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ABSTRACT
Current results from the Lyman α forest assume that the primordial power spectrum of density
perturbations follows a simple power-law form. We present the first analysis of Lyman α

data to study the effect of relaxing this strong assumption on primordial and astrophysical
constraints. We perform a large suite of numerical simulations, using them to calibrate a
minimally parametric framework for describing the power spectrum. Combined with cross-
validation, a statistical technique which prevents overfitting of the data, this framework allows
us to reconstruct the power spectrum shape without strong prior assumptions. We find no
evidence for deviation from scale-invariance; our analysis also shows that current Lyman α

data do not have sufficient statistical power to robustly probe the shape of the power spectrum
at these scales. In contrast, the ongoing Baryon Oscillation Sky Survey will be able to do
so with high precision. Furthermore, this near-future data will be able to break degeneracies
between the power spectrum shape and astrophysical parameters.

Key words: methods: numerical – methods: statistical – intergalactic medium – cosmology:
theory.

1 IN T RO D U C T I O N

The primordial power spectrum of density fluctuations underpins
much of modern cosmology. On large scales, it has been measured
with high precision by cosmic microwave background (CMB) ex-
periments (e.g. Komatsu et al. 2011 and references within). In or-
der to improve our knowledge of its scale-dependence, we turn
to smaller scales, and astrophysical measurements probing later
epochs in the evolution of the Universe. In this paper, we shall ex-
amine constraints from the data set which has probed the smallest
scales to date: the Lyman α forest.

The Lyman α forest consists of a series of features in quasar spec-
tra due to scattering of quasar photons with neutral hydrogen. Since
hydrogen makes up most of the baryonic density of the Universe,
the Lyman α forest traces the intergalactic medium (IGM), and thus
the baryonic power spectrum, on scales from a few up to tens of
Mpc. This makes it the only currently available probe of fluctua-
tions at small scales in a regime when the corresponding density
fluctuations were still only mildly non-linear, thereby simplifying
cosmological inferences. A number of authors have examined the
cosmological constraints from the Lyman α forest in the past (Croft
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et al. 1998; Theuns et al. 1998; McDonald et al. 2000; Hui et al.
2001; Viel et al. 2002; Gnedin & Hamilton 2002; McDonald et al.
2005b; Lidz et al. 2006; Viel & Haehnelt 2006), while Seljak et al.
(2005) and Seljak, Slosar & McDonald (2006) examined constraints
combined with other data sets. For a review of the physics of the
IGM and its potential for cosmology, see Meiksin (2009).

Previous analyses assumed that the primordial power spectrum on
Lyman α scales is described by a nearly scale-invariant power law –
a strong prior – and proceeded with parameter estimation under
this assumption. In contrast, in this work we attempt to constrain
the shape and amplitude of the primordial power spectrum at these
scales using minimal prior assumptions about its scale-dependence.

In view of the observational effort dedicated to the Lyman α for-
est, and its promise as a probe of the primordial power spectrum,
in this work we shall explore the possibilities of going beyond pa-
rameter fitting. To give us insight into the underlying model for the
power spectrum shape, which parameter estimation by itself can-
not do, our present application to Lyman α data should therefore
ideally assume full shape freedom throughout the analysis. As a
nearly scale-invariant primordial power spectrum is a generic pre-
diction of the simplest models of inflation, a minimally parametric
reconstruction can be a powerful test of inflationary models. Lyman
α constrains the smallest cosmological scales; thus, it provides the
longest lever-arm when combined with the statistical power and
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robustness of CMB data, yielding the best opportunity presently
available to understand the overall shape of the power spectrum.

The main Lyman α observable, the flux power spectrum, does
not have a simple algebraic relationship to the matter power spec-
trum. By z ∼ 3, the absorbing structures are weakly non-linear,
and are also affected by baryonic physics. Hence, to establish the
relationship between the primordial power spectrum and the flux
power spectrum, we must resort to hydrodynamical simulations.
The initial conditions used in our simulations allow for consider-
able freedom in the shape of the primordial power spectrum, and
this allows us to recreate the Lyman α forest resulting from generic
power spectrum shapes. Using an ensemble of simulations which
sample the parameter space required to describe the flux power
spectrum, we construct a likelihood function which can be used
to perform minimally parametric reconstruction of the primordial
power spectrum, while simultaneously constraining parameters de-
scribing IGM physics.

A statistical technique called cross-validation (CV) is used to
robustly reconstruct the primordial power spectrum and Markov
Chain Monte Carlo (MCMC) techniques are used to obtain the
final constraints. The statistical approach parallels Sealfon, Verde
& Jimenez (2005) and Verde & Peiris (2008), who applied the
same method to data from the CMB and galaxy surveys. Peiris &
Verde (2010) added the current Lyman α forest data to the joint
analysis with larger scale data, via the derived constraints on the
small-scale matter power spectrum from McDonald et al. (2005b).
However, these latter constraints were derived assuming a tight prior
on the shape of the primordial power spectrum at Lyman α scales –
an assumption which we drop in this work. In our analysis, we
consider both the flux power spectrum determined by McDonald
et al. (2006) from low-resolution quasar spectra obtained during
the Sloan Digital Sky Survey (SDSS), and simulated data for the
upcoming Baryon Oscillation Sky Survey (BOSS: Schlegel, White
& Eisenstein 2009).

This paper is organized as follows. In Section 2 we review the
framework for power spectrum reconstruction and describe the de-
tails of the simulations and parameter estimation setup. Section 3
describes the data, and results are presented in Section 4. We con-
clude in Section 5. Technical details of our calculations are relegated
to Appendices A and B.

2 ME T H O D S

In this section, we describe the statistical technique used in this
paper, and how we built the likelihood function for minimally para-
metric reconstruction from Lyman α data. Section 2.1 describes
the framework for power spectrum reconstruction in general terms,
while Section 2.2 gives further details of our specific implementa-
tion of this framework. Sections 2.3–2.5 detail numerical methods
used to extract a flux power spectrum from a given primordial power
spectrum. Finally, Section 2.6 describes the parameter estimation
implementation.

2.1 Power spectrum reconstruction

Previous analyses of the Lyman α forest (Viel, Haehnelt & Springel
2004; McDonald et al. 2005b) have assumed that the primordial
power spectrum is a nearly scale-invariant power law of the form

P (k) = As

(
k

k0

)ns−1+αs ln k

, (1)

and then constrained As, ns and αs. In this work we will follow the
same spirit as Sealfon et al. (2005) and Verde & Peiris (2008), go-
ing beyond parameter estimation in an attempt to deduce what the
Lyman α forest data can tell us about the shape of the power spec-
trum under minimal prior assumptions. A major challenge involved
in all such reconstructions is to avoid overfitting the data; it is of
little use to produce a complex function that fits the data set ex-
tremely well if we are simply fitting statistical noise. Equally, an
overly prescriptive function which is a poor fit to the data should
be rejected. To achieve this balance, we add an extra term, LP, to
the likelihood function which penalizes superfluous fluctuations.
Schematically, the likelihood function is

logL = logL[Data|P (k)] + λ logLP, (2)

where the form of LP will be discussed shortly. Equation (2) now
contains an extra free parameter which measures the magnitude
of the smoothing required; the penalty weight λ. As λ → ∞, the
likelihood will implement linear regression. For particularly clean
data, carrying no evidence for any feature in the P(k), λ should be
large. Data carrying strong evidence for P(k) features would be best
analysed with a small value of λ. We need a method of determining,
from the data, the optimal penalty weight. Our chosen technique
is called CV (Green & Silverman 1994), which quantifies the idea
that a correct reconstruction of the underlying information should
accurately predict new, independent data.

The variant of CV used in this paper splits the data into three
sets. The function is reconstructed using two of these sets (training
sets). The likelihood (excluding the penalty term) of this recon-
struction, given only the data in the remaining set (validation set),
is calculated. This step is called validation; because the data in each
set are assumed to be independent, we now have a measure of the
predictivity of the reconstruction. Validation is repeated using each
set in turn and the total CV score is the sum of all three validation
likelihoods. The optimal penalty is the one which maximizes the
CV score.

More generally, CV splits the data into k independent sets, with
2 < k ≤ n, where n is the number of data points. k − 1 sets are
used for training, and the remaining set for validation. Larger k
allows for a bigger training set, and thus better estimation of the
function to be validated against, but for most practical problems
large k is computationally intractable. We have chosen k = 3 as
a compromise. We verified that using k = 2, following Verde &
Peiris (2008), made a negligible difference to our results despite the
smaller training set size.

CV assumes that each set is uncorrelated; a mild violation of
this assumption will lead to an underestimation of errors, but not
a systematic bias in the derived parameters (Carmack et al. 2009).
Our data include a full covariance matrix, and so we are able to
verify that correlations between the sets are weak.

The minimally parametric framework applied in this paper fol-
lows that of Sealfon et al. (2005), Verde & Peiris (2008) and Peiris
& Verde (2010). It uses cubic splines to reconstruct a function f (x)
from measurements at a series of points, xi, called the knots. The
function value between each pair of knots is interpolated using a
piecewise cubic polynomial. The spline is fully specified by the
knots, continuity of the first and second derivatives, and bound-
ary conditions on the second derivatives at the exterior knots (the
knots at either end of the spline). The splines have vanishing second
derivative at the exterior knots. If the power spectrum is given by
smoothed splines, the form of the likelihood function given above

C© 2011 The Authors, MNRAS 413, 1717–1728
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



P(k) reconstruction from Lyman α 1719

Table 1. Positions of the knots. The maximum and minimum values of P(k)
are the extremal values covered by our simulations. Fixed knots are not
shown, but are discussed in the text.

Knot Position P(k) (/10−9)
(Mpc−1) Minimum Maximum

A 0.475 0.83 3.25
B 0.75 0.60 3.23
C 1.19 0.60 3.67
D 1.89 0.53 4.16

is

logL = logL[Data|P (k)] + λ

∫
k

d ln k[P ′′(k)]2,

where P ′′(k) = d2P

d(ln k)2
. (3)

2.2 Knot placement

The number and placement of the knots is chosen initially and kept
fixed throughout the analysis. Once there are sufficient knots to
allow a good fit to the data, adding more will not alter the shape
of the reconstructed function significantly. In choosing the number
of knots, we seek to find a balance between allowing sufficient
freedom in the power spectrum and having few enough parameters
that the data are still able to provide meaningful constraints on two
sets out of three when subdividing the data into the training and
validation sets, as described above. Available computing resources
limit us in any case to considering only a few knots. We fit the
primordial power spectrum with a four-knot spline for the Lyman α

forest k-range. The flux power spectrum is available in 12 k-bins, so
there are three bins per knot, which should allow sufficient freedom.
By comparison, Peiris & Verde (2010) used seven knots to cover
the k-range spanned by CMB, galaxy surveys and Lyman α data,
with a single knot for the Lyman α forest.

The SDSS flux power spectrum covers the range of scales, in
velocity units, of kv = 1.41 × 10−3 −0.018 s km−1. Dividing by a
factor of H(z)/(1 + z) converts to comoving distance coordinates,
so the constraints on the matter power spectrum are on scales of
roughly k = 0.4–3 Mpc−1. In this range of scales, we place four
knots (A–D, from large to small scales) evenly in log space. Nu-
merical details of the knots are shown in Table 1. The maximum and
minimum values of P(k) given there for each knot are simply the
extremal values covered by our simulations. Simulation coverage
of P(k) has been expanded where necessary, to fully cover the range
allowed by the data.

We must specify the primordial power spectrum on scales well
outside the range probed by data, even though they have no effect
on the Lyman α forest. This is for two reasons. The first is that when
running a simulation we must have a well-defined way to perturb
the initial particle grid for all scales included in the simulation. In
order to ensure that the scales on which we have data are properly
resolved, we also need to simulate larger and smaller scales, and
these require a defined power spectrum. The second reason is that
our interpolation scheme works best when the perturbations induced
by altering one of the knots are reasonably local. Adding extra end
knots helps to prevent large secondary boundary effects, which
would make interpolation far more difficult.

For numerical stability reasons, we would like the amplitude of
fluctuations on these scales to be reasonably constant, but do not
wish to make strong assumptions about the amplitude of the power

Figure 1. Effect on the flux power spectrum of varying the D knot at z = 3.
On a scale where the best-fitting amplitude is 0.9, the amplitudes of the D
knot are, from the lowest line upwards, 0.5, 0.7, 1.1, 1.3 and 1.7. Non-linear
growth tends to erase dependence on the initial conditions, so the effect is
smaller at lower redshifts.

spectrum there. Therefore we add two ‘follower’ knots at each end
of the spline. The amplitude is fixed to follow the nearest parameter
knot, assuming that between follower and followed, the shape is a
power law with ns = 0.97.1 The two follower knots are at scales of
k = (0.15, 4) Mpc−1.

We also add a few knots, even more distant from the scales probed
by the data, with completely fixed amplitudes consistent with the
Wilkinson Microwave Anisotropy Probe (WMAP) best-fitting power
spectrum. The amplitude of the primordial power spectrum on these
scales does not significantly affect results; we have added knots here
so that the initial density field is well defined on a larger range of
scales than probed by the simulation. This allows us to avoid any
boundary effects associated with the ends of the spline. These fixed
knots are at k = (0.07, 25, 40) Mpc−1, with amplitudes of (2.43,
2.03, 2.01) × 10−9. Fig. 1 shows the effect of altering the amplitude
of the D knot on the flux power spectrum.

2.3 Simulations

In this study, full hydrodynamical simulations were run using the
parallel TreePM code GADGET-2 (Springel 2005). GADGET computes
long-range gravitational forces using a particle grid, while the short-
range physics are calculated using smoothed particle hydrodynam-
ics (SPH), where particles are supposed to approximate density
elements in the matter fluid. Hydrodynamical effects are included
by having two separate particle types: dark matter, affected only
by gravity, and baryons, affected also by pressure forces and other
baryonic physics. The rest of this section gives technical details of
our simulations and the included astrophysics, and may be skipped
by the reader interested only in the cosmological implications.

GADGET has been modified to compute the ionization state of the
gas using radiative cooling and ionization physics as originally de-
scribed by Katz, Weinberg & Hernquist (1996) and used in Viel
& Haehnelt (2006). Star formation is included via a simplified pre-
scription which greatly increases the speed of the simulations, where
all baryonic particles with overdensity ρ/ρ0 > 103 and temperature
T < 105 K are immediately made collisionless. Viel et al. (2004)

1 Hence, if the amplitude of the power spectrum at the D knot is PD, the
power spectrum at the follower knot has the amplitude PD(kD/kD+1)0.03,
where kD is the position of the D knot and kD+1 the position of the follower.
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compared simulations using this prescription with identical simu-
lations using a multiphase model, and found negligible difference
in the Lyman α statistics. Additionally, all feedback options have
been disabled and galactic winds neglected; Bolton et al. (2008)
found that winds have a small effect on the Lyman α forest. The
gravitational softening length was set to 1/30 of the mean linear
interparticle spacing.

The gas is assumed to be ionized by an externally specified,
spatially homogeneous UV background, based on the galaxy and
quasar emission model of Haardt & Madau (2001). We follow pre-
vious analyses in assuming that the gas temperature is initially in
equilibrium with the CMB, that the gas is in ionization equilib-
rium, optically thin, and that we can neglect metals and evolution
of elemental abundances. Lyman α absorption arises largely from
near mean-density hydrogen, which should undergo little chemical
evolution, so using a simplified star formation criterion and neglect-
ing metals is physically well motivated. Assuming that the gas is
optically thin and in ionization equilibrium will break down dur-
ing reionization, but at the redshifts we are interested in, we can
model the effect of non-instantaneous reionization by increasing
the photoheating rate, as described in Viel & Haehnelt (2006).

The fiducial simulation for this paper has a box size of 60 Mpc h−1

and 2 × 4003 gas and dark matter particles, [which we will write
as (60, 400) in future], and runs from z = 199 to 2. Snapshots
are output at regular intervals between redshift 4.2 and 2.0. Initial
conditions were generated using N-GenICs, modified to specify the
primordial power spectrum by a spline, and use separate transfer
functions for baryons and dark matter, as calculated using CAMB

(Lewis, Challinor & Lasenby 2000).
For knots B and C, we used the above fiducial parameters for

box size and particle resolution. For the D knot, we slightly com-
promised on box size in favour of particle resolution, and used
simulations of (48, 400), since we found that the D knot had a neg-
ligible affect on the largest scales. To fully capture the behaviour
of the A knot, we used larger simulations with (120, 400). We have
used different sized simulations to ensure that for each knot, the
characteristic scales representing it have very good numerical con-
vergence; this issue is addressed in full in Appendix B. Our ability
to do this is one technical advantage of our approach compared
with previous studies; if we were to alter the amplitude of the whole
power spectrum, we would need to achieve convergence over all
the relevant scales at once. In our approach, each simulation only
needs strict convergence over the narrow range of scales probed by
a single knot.

2.4 IGM thermodynamics

Constraints on the thermal history of the IGM are given in terms of
the parameters of a polytropic temperature–density relation:

T = T0

(
ρ

ρ0

)γ−1

, (4)

where a given SPH particle has temperature T and density ρ. T0

and ρ0 are the average quantities for the whole simulation snapshot.
To determine T0 and γ from a simulation box, a least-squares fit is
performed from low-density particles satisfying

−1.0 < log

(
ρ

ρ0

)
< 0. (5)

Regions that are less dense than the lower limit above are ignored
because they are poorly resolved in SPH simulations (Bolton &
Becker 2009). The simplified star formation criterion means that

many overdensities have been turned into stars, and their baryonic
evolution not followed; hence they are also neglected. Both γ and
T0 are assumed to follow a power law broken at z = 3 by He II

reionization (Schaye et al. 2000), so that they are given by

γ =
{

γ A [(1 + z)/4]dγ S

if z < 3,

γ A [(1 + z)/4]dγ R

if z > 3.
(6)

T0 =
{

T A
0 [(1 + z)/4]dT S

0 if z < 3,

T A
0 [(1 + z)/4]dT R

0 if z > 3.
(7)

When performing parameter estimation, we marginalize over
γ A, T A

0 and dγ S,R, dT S,R
0 . The different thermal histories were

constructed by modifying the fiducial simulation’s photoheating
rate as described in section 2.2 of Bolton et al. (2008).

The effective optical depth is described by a power law, with
parameters:

τeff = τA
eff [(1 + z)/4]τ

S
eff . (8)

Previous studies (McDonald et al. 2005b; Viel & Haehnelt 2006)
used the same transfer function for both dark matter and baryon
particles; we have used different transfer functions for baryon and
dark matter species. At our starting redshifts, the transfer functions
for the baryons are about 10 per cent lower than for the dark matter
on these scales, because baryon fluctuations have not grown as fast
during tight coupling. Once they have decoupled from the photons,
the baryons fall into the potential wells of the dark matter, and by
z = 1, the linear transfer functions are almost identical. At redshifts
2–3, however, the effect is small but noticeable, and accounts for
a 2 per cent scale-independent drop in the power spectrum. This is
too small to affect current data, but could be potentially important
for analysing BOSS data.

2.5 The flux power spectrum

In the case of Lyman α, the observable is not a direct measurement
of the clustering properties of tracer objects, as in galaxy clustering,
but the statistics of absorption along a number of quasar sightlines.
Therefore we define the flux, F , as

F = exp(−τ ), (9)

where τ is the optical depth. We define the flux power spectrum as

PF(k) = |δ̃F(k)|2,

δF = F
F̄ − 1.

(10)

Here F̄ is the mean flux. The tilde denotes a Fourier transformed
quantity, where our Fourier conventions, used throughout, are

f̃ (k) =
∫

f (x)eikxdx. (11)

To aid the eventual understanding of our results, we digress
slightly here to review the physical effects of the various thermal
parameters on the flux power spectrum. The mean flux, essentially
a measure of the average density of neutral hydrogen, has a large
impact on the amplitude of the flux power spectrum. Cosmological
information from the Lyman α forest is obtained through examining
the power spectrum shape and its redshift dependence. The effect of
a higher temperature, as preferred by the flux power spectrum, is to
suppress power predominantly on small scales, as a higher temper-
ature wipes out small-scale structure in the baryons. The exponent
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of the temperature–density relation, γ , controls the temperature dif-
ference between voids and overdensities. A higher γ makes voids
cooler and overdensities hotter. At high redshifts, where much of the
Lyman α absorption comes from voids, the effect of an increased
γ is to decrease the temperature of the Lyman α emitting regions,
so there is relatively more small-scale structure. At low redshifts,
however, most of the Lyman α absorption comes from near mean-
density material, and so an increased γ increases the temperature,
decreasing the amount of small-scale structure. For further details of
the physical effects of the various parameters, see Section 4.2.1 and
fig. 3 of Viel & Haehnelt (2006), as well as figs 11–13 of McDonald
et al. (2005b).

Current constraints on PF are given by McDonald et al. (2006),
determined from ∼3000 SDSS quasar spectra at z = 2–4.

Each simulation snapshot was processed to generate an averaged
flux power spectrum as follows. First, 8000 randomly placed sim-
ulated quasar sightlines were drawn through the simulation box.
For a 60 Mpc h−1 box, this constitutes an average spacing between
sightlines of 670 h−1 kpc, corresponding to scales of roughly k =
10 Mpc h−1, far smaller than the scales probed by the Lyman α for-
est. We verified that doubling the number of sightlines to 16 000
made a negligible difference to the resulting power spectra.

When calculating absorption, particle peculiar velocities were in-
cluded, which increases the (non-rescaled) magnitude of the power
spectrum by approximately 10 per cent.

To generate the flux power spectrum, the absorption due to each
SPH particle near the sightline is calculated, giving us a number of
simulated quasar spectra, which are smoothed with a simple boxcar
average. Each spectrum is rescaled by a constant so that the mean
flux across all spectra and absorption bins matches that observed
by Kim et al. (2007). This rescaling hides our ignorance of the
amplitude of the photo-ionizing UV background. The mean over
all the rescaled spectra is then used as the extracted flux power
spectrum for the box. For further details of how we computed the
absorption, see Appendix A.

We follow previous work in not attempting to model continuum
fitting errors. The Si III contamination found by McDonald et al.
(2006) is modelled by assuming a linear bias correction of the
form P ′

F = [(1 + a2) + 2a cos(vk)]PF, with a = fSi III/(1 − F̄ ),
fSi III = 0.011 and v = 2271 km s−1.

Finally, since high-density, damped Lyman α systems (DLAs)
are not modelled by our simulations, we add a correction to the
flux power spectrum to account for them, of the form calculated by
McDonald et al. (2005a). The amplitude of this correction is a free
parameter, and will be discussed further in Section 2.6.2.

We checked the convergence of our simulations with respect to
box size and particle resolution. Here we give only a brief summary
of the results; further details may be found in Appendix B. For
the highest redshift bins at z = 4.2, 4.0 and 3.8, increasing the
particle resolution had a large effect on the flux power spectrum.
Achieving numerical convergence for the Lyman α forest at high
redshift is challenging, because most of the signal for the Lyman
α forest is coming from poorly resolved underdense regions. In
addition, current data at high redshifts are much more noisy than at
low redshifts, and future surveys will not probe these redshifts at
all. Accordingly, we follow Viel & Haehnelt (2006) and do not use
the three highest redshift bins in our analysis.

At lower redshifts, and except in the smallest and largest k-bins,
the change with increased particle resolution was small. On the
smallest scales, however, there was a change of around 5 per cent
in each bin. This increase is systematic, and so we correct for it as
described in Appendix B. The larger box increased power on the

largest scales by around 5 per cent, due to sample variance in the
simulation box. The methodology we used to correct for this effect
is again detailed in Appendix B.

The above figures were the dominant errors in our modelling of
the flux power spectrum. Uncorrected modelling errors are there-
fore �2 per cent of the flux power spectrum in each bin, far below
the current measurement error of ∼12 per cent in each bin of the
flux power spectrum, and on the order of the expected statistical
errors for the BOSS survey, which are ∼1.5 per cent. A significant
decrease in modelling errors would require the use of simulations
with improved particle resolution, which are beyond the computa-
tional resources available to us.

2.6 Parameter estimation

So far we have given a formula for the primordial power spectrum,
and described how we use it to extract a flux power spectrum to
compare with observational data. In this section, we shall describe
how we actually performed that comparison. First we describe a
scheme for robustly interpolating the parameter space to obtain flux
power spectra corresponding to parameter combinations which we
have not simulated, following Viel & Haehnelt (2006). Secondly,
we describe the parameters of the Monte Carlo Markov Chains
(MCMCs) we used for parameter estimation. For more details of
MCMC, see for example Lewis & Bridle (2002).

2.6.1 Parameter interpolation

Directly calculating a flux power spectrum from a given set of
primordial fluctuations requires a hydrodynamical simulation. This
makes it impractical to directly calculate PF for every possible set of
input parameters. Instead, simulations are run for a representative
sample and other results are obtained from these via interpolation.
We assume that the flux power spectrum varies smoothly around
the best-guess model, parametrizes this variation with a quadratic
polynomial for each data point and then check that this accurately
predicts new points. If we have some simulation with a parameter
vector which differs from a ‘best-guess’ simulation by δpi, the
corresponding change in the flux power spectrum, δPF, is given by

δPF =
∑

j

αj δpj + βj δp
2
j . (12)

The coefficients of this polynomial are constrained by performing
a least-squares fit to flux power spectra generated by numerical
simulations. We experimented with including cross-terms (of the
form pipj), but found that this did not significantly improve the
accuracy of the interpolation.

To estimate the interpolation coefficients, we used seven simula-
tions for each of our four power spectrum parameters, one of which
was used to test the accuracy of the interpolation. To check for
correlation between parameters, we simulated varying two neigh-
bouring knots at once. As the greatest effect of each knot on the flux
power spectrum is over a localized range of scales, our interpolation
errors should be maximal here. We needed only four simulations per
thermal history parameter, and checked we could accurately predict
δPF for a very different thermal history. As a final interpolation
verification, we performed a simulation where all six parameters
were changed simultaneously. Fig. 2 shows the interpolation errors
for one of our tests, which are around 1 per cent of the total change
for each bin. This is smaller than the expected statistical errors for
BOSS, and was replicated by our other test simulations.
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Figure 2. The difference between the flux power spectrum as obtained
from interpolation, and directly by simulation. Here only the C and D knots
have been changed from their initial values. Each line represents simulation
output at a different redshift bin, between z = 2.0 and 4.2. The grey band
shows 1 per cent error bars.

2.6.2 MCMC methodology

To perform parameter estimation, we use a version of the publicly
available COSMOMC (Lewis & Bridle 2002) code, with a modified
likelihood function as described in Section 2.1.

We marginalize over four parameters for the four knots, with
priors as specified in Table 1, and over eight parameters of the
thermal history, as described in Section 2.3.

We follow the advice of McDonald et al. (2006), and add a
number of nuisance parameters to the SDSS data, all with Gaussian
priors. To parametrize uncertainty in the resolution of the spectra,
we add a parameter α2 with prior 0 ± 49, and multiply the flux
power spectrum by exp(−k2α2). The effect of an increased α2 is
therefore to damp power on the very smallest scales. Each redshift
bin has one parameter, fi, to describe uncertainty in the subtraction
of background noise, with a prior of 0 ± 0.05. To marginalize over
the uncertainty in the effect of DLAs, we add Adamp, with a prior of
1 ± 0.3. The effect of this correction is to increase the slope of the
flux power spectrum.

We also marginalize over residual uncertainties in the Hubble
parameter, h and 
M, using flat priors of 0.2 < 
M < 0.4 and
0.5 < h < 0.9. For the rest of our background cosmology, we
assume parameters in agreement with those preferred by WMAP 7,
including negligible gravitational waves and spatial curvature. The
priors on h and 
M make a negligible difference to our results,
because both these parameters only weakly affect the Lyman α

forest. We assume T0 < 50 000 K and 0 < γ < 5/3 on physical
grounds; the temperature–density relation of the IGM cannot be
steeper than the perfect gas law, and very high temperatures would
contradict independent measurements of the IGM temperature by
Schaye et al. (2000).

2.6.3 Cross-validation methodology

CV requires the splitting of the data set into n independent sets. For
best results, these sets should be as uncorrelated as possible. We
choose to use alternating bins in k for each set. For data with n k
bins, the first set would consist of bins 1, 4, 7. . ., the second bins 2,
5, 6. . . and the third similarly.

To calculate the CV score, we estimate the best fit from the two
training sets, using an MCMC. The CV score for the remaining,

validation, set is the likelihood of this best fit. The total CV score
for a given penalty is the sum of the CV scores for each set.

3 DATA SETS

3.1 Current data from SDSS

The SDSS data used in this study consist of a best-fitting flux
power spectrum in 12 k-bins and 11 redshift bins, together with a
covariance matrix and a set of vectors describing the foreground
noise subtraction. It was analysed by McDonald et al. (2006), and
comes from 3000 quasar spectra. Of these, ∼2000 are at redshift
2.2–3, and ∼1000 above that. We use the eight redshift bins at z <

3.8 only.
We have chosen not to include any additional small-scale infor-

mation based on high-resolution quasar spectra. In principle, this
can help break degeneracies and should be included in future anal-
yses. Currently, however, systematic error from such data sets is
hard to quantify, and the optimal method for extracting the thermal
state of the IGM is not yet clear. Our focus in this work has been
robustness, and so we have limited ourselves to a single data set,
whose properties have been extensively studied and are relatively
well understood.

3.2 Simulated data from BOSS

In this section we will describe our simulated data for forecasting
constraints from BOSS, an ongoing future survey which will acquire
1.6 × 105 quasar spectra (Schlegel et al. 2009) between z = 2.2 and
3.0. We need to simulate both a covariance matrix and a flux power
spectrum.

We have assumed that the noise per spectrum of the BOSS data
will be approximately the same as they were for SDSS. This is a
simple assumption, but broadly justified because both surveys use
similar instruments (Schlegel et al. 2009). Truly accurate modelling
of the covariance matrix is impossible until the release of the final
data, however we expect our modelling of the BOSS covariance
matrix to be completely adequate for a forecast. Our simulated
BOSS covariance matrix is simply the SDSS covariance matrix
scaled to account for the increase in statistical power resulting from
the much greater number of quasar sightlines. There are roughly
2000 quasar sightlines in the SDSS sample below z = 3, so the
scale factor is 2000/16 0000 = 1/80.

To generate the flux power spectrum, we used cosmological pa-
rameters consistent with the best-fitting results from WMAP 7, and
thermal parameters consistent with theoretical expectations: γ ∼
1.45 and T0 = 2.3 × 103[(1 + z)/4]0.2 K. The effective optical
depth was τ = 0.36[(1 + z)/4]3.65. The power spectrum amplitude
was selected to match a spectrum with σ 8 = 0.8 and ns = 0.96.

We then added uncorrelated Gaussian noise with a variance given
by the diagonal elements of the simulated BOSS covariance matrix.
As BOSS will only take data at z ≤ 3, we dispense with the thermal
parameters for higher redshifts. The foreground noise properties of
the BOSS data are expected to be similar to those of the SDSS
data; we therefore leave the priors on the parameters measuring
uncertainty in the noise subtraction and the parameter measuring
resolution uncertainty, α2, unchanged.

BOSS is also expected to determine the transverse flux power
spectrum. Simulating the larger scales needed to properly model
the effect of this is beyond the scope of this paper, and we refer the
interested reader to Slosar et al. (2009) and White et al. (2010).
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Figure 3. Constraints on the primordial power spectrum from SDSS data from CV, for low (left) and high (right) penalties. Black circles show the positions
of the knots, with arbitrary normalization. The light blue regions show the top 68 per cent of likelihoods for SDSS data, while the dark blue regions show the
95 per cent likelihood range. The black error bar shows the results of previous analyses (Viel, Bolton & Haehnelt 2009) assuming a power-law power spectrum
at k = 1 Mpc−1. The dashed lines show limits on the slope from that work.

4 R ESULTS

4.1 Current constraints

Fig. 3 shows the CV-reconstruction of the primordial power spec-
trum from SDSS data. We have emulated confidence limits by plot-
ting the envelope of samples which have a likelihood in the top
68 per cent and the top 95 per cent. At the 95 per cent level, the
power spectrum is allowed to oscillate more within the allowed en-
velope, but the size of the overall constraint on the amplitude does
not greatly change, as found by Verde & Peiris (2008).

We have shown plots for two penalties: one high, one low. This
was because we have been unable to determine an optimal penalty
from current data; the CV score shows no significant variation, even
when the penalty is having negligible impact on the likelihood. We
interpret this to mean that the shape constraints on the primordial
power spectrum from current Lyman α data are very weak.

Previous analyses assumed a power-law prior for the shape of
the primordial power spectrum, and constrained this slope and the
overall normalization from the same data used above. While such
parameter estimation leads to tight constraints from the data (assum-
ing the underlying shape prior is correct), relaxing this tight prior
leads to the loss of ability to constrain the scale-dependent shape
of the power spectrum. The current data can still be used as part of
a minimally parametric primordial power spectrum if one exploits
the extended range in scales that can be probed in combination with
other data sets (Peiris & Verde 2010).

The black error bar in Fig. 3 shows a comparison with Viel et al.
(2009). Our method gives results for the amplitude of the primordial
power spectrum at Lyman α scales which are completely consistent
with that work, but somewhat weaker. This is to be expected; we
are removing a tight prior on the shape of the power spectrum. For
a very high penalty, i.e. the limit at which the implicit prior in our
analysis approaches a power-law spectrum, we can reproduce the
error bars of Viel et al. (2009). We are also in agreement with the
results of an earlier analysis of the Lyman α forest (McDonald et al.
2005b), which constrained σ 8 = 0.85 ± 0.13.

The corresponding constraints on ns from our reconstruction are
extremely weak, especially for the low penalty: ns ∼ 0.2–1.2. The
constraints on ns in Seljak et al. (2005), in addition to the power-
law prior, were greatly assisted by the fact that the pivot scale k0 in

Figure 4. Constraints on the primordial power spectrum from the penalty
term alone, using the value in the ‘low penalty’ plot of Fig. 3 above. Dashed
lines show the power spectrum range sampled by the simulations.

equation (1) was chosen to be k0 = 0.002 Mpc−1; a small change
in the slope of the power spectrum at k0 leads to a large change in
power spectrum amplitude by k = 1 Mpc−1. Here, we are trying to
constrain a scale-dependent ns(k) = 1 + (d ln P/d ln k) using only
the interval of scales sampled by Lyman α forest. We find that, while
the current Lyman α data are able to constrain the amplitude of the
power spectrum at these scales, they are not powerful enough on
their own to significantly constrain the shape of the spectrum in a
robust manner. At no penalty do we see any evidence in the current
data against a scale-invariant power spectrum.

We can explicitly demonstrate that the current Lyman α data add
little information to a weak prior on the shape of the power spectrum
in the following way. Fig. 4 shows a minimally parametric recon-
struction assuming the penalty designated ‘low’. These constraints
were generated without using any data whatsoever, and are similar
to those obtained with the Lyman α forest data. This figure shows
clearly that our SDSS constraints are affected by the prior even for
the low penalty. Since the penalty is proportional to P′ ′(k), it can-
not determine the power spectrum amplitude. Instead, the allowed
power spectrum amplitude is simply the minimal range probed by
our simulations.
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The CV part of our method involves reconstructing the optimal
penalty, and thus the strength of the shape prior justified by the
data. CV is essentially a method to reconstruct the most favoured
prior correlation between knots; since the prior is reconstructed
from the data, prior-driven constraints would not necessarily be a
problem. However, here we are finding that no particular prior is
favoured over any other. Thus, the width of the envelopes in Fig. 3
are actually arbitrary and should not be used to draw conclusions
about the amplitude of primordial fluctuations at Lyman α scales.

We performed a number of checks to determine the cause of our
failure to find an optimal penalty. Changing our methodology for
splitting the data into CV bins did not affect the results. A flux power
spectrum simulated in the same way as our BOSS data, and using
the same parameters, but with error bars of the same magnitude
as the current data showed no preference for a particular penalty,
despite, as we shall see, there being a well-defined optimal penalty
for BOSS simulations. Fixing the thermal history parameters γ and
T0 to fiducial values was also sufficient to allow us to reconstruct
a penalty. Therefore, statistical error and systematic uncertainty in
the thermal history are the significant factors preventing us from ro-
bustly reconstructing a minimally parametric power spectrum shape
from current data.

Constraints on the thermal history parameters are as follows. For
the low penalty we found 0.8 < γ < 1.7 at 1σ (recall that this upper
limit is imposed as a physical prior), while for the high penalty
0.2 < γ < 1.7. The corresponding constraint from Viel et al. (2009)
is γ = 0.63 ± 0.5. There is a noticeable decrease in the best-fitting
value of γ with an increased penalty (i.e. a stronger shape prior).
We find it intriguing that we prefer an inverted temperature–density
relation with γ < 1.0 only for a high penalty, but the constraints are
so weak that we cannot draw any solid conclusions from them.

Constraints on the other parameters at 1σ were similar for both
penalties. Those for the low penalty were 50000 > T0 > 35000 K,
τ eff = 0.33 ± 0.03, a slope of τ S

eff = 3.3 ± 0.3, h = 0.7 ± 0.15
and 
M = 0.25 ± 0.04. Finally, constraints on the noise parameters
largely reproduce the priors (listed in Section 2.6.2). Our results
mirror those of Viel et al. (2009); we have therefore verified that
those results are not biased by a shape prior on the power spectrum.
The constraints of this work and Viel & Haehnelt (2006) on the IGM
temperature, T0, prefer a larger central value than that obtained
by McDonald et al. (2005b). However, McDonald et al. (2005b)
imposed a prior of T0 = 20 000 ± 2000 K, derived from analysis of
the flux probability distribution function of high-resolution quasar
spectra, so a direct comparison is not possible. For further discussion
of this intriguing result, we refer the interested reader to section 5
of Viel et al. (2009).

4.2 Simulated constraints from BOSS

Unlike current data, our simulated BOSS data show a well-defined
maximum in the CV score. In Fig. 5 we show the constraints using
this optimal penalty, together with our input power spectrum. The
input data are reconstructed very well, within an envelope of roughly
0.4 × 10−9; a precision comparable to that of a CV reconstruction
from WMAP data (Verde & Peiris 2008). Even though our simulated
power spectrum is nearly scale-invariant, we do not recover a very
high optimal penalty. This is a feature of our approach; unless the
data are noiseless, not all oscillations in the power spectrum will
be ruled out, and the optimal penalty is one which allows for them
while being consistent with experimental noise.

Our method was designed to extract P(k), and so the penalty
may not be entirely optimal for the derivative. Even given this, our

Figure 5. Constraints on the power spectrum for simulated BOSS data.
Black circles show the positions of the knots, normalized to match the input
power spectra (black line). The orange region shows the top 68 per cent of
likelihoods from BOSS-quality Lyman α data. The grey region shows an
extrapolation of the 1σ results from WMAP data to these scales, and the
grey dashed line shows its lower extent.

constraints of 0.7 < ns < 1.2 are still comparatively weak. However,
even this constraint could be useful to test for potential systematics,
or in combination with other data sets. One other important data
set will be the power spectrum of the cross-correlation of the flux
(Viel et al. 2002; McDonald & Eisenstein 2007; Slosar et al. 2009),
which BOSS is expected to measure for the first time. Estimating
the power of combined constraints is beyond the scope of this paper,
but it could be considerable.

Fig. 6 shows the thermal parameters as reconstructed from BOSS
data. We have correctly reconstructed our input, as marked by the
black dots. The reconstructed h and 
M were also consistent with
their input values: 
M = 0.27 ± 0.02 (input: 0.267), h = 0.74 ±
0.05 (input: 0.72).

Marginalized constraints on the thermal and noise parameters
are almost a factor of 2 better for BOSS than for current data.
We have assessed the impact that further information about the
thermal history of the IGM would have on cosmological constraints,
imposing priors corresponding to present and reasonable near-future
measurements:

τeff = 0.36 ± 0.11, τ S
eff = 3.65 ± 0.25,

T0 = 23000 ± 3000 K, γ = 1.45 ± 0.2.

Constraints on the mean optical depth are from Kim et al. (2007).
For the temperature of the IGM, we follow Becker et al. (2011)
and assume a future IGM study has determined γ to the required
precision.

The effect of the primordial power spectrum evolves with redshift
in a different way to T0 and γ . Hence, sufficiently accurate data can
break degeneracies between them. For τ eff , the constraints from
BOSS are already much tighter than our prior from Kim et al.
(2007), so this prior provides no additional information. Overall,
therefore, the extra information provided by our thermal priors has
no significant effect on our reconstruction of the primordial power
spectrum.

5 D ISCUSSION

In this work, we have performed a minimally parametric reconstruc-
tion of the primordial power spectrum, using Lyman α data. This
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Figure 6. Joint 2D posterior constraints on the thermal history using forecast BOSS data. Input parameters are marked by black dots. Contours are drawn at
68 and 95 per cent CL. See Section 2.3 for definitions of the thermal parameters.

is an extension of McDonald et al. (2005b) and Viel & Haehnelt
(2006), who used Lyman α data to measure the amplitude and slope
of the primordial power spectrum on small scales, assuming that
it had a power-law shape. Using a highly prescriptive model to fit
data, even if it is physically motivated, can hide systematic effects,
which may bias the recovered parameters in a manner which is hard
to detect unless the bias is extremely large. Further, it is vital to go
beyond parameter estimation and test the underlying model of the
primordial power spectrum. This can in principle be achieved with
a minimally parametric reconstruction framework coupled with a
scheme for avoiding overfitting the data.

Peiris & Verde (2010), who attempted such a reconstruction in-
cluding Lyman α data, assumed that the power spectrum could
be well approximated by an amplitude, a power-law slope and its
running across the scales probed by the Lyman α forest. In their
analysis, this assumption was justified as the Lyman α data were
treated as a single point and combined with CMB and galaxy survey
data to reconstruct the power spectrum over a wide range of scales.

However, the only likelihood function available up to now con-
tained a power-law assumption about the primordial power spec-
trum shape, making it impossible to treat the Lyman α data in a
fully minimally parametric manner. We remedy this, performing
a large suite of numerical simulations to construct a new likeli-
hood function. The primordial power spectra thus emulated have
considerable freedom in their shapes, specified by cubic smoothing
splines. This provides the first ingredient for a minimally parametric
reconstruction scheme.

The second ingredient, as mentioned above, is to avoid fitting the
noise structure of the data with superfluous oscillations. To this end,
our method uses CV to reconstruct the level of freedom allowed by
the data. CV is a statistical technique which quantifies the notion
that a good fit should be predictive. Schematically, it is a method
of jack-knifing the data as a function of a ‘roughness’ penalty. A
small penalty thus allows considerable oscillatory structure in the
power spectrum shape, while a larger penalty specifies a smoother
shape. This penalty term thus performs the same function as a prior
on the smoothness of the power spectrum. Jackknifing the data then
tests the predictivity of the smoothing prior, choosing as the optimal
penalty the one that maximizes predictivity. For technical details see
Section 2.1.

For the Lyman α current data from SDSS (McDonald et al. 2006),
CV yields no significant preference for any particular penalty. In
the context of CV, this indicates that no penalty is more predictive
or favoured over any other; in other words, the data are not suffi-
ciently powerful to accurately reconstruct the strength of the shape
prior.

The minimally parametric method thus provides no evidence for
features in the power spectrum in the current data, and our re-
sults are fully consistent with a scale-invariant power spectrum.
The best-fitting amplitude of the power spectrum is, as in pre-
vious work, slightly higher than that extrapolated from WMAP
(Komatsu et al. 2011). However, because the data do not con-
tain sufficient statistical power to reconstruct the power spectrum
shape, our error bars are extremely large. An analysis that uses
different statistical techniques, such as Bayesian evidence (Jeffreys
1961), could provide further insight, but is beyond the scope of this
paper.

In the not so distant future, the first data from a new Lyman α

survey, BOSS (Schlegel et al. 2009), will be made available. We
simulate a flux power spectrum and covariance matrix for BOSS,
with an 80 fold increase in statistical power over the current data.
In this case we successfully reconstruct the power spectrum, using
CV to find an optimal penalty. The parameters we extract using
CV are completely consistent with the inputs to the simulation,
and the resulting constraints are comparable to those achieved by
performing CV reconstruction using WMAP data (Verde & Peiris
2008). We verify that statistical error is the factor preventing us
from finding an optimal penalty for current data by simulating a
power spectrum identical to BOSS, but with wider error bars, again
failing to find an optimal penalty.

Finally, we show that adding plausible future data on the small-
scale thermodynamics of the IGM to BOSS does not significantly
improve constraints on the primordial power spectrum. The sim-
ulated BOSS data are sufficiently powerful on their own to break
degeneracies between the IGM and cosmological parameters, and
are limited by statistical error rather than systematic uncertainty.

We have not considered the impact of the information BOSS is
expected to provide on the transverse flux power spectrum. This will
probe larger scales than our current work, offering a longer baseline
and thus better sensitivity to the overall shape of the power spectrum.
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Figure 7. Comparison of our constraints. Blue is from current data; orange
is our BOSS forecast. The grey region shows part of a reconstruction using
both the CMB data and galaxy clustering measured by SDSS (Peiris & Verde
2010). The black squares show two knots used in the earlier reconstruction,
while the black error bar shows 1σ constraints on power spectrum amplitude
from parameter estimation (Viel et al. 2009). The dashed line shows the
extrapolated WMAP best-fitting power spectrum.

However, applying the present technique to the improved data set
would require simulations probing much larger scales, hence greatly
increasing the numerical requirements.

Fig. 7 shows the constraints from BOSS in comparison to those
of Peiris & Verde (2010) obtained by reconstructing the power spec-
trum using the CMB and the matter power spectrum from SDSS.
By combining BOSS data with other probes (Seljak et al. 2005,
2006), such as galaxy clustering, the CMB and the transverse flux
power spectrum, we will be able to accurately reconstruct the shape
of the power spectrum on scales of k = 0.001–3 Mpc−1, probing 10
e-folds of inflation.
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APPENDI X A : SI MULATED SPECTRA

In this appendix, we detail the procedure for extracting a spectrum
from a simulation snapshot. First, we must find the velocity of each
particle, including both peculiar velocities and the Hubble flow. The
effect of peculiar velocities is to increase the flux power by around
10 per cent.

Next, we calculate the optical depth at wavelength λ, as defined
by the line integral

τλ =
∫

σλnHdl, (A1)
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where σλ is the cross-section for the transition and nH is the number
density of the neutral hydrogen. σλ is given by the rest cross-section
multiplied by a broadening function

aλ = σα × �. (A2)

We define the oscillator strength, f α , by the ratio between the cross-
section of the Lyman α transition and the cross-section of the tran-
sition involving a free electron

fα = σα

πr0λ
, (A3)

where λ is the rest wavelength of the Lyman α transition. The
classical radius of the electron, r0, is related to the Thompson cross-
section, σ T, by

r0 =
√

3σT

8π
. (A4)

Hence

σα = √
π

√
3σT

8
fαλ. (A5)

To compute the broadening function, we neglect natural broad-
ening from the intrinsic uncertainty in the energy levels of the
hydrogen atom. Natural broadening is only important in the densest
absorbers (damped Lyman α systems), which our simulations lack
the resolution to adequately resolve. The effect of DLAs is included
by a correction applied when calculating the likelihood, for which
see Section 2.6.2.

Hence the only form of broadening present is Doppler broaden-
ing. In an absorber of temperature TH, mass mH and velocity v, the
probability of a particle having zero velocity relative to an incoming
photon is

� = c√
πb

exp

[
−v

b

2
]

,

where b =
√

2kTH

mH
.

(A6)

Hence, a wavelength bin at position k will suffer absorption from a
HI absorber in a bin j as

τkj = σα�nHa (A7)

= σα

c√
πb

nHa exp

[
−

(
vk − vj

b

)2
]

. (A8)

Here  is the bin width, and a is the expansion factor.
The flux in each bin is then simply F = e−τ . Each spectrum

is smoothed with a simple three-point boxcar average, following
Viel et al. (2004), and the flux power spectrum from the simula-
tion box is defined to be the average over a number of simulated
spectra.

A P P E N D I X B: C O N V E R G E N C E C H E C K S

In this appendix, we detail the checks we have performed to ensure
that our simulations are properly converged with respect to box size
and particle number. We have usually been comparing the relative
change in the flux power spectrum when changing a parameter,
making strict convergence not essential.

To check box-size convergence, we compared the flux PF(k) for
our fiducial simulation with a large box-size simulation (‘L’) which
had size (75, 500), and otherwise identical parameters to the fidu-
cial simulation (‘F’). This isolates the effect of box size by having
identical particle resolution to simulation F. To test convergence
with respect to particle number, we used a high-resolution simu-
lation (‘H’), with (60, 500). In order to isolate the change due to
numerical effects, we did not rescale the mean optical depth for the
plots in this section.

The left-hand plot of Fig. B1 shows the change in the flux power
spectrum with increased box size; simulation L divided by simula-
tion F. The flux power spectrum is converged with respect to box
size; however, there is a systematic increase on large scales. This is
due to sample variance: the specific realization of cosmic structure
we are using is biased slightly low on the largest scales probed by
the box. The larger box recovers the input power spectrum much
better on these scales, because it contains far more modes, and hence
shows an increase in power. Because we use the same realization
of structure for all our simulations, this effect will be constant and
is easily corrected for by altering the best-fitting power spectrum.
Once this is done, convergence of the flux power spectrum is very
good.

The right-hand plot of Fig. B1 shows the change in the flux power
spectrum with increased particle resolution. The effect is small,
except on small scales or at high redshift. Achieving numerical
convergence for the Lyman α forest at high redshift is challenging,
because most of the signal for the Lyman α forest is coming from
poorly resolved underdense regions. In addition, current data at high

Figure B1. Left: the change in the flux power spectrum due to increasing the box size at fixed particle resolution. Each green line shows the effect on a
different redshift bin, from 4.2 to 2.0. The effect is generally around 2 per cent (grey box), with a systematic increase on large scales, for which we correct (see
text). Right: the effect on the flux power spectrum due to increasing the particle number from 2 × 4003 to 2 × 5003. Each line shows the effect on a different
redshift bin, from 4.2 to 2.0. The grey box show a variation of 4 per cent. Redshift bins with greater variation are labelled.
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redshifts are much more noisy than at low redshifts, due to a paucity
of quasar spectra. Accordingly, we follow Viel & Haehnelt (2006)
and do not use the three highest redshift bins at z = 4.2, 4.0 and 3.8
in our analysis.

Our initial base for the central power spectrum was the output of
simulation H. We corrected for box size and resolution following
the method proposed by McDonald (2003). To correct for sam-
ple variance on the largest scales, we ran two additional simula-
tions with box size 120 Mpc h−1, and 4003 and 2003 particles. The
smaller simulation has identical particle resolution to our fiducial
simulations, and should thus be directly comparable to them. We
then corrected our best-guess power spectrum by the ratio between
the two:

CS(k) = PF(NP = 400)/PF(NP = 200). (B1)

The smallest scale bin was excluded from this correction as it was
clearly being affected by poor resolution convergence.

Because simulation H is nearly converged, we had to be careful
when correcting for resolution; if the error in the correction is

larger than the correction itself, accuracy is definitely not increased.
Therefore, we ran two simulations, with box size of 24 Mpc h−1;
T1 and T2. T1 has the same particle resolution as simulation H,
and thus 2003 particles. T2 has 4003, giving it much increased
particle resolution. These simulations do not resolve the largest
scales probed by the Lyman α forest at all, but Fig. B1 shows
that these scales are not affected by poor resolution convergence.
Simulation H is corrected by

CR(k) = P T 2
F

/
P T 1

F . (B2)

To avoid our correction itself being biased by a small box size, we
ignore those bins on scales greater than a quarter of the box size of
24 Mpc h−1. We also ignore any correction for redshift bins where
the correction for the smallest scale bin is less than the uncertainty
in the simulations, which we take to be 1 per cent, on the grounds
that these are already fully converged. We are left with a slight
increase in power on the smallest scales.
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