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Abstract

Background: DNA inside eukaryotic cells wraps around histones to form the 11nm chromatin fiber that can further
fold into higher-order DNA loops, which may depend on the binding of architectural factors. Predicting how the DNA
will fold given a distribution of bound factors, here viewed as a type of sequence, is currently an unsolved problem
and several heterogeneous polymer models have shown that many features of the measured structure can be
reproduced from simulations. However a model that determines the optimal connection between sequence and
structure and that can rapidly assess the effects of varying either one is still lacking.

Results: Here we train a dense neural network to solve for the local folding of chromatin, connecting structure,
represented as a contact map, to a sequence of bound chromatin factors. The network includes a convolutional filter
that compresses the large number of bound chromatin factors into a single 1D sequence representation that is
optimized for predicting structure. We also train a network to solve the inverse problem, namely given only structural
information in the form of a contact map, predict the likely sequence of chromatin states that generated it.

Conclusions: By carrying out sensitivity analysis on both networks, we are able to highlight the importance of
chromatin contexts and neighborhoods for regulating long-range contacts, along with critical alterations that affect
contact formation. Our analysis shows that the networks have learned physical insights that are informative and
intuitive about this complex polymer problem.
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Background
In eukaryotic cells, the condensation of the DNA into
chromatin fibers that fold into specific 3D structures
brings distant sites of the genome into spatial proxim-
ity. These conformations can modulate the expression of
genetic information by altering the frequency of inter-
action between a distant regulatory element such as an
enhancer, and the corresponding target gene promoter.
The recent advent of high-throughput sequencing tech-
nology has allowed the genome-wide measurement of
both chromatin structure via Hi-C contact maps [1, 2]
as well as the bound locations of a great number of
chromatin-associated factors through ChIP-seq methods
[3, 4] and additional methodologies [5].
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A large body of evidence supports the hypothesis that
the spatial arrangement of bound chromatin factors along
the DNA strongly influences the probability of chromatin
contacts between distant genomic regions [6]. In partic-
ular, megabase-sized genomic compartments with similar
chromatin states tend to interact with each other [1, 7].
At a finer sub-megabase scale, topologically associated
domains [8–10] flanked by chromatin insulator or bound-
ary elements [10–12] work as independent genomic units
characterized by their self-interaction and repulsion with
other genomic regions [13, 14]. Consequently, models that
aim to predict how bound chromatin factors influence the
folding of chromosomes are now being developed.
Most of the progress towards predicting chromatin con-

formation from the states of bound factors has come
from simulating heterogeneous beads-on-a-string poly-
mers whose bead types correspond to different chro-
matin states [15–28]. These simulations have been suc-
cessful in corroborating that interactions between factors
together with topological constraints may be responsible
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for driving chromatin conformation. Nevertheless, calcu-
lating the probability of contact between two genomic
sites relies on sampling a vast number of polymer con-
figurations. Consequently, exploring the conformational
effects of altering the sequence of bound chromatin states
is computationally challenging. An alternative Bayesian
approach [29], has been successful in predicting the local
contact maps from chromatin states without the need
for polymer simulations and can rapidly calculate how
contact probabilities change when chromatin states are
altered. However, the chromatin states that were used as
inputs were based on an unsupervised clustering of bound
chromatin factors that did not take into account any struc-
tural information [30]. It is therefore unlikely that this
classification constitutes the best 1D description of the
sequence that determines chromatin structure and one
may expect to achieve better predictive power by generat-
ing a conformation-specific annotation of the sequence of
chromatin states. Methods that integrate both chromatin
structure and sequence into a unified framework that can
rapidly predict the respective contributions of changing
sequence or structure are therefore needed.
Multi-layer neural networks that have been around for

decades [31] provide the promise of a framework for
learning the connections between the sequence of bound
factors and chromatin structure. These networks consist
of a series of units known as neurons that take in an
input signal and have their weighted connections trained
to reduce a defined cost function of the output. Many of
the networks that are in use today for feature recognition
are of a feed-forward structure consisting of a hierarchy of
layers. These are dense neural networks (DNN) when they
feature a high number of neurons in each layer and are
considered to be “deep” when they feature a high number
of layers. DNNs can also be coupled to trainable convo-
lutional filters that help to discover important predictive
features in the input that often reduce its dimensionality.
Such networks are called convolutional neural networks
(CNNs). The universal approximation theorem states that
under mild assumptions, a feed-forward neural network
with a single layer and a finite number of neurons can
approximate any continuous function [32]. This capabil-
ity is one of the main reasons of their great success at
modeling complex problems withminimal design input by
humans. Their use in bioinformatics has included predict-
ing gene expression [33], the effect of sequence variants
[34], predicting secondary structure [35], motif affinity
[36] and filling in missing values in the human methy-
lome [37]. In the context of Hi-C data analysis, multi-layer
neural networks have been used to generate statistical
confidence estimates for chromatin contacts [38] and to
enhance the resolution of contact maps [39].
One challenge in using neural networks to model com-

plex phenomenon is that they hide their inner workings

behind large combinations of neuronal connections that
are often hard to interpret. For this reason, DNNs tend to
be seen as black boxes that can perform a great variety of
tasks but offer little mechanistic explanation of how the
inputs of the model are being used to generate the out-
put. Nevertheless, in recent years a great amount of effort
in the DNN community has been directed to developing
techniques to infer how information is processed in these
models ranging from sensitivity analysis to interpretability
[40–46].
Here we apply dense neural networks (DNNs) to

the problem of chromatin conformation. We show
that using DNNs one is not only able to predict
chromatin conformation from a sequence of DNA-
bound chromatin associated factors, but also predict
sequence from chromatin conformation. In addition, the
model generates a biologically relevant 1D sequence
annotation for chromatin states that is optimized to
explain chromatin conformation. Furthermore, using
sensitivity analysis we explore how the model relates
sequence and conformation and unveil key regulatory
features behind their connection. Such an approach
highlights the importance of sequence neighborhood in
structuring chromatin.

Results and discussion
Model predictions
As detailed in Methods, we developed multi-layer neu-
ral networks to predict chromatin conformation from
sequence information in the form of the distribution of
bound chromatin factors or vice versa, predict a likely
sequence given only conformational data. Structure is rep-
resented as a contact matrix that gives how often every
pair of sites of a fixed size/resolution in the genome
were found to be in contact. We take as sequence data
the enrichment of each site for a given bound protein
that is associated with the folding of chromatin. (For the
results that follow here, we use Hi-C data collected from
Drosophila Melanogaster embryos at a resolution of 10
kbp for structure and we use the genome-wide distribu-
tion of 50 different bound chromatin-associated factors as
sequence (see Methods).) Our aim is to train the neural
networks to make predictions at the intra-chromosomal
scale, i.e. using sequence data for a region of a chromo-
some predict the corresponding sub-region of the Hi-C
contact map (or vice versa). To predict structure from
sequence (what we will call the forward model), we couple
a convolutional filter to a DNN (yielding a CNN) where
the filter is used to compress the multitude of bound fac-
tors into a single 1D sequence that is then fed into the
DNN to predict structure (see Fig. 1). This network archi-
tecture provides interpretability by giving a learned 1D
sequence representation, {σ }, of the highly complex set
of bound factors that best predicts structure, which the
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Fig. 1 Schematic of the forward model convolutional neural network (CNN). This neural network is trained to predict chromatin contacts maps
(Hi-C, top) from various chromatin-sequence factors (Chip-seq profiles, bottom). The Hi-C data to be predicted as an output is the upper diagonal of
the Hi-C matrix of a w-wide genomic window. The input to the CNN is a 3w-long sequence that includes the w-long region of the Hi-C matrix (inner
sequence) as well as two w-long sequences on each side (flanking sequences). The CNN is made of two parts. First, a sigmoid-activated
convolutional layer reduces theM chromatin profiles to a 1D sequence profile. Then, the 1D sequence profile is fed to a ReLu-activated dense neural
network (DNN) that predicts the Hi-C contact maps

network calculates as the probability of contact, P(cij)
between all sites, i and j (see Methods for details). For
predicting sequence from structure we use sub-regions
of the Hi-C matrix and train the network to predict the
corresponding region of the 1D sequence representation
(see Methods). We call this the backward model (see
Fig. 3a) and it requires a trained forward model to provide
a 1D sequence representation that it can learn in going
from structure to sequence. Once trained, the backward
model can then predict a likely sequence representation
from structure alone. We now provide details of how
these models were trained and the biologically meaningful
results that they generate.
The forward model was fit using a training dataset along

with a validation dataset that was used to check for con-
vergence and to avoid over-fitting (see Methods). With
the fitted forward model, a test set of sequences was then
given as input, resulting in a set of predicted local contact
maps. We found a Pearson correlation of 0.61 between
the individual pairs of predicted and experimental con-
tact maps in the test set. Nevertheless, since our data
consists of overlapping sliding sequence windows (see
Methods), a contacting pair is predicted multiple times as
output from different sequences. This offers the opportu-
nity of averaging the outputs from multiple windows and
thus increase the predictive power of the model (akin to
bootstrap aggregating, also known as bagging [47]). Upon
doing so, the correlation between the entire predicted and
experimental contact maps increased to 0.68 (Fig. 2a).

By training the forward model, the convolutional fil-
ter has been fit to optimize the predictive power of the
high dimensional input sequence of bound factors to the
contact map outputs. The learned weights in the con-
volutional filter, W 0

j in Eq. 2, represent the strength of
each chromatin factor in determining structure. Figure 2b
shows the sorted distribution of these weights for all chro-
matin factors. The resulting distribution contains a signif-
icant amount of biologically relevant information.We find
that one set of factors (negative weights) are associated
with inactive/heterochromatic factors (H1, H3K27me3,
H3K9me1), whereas the other set of factors (positive
weights) corresponds to active/euchromatic factors asso-
ciated with gene bodies (H3K36me2 and H3K36me3),
promoters (RNA Polymerase II (RNAPII)), chromatin
remodeler (NURF), poised enhancers (H3K4me1) or insu-
lator proteins CP190, Chromator (Chro) and Beaf32 or
CTCF, that are also associated with active genes [48, 49].
Interestingly, applying the filter to the input sequences and
histogramming the resulting 1D chromatin annotation we
find that it has a bimodal nature (Fig. 2c) where the inac-
tive mode is bell-shaped around a value of ∼ 0.2, whereas
the active mode is peaked at one. Moreover, histogram-
ming the 1D chromatin state values of sites grouped by
gene transcription level, we corroborate that small values
(∼ 0.2) correspond to inactive chromatin whereas large
values (∼ 1) correspond to active chromatin. This result
is suggestive that experiments that ectopically activate or
repress a gene could be used to test the structural changes



Farré et al. BMC Bioinformatics  (2018) 19:372 Page 4 of 12

A

B C

D

Fig. 2 Structure and sequence predictions of forward and backward neural networks. a Distance-normalized Hi-C contacts predicted from the
forward-model CNN in a 5 Mbp region of the test data set that was left out of the fitting procedure (chrom 3R 15–20 Mbp). A correlation of 0.68
between the original and predicted counts was obtained. bWeights of the sigmoid-activated convolutional filter applied to the chromatin factor
sequences in order to generate the 1D sequence profile. c Histogram of the values of the 1D sequence obtained after the convolutional layer for all
sites, transcriptionally active sites and transcriptionally inactive sites. d An independent DNN (backward model) was built to predict the 1D
sequence from Hi-C data. From bottom to top, multiple chromatin factors were converted to this 1D sequence by running them through the
convolutional filter of the forward model. Then, the backward model was used to predict those 1D sequences from Hi-C contacts. The predicted 1D
sequence (red) and the original 1D sequence (below) showed a correlation of 0.73. (Top) A Gaussian-smoothed version of the original sequence
showed a correlation of 0.93 with the predicted sequence from the backward model. The genomic region shown in (d) is the same 5 Mbp region of
the test set shown in (a)

predicted by our model due to “flipping” the state of the
corresponding site from inactive to active, or vice-versa.
Similarly, grouping sites based on the “chromatin col-
ors” classification [30] we also find that small annotation
values correspond to heterochromatic classes while large
values correspond to euchromatic ones (see Additional
file 1: Figure S1). Thus the fitted filter has naturally
grouped the multitude of different chromatin factors into
two groupings, with the heterochromatic factors play-
ing a more dominant singular role in shaping structure
and the euchromatic factors having a more heterogeneous
influence.

We solved the inverse problem (structure to sequence)
by fitting an independent multi-layer DNN (seeMethods).
This model, named the backward model, predicts the 1D
chromatin sequence annotation from the forward model
using just the local Hi-C contact map as input. The back-
ward model thus predicts a likely sequence of chromatin
states that could form that map. Applying the trained
backward model to the test set, the individual sequences
predicted from the local contact maps had a correlation
of 0.66 with the original 1D sequence and a correlation of
0.73 after averaging overlapping windows (Fig. 2d). The
predicted profiles visually resemble a smoothened version
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of the original 1D sequence from the convolutional fil-
ter. This was corroborated by performing a Gaussian
smoothing on the original 1D sequence, with the result-
ing smoothed sequence now having a correlation of 0.93
with the backward model prediction (Fig. 2d). Based on
this finding, we hypothesize that the forward-model may
in fact be doing smoothing internally in the DNN by pre-
dicting chromatin contacts based on a local average of
the sequence. We tested this by feeding the Gaussian-
smoothened 1D sequence from the convolutional filter
as input into the DNN layers of the forward model. The
predicted contacts from the smoothed sequence showed
a correlation of 0.98 with the previously predicted con-
tacts derived from the non-smoothed sequence (shown
in Fig. 3b), indicating that the forward-model network
generates a similar contact map output from a smoother
description of chromatin factors.
Next, we inspected how the predictions obtained from

the forward and backward models compare to each other.
We thus looked at the correlation between the forward 1D
sequence (derived from ChIP-Seq) and the backward 1D
sequence (derived from contacts) in the test set (Fig. 3b).
We found that regions where these sequences differed
most were regions where the correlation between the pre-
dicted Hi-C counts from the forward and original counts
tended to also be poor (0.35 correlation between the
two trends). These concordant discrepancies between the
forward and the backward model predictions could be
indicative of divergencies between the actual state of the
cells used for measuring sequence and chromatin con-
tact maps. We further tested this hypothesis by feeding
the sequences predicted from the backward model as
input to the DNN of the forward-model, obtaining a new
set of predicted contact maps (see schematic in Fig. 3a).
We find that the correlation between the predicted and
original contact maps improves from 0.68 to 0.71 using
the sequences from the backward model compared to
the sequence from the convolutional filter applied to the
ChIP-seq profiles (Fig. 3b). This thus indicates that the
observed discrepancies are generally not a result of noisy
sequence prediction, instead they are suggestive of small
changes in chromatin sequence that generally improve
structure prediction. In addition, genomic regions where
chromatin structure is consistently poorly predicted (eg.
the large dip the correlation around ∼ 24 − 25 Mbp in
Fig. 3b) may be indicative that the principles of chromatin
folding learned by our models are are not the primary
drivers of conformation in these locations. Our findings
thus highlight two aspects: First, 2D contact maps can be
efficiently encoded into a 1D vector and decoded back
(our backward and forward model effectively work as an
auto-encoder, similarly to [39], with the difference that
our embedded feature vector is the chromatin sequence).
Second, a backward model that predicts sequence from

structure can be used to identify locations in the genome
where sequential and structural datasets likely differ from
one other. One could imagine this to be a powerful
technique to analyze phenotype-to-genotype linkages by
identifying regions where chromatin states are likely to
vary by using contact maps from cells of differing tissue,
developmental time or disease.

Spatial analysis of conformational effects
In this section we focus on determining what character-
istics of the chromatin sequence influence contact maps
the most, and vice-versa, what elements of a local contact
map are important for inferring sequence. The follow-
ing analysis thus serves a double purpose: On the one
hand, it answers specific questions about chromatin fold-
ing. For instance, it quantifies how a particular structure
may be altered bymaking a given genomic site more active
or inactive. Secondly, it verifies that the predictions from
our neural networks come from a correct representation
of the underlying biological mechanisms rather than the
exploitation of data artifacts.
First, using the forward model, we measured how sen-

sitive the probability of contact P(cij) is to sequence σk by
calculating the gradient of the probability of contact of a
pair of sites ∂P(cij)/∂σk at each site k of the 3w-long input
sequence. This quantity can be obtained by the method of
back-propagation (see Methods) and highlights how the
probability of contact would change upon increasing the
value of σk (i.e. making the chromatin more active at that
location k). Alternatively, gradient values can also be inter-
preted as how chromatin states must be altered in order to
increase the probability of contact. A negative value of the
gradient would imply that to increase the contact proba-
bility one would have to decrease the value of σk , making
the statemore inactive. Therefore, such analysis highlights
the conformational effect that would be expected upon
mutating/altering the bound sequence at each particular
location of the genome (Fig. 4a).
To examine the general effects of how varying the

sequence affects the probability of contact we averaged
∂P(cij)/∂σk over the test data. Specifically, for each pair
of sites i and j in the genome separated by a distance
d = |j− i|, we calculated ∂P(cij)/∂σk for the data in which
(i, j) appear centred in the sequence w ( for an exam-
ple, see the pairs of sites (1) and (2) in Fig. 4a). Then we
averaged all pairs of sites in the test data that meet these
criteria, obtaining a sequence of average gradients for cen-
tred sites situated at a distance d. In Fig. 4b we show the
〈∂P(cij)/∂σk〉d at each distance d as a function of relative
position k. We find that making the regions between con-
tacting sites more inactive tends to favor more contact
(〈∂P(cij)/∂σk〉d < 0). This is strongest at shorter distances
of contact (d < 300 kbp) and becomes weaker as the dis-
tance increases. On the other hand, making the sites of



Farré et al. BMC Bioinformatics  (2018) 19:372 Page 6 of 12

A

B

Fig. 3 Detecting potential discrepancies between sequential and structural datasets. a Schematic of the three sequence-structure predictions
performed. On the left, the original ChIP-seq is fed to a CNN (forward model) and outputs both a 1D sequence and a predicted Hi-C. In the centre,
the original Hi-C is fed to a DNN (backward model) to predict the 1D sequence found in the forward model called the backward sequence. On the
right, the backward sequence is fed to the dense neural network of the forward model (without fitting it again) to generate a new Hi-C prediction
(Hi-C prediction 2), based on the backward sequence derived from the original Hi-C. b Shown is the correlation between the data generated by the
models in (a) along the w-wide genomic windows. Genomic regions where the backward sequence differs from the original sequence tend to
coincide with regions where the predicted Hi-C and the original Hi-C differ (0.35 correlation). There is an improvement between the predicted Hi-C
and the original Hi-C when using the backward predicted sequence as input

contact more active also increases the contact probabil-
ity (〈∂P(cij)/∂σk〉d > 0), regardless of distance of contact.
The heat map also shows that active chromatin immedi-
ately outside i and j at shorter ranges of contact can also
increase the probability of contact.
The gradient squared

(
∂P(cij)/∂σk

)2 highlights where
themagnitude of the gradient is the greatest, and indicates
which sequence locations dominate contact probabilities.
In the inset of Fig. 4b we observe that, overall, the chro-
matin states at the sites of contact are the strongest deter-
minants of contact probability. Nevertheless, the contact
probability of sites situated at a shorter distance (d <

300 kbp) are also strongly determined by the state of the
chromatin neighbours in between and outside the sites.

Second, we performed similar gradient analysis on the
backward model that predicts chromatin states from con-
tact maps. For the backward model the gradient corre-
sponds to ∂σk/∂P(cij), and indicates how a change in
contact between two sites i and j would be reflective
of a change in the chromatin state at site k. We eval-
uated ∂σk/∂P(cij) at each genomic location and it can
be visualized as a map of gradients with the same size
as the contact map. In Fig. 5a we show at the top the
contact map and sequence of a particular genomic loca-
tion. At the bottom of Fig. 5a, we evaluate the gradient
∂σk/∂P(cij) for different σk positions in the same genomic
location. The heat maps indicate how the chromatin state
σk would change when increasing a particular P(cij). In



Farré et al. BMC Bioinformatics  (2018) 19:372 Page 7 of 12

A

B

Fig. 4 Gradient analysis of probabilities of contact. a The gradient of the probabilities of contact with respect to the surrounding chromatin states
was evaluated at every genomic region. As an example, we show a contact map P(cij) together with its respective chromatin states σk
(chromosome 2L 9.15–11.55 Mbp). The gradient was evaluated in four different pairs of sites i and jmarked as red circles, and it shows how
chromatin states should be altered in order to increase the probability of contact between those sites. The gradient profiles thus suggests the
activation or inactivation of regions depending on the location of i and j in the contact map and the sequence of chromatin states. b Genome-wide
average of probability gradients ∂P(cij)/∂σk sorted by distance of contact between i and j. An increase of inactive states between pairs of sites
typically increases the probability of contact, especially at shorter distances of contact (d < 300 kbp). An increase of active states on the sites of
contact itself typically increases the probability of contact between sites. The inset shows the average squared gradients, which are indicative of the
average magnitude of the gradients, therefore highlighting the chromatin regions with the largest weight on determining probability of contact

Fig. 5b, we averaged over the test set the gradients for
those w-long sequences whose central chromatin state
was either inactive or active. This calculation highlights
that when the chromatin state is inactive, an increase
in contact between sites situated at the left and the
right of the inactive state would be indicative of the
inactive state becoming even less active (or more inac-
tive). The opposite trend is held for active sites, with
an increase of contact between neighbouring sites corre-
sponding to the site being more active. Last, by looking
at the average squared gradient we find that the con-
tacts between sites on the left and right of the site of
interest are the main determinants of the chromatin state
at that site.

Conclusion
In this paper we have presented a method using dense
neural networks (DNN) for predicting chromatin contact
maps from sequences bound by chromatin factors and
vice versa. Notably, although a certain amount of human-
guided design choices went into structuring the DNN, a
large part of the model selection behind it was done auto-
matically. By fitting a convolutional filter, we were able to
reduce the high dimensional input of multiple chromatin
factors to a single 1D chromatin state sequence that was
most predictive of structure. Furthermore, by building an
inverse model that predicts the chromatin state sequence
from contact maps, we could show that the 2D contact
maps can effectively be compressed into a 1D sequence
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Fig. 5 Gradient analysis of probabilities of chromatin states. Gradient analysis of probabilities of chromatin states. a At the top, a contact map and
inner sequence of a genomic window used as an example to evaluate gradients (chromosome 2L 9.95–10.75 Mbp). At the bottom, the gradient of
the chromatin states of three different locations σk of the sequence (marked as red) with respect to the probabilities of contact (in the same
genomic window as above). The heat maps indicate how the probabilities of contact P(cij) would need to change in order to increase value of the
chromatin state σk (make it more active), or equivalently, how σk would change when increasing P(cij). b Genome-average of gradients for subsets
of sites where the central chromatin state is either inactive (σk ≈ 0) or active (σk ≈ 1), and genome-average gradients of the central chromatin
state. On average, when σk is an inactive state, an increase of contacts between the sites surrounding σk makes σk more inactive (negative gradient).
For the active state, an increase of contact probabilities between sites surrounding σk tends to make the sites more active (positive gradient). The
average gradient square highlights that the contacts that are most informative about the chromatin state at a given location are the contacts
between the sites that flank the location

and decompressed back. This supports the theory that
chromatin folding (for scales at least<800 kbp) is strongly
determined by chromatin states arising from a sequence
of bound factors.
By analyzing how varying the inputs to the two neu-

ral networks (forward and backward models) changed the
outputs, we highlighted that chromatin conformation is
a non-local problem; the probabilities of contact between
each pair of sites depends on the chromatin states in the
larger neighbourhood. In general, the presence of inactive
chromatin between two contacting sites or active chro-
matin on the sites themselves and outside their flanks
increases the probability of contact. Nevertheless, the
probability of contact between sites situated at a larger dis-
tance (> 300 kbp) is largely determined by the chromatin
states of the contacting sites themselves.
The work presented in this paper is a proof-of-concept

that can easily be extended to capture more biological fea-
tures of interest. For instance, one could use a larger num-
ber of convolutional filters, which would provide a richer
biological description of chromatin states (i.e. not just a
simple ’inactive’ versus ’active’ state reduction as was done
here). This could also include going to finer resolutions

both at the level of bound factors and the contact map
[12, 50], and there is no reason why they have to be at
the same spatial scale. One could also introduce additional
types of sequence as inputs, such as genomic annotations,
gene expression measurements, genomic mapability and
other relevant information to the problem. In addition,
one may also be able to introduce non-sequential inputs,
that may allow the inclusion of experimental details such
as developmental times, cell types or temperatures, and
thus allow the modeling of a heterogeneous mixture of
cells.

Methods
Hi-C data
Chromatin structural information comes in the form
of genome-wide contact maps that were obtained from
the publicly available Hi-C experiments done by Schuet-
tengruber et al. [51] (GSE61471), performed on 3000-
4000Drosophila melanogaster embryos, 16-18 hours after
egg laying. The contact map is an array whose ele-
ments nij are the number of times a particular pair of
genomic sites were found to be in contact. The contact
map was built using a set of N non-overlapping sites
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of a fixed size (we used a size of 10 kbp which gave
N = 9663 for all the autosomal chromosomes of D.
melanogaster). The counts, nij, between all pair of sites
i and j in the contact map were determined by count-
ing up all sequenced pairs from the Hi-C measurement
that fell into a given pair yielding an N × N symmet-
ric matrix (and each unique sequence pair was only
counted once to reduce experimental bias, as suggested
in [8]).
We normalized the contact map using the ICE method

[52] so that total number of counts along each row across
the contact map was the same. Then, we measured the
average number of contacts at each distance of con-
tact and divided the Hi-C counts by it. This correction
removed the strong decaying signal as a function of the
distance between contacting sites due to the entropic
polymer effect (such as done in [53]). Our final contact
maps, which we label as P(cij), correspond to contact
enrichments at a given distance and are proportional
to the actual probabilities of contact when the polymer
entropy is removed.

ChIP-seq data
For the sequence of bound factors, we used the
enriched genomic regions of 50 chromatin factors mea-
sured with ChIP-seq in 14-16 hour D. melanogaster
embryos [54]. Specifically, we downloaded the fol-
lowing factors: BEAF, H3K23ac, H3K79Me1, HP1,
POF, CP190, H3K27Ac, H3K79me2, HP1b, Pc, CTCF,
H3K27me2, H3K79me3, HP1c, Psc, Chro, H3K27me3,
H3K9acS10P, HP2, RNA Pol II, GAF, H3K36me1,
H3K9me1, HP4, RPD3, H1, H3K36me2, H3K9me2,
JHDM1, SU(HW)-HB, H2AV, H3K36me3, H3K9me3,
LSD1, Su(var)3, H2B-ubiq, H3K4me1, H4, MBD-R2,
ZW5, H3, H3K4me1, H4K16ac(M), MOF, dMi, H3K18Ac,
H3K4me3, H4K20me1, NURF301, dRING. This data is
publicly available at http://www.modencode.org/
as part of the modENCODE project.
Using the same genomic binning that was used in con-

structing the contact map (size of 10 kbp), we built M
(here M = 50) sequence profiles of length N (here
N = 9663) by calculating what fraction of each site was
enriched for a given chromatin factor. Therefore, the val-
ues of the sequence profiles range from 0 (factor is not
present) to 1 (the bin is fully occupied by the factor).

Transcription data
Gene transcription data was obtained from publicly
available RNA tag sequences detected with Illu-
mina GAII with the digital gene expression (DGE)
module from duplicate RNA samples from Kc167 cells
[30](GSE22069).
We assigned a transcription score to each genomic bin

by multiplying RNA counts by the fraction of the genomic

bin that is occupied by the the gene in question. Next, we
classified each bin into either active of inactive by tresh-
olding transcription scores at one (inactive: transcription
score <1, active: transcription score >1).

Dense neural networks for connecting conformation to
sequence
A schematic for our model that uses a convolutional
neural network (CNN) to predict chromatin contact
maps from bound-DNA sequence data is shown in
Fig. 1. The output of the network is a local contact
map of size w × w that contains w(w + 1)/2 inde-
pendent elements (we take w = 80 that gives 3240
network outputs). With respect to input, based on our
prior work [29] that showed the importance of flank-
ing sequence neighborhoods, we take the sub-sequence
of length w from the M sequence profiles that is cen-
tered on the w sites of the contact map, along with
flanking sequences of size w giving an input array of
sizeM × 3w.
Our CNN for predicting chromatin conformation from

sequence, which will be referred as “the forward model”,
has interpretability in mind. First, a convolutional filter
with width equal to one and an sigmoidal output function
acts on the (M×3w) input reducing its dimensionality to a
one-dimensional 3w-long vector (Fig. 1) whose individual
values range from 0 to 1. This vector can be interpreted as
a one-dimensional sequence of chromatin states (with val-
ues between 0 and 1) that is used as input to the rest of the
neural network to predict contact maps. More specifically,
if we denote by �xi the ith position of the input sequence,
with dimensionM equal to the number of chromatin fac-
tors, the value of the 1D chromatin annotation at that
position, σi, is obtained from

σi = eEi
1 + eEi

, (1)

with

Ei =
M∑

j
W 0

j · xi,j + β0, (2)

where W 0
j and β0 are the trainable weights of the con-

volutional filter. The index j corresponds to each of the
M chromatin factors. The fitted filter thus denotes the
weights applied to each of the M bound factors for classi-
fying the chromatin into a single sequence that is the best
predictor of structure.
Next, the resulting 1D sequence profile of size 3w is fed

to a DNN with multiple layers of increasing size, where
the last layer has w × (w + 1)/2 outputs corresponding

http://www.modencode.org/
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to the values of a local contact map for w bins. The value
obtained at neuron i of layer n, yni , is calculated using the
values of all neurons k in the previous layer yn−1

k ,

yni = ReLu
(

∑

k
Wn

k · yn−1
k + βi

)

, (3)

where Wn
k is a matrix of weights applied to each neuron

of the previous layer, βi is a constant, and ReLu is the
rectified linear unit function, namely f (x) = max(0, x),
which helps to introduce non-linearities and sparse acti-
vation ( 50% of neurons are activated) while remaining
easily computed and differentiated [55]. Both Wn

k and βi
are trainable parameters.
The cost function to be minimized during the fitting

procedure was taken to be the mean squared error
between experimental and predicted distance-normalized
contact maps, along with L2 regularization of the filter
weights. The technique of dropout regularization, that
consists on setting the output of randomly selected
neurons to zero with a given probability was used to
control for over-fitting [56]. Optimization was done using
stochastic gradient descent. We use the Python pack-
age Keras (https://github.com/keras-team/
keras) to code our model, running on top of TensorFlow
(https://www.tensorflow.org/).
For the particular example used in the Results the fol-

lowing network was built and fit. The output from the
convolutional filter is fed to four ReLu-activated layers
of exponentially increasing size, where the last layer is
the output layer with same size as the output chromatin
map data (Layer 1: 460 neurons, Layer 2: 881 neurons,
Layer 3: 1690 neurons, Output Layer: 3240 neurons).
A dropout of 0.1 was applied to the dense layers dur-
ing training. The training was divided into 30 batches,
only evaluating the cost function on one batch at a time.
At the end of each epoch an independent validation set
was used to evaluate the cost function independently
to avoid over-fitting. The fitting procedure ended when
the cost function calculated in the validation set con-
verged. Results were then calculated on the test data set.
The training converged in approximately 30 minutes on a
personal laptop.
In addition, we also built a dense neural network (DNN)

that solves the inverse problem. Namely, it is trained to
predict the previously found 1D chromatin annotation
from contact maps alone. The architecture of this net-
work resembles an inverted version of the forward-model,
and we thus name it “the backward model”. This net-
work outputs a w-long vector of 1D chromatin states from
the w × (w + 1)/2 contacts between pairs of sites in
the sequence window. Note that the output of the back-
ward model is w-long in contrast to the 3w-long sequence
used as input of the forward model. This is because the

flanking regions are hard to predict using just the con-
tact map from the w-long interior region, and trying to
predict the 3w long sequence leads to convergence errors
in the procedure. The network is comprised of multiple
ReLu-activated dense layers, except for the last output
layer which is sigmoid-activated. The “backward model”
presented in Results was made of three layers of exponen-
tially decreasing size, the first two ReLu-activated, and the
last layer (output layer) is sigmoid-activated (Layer 1: 943
neurons, Layer 2: 274 neurons, Output Layer: 80 neurons).
It was fit using the same procedure as the feed-forward
network.

Datasets for training, validating and testing
For training and validating the models, we have used
sequence and contact map data from the D. melanogaster
chromosomes 2L, 2R, 3L and the first half of chromo-
some 3R (from 1 to 12.95 Mbp). From these regions
we obtained 13814 pairs of local sequences and struc-
tures using w = 80. We randomly subsampled 80% of
this data as a training set (11052 pairs) and 20% was
set aside as a validation set that was not used in the
parameter fitting procedure (2768 pairs). For testing the
predictions of the model, we used the remaining sec-
ond half of chromosome 3R (from 14.95 to 26.91 Mbp)
as a test set, which contained 2112 pairs of sequences
and structures. (It should be noted that our datasets
included left-right inverted versions of the data, as the
directionality of the genome should not influence the rela-
tionship between chromatin contacts and sequence. This
thus allowed us to build a dataset of sequences and struc-
tures with a size approximately twice the length of the
binned genome.)

Gradient analysis of DNNs
We calculated gradients of the network models using a
method known as sensitivity analysis [57, 58]. In par-
ticular, we followed the DeepTaylor tutorial in www.
heatmapping.org to calculate for a given out-
put neuron the gradient of the output function with
respect to the input variables. First, we exported the
values of every layer of our trained neural network to
text files. Then, for each neuron in the last layer that
we wanted to calculate the gradient of, we rebuilt the
trained neural network and only included the neuron
of interest in the last layer. These neural networks were
built using a minimal neural network implementation
that can be found in the script “modules.py” from
www.heatmapping.org/tutorial. The back-
propagation of the gradient of the neuron in the last
layer with respect to the input data was done using
the methods in “utils.py” from www.heatmapping.
org/tutorial as described in the website
tutorial.

https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://www.tensorflow.org/
www.heatmapping.org
www.heatmapping.org
www.heatmapping.org/tutorial
www.heatmapping.org/tutorial
www.heatmapping.org/tutorial
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Additional file

Additional file 1: Supplementary EPS figure. Correlation between 1D
sequence annotation and chromatin colors. Histogram of values of the 1D
sequence obtained after applying the convolutional layer. Shown are all
sites, as well as sites in which more than 50% of their 10kb-long genomic
bin belonging to one of the the five chromatin-color states classified by
Fillion et al. Cell 143, 212-224 (2010). (EPS 369 kb)
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