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ABSTRACT In the race to bring Artificial Intelligence (AI) to the edge, collaborative intelligence has
emerged as a promising way to lighten the computation load on edge devices that run applications based
on Deep Neural Networks (DNNs). Typically, a deep model is split at a given layer into edge and cloud
sub-models. The deep feature tensor produced by the edge sub-model is transmitted to the cloud, where the
remaining computationally intensive workload is performed by the cloud sub-model. The communication
channel between the edge and cloud is imperfect, which will result in missing data in the deep feature tensor
received at the cloud side, an issue that has mostly been ignored by existing literature on the topic. In this
paper we study four methods for recovering missing data in the deep feature tensor. Three of the studied
methods are existing, generic tensor completion methods, and are adapted here to recover deep feature tensor
data, while the fourth method is newly developed specifically for deep feature tensor completion. Simulation
studies show that the new method is 3− 18 times faster than the other three methods, which is an important
consideration in collaborative intelligence. For VGG16’s sparse tensors, all methods produce statistically
equivalent classification results across all loss levels tested. For ResNet34’s non-sparse tensors, the new
method offers statistically better classification accuracy (by 0.25%−6.30%) compared to other methods for
matched execution speeds, and second-best accuracy among the four methods when they are allowed to run
until convergence.

INDEX TERMS Tensor completion, missing data imputation, tensor decomposition, tensor reconstruction,
collaborative intelligence, deep feature transmission, deep learning.

I. INTRODUCTION
As the Internet of Things (IoT) infrastructure gets deployed,
there will be many opportunities for innovative applications
that make use of the newly available sensor data. Many of
these new applications will rely on DNNs to process the
sensor data and produce useful predictions and analytics.
One current research direction is towards miniaturization
of DNNs, so that they can be implemented at or near the
edge sensors, with limited computation and energy resources.
While such DNNs may be sufficient for certain applications,
resources available in the cloud will always be able to support
larger and more sophisticated models than those that could
be deployed at the edge. Hence, cloud-based analytics will
remain essential even if some of the AI-based processing gets
moved to the edge.

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

Collaborative Intelligence (CI) [1]–[4] is an AI deploy-
ment strategy that leverages both edge-based and cloud-based
resources to make DNN computing faster and more efficient.
In CI, a deepmodel is split into an edge sub-model and a cloud
sub-model. For example, an edge sub-model may consist of
the initial m layers of a DNN, while the cloud sub-model is
made up of the remaining DNN layers. When an input signal
is captured by an edge sensor, the edge sub-model processes
the signal and produces a tensor of deep features, which is
then transmitted to the cloud for subsequent processing by
the cloud sub-model. Due to the imperfect channel between
the edge and the cloud, deep feature tensor data may be
damaged or missing, much like data transmitted over the
Internet. Hence, error control schemes must be deployed to
achieve seamless operation of edge and cloud sub-models
in AI.

In this paper, we study four methods for recovery of miss-
ing data in a deep feature tensor. Three of these methods
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come from existing literature: Simple Low Rank Tensor
Completion (SiLRTC) [5], High Accuracy Low Rank Tensor
Completion (HaLRTC) [5], and the recent Fused Canoni-
cal Polyadic (FCP) decomposition [6]. All three are general
tensor completion methods based on the low-rank tensor
assumption. We explain how these methods can be adapted
to deep feature tensor completion. The fourth method we
study is simple and tailor-made for recovery of missing data
(i.e., imputation) in deep feature tensors. It is adaptive and
linear in nature. Specifically, missing data in the tensor are
recovered as a linear combination of other, available data,
so the tensor rank is not increased. Due to these attributes,
we call it Adaptive Linear Tensor Completion (ALTeC).

The paper is organized as follows. Section II provides
the background that is necessary to understand the tensor
completion algorithms under study. In Section III, we review
the SiLRTC, HaLRTC, and FCP algorithms and explain how
they are applied to deep feature tensor completion. Section IV
introduces ALTeC and describes how its parameters are com-
puted. Section V describes the simulation environment and
experiments, and provides statistical analysis of the results.
Lastly, Section VI concludes the paper and indicates potential
avenues for further work.

II. PRELIMINARIES
In this section we illustrate several tensor and matrix opera-
tions that are used later in the paper. In terms of notation, bold
calligraphic letters (X ) will denote tensors, bold uppercase
non-italic letters (X) will denote matrices, bold lowercase
non-italic letters (x) will denote vectors, and italic letters
(x or X ) will denote scalars.

A. TENSOR FOLDING & UNFOLDING
Tensor unfolding is a structured mapping from a tensor to a
matrix. A tensor can be unfolded along any of its dimensions.
For example, consider a 3D tensor X with two channels,

X =

 0 2 4
6 8 10
12 14 16

  1 3 5
7 9 11
13 15 17

 , (1)

where the left matrix (even integers) is the first channel and
the right matrix (odd integers) is the second channel. Then
unfolding along the x-, y-, and z-axis (axis 0, 1, and 2)
producesmatricesX0,X1, andX2, respectively, shown below.

X0 = unfold(X , 0) =

 0 2 4 1 3 5
6 8 10 7 9 11
12 14 16 13 15 17


X1 = unfold(X , 1) =

0 6 12 1 7 13
2 8 14 3 9 15
4 10 16 5 11 17


X2 = unfold(X , 2)

=

[
0 6 12 8 14 4 10 16
1 7 13 9 15 5 11 17

]
(2)

Once a 3D tensor is unfolded into a 2D matrix, then matrix
operations such as Singular Value Decomposition (SVD)

can be performed. Once matrix processing is done, folding
operation converts the 2D matrix into a 3D tensor. Folding
along a given axis is the inverse of unfolding along the same
axis, i.e., fold(unfold(X , i), i) = X .

B. SINGULAR VALUE DECOMPOSITION & SHRINKAGE
Singular Value Decomposition (SVD) of a given m × n
matrix A is given by [7]:

A = U6VT (3)

where U and V are unitary matrices (UUT
= I,VVT

= I)
whose dimensions are m × m and n × n, respectively. The
matrix6 ism×n and contains the singular values ofA along
its main diagonal, 6 = diag(σi).

In some applications, soft-thresholding (also known as
shrinkage) [8] is applied to singular values in 6 in order to
arrive at a lower-rankmatrix that is still a good approximation
to the original matrix A. Specifically, if σi are the singular
values ofA and τ is a given threshold, then the corresponding
shrinkage operation is defined as

shrink(A, τ ) = U6τVT , (4)

where 6τ = diag(max(σi − τ, 0)). In words, shrinkage
reduces all singular values by τ , clips the negative results
to 0, and then re-synthesizes the matrix with the new singular
values.

C. CANONICAL POLYADIC DECOMPOSITION
A m× n× p tensor X can be approximated with a low-rank
tensor X̂XX through Canonical Polyadic Decomposition (CPD)
by solving [9]:

min
X̂

∥∥X − X̂
∥∥
F , (5)

where ‖·‖F is the Frobenius norm of a tensor, and the
low-rank approximation tensor, X̂ , is given by:

X̂ =
rank(X )∑
r=1

ur ◦ vr ◦ wr = JU,V,WK (6)

The dimensions of ur , vr , and wr are m × 1, n × 1, and
p× 1, respectively. The symbol ◦ represents the vector outer
product, such that ur ◦vr ◦wr is a m×n×p tensor for any r .
The matrices U,V, and W represent the CP factor matrices
whose columns are the corresponding vectors ur , vr , andwr ,
namely,U = [u1, . . . ,urank(X )],V = [v1, . . . , vrank(X )], and
W = [w1, . . . ,wrank(X )]. The above minimization problem
can also be rephrased and solved in terms of the unfolded
tensors X̂ (i) for i = 1, 2, 3:

X̂ (1) = (W� V)UT

X̂ (2) = (W� U)VT

X̂ (3) = (V� U)WT , (7)

where the symbol � represents the Khatri-Rao product
defined as U � V = [u1 ⊗ v1, . . . ,urank(X ) ⊗ vrank(X )],
and⊗ is the Kronecker product of the corresponding column-
vectors.
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D. TENSOR DATA PACKETIZATION & TRANSMISSION
In collaborative intelligence (CI), tensor data needs to be
transferred from the edge to the cloud. This process involves
writing tensor values into data packets (which we refer to
as packetization) and sending these data packets over the
network to the cloud. It is too early to say what kind of tensor
packetization schemes will be adopted in CI applications in
the future. We note, however, that transmission of another
kind of tensor data, namely video, has been around for a
while, and video packetization schemes are well-established
and tested in practice. We believe that similar schemes will
be strong contenders for deep tensor data packetization as
well. Therefore, for the purposes of this paper, we adopt
a packetization method that is popular in video stream-
ing [10], where in each video frame, rows of macro-blocks
are mapped to packets. In a similar manner, we write tensor
data into packets row-by-row and then channel-by-channel.
For example, the data in tensor X in (1) would gener-
ate six packets, each composed of one row of tensor data:
[0, 2, 4], [6, 8, 10], . . . , [13, 15, 17].

Errors in the communication channel may cause data pack-
ets not to arrive at the cloud sub-model. Such packets are
referred to as ‘‘lost’’ and the probability of their loss is
ploss.1 The result of packet loss at the cloud side is that the
corresponding tensor rows are not available. As an example,
tensor X from (1), with two rows of missing data, is shown
below:

X̃ =

 0 2 4
? ? ?
12 14 16

 1 3 5
7 9 11
? ? ?

 , (8)

where the missing values are indicated by question marks
(‘?’). The goal of tensor completion is to recover these miss-
ing values so that the cloud sub-model can perform successful
inference.

III. GENERAL TENSOR COMPLETION ALGORITHMS
Tensor completion has found applications in a number of
research areas, including computer vision, data analytics, etc.
To our knowledge, however, it has not been studied in the
context of recovering missing feature tensor values in col-
laborative intelligence. Often, the underlying assumption is
that tensor data is ‘‘low-rank’’, or, more generally, ‘‘smooth’’
in some sense. A number of methods [5], [11], [12] have
been developed based on the assumption that tensors lie
in a low-rank manifold, which leads to iterative procedures
for approximating the original tensor by a low-rank tensor.
In these cases, it is not crucial to know where the data comes
from, so long as the low-rank assumption holds. We refer to
these methods as general, meaning that they could be applied
to any kind of tensor. We will review three such methods,
namely Simple Low Rank Tensor Completion (SiLRTC) [5],
High Accuracy LowRank Tensor Completion (HaLRTC) [5],

1This probability depends on many factors, including physical layer mod-
ulation and error control, noise and interference in the channel, network
congestion, etc.

and Fused Canonical Polyadic (FCP) [6], and adapt them
to the problem of recovering missing feature tensor values
produced by packet loss in collaborative intelligence.

We note that it is not clear whether in fact low-rank
assumption holds for deep feature tensors. The existence of
adversarial examples [13] shows that small perturbations in
the input of a deep model may cause large changes down-
stream, which might indicate that the notions of smoothness
and low-rank are less applicable to the deep feature tensors
than they might be to the kind of data for which tensor
completion has mostly been used so far, such as color images.
Nonetheless, it is still important to establish what level of
performance existing tensor completion methods can achieve
on this new problem.

A. SIMPLE LOW RANK TENSOR COMPLETION (SILRTC)
In this section, we briefly review SiLRTC [5] and show
how it can be applied to completion of feature tensors in
collaborative intelligence. A summary of SiLRTC is shown in
Algorithm 1 in the Appendix. The inputs are the corrupt
tensor X̃ (with some of its rows missing), the number of
iterations K , and non-negative scaling factors αi, βi, i ∈
{1, 2, 3}where αi’s add up to 1. The scaling factors are chosen
randomly [5], and each pair of (αi, βi) is for one dimension
of the tensor. The output is the ‘‘completed’’ tensor X̂ .

To reconstruct the missing values in X̃ , SiLRTC makes
a copy of X̃ in X̂ (step 1) and then loops over K itera-
tions. In each iteration, X̂ is unfolded along each dimension
(step 5), shrinking with threshold τ = αi/βi is applied
(step 6), and the tensor is folded back to 3D (step 7). The three
folded tensors are added (step 8) and the result is re-scaled
(step 10). The above operations change all values in the
tensor, however, some of the rows in X̃ are known (i.e., not
missing). Therefore, known rows are replaced in the resulting
tensor (step 11) and the result is passed to the next iteration.

In essence, SiLRTC attempts to iteratively reduce the rank
of the corrupt tensor X̃ by performing shrinkage on the
unfolded versions of the tensor and averaging the folded
results. The next method we review, HaLRTC, is based on
a similar idea, but is more accurate.

B. HIGH ACCURACY LOW RANK TENSOR
COMPLETION (HALRTC)
HaLRTC [5] follows the same reasoning as SiLRTC,
but using an alternating direction method of multipli-
ers (ADMM) [14] to find the solution. It is more sophisticated
than SiLRTC and is expected to produce better tensor com-
pletion results. The steps are presented in Algorithm 2 in the
Appendix.

The inputs are the corrupt tensor X̃ (with some of its
rows missing), the number of iterations K , and non-negative
scaling factors ρ, αi, i ∈ {1, 2, 3} where αi’s add up to 1. The
scaling factors are chosen randomly [5], and each αi is for
one dimension of the tensor. The output is the ‘‘completed’’
tensor X̂ .
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The algorithm starts by initializing the output tensor X̂
(step 1) and three auxiliary tensors Mi,Y i (step 3), one
for each dimension. Then, in each of the K iterations, for
each tensor dimension, X̂ and Y i are unfolded along the
corresponding dimension (steps 7-8), their sum is shrunk
(step 9) and the result folded into Mi (step 10). Finally,
output tensor X̂ , auxiliary tensors Y i, and scaling parameter
ρ are updated (steps 12, 15, and 17, respectively).

C. FUSED CANONICAL POLYADIC (FCP) DECOMPOSITION
The FCP algorithm [6] is somewhat more involved than
SiLRTC and HaLRTC. The main steps are presented in
Algorithm 3 in the Appendix, but the reader is referred to [6]
for full details. The inputs to the algorithm include the corrupt
tensor X̃ (with some of its rows missing), the CP factor
matrices Ai, i ∈ {1, 2, 3} (which represent U,V,W in (6)),
regularizationmatricesLs andLp, the number of iterationsK ,
non-negative scaling factors µ, αi, βi, δi, ζi, i ∈ {1, 2, 3},
tensor rank R along with its corresponding increment (Ru)
and maximum value (Rm), and stopping criteria variables η
and ε. The output is the ‘‘completed’’ tensor X̂ .
The algorithm starts by initializing the output tensor X̂

(step 1). Then it loops (iter) through each of the K iterations
and for each tensor dimension, X̂ is unfolded along the cor-
responding dimension i and matrix S is computed (step 4) as
the Khatri-Rao product between a pair of CP factor matrices
(depending on i) as follows:

S =


A3 � A2 for i = 1
A1 � A2 for i = 2
A2 � A1 for i = 3

(9)

Then the reciprocal of the step size L and the gradient of
regularized error ∇h are computed (steps 5-6). The gradi-
ent computation involves the rectified linear function Q(·)
defined as

Q(x) =


−1 for x < −1
x for − 1 ≤ x ≤ 1
1 for x > 1

(10)

After that, the CP factor matrices Ai are updated in
steps 9-12 until the stopping criteria (computed by the func-
tion stopping_criterion(·) in step 8) aremet. It should be noted
that stopping criteria, as well as several other parameters
and scaling factors, are different for sparse and non-sparse
tensors [6]. Next, the tensor rank is updated if needed
(steps 15-17), an operation is performed on the CP factor
matrices and the result is folded back into X̂ iter−1

along the
first tensor dimension (step 18). Lastly, X̂ iter−1

is assigned
to X̂ iter

(step 19), X̂ iter
is updated with known rows in the

corrupt tensor X̃ (step 20), and the Forbenious norm differ-
ence between successive iterations of the completed tensor
X̂ is compared to a tolerance η to determine if the algorithm
converged (steps 21-23).

IV. ADAPTIVE LINEAR TENSOR COMPLETION (ALTEC)
The algorithms presented in Section III manipulate the sin-
gular values (SiLRTC and HaLRTC) and CP factors (FCP)
of an unfolded tensor to reconstruct the missing elements of
the corrupt tensor. While each singular value or CP factor
highlights some relevant features in the tensor, it does not
capture all of it. In addition, SVD and CPD computation are
expensive, and in the above-mentioned algorithms, these need
to be performed at each iteration.

In this section we present a simple tensor completion
method specifically designed to recover missing rows of a
deep feature tensor. We refer to it as Adaptive Linear Ten-
sor Completion (ALTeC). The proposed method assumes an
approximate linear relationship among the rows of a deep
feature tensor and its neighbors. Let x(c)i be the i-th row
in channel c of tensor X . The focus on rows comes from
the specific row-by-row packetization scheme described in
Section II-D. If a different packetization scheme is adopted,
x(c)i and its neighborhood would need to be redefined, but
the methodology below would still be applicable. We assume
that x(c)i can be approximated by a linear combination of its
neighbors – co-located rows in other channels and two spatial
neighbors in the same channel, one above and one below:

x(c)i ≈
n∑
j=1

w(c)
j x(j)i + w

(c)
n+1x

(c)
i−1 + w

(c)
n+2x

(c)
i+1, (11)

where w(c)
j ’s are the weights and w(c)

i (the weight for the row
itself in the sum on the right-hand side) is set to zero. When
x(c)i is at the top (bottom) of channel c, it’s top (bottom)
neighbor x(c)i−1 (x(c)i+1) is not available, so it is assumed to be
all-zero. The above equation can be written in a matrix-vector
form as

x(c)i ≈ X(c)
i w(c)

i , (12)

where the neighbor rows of x(c)i have been stacked into
matrix X(c)

i as columns, and the corresponding weights have
been placed into the column vector w(c)

i . Finding the optimal
weights amounts to solving the following problem:

min
w(c)
i

∥∥∥x(c)i − X(c)
i w(c)

i

∥∥∥2
2
, (13)

which has a well-known solution [15]:

w(c)
i =

[(
X(c)
i

)T
X(c)
i

]−1 (
X(c)
i

)T
x(c)i . (14)

For obtaining the weights w(c)
i , we used 5,000 randomly

selected images from the validation set of the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [16]. This
training set was separate from the test set used to compare the
tensor completion methods in Section V. Every input image
generates a deep feature tensor at a chosen intermediate layer
of a given deepmodel, so thatw(c)

i can be computed from (14)
for every row i and every channel c. Thesew(c)

i ’s are averaged
across all training images. Further, in order to reduce weight
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FIGURE 1. Test conditions: NL (no loss, baseline), NC (no tensor completion), TC (tensor completion).

storage requirements, we averaged all the weights for differ-
ent rows i in each channel, to eventually obtain weights w(c).
The resulting weights can now be stored in a (n+2)×nmatrix

W =
[
w(1)
|w(2)

| · · · |w(n)
]
, (15)

where the c-th column represents the weights for channel c of
the deep feature tensor.

The process of tensor completion is summarized in
Algorithm 4. The algorithm takes in the corrupt tensor X̃ and
the weight matrixW. First, the output tensor X̂ is initialized
(step 1). Then the algorithm loops through the tensor channels
and each missing row is reconstructed as a linear combination
of its neighbors using the corresponding weights (step 7).
Note that if some of the neighbors of the missing rows are
also missing, the corresponding column in X̂(c)

i is all-zero,
so the corresponding term is effectively eliminated from the
linear combination in (11).

As seen above, tensor reconstruction in ALTeC is linear
in nature, and the linear combination for row reconstruc-
tion changes from channel to channel (hence ‘‘adaptive’’).
The key feature that makes ALTeC attractive compared to
SiLRTC, HaLRTC, and FCP for collaborative intelligence
applications, where latency is important, is its speed. ALTeC
does not use computationally expensive operations such as
shrinkage-based SVD or CPD.Moreover, ALTeC only recon-
structs missing rows, whereas SiLRTC, HaLRTC, and FCP
update the entire tensor in each iteration. Despite its relative
simplicity, ALTeC achieves similar reconstruction accuracy
as the other three methods, as will be seen in the next section.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
In this section, we present experiments to compare the
performance of the four tensor completion algorithms
described earlier – SiLRTC, HaLRTC, FCP, and ALTeC – on
two pre-trained deep models for image classification,
VGG16 [17] and ResNet34 [18], implemented in Keras.2

Even though they are no longer state-of-the-art models
for image classification, we selected these two models
because they are well known in the research community and

2https://keras.io/applications/

well-studied in the literature under a variety of application
scenarios, including collaborative intelligence [1], [2]. The
data used in the experiments is a randomly-selected subset
of 1,000 images from the ILSVRC [16] validation set, which
were different from the 5,000 images on which ALTeC was
trained.

Following a common practice in video streaming
simulations [10], we consider an independent random
packet loss channel with packet loss probability ploss ∈
{5%, 10%, 15%, 20%, 25%, 30%}. It is assumed that at the
receiver (cloud sub-model), missing packets are identified
via packet sequence numbers provided by a transport-layer
protocol such as the Real-time Transport Protocol (RTP) [19].

For each value of ploss, each image in the test set is input to
the edge sub-model and the resulting deep feature tensor X
is transmitted over the packet loss channel N = 100 times,
to obtain statistically meaningful results. For each of these
N = 100 channel realizations, on the receiver side, a corrupt
tensor X̃ is received, a specific tensor completion method is
executed to obtain the completed tensor X̂ , and this tensor
is input to the cloud sub-model to complete the inference
task. Since we focus on image classification models, we mea-
sure classification accuracy under three conditions illustrated
in Fig. 1:
• no loss (NL), to establish baseline performance;
• no tensor completion (NC), where all missing data is
assumed to be zero;

• tensor completion (TC), where a specific tensor comple-
tion algorithm is performed on the corrupt tensor.

The average Top-1 classification accuracy for the three
cases (µNL, µNC, and µTC) and the standard deviation of
Top-1 classification accuracy under NC and TC conditions
(σNC and σTC) are measured. It is important to note that for
each combination of packet loss level and tensor completion
algorithm, random packet loss is simulated using a random
seed corresponding to the trial index (1, 2, . . . , 100), so that
each completion algorithm sees the same set of packet loss
realizations. This ensures the fairness of the comparison of
the four algorithms.

Before moving on to the performance comparison,
we examine the convergence of SiLRTC, HaLRTC, and
FCP. Recall from Section III that these algorithms iteratively
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FIGURE 2. Average Frobenius norm of the differences between
completed tensors in neighboring iterations.

update the to-be-completed tensor via unfolding and shrink-
ing (or CPD) for a given number of iterations K . Fig. 2 shows
the Frobenius norm (‖·‖F ) of the difference between tensors
in two consecutive iterations (K and K + 1):∥∥∥X̂K+1

− X̂K
∥∥∥
F
=
∥∥Â∥∥F = [∑

i,j,l

|̂ai,j,l |2
] 1

2

(16)

The curves in Fig. 2 represent the average Frobenius norm of
the difference between tensors in two consecutive iterations
across the six packet loss probabilities (ploss). As seen in
the figure, all three algorithms have essentially converged
and tensor updates have stopped at around K = 50. Hence,
we use K = 50 iterations in our experiments for these three
algorithms.

All four tensor completion algorithms were implemented
and tested on a Linux based machine with the following
specifications:
• Ubuntu 16.04.5 LTS (Xenial Xerus)
• 128GB (12GB) of CPU RAM (GPU RAM)
• Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz
• 12 processor cores
• Titan X (Pascal) GPU
• Tensorflow 1.9.0, Keras 2.2.4, Python 3.6.7

B. RESULTS ON VGG16
Fig. 3 shows the block diagram of the VGG16 network,
and indicates the point where the network is split into the
edge sub-model and the cloud sub-model. The split is at the
output of the ‘‘block4_pool’’ layer. At this point, the fea-
ture tensor is of size 14 × 14 × 512, and its total number
of elements is less than the number of pixels in the input
image (which is 224 × 224 × 3). The volume of data to be
transferred from the edge device to the cloud is an important
consideration in collaborative intelligence [1], [20] and one
wants to choose a split point where the data volume in the
feature tensor is less than the data volume of the input.
With such a split, the edge sub-model contains 7,635,264
(5.52%) of the total (trainable) parameters of the VGG16 net-
work, and the cloud sub-model contains the remaining

FIGURE 3. VGG16 model split at layer ‘‘block4_pool’’.

130,722,280 (94.48%) of the total (trainable) parameters.
Again, this is a reasonable workload distribution considering
the computational resources available at the edge and in the
cloud.

Note that in the VGG16 network, each convolutional layer
applies the Rectified Linear Unit (ReLU) activation to its
output. Hence, the resulting feature tensors already contain
many zero elements. Since the missing rows in the received
tensor X̃ are initially filled in with zeros (the NC case),
we can expect that the non-completed tensors X̃ will be
relatively similar to the completed tensors X̂ . To illustrate
this point, in Fig. 4 we show the percentage of zero and
non-zero elements in the feature tensors for each loss value.
As seen in the figure, the percentage of zero elements in
the feature tensors under no loss (ploss = 0%) is already
more than 75% and does not increase proportionally to packet
loss. Hence, we expect that in this case, the difference in
classification between NC and TC cases will be relatively
small, as will be confirmed by quantitative results later in this
section.

1) EXECUTION SPEED
First we compare the execution speed of the four tensor com-
pletion algorithms and present the results in Fig. 5. The solid
curves in the figure represent the average tensor completion
speed over the test set of 1,000 images, across various packet
loss levels. The shaded band around solid curves indicates
one standard deviation of the execution speed. As seen in
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FIGURE 4. Percentage of zero elements in the VGG16 tensor as a function
of packet loss.

FIGURE 5. Execution speed of tensor completion algorithms - VGG16.

the figure, ALTeC is significantly faster than the other meth-
ods, with FCP being the second-fastest (due to its built-in
convergence metric), followed by SiLRTC and HaLRTC,
as expected.

Part of the reason for the speed advantage of ALTeC
over the other three algorithms comes from avoiding the
shrinkage-based SVD and CPD at each iteration. Another
reason is that, in each iteration, SiLRTC, HaLRTC, and
FCP update all elements of the tensor only to replace the
non-missing values once the update is done. Meanwhile,
ALTeC only spends computation on the tensor elements that
are actually missing. ALTeC does require off-line training,
however, this can be done at the same time when the main
model is trained, so in terms of the overall collaborative
system design, it does not add any extra overhead, and yet
results in run-time savings upon system deployment.

2) CLASSIFICATION ACCURACY
Table 1 shows the Top-1 classification accuracy and its stan-
dard deviation for the several cases. The first three numerical
columns show the accuracy under no packet loss (µNL),
the accuracy with no tensor completion (µNC) and its stan-
dard deviation (σNC). Note that due to the large number
of zeros produced by the ReLU activation functions in cer-
tain VGG16 layers (Fig. 4), µNC is fairly close to µNL,

TABLE 1. VGG16 classification accuracy results. Among the last four
columns, the first two show the results with default settings, and the last
two show the results with matched execution speed.

as predicted earlier. Even under 30% loss, the classification
accuracy drops by less than 4%.

The next two columns show the accuracy (µTC) and stan-
dard deviation (σTC) for the four tensor completion algo-
rithms with default settings. By this we mean that SiLRTC,
HaLRTC, and FCP are run forK = 50 iterations, as explained
earlier. However, this means that their execution speed is
significantly higher than that of ALTeC (Fig. 5). Therefore,
in the last two columns, we report the results for the matched
execution speed, where we only let SiLRTC, HaLRTC, and
FCP run until their execution matches that of ALTeC. This
means that they were only able to run 1-5 (SiLRTC &
HaLRTC) or 5-20 (FCP) iterations, depending on the
case.

In the default-settings case, the accuracies of all four meth-
ods were similar, with the maximum difference of around
0.25% (between SiLRTC and HaLRTC) under 30% loss.
To test for statistical significance of these differences,
we applied Welch’s t-test for samples with unequal vari-
ance [21]. The resulting p-values are shown in the middle
three columns of Table 2. In experimental sciences, a p-value
of less than 0.05 is usually taken as a sign of statisti-
cally significant difference. As seen in Table 2, all pairwise
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TABLE 2. VGG16 statistical significance results. The middle three columns
show p-values of the 2-sided Welch’s t-test for pairwise comparison of
accuracies with default settings, while the last three columns show
p-values for the case when the execution speeds are matched.

differences between average accuracies in the default-settings
case were insignificant, except for the difference between
SiLRTC & HaLRTC for 25% & 30% loss and SiLRTC &
FCP for 15%, 20%, and 25% loss, and these cases are indi-
cated with green shading in the table. Since no algorithm
came out as the clear winner (i.e., provided significantly
better results than all alternatives) no accuracy in the corre-
sponding column in Table 1 is indicated in bold.

Likewise, in the matched-speed case, there was no clear
winner that statistically outperformed all its rivals, as indi-
cated by p-values in Table 2. Thus, again, no accuracy in
the corresponding column in Table 1 is indicated in bold.
Overall, results obtained from the VGG16 model suggest that
ALTeC offers equivalent performance to SiLRTC, HaLRTC,
and FCP, both when complexity is not constrained and when
the algorithms are constrained to be equally fast.

3) INTERESTING EXAMPLES
Finally, we highlight several interesting examples that were
observed during testing of tensor completion algorithms on
VGG16. Here, all tensor completion algorithms run in the
default (i.e., not speed-matched) configuration. Table 3 shows
classification predictions made on two images: #102 (‘Sleep-
ing Bag’ or ‘SB’) and #3 (‘Bulbul’). Ground truth labels
are listed in the row that starts with ‘‘GT Label’’. The next
two rows show the results under no loss (NL). In other
words, these are the outputs obtained from the pre-trained
VGG16 model. For image #102, we see that the Top-1 label
is wrong (‘Cloak’) and the model is fairly confident about
it (74.83%). After packet loss of 30%, but without tensor
completion (NC), the model is still wrong (‘Cloak’), but it
is less confident than before (49.73%). Finally, after tensor
completion (TC), ALTeC produces the correct result (‘SB’),

TABLE 3. Interesting examples from VGG16 experiments.

while SiLRTC, HaLRTC, and FCP are wrong, but not as
confident about it as the original model (around 52-56%).

For image #3, the pre-trained model is correct (‘Bulbul’),
and also confident about it (95.80%). After packet loss, but
without tensor completion (NC), the model produces wrong
result (‘Kite’) with confidence of 42.24%. All tensor com-
pletion algorithms lead to wrong result (‘Kite’), but ALTeC
leads to least confidence about this result (36.93%) while
SiLRTC, HaLRTC, and FCP increase their confidence about
the wrong decision (to 43-46%) compared to the NC case.
Although all tensor completion methods lead to wrong deci-
sion in this case, one could argue that ALTeC is still better
than the other three methods because with ALTeC-completed
tensor, the VGG16 model is least confident about its wrong
answer.

C. RESULTS ON RESNET34
Fig. 6 shows the architecture of the ResNet34 model. By sim-
ilar reasoning as in Section V-B, we decided to split the

FIGURE 6. ResNet34 model split at layer ‘‘add_7’’ [18].
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model at layer ‘‘add_7’’. With this split, the edge sub-model
produces tensors of size 28 × 28 × 128, which con-
tain the same number of elements as in the VGG16 case.
Also, the edge sub-model contains 1,351,619 (6.19%) train-
able parameters, while the cloud sub-model contains the
remaining 20,488,488 (93.81%) trainable parameters. Again,
this is a reasonable workload distribution considering the
computational resources available at the edge and in the
cloud.

ResNet34, like VGG16, uses ReLU activation functions.
However, it also makes use of batch normalization [22],
which centers the data distribution prior to adding it to the
data passed down the residual (skip) connection [18]. Hence,
the tensor produced by the edge sub-model in this case
does not contain as many zeros as the one produced by the
VGG16 edge sub-model. Indeed, Fig. 7 shows that without
loss, there are virtually no zeros in the tensorX produced by
the ResNet34 edge sub-model. As the loss increases, the per-
centage of zero-elements in the received tensor X̃ increases
proportionally, and we can expect a larger difference between
non-completed tensors X̃ and completed tensors X̂ than we
had in the VGG16 case.

FIGURE 7. Percentage of zero elements in the ResNet34 tensor as a
function of packet loss.

1) EXECUTION SPEED
Similarly to the VGG16 case, we tested the execution speed
of the four tensor completion algorithms and report the
results in Fig. 8. The solid curves represent the average
tensor completion speed over the test set of 1,000 images,
across various packet loss levels. The shaded band around
solid curves indicates one standard deviation of the execution
speed. As before, ALTeC is significantly faster than the other
three methods, with FCP being the second-fastest, followed
by SiLRTC and HaLRTC.

When comparing these results to those in Fig. 5, we note
that the execution speeds of SiLRTC and HaLRTC are sim-
ilar, about 1.2–1.5 seconds/tensor. Likewise, the execution
speeds of FCP are similar at about 0.25–0.30 seconds/tensor.
This is not surprising considering that in both VGG16 and
ResNet34 cases, the tensors (and their unfolded versions)
have the same number of elements. However, ALTeC is

FIGURE 8. Execution speed of tensor completion algorithms - ResNet34.

TABLE 4. ResNet34 classification accuracy results. Among the last four
columns, the first two show the results with default settings, and the last
two show the results with matched execution speed.

noticeably faster on ResNet34 tensors (Fig. 8) than on
VGG16 tensors (Fig. 5), because ResNet34 tensors have
fewer channels than VGG16 tensors, so matrix X̂(c)

i in step 7
of ALTeC is smaller in the ResNet34 case, which leads to
faster matrix-vector multiplication.

2) CLASSIFICATION ACCURACY
As in the VGG16 case, we compute the classification accu-
racy offered by the four tensor completion methods in the
default case (where SiLRTC, HaLRTC, and FCP run K = 50
iterations) and in the speed-matched case, where they are
only allowed to run as long as ALTeC. The results are shown
in Table 4. First, note that in the case of ResNet34, there
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is a large difference between the no-loss case (NL) and the
the case with no tensor completion (NC). Specifically, for
30% loss, the difference in Top-1 classification accuracy is
now over 40%, whereas in the case of VGG16 it was less
than 4%. As mentioned earlier, this is due to the fact that ten-
sors X produced by the ResNet34 edge sub-model (without
loss) contain virtually no zeros, so they are quite different
compared to the corrupt X̃ which haven’t been completed
yet. This also means that tensor completion (TC) has the
potential to bringmuch higher gain over no-completion (NC),
compared to the VGG16 case.

In Table 4, the middle two columns labeled µTC and σTC
correspond to the case with default settings, where SiLRTC,
HaLRTC, and FCP are able to execute all K = 50 iterations
until convergence. The corresponding statistical significance
results using Welch’s t-test are shown in the middle three
columns in Table 5. As seen in Table 5, we have a lot more
significant differences in accuracy now, compared to the
VGG16 case. At the 5% loss level, ALTeC, HaLRTC, and
FCP are statistically tied, and all give a higher classification
accuracy than SiLRTC. At higher loss levels, HaLRTC statis-
tically outperforms ALTeC, SiLRTC, and FCP, with ALTeC
being the next best performing algorithm, followed by FCP
and SiLRTC. For this reason, the corresponding accuracies
are made bold in the table.

TABLE 5. ResNet34 statistical significance results. The middle three
columns show p-values of the 2-sided Welch’s t-test for pairwise
comparison of accuracies with default settings, while the last three
columns show p-values for the case when the execution speeds are
matched.

The columns labelled ‘‘Speed-matched’’ in both Table 4
and Table 5 correspond to the case when the execution speeds
of the four tensor completion algorithms are matched. In this
case, SiLRTC andHaLRTC are only able to run 1-3 iterations,
while FCP can run 3-8 iterations. Under these conditions,
ALTeC statistically outperforms the other three methods at
all loss levels. In summary, ResNet34 results show that when
complexity is not constrained and execution speed is of no
concern, HaLRTC is the best of the four methods, followed

TABLE 6. Interesting examples from ResNet34 experiments.

by ALTeC in the second place. When the execution speeds
are matched, ALTeC is superior to the other three methods.

3) INTERESTING EXAMPLES
Again, we highlight several interesting examples that were
observed during the experiments on ResNet34 with default
configurations of the tensor completion algorithms. Table 6
shows classification predictions made on two images: #4
(‘Toyshop’) and #7 (‘Drake’). Ground truth labels are listed in
the row that starts with ‘‘GT Label’’. The next two rows show
the results under no loss (NL), obtained from the pre-trained
ResNet34 model. In both cases, Top-1 labels are correct,
but the model is relatively less confident about image #4
(16.66%). After packet loss of 30%, but without tensor com-
pletion (NC), the model makes wrong predictions in both
cases - image #4 is classified as ‘Abacus’ and #7 is classified
as ‘Ptarmigan’ - though both predictions are made with low
confidence (7.89% and 26.57%, respectively).

Finally, after tensor completion (TC), ALTeC produces
correct result in the case of image #4 (‘Toyshop’), but with
low confidence (6.32%), while SiLRTC, HaLRTC, and FCP
are wrong. In the case of image #7, all four methods produce
wrong results, but ALTeC is the least confident about it
(57.92% vs. 60-75% for other methods). Again, among the
four wrong decisions, the best one is where the model is
least confident about it. Note that in the case of image #7,
although final TC labels are wrong for all the methods, they
are relatively similar to the ground truth, as both ‘Drake’ and
‘American Coot’ are birds that resemble each another.

VI. CONCLUSION AND FUTURE WORK
In this paper, we studied several methods for tensor
completion in collaborative intelligence applications.
Specifically, we focused on three representative meth-
ods from the literature - Simple Low Rank Tensor
Completion (SiLRTC), High-accuracy Low Rank Tensor
Completion (HaLRTC), and Fused Canonical Polyadic
(FCP) - and a simple newly-developed Adaptive Linear
Tensor Completion (ALTeC). These methods were com-
pared on their ability to recover the missing data caused by
packet loss in the feature tensors produced by VGG16 and
ResNet34 image classification models.
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Algorithm 1 SiLRTC [5]

Input: X̃ , K , αi, βi ≥ 0,
∑3

i=1 αi = 1
Output: X̂
1: X̂ ← X̃
2: for iter = 1, 2, . . . ,K , do
3: M← zeros(X̂ .shape)
4: for i = 1, 2, 3, do
5: X← unfold(X̂ , i)
6: Xτ ← shrink(X, τ = αi/βi)
7: X τ ← fold(βi · Xτ , i)
8: M←M+X τ

9: end for
10: M←M/

∑3
i=1 βi

11: Replace values inM by known rows in X̃
12: X̂ ←M
13: end for

Algorithm 2 HaLRTC [5]

Input: X̃ , K , αi, ρ ≥ 0,
∑3

i=1 αi = 1
Output: X̂
1: X̂ ← X̃
2: for i = 1, 2, 3, do
3: Mi,Y i← zeros(X̂ .shape)
4: end for
5: for iter = 1, 2, . . . ,K , do
6: for i = 1, 2, 3, do
7: X← unfold(X̂ , i)
8: Y← unfold(Y i, i)/ρ
9: Zτ ← shrink(X+ Y, τ = αi/ρ)

10: Mi← fold(Zτ , i)
11: end for
12: X̂ ← 1

3 ·
∑3

i=1

(
Mi −

1
ρ
·Y i

)
13: Replace values in X̂ by known rows in X̃
14: for i = 1, 2, 3, do
15: Y i← Y i − ρ · (Mi − X̂ )
16: end for
17: ρ ← 1.2 · ρ
18: end for

Among the four studied methods, ALTeC was the fastest,
which is well-suited for collaborative intelligence appli-
cations where inference latency is one of the important
issues. Regarding reconstruction accuracy, on VGG16 ten-
sors (which tend to be sparse), all four methods were in
a statistical tie, both when SiLRTC, HaLRTC, and FCP
were allowed to run sufficiently many iterations to con-
verge and when their execution speeds were matched with
that of ALTeC by restricting the number of iterations.
On ResNet34 tensors (which are non-sparse), HaLRTC
showed the best accuracy when it was allowed to con-
verge, followed by ALTeC as the second-best. However,
when the execution speeds were matched, ALTeC emerged
as the winner.

Algorithm 3 FCP [6]

Input: X̃ , Ai, Lp, Ls, K , µ, αi, βi, δi, ζi, R, Ru, Rm, η, ε
Output: X̂
1: X̂ ← X̃
2: for iter = 1, 2, . . . ,K , do
3: for i = 1, 2, 3, do
4: S,V← Compute S as in (9), unfold(X̂ , i)
5: L ←

∥∥STS+ δiI∥∥F + βi ∥∥∥Lip∥∥∥F + αi
µ
+

ζi
µ

∥∥Lis∥∥2F
6: ∇h(Ai) ← STSAi − STV + αi

µ
Q( µ

αi
Ai) +

βiAi(Lip)
T
+ δiAi +

ζi
µ
Q( 1

µ
Ai(Lis)

T )Lis
7: Y0, d0, k ← Ai, 1, 0
8: while stopping_criterion (∇h(Yk )) > ε do
9: Ak

i ← Yk −
1
L∇h(Yk )

10: dk+1← 1
2 (1+

√
4d2k + 1)

11: Yk+1← Ak
i +

dk−1
dk+1

(Ak
i − Ak−1

i )
12: k ← k + 1
13: end while
14: end for
15: if

∑3
n=1

∥∥Aitern −A
iter−1
n

∥∥
F∥∥∥Aiter−1n

∥∥∥
F

< η and R < Rm then

16: R← R+ Ru
17: end if
18: X̂ iter−1

← fold(A1(A3 � A2), 1)
19: X̂ iter

← X̂ iter−1

20: Replace values in X̂ iter
by known rows in X̃

21: if
∥∥∥X̂ iter

− X̂ iter−1
∥∥∥
F
< η then

22: break
23: end if
24: end for

In essence, SiLRTC, HaLRTC, and FCP pay the price for
their generality. By not embedding the specifics of tensors
they are supposed to complete into their procedures, they
need to re-discover low-rank tensor structures anew every
time they start the completion procedure. By contrast, ALTeC
learns simple linear relations among the rows of tensors it
is supposed to complete off-line, so it is able to execute
quickly at run-time. While ALTeC requires off-line training,
this is quite feasible in collaborative intelligence because the
main model (VGG16 or ResNet34 in this case) also requires
off-line training, and ALTeC could be trained in parallel with
the main model on the same data. Further, note that ALTeC
does not require labeled data for training, only input data.
Each input sample produces the ‘‘ground truth’’ tensor at
a given layer of the model, which is then used to fit the
parameters of ALTeC.

Note that both fast methods, as well as slower but more
accurate methods, may have their place in CI tensor comple-
tion, depending on the application. For example, in a video
surveillance application where a subway station is being
monitored by several cameras to detect abandoned luggage,
speed is of the essence, since the luggage may pose a security
threat. Meanwhile, the accuracy of luggage classification

41172 VOLUME 8, 2020



L. Bragilevsky, I. V. Bajić: Tensor Completion Methods for CI

Algorithm 4 ALTeC

Input: X̃ ,W
Output: X̂
1: X̂ ← X̃
2: for channel c = 1, 2, . . . , n do
3: for each row i in channel c of X̂ do
4: if row i is missing then
5: Collect neighbors of the i-th row into X̂(c)

i
6: Extract the c-th column ofW into w(c)

7: x̂(c)i = X̂(c)
i w(c)

8: Put x̂(c)i into the i-th row of channel c of X̂
9: end if
10: end for
11: end for

(suitcase, backpack, purse) is less relevant. Hence, for such
an application, inference latency (i.e., speed) would be more
important than classification accuracy. On the other hand,
for applications such as satellite-based surveillance of crops,
speed is not as important because changes on crop fields are
relatively slow. Hence, in this application, accuracy could be
preferred over speed.

In the future, we plan to study other tensor completion
methods [23] in the context of collaborative intelligence,
such as Geometric Conjugate Gradients (GeomCG) [24],
Tensor SVD (t-SVD) [25], and Tensor Robust Principal Com-
ponent Analysis (TRPCA) [26]. Like SiLRTC, HaLRTC,
and FCP, most of these completion algorithms rely on
computation-heavy procedures such as eigen-decomposition
or SVD, so they are unlikely to be faster than ALTeC, but
they may offer better accuracy in cases where complexity
is less important. The inclusion of specific constrains found
in image or video completion algorithms [27], [28] could
also be explored. Furthermore, similar studies could be per-
formed on models trained for other collaborative intelligence
applications, such as object detection, segmentation, action
recognition, etc. Finally, the completion algorithms should
also be evaluated on a burst-loss channel model such as
the Gilbert-Elliott model [29], which offers a more realistic
representation of packet loss in real networks.

APPENDIX
TENSOR COMPLETION ALGORITHMS PSEUDO CODE
See Algorithms 1–4.
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