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Abstract

This paper presents a framework for compressed sensing that bridges a gap between existing
theory and the current use of compressed sensing in many real-world applications. In doing
so, it also introduces a new sampling method that yields substantially improved recovery over
existing techniques. In many applications of compressed sensing, including medical imaging, the
standard principles of incoherence and sparsity are lacking. Whilst compressed sensing is often
used successfully in such applications, it is done largely without mathematical explanation. The
framework introduced in this paper provides such a justification. It does so by replacing these
standard principles with three more general concepts: asymptotic sparsity, asymptotic incoherence
and multilevel random subsampling. Moreover, not only does this work provide such a theoretical
justification, it explains several key phenomena witnessed in practice. In particular, and unlike the
standard theory, this work demonstrates the dependence of optimal sampling strategies on both the
incoherence structure of the sampling operator and on the structure of the signal to be recovered.
Another key consequence of this framework is the introduction of a new structured sampling method
that exploits these phenomena to achieve significant improvements over current state-of-the-art
techniques.
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1. Introduction

Introduced formally around a decade ago, compressed sensing (CS) [18, 32]
has since become a popular area of research in mathematics, computer science
and engineering [14, 23, 29, 35, 36, 39–41]. In many real-world problems one
is limited by the amount of data that can be collected, making reconstruction
via classical techniques impossible. The theory and techniques of CS provide a
means to reconstruct from fewer measurements, giving it potential to significantly
enhance the recovery step in such applications.

The theory of CS is based on three key concepts: sparsity, incoherence and
random sampling. Whilst there are applications where these apply, in many
practical problems one or more of these principles may be lacking. This includes
most applications in medical imaging—Magnetic Resonance Imaging (MRI),
Computerized Tomography (CT) and other versions of tomography such as
Thermoacoustic, Photoacoustic or Electrical Impedance Tomography—electron
microscopy, as well as seismic tomography, fluorescence microscopy, Hadamard
spectroscopy, Helium Atom Scattering (HAS) and radio interferometry. In many
of these problems, it is the principle of incoherence that is lacking, rendering the
standard theory inapplicable. Yet, despite this issue CS has been, and continues
to be, used successfully in many of these areas. To do so, however, it is typically
implemented with sampling strategies that differ substantially from the uniform
random sampling strategies suggested by the theory. In fact, in many cases
the sampling strategies suggested by existing theory yield highly suboptimal
numerical results.

The mathematical theory of CS has now reached a mature state. However,
as this discussion suggests, there is a substantial, and arguably widening gap
between theory and its applications. New developments and sampling strategies
are increasingly based on empirical evidence lacking mathematical justification.
Furthermore, in the above applications one also witnesses a number of intriguing
phenomena that are not explained by the standard theory. For example, in such
problems, the optimal sampling strategy depends not just on the overall sparsity
of the signal, but also on its structure; a fact that will be documented thoroughly
in this paper. This phenomenon is in contradiction with the usual sparsity-based
theory of CS. Theorems that explain this observation—that is that reflect how
the optimal subsampling strategy depends on the structure of the signal—do not
currently exist.

1.1. Contributions. The purpose of this paper is to provide a bridge across
this divide. It does so by introducing a theoretical framework for CS based
on three more general principles: asymptotic sparsity, asymptotic incoherence
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A new theory for compressed sensing 3

and multilevel random sampling. This new framework shows that CS is also
possible under these substantially more general conditions, and moreover, can
convey some key advantages. Importantly, it also addresses the issue raised above:
namely, the dependence of the subsampling strategy on the structure of the signal.

The significance of this generalization is threefold. First, as will be explained,
inverse problems arising from the aforementioned applications are often not
incoherent and sparse, but asymptotically incoherent and asymptotically sparse.
This paper provides the first comprehensive mathematical explanation for a range
of empirical usages of CS in applications such as those listed above. Second, in
showing that incoherence is not a requirement for CS, but instead that asymptotic
incoherence suffices, the new theory offers markedly greater flexibility in the
design of sensing mechanisms. In the future, sensors need only satisfy this
significantly more relaxed condition. Third, by using asymptotic incoherence
and multilevel sampling to exploit not just sparsity, but also structure, that
is asymptotic sparsity, this frameworks paves the way for improved sensing
paradigms in CS that achieve better reconstructions in practice than current state-
of-the-art CS techniques.

A key aspect of many practical problems, including those listed above, is
that they do not offer the freedom to design or choose the sensing operator,
but instead impose it (for example, Fourier sampling in MRI). As such, much
existing CS work, which relies on random or custom-designed sensing matrices
(typically to provide universality), is not applicable. This paper shows that in
many such applications the imposed sensing operators are both nonuniversal and
highly coherent with popular sparsifying bases. Yet they are often asymptotically
incoherent, and thus fall within the remit of the new framework. Spurred by
this observation, this paper also raises the question of whether universality and
incoherence are actually desirable in practice, even in applications where there
is flexibility to design sensing operators with this property (for example, in
compressive imaging). Our theorems show that asymptotically incoherent sensing
and multilevel sampling allow one to exploit asymptotic, as opposed to just global
sparsity. Doing so leads to notable advantages over incoherent sensing, even for
problems where the latter are applicable. Moreover, and crucially, this can be done
in a computationally efficient manner using fast Fourier or Hadamard transforms
(see Section 6.1).

Our framework applies to any CS scenario where both the coherence and
sparsity are nonuniform. Of the many applications where this is the case, one
of the most important corresponds to the problem of Fourier sampling with
multiresolution sparsifying transforms such as wavelets. This model arises in
applications such as MRI, CT, radio interferometry, HAS and elsewhere. When
applied to this specific problem, this framework yields new and near-optimal
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sampling strategies based on multilevel random subsampling, and a new series
of recovery guarantees. Specifically, a corollary of our abstract results in the case
of Fourier sampling with wavelets taking the following form. If sk denotes the
sparsity of the wavelet coefficients of a given signal or image in the kth wavelet
scale, then to recover those coefficients one requires

mk &

sk +

r∑
l=1
l 6=k

β−|k−l|sl

 , k = 1, . . . , r. (1.1)

Fourier measurements (up to log factors) taken uniformly at random from the
corresponding kth sampling level (a dyadic band in frequency space), where
β > 1 is a constant depending on the type of wavelet used. See Section 6 for
further discussion. As we explain, this guarantee not only confirms the empirically
observed recovery properties of CS for such problems, but it also explains some
of the key phenomena witnessed; for example, the dependence of the optimal
sampling strategy on the sparsity structure.

Another contribution of this paper is that the theorems proved apply in both the
finite- and infinite-dimensional settings. Many of the problems listed above are
analogue, that is modelled with continuous operators such as the Fourier or Radon
transforms. Conversely, the standard CS is based on a finite-dimensional model.
Such a mismatch between the computational and the physical model can lead to
critical errors when CS techniques are applied to real data arising from continuous
models, or inverse crimes when the data is inappropriately simulated [22, 46]. To
overcome this issue, a theory of CS in infinite dimensions was recently introduced
in [3]. This paper extends [3] by presenting the new framework in both the finite-
and infinite-dimensional settings. We note in passing that the infinite-dimensional
analysis is instrumental for obtaining the Fourier sampling with wavelet sparsity
estimate (1.1).

This aside, an additional outcome of this work is that the Restricted Isometry
Property (RIP), although a popular tool in CS theory, is of little relevance in
many practical inverse problems. As confirmed later via the so-called flip test,
the standard RIP cannot hold in these types of applications.

The fact that the RIP may be too strong an assumption in practice is well known
in the standard CS literature. To overcome this, incoherence-based results, which
avoid the RIP, have shown that CS is indeed possible under weaker conditions
(see [16, 17] and references therein). We remark that the reasons for the absence
of the RIP in the standard CS setting are fundamentally different and arguably
less significant to the reasons for its absence in this setting. In particular, as we
demonstrate, in many applications only very specific structured sparse vectors can
be recovered. This is in stark contrast to the standard understanding that all sparse
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A new theory for compressed sensing 5

vectors can be recovered equally well regardless of their structure. We refer to
Section 2.3 for details.

Finally, we remark that this is primarily a mathematical paper. However, as
one may expect in light of the above discussion, there are a range of practical
implications. We therefore encourage the reader to consult [73] for further
elaboration on the practical aspects and more extensive numerical experiments.
We also remark that the practical importance of the new concepts of asymptotic
sparsity, asymptotic incoherence and multilevel random subsampling has already
been verified experimentally in a realistic MRI setting by Siemens [84] (based
on an earlier preprint of this paper). Siemens’ conclusion from their experiments
is: ‘[. . .] The image resolution has been greatly improved [. . .]. Current results
practically demonstrated that it is possible to break the coherence barrier by
increasing the spatial resolution in MR acquisitions. This likewise implies that the
full potential of the CS is unleashed only if asymptotic sparsity and asymptotic
incoherence is achieved. Therefore, CS might better be used to increase the
spatial resolution rather than accelerating the data acquisition in the context of
nondynamic 3D MR imaging.’

1.2. Relation to other works. Since the early days of CS, there have been
numerous investigations into settings which go beyond classical sparsity and
incoherence. So-called structured sparsity has been studied extensively, and there
are now a range of generalized sparsity notions in the literature. (Structured
sparsity, especially multiscale-type sparsity, also predates CS by some years—
see, for example, the work of Donoho and Huo [33]—and finds use outside
of CS—see, for example, the work of Donoho and Kutyniok on geometric
separation [34].) These include group, block, weighted and tree sparsity, amongst
others (see [8, 11, 38, 72, 80] and references therein). In most of these works,
structured sparsity is exploited by the design of the recovery algorithm (for
example, by replacing the thresholding step in an iterative algorithm or the
regularization functional in an optimization approach), with the sensing being
carried out by a standard, incoherent operator (for example, a Gaussian random
matrix). Our framework differs from these works in that it applies directly to
the practical, and asymptotically incoherent, sensing operators imposed by many
applications and to the way in which CS is typically implemented in practice
in these applications. It demonstrates why good recovery is possible in these
practical settings via the notion of asymptotic sparsity, and lends crucial insight
into the design of optimal sampling strategies.

The observation that many applications of CS result in nonuniform coherence
patterns arguably dates back to Lustig et al.’s seminal work in CS for MRI [58, 61–
63]. For Fourier sampling, numerous empirical sampling strategies have been
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proposed to overcome this problem [61, 85], and several other works have
followed more principled approaches based on designing sampling strategies
to match the underlying coherence pattern (see [10, 55, 70, 71] and references
therein). However, these works do not explain the key role played by asymptotic
sparsity in the CS recovery. Our work does this, and provides sampling strategies
which are provably optimal with respect to both the sparsity and the coherence
structures.

As mentioned, an important instance of our framework is that case of wavelet
sparsifying transforms. The idea of sampling the low-order wavelet coefficients
of an image differently goes back to the early days of CS. In particular, Donoho
considers a two-level approach for recovering wavelet coefficients in his seminal
paper [32], based on acquiring the coarse scales coefficients directly. This was
later extended by Tsaig and Donoho to so-called ‘multiscale CS’ in [82], where
distinct subbands were sensed separately. See also [17, 74]. Unlike in our
framework, these works normally assume a separation of the wavelet coefficients
into distinct bands before sampling, which is largely infeasible in practice (in
particular, any application based on Fourier or Hadamard sensing). We note also
that similar sampling strategies to those that we introduce here are found in
most implementations of CS in MRI [62, 63, 70, 71]. In addition, a so-called
‘half-half’ scheme (an example of a two-level strategy in our terminology—see
Section 3) was used by [77] in an application of CS in fluorescence microscopy,
albeit without theoretical recovery guarantees.

The proofs of the main results in this paper have their roots in some existing
ideas from CS literature [3, 16, 43], with the two key tools being dual certificates
and the golfing scheme. However, in order to account for the sparsity structure
and the different sampling patterns used the techniques have some significant
differences. In addition, as pointed out in [44, page 26], the original proofs using
the golfing scheme assume an independence of certain random variables that will
never be satisfied in general. The techniques used in this paper are different and
overcome this issue yielding complete generality. Moreover, unlike almost all
existing works, our results address both the finite- and infinite-dimensional CS
settings. This extends (and improves) a line of work initiated in [3], and calls for
a number of more sophisticated mathematical techniques.

REMARK 1.1. Since the initial preprint of this work, there have been several
other applications and extensions inspired by the first version which we now
mention for the reader’s benefit. First, the multilevel sampling strategies we
introduced have been extended to block sampling strategies [10, 12, 20, 21],
which are more practical for applications such as MRI. A type of multilevel
subsampling has also be considered in [49, 50] in the context of practical
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A new theory for compressed sensing 7

compressive imaging architectures, with application to single-pixel [37, 78]
and lensless imaging [86]. Our main results in this paper provide a theoretical
foundation for these implementations. There have also been several theoretical
extensions. First, generalizations of the RIP for the setting of asymptotic sparsity,
asymptotic incoherence and multilevel random subsampling have been introduced
and analysed in [9, 60, 80]. These complement the results proved in this paper by
establishing uniform recovery guarantees. Second, there have been extensions to
redundant sparsifying transforms [69] (see also [57] for the case of shearlets) and
to total variation minimization [68], respectively.

2. Motivation

In this section, we discuss how the standard theory of CS falls short in
explaining its empirical success in many applications. Specifically, even in well-
known applications such as MRI (note that MRI was one of the first applications
of CS [58, 61–63]), there is a significant gap between theory and practice.

2.1. Compressed sensing. We commence with a short review of aspects
of finite-dimensional CS theory (infinite-dimensional CS will be considered in
Section 5). Since CS has been the subject of a body of research in the last decade
we will not attempt a full survey here, opting instead to focus on aspects most
relevant to this paper. For much more comprehensive reviews, including historical
context and discussion, we refer to [14, 29, 35, 36, 39–41].

A typical setup in CS, and one which we shall follow in part of this paper, is as
follows. Let {ψ j }

N
j=1 and {ϕ j }

N
j=1 be two orthonormal bases of CN , the sampling

and sparsity bases respectively, and write U =
(
ui j
)N

i, j=1 ∈ CN×N , ui j = 〈ϕ j , ψi 〉.
Note that U is an isometry, that is U ∗U = I .

DEFINITION 2.1. Let U = (ui j)
N
i, j=1 ∈ CN×N be an isometry. The coherence of

U is precisely
µ(U ) = max

i, j=1,...,N
|ui j |

2
∈ [N−1, 1]. (2.1)

We say that U is perfectly incoherent if µ(U ) = N−1.

A signal f ∈ CN is said to be s-sparse in the orthonormal basis {ϕ j }
N
j=1 if at

most s of its coefficients in this basis are nonzero. In other words, f =
∑N

j=1 x jϕ j ,
and the vector x ∈ CN satisfies |supp(x)| 6 s, where supp(x) = { j : x j 6= 0}.
Let f ∈ CN be s-sparse in {ϕ j }

N
j=1, and suppose we have access to the samples

f̂ j = 〈 f, ψ j 〉, j = 1, . . . , N . Let Ω ⊆ {1, . . . , N } be of cardinality m and chosen
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B. Adcock, A. C. Hansen, C. Poon and B. Roman 8

uniformly at random. According to a result of Candès and Plan [16] and Adcock
and Hansen [3], f can be recovered exactly with probability exceeding 1−ε from
the subset of measurements { f̂ j : j ∈ Ω}, provided

m & µ(U ) · N · s ·
(
1+ log(ε−1)

)
· log(N ), (2.2)

(here and elsewhere in this paper we shall use the notation a & b to mean that
there exists a constant C > 0 independent of all relevant parameters such that
a > Cb). In practice, recovery can be achieved by solving the following convex
optimization problem:

min
η∈CN
‖η‖l1 subject to PΩUη = PΩ f̂ , (2.3)

where f̂ = ( f̂1, . . . , f̂N )
> and PΩ ∈ CN×N is the diagonal projection matrix with

j th entry 1 if j ∈ Ω and zero otherwise. The key estimate (2.2) shows that the
number of measurements m required is, up to a log factor, on the order of the
sparsity s, provided the coherenceµ(U )=O

(
N−1

)
. This is the case, for example,

when U is the DFT matrix; a problem which was studied in some of the first
papers on CS [18].

2.2. Incoherence is often lacking. As mentioned, in a number of important
applications, not least MRI, the sampling is carried out in the Fourier domain.
Since images are approximately sparse in wavelets, the usual CS setup is to form
the matrix UN = UdfV−1

dw ∈ CN×N , where Udf and Vdw represent the discrete
Fourier and wavelet transforms, respectively.

Unfortunately, in the case the coherence satisfies µ(UN ) = O (1) as N →∞,
for any wavelet basis. Thus, this problem has the worst possible coherence, and
the standard CS estimate (2.2) states that m = N samples are needed in this case
(that is full sampling), even though the object to recover is typically highly sparse.
Note that this is not an insufficiency of the theory: as seen in Figure 1, uniform
random subsampling in this problem yields an extremely poor reconstruction.

Although the presence of high coherence has been well documented in the MRI
context [61–63], the source of it has not been fully explained. As it transpires, the
underlying reason for this lack of incoherence can be traced to the fact that this
finite-dimensional problem is a discretization of an infinite-dimensional problem.
Specifically,

WOT-lim
N→∞

UdfV−1
dw = U, (2.4)

where U : l2(N)→ l2(N) is the operator represented as the infinite matrix

U = {〈ϕi , ψ j 〉}i, j∈N, (2.5)
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A new theory for compressed sensing 9

Figure 1. Left to right: (i) 5% uniform random subsampling scheme, (ii) CS
reconstruction from uniform subsampling, (iii) 5% multilevel subsampling
scheme, (iv) CS reconstruction from multilevel subsampling.

and the functions ϕ j are the wavelets used, the ψ j ’s are the standard complex
exponentials and WOT denotes the weak operator topology. Since the coherence
of the infinite matrix U—that is the supremum of its entries in absolute value—is
a fixed number independent of the discretization N , we cannot expect incoherence
of the discretization UN (that is, UN = O(N−1)) for large N . In other words, at
some point one will always encounter the so-called coherence barrier. To mitigate
this problem, one may naturally try to change {ϕ j } or {ψ j }. However, this will
deliver only marginal benefits: (2.4) demonstrates that the coherence barrier will
always occur for large enough N , regardless of the choice of the bases.

Note that this issue is not isolated to this particular example. Informally, any
problem that arises as a discretization of an infinite-dimensional problem will
suffer from the same phenomenon. The list of applications of this type is long,
and includes, for example, MRI, CT, microscopy and seismology.

In view of the coherence barrier, one may wonder how it is possible that CS is
applied so successfully to many such problems. The key is so-called asymptotic
incoherence (see Section 3.1) and the use of variable density subsampling
strategies. The success of such a subsampling is well known in the CS MRI
community [61–63, 70, 71] and is confirmed numerically in Figure 1. However, it
is important to note that this is an empirical solution to the problem. None of the
usual CS theory discussed in Section 2.1 explains the effectiveness of CS when
implemented in this way.

2.3. Sparsity, the flip test and the absence of RIP. The previous discussion
demonstrates that we must dispense with the principles of incoherence and
uniform random subsampling in order to develop a new framework. We now
claim that sparsity too must also be replaced with a more general concept. This
may come as a surprise to the reader, since sparsity is a central pillar of not just
CS, but much of modern signal processing. However, this can be confirmed by a
simple experiment we refer to as the flip test.
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B. Adcock, A. C. Hansen, C. Poon and B. Roman 10

Sparsity asserts that an unknown vector x has s important coefficients, where
the locations can be arbitrary, and classical CS theory states that such vectors can
be recovered by sampling in a way that is independent of the locations of these
coefficients. The flip test, described next, allows one to evaluate the validity of
this statement for a given problem.

We proceed as follows. Let x ∈ CN and U ∈ CN×N . Take samples according to
some appropriate subset Ω ⊆ {1, . . . , N } with |Ω| = m, and solve:

min
z∈CN
‖z‖1 subject to PΩU z = PΩU x . (2.6)

This gives a reconstruction z = z1. Now we flip the entries of x through the
operation x 7→ x fp

∈ CN , x fp
1 = xN , x fp

2 = xN−1, . . . , x fp
N = x1, giving a new

vector x fp with reversed entries. We next apply the same CS reconstruction to x fp,
using the same matrix U and the same subset Ω . That is, we solve (2.6) with x
replaced by x fp and denote the solution by z. We perform the flipping operation
once more and form the final reconstruction z2 = zfp.

Suppose now that Ω is a good sampling pattern for recovering x using
the solution z1 of (2.6). If sparsity alone is the key structure that determines
such reconstruction quality, then we expect roughly the same quality in the
approximation z2, since x fp is merely a permutation of x . To check whether or
not this is true, we consider examples arising from the following applications:
fluorescence microscopy, compressive imaging, MRI, CT, electron microscopy
and radio interferometry. These examples are all based on either the matrix
U = UdftV−1

dwt or the matrix U = UHadV−1
dwt , where Udft is the discrete Fourier

transform, UHad is a Hadamard matrix and Vdwt is the discrete wavelet transform.
The results are shown in Figure 2. In all cases the flipped reconstructions

z2 are substantially worse than their unflipped counterparts z1. We therefore
conclude that sparsity alone does not govern the reconstruction quality, and that
the successful recovery in the unflipped case must also be due in part to the
structure of the signal. Put another way: the best subsampling strategy depends
on the signal structure.

The flip test also reveals another interesting phenomenon: the RIP does not hold.
Suppose the matrix PΩU satisfied an RIP for realistic parameter values (that is
problem size N , subsampling percentage m, and sparsity s) found in applications.
Then this would imply recovery of all approximately sparse vectors with the
same error, in contradiction with the results of the flip test. As was mentioned in
Section 1.1, the absence of RIP here is not related to uniform versus nonuniform
recovery regimes, but to the key role that the sparsity structure plays in the
recovery quality. Indeed, the result of Figure 2 could have been repeated with
more measurements and similar disparities in the reconstruction quality would
still have been observed.
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A new theory for compressed sensing 11

Figure 2. Reconstructions via CS (left column) and the flipped wavelet
coefficients (middle column). The right column shows the subsampling map used.
The percentage shown is the fraction of Fourier or Hadamard coefficients that
were sampled. The reconstruction basis was DB6.
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B. Adcock, A. C. Hansen, C. Poon and B. Roman 12

2.4. Signals and images are asymptotically sparse in -lets. Since structure
plays a key role, we now address what the structure is that leads to good
reconstructions in the unflipped case. Consider a wavelet basis {ϕn}n∈N. There
is a natural decomposition of N into finite subsets according to the wavelet scales,
N=

⋃
k∈N{Mk−1+1, . . . ,Mk}, where 0= M0 < M1 < M2 < . . . and {Mk−1+1,

. . . ,Mk} is the set of indices corresponding to the kth scale. Let x ∈ l2(N) be the
coefficients of a function f in this basis, ε ∈ (0, 1] and define the global sparsity,
s, and the sparsity at the kth level, sk as follows:

s = s(ε) = min

{
n :

∥∥∥∥∥∑
i∈Mn

xiϕi

∥∥∥∥∥ > ε

∥∥∥∥∥
∞∑
j=1

x jϕ j

∥∥∥∥∥
}
,

sk = sk(ε) =
∣∣Ms(ε) ∩ {Mk−1 + 1, . . . ,Mk}

∣∣ , (2.7)

where Mn is the set of indices of the largest n coefficients in absolute value and
|·| is the set cardinality. A well-known result in nonlinear approximation, and one
which significantly predates the development of CS, is that typical images and
signals are sparse in wavelets [30, 64]. However, it is also well known that their
coefficients exhibit far more structure than sparsity alone. Indeed, the relative per-
level sparsity

sk/(Mk − Mk−1) −→ 0, (2.8)

rapidly as k→∞ for any fixed ε ∈ (0, 1]. Thus typical signals and images have a
distinct asymptotic sparsity structure: they are much sparser at fine scales (large k)
than at coarse scales (small k). This is shown numerically in Figure 3. Note that
this holds for most related approximation systems, such as curvelets [13, 15],
contourlets [31, 66] or shearlets [25, 26, 56].

3. New principles

Having argued why they are needed, we now formally introduce the main
concepts of the paper: namely, asymptotic incoherence, asymptotic sparsity and
multilevel sampling.

3.1. Asymptotic incoherence. Recall from Section 2.2 that Fourier sampling
with wavelets as the sparsity basis is a standard example of a coherent problem.
Similarly, Fourier sampling with Legendre polynomials is also coherent, as is the
case of Hadamard sampling with wavelets. In Figure 4 we plot the absolute values
of the entries of the matrix U for these three examples. As is evident, whilst U
does indeed have large entries in all three case (since it is coherent), these are
isolated to a leading submatrix (note that we enumerate over Z for the Fourier
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Figure 3. Relative per-level sparsities of the Daubechies-4 wavelet coefficients of
two images. Here the levels correspond to wavelet scales and sk(ε) is given by
(2.7). The decreasing nature of the curves for increasing k confirms (2.8).

Figure 4. The absolute values of the matrix U in (2.5): (left): Daubechies-4
wavelets with Fourier sampling. (middle): Legendre polynomials with Fourier
sampling. (right): Haar wavelets with Hadamard sampling. Light regions
correspond to large values and dark regions to small values.

sampling basis and N for the wavelet/Legendre sparsity bases). As one moves
away from this region the values get progressively smaller, that is more incoherent.
This motivates the following definition:
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DEFINITION 3.1 (Asymptotic incoherence). Let be {UN } be a sequence of
isometries with UN ∈ CN×N . Then {UN } is asymptotically incoherent if

µ(P⊥K UN ), µ(UN P⊥K ) −→ 0, K →∞,

with N/K = c, for all c > 1. Conversely, if U ∈ B(l2(N)) then we say that U is
asymptotically incoherent if µ(P⊥K U ), µ(U P⊥K )→ 0 when K →∞.

Note that in this definition we use the notation PK for the projection onto
span{e j : j = 1, . . . , K }, where {e j } is the canonical basis of either CN or l2(N),
and P⊥K is its orthogonal complement.

In other words, U (or UN ) is asymptotically incoherent if the coherences of the
matrices formed by replacing either the first K rows or columns of U are small.
As it transpires, the Fourier-wavelets, Fourier–Legendre and Hadamard-wavelets
problems are all asymptotically incoherent. In particular, for wavelets one has
µ(P⊥K U ), µ(U P⊥K ) = O

(
K−1

)
as K → ∞ for the former (see Section 6, see

also [54] for the Legendre case).

3.2. Multilevel sampling. Asymptotic incoherence suggests a different
subsampling strategy should be used instead of uniform random sampling. High
coherence in the first few rows of U means that important information about the
signal to be recovered may well be contained in its corresponding measurements.
Hence to ensure good recovery we should fully sample these rows. Conversely,
once outside of this region, when the coherence starts to decrease, we can
begin to subsample. Let N1, N ,m ∈ N be given. This now leads us to consider
an index set Ω of the form Ω = Ω1 ∪ Ω2, where Ω1 = {1, . . . , N1}, and
Ω2 ⊆ {N1 + 1, . . . , N } is chosen uniformly at random with |Ω2| = m. We refer
to this as a two-level sampling scheme. As we shall prove later, the amount of
subsampling possible (that is the parameter m) in the region corresponding to Ω2

will depend solely on the sparsity of the signal and coherence µ(P⊥N1
U ).

A two-level scheme represents the simplest type of nonuniform density
sampling. There is no reason, however, to restrict our attention to just two levels,
full and subsampled. In general, we shall consider multilevel schemes, defined as
follows:

DEFINITION 3.2 (Multilevel random sampling). Let r ∈ N, N = (N1, . . . , Nr )

∈ Nr with 1 6 N1 < · · · < Nr , m = (m1, . . . ,mr ) ∈ Nr , with mk 6 Nk − Nk−1,
k = 1, . . . , r , and suppose that Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk | = mk,

k = 1, . . . , r , are chosen uniformly at random, where N0 = 0. We refer to
the set Ω = ΩN,m = Ω1 ∪ · · · ∪Ωr as an (N,m)-multilevel sampling scheme.
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As discussed earlier, two-level [32, 63, 74, 77] and multilevel [17, 82] schemes
have been considered previously in the context of the recovery of wavelet
coefficients, and often for specific applications (for example, MRI in [63] and
fluorescence microscopy in [77]). We refer to Section 1.2 for further details. On
the other hand, although motivated by wavelets, this definition is completely
general and allows for other types of structured coefficients. Moreover, it is
accompanied by full theoretical recovery guarantees (see Sections 4 and 5).

3.3. Asymptotic sparsity in levels. The flip test, the discussion in Section 2.4
and Figure 3 suggest that we need a different concept to sparsity. Given the
structure of function systems such as wavelets and their generalizations, we now
propose the following:

DEFINITION 3.3 (Sparsity in levels). Let x be an element of either CN or l2(N).
For r ∈ N let M = (M1, . . . ,Mr ) ∈ Nr with 1 6 M1 < · · · < Mr and s =
(s1, . . . , sr ) ∈ Nr , with sk 6 Mk−Mk−1, k = 1, . . . , r , where M0 = 0. We say that
x is (s,M)-sparse if, for each k = 1, . . . , r ,∆k := supp(x)∩{Mk−1+1, . . . ,Mk},
satisfies |∆k | 6 sk . We denote the set of (s,M)-sparse vectors by Σs,M.

DEFINITION 3.4 ((s,M)-term approximation). Let f =
∑

j x jϕ j , where {ϕ j } is
some orthonormal basis of a Hilbert space and x = (x j) is an element of either
CN or l2(N). We define the (s,M)-term approximation

σs,M( f ) = min
η∈Σs,M

‖x − η‖l1 . (3.1)

Typically, it is the case that sk/(Mk − Mk−1) → 0 as k → ∞, in which case
we say that x is asymptotically sparse in levels. However, our main results do
not explicitly require such decay. As discussed in Section 1.2, sparsity in levels
is a type of structured sparsity. We note in passing that it is quite different to the
notions of block sparsity [8], weighted sparsity [72] or tree-structured sparsity [8],
the latter of which has been used previously in the context of model-based CS for
the recovery of wavelet coefficients. For further discussion on different structured
sparsity models in CS, we refer to [11, 80].

4. Main theorems I: the finite-dimensional case

We now present our main theorems in the finite-dimensional setting. In
Section 5 we address the infinite-dimensional case. To avoid pathological
examples we assume throughout that the total sparsity s = s1+· · ·+ sr > 3. This
is simply to ensure that log(s) > 1, which is convenient in the proofs.
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4.1. Two-level sampling schemes. We commence with the case of two-level
sampling schemes. Recall that in practice, signals are never exactly sparse (or
sparse in levels), and their measurements are always contaminated by noise. Let
f =

∑
j x jϕ j be a fixed signal, and write y = PΩ f̂ + z = PΩU x+ z, for its noisy

measurements, where z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ 6 δ for some
δ > 0. If δ is known, we now consider the following problem:

min
η∈CN
‖η‖l1 subject to ‖PΩUη − y‖ 6 δ. (4.1)

Our aim now is to recover x up to an error proportional to δ and the best
approximation error σs,M( f ).

Before stating our theorem, it is useful to make the following definition. For
K ∈ N, we write µK = µ(P⊥K U ). We now have the following:

THEOREM 4.1. Let U ∈ CN×N be an isometry and x ∈ CN . Suppose that
Ω = ΩN,m is a two-level sampling scheme, where N = (N1, N2), N2 = N, and
m = (N1,m2). Let (s,M), where M = (M1,M2) ∈ N2, M1 < M2, M2 = N, and
s = (M1, s2) ∈ N2, s2 6 M2 − M1, be any pair such that the following holds:

(i) we have
‖P⊥N1

U PM1‖ 6
γ
√

M1
(4.2)

and γ 6 s2
√
µN1 for some γ ∈ (0, 2/5];

(ii) for ε ∈ (0, e−1
], let

m2 & (N − N1) · log(ε−1) · µN1 · s2 · log (N ) .

Suppose that ξ ∈ CN is a minimizer of (4.1) with δ = δ̃
√

K−1 and K =
(N2 − N1)/m2. Then, with probability exceeding 1− sε, we have

‖ξ − x‖ 6 C ·
(
δ̃ ·
(
1+ L ·

√
s
)
+ σs,M( f )

)
, (4.3)

for some constant C, where σs,M( f ) is as in (3.1), L = 1 +
(√

log2

(
6ε−1

)
/

log2(4K M
√

s)
)

. If m2 = N − N1 then this holds with probability 1.

To interpret Theorem 4.1, and in particular, to show how it overcomes the
coherence barrier, we note the following:

(i) The condition ‖P⊥N1
U PM1‖ 6 2/(5

√
M1) (which is always satisfied for some

N1) implies that fully sampling the first N1 measurements allows one to
recover the first M1 coefficients of f .
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(ii) To recover the remaining s2 coefficients we require, up to log factors, an
additional m2 & (N − N1) · µN1 · s2, measurements, taken randomly from
the range M1 + 1, . . . ,M2. In particular, if N1 is a fixed fraction of N ,
and if µN1 = O

(
N−1

1

)
, such as for wavelets with Fourier measurements

(Theorem 6.1), then one requires only m2 & s2 additional measurements to
recover the sparse part of the signal.

Thus, in the case where x is asymptotically sparse, we require a fixed number N1

measurements to recover the nonsparse part of x , and then a number m2 depending
on s2 and the asymptotic coherence µN1 to recover the sparse part.

REMARK 4.2. It is not necessary to know the sparsity structure, that is the values
s and M, of the signal f in order to implement the two-level sampling technique
(the same also applies to the multilevel technique discussed in the next section).
Given a two-level scheme Ω = ΩN,m, Theorem 4.1 demonstrates that f will be
recovered exactly up to an error on the order of σs,M( f ), where s and M are
determined implicitly by N, m and the conditions (i) and (ii) of the theorem. Of
course, some a priori knowledge of s and M will greatly assist in selecting the
parameters N and m so as to get the best recovery results. However, this is not
strictly necessary for implementation.

4.2. Multilevel sampling schemes. We now consider the case of multilevel
sampling schemes. Before presenting this case, we need several definitions. The
first is key concept in this paper, namely, the local coherence.

DEFINITION 4.3 (Local coherence). Let U be an isometry of either CN or l2(N).
If N = (N1, . . . , Nr ) ∈ Nr and M = (M1, . . . ,Mr ) ∈ Nr with 1 6 N1 < · · · Nr

and 1 6 M1 < · · · < Mr the (k, l)th local coherence of U with respect to N and
M is given by

µN,M(k, l) =
√
µ(P Nk−1

Nk
U P Ml−1

Ml
) · µ(P Nk−1

Nk
U ), k, l = 1, . . . , r,

where N0 = M0 = 0 and Pa
b denotes the projection matrix corresponding to

indices {a + 1, . . . , b}. In the case where U ∈ B(l2(N)) (that is U belongs to
the space of bounded operators on l2(N)), we also define

µN,M(k,∞) =
√
µ(P Nk−1

Nk
U P⊥Mr−1

) · µ(P Nk−1
Nk

U ), k = 1, . . . , r.

Besides the local sparsities sk , we shall also require the notion of a relative
sparsity:
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DEFINITION 4.4 (Relative sparsity). Let U be an isometry of either CN or l2(N).
For N = (N1, . . . , Nr ) ∈ Nr , M = (M1, . . . ,Mr ) ∈ Nr with 1 6 N1 < · · · < Nr

and 1 6 M1 < · · · < Mr , s = (s1, . . . , sr ) ∈ Nr and 1 6 k 6 r , the kth
relative sparsity is given by Sk = Sk(N,M, s) = maxη∈Θ ‖P

Nk−1
Nk

Uη‖2, where
N0 = M0 = 0 and Θ is the set

Θ = {η : ‖η‖l∞ 6 1, |supp(P Ml−1
Ml

η)| = sl, l = 1, . . . , r}.

We can now present our main theorem:

THEOREM 4.5. Let U ∈ CN×N be an isometry and x ∈ CN . Suppose that
Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr ,
Nr = N, and m= (m1, . . . ,mr ) ∈ Nr . Let (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
Mr = N, and s = (s1, . . . , sr ) ∈ Nr , be any pair such that the following holds:
for ε ∈ (0, e−1

] and 1 6 k 6 r ,

1 &
Nk − Nk−1

mk
· log(ε−1) ·

(
r∑

l=1

µN,M(k, l) · sl

)
· log (N ) , (4.4)

where mk & m̂k · log(ε−1) · log (N ), and m̂k is such that

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, (4.5)

for all l = 1, . . . , r and all s̃1, . . . , s̃r ∈ (0,∞) satisfying

s̃1 + · · · + s̃r 6 s1 + · · · + sr , s̃k 6 Sk(N,M, s).

Suppose that ξ ∈ CN is a minimizer of (4.1) with δ = δ̃
√

K−1 and
K = max16k6r {(Nk − Nk−1)/mk}. Then, with probability exceeding 1 − sε,
where s = s1 + · · · + sr , we have that

‖ξ − x‖ 6 C ·
(
δ̃ ·
(
1+ L ·

√
s
)
+ σs,M( f )

)
,

for some constant C, where σs,M( f ) is as in (3.1), L = 1 +
(√

log2

(
6ε−1

)
/

log2(4K M
√

s)
)

. If mk = Nk−Nk−1, 1 6 k 6 r , then this holds with probability 1.

The key component of this theorem is the bounds (4.4) and (4.5). Whereas the
standard CS estimate (2.2) relates the total number of samples m to the global
coherence and the global sparsity, these bounds now relate the local sampling
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mk to the local coherences µN,M(k, l) and local and relative sparsities sk and
Sk . In particular, by relating these local quantities this theorem conforms with
the conclusions of the flip test in Section 2.3: namely, that the optimal sampling
strategy must depend on the signal structure. This is exactly what is described in
(4.4) and (4.5).

On the face of it, the bounds (4.4) and (4.5) may appear somewhat complicated,
not least because they involve the relative sparsities Sk . As we next show, however,
they are indeed sharp in the sense that they reduce to the correct information-
theoretic limits in several important cases. Furthermore, in the important case of
wavelet sparsity with Fourier sampling, they can be used to provide near-optimal
recovery guarantees. We discuss this in Section 6. Note, however, that to do this
it is first necessary to generalize Theorem 4.5 to the infinite-dimensional setting,
which we do in Section 5.

4.2.1. Sharpness of the estimates—the block-diagonal case. Suppose that
Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr

and m = (m1, . . . ,mr ) ∈ Nr . Let (s,M), where M = (M1, . . . ,Mr ) ∈ Nr , and
suppose for simplicity that M = N. Consider the block-diagonal matrix

A = A1 ⊕ · · · ⊕ Ar ∈ CN×N , Ak ∈ C(Nk−Nk−1)×(Nk−Nk−1), A∗k Ak = I,

where N0 = 0. Note that in this setting we have Sk = sk , µN,M(k, l) = 0, k 6= l.
Also, since µ(N,M)(k, k) = µ(Ak), equations (4.4) and (4.5) reduce to

1 &
Nk − Nk−1

mk
· log(ε−1) · µ(Ak) · sk · log(N ),

1 &

(
Nk − Nk−1

m̂k
− 1

)
· µ(Ak) · sk .

In particular, it suffices to take

mk & (Nk − Nk−1) · log(ε−1) · µ(Ak) · sk · log(N ), 1 6 k 6 r. (4.6)

This is exactly as one expects: the number of measurements in the kth level
depends on the size of the level multiplied by the local coherence and the sparsity
in that level. Note that this result recovers the standard one-level results in finite
dimensions [3, 16] up to a slight deterioration in the probability bound to 1− sε.
Specifically, the usual bound would be 1 − ε. The question as to whether or not
this s can be removed in the multilevel setting is open, although such a result
would be more of a cosmetic improvement.
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4.2.2. Sharpness of the estimates—the nonblock-diagonal case. The previous
argument demonstrated that Theorem 4.5 is sharp, up to the probability term, in
the sense that it reduces to the usual estimate (4.6) for block-diagonal matrices,
Sk = sk . This is not true in the general setting. Clearly, Sk 6 s = s1 + · · · + sr .
However, in general there is usually interference between different sparsity levels,
which means that Sk need not have anything to do with sk , or can indeed be
proportional to the total sparsity s. This may seem an undesirable aspect of the
theorems, since Sk may be significantly larger than sk , and thus the estimate on
the number of measurements mk required in the kth level may also be much
larger than the corresponding sparsity sk . Could it therefore be that the Sk’s are
an unfortunate artefact of the proof? As we now show by example, this is not the
case.

Let N = rn for some n ∈ N and N =M = (n, 2n, . . . , rn). Let W ∈ Cn×n and
V ∈ Cr×r be isometries and consider the matrix

A = V ⊗W,

where ⊗ is the usual Kronecker product. Note that A ∈ CN×N is also an
isometry. Now suppose that x = (x1, . . . , xr ) ∈ CN is an (s,M)-sparse vector,
where each xk ∈ Cn is sk-sparse. Then Ax = y, y = (y1, . . . , yr ), yk = W zk,

zk =
∑r

l=1 vkl xl . Hence the problem of recovering x from measurements y with
an (N,m)-multilevel strategy decouples into r problems of recovering the vector
zk from the measurements yk = W zk , k = 1, . . . , r . Let ŝk denote the sparsity of
zk . Since the coherence provides an information-theoretic limit [16], one requires
at least

mk & n · µ(W ) · ŝk · log(n), 1 6 k 6 r (4.7)

measurements at level k in order to recover each zk , and therefore recover x ,
regardless of the reconstruction method used. We now consider two examples
of this setup:

EXAMPLE 4.6. Let π : {1, . . . , r} → {1, . . . , r} be a permutation and let V be
the matrix with entries vkl = δl,π(k). Since zk = xπ(k) in this case, the lower bound
(4.7) reads

mk & n · µ(W ) · sπ(k) · log(n), 1 6 k 6 r. (4.8)

Now consider Theorem 4.5 for this matrix. First, we note that Sk = sπ(k). In
particular, Sk is completely unrelated to sk . Substituting this into Theorem 4.5
and noting that µN,M(k, l) = µ(W )δl,π(k) in this case, we arrive at the condition
mk & n ·µ(W )·sπ(k) ·

(
log(ε−1)+ 1

)
·log(nr), which is equivalent to (4.8) provided

r . n.
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EXAMPLE 4.7. Now suppose that V is the r × r DFT matrix. Suppose also that
s 6 n/r and that the xk’s have disjoint support sets, that is supp(xk)∩supp(xl)= ∅,
k 6= l. Then by construction, each zk is s-sparse, and therefore the lower bound
(4.7) reads mk & n · µ(W ) · s · log n, for 1 6 k 6 r . After a short argument, one
finds that s/r 6 Sk 6 s in this case. Hence, Sk is typically much larger than sk .
Moreover, after noting that µN,M(k, l) = (1/r)µ(W ), we find that Theorem 4.5
gives the condition mk & n · µ(W ) · s ·

(
log(ε−1)+ 1

)
· log(nr). Thus, Theorem

4.5 obtains the lower bound in this case as well.

4.2.3. Sparsity leads to pessimistic reconstruction guarantees. The flip test
demonstrates that any sparsity-based theory of CS cannot describe the quality
of the reconstructions seen in practice. To conclude this section, we now use the
block-diagonal case to further emphasize the need for theorems that go beyond
sparsity, such as Theorems 4.1 and 4.5. To see this, consider the block-diagonal
matrix

U = U1 ⊕ · · · ⊕Ur , Uk ∈ C(Nk−Nk−1)×(Nk−Nk−1),

where each Uk is perfectly incoherent, that isµ(Uk)= (Nk−Nk−1)
−1, and suppose

we take mk measurements within each block Uk . Let x ∈ CN be the signal we wish
to recover, where N = Nr . The question is, how many samples m = m1+· · ·+mr

do we require?
Suppose we assume that x is s-sparse, where s 6 mink=1,...,r {Nk − Nk−1}.

Given no further information about the sparsity structure, it is necessary to take
mk & s log(N ) measurements in each block, giving m & rs log(N ) in total.
However, suppose now that x is known to be sk-sparse within each level, that is
|supp(x)∩ {Nk−1 + 1, . . . , Nk}| = sk . Then we now require only mk & sk log(N ),
and therefore m & s log(N ) total measurements. Thus, structured sparsity leads to
a significant saving by a factor of r in the total number of measurements required.
Although a cosmetic example, we note in passing that the Fourier-wavelets matrix
is approximately block diagonal with incoherent blocks, and that the number of
levels r in this case is proportional to the log of the signal size.

5. Main theorems II: the infinite-dimensional case

Finite-dimensional CS is suitable in many cases. However, there are some
important problems where it can lead to significant problems, since the underlying
problem is continuous/analogue. Discretization of the problem in order to produce
a finite-dimensional, vector-space model can lead to substantial errors [3, 7, 22,
76], due to the phenomenon of model mismatch.

To address this issue, a theory of infinite-dimensional CS was introduced by
two of the authors in [3], based on a novel approach to classical sampling known

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.32
Downloaded from https://www.cambridge.org/core. Simon Fraser University Library, on 06 Mar 2020 at 18:44:49, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.32
https://www.cambridge.org/core


B. Adcock, A. C. Hansen, C. Poon and B. Roman 22

as generalized sampling [1, 2, 4–6, 52]. We describe this theory next. Note that
this infinite-dimensional CS model has also been advocated for and implemented
in MRI by Guerquin-Kern, Häberlin, Pruessmann and Unser [45]. See also [53]
for a practical implementation of infinite-dimensional CS in surface scattering.

5.1. Infinite-dimensional CS. Suppose that H is a separable Hilbert space
over C, and let {ψ j } j∈N be an orthonormal basis on H (the sampling basis). Let
{ϕ j } j∈N be an orthonormal system in H (the sparsity system), and suppose that

U = (ui j)i, j∈N, ui j = 〈ϕ j , ψi 〉, (5.1)

is an infinite matrix. We may consider U as an element of B(l2(N)); the space of
bounded operators on l2(N). As in the finite-dimensional case, U is an isometry,
and we may define its coherence µ(U ) ∈ (0, 1] analogously to (2.1). We want
to recover f =

∑
j∈N x jϕ j ∈ H from a small number of the measurements

f̂ = { f̂ j } j∈N, where f̂ j = 〈 f, ψ j 〉. To do this, we introduce a second parameter
N ∈ N, and let Ω be a randomly chosen subset of indices 1, . . . , N of size
m. Unlike in finite dimensions, we now consider two cases. Suppose first that
P⊥M x = 0, that is x has no tail. Then we solve

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩU PMη − y‖ 6 δ, (5.2)

where y = PΩ f̂ + z and z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ 6 δ, and PΩ
is the projection operator corresponding to the index set Ω . In [3] it was proved
that any solution to (5.2) recovers f exactly up to an error determined by σs,M( f ),
provided N and m satisfy the so-called weak balancing property with respect to
M and s (see Definition 5.1, as well as Remark 5.4 for a discussion), and provided

m & µ(U ) · N · s ·
(
1+ log(ε−1)

)
· log

(
m−1 M N

√
s
)
. (5.3)

As in the finite-dimensional case, which turns out to be a corollary of this result,
we find that m is on the order of the sparsity s whenever µ(U ) is sufficiently
small.

In practice, the condition P⊥M x = 0 is unrealistic. In the more general case,
P⊥M x 6= 0, we solve the following problem:

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩUη − y‖ 6 δ. (5.4)

In [3] it was shown that any solution of (5.4) recovers f exactly up to an
error determined by σs,M( f ), provided N and m satisfy the so-called strong
balancing property with respect to M and s (see Definition 5.1), and provided
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a bound similar to (5.3) holds, where the M is replaced by a slightly larger
constant (we give the details in the next section in the more general setting of
multilevel sampling). Note that (5.4) cannot be solved numerically, since it is
infinite-dimensional. Therefore, in practice we replace (5.4) by

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩU PRη − y‖ 6 δ, (5.5)

where R is taken sufficiently large. See [3] for more information.

5.2. Main theorems. We first require the definition of the so-called balancing
property [3]:

DEFINITION 5.1 (Balancing property). Let U ∈ B(l2(N)) be an isometry. Then
N ∈ N and K > 1 satisfy the weak balancing property with respect to U, M ∈ N
and s ∈ N if

‖PMU ∗PN U PM − PM‖l∞→l∞ 6 1
8

(
log1/2

2

(
4
√

sK M
))−1

, (5.6)

where ‖·‖l∞→l∞ is the norm on B(l∞(N)). We say that N and K satisfy the strong
balancing property with respect to U, M and s if (5.6) holds, as well as

‖P⊥M U ∗PN U PM‖l∞→l∞ 6 1
8 . (5.7)

As in the previous section, we commence with the two-level case. Furthermore,
to illustrate the differences between the weak/strong balancing property, we first
consider the setting of (5.2):

THEOREM 5.2. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose
that Ω = ΩN,m is a two-level sampling scheme, where N = (N1, N2) and
m = (N1,m2). Let (s,M), where M = (M1,M2) ∈ N2, M1 < M2, and
s = (M1, s2) ∈ N2, be any pair such that the following holds:

(i) we have ‖P⊥N1
U PM1‖ 6 γ /

√
M1 and γ 6 s2

√
µN1 for some γ ∈ (0, 2/5];

(ii) the parameters N = N2, K = (N2 − N1)/m2 satisfy the weak balancing
property with respect to U, M := M2 and s := M1 + s2;

(iii) for ε ∈ (0, e−1
], let

m2 & (N − N1) · log(ε−1) · µN1 · s2 · log
(
K M
√

s
)
.
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Suppose that P⊥M2
x = 0 and let ξ ∈ l1(N) be a minimizer of (5.2) with δ = δ̃

√
K−1.

Then, with probability exceeding 1− sε, we have

‖ξ − x‖ 6 C ·
(
δ̃ ·
(
1+ L ·

√
s
)
+ σs,M( f )

)
, (5.8)

for some constant C, where σs,M( f ) is as in (3.1), and L = 1 +
(√

log2

(
6ε−1

)
/

log2(4K M
√

s)
)

. If m2 = N − N1 then this holds with probability 1.

We next state a result for multilevel sampling in the more general setting
of (5.4). For this, we require the following notation: M̃ = min{i ∈ N :
maxk>i ‖PN Uek‖ 6 1/(32K

√
s)}, where N , s and K are as defined below.

THEOREM 5.3. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that
Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr

and m = (m1, . . . ,mr ) ∈ Nr . Let (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < · · · < Mr , and s = (s1, . . . , sr ) ∈ Nr , be any pair such that the following
holds:

(i) the parameters N = Nr , K = maxk=1,...,r {(Nk − Nk−1)/mk}, satisfy the
strong balancing property with respect to U, M := Mr and s := s1+· · ·+sr ;

(ii) for ε ∈ (0, e−1
] and 1 6 k 6 r ,

1 &
Nk − Nk−1

mk
· log(ε−1) ·

(
r∑

l=1

µN,M(k, l) · sl

)
· log

(
K M̃
√

s
)
,

(with µN,M(k, r) replaced by µN,M(k,∞)) and

mk & m̂k · log(ε−1) · log
(

K M̃
√

s
)
,

where m̂k satisfies (4.5).

Suppose that ξ ∈ l1(N) is a minimizer of (5.4) with δ = δ̃
√

K−1. Then, with
probability exceeding 1− sε,

‖ξ − x‖ 6 C ·
(
δ̃ ·
(
1+ L ·

√
s
)
+ σs,M( f )

)
,

for some constant C, where σs,M( f ) is as in (3.1), and L = C ·
(

1 +(√
log2

(
6ε−1

)
/ log2(4K M

√
s)
))
. If mk = Nk − Nk−1 for 1 6 k 6 r then this

holds with probability 1.
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This theorem removes the condition in Theorem 5.2 that x has zero tail. Note
that the price to pay is the M̃ in the logarithmic term rather than M (M̃ > M
because of the balancing property). Observe that M̃ is finite, and in the case of
Fourier sampling with wavelets, we have that M̃ =O (K N ) (see Section 6). Note
that Theorem 5.2 has a strong form analogous to Theorem 5.3 which removes the
tail condition. The only difference is the requirement of the strong, as opposed
to the weak, balancing property, and the replacement of M by M̃ in the log
factor. Similarly, Theorem 5.3 has a weak form involving a tail condition. For
succinctness we do not state these.

REMARK 5.4. The balancing property is the main difference between the finite-
and infinite-dimensional theorems. Its role is to ensure that the truncated matrix
PN U PM is close to an isometry. In reconstruction problems, the presence
of an isometry ensures stability in the mapping between measurements and
coefficients [1], which explains the need for a such a property in our theorems.
As explained in [3], without the balancing property the lack of stability in this
mapping leads to numerically useless reconstructions. Note that the balancing
property is usually not satisfied for N = M , and in general one requires N > M
for it to hold. However, there is always a finite value of N for which it is satisfied,
since the infinite matrix U is an isometry. For details we refer to [3]. We provide
specific estimates in Section 6 for the required magnitude of N in the case of
Fourier sampling with wavelet sparsity.

5.3. The need for infinite-dimensional CS. As mentioned above, infinite-
dimensional CS is needed to avoid artefacts that are introduced when one applies
finite-dimensional CS techniques to analogue problems. To illustrate this, we
consider the problem of recovering a smooth phantom, that is a C∞ bivariate
function, from its Fourier data. Note that this scenario arises in both electron
microscopy and spectroscopy. In Figure 5, we compare finite-dimensional CS,
based on solving (4.1) with U = UdftV−1

dwt (discrete Fourier and wavelet transform
respectively) with infinite-dimensional CS, which solves (5.5) with the Fourier
basis {ψ j } j∈N and boundary wavelet basis {ϕ j } j∈N. The test function in this case
is f (x, y) = cos2(17πx/2) cos2(17πy/2) exp(−x − y). The improvement one
gets is due to that fact that the error in infinite-dimensional case is dominated
by the wavelet approximation error, whereas in the finite-dimensional case (due
mismatch between the continuous Fourier samples and the discrete Fourier
transform) the error is dominated by the Fourier approximation error. As is well
known [64], wavelet approximation is superior to Fourier approximation and
depends on the number of vanishing moments of the wavelet used (DB4 in this
case).
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Figure 5. Subsampling 6.15%. Both reconstructions are based on identical
sampling information.

6. Recovery of wavelet coefficients from Fourier samples

As noted, Fourier sampling with wavelet sparsity is an important reconstruction
problem in CS, with numerous applications ranging from medical imaging to
seismology and interferometry. Here we consider the Fourier sampling basis
{ψ j } j∈N and wavelet reconstruction basis {ϕ j } j∈N (see Section 7.4.1 for a formal
definition) with the infinite matrix U as in (5.1). Its global incoherence properties
are summarized as follows:

THEOREM 6.1. Let U ∈ B(l2(N)) be the matrix from (7.107) corresponding to
the Fourier-wavelets system described in Section 7.4. Then µ(U ) > ω, where ω
is the sampling density, whereas µ(P⊥N U ), µ(U P⊥N ) = O

(
N−1

)
.

Thus, Fourier sampling with wavelet sparsity is indeed globally coherent, yet
asymptotically incoherent. This result holds for essentially any wavelet basis
in one dimension (see [54] for the multidimensional case). To recover wavelet
coefficients, we shall therefore seek to apply a multilevel sampling strategy, which
raises the questions: how do we design this strategy, and how many measurements
are required? If the levels M = (M1, . . . ,Mr ) correspond to the wavelet scales,
and s = (s1, . . . , sr ) to the sparsities within them, then the best one could
hope to achieve is that the number of measurements mk in the kth sampling
level is proportional to the sparsity sk in the corresponding sparsity level. Our
main theorem below shows that multilevel sampling can achieve this, up to an
exponentially localized factor and the usual log terms.

THEOREM 6.2. Consider an orthonormal basis of compactly supported wavelets
with a multiresolution analysis (MRA). Let Φ and Ψ denote the scaling function
and mother wavelet respectively satisfying (7.100) with α > 1. Suppose that Ψ
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has v > 1 vanishing moments, that the Fourier sampling density ω satisfies
(7.105) and that the wavelets {ϕ j } are ordered according to (7.102). Let
f =

∑
∞

j=1 x jϕ j . Suppose that M = (M1, . . . ,Mr ) corresponds to wavelet
scales with Mk = O

(
2Rk
)

with Rk ∈ N, Rk+1 = a + Rk , a > 1, k = 1, . . . , r and
s = (s1, . . . , sr ) corresponds to the sparsities within them. Let ε ∈ (0, e−1

] and
let Ω = ΩN,m be a multilevel sampling scheme such that the following holds:

(i) The parameters N = Nr , K = maxk=1,...,r , {(Nk − Nk−1)/mk}, M = Mr ,
s = s1 + · · · + sr satisfy N & M1+1/(2α−1)

·
(
log2(4M K

√
s)
)1/(2α−1)

.
Alternatively, if Φ and Ψ satisfy the slightly stronger Fourier decay property
(7.101), then N & M ·

(
log2(4K M

√
s)
)1/(4α−2)

.

(ii) For each k = 1, . . . , r − 1, Nk = 2Rkω−1 and for each k = 1, . . . , r ,

mk & log(ε−1) · log(Ñ ) ·
Nk − Nk−1

Nk−1

×

(
ŝk +

k−2∑
l=1

sl · 2−(α−1/2)Ak,l +

r∑
l=k+2

sl · 2−vBk,l

)
, (6.1)

where Ak,l = Rk−1 − Rl , Bk,l = Rl−1 − Rk , Ñ = (K
√

s)1+1/vN and
ŝk = max{sk−1, sk, sk+1} (see Remark 6.3).

Then, with probability exceeding 1 − sε, any minimizer ξ ∈ l1(N) of (5.4) with
δ = δ̃

√
K−1 satisfies

‖ξ − x‖ 6 C ·
(
δ̃ ·
(
1+ L ·

√
s
)
+ σs,M( f )

)
, (6.2)

for some constant C, where σs,M( f ) is as in (3.1), and L = C ·
(

1 +(√
log2

(
6ε−1

)
/ log2(4K M

√
s)
))

. If mk = Nk − Nk−1 for 1 6 k 6 r then this
holds with probability 1.

REMARK 6.3. To avoid cluttered notation we have abused notation slightly in (ii)
of Theorem 6.2. In particular, we interpret s0 = 0, (Nk − Nk−1)/Nk−1 = N1 for
k = 1, and

∑k−2
l=1 sl · 2−(α−1/2)Ak,l = 0 when k 6 2.

Given that one can never solve (5.4) exactly, but rather the truncated version
(5.5), the following proposition provides the guidance on how the truncation needs
to be carried out in order to obtain the same error bound as in Theorem 6.2.
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PROPOSITION 6.4. Given the setup in Theorem 6.2 with ξ ∈ l1(N) being a
minimizer of (5.4), thus satisfying the error bound (6.2). Let J be the number
of wavelets up to dilation

R = log2

2πωN

(∥∥P⊥K x
∥∥

2 · CΨ

δ

)1/v
 ,

where CΨ is a constant depending only on the underlying wavelet Ψ . If one
instead solves

min
η∈∈CJ
‖η‖l1 subject to ‖PΩU PJη − y‖ 6 2δ, (6.3)

then any minimizer ξ̃ of (6.3) satisfies the same error bound (6.2) as ξ with a
potentially different constant C.

Theorem 6.2 provides the first comprehensive explanation for the observed
success of CS in applications based on the Fourier-wavelets model. The key
estimate (6.1) shows that mk need only scale as a linear combination of the local
sparsities sl , 1 6 l 6 r , and critically, the dependence of the sparsities sl for
l 6= k is exponentially diminishing in |k − l|. Note that the presence of the off-
diagonal terms is due to the previously discussed phenomenon of interference,
which occurs since the Fourier-wavelets system is not exactly block diagonal.
Nonetheless, the system is nearly block diagonal, and this results in the near
optimality seen in (6.1).

Observe that (6.1) is in agreement with the flip test: if the local sparsities sk

change, then the subsampling factors mk must also change to ensure the same
quality reconstruction. Having said that, it is straightforward to deduce from (6.1)
the following global sparsity bound:

m & s · log(ε−1) · log(Ñ ),

where m = m1+· · ·+mr is the total number of measurements and s = s1+· · ·+sr

is the total sparsity. Note in particular the optimal exponent in the log factor.

REMARK 6.5. The Fourier/wavelets recovery problem was studied by Candès
and Romberg in [17]. Their result shows that if, in an ideal setting, an image
can be first separated into separate wavelet subbands before sampling, then it can
be recovered using approximately sk measurements (up to a log factor) in each
sampling band. Unfortunately, such separation into separate wavelet subbands
before sampling is infeasible in most practical situations. Theorem 6.2 improves
on this result by removing this substantial restriction, with the sole penalty being
the slightly worse bound (6.1).
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Figure 6. 12.5% subsampling at 256× 256 resolution using DB4 wavelets and
various different measurements.

Note also that a recovery result for bivariate Haar wavelets, as well as the
related technique of TV minimization, was given in [55]. Similarly [10] analyzes
block sampling strategies with application to MRI. However, these results are
based on sparsity, and therefore they do not explain the conclusions of the flip test
regarding how the sampling strategy will depend on the signal structure.

6.1. Universality and RIP or structure? Theorem 6.2 explains the success of
CS when one is constrained to acquire Fourier measurements. Yet, due primarily
to the their high global coherence with wavelets, Fourier measurements are
often viewed as suboptimal for CS. If one had complete freedom to choose the
measurements, and no physical constraints (such as are always present in MRI,
for example), then standard CS intuition would suggest random Gaussian or
Bernoulli measurements, since they are universal and satisfy the RIP.

However, in reality such measurements are actually highly suboptimal in the
presence of structured sparsity. This is demonstrated in Figure 6, where an image
is recovered from m = 8192 measurements taken either as random Bernoulli
or multilevel Hadamard or Fourier type. As is evident, the latter gives an error
that is almost 50% smaller. The reason for this improvement is that whilst
Fourier or Hadamard measurements are highly coherent with wavelets, they are
asymptotically incoherent, and, as explained in our theoretical results, this can
be exploited through multilevel random subsampling to recover the structured
(that is asymptotica) sparsity of wavelet coefficients. Random Gaussian/Bernoulli
measurements on the other hand do take advantage of this structure since, in
satisfying an RIP, they are guaranteed to recover all sparse vectors equally well.

This observation is an important consequence of our framework. Specifically,
whenever structured sparsity is present (such is the case in the majority of
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imaging applications, for example) there are substantial improvements to be
gained by designing the measurements according to not just the sparsity, but also
the additional structure. For a more comprehensive discussion see [73], as well
as [19, 83].

7. Proofs

The proofs rely on some key propositions from which one can deduce the main
theorems. The main work is to prove these proposition, and that will be done
subsequently.

7.1. Key results.

PROPOSITION 7.1. Let U ∈ B(l2(N)) and suppose that∆ andΩ =Ω1∪· · ·∪Ωr

(where the union is disjoint) are subsets of N. Let x0 ∈ H and z ∈ ran(PΩU )
be such that ‖z‖ 6 δ for δ > 0. Let M ∈ N and y = PΩU x0 + z and
yM = PΩU PM x0 + z. Suppose that ξ ∈ H and ξM ∈ H satisfy

‖ξ‖l1 = inf
η∈H
{‖η‖l1 : ‖PΩUη − y‖ 6 δ}, (7.1)

‖ξM‖l1 = inf
η∈CM
{‖η‖l1 : ‖PΩU PMη − yM‖ 6 δ}. (7.2)

If there exists a vector ρ = U ∗PΩw such that

(i)
∥∥P∆U ∗

(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U P∆ − I∆

∥∥ 6 1
4

(ii) maxi∈∆c

∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥ 6
√

5
4

(iii) ‖P∆ρ − sgn(P∆x0)‖ 6 q/8

(iv) ‖P⊥∆ ρ‖l∞ 6 1
2

(v) ‖w‖ 6 L ·
√
|∆|

for some L > 0 and 0 < qk 6 1, k = 1, . . . , r , then we have that

‖ξ − x0‖ 6 C ·
(
δ ·

(
1
√

q
+ L
√

s
)
+ ‖P⊥∆ x0‖l1

)
,

for some constant C, where s = |∆| and q = min{qk}
r
k=1. Also, if (ii) is replaced

by

max
i∈{1,...,M}∩∆c

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥ 6

√
5
4
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and (iv) is replaced by ‖PM P⊥∆ ρ‖l∞ 6 1
2 then

‖ξM − x0‖ 6 C ·
(
δ ·

(
1
√

q
+ L
√

s
)
+ ‖PM P⊥∆ x0‖l1

)
. (7.3)

Proof. First observe that (i) implies that(
P∆U ∗

(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U P∆|P∆(H)

)−1

exists and ∥∥(P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U P∆|P∆(H))

−1
∥∥ 6 4

3 . (7.4)

Also, (i) implies that∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
U P∆

∥∥∥2

=
∥∥P∆U ∗

(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U P∆

∥∥ 6 5
4 , (7.5)

and∥∥P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)∥∥2
=
∥∥(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U P∆

∥∥2

= sup
‖η‖=1

∥∥(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr

)
U P∆η

∥∥2

= sup
‖η‖=1

r∑
k=1

‖q−1
k PΩk U P∆η‖2 6

1
q

sup
‖η‖=1

r∑
k=1

q−1
k ‖PΩk U P∆η‖2,

=
1
q

sup
‖η‖=1

〈
P∆U ∗

(
r∑

k=1

q−1
k PΩk

)
U P∆η, η

〉

6
1
q

∥∥P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U P∆

∥∥ , (7.6)

where 1/q = max16k6r {1/qk}. Thus, (7.5) and (7.6) imply

∥∥P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)∥∥ 6

√
5

4q
. (7.7)

Suppose that there exists a vector ρ, constructed with y0 = P∆x0, satisfying
(iii)–(v). Let ξ be a solution to (7.1) and let h = ξ − x0. Let

A∆ = P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U P∆

∣∣
P∆(H)

.
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Then, it follows from (ii) and observations (7.4), (7.5), (7.7) that

‖P∆h‖ = ‖A−1
∆ A∆P∆h‖

6 ‖A−1
∆ ‖

∥∥P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
U (I − P⊥∆ )h

∥∥
6

4
3

∥∥P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)∥∥ ‖PΩUh‖

+
4
3

max
i∈∆c

∥∥P∆U ∗
(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
Uei

∥∥ ‖P⊥∆ h‖l1

6
4
3
‖P∆U ∗

(
q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr

)
‖‖PΩUh‖

+
4
3

∥∥∥P∆U ∗
(

q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r

)∥∥∥
× max

i∈∆c

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥‖P⊥∆ h‖l1

6
4
√

5
3
√

q
δ +

5
3
‖P⊥∆ h‖l1, (7.8)

where in the final step we use ‖PΩUh‖ 6 ‖PΩUζ − y‖ + ‖z‖ 6 2δ. We now
obtain a bound for ‖P⊥∆ h‖l1 . First note that

‖h + x0‖l1 = ‖P∆h + P∆x0‖l1 + ‖P⊥∆ (h + x0)‖l1

> Re 〈P∆h, sgn(P∆x0)〉 + ‖P∆x0‖l1 + ‖P⊥∆ h‖l1 − ‖P⊥∆ x0‖l1

> Re 〈P∆h, sgn(P∆x0)〉 + ‖x0‖l1 + ‖P⊥∆ h‖l1 − 2‖P⊥∆ x0‖l1 . (7.9)

Since ‖x0‖l1 > ‖h + x0‖l1 , we have that

‖P⊥∆ h‖l1 6 |〈P∆h, sgn(P∆x0)〉| + 2‖P⊥∆ x0‖l1 . (7.10)

We use this equation later on in the proof, but before we do that observe that some
basic adding and subtracting yields

|〈P∆h, sgn(x0)〉|

6 |〈P∆h, sgn(P∆x0)− P∆ρ〉| + |〈h, ρ〉| +
∣∣〈P⊥∆ h, P⊥∆ ρ〉

∣∣
6 ‖P∆h‖‖sgn(P∆x0)− P∆ρ‖ + |〈PΩUh, w〉| + ‖P⊥∆ h‖l1‖P⊥∆ ρ‖l∞

6
q
8
‖P∆h‖ + 2Lδ

√
s +

1
2
‖P⊥∆ h‖l1

6

√
5q
6
δ +

5q
24
‖P⊥∆ h‖l1 + 2Lδ

√
s +

1
2
‖P⊥∆ h‖l1 (7.11)

where the last inequality utilizes (7.8) and the penultimate inequality follows from
properties (iii), (iv) and (v) of the dual vector ρ. Combining this with (7.10) and
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the fact that q 6 1 gives that

‖P⊥∆ h‖l1 6 δ

(
4
√

5q
3
+ 8L
√

s
)
+ 8‖P⊥∆ x0‖l1 . (7.12)

Thus, (7.8) and (7.12) yields:

‖h‖ 6 ‖P∆h‖ +
∥∥P⊥∆ h

∥∥ 6
8
3
‖P⊥∆ h‖l1 +

4
√

5
3
√

q
δ

6

(
8
√

q + 22L
√

s +
3
√

q

)
· δ + 22

∥∥P⊥∆ x0

∥∥
l1 . (7.13)

The proof of the second part of this proposition follows the proof as outlined
above and we omit the details.

The next two propositions give sufficient conditions for Proposition 7.1 to be
true. But before we state them we need to define the following.

DEFINITION 7.2. Let U be an isometry of either CN×N or B(l2(N)). For
N = (N1, . . . , Nr ) ∈ Nr , M = (M1, . . . ,Mr ) ∈ Nr with 1 6 N1 < · · · < Nr

and 1 6 M1 < · · · < Mr , s = (s1, . . . , sr ) ∈ Nr and 1 6 k 6 r , let

κN,M(k, l) = max
η∈Θ
‖P Nk−1

Nk
U P Ml−1

Ml
η‖l∞ ·

√
µ(P Nk−1

Nk
U ).

where

Θ = {η : ‖η‖l∞ 6 1, |supp(P Ml−1
Ml

η)| = sl, l = 1, . . . , r−1, |supp(P⊥Mr−1
η)| = sr , },

and N0 = M0 = 0. We also define

κN,M(k,∞) = max
η∈Θ
‖P Nk−1

Nk
U P⊥Mr−1

η‖l∞ ·

√
µ(P Nk−1

Nk
U ).

PROPOSITION 7.3. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose
that Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr

and m = (m1, . . . ,mr ) ∈ Nr . Let (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < · · · < Mr , and s = (s1, . . . , sr ) ∈ Nr , be any pair such that the following
holds:

(i) The parameters N := Nr , and K := maxk=1,...,r (Nk − Nk−1)/mk, satisfy the
weak balancing property with respect to U, M := Mr and s := s1+ · · · + sr ;
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(ii) for ε > 0 and 1 6 k 6 r ,

1 & (log(sε−1)+ 1) ·
Nk − Nk−1

mk
·

(
r∑

l=1

κN,M(k, l)

)
· log

(
K M
√

s
)
, (7.14)

(iii)

mk & (log(sε−1)+ 1) · m̂k · log
(
K M
√

s
)
, (7.15)

where m̂k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r,

where s̃1 + · · · + s̃r 6 s1 + · · · + sr , s̃k 6 Sk(s1, . . . , sr ) and Sk is defined
in (4.4).

Then (i)–(v) in Proposition 7.1 follow with probability exceeding 1 − ε, with (ii)
replaced by

max
i∈{1,...,M}∩∆c

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥ 6

√
5
4
, (7.16)

(iv) replaced by ‖PM P⊥∆ ρ‖l∞ 6 1
2 and L in (v) is given by

L = C ·
√

K ·

1+

√
log2

(
6ε−1

)
log2(4K M

√
s)

 . (7.17)

If mk = Nk− Nk−1 for all 1 6 k 6 r then (i)–(v) follow with probability one (with
the alterations suggested above).

PROPOSITION 7.4. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose
that Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr

and m = (m1, . . . ,mr ) ∈ Nr . Let (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < · · · < Mr , and s = (s1, . . . , sr ) ∈ Nr , be any pair such that the following
holds:

(i) The parameters N and K (as in Proposition 7.3) satisfy the strong balancing
property with respect to U, M = Mr and s := s1 + · · · + sr ;
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(ii) for ε > 0 and 1 6 k 6 r ,

1 & (log(sε−1)+ 1) ·
Nk − Nk−1

mk

×

(
κN,M(k,∞)+

r−1∑
l=1

κN,M(k, l)

)
· log

(
K M̃
√

s
)
, (7.18)

(iii)

mk & (log(sε−1)+ 1) · m̂k · log
(

K M̃
√

s
)
, (7.19)

where M̃ = min{i ∈ N : ‖max j>i PN U P{ j}‖ 6 1/(K 32
√

s)}, and m̂k is as
in Proposition 7.3.

Then (i)–(v) in Proposition 7.1 follow with probability exceeding 1− ε with L as
in (7.17). If mk = Nk− Nk−1 for all 1 6 k 6 r then (i)–(v) follow with probability
one.

LEMMA 7.5 (Bounds for κN,M(k, l)). For k, l = 1, . . . , r

κN,M(k, l) 6 min
{
µN,M(k, l) · sl,

√
sl · µ(P

Nk−1
Nk

U ) ·
∥∥∥P Nk−1

Nk
U P Ml−1

Ml

∥∥∥} . (7.20)

Also, for k = 1, . . . , r

κN,M(k,∞) 6 min
{
µN,M(k,∞) · sr ,

√
sr · µ(P

Nk−1
Nk

U ) ·
∥∥∥P Nk−1

Nk
U P⊥Mr−1

∥∥∥} .
(7.21)

Proof. For k, l = 1, . . . , r

κN,M(k, l) = max
η∈Θ
‖P Nk−1

Nk
U P Ml−1

Ml
η‖l∞ ·

√
µ(P Nk−1

Nk
U )

= max
η∈Θ

max
Nk−1<i6Nk

∣∣∣∣∣∣
∑

Ml−1< j6Ml

η j ui j

∣∣∣∣∣∣ ·
√
µ(P Nk−1

Nk
U )

6 sl ·

√
µ(P Nk−1

Nk
U P Ml−1

Ml
) ·

√
µ(P Nk−1

Nk
U ) 6 sl · µN,M(k, l)
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since |ui j | 6 1, and similarly,

κN,M(k,∞) = max
η∈Θ
‖P Nk−1

Nk
U P⊥Mr−1

η‖l∞ ·

√
µ(P Nk−1

Nk
U )

= max
η∈Θ

max
Nk−1<i6Nk

∣∣∣∣∣∣
∑

Mr−1< j

η j ui j

∣∣∣∣∣∣ ·
√
µ(P Nk−1

Nk
U ) 6 sr · µN,M(k,∞).

Finally, it is straightforward to show that for k, l = 1, . . . , r ,

κN,M(k, l) 6
√

sl ·

∥∥∥P Nk−1
Nk

U P Ml−1
Ml

∥∥∥√µ(P Nk−1
Nk

U )

and
κN,M(k,∞) 6

√
sr ·

∥∥∥P Nk−1
Nk

U P⊥Mr−1

∥∥∥√µ(P Nk−1
Nk

U ).

We are now ready to prove the main theorems.

Proof of Theorems 4.1 and 5.2. It is clear that Theorem 4.1 follows from
Theorem 5.2, thus it remains to prove the latter. We apply Proposition 7.3 to
a two-level sampling scheme Ω = ΩN,m, where N = (N1, N2) and m = (m1,

m2) with m1 = N1 and m2 = m. Also, consider (s,M), where s = (M1, s2),
M = (M1,M2). Thus, if N1, N2,m1,m2 ∈ N are such that

N = N2, K = max
{

N2 − N1

m2
,

N1

m1

}
satisfy the weak balancing property with respect to U , M = M2 and s = M1+ s2,
we have that (i)–(v) in Proposition 7.1 follow with probability exceeding 1 − sε,
with (ii) replaced by

max
i∈{1,...,M}∩∆c

‖

(
PN1 ⊕

N2 − N1

m2
PΩ2

)
Uei‖ 6

√
5
4
,

(iv) replaced by ‖PM P⊥∆ ρ‖l∞ 6 1
2 and L in (v) is given by (7.17), if

1 & (log(sε−1)+ 1) ·
N − N1

m2
· (κN,M(2, 1)+ κN,M(2, 2)) · log

(
K M
√

s
)
,

(7.22)
m2 & (log(sε−1)+ 1) · m̂2 · log

(
K M
√

s
)
, (7.23)

where m̂2 satisfies 1 & ((N2 − N1)/m̂2 − 1) ·µN1 · s̃2, and s̃2 6 S2 (recall S2 from
Definition 4.4). Recall from (7.20) that

κN,M(2, 1) 6
√

s1 · µN1 ·
∥∥P⊥N1

U PM1

∥∥, κN,M(2, 2) 6 s2 · µN1 .
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Also, it follows directly from Definition 4.4 that

S2 6
(∥∥P⊥N1

U PM1

∥∥ ·√M1 +
√

s2

)2
.

Thus, provided that
∥∥P⊥N1

U PM1

∥∥ 6 γ /
√

M1 where γ is as in (i) of Theorem 5.2,
we observe that (iii) of Theorem 5.2 implies (7.22) and (7.23). Thus, the theorem
now follows from Proposition 7.1.

Proof of Theorems 4.5 and 5.3. It is straightforward that Theorem 4.5 follows
from Theorem 5.3. Now, recall from Lemma 7.20 that

κN,M(k, l) 6 sl · µN,M(k, l), κN,M(k,∞) 6 sr · µN,M(k,∞), k, l = 1, . . . , r.

Thus, a direct application of Propositions 7.4 and 7.1 completes the proof.

It remains now to prove Propositions 7.3 and 7.4. This is the content of the next
sections.

7.2. Preliminaries. Before we commence on the rather length proof of these
propositions, let us recall one of the monumental results in probability theory that
will be of greater use later on.

THEOREM 7.6 (Talagrand [59, 79]). There exists a number K with the following
property. Consider n independent random variables X i valued in a measurable
space Ω and let F be a (countable) class of measurable functions on Ω . Let Z
be the random variable Z = sup f ∈F

∑
i6n f (X i) and define

S = sup
f ∈F
‖ f ‖∞, V = sup

f ∈F
E

(∑
i6n

f (X i)
2

)
.

If E( f (X i)) = 0 for all f ∈ F and i 6 n, then, for each t > 0, we have

P(|Z − E(Z)| > t) 6 3 exp
(
−

1
K

t
S

log
(

1+
t S

V + SE(Z)

))
,

where Z = sup f ∈F
∣∣∑

i6n f (X i)
∣∣.

Note that this version of Talagrand’s theorem is found in [59, Corollary 7.8].
We next present a theorem and several technical propositions that will serve as
the main tools in our proofs of Propositions 7.3 and 7.4. A crucial tool herein is
the Bernoulli sampling model. We use the notation {a, . . . , b} ⊃ Ω ∼ Ber(q),
where a < b a, b ∈ N, when Ω is given by Ω = {k : δk = 1} and {δk}

N
k=1 is a

sequence of Bernoulli variables with P(δk = 1) = q .
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DEFINITION 7.7. Let r ∈ N, N = (N1, . . . , Nr ) ∈ Nr with 1 6 N1 < · · · < Nr ,
m = (m1, . . . ,mr ) ∈ Nr , with mk 6 Nk − Nk−1, k = 1, . . . , r , and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, Ωk ∼ Ber
(

mk

Nk − Nk−1

)
, k = 1, . . . , r,

where N0 = 0. We refer to the set Ω = ΩN,m := Ω1 ∪ · · · ∪ Ωr . as an (N,m)-
multilevel Bernoulli sampling scheme.

THEOREM 7.8. Let U ∈ B(l2(N)) be an isometry. Suppose that Ω = ΩN,m is
a multilevel Bernoulli sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr and
m = (m1, . . . ,mr ) ∈ Nr . Consider (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < · · · < Mr , and s = (s1, . . . , sr ) ∈ Nr , and let

∆ = ∆1 ∪ · · · ∪∆r , ∆k ⊂ {Mk−1 + 1, . . . ,Mk}, |∆k | = sk

where M0 = 0. If ‖PMr U
∗PNr U PMr − PMr‖ 6 1/8 then, for γ ∈ (0, 1),

P(‖P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ − P∆‖ > 1/4) 6 γ, (7.24)

where qk = mk/(Nk − Nk−1), provided that

1 &
Nk − Nk−1

mk
·

(
r∑

l=1

κN,M(k, l)

)
·
(
log

(
γ −1 s

)
+ 1

)
. (7.25)

In addition, if q = min{qk}
r
k=1 = 1 then

P(‖P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ − P∆‖ > 1/4) = 0.

In proving this theorem we deliberately avoid the use of the Matrix Bernstein
inequality [43], as Talagrand’s theorem is more convenient for our infinite-
dimensional setting. Before we can prove this theorem, we need the following
technical lemma.

LEMMA 7.9. Let U ∈ B(l2(N)) with ‖U‖ 6 1, and consider the setup in Theorem
7.8. Let N = Nr and let {δ j }

N
j=1 be independent random Bernoulli variables with

P(δ j = 1) = q̃ j , q̃ j = mk/(Nk − Nk−1) and j ∈ {Nk−1 + 1, . . . , Nk}, and define
Z =

∑N
j=1 Z j , Z j =

(
q̃−1

j δ j − 1
)
η j ⊗ η̄ j and η j = P∆U ∗e j . Then

E (‖Z‖)2 6 48 max{log(|∆|), 1} max
16 j6N

{
q̃−1

j ‖η j‖
2} ,

when (max{log(|∆|), 1})−1 > 18 max16 j6N
{
q̃−1

j ‖η j‖
2
}
.
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The proof of this lemma involves essentially reworking an argument due to
Rudelson [75], and is similar to arguments given previously in [3] (see also [17]).
We include it here for completeness as the setup deviates slightly. We shall also
require the following result:

LEMMA 7.10 (Rudelson). Let η1, . . . , ηM ∈ Cn and let ε1, . . . , εM be independent
Bernoulli variables taking values 1,−1 with probability 1/2. Then

E

(∥∥∥∥∥
M∑

i=1

εi η̄i ⊗ ηi

∥∥∥∥∥
)
6

3
2
√

p max
i6M
‖ηi‖

√√√√∥∥∥∥∥
M∑

i=1

η̄i ⊗ ηi

∥∥∥∥∥,
where p = max{2, 2 log(n)}.

Lemma 7.10 is often referred to as Rudelson’s Lemma [75]. However, we use
the above complex version that was proven by Tropp [81, Lemma 22].

Proof of Lemma 7.9. We commence by letting δ̃ = {δ̃ j }
N
j=1 be independent copies

of δ = {δ j }
N
j=1. Then, since E(Z) = 0,

Eδ (‖Z‖) = Eδ

(∥∥∥∥∥Z − Eδ̃

(
N∑

j=1

(
q̃−1

j δ̃ j − 1
)
η j ⊗ η̄ j

)∥∥∥∥∥
)

6 Eδ

(
Eδ̃

(∥∥∥∥∥Z −
N∑

j=1

(
q̃−1

j δ̃ j − 1
)
η j ⊗ η̄ j

∥∥∥∥∥
))

, (7.26)

by Jensen’s inequality. Let ε = {ε j }
N
j=1 be a sequence of Bernoulli variables taking

values±1 with probability 1/2. Then, by (7.26), symmetry, Fubini’s theorem and
the triangle inequality, it follows that

Eδ (‖Z‖) 6 Eε

(
Eδ

(
Eδ̃

(∥∥∥∥∥
N∑

j=1

ε j

(
q̃−1

j δ j − q̃−1
j δ̃ j

)
η j ⊗ η̄ j

∥∥∥∥∥
)))

6 2Eδ

(
Eε

(∥∥∥∥∥
N∑

j=1

ε j q̃−1
j δ jη j ⊗ η̄ j

∥∥∥∥∥
))

. (7.27)

We are now able to apply Rudelson’s lemma (Lemma 7.10). However, as specified
before, it is the complex version that is crucial here. By Lemma 7.10 we get that
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Eε

(∥∥∥∥∥
N∑

j=1

ε j q̃−1
j δ jη j ⊗ η̄ j

∥∥∥∥∥
)
6

3
2

√
max{2 log(s), 2}

× max
16 j6N

q̃−1/2
j ‖η j‖

√√√√∥∥∥∥∥
N∑

j=1

q−1
j q̃−1

j δ jη j ⊗ η̄ j

∥∥∥∥∥,
(7.28)

where s = |∆|. And hence, by using (7.27) and (7.28), it follows that

Eδ (‖Z‖) 6 3
√

max{2 log(s), 2} max
16 j6N

q̃−1/2
j ‖η j‖

√√√√Eδ

(∥∥∥∥∥Z +
N∑

j=1

η j ⊗ η̄ j

∥∥∥∥∥
)
.

Note that
∥∥∑N

j=1 η j ⊗ η̄ j

∥∥ 6 1, since U is an isometry. The result now follows
from the straightforward calculus fact that if r > 0, c 6 1 and r 6 c

√
r + 1 then

we have that r 6 c(1+
√

5)/2.

Proof of Theorem 7.8. Let N = Nr just to be clear here. Let {δ j }
N
j=1 be

random Bernoulli variables as defined in Lemma 7.9 and define Z =
∑N

j=1 Z j ,
Z j =

(
q̃−1

j δ j − 1
)
η j ⊗ η̄ j with η j = P∆U ∗e j . Now observe that

P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ =
N∑

j=1

q̃−1
j δ jη j ⊗ η̄ j ,

P∆U ∗PN U P∆ =
N∑

j=1

η j ⊗ η̄ j . (7.29)

Thus, it follows that

‖P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ − P∆‖
6 ‖Z‖ + ‖(P∆U ∗PN U P∆ − P∆)‖ 6 ‖Z‖ + 1

8 , (7.30)

by the assumption that ‖PMr U
∗PNr U PMr − PMr‖ 6 1/8. Thus, to prove the

assertion we need to estimate ‖Z‖, and Talagrand’s theorem (Theorem 7.6)
will be our main tool. Note that clearly, since Z is self-adjoint, we have that
‖Z‖ = supζ∈G |〈Zζ, ζ 〉|, where G is a countable set of vectors in the unit ball
of P∆(H). For ζ ∈ G define the mappings

ζ̂1(T ) = 〈T ζ, ζ 〉, ζ̂2(T ) = −〈T ζ, ζ 〉, T ∈ B(H).
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In order to use Talagrand’s Theorem 7.6 we restrict the domain D of the mappings
ζi to

D =
{

T ∈ B(H) : ‖T ‖ 6 max
16 j6N

{q̃−1
j ‖η j‖

2
}

}
.

Let F denote the family of mappings ζ̂1, ζ̂2 for ζ ∈ G. Then ‖Z‖ = supζ̂∈F ζ̂ (Z),
and for i = 1, 2 we have

|ζ̂i(Z j)| =
∣∣(q̃−1

j δ j − 1
)∣∣ ∣∣〈(η j ⊗ η̄ j

)
ζ, ζ

〉∣∣ 6 max
16 j6N

{q̃−1
j ‖η j‖

2
}.

Thus, Z j ∈ D for 1 6 j 6 N and S := supζ∈F ‖ζ̂‖∞ = max16 j6N {q̃−1
j ‖η j‖

2
}.

Note that

‖η j‖
2
= 〈P∆U ∗e j , P∆U ∗e j 〉 =

r∑
k=1

〈P∆k U
∗e j , P∆k U

∗e j 〉.

Also, note that an easy application of Holder’s inequality gives the following (note
that the l1 and l∞ bounds are finite because all the projections have finite rank),

|〈P∆k U
∗e j , P∆k U

∗e j 〉| 6 ‖P∆k U
∗e j‖l1‖P∆k U

∗e j‖l∞

6 ‖P∆k U
∗P Nl−1

Nl
‖l1→l1‖P∆k U

∗e j‖l∞

6 ‖P Nl−1
Nl

U P∆k‖l∞→l∞ ·

√
µ(P Nl−1

Nl
U ) 6 κN,M(l, k),

for j ∈ {Nl−1 + 1, . . . , Nl} and l ∈ {1, . . . , r}. Hence, it follows that

‖η j‖
2 6 max

16k6r
(κN,M(k, 1)+ · · · + κN,M(k, r)), (7.31)

and therefore S 6 max16k6r
(
q−1

k

∑r
j=1 κN,M(k, j)

)
. Finally, note that by (7.31)

and the reasoning above, it follows that

V := sup
ζ̂i∈F

E

(
N∑

j=1

ζ̂i(Z j)
2

)
= sup

ζ∈G
E

(
N∑

j=1

(
q̃−1

j δ j − 1
)2
|〈P∆U ∗e j , ζ 〉|

4

)

6 max
16k6r

‖ηk‖
2

(
Nk − Nk−1

mk
− 1

)
sup
ζ∈G

N∑
j=1

|〈e j ,U P∆ζ 〉|2,

6 max
16k6r

Nk − Nk−1

mk

(
r∑

l=1

κN,M(k, l)

)
sup
ζ∈G
‖Uζ‖2

= max
16k6r

Nk − Nk−1

mk

(
r∑

l=1

κN,M(k, l)

)
, (7.32)
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where we used the fact that U is an isometry to deduce that ‖U‖ = 1. Also, by
Lemma 7.9 and (7.31) , it follows that

E (‖Z‖)2 6 48 max
16k6r

Nk − Nk−1

mk

(
r∑

l=1

κN,M(k, l)

)
· log(s) (7.33)

when

1 > 18 max
16k6r

Nk − Nk−1

mk

(
r∑

l=1

κN,M(k, l)

)
· log(s), (7.34)

(recall that we have assumed s > 3). Thus, by (7.30) and Talagrand’s Theorem 7.6,
it follows that

P
(
‖P∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ − P∆‖ > 1/4

)
6 P

‖Z‖ > 1
16
+

√√√√24 max
16k6r

Nk − Nk−1

mk

(
r∑

l=1

κN,M(k, l)

)
· log(s)


6 3 exp

− 1
16K

(
max

16k6r

Nk − Nk−1

mk

(
r∑

l=1

κN,M(k, l)

))−1

log (1+ 1/32)

 ,
(7.35)

when mk’s are chosen such that the right hand side of (7.33) is less than or equal
to 1. Thus, by (7.30) and Talagrand’s Theorem 7.6, it follows that

P
(
‖P∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ − P∆‖ > 1/4

)
6 P (‖Z‖ > 1/8) 6 P

(
‖Z‖ >

1
16
+ E‖Z‖

)
6 P

(
|‖Z‖ − E‖Z‖| >

1
16

)

6 3 exp

− 1
16K

(
max

16k6r

Nk − Nk−1

mk

(
r∑

l=1

κN,M(k, l)

))−1

log (1+ 1/32)

 ,
(7.36)

when mk’s are chosen such that the right hand side of (7.33) is less than or equal
to 1/162. Note that this condition is implied by the assumptions of the theorem
as is (7.34). This yields the first part of the theorem. The second claim of this
theorem follows from the assumption that ‖PMr U

∗PNr U PMr − PMr‖ 6 1/8.

PROPOSITION 7.11. Let U ∈ B(l2(N)) be an isometry. Suppose that Ω = ΩN,m
is a multilevel Bernoulli sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr and
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m = (m1, . . . ,mr ) ∈ Nr . Consider (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < · · · < Mr , and s = (s1, . . . , sr ) ∈ Nr , and let ∆ = ∆1 ∪ · · · ∪ ∆r ,
∆k ⊂ {Mk−1, . . . ,Mk}, |∆k | = sk , where M0 = 0. Let β > 1/4.

(i) If

N := Nr , K := max
k=1,...,r

{
Nk − Nk−1

mk

}
,

satisfy the weak balancing property with respect to U, M := Mr and
s := s1 + · · · + sr , then, for ξ ∈ H and β, γ > 0, we have that

P
(
‖PM P⊥∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ξ‖l∞ > β‖ξ‖l∞

)
6 γ, (7.37)

provided that

β

log
(

4
γ
(M − s)

) > C Λ,
β2

log
(

4
γ
(M − s)

) > C Υ, (7.38)

for some constant C > 0, where qk = mk/(Nk − Nk−1) for k = 1, . . . , r ,

Λ = max
16k6r

{
Nk − Nk−1

mk
·

(
r∑

l=1

κN,M(k, l)

)}
, (7.39)

Υ = max
16l6r

r∑
k=1

(
Nk − Nk−1

mk
− 1

)
· µN,M(k, l) · s̃k, (7.40)

for all {s̃k}
r
k=1 such that s̃1 + · · · + s̃r 6 s1 + · · · + sr and s̃k 6 Sk(s1, . . . , sr ).

Moreover, if qk = 1 for all k = 1, . . . , r , then (7.38) is trivially satisfied for
any γ > 0 and the left-hand side of (7.37) is equal to zero.

(ii) If N satisfies the strong Balancing Property with respect to U, M and s, then,
for ξ ∈ H and β, γ > 0, we have that

P
(
‖P⊥∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ξ‖l∞ > β‖ξ‖l∞

)
6 γ, (7.41)

provided that

β

log
(

4/γ (θ̃ − s)
) > C Λ,

β2

log
(

4/γ (θ̃ − s)
) > C Υ, (7.42)

for some constant C > 0, θ̃ = θ̃ ({qk}
r
k=1, 1/8, {Nk}

r
k=1, s,M) and Υ , Λ as

defined in (i) and
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θ̃ ({qk}
r
k=1, t, {Nk}

r
k=1, s,M)

=

∣∣∣∣{i ∈ N : max
Γ1⊂{1,...,M}, |Γ1|=s

Γ2, j⊂{N j−1+1,...,N j }, j=1,...,r

‖PΓ1U
∗(q−1

1 PΓ2,1 ⊕ · · · ⊕ q−1
r PΓ2,r )Uei‖ >

t
√

s

}∣∣∣∣.
Moreover, if qk = 1 for all k = 1, . . . , r , then (7.42) is trivially satisfied for
any γ > 0 and the left-hand side of (7.41) is equal to zero.

Proof. To prove (i) we note that, without loss of generality, we can assume that
‖ξ‖l∞ = 1. Let {δ j }

N
j=1 be random Bernoulli variables with P(δ j = 1) = q̃ j = qk ,

for j ∈ {Nk−1 + 1, . . . , Nk} and 1 6 k 6 r . A key observation that will be crucial
below is that

P⊥∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ξ =
N∑

j=1

P⊥∆U ∗q̃−1
j δ j(e j ⊗ e j)U P∆ξ

=

N∑
j=1

P⊥∆U ∗(q̃−1
j δ j − 1)(e j ⊗ e j)U P∆ξ + P⊥∆U ∗PN U P∆ξ. (7.43)

We use this equation at the end of the argument, but first we estimate the size of
the individual components of

∑N
j=1 P⊥∆U ∗(q̃−1

j δ j − 1)(e j ⊗ e j)U P∆ξ . To do that
define, for 1 6 j 6 N , the random variables

X i
j = 〈U

∗(q̃−1
j δ j − 1)(e j ⊗ e j)U P∆ξ, ei 〉, i ∈ ∆c.

We show using Bernstein’s inequality that, for each i ∈ ∆c and t > 0,

P

(∣∣∣∣∣
N∑

j=1

X i
j

∣∣∣∣∣ > t

)
6 4 exp

(
−

t2/4
Υ +Λt/3

)
. (7.44)

To prove the claim, we need to estimate E
(
|X i

j |
2
)

and |X i
j |. First note that,

E
(
|X i

j |
2)
= (q̃−1

j − 1)|〈e j ,U P∆ξ〉|2|〈e j ,Uei 〉|
2,

and note that |〈e j ,Uei 〉|
2 6 µN,M(k, l) for j ∈ {Nk−1+1, . . . , Nk} and i ∈ {Ml−1+

1, . . . ,Ml}. Hence
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N∑
j=1

E
(
|X i

j |
2) 6 r∑

k=1

(q−1
k − 1)µN,M(k, l)‖P

Nk−1
Nk

U P∆ξ‖2

6 sup
ζ∈Θ

{
r∑

k=1

(q−1
k − 1)µN,M(k, l)‖P

Nk−1
Nk

Uζ‖2

}
,

where

Θ = {η : ‖η‖l∞ 6 1, |supp(P Ml−1
Ml

η)| = sl, l = 1, . . . , r}.

The supremum in the above bound is attained for some ζ̃ ∈ Θ . If s̃k =

‖P Nk−1
Nk

U ζ̃‖2, then we have

N∑
j=1

E
(
|X i

j |
2) 6 r∑

k=1

(q−1
k − 1)µN,M(k, l)s̃k . (7.45)

Note that it is clear from the definition that sk 6 Sk(s1, . . . , sr ) for 1 6 k 6 r .
Also, using the fact that ‖U‖ 6 1 and the definition of Θ , we note that

s̃1 + · · · + s̃r =

r∑
k=1

‖P Nk−1
Nk

U P∆ζ‖2 6 ‖U P∆ζ‖2
= ‖ζ‖2 6 s1 + · · · + sr .

To estimate |X i
j | we start by observing that, by the triangle inequality, the

fact that ‖ξ‖l∞ = 1 and Holder’s inequality, it follows that |〈ξ, P∆U ∗e j 〉| 6∑r
k=1 |〈P

Mk−1
Mk

ξ, P∆U ∗e j 〉|, and

|〈P Mk−1
Mk

ξ, P∆U ∗e j 〉| 6 ‖P
Nl−1
Nl

U P∆k‖l∞→l∞,

j ∈ {Nl−1 + 1, . . . , Nl}, l ∈ {1, . . . , r}.

Hence, it follows that for 1 6 j 6 N and i ∈ ∆c,

|X i
j | = q̃−1

j |(δ j − q̃ j)||〈ξ, P∆U ∗e j 〉||〈e j ,Uei 〉|,

6 max
16k6r

{
Nk − Nk−1

mk
·
(
κN,M(k, 1)+ · · · + κN,M(k, r)

)}
. (7.46)

Now, clearly E(X i
j) = 0 for 1 6 j 6 N and i ∈ ∆c. Thus, by applying Bernstein’s

inequality to Re(X i
j) and Im(X i

j) for j = 1, . . . , N , via (7.45) and (7.46), the
claim (7.44) follows.
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Now, by (7.44), (7.43) and the assumed weak Balancing property (wBP), it
follows that

P
(
‖PM P⊥∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ξ‖l∞ > β

)
6

∑
i∈∆c∩{1,...,M}

P

(∣∣∣∣∣
N∑

j=1

X i
j + 〈PM P⊥∆U ∗P⊥N U P∆ξ, ei 〉

∣∣∣∣∣ > β

)

6
∑

i∈∆c∩{1,...,M}

P

(∣∣∣∣∣
N∑

j=1

X i
j

∣∣∣∣∣ > β − ‖PM P⊥∆U ∗PN U P∆‖l∞

)

6 4(M − s) exp
(
−

t2/4
Υ +Λt/3

)
, t =

1
2
β, by (7.44), (wBP).

Also,

4(M − s) exp
(
−

t2/4
Υ +Λt/3

)
6 γ

when

log
(

4
γ
(M − s)

)−1

>

(
4Υ
t2
+

4Λ
3t

)
.

And this concludes the proof of (i). To prove (ii), for t > 0, suppose that there is
a set Λt ⊂ N such that

P
(

sup
i∈Λt

|〈P⊥∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆η, ei 〉| > t
)
= 0, |Λc

t | <∞.

Then, as before, by (7.44), (7.43) and the assumed strong Balancing property
(sBP), it follows that

P
(
‖P⊥∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ξ‖l∞ > β

)
6

∑
i∈∆c∩Λc

t

P

(∣∣∣∣∣
N∑

j=1

X i
j + 〈P

⊥

∆U ∗P⊥N U P∆ξ, ei 〉

∣∣∣∣∣ > β

)
,

yielding

P
(
‖P⊥∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ξ‖l∞ > β

)
6

∑
i∈∆c∩Λc

t

P

(∣∣∣∣∣
N∑

j=1

X i
j

∣∣∣∣∣ > β − ‖P⊥∆U ∗PN U P∆‖l∞

)

6 4
(∣∣Λc

t

∣∣− s
)

exp
(
−

t2/4
Υ +Λt/3

)
< γ, t =

1
2
β, by (7.44), (sBP),
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whenever

log
(

4
γ

(∣∣Λc
t

∣∣− s
))−1

>

(
4Υ
t2
+

4Λ
3t

)
.

Hence, it remains to obtain a bound on
∣∣Λc

t

∣∣. Let

θ(q1, . . . , qr , t, s)

=

{
i : max

Γ1⊂{1,...,M}, |Γ1|=s
Γ2, j⊂{N j−1+1,...,N j }, j=1,...,r

‖PΓ1U
∗(q−1

1 PΓ2,1 ⊕ · · · ⊕ q−1
r PΓ2,r )Uei‖

>
t
√

s

}
.

Clearly, ∆c
t ⊂ θ(q1, . . . , qr , t, s) and

‖PΓ1U
∗(q−1

1 PΓ2,1 ⊕ · · · ⊕ q−1
r PΓ2,r )Uei‖ 6 max

16 j6r
q−1

j ‖PN U P⊥i−1‖ → 0

as i →∞. So, |θ(q1, . . . , qr , t, s)| <∞. Also, since θ̃ ({qk}
r
k=1, t, {Nk}

r
k=1, s,M)

is a decreasing function in t , for all t > 1
8 ,

|θ(q1, . . . , qr , t, s)| < θ̃({qk}
r
k=1, 1/8, {Nk}

r
k=1, s,M)

thus, we have proved (ii). The statements at the end of (i) and (ii) are clear from
the reasoning above.

PROPOSITION 7.12. Consider the same setup as in Proposition 7.11. If N and K
satisfy the weak Balancing Property with respect to U, M and s, then, for ξ ∈ H
and γ > 0, we have

P(‖P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ − P∆)ξ‖l∞ > α̃‖ξ‖l∞) 6 γ, (7.47)

with α̃ =
(

2 log1/2
2

(
4
√

sK M
))−1

, provided that

1 & Λ ·
(
log

(
sγ −1)

+ 1
)
· log

(√
sK M

)
,

1 & Υ ·
(
log

(
sγ −1)

+ 1
)
· log

(√
sK M

)
,

where Λ and Υ are defined in (7.39) and (7.40). Also,

P(‖P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ − P∆)ξ‖l∞ >
1
2‖ξ‖l∞) 6 γ (7.48)

provided that

1 & Λ ·
(
log

(
sγ −1)

+ 1
)
, 1 & Υ ·

(
log

(
sγ −1)

+ 1
)
.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.32
Downloaded from https://www.cambridge.org/core. Simon Fraser University Library, on 06 Mar 2020 at 18:44:49, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.32
https://www.cambridge.org/core


B. Adcock, A. C. Hansen, C. Poon and B. Roman 48

Moreover, if qk = 1 for all k = 1, . . . , r , then the left-hand sides of (7.47) and
(7.48) are equal to zero.

Proof. Without loss of generality we may assume that ‖ξ‖l∞ = 1. Let {δ j }
N
j=1 be

random Bernoulli variables with P(δ j = 1) = q̃ j := qk , with j ∈ {Nk−1 + 1, . . . ,
Nk} and 1 6 k 6 r . Let also, for j ∈ N, η j = (U P∆)∗e j . Then, after observing
that

P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ =
N∑

j=1

q−1
j δ jη j ⊗ η̄ j , P∆U ∗PN U P∆

=

N∑
j=1

η j ⊗ η̄ j ,

it follows immediately that

P∆U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P∆ − P∆

=

N∑
j=1

(q̃−1
j δ j − 1)η j ⊗ η̄ j − (P∆U ∗PN U P∆ − P∆). (7.49)

As in the proof of Proposition 7.11 our goal is to eventually use Bernstein’s
inequality and the following is therefore a setup for that. Define, for 1 6 j 6 N ,
the random variables Z i

j = 〈(q̃
−1
j δ j − 1)(η j ⊗ η̄ j)ξ, ei 〉, for i ∈ ∆. We claim that,

for t > 0,

P

(∣∣∣∣∣
N∑

j=1

Z i
j

∣∣∣∣∣ > t

)
6 4 exp

(
−

t2/4
Υ +Λt/3

)
, i ∈ ∆. (7.50)

Now, clearly E(Z i
j) = 0, so we may use Bernstein’s inequality. Thus, we need to

estimate E
(
|Z i

j |
2
)

and |Z i
j |. We start with E

(
|Z i

j |
2
)
. Note that

E
(
|Z i

j |
2)
= (q̃−1

j − 1)|〈e j ,U P∆ξ〉|2|〈e j ,Uei 〉|
2. (7.51)

Thus, we can argue exactly as in the proof of Proposition 7.11 and deduce that
N∑

j=1

E
(
|Z i

j |
2) 6 r∑

k=1

(q−1
k − 1)µNk−1 s̃k, (7.52)

where sk 6 Sk(s1, . . . , sr ) for 1 6 k 6 r and s̃1 + · · · + s̃r 6 s1 + · · · + sr . To
estimate |Z i

j | we argue as in the proof of Proposition 7.11 and obtain

|Z i
j | 6 max

16k6r

{
Nk − Nk−1

mk
· (κN,M(k, 1)+ · · · + κN,M(k, r))

}
. (7.53)
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Thus, by applying Bernstein’s inequality to Re(Z i
1), . . . ,Re(Z i

N ) and the
imaginary part Im(Z i

1), . . . , Im(Z i
N ) we obtain, via (7.52) and (7.53) the estimate

(7.50), and we have proved the claim.
Now armed with (7.50) we can deduce that, by (7.43) and the assumed weak

Balancing property (wBP), it follows that

P
(
‖P∆U ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )U P∆ − P∆)ξ‖l∞ > α̃

)
6
∑
i∈∆

P

(∣∣∣∣∣
N∑

j=1

Z i
j + 〈(P∆U ∗PN U P∆ − P∆)ξ, ei 〉

∣∣∣∣∣ > α̃

)

6
∑
i∈∆

P

(∣∣∣∣∣
N∑

j=1

Z i
j

∣∣∣∣∣ > α̃ − ‖PMU ∗PN U PM − PM‖l1

)
,

6 4 s exp
(
−

t2/4
Υ +Λt/3

)
, t = α̃, by (7.50), (wBP). (7.54)

Also,

4s exp
(
−

t2/4
Υ +Λt/3

)
6 γ, (7.55)

when

1 >

(
4Υ
t2
+

4
3t
Λ

)
· log

(
4s
γ

)
.

And this gives the first part of the proposition. Also, the fact that the left-hand
side of (7.47) is zero when qk = 1 for 1 6 k 6 r is clear from (7.55). Note that
(ii) follows by arguing exactly as above and replacing α̃ by 1

4 .

PROPOSITION 7.13. Let U ∈ B(l2(N)) such that ‖U‖ 6 1. Suppose that Ω =
ΩN,m is a multilevel Bernoulli sampling scheme, where N = (N1, . . . , Nr ) ∈ Nr

and m = (m1, . . . ,mr ) ∈ Nr . Consider (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < · · · < Mr , and s = (s1, . . . , sr ) ∈ Nr , and let ∆ = ∆1 ∪ · · · ∪ ∆r , where
∆k ⊂ {Mk−1 + 1, . . . ,Mk}, |∆k | = sk , and M0 = 0. Then, for any t ∈ (0, 1) and
γ ∈ (0, 1),

P
(

max
i∈{1,...,M}∩∆c

‖P{i}U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P{i}‖ > 1+ t
)
6 γ

provided that

t2

4
> log

(
2M
γ

)
· max

16k6r

{(
Nk − Nk−1

mk
− 1

)
· µN,M(k, l)

}
(7.56)
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for all l = 1, . . . , r when M = Mr and for all l = 1, . . . , r−1,∞ when M > Mr .
In addition, if mk = Nk − Nk−1 for each k = 1, . . . , r , then

P(‖P{i}U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P{i}‖ > 1+ t) = 0, ∀i ∈ N. (7.57)

Proof. Fix i ∈ {1, . . . ,M}. Let {δ j }
N
j=1 be random independent Bernoulli

variables with P(δ j = 1) = q̃ j := qk for j ∈ {Nk−1 + 1, . . . , Nk}. Define
Z =

∑N
j=1 Z j and Z j =

(
q̃−1

j δ j − 1
) ∣∣uj i

∣∣2 . Now observe that

P{i}U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P{i} =
N∑

j=1

q̃−1
j δ j

∣∣u j i

∣∣2 = N∑
j=1

Z j +

N∑
j=1

∣∣u j i

∣∣2 ,
where we interpret U as the infinite matrix U = {ui j }i, j∈N. Thus, since ‖U‖ 6 1,

‖P{i}U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P{i}‖ 6

∣∣∣∣∣
N∑

j=1

Z j

∣∣∣∣∣+ 1 (7.58)

and it is clear that (7.57) is true. For the case where qk < 1 for some k ∈ {1, . . . , r},
observe that for i ∈ {Ml−1+ 1, . . . ,Ml} (recall that Z j depend on i), we have that
E(Z j) = 0. Also,

∣∣Z j

∣∣ 6


max
16k6r
{max{q−1

k − 1, 1} · µN,M(k, l)} := Bi

i ∈ {Ml−1 + 1, . . . ,Ml},

max
16k6r
{max{q−1

k − 1, 1} · µN,M(k,∞)} := B∞ i > Mr ,

and, by again using the assumption that ‖U‖ 6 1,

N∑
j=1

E
(∣∣Z j

∣∣2) = N∑
j=1

(q̃−1
j − 1)

∣∣u j i

∣∣4
6

max
16k6r
{(q−1

k − 1) µN,M(k, l)} =: σ 2
i i ∈ {Ml−1 + 1, . . . ,Ml},

max
16k6r
{(q−1

k − 1) µN,M(k,∞)} =: σ 2
∞

i > Mr .

Thus, by Bernstein’s inequality and (7.58),

P(‖P{i}U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P{i}‖ > 1+ t)

6 P

(∣∣∣∣∣
N∑

j=1

Z j

∣∣∣∣∣ > t

)
6 2 exp

(
−

t2/2
σ 2 + Bt/3

)
,
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B =

max
16i6r

Bi M = Mr ,

max
i∈{1,...,r−1,∞}

Bi M > Mr ,
σ 2
=

max
16i6r

σ 2
i M = Mr ,

max
i∈{1,...,r−1,∞}

σ 2
1 M > Mr .

Applying the union bound yields

P
(

max
i∈{1,...,M}

‖P{i}U ∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )U P{i}‖ > 1+ t
)
6 γ

whenever (7.56) holds.

7.3. Proofs of Propositions 7.3 and 7.4. The proof of the propositions relies
on an idea that originated in a paper by Gross [43], namely, the golfing scheme.
The variant we are using here is based on an idea from [3] as well as uneven
section techniques from [47, 48], see also [42]. However, the informed reader
will recognize that the setup here differs substantially from both [43] and [3]. See
also [16] for other examples of the use of the golfing scheme. Before we embark
on the proof, we state and prove a useful lemma.

LEMMA 7.14. Let X̃k be independent binary variables taking values 0 and 1,
such that X̃k = 1 with probability P. Then,

P

(
N∑

i=1

X̃ i > k

)
>

(
N · e

k

)−k (N
k

)
Pk . (7.59)

Proof. First observe that

P

(
N∑

i=1

X̃ i > k

)
=

N∑
i=k

(
N
i

)
P i(1− P)N−i

=

N−k∑
i=0

(
N

i + k

)
P i+k(1− P)N−k−i

=

(
N
k

)
Pk

N−k∑
i=0

(N − k)!k!
(N − i − k)!(i + k)!

P i(1− P)N−k−i

=

(
N
k

)
Pk

N−k∑
i=0

(
N − k

i

)
P i(1− P)N−k−i

[(
i + k

k

)]−1

.

The result now follows because
∑N−k

i=0

(N−k
i

)
P i(1 − P)N−k−i

= 1 and for
i = 0, . . . , N − k, we have that(

i + k
k

)
6

(
(i + k) · e

k

)k

6

(
N · e

k

)k

,

where the first inequality follows from Stirling’s approximation (see [24],
page 1186).
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Proof of Proposition 7.3. We start by mentioning that converting from the
Bernoulli sampling model and uniform sampling model has become standard in
the literature. In particular, one can do this by showing that the Bernoulli model
implies (up to a constant) the uniform sampling model in each of the conditions
in Proposition 7.1. This is straightforward and the reader may consult [17, 18, 41]
for details. We therefore consider (without loss of generality) only the multilevel
Bernoulli sampling scheme.

Recall that we are using the following Bernoulli sampling model: given N0 = 0,
N1, . . . , Nr ∈ N we let

{Nk−1 + 1, . . . , Nk} ⊃ Ωk ∼ Ber (qk) , qk =
mk

Nk − Nk−1
.

Note that we may replace this Bernoulli sampling model with the following
equivalent sampling model (see [3]):

Ωk = Ω
1
k ∪Ω

2
k ∪ · · · ∪Ω

u
k , Ω

j
k ∼ Ber(q j

k ), 1 6 k 6 r,

for some u ∈ N with

(1− q1
k )(1− q2

k ) · · · (1− qu
k ) = (1− qk). (7.60)

The latter model is the one we use throughout the proof and the specific value of
u will be chosen later. Note also that because of overlaps we have

q1
k + q2

k + · · · + qu
k > qk, 1 6 k 6 r. (7.61)

The strategy of the proof is to show the validity of (i) and (ii), and the existence
of a ρ ∈ ran(U ∗(PΩ1 ⊕ · · · ⊕ PΩr )) that satisfies (iii)–(v) in Proposition 7.1 with
probability exceeding 1 − ε, where (iii) is replaced by (7.16), (iv) is replaced by
‖PM P⊥∆ ρ‖l∞ 6 1

2 and L in (v) is given by (7.17).
Step I. The construction of ρ: we start by defining γ = ε/6 (the reason for this

particular choice will become clear later). We also define a number of quantities
(and the reason for these choices will become clear later in the proof):

u = 8d3v + log(γ −1)e, v = dlog2(8K M
√

s)e, (7.62)

as well as
{q i

k : 1 6 k 6 r, 1 6 i 6 u}, {αi}
u
i=1, {βi}

u
i=1

by

q1
k = q2

k =
1
4 qk, q̃k = q3

k = · · · = qu
k , qk = (Nk − Nk−1)m−1

k , 1 6 k 6 r,
(7.63)
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with
(1− q1

k )(1− q2
k ) · · · (1− qu

k ) = (1− qk)

and

α1 = α2 = (2 log1/2
2 (4K M

√
s))−1, αi = 1/2, 3 6 i 6 u, (7.64)

as well as

β1 = β2 =
1
4 , βi =

1
4 log2(4K M

√
s), 3 6 i 6 u. (7.65)

Consider now the following construction of ρ. We define recursively the
sequences {Z i}

u
i=0 ⊂ H, {Yi}

u
i=1 ⊂ H and {ωi}

u
i=0 ⊂ N as follows: first let

ω0 = {0}, ω1 = {0, 1} and ω2 = {0, 1, 2}. Then define recursively, for i > 3, the
following:

ωi =



ωi−1 ∪ {i} if
∥∥∥∥(P∆ − P∆U ∗

(
1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆

)
Z i−1

∥∥∥∥
l∞

6 αi‖P∆k Z i−1‖l∞,

and
∥∥∥∥PM P⊥∆U ∗

(
1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆Z i−1

∥∥∥∥
l∞

6 βi‖Z i−1‖l∞,

ωi−1 otherwise,

(7.66)

Yi =


∑
j∈ωi

U ∗
(

1

q j
1

P
Ω

j
1
⊕ · · · ⊕

1

q j
r

P
Ω

j
r

)
U Z j−1 if i ∈ ωi ,

Yi−1 otherwise,

i > 1,

Z i =

{
sgn(x0)− P∆Yi if i ∈ ωi ,

Z i−1 otherwise,
i > 1, Z0 = sgn(x0).

Now, let {Ai}
2
i=1 and {Bi}

5
i=1 denote the following events

Ai :

∥∥∥∥(P∆ −U ∗
(

1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆

)
Z i−1

∥∥∥∥
l∞

6 αi ‖Z i−1‖l∞ ,

i = 1, 2,

Bi :

∥∥∥∥PM P⊥∆U ∗
(

1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆Z i−1

∥∥∥∥
l∞

6 βi‖Z i−1‖l∞,

i = 1, 2,
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B3 :

∥∥∥∥P∆U ∗
(

1
q1

PΩ1 ⊕ · · · ⊕
1
qr

PΩr

)
U P∆ − P∆

∥∥∥∥ 6 1/4,

max
i∈∆c∩{1,...,M}

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥ 6
√

5/4

B4 : |ωu| > v,

B5 : (∩2
i=1 Ai) ∩ (∩

4
i=1 Bi).

(7.67)

Also, let τ( j) denote the j th element in ωu (for example, τ(0) = 0, τ (1) = 1,
τ (2) = 2) and finally define ρ by

ρ =

{
Yτ(v) if B5 occurs,
0 otherwise.

Note that, clearly, ρ ∈ ran(U ∗PΩ), and we just need to show that when the event
B5 occurs, then (i)–(v) in Proposition 7.1 will follow.

Step II. B5 ⇒ (i), (ii). To see that the assertion is true, note that if B5 occurs
then B3 occurs, which immediately (i) and (ii).

Step III. B5 ⇒ (iii), (iv). To show the assertion, we start by making the
following observations: by the construction of Zτ(i) and the fact that Z0 = sgn(x0),
it follows that

Zτ(i) = Z0 −

(
P∆U ∗

(
1

qτ(1)1

P
Ω
τ(1)
1
⊕ · · · ⊕

1

qτ(1)r
P
Ω
τ(i)
r

)
U P∆

)
Z0

+ · · · +

(
P∆U ∗

(
1

qτ(i)1

P
Ω
τ(i)
1
⊕ · · · ⊕

1

qτ(i)r
P
Ω
τ(i)
r

)
U P∆

)
Zτ(i−1)

= Zτ(i−1) −

(
P∆U ∗

(
1

qτ(i)1

P
Ω
τ(i)
1
⊕ · · · ⊕

1

qτ(i)r
P
Ω
τ(i)
r

)
U P∆

)
Zτ(i−1)

i 6 |ωu|,

so we immediately get that

Zτ(i) =

(
P∆ − P∆U ∗

(
1

qτ(i)1

P
Ω
τ(i)
1
⊕ · · · ⊕

1

qτ(i)r
P
Ω
τ(i)
r

)
U P∆

)
Zτ(i−1), i 6 |ωu|.

Hence, if the event B5 occurs, we have, by the choices in (7.64) and (7.65)

‖ρ − sgn(x0)‖ = ‖Zτ(v)‖ 6
√

s‖Zτ(v)‖l∞ 6
√

s
v∏

i=1

ατ(i) 6

√
s

2v
6

1
8K

, (7.68)

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.32
Downloaded from https://www.cambridge.org/core. Simon Fraser University Library, on 06 Mar 2020 at 18:44:49, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.32
https://www.cambridge.org/core


A new theory for compressed sensing 55

since we have chosen v = dlog2(8K M
√

s)e. Also,

‖PM P⊥∆ ρ‖l∞ 6
v∑

i=1

‖PM P⊥∆U ∗
(

1

qτ(i)1

P
Ω
τ(i)
1
⊕ · · · ⊕

1

qτ(i)r
P
Ω
τ(i)
r

)
U P∆Zτ(i−1)‖l∞

6
v∑

i=1

βτ(i)‖Zτ(i−1)‖l∞ 6
v∑

i=1

βτ(i)

i−1∏
j=1

ατ( j)

6
1
4

(
1+

1

2 log1/2
2 (a)

+
log2(a)

23 log2(a)
+ · · · +

1
2v−1

)
6

1
2
, (7.69)

where a = 4K M
√

s. In particular, (7.68) and (7.69) imply (iii) and (iv) in
Proposition 7.1.

Step IV. B5⇒ (v). To show that, note that we may write the already constructed
ρ as ρ = U ∗PΩw where

w =

v∑
i=1

wi , wi =

(
1

qτ(i)1

PΩ1 ⊕ · · · ⊕
1

qτ(i)r
PΩr

)
U P∆Zτ(i−1).

To estimate ‖w‖ we simply compute

‖wi‖
2
=

〈(
1

qτ(i)1

P
Ω
τ(i)
1
⊕ · · · ⊕

1

qτ(i)r
P
Ω
τ(i)
r

)
U P∆Zτ(i−1),(

1

qτ(i)1

P
Ω
τ(i)
1
⊕ · · · ⊕

1

qτ(i)r
P
Ω
τ(i)
r

)
U P∆Zτ(i−1)

〉

=

r∑
k=1

(
1

qτ(i)k

)2

‖P
Ω
τ(i)
k

U Zτ(i−1)‖
2,

and then use the assumption that the event B5 holds to deduce that

r∑
k=1

(
1

qτ(i)k

)2

‖P
Ω
τ(i)
k

U Zτ(i−1)‖
2

6 max
16k6r

{
1

qτ(i)k

}〈
r∑

k=1

1

qτ(i)k

P∆U ∗P
Ω
τ(i)
k

U Zτ(i−1), Zτ(i−1)

〉

= max
16k6r

{
1

qτ(i)k

}〈(
r∑

k=1

1

qτ(i)k

P∆U ∗P
Ω
τ(i)
k

U − P∆

)
Zτ(i−1), Zτ(i−1)

〉
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+‖Zτ(i−1)‖
2

6 max
16k6r

{
1

qτ(i)k

} (
‖Zτ(i−1)‖‖Zτ(i)‖ + ‖Zτ(i−1)‖

2)
6 max

16k6r

{
1

qτ(i)k

}
s
(
‖Zτ(i−1)‖l∞‖Zτ(i)‖l∞ + ‖Zτ(i−1)‖

2
l∞
)

6 max
16k6r

{
1

qτ(i)k

}
s(αi + 1)

(
i−1∏
j=1

α j

)2

,

where the last inequality follows from the assumption that the event B5 holds.
Hence

‖w‖ 6
√

s
v∑

i=1

max
16k6r

 1√
qτ(i)k

√αi + 1
i−1∏
j=1

α j

 . (7.70)

Note that, due to the fact that q1
k + · · · + qu

k > qk , we have that

q̃k >
mk

2(Nk − Nk−1)

1
8
⌈

log(γ −1)+ 3dlog2(8K M
√

s)e
⌉
− 2

.

This gives, in combination with the chosen values of {α j } and (7.70) that

‖w‖ 6 2
√

s max
16k6r

√
Nk − Nk−1

mk

(
1+

1

2 log1/2
2

(
4K M

√
s
))3/2

+
√

s max
16k6r

√
Nk − Nk−1

mk
·

√
3

2

×

√
8
⌈

log(γ −1)+ 3dlog2(8K M
√

s)e
⌉
− 2

log2

(
4K M

√
s
) ·

v∑
i=3

1
2i−3

6 2
√

s max
16k6r

√
Nk − Nk−1

mk

×

(3
2

)3/2

+

√
6

log2(4K M
√

s)

√
1+

log2

(
γ −1

)
+ 6

log2(4K M
√

s)
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6
√

s max
16k6r

√
Nk − Nk−1

mk

×

3
√

3
√

2
+

2
√

6√
log2(4K M

√
s)

√
1+

log2

(
γ −1

)
+ 6

log2(4K M
√

s)

 . (7.71)

Step V. The weak balancing property, (7.14) and (7.15)⇒ P(Ac
1 ∪ Ac

2 ∪ Bc
1 ∪

Bc
2 ∪ Bc

3) 6 5γ . To see this, note that by Proposition 7.12 we immediately get
(recall that q1

k = q2
k = 1/4qk) that P(Ac

1) 6 γ and P(Ac
2) 6 γ as long as the weak

balancing property and

1 & Λ ·
(
log

(
sγ −1)

+ 1
)
· log

(√
sK M

)
,

1 & Υ ·
(
log

(
sγ −1)

+ 1
)
· log

(√
sK M

)
,

(7.72)

are satisfied, where K = max16k6r (Nk − Nk−1)/mk ,

Λ = max
16k6r

{
Nk − Nk−1

mk
·

(
r∑

l=1

κN,M(k, l)

)}
, (7.73)

Υ = max
16l6r

r∑
k=1

(
Nk − Nk−1

mk
− 1

)
· µN,M(k, l) · s̃k, (7.74)

and where s̃1+ · · · + s̃r 6 s1+ · · · + sr and s̃k 6 Sk(s1, . . . , sr ). However, clearly,
(7.14) and (7.15) imply (7.72). Also, Proposition 7.11 yields that P(Bc

1) 6 γ and
P(Bc

2) 6 γ as long as the weak balancing property and

1 & Λ · log
(

4
γ
(M − s)

)
, 1 & Υ · log

(
4
γ
(M − s)

)
, (7.75)

are satisfied. However, again, (7.14) and (7.15) imply (7.75). Finally, it remains
to bound P(Bc

3). First note that by Theorem 7.8, we may deduce that

P
(
‖P∆U ∗

(
1
q1

PΩ1 ⊕ · · · ⊕
1
qr

PΩr

)
U P∆ − P∆‖ > 1/4,

)
6 γ /2,

when the weak balancing property and

1 & Λ ·
(
log

(
γ −1 s

)
+ 1

)
(7.76)

holds and (7.14) implies (7.76).
For the second part of B3, we may deduce from Proposition 7.13 that

P
(

max
i∈∆c∩{1,...,M}

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥ > √
5/4

)
6
γ

2
,
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whenever

1 & log
(

2M
γ

)
· max

16k6r

{(
Nk − Nk−1

mk
− 1

)
· µN,M(k, l)

}
, l = 1, . . . , r

(7.77)
which is true whenever (7.14) holds. Indeed, recalling the definition of κN,M(k, j)
and Θ in Definition 7.2, observe that

max
η∈Θ,‖η‖∞=1

r∑
l=1

∥∥∥P Nk−1
Nk

U P Ml−1
Ml

η

∥∥∥
∞

> max
η∈Θ,‖η‖∞=1

∥∥∥P Nk−1
Nk

Uη
∥∥∥
∞

>
√
µ(P Nk−1

Nk
U P Ml−1

Ml
)

(7.78)
for each l = 1, . . . , r which implies that

∑r
j=1 κN,M(k, j) > µN,M(k, l), for

l = 1, . . . , r . Consequently, (7.77) follows from (7.14). Thus, P(Bc
3) 6 γ .

Step VI. The weak balancing property, (7.14) and (7.15)⇒ P(Bc
4) 6 γ . To see

this, define the random variables X1, . . . , Xu−2 by

X j =

{
0 ω j+2 6= ω j+1,

1 ω j+2 = ω j+1.
(7.79)

We immediately observe that

P(Bc
4) = P(|ωu| < v) = P(X1 + · · · + Xu−2 > u − v). (7.80)

However, the random variables X1, . . . , Xu−2 are not independent, and we
therefore cannot directly apply the standard Chernoff bound. In particular, we
must adapt the setup slightly. Note that

P(X1 + · · · + Xu−2 > u − v)

6
(u−2

u−v)∑
l=1

P(Xπ(l)1 = 1, Xπ(l)2 = 1, . . . , Xπ(l)u−v = 1)

=

(u−2
u−v)∑
l=1

P(Xπ(l)u−v = 1 | Xπ(l)1 = 1, . . . , Xπ(l)u−v−1 = 1)

×P(Xπ(l)1 = 1, . . . , Xπ(l)u−v−1 = 1)

=

(u−2
u−v)∑
l=1

P(Xπ(l)u−v = 1 | Xπ(l)1 = 1, . . . , Xπ(l)u−v−1 = 1)

×P(Xπ(l)u−v−1 = 1 | Xπ(l)1 = 1, . . . , Xπ(l)u−v−2 = 1) · · ·P(Xπ(l)1 = 1)
(7.81)
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where π :
{
1, . . . ,

(u−2
u−v

)}
→ Nu−v ranges over all

(u−2
u−v

)
ordered subsets of

{1, . . . , u − 2} of size u − v. Thus, if we can provide a bound P such that

P > P(Xπ(l)u−v− j = 1 | Xπ(l)1 = 1, . . . , Xπ(l)u−v−( j+1) = 1),
P > P(Xπ(l)1 = 1)

(7.82)

l = 1, . . . ,
(

u − 2
u − v

)
, j = 0, . . . , u − v − 2,

then, by (7.81),

P(X1 + · · · + Xu−2 > u − v) 6
(

u − 2
u − v

)
Pu−v. (7.83)

We continue assuming that (7.82) is true, and then return to this inequality below.
Let {X̃k}

u−2
k=1 be independent binary variables taking values 0 and 1, such that

X̃k = 1 with probability P . Then, by Lemma 7.14, (7.83) and (7.80) it follows
that

P(Bc
4) 6 P

(
X̃1 + · · · + X̃u−2 > u − v

)( (u − 2) · e
u − v

)u−v

. (7.84)

Then, by the standard Chernoff bound [65, Theorem 2.1, equation 2], it follows
that, for t > 0,

P
(

X̃1 + · · · + X̃u−2 > (u − 2)(t + P)
)
6 e−2(u−2)t2

. (7.85)

Hence, if we let t = (u − v)/(u − 2)− P , it follows from (7.84) and (7.85) that

P(Bc
4) 6 e−2(u−2)t2

+(u−v)(log((u−2)/(u−v))+1) 6 e−2(u−2)t2
+u−2.

Thus, by choosing P = 1/4 we get that P(Bc
4) 6 γ whenever u > x and x is the

largest root satisfying

(x − u)
(

x − v
u − 2

−
1
4

)
− log(γ −1/2)−

x − 2
2
= 0,

and this yields u > 8d3v + log(γ −1/2)e which is satisfied by the choice of u in
(7.62). Thus, we would have been done with Step VI if we could verify (7.82)
with P = 1/4, and this is the theme in the following claim.

Claim. The weak balancing property, (7.14) and (7.15)⇒ (7.82) with P = 1/4.
To prove the claim we first observe that X j = 0 when∥∥∥∥(P∆ − P∆U ∗

(
1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆

)
Z i−1

∥∥∥∥
l∞

6
1
2
‖Z i−1‖l∞
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(

1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆Z i−1

∥∥∥∥
l∞

6
1
4

log2(4K M
√

s)‖Z i−1‖l∞,

i = j + 2,

where we recall from (7.63) that

q3
k = q4

k = · · · = qu
k = q̃k, 1 6 k 6 r.

Thus, by choosing γ = 1/8 in (7.48) in Proposition 7.12 and γ = 1/8 in (i) in
Proposition 7.11, it follows that 1

4 > P(X j = 1), for j = 1, . . . , u − 2, when the
weak balancing property is satisfied and

(log (8s)+ 1)−1 & q̃−1
k ·

r∑
l=1

κN,M(k, l), 1 6 k 6 r (7.86)

(log (8s)+ 1)−1 &

(
r∑

k=1

(
q̃−1

k − 1
)
· µN,M(k, l) · s̃k

)
, 1 6 l 6 r, (7.87)

as well as

log2(4K M
√

s)
log (32(M − s))

& q̃−1
k ·

r∑
l=1

κN,M(k, l), 1 6 k 6 r (7.88)

log2(4K M
√

s)
log (32(M − s))

&

(
r∑

k=1

(
q̃−1

k − 1
)
· µN,M(k, l) · s̃k

)
, 1 6 l 6 r, (7.89)

with K = max16k6r (Nk − Nk−1)/mk . Thus, to prove the claim we must
demonstrate that (7.14) and (7.15) ⇒ (7.86), (7.87), (7.88) and (7.89). We split
this into two stages:

Stage 1. (7.15)⇒ (7.89) and (7.87). To show the assertion we must demonstrate
that if, for 1 6 k 6 r ,

mk & (log(sε−1)+ 1) · m̂k · log
(
K M
√

s
)
, (7.90)

where m̂k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, l = 1, . . . , r, (7.91)

we get (7.89) and (7.87). To see this, note that by (7.61) we have that

q1
k + q2

k + (u − 2)q̃k > qk, 1 6 k 6 r, (7.92)
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so since q1
k = q2

k =
1
4 qk , and by (7.92), (7.90) and the choice of u in (7.62), it

follows that

2(8(dlog(γ −1)+3dlog2(8K M
√

s)ee)− 2)q̃k > qk =
mk

Nk − Nk−1

> C
m̂k

Nk − Nk−1
(log(sε−1)+ 1) log

(
K M
√

s
)

> C
m̂k

Nk − Nk−1
(log(s)+ 1)(log

(
K M
√

s
)
+ log(ε−1)),

for some constant C (recall that we have assumed that log(s) > 1). And this gives
(by recalling that γ = ε/6) that q̃k > Ĉ(m̂k/(Nk − Nk−1))(log(s)+ 1), for some
constant Ĉ . Thus, (7.15) implies that for 1 6 l 6 r ,

1 & (log (s)+ 1)

(
r∑

k=1

(
Nk − Nk−1

mk(log(s)+ 1)
−

1
log(s)+ 1

)
· µN,M(k, l) · s̃k

)

& (log (s)+ 1)

(
r∑

k=1

(
q̃−1

k − 1
)
· µN,M(k, l) · s̃k

)
,

and this implies (7.89) and (7.87), given an appropriate choice of the constant C .
Stage 2. (7.14)⇒ (7.88) and (7.86). To show the assertion we must demonstrate

that if, for 1 6 k 6 r ,

1 & (log(sε−1)+ 1) ·
Nk − Nk−1

mk
·

(
r∑

l=1

κN,M(k, l)

)
· log

(
K M
√

s
)
, (7.93)

we obtain (7.88) and (7.86). To see this, note that by arguing as above via the fact
that q1

k = q2
k =

1
4 qk , and by (7.92), (7.93) and the choice of u in (7.62) we have

that

2(8(dlog(γ −1)+ 3dlog2(8K M
√

s)ee)− 2)q̃k > qk =
mk

Nk − Nk−1

> C ·

(
r∑

l=1

κN,M(k, l)

)
· (log(sε−1)+ 1) · log

(
K M
√

s
)

> C ·

(
r∑

l=1

κN,M(k, l)

)
· (log(s)+ 1)

(
log(ε−1)+ log

(
K M
√

s
))
,

for some constant C . Thus, we have that for some appropriately chosen constant
Ĉ , q̃k > Ĉ · (log(s) + 1) ·

∑r
l=1 κN,M(k, l). So, (7.88) and (7.86) holds given

an appropriately chosen C . This yields the last puzzle of the proof, and we are
done.
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Proof of Proposition 7.4. The proof is very close to the proof of Proposition 7.3
and we simply point out the differences. The strategy of the proof is to show the
validity of (i) and (ii), and the existence of a ρ ∈ ran(U ∗(PΩ1 ⊕ · · · ⊕ PΩr )) that
satisfies (iii)–(v) in Proposition 7.1 with probability exceeding 1− ε.

Step I. The construction of ρ: the construction is almost identical to the
construction in the proof of Proposition 7.3, except that

u = 8dlog(γ −1)+ 3ve, v = dlog2(8K M̃
√

s)e, (7.94)

α1 = α2 = (2 log1/2
2 (4K M̃

√
s))−1, αi = 1/2, 3 6 i 6 u,

as well as

β1 = β2 =
1
4 , βi =

1
4 log2(4K M̃

√
s), 3 6 i 6 u,

and (7.66) gets changed to

ωi =



ωi−1 ∪ {i} if
∥∥∥∥(P∆ − P∆U ∗

(
1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆

)
Z i−1

∥∥∥∥
l∞

6 αi‖P∆k Z i−1‖l∞,

and
∥∥∥∥P⊥∆U ∗

(
1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆Z i−1

∥∥∥∥
l∞

6 βi‖Z i−1‖l∞,

ωi−1 otherwise,

the events Bi , i = 1, 2 in (7.67) get replaced by

B̃i :

∥∥∥∥P⊥∆U ∗
(

1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆Z i−1

∥∥∥∥
l∞

6 βi‖Z i−1‖l∞, i = 1, 2,

and the second part of B3 becomes

max
i∈∆c

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥ 6
√

5/4.

Step II. B5 ⇒ (i), (ii). This step is identical to Step II in the proof of
Proposition 7.3.
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Step III. B5 ⇒ (iii), (iv). Equation (7.69) gets changed to

‖P⊥∆ ρ‖l∞ 6
v∑

i=1

∥∥∥∥∥P⊥∆U ∗
(

1

qτ(i)1

P
Ω
τ(i)
1
⊕ · · · ⊕

1

qτ(i)r
P
Ω
τ(i)
r

)
U P∆Zτ(i−1)

∥∥∥∥∥
l∞

6
v∑

i=1

βτ(i)‖Zτ(i−1)‖l∞ 6
v∑

i=1

βτ(i)

i−1∏
j=1

ατ( j)

6
1
4

(
1+

1

2 log1/2
2 (a)

+
log2(a)

23 log2(a)
+ · · · +

1
2v−1

)
6

1
2
,

a = 4M̃ K
√

s.

Step IV. B5 ⇒ (v). This step is identical to Step IV in the proof of
Proposition 7.3.

Step V. The strong balancing property, (7.18) and (7.19) ⇒ P(Ac
1 ∪ Ac

2 ∪

B̃c
1 ∪ B̃c

2 ∪ Bc
3) 6 5γ . We start by bounding P(B̃c

1) and P(B̃c
2). Note that by

Proposition 7.11(ii) it follows that P(B̃c
1) 6 γ and P(B̃c

2) 6 γ as long as the
strong balancing property is satisfied and

1 & Λ · log
(

4
γ
(θ̃ − s)

)
, 1 & Υ · log

(
4
γ
(θ̃ − s)

)
, (7.95)

where θ̃ = θ̃ ({q i
k}

r
k=1, 1/8, {Nk}

r
k=1, s,M) for i = 1, 2 and where θ̃ is defined in

Proposition 7.11(ii) and Λ and Υ are defined in (7.73) and (7.74). Note that it is
easy to see that we have∣∣∣∣{ j ∈ N : max

Γ1⊂{1,...,M}, |Γ1|=s
Γ2, j⊂{N j−1+1,...,N j }, j=1,...,r

‖PΓ1U
∗((q i

1)
−1 PΓ2,1 ⊕ · · · ⊕ (q

i
r )
−1 PΓ2,r )Ue j‖ >

1
8
√

s

}∣∣∣∣ 6 M̃,

where
M̃ = min{i ∈ N : max

j>i
‖PN U P{ j}‖ 6 1/(K 32

√
s)},

and this follows from the choice in (7.63) where q1
k = q2

k =
1
4 qk for 1 6 k 6 r .

Thus, it immediately follows that (7.18) and (7.19) imply (7.95). To bound P(Bc
3),

we first deduce as in Step V of the proof of Proposition 7.3 that

P
(∥∥∥∥P∆U ∗

(
1
q1

PΩ1 ⊕ · · · ⊕
1
qr

PΩr

)
U P∆ − P∆

∥∥∥∥ > 1/4,
)
6 γ /2
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when the strong balancing property and (7.18) holds. For the second part of B3,
we know from the choice of M̃ that

max
i>M̃

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥ 6

√
5
4

and we may deduce from Proposition 7.13 that

P
(

max
i∈∆c∩{1,...,M̃}

∥∥∥(q−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr

)
Uei

∥∥∥ > √
5/4

)
6
γ

2
,

whenever

1 & log

(
2M̃
γ

)
· max

16k6r

{(
Nk − Nk−1

mk
− 1

)
µN,M(k, l)

}
, l = 1, . . . , r−1,∞,

which is true whenever (7.18) holds, since by a similar argument to (7.78),

κN,M(k,∞)+
r−1∑
j=1

κN,M(k, j) > µN,M(k, l), l = 1, . . . , r − 1,∞.

Thus, P(Bc
3) 6 γ . As for bounding P(Ac

1) and P(Ac
2), observe that by the strong

balancing property M̃ > M , thus this is done exactly as in Step V of the proof of
Proposition 7.3.

Step VI. The strong balancing property, (7.18) and (7.19) ⇒ P(Bc
4) 6 γ . To

see this, define the random variables X1, . . . , Xu−2 as in (7.79). Let π be defined
as in Step VI of the proof of Proposition 7.3. Then it suffices to show that (7.18)
and (7.19) imply that for l = 1, . . . ,

(u−2
u−v

)
and j = 0, . . . , u − v − 2, we have

1
4 > P(Xπ(l)u−v− j = 1 | Xπ(l)1 = 1, . . . , Xπ(l)u−v−( j+1) = 1),
1
4 > P(Xπ(l)1 = 1).

(7.96)

Claim. The strong balancing property, (7.18) and (7.19)⇒ (7.96). To prove the
claim we first observe that X j = 0 when∥∥∥∥(P∆ − P∆U ∗

(
1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆

)
Z i−1

∥∥∥∥
l∞

6
1
2
‖Z i−1‖l∞∥∥∥∥P⊥∆U ∗

(
1
q i

1

PΩ i
1
⊕ · · · ⊕

1
q i

r

PΩ i
r

)
U P∆Z i−1

∥∥∥∥
l∞

6
1
4

log2(4K M̃
√

s)‖Z i−1‖l∞,

i = j + 2.
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Thus, by again recalling from (7.63) that q3
k = q4

k = · · · = qu
k = q̃k , 1 6 k 6 r ,

and by choosing γ̃ = 1/4 in (7.48) in Proposition 7.12 and γ̃ = 1/4 in (ii)
in Proposition 7.11, we conclude that (7.96) follows when the strong balancing
property is satisfied as well as (7.86) and (7.87). and

log2(4K M̃
√

s)

log
(

16(M̃ − s)
) > C2 · q̃−1

k ·

(
r−1∑
l=1

κN,M(k, l)+ κN,M(k,∞)

)
, (7.97)

log2(4K M̃
√

s)

log
(

16(M̃ − s)
) > C2 ·

(
r∑

l=1

(
q̃−1

k − 1
)
· µN,M(k, l) · s̃k

)
, (7.98)

where k = 1, . . . , r and l = 1, . . . , r − 1,∞ and for K = max16k6r (Nk −

Nk−1)/mk . for some constants C1 and C2. Thus, to prove the claim we must
demonstrate that (7.18) and (7.19) ⇒ (7.86), (7.87), (7.97) and (7.98). This is
done by repeating Stage 1 and Stage 2 in Step VI of the proof of Proposition 7.3
almost verbatim, except replacing M by M̃ .

7.4. Proofs of Theorem 6.2 and Proposition 6.4. Throughout this section,
we use the notation

f̂ (ξ) =
∫
R

f (x)e−i xξdx, (7.99)

to denote the Fourier transform of a function f ∈ L1(R).

7.4.1. Setup. We first introduce the wavelet sparsity and Fourier sampling bases
that we consider, and in particular, their orderings. Consider an orthonormal basis
of compactly supported wavelets with an MRA [27, 28]. For simplicity, suppose
that supp(Ψ ) = supp(Φ) = [0, a] for some a > 1, where Ψ andΦ are the mother
wavelet and scaling function respectively. For later use, we recall the following
three properties of any such wavelet basis:

(1) There exist α > 1, CΨ and CΦ > 0, such that∣∣∣Φ̂(ξ)∣∣∣ 6 CΦ

(1+ |ξ |)α
,

∣∣∣Ψ̂ (ξ)∣∣∣ 6 CΨ

(1+ |ξ |)α
. (7.100)

See [28, Equation (7.1.4)]. We denote max{CΨ ,CΦ} by CΦ,Ψ .

(2) Ψ has v > 1 vanishing moments and Ψ̂ (z) = (−i z)vθΨ (z) for some bounded
function θΨ (see [64, pages 208 and 284]).

(3) ‖Φ̂‖L∞, ‖Ψ̂ ‖L∞ 6 1.
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REMARK 7.15. The three properties above are based on the standard setup for
an MRA, however, we also consider a stronger assumption on the decay of the
Fourier transform of derivatives of the scaling function and the mother wavelet.
In particular, in addition, we sometimes assume that for C > 0 and α > 1.5,∣∣∣Φ̂(k)(ξ)

∣∣∣ 6 C
(1+ |ξ |)α

,

∣∣∣Ψ̂ (k)(ξ)

∣∣∣ 6 C
(1+ |ξ |)α

, ξ ∈ R, k = 0, 1, 2,

(7.101)
where Φ̂(k) and Ψ̂ (k) denotes the kth derivative of the Fourier transform of Φ and
Ψ respectively. As is evident from Theorem 6.2, the faster decay, the closer the
relationship between N and M in the balancing property gets to linear. Also, faster
decay and more vanishing moments yield a closer to block-diagonal structure of
the matrix U .

We now wish to construct a wavelet basis for the compact interval [0, a]. The
most standard approach is to consider the following collection of functions

Λa = {Φk, Ψ j,k : supp(Φk)
o
∩ [0, a] 6= ∅, supp(Ψ j,k)

o
∩ [0, a] 6= ∅,

j ∈ Z+, k ∈ Z}

where Φk = Φ(· − k), and Ψ j,k = 2 j/2Ψ (2 j
· −k). (the notation K o denotes the

interior of a set K ⊆ R). This gives{
f ∈ L2(R) : supp( f ) ⊆ [0, a]

}
⊆ span{ϕ : ϕ ∈ Λa}

⊆
{

f ∈ L2(R) : supp( f ) ⊆ [−T1, T2]
}
,

where T1, T2 > 0 are such that [−T1, T2] contains the support of all functions in
Λa . Note that the inclusions may be proper (but not always, as is the case with the
Haar wavelet). It is easy to see that

Ψ j,k /∈ Λa ⇐⇒
a + k

2 j
6 0, a 6

k
2 j
,

Φk /∈ Λa ⇐⇒ a + k 6 0, a 6 k,

and therefore

Λa ={Φk : |k| = 0, . . . , dae − 1} ∪ {Ψ j,k : j ∈ Z+, k ∈ Z,−dae < k < 2 j
dae}.

We order Λa in increasing order of wavelet resolution as follows:

{Φ−dae+1, . . . , Φ−1, Φ0, Φ1, . . . , Φdae−1,

Ψ0,−dae+1, . . . , Ψ0,−1, Ψ0,0, Ψ0,1, . . . , Ψ0,dae−1, Ψ1,−dae+1, . . .},
(7.102)
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and then we finally denote the functions according to this ordering by {ϕ j } j∈N. By
the definition of Λa , we let T1 = dae − 1 and T2 = 2dae − 1. Finally, for R ∈ N,
let ΛR,a contain all wavelets in Λa with resolution less than R, so that

ΛR,a = {ϕ ∈ Λa : ϕ = Ψ j,k, 0 6 j < R, or ϕ = Φk}. (7.103)

We also denote the size of ΛR,a by WR . It is easy to verify that

WR = 2R
dae + (R + 1)(dae − 1). (7.104)

Having constructed an orthonormal wavelet system for [0, a], we now
introduce the appropriate Fourier sampling basis. We must sample at a rate
that is at least that of the Nyquist rate. Hence we let ω 6 1/(T1 + T2) be the
sampling density (note that 1/(T1 + T2) is the Nyquist criterion for functions
supported on [−T1, T2]). For simplicity, we assume throughout that

ω ∈ (0, 1/(T1 + T2)), ω−1
∈ N, (7.105)

and remark that this assumption is an artefact of our proofs and is not necessary
in practice. The Fourier sampling vectors are now defined as follows.

ψ j(x) =
√
ωe−2π i jωxχ[−T1/(ω(T1+T2)),T2/(ω(T1+T2))](x), j ∈ Z. (7.106)

This gives an orthonormal sampling basis for the space { f ∈ L2(R) : supp( f ) ⊆
[−T1, T2]}. Since Λa is an orthonormal system for this space, it follows that the
infinite matrix

U =


u11 u12 u13 · · ·

u21 u22 u23 · · ·

u31 u32 u33 · · ·

...
...

...
. . .

 , ui j = 〈ϕ j , ψ̃i 〉, (7.107)

is an isometry, where {ϕ j } j∈N represents the wavelets ordered according to (7.102)
and {ψ̃ j } j∈N is the standard ordering of the Fourier basis (7.106) over N (ψ̃1 = ψ0,
ψ̃2n = ψn and ψ̃2n+1 = ψ−n). With slight abuse of notation it is this ordering that
we are using in Theorem 6.2.

7.4.2. Some preliminary estimates. Throughout this section, we assume the
setup and notation introduced above.

THEOREM 7.16. Let U be the matrix of the Fourier/wavelets pair introduced in
(7.107) with sampling density ω as in (7.105). Suppose that Φ and Ψ satisfy the
decay estimate (7.100) with α > 1 and that Ψ has v > 1 vanishing moments.
Then the following holds.
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(i) We have µ(U ) > ω.

(ii) We have that

µ(P⊥N U ) 6
C2
Φ,Ψ

πN (2α − 1)(1+ 1/(2α − 1))2α
, N ∈ N,

µ(U P⊥N ) 6 ‖Ψ ‖
2
L∞

4ωdae
N

, N > 2dae + 2(dae − 1),

and consequently µ(P⊥N U ), µ(U P⊥N ) = O
(
N−1

)
.

(iii) If the wavelet and scaling function satisfy the decay estimate (7.100) with
α > 1/2, then, for R and N such that ω−12R 6 N and M =

∣∣ΛR,a

∣∣ (recall
the definition of ΛR,a from (7.103)),

µ(P⊥N U PM) 6
C2
Φ,Ψ

π 2αω2α−1
(2R−1 N−1)2α−1 N−1.

(iv) If the wavelet has v > 1 vanishing moments, ω−12R > N and M =
∣∣ΛR,a

∣∣
with R > 1, then

µ(PN U P⊥M ) 6
ω

2R
·

(
πωN

2R

)2v

· ‖θΨ ‖
2
L∞,

where θΨ is the function such that Ψ̂ (z) = (−i z)vθΨ (z) (see above).

Proof. Note that µ(U ) > |〈Φ,ψ0〉|
2
= ω

∣∣∣Φ̂(0)∣∣∣2, moreover, it is known that

Φ̂(0) = 1 [51, Ch. 2, Theorem 1.7]. Thus, (i) follows.
To show (ii), let R ∈ N, −dae < j < 2R

dae and k ∈ Z. Then, by the
choice of j , we have that ΨR, j is supported on [−T1, T2]. Also, ψk(x) =√
ωe−2π ikωxχ[−T1/(ω(T1+T2)),T2/(ω(T1+T2))](x). Thus, since by (7.105) we have

ω ∈ (0, 1/(T1 + T2)), it follows that

〈ΨR, j , ψk〉 =
√
ω

∫ T2/(ω(T1+T2))

−T1/(ω(T1+T2))

ΨR, j(x)e2π iωkx dx

=
√
ωΨ̂R, j(−2πωk) =

√
ω

2R
Ψ̂

(
−2πkω

2R

)
e2π iωk j/2R

. (7.108)

Also, similarly, it follows that

〈Φ j , ψk〉 =
√
ω

∫ T2/(ω(T1+T2))

−T1/(ω(T1+T2))

Φ j(x)e2π iωkx dx =
√
ωΦ̂ j (−2πkω)

=
√
ωΦ̂ (−2πkω) e2π iωk j . (7.109)
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Thus, the decay estimate in (7.100) yields

µ(P⊥N U ) 6 sup
|k|>N/2

max
ϕ∈Λa
|〈ϕ,ψk〉|

2

= max

{
sup
|k|>N/2

max
R∈Z+

ω

2R

∣∣∣∣Ψ̂ (−2πωk
2R

)∣∣∣∣2 , ω sup
|k|>N/2

∣∣∣Φ̂ (−2πωk)
∣∣∣2}

6 max
|k|>N/2

max
R∈Z+

ω

2R

C2
Φ,Ψ

(1+ |2πωk2−R|)
2α 6 max

R∈Z+

ω

2R

C2
Φ,Ψ

(1+ |πωN2−R|)
2α .

The function f (x)= x−1(1+πωN/x)−2α on [1,∞) satisfies f ′(πωN (2α−1))=
0. Hence

µ(P⊥N U ) 6
C2
Φ,Ψ

πN (2α − 1)(1+ 1/(2α − 1))2α
,

which gives the first part of (ii). For the second part, we first recall the definition
of WR for R ∈ N from (7.104). Then, given any N ∈ N such that N > W1 =

2dae + 2(dae − 1), let R be such that WR 6 N < WR+1. Then, for each n > N ,
there exists some j > R and l ∈ Z such that the nth element via the ordering
(7.102) is ϕn = Ψ j,l (note that we only need Ψ j,l here and not Φ j as we have
chosen N > W1). Hence, by using (7.108),

µ(U P⊥N ) = max
n>N

max
k∈Z
|〈ϕn, ψk〉|

2
= max

j>R
max
k∈Z

ω

2 j

∣∣∣∣Ψ̂ (−2πωk
2 j

)∣∣∣∣2
6 ‖Ψ̂ ‖2

L∞
ω

2R
6 4‖Ψ̂ ‖2

L∞
ωdae

N
,

where the last line follows because N < WR+1 = 2R+1
dae + (R + 2)(dae − 1)

implies that

2−R <
1
N

(
2dae + (R + 2)(dae − 1)2−R

)
6

4dae
N

.

This concludes the proof of (ii).
To show (iii), let R and N be such that ω−12R 6 N and M =

∣∣ΛR,a

∣∣. Observe
that (7.108) and (7.109) together with the decay estimate in (7.100) yield

µ(P⊥N U PWR ) 6 max
|k|>N/2

max
ϕ∈ΛR,a

|〈ϕ,ψk〉|
2

= max

{
max
|k|>N/2

max
j<R

ω

2 j

∣∣∣∣Ψ̂ (−2πωk
2 j

)∣∣∣∣2 , max
|k|>N/2

∣∣∣Φ̂ (−2πωk)
∣∣∣2}
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6 max
|k|>N/2

max
j<R

ω

2 j

C2
Φ,Ψ

(1+ |2πωk2− j |)
2α 6 max

k>N/2
max
j<R

C2
Φ,Ψ

π 2αω2α−1

2 j (2α−1)

(2k)2α

=
C2
Φ,Ψ

π 2αω2α−1
(2R−1 N−1)2α−1 N−1,

and this colludes the proof of (iii).
To show (iv), first note that because R > 1, for all n > WR , ϕn = Ψ j,k for some

j > 0 and k ∈ Z. Then, recalling the properties of Daubechies wavelets with v
vanishing moments, and by using (7.108) we get that

µ(PN U P⊥WR
) = max

n>WR
max
|k|6N/2

|〈ϕn, ψk〉|
2
= max

j>R
max
|k|6N/2

ω

2 j

∣∣∣∣Ψ̂ (−2πωk
2 j

)∣∣∣∣2
6
ω

2R
·

(
πωN

2R

)2v

· ‖θΨ ‖
2
L∞,

as required.

COROLLARY 7.17. Let N and M be as in Theorem 6.2 and recall the definition
of µN,M(k, j) in (4.3). Suppose that Φ and Ψ satisfy the decay estimate (7.100)
with α > 1 and that Ψ has v > 1 vanishing moments. Then,

for k > 2, µN,M(k, j) 6 BΦ,Ψ ·



√
ω√

Nk−12R j−1
·

(
ωNk

2R j−1

)v
j > k + 1,

1
Nk−1

(
2R j−1

ωNk−1

)α−1/2

j 6 k − 1,

1
Nk−1

j = k,

(7.110)

for k > 2, µN,M(k,∞) 6 BΦ,Ψ ·


√
ω√

Nk−12Rr−1
·

(
ωNk

2Rr−1

)v
k 6 r − 1,

1
Nr−1

k = r,
(7.111)

µN,M(1, j) 6 BΦ,Ψ ·


√
ω

√
2R j−1

·

(
ωN1

2R j−1

)v
j > 2,

1 j = 1,
(7.112)

µN,M(1,∞) 6 BΦ,Ψ ·
√
ω

√
2Rr−1

·

(
ωN1

2Rr−1

)v
, (7.113)

where BΦ,Ψ is a constant which depends only on Φ and Ψ and R0 = 0.
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Proof. Throughout this proof, BΦ,Ψ is a constant which depends only on Φ and
Ψ , although its value may change from instance to instance. Note that

µN,M(k, j) =
√
µ(P Nk−1

Nk
U P M j−1

M j
) · µ(P Nk−1

Nk
U )

6 BΦ,Ψ N−1/2
k−1

√
µ(P Nk−1

Nk
U P M j−1

M j
), k > 2, j ∈ {1, . . . , r}, (7.114)

since we have µ(P⊥Nk−1
U ) 6 BΦ,Ψ N−1

k−1 by (ii) of Theorem 7.16. Also, clearly

µN,M(1, j) =
√
µ(P N0

N1
U P M j−1

M j
) · µ(P N0

N1
U ) 6 BΦ,Ψ

√
µ(P N0

N1
U P M j−1

M j
), (7.115)

for j ∈ {1, . . . , r}. Thus, for k > 2, it follows that µN,M(k, k) 6 µ(P⊥Nk−1
U ) 6

BΦ,Ψ (1/Nk−1), yielding the last part of (7.110). Also, the last part of (7.112) is
clear from (7.115).

As for the middle part of (7.110), note that for k > 2, and with j 6 k − 1, we
may use (iii) of Theorem 7.16 to obtain

√
µ(P Nk−1

Nk
U P M j−1

M j
) 6

√
µ(P⊥Nk−1

U PM j ) 6 BΦ,Ψ ·
1

√
Nk−1

(
2R j−1

ωNk−1

)α−1/2

,

and thus, in combination with (7.114), we obtain the j 6 k − 1 part of (7.110).
Observe that if k ∈ {1, . . . , r} and j > k + 1, then by applying (iv) of Theorem
7.16, we obtain√

µ(P Nk−1
Nk

U P M j−1
M j

) 6
√
µ(PNk U P⊥M j−1

) 6 BΦ,Ψ ·
√
ω

√
2R j−1

·

(
ωNk

2R j−1

)v
. (7.116)

Thus, by combining (7.116) with (7.114), we obtain the j > k+ 1 part of (7.110).
Also, by combining (7.116) with (7.114) we get the j > 2 part of (7.112). Finally,
recall that

µN,M(k,∞) =
√
µ(P Nk−1

Nk
U P⊥Mr−1

) · µ(P⊥Nk−1
U )

and similarly to the above, (7.111) and (7.113) are direct consequences of parts
(ii) and (iv) of Theorem 7.16.

The following lemmas inform us of the range of Fourier samples required for
accurate reconstruction of wavelet coefficients. Specifically, Lemma 7.18 will
provide a quantitative understanding of the balancing property, whilst Lemma
7.19 and Lemma 7.20 will be used in bounding the relative sparsity terms.
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LEMMA 7.18 [67, Corollary 5.4]. Consider the setup in Section 7.4.1. Let
the sampling density ω be such that ω−1

∈ N and suppose that there exists
CΦ,CΨ > 0 and α > 1.5 such that∣∣∣Φ̂(k)(ξ)

∣∣∣ 6 CΦ

(1+ |ξ |)α
,

∣∣∣Ψ̂ (k)(ξ)

∣∣∣ 6 CΨ

(1+ |ξ |)α
, ξ ∈ R, k = 0, 1, 2.

Then given γ ∈ (0, 1), we have that ‖PMU ∗PN U PM − PM‖l∞→l∞ 6 γ wherever
N > Cγ −1/(2α−1)M and

∥∥P⊥M U ∗PN U PM

∥∥
l∞→l∞ 6 γ wherever N > Cγ −1/(α−1)M

where C is some constant independent of N but dependent on CΦ , CΨ and ω.

LEMMA 7.19 [67, Lemma 5.1]. Let ϕk denote the kth wavelet via the ordering
in (7.102). Let R ∈ N and M 6 WR be such that {ϕ j : j 6 M} ⊂ ΛR,a ,
where WR and ΛR,a are defined in (7.104) and (7.103), respectively. Also, let
the sampling density ω be such that ω−1

∈ N. Then for any γ ∈ (0, 1), we have
that

∥∥P⊥N U PM

∥∥ 6 γ , whenever N is such that

N > ω−1

(
4C2

Φ

(2π)2α · (2α − 1)

)1/2α−1

· 2R+1
· γ −(2/2α−1)

and CΦ is a constant depending on Φ.

LEMMA 7.20. Let ϕk denote the k th wavelet the ordering in (7.102). Let R1, R2 ∈

N with R2 > R1, and M1,M2 ∈ N with M2 > M1 be such that

{ϕ j : M2 > j > M1} ⊂ ΛR2,a \ΛR1,a,

where ΛRi ,a is defined in (7.103). Then for any γ ∈ (0, 1)

∥∥PN U P M1
M2

∥∥ 6
π 2

4
‖θΨ ‖L∞ · (2πγ )v ·

√
1− 22v(R1−R2)

1− 2−2v

whenever N is such that N 6 γω−12R1 .

Proof. Let η ∈ l2(N) be such that ‖η‖ = 1. Note that, by the definition of U in
(7.107), it follows that

‖PN U P M1
M2
η‖2 6

∑
|k|6N/2

∣∣∣∣∣
〈
ψk,

M2∑
j=M1+1

η jϕ j

〉∣∣∣∣∣
2

6
∑
|k|6N/2

∣∣∣∣∣
〈
ψk,

R2−1∑
l=R1

∑
j∈∆l

ηρ(l, j)Ψl, j

〉∣∣∣∣∣
2

,

where we have defined

∆l = { j ∈ Z : Ψl, j ∈ Λl+1,a \Λl,a}, ρ : {(l,∆l)}l∈N→ N \ {1, . . . , |Λ1,a|}
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to be the bijection such that ϕρ(l, j) = Ψl, j . Now, observe that we may argue as in
the proof of Theorem 7.16 and use (7.108) to deduce that given l ∈ N, −dae <
j < 2l

dae and k ∈ Z, we have that 〈Ψl, j , ψk〉 =
√
ω/2lΨ̂ (−(2πωk/2l))e2π iω jk .

Hence, it follows that

∑
|k|6N/2

∣∣∣∣∣
〈
ψk,

R2−1∑
l=R1

∑
j∈∆l

ηρ(l, j)Ψl, j

〉∣∣∣∣∣
2

=

∑
|k|6N/2

∣∣∣∣∣
R2−1∑
l=R1

√
ω
√

2l

∑
j∈∆l

ηρ(l, j)Ψ̂

(
−

2πωk
2l

)
e2π iω jk/2l

∣∣∣∣∣
2

which again gives us that

‖PN U P M1
M2
η‖2 6

∑
|k|6N/2

∣∣∣∣∣
R2−1∑
l=R1

√
ω
√

2l
Ψ̂

(
−

2πωk
2l

)
f [l]
(
ωk
2l

)∣∣∣∣∣
2

6
∑
|k|6N/2

R2−1∑
l=R1

∣∣∣∣Ψ̂ (−2πωk
2l

)∣∣∣∣2 · R2−1∑
l=R1

∣∣∣∣√ω√2l
f [l]
(
ωk
2l

)∣∣∣∣2
6

R2−1∑
l=R1

max
|k|6N/2

∣∣∣∣Ψ̂ (−2πωk
2l

)∣∣∣∣2 · R2−1∑
l=R1

∑
|k|6N/2

ω

2l

∣∣∣∣ f [l]
(
ωk
2l

)∣∣∣∣2 ,
(7.117)

where f [l](z) =
∑

j∈∆l
ηρ(l, j)e2π i z j . Let H = χ[0,1) and, for l ∈ N, −dae < j <

2 j
dae, define Hl, j = 2l/2 H(2l

· − j). By the choice of j , we have that Hl, j is
supported on [−T1, T2]. Also, since by (7.105) we have ω ∈ (0, 1/(T1 + T2)), we
may argue as in (7.108) and find that 〈Hl, j , ψk〉 =

√
ω/2l Ĥ

(
−2πkω/2l

)
e2π iωk j/2l .

Thus,〈∑
j∈∆l

ηρ(l, j)Hl, j , ψk

〉
=

√
ω

2l

∑
j∈∆l

ηρ(l, j) Ĥ
(
−2πkω

2l

)
e2π iωk j/2l

. (7.118)

It is straightforward to show that inf|x |6π
∣∣∣Ĥ(x)∣∣∣ > 2/π , and since N 6 2R1/ω,

for each l > R1, it follows directly from (7.118) and the definition of f [l] that

∑
|k|6N/2

ω

2l

∣∣∣∣ f [l]
(
ωk
2l

)∣∣∣∣2 6 (
inf
|x |6π

∣∣∣Ĥ(x)∣∣∣2)−1 ∑
|k|6N/2

∣∣∣∣∣
〈∑

j∈∆l

ηρ(l, j)Hl, j , ψk

〉∣∣∣∣∣
2

6
π 2

4

∥∥∥∥∥∑
j∈∆l

ηρ(l, j)Hl, j

∥∥∥∥∥
2

6
π 2

4

∥∥P∆lη
∥∥2
.
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Hence, we immediately get that

R2−1∑
l=R1

∑
|k|6N/2

ω

2l

∣∣∣∣ f [l]
(
ωk
2l

)∣∣∣∣2 6 π 2

4

R2−1∑
l=R1

∥∥P∆lη
∥∥2

6
π 2

4
‖η‖2 6

π 2

4
. (7.119)

Also, since Ψ has v vanishing moments, we have that Ψ̂ (z) = (−i z)vθΨ (z) for
some bounded L∞ function θΨ . Thus, since N 6 γ · 2R1/ω, we have

R2−1∑
l=R1

max
|k|6N/2

∣∣∣∣Ψ̂ (2πωk
2l

)∣∣∣∣2 6 π 2

4
‖θΨ ‖

2
L∞

R2−1∑
l=R1

(
2πγ 2R1−l

)2v

6
π 2

4
(2πγ )2v‖θΨ ‖2

L∞
1− 22v(R1−R2)

1− 2−2v
.

Thus, by applying (7.117), (7.118) and (7.119), it follows that

‖PN U P M1
M2
η‖2 6

π 2

4
‖θΨ ‖

2
L∞ · (2πγ )

2v 1− 22v(R1−R2)

1− 2−2v
,

and we have proved the desired estimate.

7.4.3. The proofs.

Proof of Theorem 6.2. In this proof, we let BΦ,Ψ be some constant which depends
only on Φ and Ψ , although its value may change from instance to instance. The
assertions of the theorem will follow if we can show that the conditions in
Theorem 5.3 are satisfied. We begin with condition (i). First observe that since U
is an isometry we have that ‖PMU ∗PN U PM−PM‖l∞ = ‖PMU ∗P⊥N U PM‖l∞→l∞ 6
√

M
∥∥P⊥N U PM

∥∥ and ‖P⊥M U ∗PN U PM‖l∞→l∞ = ‖P⊥M U ∗P⊥N U PM‖l∞→l∞ 6
√

M
∥∥P⊥N U PM

∥∥. So N , K satisfy the strong balancing property with respect
to U , M and s if ∥∥P⊥N U PM

∥∥ 6 1
8

(
M log2(4K M

√
s)
)−1/2

.

In the case of α > 1, by applying Lemma 7.19 with

γ = 1
8

(
M log2(4K M

√
s)
)−1/2

,

it follows that N , K satisfy the strong balancing property with respect to U , M , s
whenever

N > Cω,Φ · 2R+1
·

(
1
8

(
M log2(4K M

√
s)
)−1/2

)−(2/(2α−1))
,
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where R is the smallest integer such that M 6 WR (where WR is defined in
(7.104)) and Cω,Φ is a constant which depends only on the Fourier decay of Φ
and ω. By the choice of R, we have that M = O

(
2R
)

since WR = O
(
2R
)

by
(7.104). Thus, the strong balancing property holds provided that

N & M1+1/(2α−1)
·
(
log2(4M K

√
s)
)1/(2α−1)

where the constant involved depends only on ω and the Fourier decay of Φ.
Furthermore, if (7.101) holds, then a direct application of Lemma 7.18 gives that
N , K satisfy the strong balancing property with respect to U , M , s whenever
N & M ·

(
log2(4K M

√
s)
)1/(4α−2). So, condition (i) of Theorem 6.2 implies

condition (i) of Theorem 5.3.
To show that (ii) in Theorem 5.3 is satisfied, we need to demonstrate that

1 &
Nk − Nk−1

mk
· log(ε−1) ·

(
r∑

l=1

µN,M(k, l) · sl

)
· log

(
K M̃
√

s
)
, (7.120)

(with µN,M(k, r) replaced by µN,M(k,∞), and also recall that N0 = 0) and

mk & m̂k · log(ε−1) · log
(

K M̃
√

s
)
,

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r,

(7.121)

where

M̃ = min
{

i ∈ N : max
k>i
‖PN Uek‖ 6 1/(32K

√
s)
}
. (7.122)

We first consider (7.120). By applying the bounds (7.110) and (7.111) on the local
coherences derived in Corollary 7.17, we have that (7.120) is implied by

mk

(Nk − Nk−1)
& BΦ,Ψ ·

( k−1∑
j=1

s j

Nk−1

(
2R j−1

ωNk−1

)α−1/2

+
sk

Nk−1

+

r∑
j=k+1

s j ·
√
ω√

Nk−12R j−1
·

(
ωNk

2R j−1

)v )
· log(ε−1) · log

(
K M̃
√

s
)
,

(7.123)

where k = 2, . . . , r , and

m1

N1
& BΦ,Ψ ·

(
s1 +

r∑
j=2

s j ·
√
ω

√
2R j−1

·

(
ωN1

2R j−1

)v)
· log(ε−1) · log

(
K M̃
√

s
)
.

(7.124)
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To obtain a bound on the value of M̃ in (7.122), observe that by Lemma 7.20,∥∥PN U P{ j}
∥∥ 6 1/(32K

√
s) whenever j =

∣∣ΛJ,a

∣∣ = O
(
2J
)

such that 2J >

(32K
√

s)1/v · N · ω. Thus, M̃ 6 d(32K
√

s)1/v · N · ωe, and by recalling that
Nk = 2Rkω−1, we have that (7.123) is implied by

mk · Nk−1

Nk − Nk−1
& BΦ,Ψ · log(ε−1) · log

(
(K
√

s)1+1/vN
)

×

( k−1∑
j=1

s j ·
(
2α−1/2)−(Rk−1−R j−1)

+ sk + sk+1 · 2−(Rk−Rk−1)/2

+

r∑
j=k+2

s j · 2−(R j−1−Rk−1)/2 · 2−v(R j−1−Rk )

)
, k > 2, (7.125)

and when k = 1, (7.124) is implied by

m1

N1
& BΦ,Ψ · log(ε−1) · log

(
(K
√

s)1+1/vN
)

×

(
s1 + s2 · 2−R1/2 +

r∑
j=k+2

s j · 2−(R j−1−Rk−1)/2 · 2−v(R j−1−Rk )

)
. (7.126)

However, the condition (6.1) obviously implies (7.125) and (7.124), hence we
have established that condition (6.1) implies (7.120). As for condition (7.121), we
first derive upper bounds for the s̃k values. Recall that according to Theorem 5.3
we have

s̃k 6 Sk(N,M, s)

= max{‖P Nk−1
Nk

Uη‖2
: ‖η‖l∞ 6 1, |supp(P Ml−1

Ml
η)| = sl, l = 1, . . . , r},

where N0 = M0 = 0. Thus, we concentrate on bounding Sk . First note that by a
direct rearrangement of terms in Lemma 7.19, for any γ ∈ (0, 1) and R ∈ N such
that M 6 WR , we have that

∥∥P⊥N U PM

∥∥ 6 γ whenever N is such that

γ >

(
2R

ωN

)2α−1/2

·

√
2

2α − 1
·

CΦ

πα
.

So for any L > 0, by letting γ =
√

2/(2α − 1)·(CΦ/π
α)·L−((2α−1)/2), if γ ∈ (0, 1),

then
∥∥P⊥N U PM

∥∥ 6 γ provided that N > ω−1
· L · 2R . Also, if γ > 1, then∥∥P⊥N U PM

∥∥ 6 γ is trivially true since ‖U‖ = 1. Therefore, for k > 2 we have
that

‖P⊥Nk−1
U PMl‖ <

√
2

2α − 1
·

CΦ

πα
·

(
2Rl

2Rk−1

)α−1/2

, l 6 k − 1.
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Also, by Lemma 7.20, it follows that

‖PNk U P Ml−1
Ml
‖ < (2π)v · ‖θΨ ‖L∞ ·

(
2Rk

2Rl−1

)v
, l > k + 1.

Consequently, for k = 3, . . . , r√
s̃k 6

√
Sk = max

η∈Θ
‖P Nk−1

Nk
Uη‖ 6

r∑
l=1

‖P Nk−1
Nk

U P Ml−1
Ml
‖
√

sl

6 BΦ,Ψ

( k−2∑
l=1

√
sl ·

(
2Rl

2Rk−1

)α−1/2

+
√

sk−1 +
√

sk +
√

sk+1

+

r∑
l=k+2

√
sl ·

(
2Rk

2Rl−1

)v )
,

where
Θ = {η : ‖η‖l∞ 6 1, |supp(P Ml−1

Ml
η)| = sl, l = 1, . . . , r},

and for k = 1, 2 we have√
s̃k 6 BΦ,Ψ

(
√

sk−1 +
√

sk +
√

sk+1 +

r∑
l=k+2

√
sl ·

(
2Rk

2Rl−1

)v)
,

where we let s0 = 0. Hence, for k = 3, . . . , r , Aα = 2α−1/2 and Av = 2v

s̃k 6 BΦ,Ψ

(√
ŝk +

k−2∑
l=1

√
sl · A−(Rk−1−Rl )

α +

r∑
l=k+2

√
sl · A−(Rl−1−Rk )

v

)2

,

where ŝk = max{sk−1, sk, sk+1}. So, by using the Cauchy–Schwarz inequality, we
obtain

s̃k 6 BΦ,Ψ

(
1+

k−2∑
l=1

A−(Rk−1−Rl )
α +

r∑
l=k+2

A−(Rl−1−Rk )
v

)

×

(
ŝk +

k−2∑
l=1

sl · A−(Rk−1−Rl )
α +

r∑
l=k+2

sl · A−(Rl−1−Rk )
v

)

6 BΦ,Ψ

(
ŝk +

k−2∑
l=1

sl · A−(Rk−1−Rl )
α +

r∑
l=k+2

sl · A−(Rl−1−Rk )
v

)
,

and similarly, for k = 1, 2, it follows that s̃k 6 BΦ,Ψ (ŝk +
∑r

l=k+2 sl · A−(Rl−1−Rk )
v ).

Finally, we use the above results to show that condition (6.1) implies (7.121):
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By our coherence estimates in (7.110), (7.112), (7.111) and (7.113), we see that
(7.121) holds if mk & m̂k · (log(ε−1)+1) · log

(
(K
√

s)1+1/vN
)

and for each l = 2,
. . . , r ,

1 & BΦ,Ψ

((
N1

m̂1
− 1

)
· s̃1 ·

√
ω

2Rl−1
·

(
ωN1

2Rl−1

)v
+

l−1∑
k=2

(
Nk − Nk−1

m̂k
− 1

)
· s̃k ·

√
ω

Nk−12Rl−1
·

(
ωNk

2Rl−1

)v
+

(
Nl − Nl−1

m̂l
− 1

)
· s̃l ·

1
Nl−1

+

r∑
k=l+1

(
Nk − Nk−1

m̂k
− 1

)
· s̃k ·

1
Nk−1

(
2Rl−1

ωNk−1

)α−1/2 )
, (7.127)

(where we with slight abuse of notation define

l−1∑
k=2

(
Nk − Nk−1

m̂k
− 1

)
s̃k

√
ω

Nk−12Rl−1

(
ωNk

2Rl−1

)v
= 0

when l = 2), and for l = 1

1 & BΦ,Ψ

((
N1

m̂1
− 1

)
· s̃1

+

r∑
k=2

(
Nk − Nk−1

m̂k
− 1

)
· s̃k ·

1
Nk−1

(
1

ωNk−1

)α−1/2 )
. (7.128)

Recalling that Nk = ω
−12Rk , (7.127) becomes, for l = 2, . . . , r ,

1 & BΦ,Ψ ·
((

N1

m̂1
− 1

)
·

s̃k

Nk−1
· 2−v(Rl−1−Rk )

+

l−1∑
k=1

(
Nk − Nk−1

m̂k
− 1

)
·

s̃k

Nk−1
· 2−v(Rl−1−Rk ) +

(
Nl − Nl−1

m̂l
− 1

)
·

s̃l

Nl−1

+

r∑
k=l+1

(
Nk − Nk−1

m̂k
− 1

)
·

s̃k

Nk−1
·
(
2α−1/2)−(Rk−1−Rl−1)

)
,

and (7.128) becomes

1 & BΦ,Ψ ·

((
N1

m̂1
− 1

)
· s̃1 +

r∑
k=l+1

(
Nk − Nk−1

m̂k
− 1

)
·

s̃k

Nk−1
·
(
2α−1/2)−Rk−1

)
.
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Observe that for l = 2, . . . , r

1+
l−1∑
k=1

2−v(Rl−1−Rk ) +

r∑
k=l+1

(
2α−1/2)−(Rk−1−Rl−1) 6 BΦ,Ψ ,

and that 1+
∑r

k=l+1

(
2α−1/2

)−(Rk−1) 6 BΦ,Ψ . Thus, (7.121) holds provided that for
each k = 2, . . . , r ,

m̂k > BΦ,Ψ ·
Nk − Nk−1

Nk−1
· s̃k, m̂1 > BΦ,Ψ · N1 · s̃1,

and combining with our estimates of s̃k , we may deduce that (6.1) implies (7.121).

Proof of Proposition 6.4. If ‖P⊥J x‖ = 0, there is nothing to prove, thus, we
assume that ‖P⊥J x‖ 6= 0. Let f =

∑
∞

j=1 x jϕ j and f̂ = { f̂ j } j∈N, where f̂ j =

〈 f, ψ j 〉. Similarly, let g =
∑J

j=1 x jϕ j and ĝ = {ĝ j } j∈N, where ĝ j = 〈g, ψ j 〉.
Let Ω be a multilevel sampling scheme as in Theorem 6.2, and define y =
PΩ f̂ + z where z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ 6 δ. Now, let
z1 = PΩU PJ x − y. Suppose for the moment that

∥∥PΩU P⊥J
∥∥∥∥P⊥J x

∥∥ 6 δ, we
show this later. Then we have

‖z1‖ 6 ‖PΩU x − y‖ +
∥∥PΩU P⊥J x

∥∥ 6 δ +
∥∥PΩU P⊥J

∥∥∥∥P⊥J x
∥∥ 6 2δ.

Define ỹ = PΩ ĝ − z1 and apply Theorem 6.2 to g and the noise vector z1. Then,
since ỹ = y we get that any minimizer ξ̃ of

min
η∈CJ
‖η‖l1 subject to ‖PΩU PJη − y‖ 6 2δ,

satisfies
‖ξ̃ − PJ x‖ 6 C ·

(
2δ̃ ·

(
1+ L ·

√
s
)
+ σs,M(g)

)
.

However, σs,M(g) 6 σs,M( f ) and ‖P⊥J x‖ 6 σs,M( f ). Thus,

‖ξ̃ − x‖ 6 2C ·
(
δ̃ ·
(
1+ L ·

√
s
)
+ σs,M( f )

)
,

where we have assumed without loss of generality that C > 1. So, to finish the
proof, we only need to show that

∥∥PΩU P⊥J
∥∥∥∥P⊥J x

∥∥ 6 δ. In fact, we show that∥∥PN U P⊥J
∥∥∥∥P⊥J x

∥∥6 δ. To see the latter, by choosing R1 = R and letting R2→∞

in Lemma 7.20, it follows that for any γ ∈ (0, 1)∥∥PN U P⊥J
∥∥ 6

π 2

4
‖θΨ ‖L∞(2πγ )

v
√

2
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whenever N 6 γ 2Rω−1. Letting

γ = (2π)−1

(
δ

‖P⊥J x‖ · ‖θΨ ‖L∞π
2

)1/v

we get the desired bound when 2R > 2πωN ·
(
((‖P⊥K x‖2 · CΨ )/δ)

)1/v, where
C−1
Ψ = ‖θΨ ‖L∞π

2.
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