities, and thus no sensible lower bound on m can be given
from stellar kinematical data alone. This situation is likely to persist
even in the future, until a way to measure the velocity anisotropy
in dSph galaxies will be available (see e.g. Read & Steger 2017),
although this appears currently quite unconceivable.

New approaches have been proposed to circumvent the β-
degeneracy in dSph galaxies in which subpopulations can be sepa-
rated (Battaglia et al. 2008; Walker & Penarrubia 2011; Agnello &
Evans 2012). These methods were applied to the Fornax galaxy in
Amorisco, Agnello & Evans (2013) to exclude the Navarro–Frenk–
White (NFW) profile and constrain the DM distribution. The upper
bound on Fornax core radius was used by Randall, Scholtz & Unwin
(2017) to infer a lower limit m > 70 eV for the mass of a FDM parti-
cle. Unfortunately, the likelihood distribution used to limit the core
size in Amorisco et al. (2013) does not converge to zero for large
core radii (see their fig. 4), as it is expected due to the fact that the
stellar populations have limited extent. Therefore, while providing
a robust lower bound for the core radius, even this approach cannot
exclude few kpc core radii at high confidence level.

Such multi-kpc haloes are in any case unrealistic and a ratio-
nale to rule them out is provided (Gerhard & Spergel 1992) by the
fact that very large haloes of known density correspond to large
total halo mass, which makes their time of orbital decay due to
dynamical friction in the Galactic DM halo, formula (15), unphysi-
cally small. Therefore, dynamical friction can be used to effectively
limit the halo size and the interplay with the quantum bound on
phase-space density leads finally to a lower bound on the fermionic
DM mass m.

As it turns out from the analysis that we described, at present the
most restrictive bound stems from the study of the Willman I and
Segue I galaxies. Our results are put together in Fig. 1, where only
the interplay between the fit to stellar data and the constraint from
dynamical friction leads to a robust lower bound of m � 100 eV.
Thus, one is led to reopen the case for sub-keV fermionic DM, like
sterile neutrinos of mass down to 100 eV.

For these two small dwarf galaxies driving the bound, the re-
sulting DM halo can reach sizes of ∼1 kpc, much larger than their
stellar components. This does not mean that all the dSph galax-
ies shall have such enhanced haloes; this could likely hold only
for these smallest objects that approach the fermionic degenerate
regime.

As far as DM indirect detection is concerned, we note that
the expected flux from DM annihilation (so-called J-factor) is en-
hanced in the limiting case of the extended halo sizes considered
here, compensating the naturally low flux characteristic of cored
haloes. At the same time, the dynamical friction upper bound on
the halo sizes will slightly reduce the maximal expected J-factor
in cored haloes, with respect to the analysis of e.g. Hayashi et al.
(2016).

Clearly, DM masses m = 100 eV are at odds with bounds derived
from the effect of WDM on structure formation (e.g. Lyman α)
that typically forbid masses below few keV (see e.g. Iršič et al.
2017) by limiting their free streaming length. Therefore, for this
scenario to be realistic, the spectrum of such DM candidates should
be much colder than usual (see e.g. Drewes et al. 2017). This can
be realized in models with production via decay as e.g. in Petraki
& Kusenko (2008) and Domcke & Urbano (2015), or for instance
in models in which DM at decoupling is overabundant and then
subject to dilution by decays of other species, along the lines of
e.g. Bezrukov, Hettmansperger & Lindner (2010) and Nemevsek,
Senjanovic & Zhang (2012).

More theoretically, in order to attain the fermionic degeneracy
that we have tested, it is also necessary that either the maximum
of the primordial phase-space density saturates the occupation limit
(equation A5) as it happens e.g. in relativistic decoupling, or al-
ternatively that DM is subject to some form of dissipation or in-
teraction, so that the phase-space density might grow during col-
lapse. Indeed, a very interesting (and outstanding) issue is that of
which collapse mechanism and time-scales could lead to degen-
erate fermionic haloes. While the free energy and entropy budget
have been shown to be favourable (Hertel, Narnhofer & Thirring
1972; Bilic & Viollier 1997; Chavanis 2002), an assessment of the
dynamics and relaxation times is still beyond reach (see Campa,
Dauxois & Ruffo 2009; Chavanis, Lemou & Méhats 2015).

On the observational side, it is worth commenting that while the
dSph galaxies are the smallest and most DM-dominated astrophysi-
cal objects, with a number of new dwarfs being currently discovered
by present surveys, the possibility of using other types of galaxies for
setting a bound on m from degeneracy is also of interest. Recently,
cored halo mass modellings of disc dwarf galaxies from the Local
Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy
Survey (LITTLE THINGS) have been performed (see Karukes &
Salucci 2017). Although the rotation curve decomposition is af-
fected by uncertainty in the asymmetric drift gas contribution, due
to their disc structure they are not subject to the dramatic anisotropy
nuisance parameter of dSph galaxies and could potentially lead to
a better bound on the DM mass m.
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APPEN D IX A : SE L F-G R AV I TAT I N G
F E R M I O N I C G A S

We briefly review in this appendix the analysis of the equilibrium
distribution of a self-gravitating gas of neutral fermions. We de-
scribe first the limiting case of complete degeneration and then
we recall the Thomas–Fermi treatment that allows to describe the
transition to partially or non-degenerate case.

A1 Stability conditions for the DM halo

If we have large number of DM particles, we can assume they move
in a spherically symmetric mean-field gravitational potential φ(r)
that satisfies the Poisson equation:

dφ

dr
= GM

r2
,

dM

dr
= 4πr2ρ, (A1)

where M(r) is the mass enclosed within the radius r, G is the Newton
constant, and ρ(r) is the matter density. For non-relativistic particles,
the density can be expressed as

ρ = m

∫
dp 4πp2 f (p), (A2)

where m is the particle mass and we assumed that DM distribution
function f(p) is isotropic. The dynamical stability of the system is
expressed by the Jeans equation:

d

dr
(ρσ 2

DM) = −ρ
dφ

dr
, (A3)

where the DM velocity dispersion σ 2
DM is given by

σ 2
DM = 1

3

∫
dp (p4/m2) f (p)∫

dp p2 f (p)
. (A4)

If DM is composed of fermions, the distribution function f(p) has
an upper limit:

f (p) ≤ g

(2π�)3
, (A5)

where g represents the number of internal (spin) degrees of freedom.
This automatically implies that a lower limit exists for the velocity
dispersion

σ 2
DM ≥ σ 2

DM,min = 1

5

(
6π2�3ρ

g m4

)2/3

(A6)

of a fermionic system of fixed density.

A2 The strong degeneracy limit

In the strong degeneracy regime, the states with energy below the
Fermi energy ε are fully occupied, i.e. the distribution function f(p)
has the form

f (p) =
g

(2π�)3 p < pF,

0 p > pF,
(A7)

where pF = √
2mε is the Fermi momentum. In this assumption,

one obtains the expressions

ρ = K ε3/2,

σ 2
DM = K ′ ε, (A8)

where K = √
2 g m5/2/(3π2�3) and K′ = 2/(5m), so that

equations (A1) and (A3) can be recasted in the form

1

r2

d

dr

[
r2 dε(r)

dr

]
= −4πGm Kε(r)3/2. (A9)

This equation has to be integrated with the condition dε(0)/dr = 0
ensuring that the gravitational acceleration is zero at the centre. By
defining

ξ ≡ r/r̃, (A10)
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Figure A1. Density profiles for the DM haloes. Solid: the solution of the
Lane–Emden equation for degenerate fermions. Dashed: its approximation
adopted in the text (equation A14). Dotted: the Burkert density profile for
comparison.

where the scale radius r̃ is given by

r̃ ≡ 1√
4πGm Kε

1/2
0

= 1√
4πGm K2/3ρ

1/3
0

, (A11)

and by using the function θ (ξ ) defined as

θ (ξ ) ≡ ε(ξ )

ε0
=

[
ρ(ξ )

ρ0

]2/3

, (A12)

where ε0 (ρ0) is the central value of the Fermi energy (density),
equation (A9) can be rewritten in the form

1

ξ 2

d

dξ

[
ξ 2 dθ (ξ )

dξ

]
= −θ (ξ )3/2, (A13)

which is the well-known Lane–Emden equation.
Equations (A12) and (A13) show that the profiles of degenerate

fermionic DM haloes are universal and depend only on the assumed
central density ρ0 and DM particle mass m. The mass distribution
crucially differs from the usually adopted cusped or cored profiles.
A sharp transition exists from an internal core with quite uniform
density to an external region devoid of DM. For our purposes, the
density profile of degenerate fermionic DM haloes can be well
approximated by

ρ(ξ ) = ρ0 cos3
[π

8
ξ
]

(A14)

for 0 ≤ ξ ≤ 3.65, and ρ(ξ ) = 0 elsewhere, see Fig. A1.
We define the halo radius by the condition ρ(ξ h) = ρ0/4 that

gives ξ h = 2.26 corresponding to

Rh ≡ ξhr̃

= 2.26

(
9π

27

)1/6 �
G1/2

g−1/3m−4/3ρ
−1/6
0

= 42.4 pc
(g

2

)−1/3 ( m

1 keV

)−4/3
(

ρ0

M� pc−3

)−1/6

. (A15)

By using the above expression, we rewrite equation (A14) in the
form

ρ(r) = ρ0 cos3

[
25

88
π

r

Rh

]
, (A16)

where we used the approximate equality ξ h/8 � 25/88.

A3 The Thomas–Fermi model for fermionic DM

A self-consistent description of isothermal fermionic DM haloes
with an arbitrary level of degeneration can be obtained by using a
Thomas–Fermi approach (see Bilic et al. 2001; de Vega et al. 2014).
One assumes that DM particles follow a Fermi–Dirac distribution:

fFD(p; T , μ) = g

(2π�)3

1

exp[(E − μ)/T ] + 1
, (A17)

where E = p2/(2m) is the single-particle kinetic energy, T is the
temperature expressed in terms of energy, and μ is the chemical
potential. In the above, the density can be expressed as

ρ = g (2T )3/2m5/2

6π2�3
I2(ν), (A18)

where

I2(ν) ≡ 3
∫ ∞

0
dy

y2

exp (y2 − ν) + 1
(A19)

and ν ≡ μ/T is a degeneracy parameter.
If one assumes a constant temperature, T (r) ≡ T̃ , and that the

chemical potential at each given radius includes the gravitational
potential φ(r) as

μ(r) = μ̃ − mφ(r), (A20)

where μ̃ is a constant, then the Jeans equation (A3) is automatically
fulfilled and equations (A1) and (A2) can be recast in the form

1

r2

d

dr

[
r2 dμ(r)

dr

]
= −4πGmρ(r), (A21)

again to be integrated with the condition dμ(0)/dr = 0 for zero
gravitational acceleration at the galaxy centre.

A4 The non-degenerate case

The Thomas–Fermi approach just described has the advantage of
automatically implementing the upper limit (equation A5) imposed
by the Pauli exclusion principle; it can thus describe the transition
between classical and degenerate structures, in a continuous way.
By using this approach, one is able to see that when Rh is 2–3 times
larger than the minimal value in equation (A15) the fermionic nature
of DM particles can be neglected, i.e. the resulting structures are
essentially indistinguishable from cored isothermal haloes obtained
by assuming Maxwell–Boltzmann statics and arbitrary values of the
particle mass m.

This approach does not allow, however, to unambiguously predict
the halo properties in the non-degenerate case. Indeed, in the classi-
cal regime (i.e. for ν � 1) one has I2(ν) � exp (ν), differently from
the strongly degenerate case in which I2(ν) � ν3/2. Thus, the rhs
of equation (A21) depends both on the temperature and the chem-
ical potential. One obtains then a family of solutions depending
on these two free parameters: the temperature T̃ and the assumed
chemical potential μ0 (or, equivalently, the assumed density ρ0)
at the centre of the system. Moreover, a temperature profile, here
constant, had to be assumed in the Thomas–Fermi approach in or-
der to solve equation (A3). In a more realistic scenario, in which
the temperature may vary along the galactic structure, T̃ could be
regarded as the central temperature; the predictions obtained in the
degenerate or semidegenerate regimes are thus valid in the cen-
tral core where temperature variations can be neglected, while the
properties of the external region depend on the radial temperature
profile. As it is natural to expect, basing on sole theoretical grounds
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it is thus impossible to predict the mass distribution in regions of
non-degeneration.

For this reason in the text, where we refer to non-degenerate
haloes, we model them by using the observationally supported Burk-
ert profile:

ρBur(r) = ρ0

(1 + x)(1 + x2)
, x = r/Rh. (A22)

In using this profile, we require that the central density ρ0 and core
radius Rh are consistent with the assumption of non-degenerate

structure composed of fermions with mass m and g spin degrees
of freedom, i.e. for each assumed value of ρ0, the halo radius Rh

is required to be a factor of ∼2 larger than the degenerate limit
expressed by equation (A15).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Coccato, L., Méndez-Abreu, J., and Cesetti, M. (2012). Structure and dy-
namics of galaxies with a low surface-brightness disc - II. stellar populations
of bulges. MNRAS, 423:962.

[Moster et al., 2013] Moster, B., Naab, T., and White, S. (2013). Galactic
star formation and accretion histories from matching galaxies to dark matter
haloes. MNRAS, 428:3121.

[Moster et al., 2010] Moster, B., Somerville, R., Maulbetsch, C., van den Bosch,
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