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Abstract
Alkali-doped fullerides (A C3 60 with A  =  K, Rb, Cs) show a surprising phase diagram, in which a 
high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating 
phase as a function of the lattice spacing. This is in contrast with the common belief that Mott 
physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental 
question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio 
calculations, which have succeeded in reproducing comprehensively the experimental phase 
diagram with high accuracy and elucidated an unusual cooperation between the electron–phonon 
coupling and the electron–electron interactions leading to Mott localization to realize an 
unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind 
the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a 
strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. 
This is realized by a subtle energy balance between the coupling with the Jahn–Teller phonons 
and Hund’s coupling within the C60 molecule. The unusual form of the interaction leads to a 
formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave 
pairing. The emergent superconductivity crucially relies on the presence of the Jahn–Teller 
phonons, but surprisingly benefits from the strong correlations because the correlations suppress 
the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with 
previous model calculations. This confirms that the alkali-doped fullerides are a new type of 
unconventional superconductors, where the unusual synergy between the phonons and Coulomb 
interactions drives the high-Tc superconductivity.

Keywords: alkali-doped fullerides, unconventional superconductivity, electron correlations, 
electron–phonon interactions
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1.  Introduction

The alkali-doped fullerides with the composition of A C3 60 
(A  =  K, Rb, Cs) show the highest transition temperature 
(∼40 K) among the molecular superconductors [1–11]. The 
superconductivity was first discovered in K C3 60 by Hebard  
et al in 1991 [1]. Since then, much effort has been exerted to 
understand the mechanism of the fascinating superconductiv-
ity [12–18]. Among various works, in this review, we mainly 
focus on the recent theoretical understanding on the C60 super-
conductors [19–21].

1.1.  Crystal structure

Figure 1 shows the crystal structure of the A C3 60 systems. 
K C3 60 and Rb C3 60 have the face-centered-cubic (fcc) structure 
[22–24]. Cs C3 60 can be synthesized into either an fcc or an 
A15 structure [7, 9, 10]. In the fcc structure, the buckyballs 
are located at the fcc positions and the alkali atoms are inter-
calated in between the C60 molecules. In the A15 structure, the 
C60 molecules are located on the body-centered-cubic (bcc) 
lattice, while a unit cell contains two C60 molecules with dif-
ferent orientations. In both structures, the intercalated alkali 
atoms donate electrons to the fullerene bands turning the 
semiconducting undoped C60 solid into a metal [25].

1.2.  Phase diagram

Figure 2 shows the most refined experimental phase diagrams 
for the (a) fcc and (b) A15 structures [7–10, 26]. In both cases, 
the horizontal axis is labelled by the volume VC60

3− occupied 
per C60

3− anion in the actual solid structure. In the fcc case, VC60
3− 

is controlled by physical and/or chemical pressure, where the 
latter is induced by changing the alkali species, with larger 
ions leading to larger lattice spacing between molecules. The 
phase diagram for the A15 structure was obtained by applying 
the physical pressure to Cs C3 60 solid [8].

Both phase diagrams show a superconducting phase with 
a high critical temperature, whose maximum reaches  ∼35 K  
and  ∼38 K for the fcc and A15 systems, respectively. 
Interestingly, the fcc and A15 phase diagrams share a similar 
shape of the Tc dome as a function of VC60

3− despite the lack of 
magnetic ordering in the Mott state for the frustrated fcc lat-
tice. The symmetry of the superconducting order parameter 
was found to be of s-wave by various different experimental 
techniques [27–37] as in the whole family of alkali-doped 
fullerides. Also the suppression of the spin fluctuation in the 
superconducting state suggests a singlet pairing [38].

What makes the system more remarkable is the existence 
of the Mott insulating phase next to the s-wave superconduct-
ing phase [7–10]. This adjacency of the superconductivity 
and the Mott insulator is reminiscent of the cuprates [41], 
where the symmetry of the order parameter is established to 
be d-wave [42, 43]. In fullerides, this proximity is even more 
surprising because the s-wave superconductivity is believed 
to be fragile to the strong correlations, as opposed to the 
d-wave symmetry.

Figure 1.  Crystal structures of (a) fcc A C3 60 (A  =  K, Rb, Cs) and 
(b) A15 Cs C3 60, drawn by VESTA [39]. The orientational disorder 
of the C60 molecules (merohedral disorder) [22, 23, 40], which 
exists in fcc A C3 60, is neglected in (a).

(a) (b)

Figure 2.  Experimental phase diagram for (a) fcc A C3 60 (A  =  K, 
Rb, Cs) and (b) A15 Cs C3 60. The data points are taken from 
[11] and [8] for (a) and (b), respectively. SC and AFI denote 
the superconducting phase and the anti-ferromagnetic insulator, 
respectively. Tc (open diamonds) and TN (open triangles) are the 
superconducting transition temperature and the Néel temperature, 
respectively. The open circles indicate the crossover between the 
metal and the insulator. In the panel (a), the data points for K C3 60, 
Rb C3 60, Cs C3 60, and the fullerides with mixed alkali composition 
such as Rb2CsC60 are included. In the phase diagram of fcc A C3 60 
(panel(a)), while not shown explicitly, there is a region close to the 
Mott insulating phase, which is dubbed ‘Jahn–Teller metal’ in [11] 
(see the main text for detail). The volume per C −

60
3  anion is given 

by /=−V a 4C
3

60
3  for the fcc systems and /=−V a 2C

3
60
3  for the A15 

systems, where a is the lattice constant.
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In the Mott phase, at low temperature, the antiferromag-
netism has been observed in both fcc and A15 systems [8, 10, 
26]. However, the Néel temperatures TN are very different 
between the two systems. In the A15 systems, which are less 
frustrated than the fcc systems, the transition into the antiferro-

magnetic long range order with the wave vector q , ,1

2

1

2

1

2
( )=  

occurs at around 46 K [44]. In the fcc case, the magnetic insta-
bility is drastically suppressed to T 2N∼  K. Even below TN, 
the magnetism is not purely long-range ordered: a specific 
heat measurement suggests the coexistence of the glass-like 
disordered magnetism and the antiferromagnetic order below 
TN [45]. The suppression of magnetism and the complicated 
magnetic structure in the fcc systems are ascribed to the geo-
metrical frustration and to disorder in the superexchange 
interactions driving the coupling between localized spins [45].

1.3.  Evidences of phonons

In 1990’s (well before the discovery of the Mott phase and 
magnetism in Cs C3 60 in 2008), the pairing mechanism had 
been often discussed based on the conventional phonon mech
anism [14, 46–49]. Indeed, within the Migdal-Eliashberg 
theory [50], the theoretically and experimentally estimated 
electron–phonon coupling constant λ ∼0.5–1 [46–49, 51–67]  
and the high phonon frequency  ∼0.1 eV [46–49, 51–59,  
61–63, 66–72] led to the prediction of a transition temperature 
comparable to the experimental value under the assumption 
that the Coulomb repulsion is reasonably weak. The phonon 
mechanism seemed consistent with the experimental obser-
vation of the Hebel–Slichter peak [31, 32] and the isotope 
effect with the exponent  ∼0.2–0.3 [73, 74], too6. The posi-
tive correlation between Tc and the lattice constant [5, 78–81] 
also supported this scenario: when the lattice is expanded, the 
bandwidth decreases and hence the density of states (DOS) at 
the Fermi level increases. According to the Bardeen–Cooper–
Schrieffer (BCS) theory, it leads to the increase of Tc [4, 5].

1.4.  Importance of electron correlations

On the other hand, the importance of the electron correla-
tions has been argued since the early stage of the study. Auger 
spectroscopy measurements for the undoped C60 solid lead 
to an estimate of  ∼1.6 eV for the effective intramolecular 
Coulomb interaction [82], which is bigger than the typical 
bandwidth of the low-energy bands  ∼0.5 eV. Furthermore, it 
has been argued that the retardation effect might be inefficient 
[17, 83–85]; because the electronic bands of the fullerides are 
distributed sparsely in energy, the density of states does not 
spread continuously any more [86–88] (section 3). Based on 
this fact, the typical electronic energy scale has been argued 
to be given by the bandwidth of the low-energy t1u bands 
(∼0.5 eV), which are energetically isolated from the other 
bands. This leads to a large Coulomb pseudopotential, which 
challenges the conventional pairing mechanism [85]. There 

are also suggestions of purely electronic mechanism based on 
the resonating valence bond scenario [89–91]. Several works 
have taken into account both the electron correlations and the 
electron–phonon interactions to explain the superconductiv-
ity [18, 92–96].

The discovery of the Mott insulating phase in Cs C3 60 
strikingly confirmed the strength and the relevance of the 
electron–electron correlations [7–10, 26]. Through the metal-
insulator transition, there is no structural transition [7, 8, 10]. 
Therefore, the alkali-doped fullerides provide a unique play-
ground to study the s-wave superconductivity under the strong 
correlation.

This discovery has triggered both the experimental and 
theoretical studies [11, 19–21, 26, 88, 97–112]. As a result, 
various unusual properties in both metallic and insulating 
phases have been revealed. In the Mott phase, the size of the 
local spin per C60 molecule was found to be S  =  1/2 (low-
spin state) [8, 10], not S  =  3/2 (high-spin state) expected 
from Hund’s rule. The analysis of the infrared (IR) spectrum 
revealed the presence of the dynamical Jahn–Teller distortion 
of the C60 molecules [97, 98, 112]. The nuclear magnetic reso-
nance (NMR), which probes a slower dynamics than the IR 
spectroscopy, observed a gradual freezing of the Jahn–Teller 
dynamics as the temperature decreases [99].

The metallic and superconducting states also show inter-
esting behaviors near the metal-insulator transition. In the 
superconducting state, NMR measurements observed a devia-
tion of the ratio between the gap(∆) and Tc ( k T2 B c/∆ ) from 
the BCS value of 3.53 to a larger value, while k T2 3.53B c/∆ ∼  
holds in the region of small VC60

3− [101, 113]. The spin sus-
ceptibility in the normal phase also shows a larger value than 
that expected from the smooth extrapolation from the values 
in the small VC60

3− region [26]. Moreover, an anomalous metal-
lic region has been identified close to the metal-insulator 
boundary, which has been dubbed ‘Jahn–Teller metal’. In this 
state, the IR spectrum is similar to that of the Mott insulating 
phase [11]. This result can be interpreted in terms of a slowing 
down of the dynamical distortion of the C60 molecules when 
VC60

3− increases. When the Mott localization is approached, the 
distortion timescale becomes eventually so long that the IR 
experiment probes the system in a distorted state on its char-
acteristic timescale.

1.5.  Aim and outline of this article

The clear fingerprints of the electron–phonon coupling in 
the superconducting state and the very existence of the Mott 
insulating state suggest the importance of considering both 
electron correlations and phonons for the understanding of the 
surprising phase diagram. In particular, it is a great challenge 
to understand why the s-wave superconductivity is robust 
against (or even benefits from) the strong correlations.

Another challenge is an ab initio calculation of Tc of 
strongly-correlated unconventional superconductivity. A non-
empirical calculation of Tc is necessary for predicting/design-
ing new high-temperature superconductors. Even for the 
conventional superconductors, the Tc calculation usually relies 

6 We quote the exponent measured for 99% 13C-rich samples. The exponents 
obtained for the samples with incomplete substitution range from  
∼0.3 to  ∼2.1 [30, 75–77].
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on empirical parameters such as the Coulomb pseudopoten-
tial [114]. The recent development of the density-functional 
theory for superconductors (SCDFT) has enabled a Tc calcul
ation without empirical parameters [115–118]. By assuming 
the phonon-mechanism, the SCDFT has succeeded in repro-
ducing Tc of conventional superconductors in the accuracy 
of several tens percent. However, Tc of C60 superconductors 
is largely underestimated by the phonon-mechanism-based 
SCDFT [59]. This is another indirect indication that the alkali-
doped fullerides are unconventional superconductors. While 
there have been several attempts to generalize the SCDFT 
to include e.g. the plasmon [119–121] and the spin-fluctua-
tion [122, 123] as a pairing glue, there exists no established 
method to calculate Tc of unconventional superconductors in 
which strong-correlation effects are important.

In this review, among the various studies on the C60 super-
conductors, we mainly focus on the most recent ab initio stud-
ies [19–21], which aimed at (i) the unified description of the 
phase diagram including the s-wave superconductivity and the 
Mott phase and (ii) the nonempirical calculation of Tc. The non-
empirical calculations have elucidated that, in the fullerides, 
the phonon-mediated negative exchange interaction surpasses 
the positive Hund’s coupling and thereby realizes an inverted 
Hund’s rule, as predicted by Capone et al [18, 93–95]. On 
the other hand, the intramolecular Hubbard-type interaction is 
strongly repulsive because the strong local Coulomb interac-
tion far exceeds the attraction mediated by phonons. The value 
of this repulsion is larger than that of the t1u bandwidth, which 
brings about the Mott physics in the system.

By analyzing a realistic low-energy Hamiltonian with 
the above-mentioned unusual interactions, the theoretical 
phase diagram was derived without empirical parameters. 
Remarkably, it shows a good agreement with the experimental 
phase diagram at a quantitative level. In particular, the calcu-
lated Tc’s agree with the experimental data within a difference 
of 10 K. It indicates that the scheme employed in [19–21] 
properly captures the essence of the fulleride superconductiv-
ity. Based on the success of our approach, we argue that the 
unusual intramolecular interaction is the key to explain the 
phase diagram in a unified manner: it allows electrons to form 
a pair on the molecules in contrast to the naïve expectation 
that the electron correlations drastically suppress the pair for-
mation [96]. Surprisingly, the strong correlations are found to 
even help the formation of the pair. We show that this leads to 
a surprising cooperation between the phonons and Coulomb 
interactions to realize an exotic high-Tc pairing next to the 
Mott phase.

The outline of this review is as follows. Throughout the 
review, we mainly focus on the fcc systems. In section 2, we 
describe the methods, which were employed in [19–21]. The 
methods construct, from first principles, a realistic three-band 
Hamiltonian with including the phonon degrees of freedom 
from only the information of the crystal structure. We solve it 
accurately by means of a many-body method. Through the der-
ivation of the realistic Hamiltonian, we discuss the electronic 
structure of the fullerides (section 3) and the detail of the above-
mentioned unusual intramolecular interaction (section 4).  
The analysis of the derived model follows in section  5,  

6 and 7. First, we show the theoretical phase diagram in sec-
tion 5. Then, we discuss the properties of the metal-insulator 
transition in section 6 and finally the superconducting mech
anism in section  7. We give a summary of the review and 
future perspectives in section 8.

2.  Methods: DFT+DMFT with including phonon 
degrees of freedom

In the case of the alkali-doped fullerides, an accurate descrip-
tion of the intramolecular correlations induced by the Coulomb 
interactions and the intramolecular vibrations is important for 
clarifying the underlying physics. The main playground of the 
intramolecular correlations and the intriguing low-energy phe-
nomena is the partially-filled bands near the Fermi level. In the 
fullerides, the LUMO (lowest unoccupied molecular orbital) 
bands, the t1u bands, are partially filled (see section  3) and 
they are energetically isolated from the other bands [86–88]. 
Therefore, the point is how accurately we describe the intramo-
lecular dynamics involving the t1u electrons and the phonons.

For this purpose, one of the most appropriate schemes 
would be a combination of the density-functional theory 
(DFT) and the dynamical mean-field theory (DMFT), so 
called DFT+DMFT [124]. The DMFT can accurately take 
into account the local dynamical correlation effect induced 
by the phonons as well as the Coulomb interaction, while it 
neglects the spatial correlation effect [124–126]. It becomes a 
better approximation as the spatial dimension increases. In fcc 
A C3 60 having a frustrated lattice with the coordination number 
of 12, the DMFT is expected to give reliable results.

In order to make a quantitative argument, we need a realis-
tic low-energy Hamiltoinan for the fullerides to be used in the 
DMFT calculation. This can be done by the ab initio down-
folding scheme [20, 124, 127]: it starts from the DFT band 
structure and constructs an effective Hamiltonian consisting 
of the low-energy electrons and the phonons, with includ-
ing the renormalization effect of the high-energy electrons. 
By solving thus-constructed low-energy Hamiltonian with 
the DMFT, the strong-correlation effect within the partially-
filled low-energy bands such as the Mott physics, which can-
not be captured by the conventional DFT, is properly taken 
into account in an ab initio way [124, 127]. Here, we use the 
word ‘ab initio’ for calculations without employing empirical 
parameters.

In fact, in [19–21], we further extended the above 
DFT+DMFT scheme to perform ab initio studies on the  
fullerides. The outline of this generalized scheme, which explic-
itly considers the phonon degrees of freedom, is as follows.

	 (i)	Band structure calculation (section 3): perform the 
DFT calculation for the alkali-doped fullerides and obtain 
the band structure in a global energy scale.

	(ii)	Ab initio downfolding (sections 3 and 4): construct a real-
istic Hamiltonian for the fullerides. The Hamiltonian is 
defined for the low-energy t1u electrons and the phonons, 
and is comprised of the electron hopping elĤ , Coulomb 
interaction el el

ˆ −H , electron–phonon coupling el ph
ˆ −H , and 

phonon one-body phĤ  terms:

J. Phys.: Condens. Matter 28 (2016) 153001
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.el el el el ph ph
ˆ ˆ ˆ ˆ ˆ= + + +− −H H H H H� (1)

		 All the parameters in the Hamiltonian are derived by the 
ab initio downfolding scheme.

	(iii)	Analysis of the Hamiltonian (sections 5, 6 and 7): solve 
the realistic low-energy Hamiltonian in equation  (1) by 
the extended DMFT (E-DMFT) [128–133] to reveal the 
exotic physics beneath the phase diagram. The E-DMFT 
takes into account the dynamical screening effect of the 
non-local (intermolecular in the case of the fullerides) 
Coulomb interactions, on top of the correlations incorpo-
rated by the DMFT7.

With this three-step scheme, the purely theoretical phase 
diagram for the fcc system was obtained by using only the 
information of the crystal structure [19]. We found that 
the theoretical phase diagram agrees well with the exper
imental phase diagram in figure  2(a) even quantitatively 
(section 5). The quantitative agreement allows us to make a 
conclusive remark on the mechanism of the high-Tc s-wave 
superconductivity.

In the following, we clarify the basic electronic and pho-
non properties of the fullerides by looking at the realistic 
parameters in the low-energy Hamiltonian in sections 3 and 
4 (the above-described steps (i) and (ii)). Then, we move on 
to the analysis of the realistic Hamiltonian by the E-DMFT in 
sections 5, 6 and 7 (the step (iii)).

3.  Electronic structure of the fullerides

Here, we discuss the electronic structure of the fcc A C3 60  
systems. Since A C3 60 is a molecular solid, the molecular limit 
is a good starting point for understanding its electronic struc-
ture [86, 134] and we expect the bands to arise from the over-
lap of molecular orbitals. In figure 3(a), we show a schematic 
picture of the molecular-orbital levels. Because of the high 
symmetry of the C60 molecule, molecular orbitals often have 

degeneracy. For example, the HOMO orbitals are fivefold 
degenerate, and the LUMO and LUMO+1 orbitals are three-
fold degenerate. According to their symmetries, these orbitals 
are called hu, t1u, and t1g orbitals, respectively.

Red curves in figure 3(b) show the calculated band structure 
for fcc Cs C3 60 with V 762C60

3 =−  Å
3
, where we have neglected 

the disorder in the orientations of the C60 molecules (throughout 
the paper, we neglect any disorder8). In solids, the molecular-
orbital levels acquire a finite but narrow bandwidth due to the 
small hoppings between the molecular orbitals [134]. Because 
of the narrow bandwidth, each set of bands originating from 
degenerate molecular orbitals is usually separated from the 
other molecular bands in energy. The intercalated alkali atoms 
donate electrons into the molecules, hence the LUMO t1u orbit-
als become half-filled (3 electrons in 3 orbitals). The doping 
has little effect on the dispersion of the LUMO bands (i.e. 
nearly rigid band shift). The t1u bandwidth can be controlled 
by applying either chemical or physical pressures and hence 
changing the lattice constant. Figure 4 shows the DFT density 
of states of the t1u bands, which clearly shows the expected nar-
rowing of the t1u bandwidth as VC60

3− increases.
In [21], to define the basis set for the low-energy Hamiltonian  

in equation  (1), the maximally localized Wannier orbitals 
[138–140] were constructed (figure 5). As expected, the maxi-
mally localized Wannier orbitals are very similar to the molec-
ular orbitals, which are centered on one molecule and are well 
localized on it. We obtain three t1u Wannier orbitals (which 
can be visualized as p p,x y, and pz-like orbitals) per molecule. 
By calculating the transfer integral between the molecular 
orbitals [21], we obtain a tight-binding Hamiltonian, which is 
used as the electronic one-body part elĤ  in equation (1). The 
form of elĤ  is

t c c ,
i j

ij i jel
, ,

ˆ ˆ ˆ†∑=
σ

σ σH� (2)

where tij is the hopping parameter with i, j being the compos-
ite index for the site and orbital. Here, each site corresponds 
to each molecule. ciˆ

†
σ (cîσ) is a creation (annihilation) operator 

Figure 3.  (a) Schematic picture for molecular-orbital levels of 
the C60 molecule. (b) DFT band dispersion (red) for Cs C3 60 with 

=−V 762C60
3  Å

3
. The blue dotted curves show the band dispersion 

calculated from the one-body part of the low-energy Hamiltonian 
(see the main text for detail). Adapted with permission from 
Nomura et al [21]. Copyright 2012 by American Physical Society.
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[22, 23, 40] on the electronic structure [135–137].
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for the electron characterized by the composite index i and 
the spin σ. Since the three orbitals are degenerate, the dou-
ble counting correction needed in the DFT+DMFT scheme 
becomes a constant shift for all the orbitals, which can be 
absorbed in the chemical potential. The blue-dotted curves in 
figure 3(b) are the dispersion of the t1u bands calculated from 

elĤ , which reproduces the DFT dispersion. It means that the 
one-body part elĤ  well describes the realistic hopping struc-
ture in the fullerides.

4.  Unusual intramolecular interactions

Next, we turn to the effective interaction between the elec-
trons, which is to be used in the E-DMFT calculation. This is 
a very important quantity because the intramolecular interac-
tion dominates the local dynamics of the electrons. The effec-
tive interaction is given by the sum of the repulsive Coulomb 
and attractive phonon-mediated interactions (see figure 6 for 
a schematic picture). The former and the latter are calculated 
by the constrained random phase approximation (cRPA) 
[141], and the constrained density-functional perturbation 
theory (cDFPT) [20, 142], respectively. Here, it will be worth 
emphasizing that the fullerides are multi-orbital systems, 
which accommodate various types of interactions including 
density-density type interactions such as the Hubbard U, and 
the non-density type interactions such as the pair-hopping and 
spin-flip interactions (figure 7).

In the following, we will show that the fullerides are 
strongly correlated materials because the intramolecular 
Hubbard interaction (∼1 eV) is larger than the low-energy t1u 
bandwidth (∼0.5 eV) [21]. On the other hand, Hund’s coupling 
is found to be very small (∼34 meV) [21]. This small positive 
exchange interaction is overcome by a negative contribution 
from the coupling with the Jahn–Teller phonons, which leads 
to an effectively negative total exchange interaction [19, 20], 

as anticipated on the basis of more phenomenological esti-
mates [18, 94]. In this section, we start from the Coulomb 
contribution to the effective interaction in section 4.1. Then, 
in section 4.2, we discuss the phonon contribution. Finally, we 
investigate the total effective interaction in section 4.3.

4.1.  Coulomb interactions

4.1.1.  Formulation.  Using the Wannier basis, we define the 
Coulomb interaction part

V c c c c
i j k l

ij kl i l k jel el
, , , ,

,
ˆ   ˆ ˆ ˆ ˆ† †∑ ∑=

σ σ
σ σ σ σ−

′
′ ′H� (3)

in the low-energy Hamiltonian in equation (1). The Coulomb 
interaction parameters Vij,kl are calculated by the cRPA [141]. 
The cRPA provides partially screened Coulomb interactions 
which are screened only by the polarization processes involv-
ing the high-energy bands (the bands other than the t1u bands). 
The partially screened interactions can be considered as 
effective Coulomb interactions within the t1u manifold [141]. 
Because the screening processes within the low-energy sub-
space are considered by the E-DMFT, they are excluded in the 
cRPA calculation to avoid the double counting of them.

4.1.2.  Results.  Table 1 lists the cRPA interaction parameters. 
The intramolecular Hubbard U is about 1 eV, which is larger 
than the t1u bandwidth W. Since the ratio U/W exceeds 1, the 
alkali-doped fullerides can be regarded as strongly-correlated 
materials. The previous estimates of U in the literature give 
U 1∼ –1.5 eV [82, 143–145]. Compared to them, the cRPA  
values are slightly small. Despite that the size of the maximally 

Figure 5.  One of three maximally localized Wannier orbitals 
( px-like orbital) viewed along z direction. The positive (negative) 
isosurfaces of the orbital are depicted by red (blue). For visibility, 
we show the Wannier function of A15 Cs C3 60. We note that the 
shape of the Wannier functions is similar to that of the fcc system. 
Adapted with permission from Nomura et al [21]. Copyright 2012 
by American Physical Society.

Figure 6.  Schematic picture which shows that the effective 
interaction is given by the sum of the Coulomb interaction v and the 
retarded phonon-mediated interaction g2D with the electron–phonon 
coupling g and the phonon propagator D. The solid lines denote the 
electron propagators.
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Figure 7.  Schematic picture for various types of the intramolecular 
interactions. Here, the phonon-mediated interactions are depicted as 
if they were instantaneous interactions. In reality, they are retarded 
interactions.
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localized Wannier orbitals depends on materials only weakly 
[21], the material dependence in the Hubbard U is nonnegligi-
ble. This is because the screening strength by the high-energy 
bands depends on materials [21]. While U is larger than W, 
Hund’s coupling J is small  ∼34 meV. This is explicable by 
the fact that the Wannier orbitals spread over the molecules, 
which makes the exchange Coulomb matrix element small.

The cRPA Coulomb interactions have a long-range tail 
proportional to 1/r with respect to the distance r between the 
centers of the Wannier orbitals [21], whose nearest-neighbor 
part V is  ∼0.25–0.3 eV. The offsite Coulomb interactions 
effectively reduce the size of the onsite Coulomb interaction 
[146]. This effect is taken into account by the E-DMFT. While 
the offsite Coulomb interactions quantitatively shift the phase 
boundaries between e.g. the metal and the insulator, they do 
not play an essential role in driving the superconductivity. We 
find that it is the form of onsite (intramolecular) interactions 
that is important. In appendix, we discuss this point in more 
detail.

4.2.  Phonon-mediated interactions

4.2.1.  Formulation.  The electron–phonon coupling el ph
ˆ −H  

and phonon one-body phĤ  terms in the low-energy Hamilto-
nian in equation (1) are written as

∑∑= −
σ ν

ν
σ σ σ σ ν−H g c c c c x

i j
ij i j i jel ph

, ,

ˆ    ( ˆ ˆ 〈 ˆ ˆ 〉)  ˆ† †
� (4)

with the displacement operator x b bˆ ˆ ˆ†
= +ν ν ν, and

ˆ ˆ ˆ†
∑ω=
ν

ν ν νH b b ,ph� (5)

respectively. Here, b̂
†
ν (b̂ν) is a creation (annihilation) operator 

of the phonon and ν is a composite index for the momentum 
and the branch. In solids, the electron–phonon coupling gij

ν 
and the phonon frequency ων are subject to renormalization 
by the electrons: the electron–phonon coupling is screened by 
the electronic polarization; the phonons are dressed by elec-
trons, which results in phonon softening. As in the case of the 
Coulomb interaction parameters in equation  (3), in order to 
avoid the double counting of the renormalization, gij

ν and ων in 

the effective low-energy Hamiltonian should not include the 
renormalization effect originating from the low-energy elec-
trons [20, 142, 147]. The recently developed cDFPT [20, 142] 
calculates such partially-renormalized phonon quantities by 
taking into account only the renormalization processes involv-
ing the high-energy electrons. It is an extension of the DFPT 
[148–151], which is a well-established ab initio scheme to 
calculate the phonon properties in solids. The expectation 
value c ci j⟨ˆ ˆ ⟩†

σ σ  in equation  (4) is calculated at the DFT level, 
where the subtraction of c ci j⟨ˆ ˆ ⟩†

σ σ  corresponds to the double-
counting correction with respect to the equilibrium positions 
of the ions [20].

In the action corresponding to the low-energy 
Hamiltonian in equation (1), the phonon fields are at most 
quadratic. Therefore, we can analytically integrate out 
the phonon degrees of freedom without introducing any 
approximation, which leads to an effective action involv-
ing only the electronic degrees of freedom. In this effec-
tive action, the effective interaction between the electrons 
is given by the sum of the Coulomb interactions and the 
retarded phonon-mediated interactions (figure 6). This 

retarded phonon-mediated interactions V iij kl n,
ph ( )Ω  at the 

Matsubara frequencies ( nT2n πΩ =  with the temperature T ) 
are given by [20, 142]

V i
g g2

.ij kl n
ij kl

n
,

ph
2 2

( ) ∑
ω

Ω = −
Ω +ν

ν ν

ν

∗

� (6)

An important point here is that the phonon-mediated interac-
tion is given by the sum over the phonon modes. We do not 
assume any particular type of the vibration modes a priori to 
study the superconductivity. We call the onsite (intramolecu-

lar) part of these interactions U Vph ,
ph,onsite( )= αα αα , U Vph ,

ph,onsite( )=′ αα ββ , 
and J V Vph ,

ph,onsite
,

ph,onsite( )= =αβ βα αβ αβ , respectively, with the orbital 
indices α and β.

4.2.2.  Electron-phonon coupling.  Among 189 ( 63 3= × ) 
phonon branches, it has been argued that the intramolecular 
lattice vibrations mainly contribute to the total electron–pho-
non coupling [14, 46, 47]. The couplings between the t1u 
electrons and the other phonon modes such as the intermo-
lecular, alkali-ion, and libration modes have been argued to 
be small compared to the intramolecular contribution [14, 53, 
152–156]. In the molecular limit, by using the group theory,  
it can be shown that the intramolecular vibrations which 
couple to t1u electrons are limited to the Ag and Hg modes 
(see e.g. [157] for a more detailed discussion). The Hg vibra-
tions are the Jahn–Teller modes, which induce a split of the 
t1u energy levels, while they do not change the center of the 
levels [46, 158, 159]. On the other hand, the Ag modes are not 
of the Jahn–Teller type. They couple to the total t1u occupa-
tions on the molecule, i.e. they shift the energy levels of each 
t1u orbital equally. While the Jahn–Teller modes, which have 
off-diagonal coupling with respect to the orbital, contribute 
to Jph, the non-Jahn–Teller modes, such as the Ag modes, do 
not. We can show that, in the molecular limit, the Hg modes 
give the intramolecular electron–electron interaction with the 

Table 1.  The cRPA interaction parameters taken from [21].

Material  
(fcc structure)

U  
(eV)

′U   
(eV)

J  
(meV)

V  
(eV)

W  
(eV)

K C3 60 (722) 0.82 0.76 31 0.24–0.25 0.50
Rb C3 60 (750) 0.92 0.85 34 0.26–0.27 0.45
Cs C3 60 (762) 0.94 0.87 35 0.27–0.28 0.43
Cs C3 60 (784) 1.02 0.94 35 0.28–0.29 0.38
Cs C3 60 (804) 1.07 1.00 36 0.30 0.34

Note: The values in the parentheses after the material denote −V
C60

3  in Å
3
. U, 

′U , and J are intramolecular interactions (see figure 7 for their definition),  
for which the relation ∼ −′U U J2  holds well. There is no orbital dependence 
in U, ′U , and J. V is the nearest neighbor intermolecular interaction. For 
comparison, the DFT bandwidth W of the t1u bands is also listed.
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form U i U i J i2 1.5 0n n nph ph ph( ) ( ) ( )Ω = − Ω = Ω <′  [20]. The 
contribution of the Ag modes gives U i U i 0n nph ph( ) ( )Ω = Ω <′  
and J i 0nph( )Ω = .

4.2.3.  Phonon frequencies.  Here, we look at the partially-
dressed phonon frequencies needed to calculate the phonon-
mediated interaction in equation  (6). Figure  8 shows the 
partially-dressed phonon frequencies (red curves) calculated 
by the cDFPT for the frequency range from 1100 to 1400 cm−1. 
In the cDFPT calculation, the renormalization of the phonon 
frequencies coming from the t1u electrons is excluded. These 
partially-dressed frequencies are defined in the low-energy 
Hamiltonian. Thus, they cannot be directly compared to the 
experimental data. To compare with experiments, we need to 
solve the low-energy Hamiltonian to obtain fully-dressed pho-
non frequencies.

In figure  8, for comparison, we also show the fully-
dressed phonon frequencies (blue-dotted curves) calculated 
by the conventional DFPT, where the renormalization effect 
of the t1u electrons is further incorporated within the DFPT 
framework. The dispersion of both the partially and fully 
dressed frequencies is tiny, which reflects the intramolecu-
lar nature of the modes (almost perfectly described as the 
Einstein phonons). We see that the red curves agree with the 
blue-dotted curves for the majority of the bands, and that 
the main difference is in the bands around the frequency of 
0.14 and 0.16 eV. These two correspond to the two Hg modes 
out of the eight Hg modes. Because of the cubic symmetry, 
the frequencies of the Hg modes, which are fivefold degen-
erate in the molecular limit, are split into threefold- and 
twofold-degenerate frequencies. The Ag modes are located 
at the energies beyond the range of figure 8. Experimentally, 
the two Ag modes are observed at 496 and 1470 cm−1for 
undoped C60 [68].

The difference between the partially- and fully-dressed 
phonon frequencies in figure 8 originates from the renormali-
zation effect of the t1u electrons. Therefore, the frequencies of 
the Hg modes, which couple to the t1u electrons, are further 

renormalized from the partially-dressed frequencies in the red 
curves, while the other modes are not9.

Because the C-C bonds are rather stiff and the mass of C 
atom is light, the maximum frequency of the intramolecular 
phonons can be rather large, reaching about 0.2 eV, which 
is comparable to the t1u bandwidth  ∼0.5 eV. It indicates that 
we cannot ignore the vertex corrections, i.e. the Migdal the-
orem [160] does not hold any more. The low-energy vertex  
corrections within a molecule can be captured by the E-DMFT, 
while the nonlocal vertex corrections are not.

4.2.4.  Results.  Table 2 shows the phonon-mediated inter-
actions at zero frequency ( 0nΩ = ) calculated with the par-
tially-renormalized phonon frequencies and electron–phonon 
interactions [19, 20]. The frequency dependence of these 
interactions is discussed in section 4.3. The value of the intra-
orbital interaction U 0ph( ) lies between  −0.15 eV and  −0.1 eV, 
which are small compared to the Hubbard repulsion U. On the 
other hand, an unusual situation is realized in the exchange 
channel: the phonon-mediated exchange interaction J 0ph( ) is 
about  −51 meV, and its absolute value is larger than the value 
of Hund’s coupling J 34∼  meV. As discussed in section 4.2.2, 
only the Jahn–Teller phonons contribute to J 0ph( ). Thus,  
this means that the Jahn–Teller phonons surpass the  
Coulomb exchange interactions and realize an effectively neg-
ative exchange interaction. However, the size of this negative 
exchange interaction (∼−17 meV) is small.

Figure 9 summarizes the VC60
3− dependence of the Coulomb 

interactions and the phonon-mediated interactions. As VC60
3− 

increases, the Hubbard U increases, while the DFT t1u band-
width W decreases. Thus, the change in U/W is steeper than 
that expected from the change in the bandwidth. Hund’s cou-
pling J and the phonon-mediated exchange interaction J 0ph( ) 
are almost constant throughout the VC60

3− range. In figure  9,  
only the phonon attraction U 0ph( ) has nonmonotonic VC60

3− 
dependence. This can be ascribed to the contribution from 
the alkali-ion vibrations [20]. We find that the contribution 
from the intramolecular modes is nearly VC60

3− independent 

Figure 8.  Partially-dressed (red) and fully-dressed (blue-dotted) 
phonon frequencies for fcc Cs C3 60 with =−V 762C60

3  Å
3
, calculated 

by the cDFPT and the DFPT respectively. For visibility, the 
frequency region is limited from 1100 to 1400 cm−1. Reprinted 
with permission from Nomura and Arita [20]. Copyright 2015 by 
American Physical Society.
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Table 2.  The phonon-mediated interactions at zero frequency 
calculated by the cDFPT.

Material  
(fcc structure)

( )U 0ph  
(meV)

( )′U 0ph  
(meV)

( )J 0ph  
(meV)

K C3 60 (722) −152 −53 −50
Rb C3 60 (750) −142 −42 −51
Cs C3 60 (762) −114 −13 −51
Cs C3 60 (784) −124 −22 −51
Cs C3 60 (804) −134 −31 −52

Note: The values are taken from [19]. The values in the parentheses after the 

material compositions denote −V
C60

3  in Å
3
. See figure 7 for the definition of 

Uph, ′Uph, and Jph. There is no orbital dependence in Uph, ′Uph, and Jph. The 
relation ∼ −′U U J2ph ph ph holds well.

9 In figure 8, the difference between the partially and fully-dressed phonon 
frequencies is small. This is because the electron–phonon coupling constant 
λ between the t1u electrons and each individual mode is small [20], while the 
sum of the contribution from all the modes becomes substantial.

J. Phys.: Condens. Matter 28 (2016) 153001



Topical Review

9

[20]. Like the Ag modes, the alkali-ion phonons couple to 
the total t1u occupations. Therefore, they do not contribute to 
J 0ph( ). The couplings to the alkali modes seem to be nonneg-
ligible, however, one has to pay attention to the fact that they 
do not include the screening from the t1u electrons. When the 
metallic screening is considered by solving the model, these 
couplings are efficiently screened and the fully-screened cou-
plings become very small. Thus, these alkali modes do not 
play an important role in the superconductivity. On the other 
hand, the Jahn–Teller-type couplings are poorly screened [20] 
and contribute essentially to the superconductivity.

4.3.  Effective interaction between electrons: repulsive  
Hubbard and negative exchange interactions

Figure 10 shows the real-frequency dependence of the effective  
interactions between the t1u electrons, which are given by 

the sum of the Coulomb and the retarded phonon-mediated 
interactions. In the frequency region below 0.2 eV, the attrac-
tions from the phonons work since the frequencies of the 
intramolecular phonons exist up to  ∼0.2 eV. Several peak-
like structures reflect that several phonon modes with differ-
ent frequencies contribute to the effective interactions. By the 
phonon contribution, the effective exchange interaction Jeff( )ω  
becomes negative. On the other hand, the density-type inter-
actions Ueff( )ω  and Ueff( )ω′  are strongly repulsive. However, 
in the region where Jeff( )ω  becomes negative, Ueff( )ω′  
becomes slightly larger than Ueff( )ω  because of the relation 
U U J2eff eff eff( ) ( ) ( )ω ω ω∼ −′ . In the following sections, we dis-
cuss the surprising consequence of this unusual relationship 
between the interactions U Ueff eff>′  and J 0eff< .

5. Theoretical calculation of phase diagram and Tc 
from first principles

5.1. Theoretical phase diagram

By solving the Hamiltonian in equation (1) by the E-DMFT10, 
we derive the theoretical phase diagram [19], which is shown 
in figure  11. Here we study superconductiviy by directly 
allowing the symmetry breaking in the E-DMFT calculation. 
Within the single-site E-DMFT calculation for the fcc lattice 
(non-bipartite lattice), we also allow for ferro-orbital/magnetic 
order, while we do not consider a possibility of the antiferro-
magnetic order, which, in the actual fcc lattice, is observed 

Figure 9.  −V C60
3  dependence of the interaction parameters, U, J, 

and ( )U 0ph , and ( )J 0ph , for fcc A C3 60. For comparison, the DFT 
bandwidth W for the t1u orbitals is also shown.
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Figure 11.  Theoretical phase diagram for fcc A C3 60 systems 
obtained by the E-DMFT analysis using the realistic Hamiltonians. 
SC denotes the superconducting phase. In between the blue and 
black-dotted curves, the metallic and insulating solutions coexist in 
the E-DMFT calculations, either of which is a metastable solution. 
We expect that the first-order transition curve, where the metastable 
solution changes from metal to insulator or vice versa, is close to 
the blue curve [164]. Adapted from Nomura et al [19].
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10 In solving the Hamiltonian, we take into account the frequency depend
ence of the density-density-type interactions [161–163]. However, the 
spin-flip and pair-hopping interactions are assumed to be static to avoid the 
sign problem in the quantum Monte Carlo solver for the E-DMFT. See [19] 
for more detail.
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only at very low temperature, significantly smaller than the 
lowest temperature (10 K) we used in our E-DMFT.

As a result, we obtain three different phases: the para-
magnetic metal, the paramagnetic Mott insulator, and the 
s-wave superconducting phase. The s-wave superconduc-
tivity is characterized by a nonzero superconducting order 
parameter c cs s1

3 ⟨ ⟩∆ = ∑α α α= ↓ ↑ , which describes intraorbital 
Cooper pairs for the t1u electrons. Here, α and s are the orbital  
and site (= molecule) indices, respectively. We omitted a site 
(= molecule) index in ∆, because ∆ does not depend on a site 
(the solution is homogenous in space). In the Mott insulating 
phase, the self-energy diverges and hence the Mott gap opens 
in the spectral function (the blue-dotted curve in figure 12). 
Throughout the phase diagram above 10 K, a solution with a 
ferro-orbital order is not stabilized. In the region between the 
blue curve and the black dotted curve in figure 11, both metal-
lic and insulating solutions can be stabilized depending on the 
initial conditions of the E-DMFT calculations. This suggests 
that a first-order transition, where the global minimum of 
the free energy changes from the metallic to insulating solu-
tion, should take place between these two curves. According 
to general entropic arguments, we expect the transition to be 
close to the blue curve [164].

5.2.  Comparison between theory and experiment

Comparing the theoretical phase diagram in figure  11 with 
the experimental one in figure  2(a), we find a good agree-
ment between them. The theoretical phase diagram repro-
duces the s-wave superconductivity next to the Mott phase. 
Theoretically calculated Tc’s with the maximum of  ∼28 K 
agree with the experimental Tc’s within 10 K difference. This 
agreement is remarkable since our Tc calculation does not rely 
on any empirical parameters: it starts from the DFT calcul
ation using only the information of the crystal structure and 
all the parameters used in the E-DMFT analysis are calculated 
from first principles.

Furthermore, the slope between the paramagnetic metal 
and insulator is consistent between the theory and experiment. 
As temperature increases, the insulating region expands, 

which indicates that the insulator has a larger entropy than 
the metal. The position of the metal-insulator boundary is 
also consistent. It is known that the DMFT often overesti-
mates the stability of the metallic phase [165, 166] because 
it neglects non-local correlation effects and it becomes exact 
only in the limit of large coordination number. However, in 
the present case, the large coordination number (12) of the fcc 
lattice makes the DMFT reliable [167]. Furthermore, the VC60

3− 
dependence of the U/W ratio is rather steep so that even if the 
critical U/W for the metal-insulator transition changes, it does 
not lead to a drastic change in the critical VC60

3−. We think that 
the above two factors lie behind the nice quantitative agree-
ment between the theory and experiment as far as the metal-
insulator boundary is concerned.

While we see a good agreement, there are minor discrep-
ancies between the theory and experiment. For example, the 
metal-insulator boundary looks like a crossover in the experi-
ment, while the theory shows a clear first order transition. 
While the reason of the discrepancy is not yet clear, one of 
the possible reasons is the disorder in the orientations of the 
buckyballs [22, 23, 40], which is neglected in the calculation. 
Another discrepancy can be seen in the shape of the Tc curves. 
In the experiment, the Tc curve shows a dome-like shape, while 
the theoretical Tc curve increases toward the Mott transition. 
We come back to this point in section 7.

6.  Property of metal-insulator transition

To gain insight into the superconducting mechanism, we first 
look at the property of the metal-insulator transition at 40 K.

6.1.  Single-particle spectral function

Figure 12 shows the spectral functions of the t1u bands for three 
different A C3 60 systems, derived by the analytic continuation 
based on the maximum entropy method [168, 169]. The DFT 
density of states for K C3 60 with V 722C60

3 =−  Å
3
 is also shown 

for comparison. In the metallic phase (red and green curves), 
as VC60

3− increases, i.e. as the correlation strength increases, 
the width of the quasiparticle part becomes narrower and 
the incoherent peaks become more prominent. We note that 
the position of the incoherent part and the renormalization  
factor of the quasiparticle band for K C3 60 are consistent with 
the ARPES (angle-resolved photo-emission spectroscopy) 
measurements for the K C3 60 monolayer [170]11.

6.2.  Unusual behaviors across the Mott transition

Figure 13(a) shows the dependence of several observables on 
VC60

3− calculated at 40 K [19]. Here, we focus on the metal-
lic solution in the coexistence region (the region delimited 
by the blue and black-dotted curves in figure 11). The blue 

Figure 12.  Density of states for three different fcc A C3 60 systems, 
obtained by the E-DMFT calculations at 40 K and the subsequent 
analytic continuation. For comparison, the DFT density of states 
for K C3 60 with =−V 722C60

3  Å
3
 is shown as the shaded area. Adapted 

from Nomura et al [19].
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curve shows the size of spin S per molecule, which decreases 
as VC60

3− increases. In the insulating phase, the value of S 
becomes  ∼0.5, i.e. the low-spin state with S  =  1/2 is realized. 
This is because an effectively negative exchange interaction is 
realized (section 4.3), which favors the low-spin state rather 
than the high-spin state.

Another interesting observation is that the double occu-
pancy D n n⟨ ⟩= α α↑ ↓  on each molecule increases toward the 
Mott transition. This is in contrast with the intuition and the 
behavior of the single-band Hubbard model and of multiorbi-
tal models with the standard exchange interaction, where D 
is suppressed by the repulsive Hubbard U. While the fuller-
ides also have a strongly repulsive Hubbard U, the interorbital 
repulsion U ′ is effectively larger than the Hubbard U (section 
4.3). Therefore the electrons (3 electrons per molecule on 
average) prefer to sit in the same orbital despite they pay an 
energy cost of U [96], which is clearly seen in the inequality 
n n n n⟨ ⟩ ⟨ ⟩>α α α β↑ ↓ ↑ ↓  in figure 13(a).

We can gain more insight by looking at the histogram of 
the weight of the intramolecular electronic configurations 
(figure 13(b)). The histogram shows which intramolecular 
electronic state is dominantly realized on the molecule within 
the E-DMFT [171]. It is obtained by the continuous-time 
quantum Monte Carlo simulation [126, 172] of the E-DMFT 
impurity problem, which consists of the single correlated mol-
ecule and the dynamical bath.

In figure 13(b), ‘(2 1 0)’ denotes the set of the half-filled 
configurations in which one orbital is doubly occupied and 
the third electron occupies another orbital, namely the con-
figurations where { } =n n n, ,1 2 3  {2, 1, 0}, {0, 2, 1}, {1, 0, 2},  
{2, 0, 1}, {1, 2, 0}, and {0, 1, 2}. ‘(1 1 1)’ denotes the set of 
the half-filled configurations with equal occupations on each 

orbital, i.e. n n n, , 1, 1, 11 2 3{ } { }= . ‘N 3≠ ’ indicates the total 
weight of all the configurations away from half filling.

In the non-interacting limit at half filling, all the 64 intra-
molecular electronic configurations have equal weight. Then, 
the weights for the (2 1 0), (1 1 1), and N 3≠  configurations 
are 0.1875, 0.125, and 0.6875, respectively. In the presence 
of correlation effects, the (2 1 0) configurations acquire the 
largest weight. This is again because of the unusual molecu-
lar interactions with U Ueff eff>′  and J 0eff< , which prefer the 
2 1 0( )-type configurations to the other configurations. The 

increase of the weight of the (2 1 0) configurations explains 
the increase of D and the decrease of S with the increase of 
VC60

3−.
In the metallic phase, however, there exist charge fluctua-

tions because the non-half-filled (N 3≠ ) configurations have 
a nonnegligible weight. The non-half-filled (N 3≠ ) configura-
tions gradually lose their weight toward the Mott transition.  
In the Mott insulating phase, we see that N 3≠  weight becomes 
tiny. It indicates that the charge degrees of freedom are frozen 
and the filling on each molecule is nearly fixed at half filling, 
which is nothing but the Mott physics induced by the strongly 
repulsive Ueff [18, 94].

However, the orbital and spin degrees of freedom are active 
even when the charge degrees of freedom are frozen and the 
balance of the interaction favors low-spin configurations [94]. 
As we discussed in section 5.1, the Mott insulating phase has 
no ferro-orbital/spin order. Thus, all the (2 1 0) configura-
tions, which are dominant in the Mott phase, are degenerate, 
offering a room for the orbital and spin fluctuations [18, 94].  
The absence of the orbital order is consistent with the exper
imentally observed dynamical Jahn–Teller effect [97, 98]: 
each (2 1 0) configuration can be regarded as a snapshot state 

Figure 13.  (a) −V C60
3  dependence of the size of spin S per molecule, the double occupancy ⟨ ⟩= α α↑ ↓D n n  on each molecule, and the 

intramolecular interorbital different-spin correlation function ⟨ ⟩α β↑ ↓n n . α and β are the orbital indices and we omitted the site (= molecule) 
index for simplicity. (b) −V C60

3  dependence of weights of intramolecular electronic configurations. We also show schematic pictures for the 
(2 1 0) and (1 1 1) configurations. Each (2 1 0) configuration, for example a configuration with { } { }=n n n, , 2, 1, 01 2 3 , represents a snapshot 
of the intramolecular dynamics under the dynamical Jahn–Teller effect. When we consider a long-time average, the orbital degeneracy is 
maintained because all the (2 1 0) configurations ({ } { }=n n n, , 2, 1, 01 2 3 , {0, 2, 1}, {1, 0, 2}, {2, 0, 1}, {1, 2, 0}, and {0, 1, 2}) have the 
same weight, i.e. the electrons dynamically fluctuate among (2 1 0) configurations (see the main text for more detail). In both panels, the 
results for the metallic solution are shown in the region where the metallic and insulating solutions coexist in the E-DMFT calculation (the 
region surrounded by the blue and black-dotted curves in figure 11). Adapted from Nomura et al [19].
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where the orbital degeneracy is dynamically lifted, however, 
if we take a long-time average, the orbital degeneracy is 
recovered. We note that the orbital degeneracy plays a role 
of increasing the critical U for the Mott transition [173, 174], 
with stabilizing the metallic/superconducting state against the 
Mott phase.

7.  Superconducting mechanism

Finally, we discuss the superconducting mechanism [19]. 
In order to identify how the different interaction terms give 
rise to the superconducting state, we check the stability of 
our superconducting solutions derived from the low-energy 
Hamiltonian in equation  (1) against the change in the para
meters of the Hamiltonian. The results are reported in table 3. 
We see that the superconducting solution becomes unstable 
when the pair-hopping interaction becomes zero or Ueff 
becomes larger than Ueff

′ , while the spin-flip term can be set 
to zero without destroying superconductivity. This suggests 
that the pair-hopping interaction and the relation U Ueff eff>′  
are essential to the superconductivity.

As discussed in section  6.2, U Ueff eff>′  and associated 
J 0eff<  favor the (2 1 0) low-spin configurations. Accordingly, 
the pairs of the up- and down-spin electrons with the same 
orbital character reside on the same molecules, which enables 
the system to form an s-wave order parameter with a local 
pairing amplitude even in the presence of the strong local 
Coulomb repulsion.

A crucial point is that the formation of the electron pairs is 
not simply compatible with the strong local repulsion, but it is 
actually assisted and favored by the strong correlations [94] in 
the present multiorbital system. Since the difference between 
Ueff
′  and Ueff, or in other words, the size of negative Jeff 

(∼−17 meV) is small compared to the typical kinetic energy 
scale  ∼0.5 eV, in the weakly correlated regime, the effect of 
Jeff is small [18]. However, the strongly repulsive Ueff sup-
presses the kinetic energy of the electrons, driving the system 
into a regime where the negative Jeff is effectively stronger. 
Therefore when the repulsion is increased, the negative Jeff 
is more effective in forming local pairs, which can lead to 
an enhancement of superconductivity. This is made possi-
ble by the fact that the pairing acts in the spin-orbital chan-
nel, which remains active even in the presence of the strong  
correlation [94].

The pair-hopping interaction, whose amplitude is again 
given by Jeff, is also important, as discussed in several pre-
vious works [18, 51, 94, 95, 175, 176]. The generated 
intraorbital pairs can tunnel into another orbital through the 
pair-hopping process, which also enhances the superconduc-
tivity (the Suhl-Kondo mechanism [177, 178]). In principle, 
the enhancement of the superconductivity by the Suhl-Kondo 
mechanism occurs irrespective of the sign of the pair-hopping 
interactions. However, in the present three-orbital system, the 
negative pair-hopping enhances the superconductivity more 
efficiently than the positive one. This is because the former 
prefers the gap function with the same amplitude and sign for 
every orbital, while the latter favors the sign change in the gap 
function, generating a frustration.

With the above considerations, we conclude that the crucial 
factors for the s-wave superconductivity in the alkali-doped 
fullerides are [19]

	 •	 the formation of the intraorbital electron pairs on 
molecules induced by the unusual intramolecular inter-
actions with U Ueff eff>′ , which becomes more efficient 
under the strong correlation

and

	 •	 the interorbital tunneling of the electron pairs through the 
pair-hopping interaction.

Since the unusual relations J 0eff<  and U Ueff eff>′  are a con-
sequence of the coupling of the electrons with the Jahn–Teller 
phonons, we confirm that the phonons are necessary to drive 
the s-wave superconductivity in these materials. However, 
thanks to the unusual form of the multi-orbital interac-
tions, the strong correlations surprisingly cooperate with the  
phonons by assisting and favoring the formation of the intra-
orbital electron pairs. This fact marks a sharp contrast with 
the conventional phonon mechanism, where the phonons and 
the Coulomb interactions compete with each other, espe-
cially when both interactions are local and for half-filled  
bands [179].

The picture emerging from our fully ab-initio theory is 
consistent with the previous model studies on the negative-
J multiorbital Hubbard model [18, 93–95], where J in this 
model can be considered as Jeff in the ab initio low-energy 
Hamiltonian. In these studies it was argued that when the size 
of the negative J is small, a strongly-correlated superconduc-
tivity emerges in the vicinity of the Mott transition: it benefits 
from the strong correlation and is distinct from the BCS-type 
superconductivity. Close to the Mott transition, the charge 
fluctuations are suppressed by the strong Hubbard interac-
tion and the quasiparticle bandwidth is renormalized as ZW 
with Z 1�  being the quasiparticle weight. Accordingly, the 
quasiparticles effectively feel renormalized Hubbard interac-
tion ZU. On the other hand, J works on the spin and orbital 
degrees of freedom, which are still active even when the 
charge degrees of freedom are frozen (section 6.2). Since J 
does not directly see a freezing of the charge degrees of free-
dom, J is not renormalized by the correlation. As a result, 
the heavy quasiparticles feel the renormalized repulsion ZU 
and the unrenormalized attraction J. This is why the strong 

Table 3.  Stability of the E-DMFT superconducting (SC) solutions 
at the temperature T  =  10 K.

Realistic No pair-hopping No spin-flip <′U Ueff eff

SC no SC SC no SC

Note: We artificially change the interaction parameters for the E-DMFT  
from the ab initio values. Then we restart the E-DMFT calculation  
using the SC solution of the realistic Hamiltonian as an initial guess and 
examine whether the SC solution survives or not. We try three types of 
change: (i) We put the pair-hopping interaction to be zero. (ii) We put 
the spin-flip interaction to be zero. (iii) We set ( )Ω′U i nph  to be equal to 
ΩU i nph( ) (which increases the attractions for interorbital channel) so that 

( ) ( )Ω < Ω′U i U in neff eff  holds for all the boson Matsubara frequency Ωn. We 
keep other parameters unchanged in each case. The results shown in the 

table do not depend on −V
C60

3 .

J. Phys.: Condens. Matter 28 (2016) 153001



Topical Review

13

correlation helps the s-wave superconductivity: it strongly 
reduces the residual repulsive interaction between the heavy 
quasiparticles, but it does not affect the small bare attractive 
interaction arising from electron–phonon coupling. Therefore 
sufficiently close to the Mott transition, the overall effective 
interaction turns into an attraction.

Finally, we discuss the origin of the dome shaped Tc in 
the experimental phase diagram, which is not seen in our 
theoretical result: the calculation gives an increase of the 
critical temperature as the transition to the Mott insulator is 
approached. As shown in the study on the negative-J mul-
tiorbital Hubbard model [18, 93–95], the superconductivity 
is eventually suppressed toward the Mott transition when Z 
becomes tiny. However, in the calculation for the realistic 
Hamiltonian at finite temperatures, the transition to the Mott 
insulating state is of first order and the Tc curve is cut before 
we see a downturn of it. Indeed at T  =  10 K, we observe a 
dome shape in the superconducting order parameter ∆ if 
we follow the superconducting solution ( 0.028∆ = , 0.031, 
0.033, and 0.029 at 10 K for V 762.2C60

3 =− , 767.7, 773.3, and 
778.9 Å

3
, respectively). It indicates that the Tc dome is hid-

den by the insulating phase in the current calculation. Other  
factors, which are not considered in the calculation such as 
the effect of the merohedral disorder [22, 23, 40] and the non-
local fluctuations, might also play a role in the shape of the 
experimental Tc curve, which remain to be investigated.

8.  Conclusion and future perspective

8.1.  Summary of the review

We have reviewed the properties of alkali-doped fulleride 
superconductivity, starting from the basic electronic structure 
of the fcc A C3 60 systems. The band structure of A C3 60 ful-
lerides is well described by a picture in terms of molecular 
orbital levels connected by relatively small hoppings between 
them. The half-filled low-energy t1u bands are the main play-
ground for the superconductivity.

We have elucidated that the effective intramolecular 
interactions between the t1u electrons, which arise from the 
combination of the Coulomb repulsion and electron–phonon 
interactions, have an unusual structure characterized by a 
strongly repulsive Hubbard repulsion and a weakly negative 
exchange interaction, which leads to an inverted Hund’s cou-
pling. This unusual situation occurs since the fullerides are the 
degenerate multi-orbital systems having tiny Hund’s coupling 
and strong coupling to Jahn–Teller modes.

The realistic Hamiltonian with this form of the intramo-
lecular interaction comprehensively reproduces the exper
imental phase diagram including the adjacency of the Mott 
insulator and the s-wave superconductivity. Remarkably, 
the agreement is not only qualitative but also quantitative; 
the theoretically calculated Tc using only the information of 
the crystal structure, agrees with the experimental Tc within 
a difference of 10 K. The derived Mott insulating phase 
is characterized by a low-spin (S  =  1/2) state with orbital 
degeneracy, completely consistent with the experimental 
observations.

The analysis on the superconducting mechanism reveals 
that the high-Tc s-wave superconductivity is driven by an 
unusual cooperation between the strong correlations and the 
Jahn–Teller phonons. This confirms that the mechanism of 
the fulleride superconductivity is indeed unconventional and 
requires strong correlation effects, despite the crucial role of 
the electron–phonon interaction and the s-wave symmetry of 
the order parameter.

8.2.  Future perspective

8.2.1.  Study on A15 Cs C3 60.  In this review, we have not dis-
cussed the A15 systems and have focused on the fcc systems. 
Through the calculations for the fcc systems, we have found 
that the dynamics of the electrons within the molecule with 
unusual form of the interactions is the most important fac-
tor to drive the s-wave superconductivity. The building block 
of the A15 systems is the same C60 molecules as that in the 
fcc systems. Then, as far as an effectively negative exchange 
interaction is realized on each molecule, the intraorbital pair-
formation and the Suhl-Kondo mechanism, which are related 
to intramolecular dynamics, will work irrespective of the  
lattice structure. This explains naturally why the superconduct-
ing properties are similar between the A15 and fcc systems in 
experiment. On the other hand, the antiferromagnetism will 
be strongly affected by the lattice structure: for example, the 
degree of frustration and the structure of the super-exchange 
interactions are crucial for the magnetism. It will be interest-
ing to apply the present scheme also to the A15 systems and 
see whether it also comprehensively explains their exper
imental phase diagram.

8.2.2.  Light-induced superconducting-like state in K C3 60.  
Recently, superconducting-like signatures have been reported 
in the optical spectra of K C3 60 at temperatures higher than 
100 K (much higher than the equilibrium critical temperature 
T 19c =  K) by means of impulsive excitation [180] designed 
to coherently excite the molecular vibration of the fullerene 
molecules. This inherently nonequilibrium phenomenon has 
not yet been understood and is surely a fascinating challenge 
for theory. We believe that the present understanding of the 
equilibrium superconductivity provides a firm basis for study-
ing the nonequilibrium superconducting-like state.
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Appendix.  Effect of intermolecular Coulomb 
interactions

The E-DMFT takes into account the effect of the intermolecu-
lar Coulomb interactions as a dynamical reduction of the intra-
molecular interactions. We find that this dynamical screening 
is not an essential ingredient in the superconductivity, while 
it quantitatively improves the location of the Mott transition 
in figure 11 [19]. Since the orbital dependence of the inter-
molecular interactions is negligible, the resulting dynamical 
screening on the intramolecular interactions has no orbital 
dependence. That is, it equally reduces the intraorbital inter-
action Ueff and the interorbital interaction Ueff

′  and does not 
affect the exchange channel Jeff. Since the negative Jeff is a key 
for the unconventional physics in the fullerides, even without 
the dynamical screening effect from the intermolecular inter-
actions, we obtain a phase diagram qualitatively similar to  
figure 11. However, since the intermolecular interactions reduce 
the value of Ueff and Ueff

′ , they stabilize a metallic solution and 
shift the metal-insulator phase boundary toward a larger VC60

3−, 
making the agreement between theory and experiment better.
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