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Abstract: Profiling of complex materials (e.g., automotive paint and cooking oil) with 

infrared and Raman spectroscopy is an active area of research with a large and growing 

literature. The object of profile analysis is to correlate a characteristic fingerprint pattern 

in a spectrum with the properties of the sample. Objective analysis of these profiles depends 

upon the use of multivariate curve statistical methods. In this regard, pattern recognition 

techniques have been found to be of enormous utility. In this dissertation, several projects 

were undertaken to demonstrate the advantages of chemical fingerprinting using 

spectroscopic techniques to solve problems in the areas of food chemistry and forensic 

science. In one study, Raman spectra of 15 varieties of edible oils obtained from 53 samples 

purchased over a 3 year period representing different production years and vendors were 

analyzed by pattern recognition methods using a hierarchical classification procedure. 

Supplier to supplier variability and seasonal variability within a supplier were the major 

sources of variation with the Raman spectral data. Edible oils assigned to one group could 

be readily differentiated from those assigned to other groups, whereas Raman spectra 

within the same group more closely resemble each other and therefore were more difficult 

to classify by type. In another study, IR microscopic imaging and a prototype pattern 

recognition library search system were applied to the forensic examination of automotive 

paint using a new methodology for cross sectioning paint samples and decatenating 

infrared spectral images. Successful methods developed in test experiments such as the 

studies described in this dissertation will become part of the routine analytical practices of 

chemists in the very near future.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

 
Profiling of complex materials (e.g., automotive paint and cooking oil) with 

infrared and Raman spectroscopy continues to be an active area of research with a 

burgeoning literature.  The object of profile analysis is to correlate a characteristic 

fingerprint pattern in a spectrum with the properties of a sample.  Objective analysis of 

these profiles depends upon the use of multivariate statistical methods. In this regard, 

pattern recognition techniques have been found to be of enormous utility. 

Pattern recognition methods are well suited for analyzing spectroscopic data 

because of the characteristics of the procedures.  Methods are available that do not assume 

a mathematical model but rather seek relationships that provide definitions of similarity 

between groups of data.  Pattern recognition methods are also able to deal with high 

dimensional data where more than three measurements are used to describe each sample.  

Finally, techniques are available for selecting important features from a large set of 

measurements.  Thus, studies can be performed on systems where the exact relationships 

are not fully understood.  
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The research described in this dissertation is directed towards three specific goals: 

(1) development of a potential method to improve the quality of spectral library searches 

of automotive paints by applying infrared microscopy and alternating least squares to cross 

sectioned automotive paint samples, (2) coupling the FTIR imaging experiment with a 

prototype pattern recognition infrared library searching system previously developed to 

facilitate both the accuracy and speed of forensic automotive paint analysis, and (3) 

applying reliable variable selection methods to improve discrimination of edible oils by 

Raman spectroscopy. The significance of this research lies in the development of new 

methods to address problems of widespread interest in the areas of forensic science and 

food chemistry.  

In the forensic examination of automotive paint, each layer of paint is analyzed 

individually by infrared spectroscopy.  Forensic laboratories in the United States and 

Canada typically hand section each layer and present each separated layer to the 

spectrometer for analysis, which is time consuming.  In addition, sampling too close to the 

boundary between adjacent layers can pose a problem as it produces an IR spectrum that 

is a mixture of the two layers.  Not having a “pure” spectrum of each layer can prevent a 

meaningful comparison between each paint layer or in the situation of searching an 

automotive database will prevent the forensic paint examiner from developing an accurate 

hit list of potential suspects.  These two problems have been addressed by collecting 

concatenated IR data from all paint layers in a single analysis by scanning across the cross 

sectioned layers of the paint sample using a FTIR imaging microscope.  Decatenation of 

the IR data was achieved by multivariate curve resolution to obtain a pure IR spectrum of 

each automotive paint layer. Comparing the reconstructed IR spectrum of each layer 
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against the IR spectral library of the PDQ database demonstrated that it was possible to 

identify the correct line and model of the vehicle from these reconstructed spectra. This 

imaging approach to IR analysis of automotive paint, will not only save time and eliminate 

the need to analyze each layer separately, but also will ensure that the final spectrum of 

each layer is “pure” and not a mixture.   

By coupling the proposed FTIR imaging experiment with the prototype pattern 

recognition infrared library searching system previously developed by the Lavine research 

group to search the paint data query (PDQ) automotive paint database, the forensic 

examination of automotive paint will be facilitated in terms of both accuracy and speed of 

the analysis.  The prototype library searching system consists of two separate but 

interrelated components: search prefilters to cull the library spectra to a specific assembly 

plant or assembly plants and a cross correlation searching algorithm to identify spectra 

most similar to the unknown in the set of spectra identified by the search prefilters as 

potential matches.  As the size of the library is culled for a specific match, the search 

prefilters will increase both the selectivity and accuracy of the search.  Even in challenging 

trials where the paint samples evaluated were all the same make (General Motors) within 

a limited production year range, the respective assembly plant as well as the make and 

model of the vehicle could be identified from IR spectra of the clear coat and undercoat 

paint layers.   

Manually coded text based searches performed using the current PDQ database tend 

to generate a large number of hits because the chemical information in the current database 

is described only in terms of generic chemical formulations. Furthermore, improper coding 

of the spectra and/or searching of the PDQ database may inadvertently include or exclude 
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certain motor vehicles from the hit list. Therefore, an added advantage of the proposed 

pattern recognition assisted approach to identify paint samples is an increase in accuracy 

because all IR spectra in the database are searched.  In addition, the use of the proposed 

search prefilters gives far fewer hits in the database which translate into a significant time 

savings for the forensic scientist, ease of use, and fewer errors.  Information derived from 

the proposed pattern recognition searches will also serve to quantify the general 

discrimination power of original automotive paint comparisons encountered in casework, 

and will further efforts to succinctly communicate the significance of the evidence to the 

courts.   

Differentiation of edible oils by variety was investigated using Raman spectroscopy 

and pattern recognition methods.  Raman spectra of 15 varieties of edible oils obtained 

from 53 samples purchased over a 3 year period representing different production years 

and vendors (possibly the same company but a different batch and from a different 

manufacturing plant) were collected at relatively short integration times to test the 

robustness of the Raman analysis to noise.  By comparison, previously published studies 

on this subject have been limited to 20 samples obtained from a single brand within a 

limited production year range involving five or six edible represented by samples.  The 

relatively large number of classes, samples, and spectra (i.e., replicates) in this study were 

necessary to build better statistical distributions of expected in-class variance to determine 

classification performance when developing discriminants from training sets and to have 

sufficient number of spectra to construct independent training and validation sets. 

Furthermore, the oils are a flexible platform from which we can collect data.  The oil 

spectra have a low, but tunable net analyte signal to background (NAS/B).  Edible oils are 
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essentially mixtures of triglycerides that differ in their relative composition of fatty acids 

(e.g., oleic, stearic, and linoleic).  There are 5 major Raman features in our spectral window 

that vary in relative intensity and position among all samples.  Experimental designs can 

be constructed with very similar oils (e.g., olive and sunflower) with relatively distinct 

spectra.  

Supplier to supplier variability and seasonal variability within a supplier were major 

sources of variation within the Raman spectral data set as it is not only greater than 

variability within a supplier but was comparable in magnitude to the variability associated 

with edible oil type.  The 15 varieties of edible oils could be partitioned into distinct groups 

based on their degree of saturation and the ratio of polyunsaturated fatty acids to 

monounsaturated fatty acids. Edible oils assigned to one group could be readily 

differentiated from those assigned to other groups, whereas Raman spectra within the same 

group more closely resembled each other and therefore were more difficult to classify by 

type.  

This thesis is divided into seven chapters.  The first chapter is the introduction 

which provides an overview of the research problems pursued in this dissertation.  Chapters 

2 and 3 provide the necessary background and theory and the research problems described 

in this dissertation are discussed in Chapters 4, 5 and 6. A summary of the results obtained 

in this dissertation research are outlined in Chapter 7. 
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CHAPTER II 

 

 

LITTERATURE REVIEW OF AUTOMOTIVE PAINT AND EDIBLE OILS 

 

2.1.    The Composition of Paint 

The primary function of paint is to protect and to improve the aesthetic nature of an 

object [1-3]. Paints or coatings can be liquids or powders that form adherent films on the 

surface of substrates. The origin of paints can be traced back to the Paleolithic era where a 

combination of sap extracted from plants and coloring agents obtained from berries and 

soil were used in cave paintings [4].  Paint is comprised of four components: binder(s), 

pigment(s), additive(s) and solvent [2, 4, 5]. 

2.1.1. Binder 

The binder is a fluid or a polymeric constituent in which the pigment is suspended. 

It provides the necessary adhesion to ensure that both the pigments and additives are 

retained by the coating while ensuring that the paint will be attached to the object or 

substrate [2, 4, 6].  Upon curing, which can occur by evaporation, coagulation or 

polymerization [2, 4, 6], the binder serves as the foundation for the paint on the substrate. 

Films that are formed by evaporation often leave behind the binder, pigments and additives, 

which are known as lacquers.  Lacquers can be easily re-dissolved upon addition of the 
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solvent. Increasing the molecular mass of the binder can improve the properties of the 

polymer film. Some common binders such as acrylic and polyvinyl acetate are synthetic 

binders whereas others such as casein, and cellulose are natural binders [7-9]. 

2.1.2. Pigments 

Pigments are usually in the form of a powder and are responsible for providing 

color and as well as protecting the object against corrosion.  Pigments can be classified as 

organic or inorganic. A large number of organic pigments exist [10]. Some organic 

pigments (natural or synthetic) are soluble in certain solvents. The advantages of organic 

pigments are richer colors and greater durability [10].  Inorganic pigments are less 

expensive, more resistant to ultraviolet light, more effective in protecting the substrate from 

corrosion and better heat stability. Extender pigments, which are a subgroup of inorganic 

pigments, do not contribute to color or corrosion resistance but enhance other coating 

properties such as flow, density, hardness and permeability. These properties make them 

attractive as they are able to reduce production costs  [8, 9].  

2.1.3. Additives 

Additives are added to paints in small amounts to improve the performance 

characteristics of the finished coating [11].  Examples of additives include thickeners and 

surfactants, which reduce the surface tension of a liquid, or driers, which act as a catalyst 

for the natural process of oxidation to improve drying. There is a broad spectrum of 

additives that can affect and enhance the performance properties including sag resistance, 

de-foaming, gloss, viscosity, flexibility, ultraviolet, fire and microbial resistance [2, 5, 12]. 
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However, some of the additives used present unique health issues. Because of these issues, 

there is on-going research to identify new additives so as to minimize the use of plasticizers 

[7, 9].  

2.1.4. Solvents 

Solvents play an important role in paint as it ensures that binders, pigments and 

additives are in a liquid solution facilitating easy application to the substrate [4, 12]. During 

the curing process, the solvent is usually lost after the application of heat.  Volatile organic 

compounds are not used as solvents due to health and environmental reasons. For this 

reason, powder coatings have been developed which contain all other major constituents 

of paint with the exception of the solvent. Solvents with a high vapor pressure are classified 

as either fast or hot solvents. The coating properties is partially dependent on the rate of 

solvent evaporation [10].  

2.1.5. The Composition and Structure of Automotive Paints 

Modern automotive paint systems [13] are comprised of four distinct layers: clear 

coat, color coat (also known as base coat), surfacer-primer and electro-coat (which is 

referred to as the e-coat). With the exception of the clear coat, each paint layer contains 

fillers and pigments [14] and all the layers contain binders. Each automotive manufacturer 

tend to use a unique combinations of fillers and binders in each paint layer [14]. This unique 

combinations allow forensic scientists to determine the make and model of a vehicle within 

a limited production year range from an automotive paint chip recovered from a crime 

scene involving a vehicle fatality such as a hit-and-run.  The original equipment 

manufacturer (OEM) automotive paint system is usually applied sequentially in a number 

of steps.  Prior to depositing the paint system, all metallic components of the vehicle are 
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normally pre-treated via zinc electroplating (~ 1 µm), in order to prevent corrosion and 

inhibit rust [15].  The first paint layer applied to the vehicle is the e-coat, which is an 

approximately 20 µm thick epoxy based coating.  It is electroplated onto the body of the 

vehicle: (1) to provide greater resistance against corrosion, (2) to protect the vehicle from 

stone chirping [16], (3) to hide any minor imperfections, and (4) to serve as an adhesive 

platform for the other layers. After the application of the e-coat, a primer surfacer, of 

approximately 30-40 µm alkyd based coating, is applied to hide any surface imperfections, 

and provide a uniform foundation that  will be both amenable and more receptive to the 

application of the basecoat [15].  After the application of the primer surfacer, a roughly 15 

µm thick pigment containing layer known as the basecoat is applied to achieve the desired 

color [16, 17]. The clear coat is the final coat applied in the automotive finishing process. 

The clear coat, which is the thickest of all the layers, is typically a 40 µm thick un-

pigmented layer, consisting of UV absorbers and hindered amine light stabilizers.  Their 

primary function is to protect the basecoat and underlying layers from UV degradation and 

weathering [16]. The clear coat also contributes important properties to the body of the 

vehicle such as hardness, and resistance to chemicals and solvents. A typical automotive 

paint system is shown in Figure 2.1. 
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Figure 2.1. Typical automotive paint system comprising the clear coat, the basecoat, the 

primer-surfacer and the e-coat 

 

2.1.6. Types of Automotive Paint Evidence 

Automotive paint sample recovered from a crime scene can either be in the form of 

a paint chip or smear. Several factors such as the force of impact or collision and the nature 

of the victim’s body surface determines the amount of paint evidence transferred [18]. If 

the force of collision between the vehicle and the victim is not great, it is most likely that 

only the top coat or the clear coat of the paint will be transferred. On the other hand, if the 

force of impact is great, then not only the clear coat but the other layers will also be 

transferred. Smears are usually generated by a glancing contact between the vehicle and 

the victim’s body. Automotive paint chips, however, result from a greater or more forceful 

direct impact between the vehicle and the object in question leading to the deformation of 

the vehicle frame resulting in the generation of paint chips [18].  Paint chips usually contain 

all of the automotive paint layers, which makes it easier to determine the make and model 

of the vehicle. Furthermore, the individual layers comprising a paint chip can be hand 

sectioned whereas isolating the individual layers of a smear is problematic. 
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2.1.7. Automotive Paint Analysis 

Chemical analysis of automotive paint samples such as paint chips or smears is 

typically done using Fourier transform infrared (FTIR) spectroscopy [19]. Most 

laboratories in North America are likely to hand-section each layer of the paint chip and 

present each separated layer to either an IR microscope fitted with an ATR accessory or 

collect transmission spectra. A diamond anvil cell is typically employed when a 

transmission spectra is to be collected. Other techniques employed in the analysis of 

automotive paints include but not limited to include microscopical examinations, 

colorimetric analysis usually known as microspectrophotometry (MSP), pyrolysis-gas 

chromatography/mass spectrometry (Py-GC/MS) and some elemental analysis techniques 

such as X-ray diffraction, X-ray fluorescence and scanning electron microscopy with 

energy dispersive X-ray spectroscopy [10]. 

2.1.8. Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py-GC/MS) 

Py-GC/MS is a very powerful and sensitive technique that has shown great 

potential in the forensic examination of polymer traces. Polymer binders may degrade 

during pyrolysis through a number of mechanisms such as monomer reversion, side group 

elimination or random scission. As a result, smaller compound which can easily be 

identified are formed [20]. It is also possible to identify separate peaks belonging to minor 

components of the paint in the pyrogram. Py-GC is primarily used for the comparative 

analysis of the organic components of the paint. The pyrolysis patterns of two or more 

samples are visually compared noting the absence or presence of peaks, their relative peak 

intensities and their retention times [20]. When Py-GC is coupled with MS, and subsequent 

library searching, the technique can be used to identify pyrolysis products [21-23]. Py-
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GC/MS has been applied to the examination of samples of forensic interests including 

paints, fibers and adhesives [24, 25]. It has also been applied to the classification and 

identification of automotive paints [25-28]. It has been suggested by some authors that Py-

GC/MS maybe the method of choice for the classification of chemically similar paints [26, 

29]. Py-GC/MS however has a major drawback in that it is a destructive method and its 

applicability depends on the paint type and the amount of paint sample [20]. It provides 

better result when used to analyze individual paint layers [20].  

2.1.9. Elemental Analysis of Paints 

Elemental analysis of paints involve the use of bulk and trace instrumental 

techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron 

microscopy coupled with energy dispersive spectroscopy (SEM-EDS), laser ablation-

inductively coupled plasma mass spectroscopy (LA-ICP-MS), and particle induced X-ray 

emission spectroscopy (PIXE) [10]. The primary use of the elemental analysis technique 

is for the characterization of the inorganic components of the paint sample. SEM-EDS is a 

non-destructive analytical method that provides information about particle size and 

distribution, and morphology. SEM-EDS is very sensitive to mid-range atomic weight 

elements [30]. Unlike SEM-EDS, XRF is more sensitive to higher atomic weight elements 

and hence useful in identifying extenders in the paint sample [30]. X-ray diffraction (XRD) 

provides information about the crystallinity of the material and is useful for studying or 

identifying the inorganic components in paint pigments [31, 32]. (LA-ICP-MS) also has 

the ability to detect elements presents in the paint matrix.  Unlike SEM-EDS, it has the 

potential for trace elemental analysis [32]. The technique can be considered non-

destructive as the sample does not require manipulation and only a small amount of 
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material for the analysis. LA-ICP-MS has been used for the detection of elements in lower 

concentrations in automotive paints [32].  A limitation is the lack of standards which 

presents the greatest challenge to the use of this technique [32]. 

2.2. Vegetable Oils 

2.2.1. Introduction 

Vegetable oils are used in industrial, pharmaceutical, nutritional and cosmetic 

products including products such as cooking oils, margarine, salad dressings, food 

coatings, paints, plasticizers, glycerol, synthetic fibers, hand creams, shower gels, 

detergents and many more [33, 34]. The term vegetable is given to any oil that originates 

from a plant source, which includes oils such as corn oil, sunflower oil, coconut oil, 

hazelnut oil, palm nut oil, olive oils and many more [33, 34]. Vegetable oils are known as 

edible oils which have been subjected to several processes to remove undesirable 

constituents [35].  In order for edible oils to be suitable for human consumption, most are 

subjected to refining processes such as neutralization, bleaching and deodorization. Some 

edible oils such as extra virgin olive oils can be consumed directly without refining [35]. 

Since the composition of edible oils depend on the type of oil, edible oils are typically 

characterized by their physical and chemical properties [36]. Vegetable oils are comprised 

of a complex mixture of which triacylglycerols form the major component while the minor 

components are polyphenols, aldehydes, sterols and a variety of volatile organic 

compounds [34, 37]. The major components of edible oils are of great importance due to 

their nutritional values.  Polyphenols, vitamins and other anti-oxidants which makes up the 

minor components of edible oils are responsible for other health benefits that are associated 

with consuming vegetable oils such as their ant-oxidant properties [38, 39].  
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Antioxidants play an important role in human health, contributing to a decrease in 

the occurrence of diseases such as atherosclerosis and bowl syndromes [38-41]. According 

to the published literature, low-density lipoproteins which are rich in cholesterol and 

cholesteryl esters can be potentially harmful to human health and can cause diseases such 

as atherosclerosis [42]. Such diseases have been found to be a direct result of modified 

oxidative forms of low-density lipoproteins [42]. The presence of anti-oxidants such as 

polyphenols inhibit the extent of the oxidation of low-density lipoproteins. Edible oils or 

vegetable oils are an important part of the Mediterranean diet.  It has been reported by 

Visioli et al that the occurrence of coronary heart disease and certain cancers are found to 

be lower in the Mediterranean regions [40]. Investigation into the biological activities of 

hydroxytyrosol, and luteolin among others found in certain vegetable oils such as olive 

oils, indicates that these compounds offer protective properties against the oxidation of 

low-density lipoproteins [42]. Oils with high phenol contents such as olive oils have been 

found to be beneficial to the human diet. It can therefore be concluded that not only are 

vegetable oils of great importance from an economic stance, but they also provide great 

health benefit to humans. 

2.2.2. Constituents of Edible Oils 

The constituents of edible oils can be divided into two major groups; saponifiable 

which constitute triacylglycerols, free fatty acid and phosphatides, and the unsaponifiable 

which consist of hydrocarbons, fatty alcohols and so on. The percent of the unsaponifiable 

fraction accounts, in general, 0.5-1.5 % of the oils [35].  
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2.2.2.1.    Saponifiable Fraction 

About 98.5-99.5 % of oils is made up of the saponifiable fraction. The major 

components of the saponifiable fraction are the triacylglycerols and free fatty acids, 

although other fatty acid derivatives such as mono- and diacylglycerols, phospholipids, 

waxes and sterol esters are also found [35]. 

2.2.2.1.1. Triacylglycerols 

Triacylglycerols comprise about 98–99 % of the oils. They are made up of esters 

derived from the union of glycerol (1, 2, 3-propanetriol) and fatty acids [35]. In general, 

the fatty acids at the central position of the glycerol molecule are unsaturated, although 

saturated acids can be found at this position when the total concentration of saturated fatty 

acids in the oil is very high. 

2.2.2.1.2.   Mono and Diacylglycerols 

 

Jointly with triacylglycerols, edible oils also contain partial glycerols such as mono- 

and diacylglycerols, comprising about 0.2 and 1.3 % of total fatty acids, respectively. Their 

presence in olive oil is an index of low quality [43]. For this reason, an oil quality marker 

is generally based on the relative amount of mono- and diacylglycerols [35]. 

2.2.2.1.3.   Free Fatty Acids 

The amount of free fatty acids in an edible oil depends on the degree of hydrolysis 

of triacylglycerols as their composition varies according to the botanical variety of the oil, 

or, in the case of olive oil, according to the genetic variety, climatic conditions, fruit 

maturity and geographical origin of olives [44-47]. Fatty acids differ from one another 

based on their degree of unsaturation, the number of carbons in the hydrocarbon chain as 

well as the relative positions of the double bonds in the hydrocarbon chain [42]. Fatty acids 

can be grouped into two groups based on the presence or absence of double bonds in the 
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hydrocarbon chain.  Fatty acids with only C-C single bonds are referred to as saturated, 

while those with at least one double bond are known as unsaturated. Unsaturated fatty acids 

have the double bond either in a cis or trans configuration. Trans fatty acids are known to 

cause health issues and have been reported to be linked to diseases such as diabetes and 

heart attacks [48]. 

2.2.2.1.4.   Phospholipids 

 

Phospholipids are usually found in small amounts in freshly produced olive oils 

(40–135 mg/kg) [49]. The most important phospholipids in olive oils are 

phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol [45]. 

2.2.2.1.5. Waxes 

 

Waxes are esters of fatty alcohols containing fatty acids. The main waxes detected 

in olive oils have a high and even carbon number, in particular, C36– C46 esters. Their 

amount is low, not exceeding 35 mg/100 g [45]. 

2.2.2.2.   Unsaponifiable Fraction 

The unsaponifiable fraction of edible oils contains different compounds which are 

not chemically related to fatty acids and they include compounds such as hydrocarbons, 

aliphatic and fatty alcohols, vitamins, volatile compounds and aromatic hydrocarbons [35]. 

2.2.2.2.1.   Hydrocarbons 

 

Perhaps the most important hydrocarbon found in both extra virgin and refined 

olive oils is squalene [35]. Squalene comprises between 2,500 and 9,250 µg/g and has been 

found in olive oils in larger amounts compared to those found in other edible oils, which 

ranged from 16 to 370 µg/g. Other hydrocarbons also present in edible oils such as olive 

oils are C14– C30 n-alkanes, some n-alkenes and terpene hydrocarbons such as a-farnesene. 
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The relative concentration of these hydrocarbons is ranges anywhere from 150–200 µg/g 

[50]. 

2.2.2.2.2.    Aliphatic and Fatty Alcohols 

 

Both aliphatic and fatty alcohols are minor components of edible oils and are also 

important constituents of edible oils, and, in the case of olive oil, they can be used to 

distinguish different olive oil types. Fatty alcohols can be linear (aliphatic) or nonlinear in 

structure [35]. Other alcohols, such as diterpene alcohols or acyclic diterpene alcohols are 

also found in olive oils. Aliphatic alcohols only have a linear structure. They are the 

precursors for the formation of waxes [35].  

2.2.2.2.3.    Vitamins 

 

Vitamins play an important role in edible oils as they contribute to the stability of 

edible oils by protecting them from oxidation [51] thereby preventing lipid peroxidation in 

biological membranes [35]. Vitamins also provide antioxidants protection. Some of the 

vitamins presents in edible oils are Ts and T3s [35]. While Ts is found in all edible oils, T3s 

is found only in palm oil [52]. The relative concentrations of Ts and T3s varies according 

to the type of oil [35]. 

2.2.2.2.4. Volatile and aromatic compounds 

 

Volatile and aromatic compounds are primarily responsible for the aroma and flavor 

of most edible oils such as the olive oils [35]. There are more than one hundred components 

directly related to the aroma and flavor in edible oils, such as hydrocarbons, alcohols, 

aldehydes, esters, phenols, terpenes and derivatives of furan [53, 54]. Alcohols formed in 

the olive from polyunsaturated fatty acids and 6-carbon aldehydes are the most important 

components of olive oil aroma. 
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2.2.3. Analysis of Edible Oils 

Over the years, a number of analytical techniques and methods have been 

developed for the identification and classification of edible oils [42]. Among these 

techniques are titrimetric techniques, which are commonly used for the determination of 

peroxide values in edible oils, chromatographic techniques such as high pressure liquid 

chromatography, gas chromatography, thin layer chromatography, mass spectrometry, and 

infrared, near infrared, Raman, nuclear magnetic resonance and ultraviolet-visible 

spectroscopy [42]. 

2.2.4. Adulteration of Edible Oils 

Adulteration of edible oils involves the replacement or mixing of higher quality and 

higher cost edible oils such as extra-virgin olive oil, cocoa butter and milk fat with a lower-

cost and lower quality edible oil such as corn oil, peanut oil, canola, sunflower, and 

soybean.  Extra virgin olive oils are typically adulterated with corn or sunflower oil due to 

their similar composition and high degree of similarity between their IR and Raman 

spectra.  Edible oils such as extra-virgin olive oils have high sensory qualities and great 

nutritional benefits and therefore they are the most likely targets for adulteration [55].  

Olive oil is extracted by mechanical means from the first pressing of the olives and they do 

not undergo further processing [56] unlike lower grade oils which undergo several 

chemical treatments which usually results in the removal of most of their desirable 

nutritional constituents [56]. Adulteration of edible oils such as olive oils pose a serious 

problem for regulatory agencies such as the International Olive Council (IOC), edible oil 

suppliers and ultimately the consumer. When an edible oil such as olive oil is adulterated 

with peanut oil, for example, the nutritional value of the olive oil is reduced.  This can pose 
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potential health issues due to the allergic reaction to peanut proteins  [57]. The IOC exist 

as an international organization to provide quality standards for different grades of olive 

oils.  Despite these legal standards, fraudulent activities in the olive oil industry continue 

[57].  Blended oils can be prepared for a specific purpose or product but it becomes an 

issue when the allowable mixture proportions are not followed or if the blend is marketed 

as genuine [58]. Turkey is one of the major producers of olive oil in the world market and 

rapeseed, sunflower and corn oils which have lower market prices are some of the most 

commonly found adulterants in olive oils [55]. 
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CHAPTER III 
 

 

PATTERN RECOGNITION 

 

3.1. Introduction 

Many relationships in spectral data cannot be expressed in quantitative terms.  

These relationships are better expressed in terms of similarity and/or dissimilarity between 

diverse groups of spectra. The tasks which confront an analytical chemist when 

investigating these types of relationships are two-fold.  First, can a useful structure based 

on distinct categories in the data be discerned?  Second, can a sample as represented by its 

spectrum be classified into one of these categories for the prediction of a sample property?  

To develop a mathematic relation suitable for identifying and isolating classes within 

multivariate spectral data, analytical chemists have turned to pattern recognition which is 

a collection of mathematical, statistical, and numerical techniques based on formal logic 

and designed to solve the class membership problem [1-3].   

Pattern recognition has its origin in the field of image and signal processing where 

techniques were developed to categorize samples on the basis of regularities in their 

observed data.  In a typical pattern recognition study, samples are classified according to a 

specific property (which is often difficult to measure directly) using spectral measurements 

that are indirectly related to the property of interest. An empirical relationship or  
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classification rule is developed from a set of samples for which the property of interest and 

the measurements are known. The classification rule is then used to predict this property 

in samples that are not part of the original training set. The property in question may be the 

geographic origin of raw materials used to formulate a pharmaceutical tablet, and the 

measurements are the absorbances at specific wavelengths obtained directly from an 

infrared spectrum of the tablet [4].  The idea of an indirect relation between a spectrum and 

the property of a substance, first proposed by Hirschfeld and Martens [5-7], is plausible 

because the physical and chemical properties of many substances (such as pharmaceutical 

tablets) are governed by their chemical composition.   

The set of samples for which the property of interest and measurements are known 

is called the training set. The set of measurements that describe each sample in the training 

set is called a pattern. The determination of the property of interest by assigning a sample 

to its respective category is called recognition – hence the term ‘‘pattern recognition’’ – 

because recognition is accomplished using the set of measurements that characterize each 

sample in the data set.   

For pattern recognition analysis, each sample is represented as a data vector, x = 

(x1, x2, x3, ….. xj……xn) where component xj is a measurement, such as the absorbance 

at the jth wavelength. In other words, each sample can be considered as a point in an n-

dimensional measurement space. The dimensionality of the measurement space 

corresponds to the number of measurements that are available for each sample. A basic 

assumption is that the distance between pairs of points in this measurement space is 

inversely related to the degree of similarity between the corresponding samples. Therefore, 

points representing samples from one class will cluster in a limited region of the 
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measurement space distant from the points corresponding to the other class. Pattern 

recognition is a set of methods for investigating data represented in this manner, in order 

to assess its overall structure, which is defined as the overall relationship of each sample to 

every other sample in the data set. 

In this chapter, three major subdivisions of pattern recognition methods are 

discussed: (1) mapping and display, (2) clustering, and (3) feature selection. A summary 

of the techniques used in the studies described in this dissertation are included in this 

chapter.  Special emphasis in the discussion of these techniques is placed on their problems 

in spectral pattern recognition.    

3.2. Principal Component Analysis 

Principal component analysis (PCA) is the best known of the unsupervised pattern 

recognition techniques and is the most widely used multivariate analysis method in science 

and engineering [8]. The overall goal of PCA is dimensionality reduction of a data set, 

while simultaneously retaining the relevant information present in the data.  

Dimensionality reduction or data compression is possible because chemical data sets are 

often redundant.  That is, chemical data sets are not information rich.  For this reason, PCA 

is often used as a mapping and display technique for exploratory data analysis. 

Dimensionality reduction is achieved by transforming the original measurements variables 

of the data matrix (i.e., the columns of the matrix) into principal components. Each 

principal component is a linear combination of the original measurement variables. 

Summarizing the information present in a spectral data set may require only two or three 

principal components. 
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Dimensionality reduction is possible using PCA because of correlations between 

the measurement variables. Consider a set of samples characterized by two measurement 

variables, X1 and X2 see Figure 3.1. X1 appears to be correlated to X2 because fixing the 

values of X1 limit the range of values for X2 in the space defined by these two variables.  

If these two measurement variables were uncorrelated, the entire enclosed rectangular area 

shown in Figure 3.1 would be populated by data points.  Because information is defined as 

the scatter of points in a measurement space, it is evident that correlations between the 

measurement variables decrease the information content of this space. The data points, 

which are restricted to a small region of the measurement space due to correlations among 

the variables, could even reside in a subspace if the measurement variables are highly 

correlated. 

 

 

 

 

 

 

 

 

Figure 3.1. Seventeen hypothetical samples projected onto a 2-D space described by the 

measurements variables X1 and X2. A, B, C, and D defines the smallest and largest values 

of X1 and X2. (Adapted from NBD J. Res., 1985, 190(6), 465-476). 

 

Collinearity between measurement variables is a strong indication that a set of basis 

vectors can be obtained that are better at conveying the information present in the data than 

X1 

X2 
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axes defined by the original measurements. This new basis set linked to variation can be 

used to develop a new coordinate system for displaying the data. The variance-based axes 

of this new coordinate system are defined by the principal components of the data. 

Determining the direction of largest variation in the original measurement (pattern) space 

and modeling it by a line fitted through the data points using linear least squares leads to 

the formation of the largest or first principal component of the data as shown in Figure 3.2. 

The second largest principal component of the data lies in the direction of next largest 

variation.  It passes through the center of the data and is orthogonal to the first principal 

component. The third largest principal component lies in the direction of next largest 

variation.  It passes through the center of the data and is orthogonal to the first and second 

largest principal components and so forth. Because each principal component is orthogonal 

to the other, different sources of information present in the data are captured by each 

principal component. 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
  

Figure 3.2. Graphical representation of principal component axes. The third principal 

component described only the noise in the data. 
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PCA involves performing an eigenvalue decomposition of the data matrix X (n x p) 

usually after mean centering or auto-scaling of the data has been performed using the 

singular value decomposition (SVD) algorithm [9].  Each principal component is 

associated with an eigenvalue (𝜆) which reveals the degree of variation in the data captured 

by the principal component. The first principal component has the largest eigenvalue 

followed by the second principal component and so forth. PCA decomposes X (n x p) into 

a score matrix T (n x f), loading matrix P (f x p), and residual matrix E (n x p), where n is the 

number of spectra in the data set, p is the number of points or features in each spectrum, and 

f is the number of principal components necessary to represent the spectral data. Usually, f is 

smaller than p due to correlations among the measurement variables. The decomposition of 

X is shown in Equation 3.1, where 1 is a column vector (n x 1) of ones and xmean is a (1 x p) 

row vector representing mean of the data. 

                                            ETP'1xX mean                                                   (3.1) 

The relationship between the original measurement variables (wavenumbers) and 

the principal components of the data are provided by the loading matrix and the coordinates 

of the samples in this principal components space are defined by the score matrix. The 

score matrix and the loading matrix describe the signal in the data, whereas the residual 

matrix represents the noise. By plotting the columns of the score matrix against each other, 

a representation of the distribution of the spectra in the p-dimensional multivariate space 

can be obtained. The number of principal components used to represent the spectral data is 

equal to the number of columns in the score matrix, which often is only two or three 

because of correlations among the measurements variables. By analyzing a data set using 
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PC (score) plots, it is possible to find relationships in the data, that is, to detect similarities 

and differences among groups of samples and to identify outliers present in the data. 

3.3. Cluster Analysis 

The objective of cluster analysis [10] is to uncover class structure in data.  Cluster 

analysis is encountered in many fields, e.g., biology, geology, and geochemistry, under 

such names as unsupervised pattern recognition and numerical taxonomy. Clustering 

methods can be divided into three categories: hierarchical, object-functional, and graph 

theoretical.  In this chapter, the focus is hierarchical clustering as this method is the most 

popular. 

For cluster analysis, each sample is treated as a point in an n-dimensional 

measurement space. The coordinate axes of this space are defined by the measurements 

used to characterize the samples. Cluster analysis assesses the similarity between samples 

by measuring the distances between the points in the measurement space.  Samples that are 

similar will lie close to one another, whereas dissimilar samples are distant from each other. 

For the studies described in this dissertation, the measurements used to characterize each 

sample are continuous variables, and the Euclidean distance is the distance metric used to 

assess similarity, because inter-point distances between samples are computed directly.  

However, there is a problem with using the Euclidean distance - the so-called scaling effect.  

It arises from inadvertent weighing of the variables in the analysis that can occur due to 

differences in the magnitude among the measurement variables.  For example, consider a 

data set where each sample is described by two variables: the concentration of Na and the 

concentration of K as measured by an ion selective electrode. The concentration of Na 

varies from 50 to 500ppm, whereas the concentration of K in the same samples varies from 
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5 to 50ppm.  A 10% change in the Na concentration will have a greater effect on Euclidean 

distance than a 10% change in K concentration.  The influence of variable scaling on the 

Euclidean distance can be eliminated by auto-scaling the data, which involves 

standardizing the measurement variables using the standard deviation, so each variable has 

a mean of zero and a standard deviation of 1.  Thus, a 10% change in K concentration has 

the same effect on the Euclidean distance as a 10% change in Na concentration when the 

data is auto-scaled.  Clearly, autoscaling ensures that each measurement variable has an 

equal weight in the analysis. For cluster analysis, it is generally best to autoscale the data, 

since similarity is then determined by a majority vote of the measurement variables. 

Hierarchical cluster analysis [10] is based on the principle that distances between 

pairs of points (i.e., samples) in the measurement space are inversely related to their degree 

of similarity.  The starting point for a hierarchical clustering experiment is the similarity 

matrix.  This matrix is formed by first computing the distances between all pairs of points 

in the data set. Each distance is converted into a similarity value using Equation 3.2. 

                                                                𝑆𝑖𝑘 = 1 − 
𝑑𝑖𝑘

𝑑𝑚𝑎𝑥
                                                      (3.2) 

where sik is the similarity between samples i and k which varies from 0 to 1, dik is the 

Euclidean distance between samples i and k, and dmax is the longest distance between two 

samples in the data set which corresponds to the two most dissimilar samples. The 

similarity values are organized in the form of a table or matrix which is then scanned to 

identify the most similar point pair (i.e., largest value).  The two samples that comprise the 

point pair are combined to form a new point located midway between the two original 

points.  Both the rows and columns corresponding to the old data points are removed from 

the matrix.  The similarity matrix is then recomputed for the data set.  In other words, the 
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matrix is updated to include information about the similarity between the new point and 

every other point in the data set. The new nearest point pair is identified, and combined to 

form a single point.  This process is repeated until all points have been linked.  

There are a variety of ways to compute the distances between data points and 

clusters in hierarchical clustering (see Figure 3.3).  The nearest linkage method assesses 

similarity between a point and a cluster of points by measuring the distance to the closest 

point in the cluster.  The farthest linkage method assesses similarity by measuring the 

distance to the point furthest away in the cluster.  Mean linkage assesses the similarity by 

computing the distances between all point pairs where a member of each pair belongs to 

the cluster.  The mean of these distances is used to compute the similarity between the data 

point and the cluster.   

The results of a hierarchical clustering study are usually displayed as a dendogram, 

which is a tree shaped map of the inter-sample distances in the data set.  The dendogram 

shows the merging of samples into clusters at various stages of the analysis and the 

similarities at which the clusters merge, with the clustering displayed hierarchically.  

Interpretation of the results is intuitive, which is the major reason for the popularity of these 

methods.  
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Figure 3.3.  The distance between a data cluster and a point using (a) nearest linkage, (b) 

farthest linkage, and (c) mean linkage.  

 

3.4. Genetic Algorithm for Pattern Recognition Analysis 

Problems often arise when applying pattern recognition methods to chemical data.  

Classification success rates may vary with the pattern recognition method employed.  

Unfavorable classification results can be obtained despite a linearly separable training set. 

Automation of these techniques for the solution of a general class of pattern recognition 

methods is often difficult [11]. 

The basic premise underlying the pattern recognition methodology used in the studies 

discussed in this dissertation is that all classification methods work well when the problem 

is simple.  By identifying the appropriate features, a “hard” problem can be reduced to a 

“simple” problem.  Therefore, the goal is feature selection, in order to increase the signal 

to noise ratio of the data by discarding measurements that are not characteristic of the 

source profile of the classes in the dataset. To ensure identification of all relevant features, 
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it is best that a multivariate approach to feature selection is employed.  The approach should 

also take into account the existence of redundancies in the data.  

The approach to feature selection described in this chapter is based on a simple idea 

- identify a set of measurement variables that optimize the separation of the classes in a 

plot of the two or three largest principal components of the data. Because principal 

components maximize variance, the bulk of the information encoded by these features is 

about differences between classes in the data set.  Using this approach to feature selection, 

an eigenvector projection of the data is developed that discriminates classes in the dataset 

by maximizing the ratio of between- to within-group variance.  This approach has a number 

of advantages.  It avoids overly complicated solutions, which do not perform as well on 

the prediction set because of over-fitting.  Although a principal component plot is not a 

sharp knife for discrimination, if we have a principal component plot that shows clustering, 

then our experience is that we will be able to predict robustly using this set of descriptors. 

Furthermore, the principal component plot displays the variability between large numbers 

of samples and show the major clustering trends present in the data.  The user can visually 

identify the presence of confounding relationships in the data, thereby gaining insight into 

how a decision for classification is made.   

In the studies described in this dissertation, the approach to feature selection 

described in the previous paragraph is implemented using a genetic algorithm.  Genetic 

algorithms were developed by John Holland [12] to mimic the process of evolution. 

Genetic algorithms have advantages over conventional optimization search algorithms. 

They operate on the entire parameter set and simultaneously consider many points in the 

solution space unlike conventional methods that manipulate the parameters independently, 
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which can be a problem if an object function is overly sensitive to one parameter as the 

optimization function would tend to focus its effort on the troublesome parameter at the 

expense of the other parameters [11].  As genetic algorithms consider simultaneously many 

points in the search space, more of the response surface is probed reducing the chance of 

convergence to a local minimum since genetic algorithms utilize parallelism.  A large 

number of potential solutions are considered simultaneously.  Genetic algorithms require 

only information about the fitness of potential solutions. They make no assumptions about 

the topography of the solution surface and are not impacted by discontinuities or 

singularities that are disruptive to derivative and simplex optimization based methods [11].  

By adjusting the parameters of the GA, it can be tailored to a particular application.  

The genetic algorithm for feature selection used in the studies described in this 

dissertation (designated as the pattern recognition GA) [13-17] identifies a set of features 

that optimize the separation of the classes in a plot of the two or three largest principal 

components of the data.  The principal component plot of each feature subset, which is 

used by the fitness function of the pattern recognition GA acts as an embedded information 

filter. Sets of spectral features or wavelengths are selected based on their principal 

component plots, with a good principal component plot generated by features whose 

variance or information is primarily about differences between the classes or groups. This 

restricts the search to feature subsets of this type, thereby significantly reducing the size of 

the search space. In addition, the pattern recognition GA is able to focus on those classes 

and/or samples that are difficult to classify by boosting their weights over successive 

generations using a perceptron to adjust the values of the class and sample weights. 

Samples or classes that are consistently classified correctly are not as heavily weighted in 
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the analysis as those samples or classes that are difficult to classify. The pattern recognition 

GA integrates aspects of artificial intelligence and evolutionary computations to yield a 

“smart” one-pass procedure for feature selection.  

To track and score the PC plots generated by the pattern recognition GA in each 

generation, class and sample weights are computed (see Equations 3.3 and 3.4) where 

CW(c) is the weight of class c (with c varying from 1 to the total number of classes in the 

data set), and SWc(s) is the weight of samples in class c. Class weights sum to 100, and 

the sample weights for samples from a particular class sum to a value equal to its class 

weight. 

                                                         CW(c)=100
CW(c)

∑ CW (c)c

                                             (3.3)       

 

                                                      𝑆𝑊(𝑠) = 𝐶𝑊(𝑐)
𝑆𝑊(𝑠)

∑ 𝑆𝑊(𝑠)𝑠∈𝑐
                                          (3.4) 

Each PC plot generated for each feature subset after extracting the features from its 

chromosome is scored using the K-nearest neighbor classification algorithm [18].  For each 

sample in the training set, Euclidean distances are computed between it and the other 

samples that are represented as points in the principal component (PC) plot. These 

distances are arranged from smallest to the largest. A poll is then taken of the sample’s Kc 

nearest neighbors. For the most rigorous classification of the data, Kc is assigned a value 

corresponding to the number of samples in the class to which it is a member. The number 

of Kc nearest neighbors with the same class label as the data point (i.e., sample) in question, 

the so-called sample hit count, SHC(s), is computed (0 < SHC(s) < Kc) for sample. It is 

then a simple matter to score the PC plot (see Equation 3.5).  First, the contribution to the 
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overall fitness score by each sample in class 1 is computed, with SHC for each sample 

comprising the class divided by Kc and multiplied by SW(s), and then summing up the 

product for the samples comprising the class to yield the contribution of this class to the 

overall fitness score. This same calculation is repeated for the other samples with the fitness 

score of each class summed to yield the overall fitness score, F(d). 

                                                  𝐹(𝑑) =  ∑ ∑
1

𝐾𝑐
𝑠∈𝑐𝑐

× 𝑆𝐻𝐶(𝑠) × 𝑆𝑊(𝑠)                              (3.5) 

The fitness function of the pattern recognition GA is able to focus on those samples 

and/or classes that are difficult to classify by boosting their weights over successive 

generations. To boost the sample and class weights, it is necessary to compute both the 

sample hit rate (SHR), which is the mean value of SHC/Kc over all feature subsets (which 

comprise the population of solutions) generated in a particular generation (see Equation 

3.6), and the class-hit rate (CHR), which is the mean sample hit rate of all samples in a 

particular class (see Equation 3.6).  in Equation 3.6 is the number of chromosomes in the 

population, and AVG in Equation 3.7 refers to the average or mean value. 

                                                         𝑆𝐻𝑅(𝑠) =  
1

∅
∑

𝑆𝐻𝐶𝑖(𝑠)

𝐾𝑐

∅

𝑖=1

                                               (3.6) 

                                                    𝐶𝐻𝑅𝑔(𝑐) = 𝐴𝑉𝐺(𝑆𝐻𝑅𝑔(𝑠): ∀𝑠∈𝑐)                                     (3.7) 

During each generation, class and sample weights are adjusted by a perceptron 

algorithm (see Equations 3.8 and 3.9) with the momentum, P, set by the user and with g + 

1 being the current generation and g being the previous generation. Classes with a lower 

class hit rate are boosted more heavily than those classes that score well. 
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                                        𝐶𝑊𝑔+1(𝑠) =  𝐶𝑊𝑔(𝑠) + 𝑃(1 − 𝐶𝐻𝑅𝑔(𝑠)))                                  (3.8) 

                                        𝑆𝑊𝑔+1(𝑠) =  𝑆𝑊𝑔(𝑠) + 𝑃(1 − 𝐶𝐻𝑅𝑔(𝑠)))                                  (3.9) 

Boosting is crucial to the successful operation of the pattern recognition GA as it 

modifies the fitness landscape by adjusting the values of both the class and sample weights 

in each generation. This allows the pattern recognition GA to learn and assists it to obviate 

the problem of premature convergence to a local optimum. Thus, the fitness function of the 

pattern recognition GA is changing as the population evolves towards an optimal solution. 
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CHAPTER IV 
 

 

TRANSMISSION INFRARED MICROSCOPY FOR THE FORENSIC 

EXAMINATION OF AUTOMOTIVE PAINT – SAMPLE PREPARATION 

 

4.1. Introduction 

Modern automotive paint consists of an e-coat, surfacer-primer and color coat 

layers protected by a thick clear coat layer [1]. All four paint layers contain binders, and 

the e-coat, surfacer-primer and color coat layers contain pigments and fillers. Automotive 

assembly plants use a unique combination of pigments and binders in each layer of paint 

which allows the forensic paint examiner to determine the make and model of a vehicle 

from an intact multilayered paint chip, which is often the only evidence recovered from a 

crime scene of a vehicle related fatality such as a hit-and-run or collision.  Studies [2, 3] 

performed over 40 years ago by the Royal Canadian Mounted Police (RCMP) showed that 

vehicles could be differentiated by comparing the color, layer sequence and chemical 

composition of each layer in a manufacturer’s automotive paint system.  

The chemical composition of an automotive paint sample in forensic laboratories 

is typically determined using Fourier transform infrared (FTIR) spectroscopy [4].  Each 

layer is hand-sectioned by a scalpel, placed in a high pressure diamond anvil cell, and the 

corresponding infrared (IR) transmission spectrum of each layer is compared to paint from   
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a suspect’s vehicle. As there are usually no witnesses at the crime scene, police are often 

unable to develop a suspect.  In these situations, the IR spectrum of each layer of the paint 

chip can be matched to a particular make and model of a vehicle using an automotive paint 

database such as the paint data query (PDQ) database [3, 5-8].  However, the amount of 

time required to analyze a single automotive paint sample and perform a PDQ search can 

be lengthy.  Furthermore, sampling too close to the boundary by using a scalpel to separate 

adjacent paint layers can produce an IR spectrum that is a mixture of two layers.  Not 

having a “pure” spectrum of each layer prevents a meaningful comparison between each 

paint layer or, in the situation of searching an automotive paint database, will prevent the 

scientist from developing an accurate hit list of potential vehicles.   

One way to decrease the time necessary for data collection (compared to the current 

method of hand sectioning and analyzing each layer separately by FTIR) is to collect IR 

data from all layers in a single analysis by scanning across a cross-sectioned paint sample 

using a FTIR imaging microscope equipped with an imaging detector.  A complete scan 

can be performed in less than an hour.  After the data has been collected, it can undergo 

decatenation using multivariate curve resolution [9, 10] to obtain the “pure” IR spectrum 

of each layer.  This approach, not only eliminates the need to analyze each layer separately, 

but also will ensure that the final spectrum of each layer is “pure” and not a mixture.  

Minimizing the probability of collecting a mixed spectrum will result in a considerable 

time savings as well as objectively ensuring that only “pure” spectra from each layer are 

collected and used in subsequent searches of the PDQ database which will reduce the 

number of hits in a library search.   
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To collect IR spectra from a paint chip using an IR microscope, it is common 

practice to cast the chip in a block of epoxy.  A microtome is used to cross section the paint 

chip to reveal the individual layers.  Ideally, there should be no spectral interference from 

the epoxy. However epoxy adhesives when used for casting can prevent accurate library 

matching of both the original and refinished automotive paints by infiltrating the layers of 

the automotive paint [11]. 

Ideally, one would like to cross section each paint chip without using epoxy to cast 

the sample. This would make sample preparation faster and easier and more importantly, 

eliminate interfering peaks from the embedding media that otherwise could be present in 

the IR spectra of the OEM paint layers.   In the study described in this chapter, it is 

demonstrate that automotive paint chips can be cross sectioned without casting the sample 

in epoxy.  An IR image map of each paint chip was collected from the cross sectioned paint 

sample, and a transit (i.e., line) was passed through the image map of the sample with the 

IR spectra in contact with the transit extracted and collected to yield a line map of the data 

that was then analyzed by alternating least squares (ALS) to reconstruct the IR spectrum 

of each paint layer.  Comparing each reconstructed IR spectrum against a library of IR 

spectra from the PDQ database, we show that high quality matches can be obtained, and 

the line and model of the vehicle from which the paint chip originated can be identified.  

This was not always the case when paint chips from the same automotive vehicles were 

cast in epoxy and then cross sectioned using a microtome. 

4.2.   Methodology  

In the first study which involved paint chips cast in epoxy and cross sectioned (Data 

Set 1), three automotive paint samples (2001 General Motors Suburban, 2002 General 
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Motors Chevrolet Tahoe, and 2003 Toyota Highlander) were obtained from the RCMP.  

Each paint sample was removed from its metal substrate using a sharp scalpel, washed with 

methanol to remove dirt and particulate matter, embedded in a resin and then sectioned 

using a microtome (Reichert-Jung 2050) to generate a thin cross-section. Tuffleye® Finish 

blue light (Wet A Hook Technologies) and Slow-cure™ (Bob Smith Industries) thirty 

minute epoxy were the resins selected to prepare the embedded samples. The blue light 

epoxy block (which only consisted of resin) with the embedded sample was exposed to an 

intense blue light for approximately five minutes to achieve curing, whereas the Slow-

cure™ epoxy resin block was prepared by mixing equal parts (by weight) of the resin and 

hardener.  The uncured blue light resin and the thirty minute epoxy resin and hardener 

mixture was then poured into flat polyurethane embedding molds (BEEM®, Polysciences), 

and the automotive paint sample was then placed into the mold and oriented perpendicular 

to the bottom surface prior to polymerization of the epoxy. Paint samples in the Slow-

cure™ thirty minute epoxy block were placed an oven at 60oC for ninety minutes to ensure 

total curing. 

In the second study which involved four paint samples (2006 Buick Lacrosse, 2003 

Nissan Murano, 2001 General Motors Suburban, and 2003 Toyota Highlander) cross 

sectioned without embedding media (Dataset 2).  Each paint chip was placed between two 

rigid polyethylene plastic pieces and positioned in a microtome (Reichert-Jung 2050) to 

ensure that a thin cross section (approximately 4 to 5 µm thick) cut by the microtome 

contained a representative sampling of all four layers.  

In both studies, each thin cross section was collected, deposited on a barium 

fluoride disk, and examined under a Leica light microscope for defects, which would 
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appear as dirt or cracks and crevices in an otherwise smooth surface.  A portion of the 

barium fluoride disk without sample was run at 4cm-1 resolution to collect background 

before the image map of the sample was generated. For each cross sectioned paint sample, 

transmission IR image maps generated at 4cm-1 resolution using an iN10-MX  microscope 

(Thermo-Nicolet, Madison, WI) equipped with a liquid nitrogen cooled mercury cadmium 

telluride (MCT) single imaging detector were collected.  Both the aperture and step size of 

the single imaging MCT detector (50 micron x 375 micron) have adjustable values.  For 

the analysis of each automotive paint sample, a 20 micron aperture and 5 micron step size 

yielded the best results when the microscope was operated in transmission mode.   

A line map was extracted from the IR image map of each paint sample.  The data 

for the line map was taken on as oblique transit as possible to include as many spectra of 

each layer and of the mixed interfacial region between layers.  All layers were represented 

in the line map.   The spectra comprising the line map were preprocessed.  The region 

between 744cm-1 and 700cm-1 was deleted as data in this region was too noisy.  The 

influence of CO2 was suppressed by directly interpolating between 2280 cm-1 and 2400 

cm-1.  Automatic baseline correction was applied to all IR spectra in the line map.   

After preprocessing, spectra were extracted from the line map and examined for the 

presence of artifacts that may have been a direct result of the extraction procedure used.  

Spectra with aberrant peak intensities were discarded, and line maps with spectra that 

exhibited peak shifting were retaken. After verification of each line map, IR spectra 

constituting the investigated slice served as input for ALS.   
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4.3.    ALS and Spectral Library Matching 

Attempts to directly match IR spectra in each line map against the PDQ database 

were unsuccessful as the IR spectra in the line map were mixtures of the different layers of 

paint or were too noisy. For this reason, ALS was directly applied to the IR spectra 

comprising the line map. To ensure the success of ALS, the spectral data must have high 

signal to noise. For this reason, IR spectra that were noisy were deleted from the analysis. 

In order for ALS to perform well, each layer and the boundaries between the layers should 

be represented by as many spectra as possible, which was our motivation for using an 

oblique transit (line) to develop the line maps.  Because an automotive paint fragment is a 

laminated structure, it is important to sample the layers in their order of presentation, which 

was the reason why ALS analysis was restricted to line maps. 

ALS decomposes the data matrix, X, into three matrices (see Equation 4.1), where 

C is the concentration matrix, S is the spectral matrix, and E is the residual matrix.  

Equation 4.1 is solved iteratively in two constrained least squares steps (see Equations 4.2 

and 4.3). To perform ALS, an initial estimate of C must be provided.  Using this estimate 

of C, an estimate of S is computed.  Using the estimate of S, C is computed. From the 

product of C and S, an estimate of the principal component analysis (PCA) reproduced data 

matrix, XPCA, is calculated. This process is repeated until convergence has been achieved. 

 

X = CS + E        (4.1) 

 

 

ST = (CTC)-1 (CTXPCA)      (4.2) 

 

 

    C = (XPCAST) (SST)-1       (4.3) 
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In our study, the constraints used for ALS were nonnegative concentrations and 

nonnegative absorbances as the concentration of a particular layer and the absorbance at a 

particular wavelength should not be less than zero.  Furthermore, the concentration profile 

of each layer was also constrained to be unimodal as a paint chip is a laminated structure.  

The use of the PCA reconstructed data matrix, instead of the original data matrix, stabilized 

the calculations and reduced the noise in the concentration and spectral matrices. 

For each line map, three separate ALS models were computed to account for the 

rotational ambiguity associated with underdetermined system: a four component model, a 

six component model, and a fifteen component model. (In the case of the embedded paint 

sample, a five component model was substituted for the four component model.)  All 

twenty-five components (twenty-six components in the case of an embedded paint sample) 

were used to find the pure spectra of the paint layers from the reconstructed IR spectra of 

the cross sectioned paint sample.  Because the spectra of the clear coat, color coat, surfacer-

primer, and e-coat layers are distinctive, the 25 IR spectra (or 26 IR spectra in the case of 

an embedded paint sample) could be readily divided into four groups (or five groups in the 

case of an embedded paint sample). The separate ALS models used to analyze the line 

maps allowed us to compensate for the rotational ambiguity associated with 

underdetermined systems of this type and improved the quality of the library matches 

obtained for each paint layer. 

Our past experience with ALS has shown that initial estimates of either the 

concentration or spectral matrices are crucial for transforming these two matrices into 

physically meaningful solutions with ALS.  For this reason, the varimax extended rotation 

(VER), previously developed by our research group [12, 13] (to identify the components 
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in an oil in water emulsion from Raman imaging data) was applied to each spectral line 

map to compute an initial estimate of the concentration matrix. VER utilizes a four-step 

procedure to determine the relative concentration and the IR spectrum of each paint layer 

in the cross sectioned sample.  First, the spectra are preprocessed to identify the so-called 

extremum points (i.e., IR spectra where the proportion of a particular layer is maximized 

relative to all other layers). The IR spectra in the line map are normalized to constant row 

sum ensuring that each spectrum is weighted equally in the analysis while simultaneously 

reducing the number of degrees of freedom in the data by one).  Next, each wavelength is 

range scaled.  Range scaling allows for the extremum points in the data to be identified 

while recovering the lost degree of freedom). Range scaling also opens up the data 

recovering the dimension lost in the previous step. The final step is normalizing each 

spectrum to unit length. Normalization of the data to unit length accounts for changes in 

the optical path length ensuring that any variation in the data is due only to changes in the 

composition of the constituents. It also allows each spectrum to serve as a potential basis 

vector for a new coordinate system. Normalizing each row vector to unit length also 

reduces the dimensionality of the data by one. By using this preprocessing scheme, we 

have closed, opened, and closed the data again. 

The second step involves principal component analysis [14], which reduces the 

dimensionality of the data while retaining the information present in the original data. In 

the third step, a Varimax rotation [15] is applied to the extracted principal components 

followed by a so-called extended rotation [16-18] that uses the extremum points to rotate 

the score and loading matrices towards a physically meaningful solution. After the 

concentration and spectral matrices have been rotated, they are transformed back to the 
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original measurement space in the fourth and final step of VER. The effects of 

normalization, range scaling, and row summing on the spectral data are removed.  ALS is 

then applied to the estimates of the concentration matrix determined by VER to develop 

better estimates of both the concentration and spectral matrices.  The spectral region used 

for decatenation of the line maps was 4000 cm-1 - 748 cm-1.   

Spectral library matching for each IR spectrum recovered by ALS was performed 

using OMNIC (Thermo Nicolet).  All library searches were restricted to the spectral region 

between 1641 cm-1 and 860 cm-1 which in our previous studies [19] has been shown to 

contain information about the make, line and model of the vehicle.  Outside of this region, 

the IR spectrum contains only the carbonyl band and C-H stretching bands, which are 

present in the spectra of all paint layers. Each IR spectral library searched was of the same 

manufacturer (e.g., General Motors) and within the same production year range (e.g., 2000-

2006) as the automotive paint sample from which the reconstructed IR spectra were 

obtained.   

OMNIC library searchers were configured using correlation as the search type with 

Happ-Genzel apodization. The quality of each search was evaluated using the hit quality 

index (HQI).  The top five hits of each search were reported as the identity of the unknown 

is expected to be captured in the top five hits. A library search where the correct sample or 

the correct line and model of the vehicle from which the sample was obtained is included 

in the top five hits was considered to be a successful match. The paint samples comprising 

the General Motors, Toyota, and Nissan libraries were similar in composition, making the 

library matching problem investigated in this study challenging.   
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4.4.    Results and Discussion 

4.4.1. Data Set 1 

 

When a paint chip is embedded in blue light or thirty minute epoxy, the clear-coat 

layer and the e-coat layer of the chip are in direct contact with the embedding resin.  The 

similarity of the IR spectrum of the embedding resin and the adjacent paint layer can 

prevent MCR from extracting an accurate IR spectrum for each of these layers.  For blue 

light epoxy, the IR spectrum of the resin is similar to that of the clear coat layer (if the 

formulation of the clear coat layer is acrylic melamine styrene), whereas for the thirty 

minute epoxy, the IR spectrum of the resin is similar to the e-coat layer.  This can adversely 

impact the results of MCR due to the mixing of the IR spectrum of the resin with that of 

the clear coat or e-coat layers.  For this reason, three separate MCR models were computed 

for each line map: a four component model, a six component model, and a fifteen 

component model.  All twenty-five components were used to find the pure spectra of the 

paint layers from the reconstructed IR spectra of the embedded paint sample.  Some 

reconstructed IR spectra from the four component and six component MCR models 

differed from the IR spectra recovered from the fifteen component model. The rotational 

ambiguity associated with underdetermined system of this type was addressed when 

separate MCR models were used to analyze the line maps.   

Because the spectra of the epoxy, clear coat, color coat, surfacer-primer and e-coat 

layers are distinctive for these three samples, the 25 reconstructed IR spectra were divided 

into five groups.  Each group was library matched to the corresponding paint layer using 

IR spectra of General Motors or Toyota paint samples from the PDQ automotive paint 

database.        



51 

 

To assess the efficacy of this approach to forensic automotive paint analysis, three 

automotive paint samples were selected for this study.   These three samples because of 

their small size are angled and are also representative of paint chips recovered from the 

clothing of hit-and-run victims. The innate difficulty associated with positioning each one 

for scanning makes them an excellent choice to evaluate the information content of the line 

maps.  While the shape of each sample made it difficult to create a line map, spectral 

information about each layer was obtained using an oblique transit that fully bisected the 

chip. This type of cut maximized the number of spectra obtained for each line map, and 

allowed for the observed transitions between paint layers to occur over a large number of 

spectra, thereby providing more information about composition change as a function of 

position on the line map.  Because the transit itself is angled off of the paint chip, the effects 

of any natural angling as a result of skewed sample positioning are obviated.  The most 

informative transits for a given sample are those with start and endpoints that contained 

pure spectra of the epoxy used to embed the paint chip.   

Figures 4.1 and 4.2 show the reconstructed IR spectra of the clear coat, surfacer-

primer, and e-coat layers for UAZP00331 (2001 General Motors Suburban) from line maps 

generated using both blue light (59 IR spectra) and thirty minute epoxy (76 IR spectra).  

For each epoxy, the reconstructed IR spectrum is a good match for the IR spectrum of the 

same sample (see Figures 4.1 and 4.2) in the PDQ library.  The reconstructed IR spectrum 

of each layer was also matched against IR spectra in the corresponding General Motors 

libraries for the clear coat, surfacer-primer, and e-coat layers with 628, 633, and 585 IR 

spectra respectively comprising each library.  For the two undercoat layers (i.e., surfacer-

primer and e-coat), the correct model was the first hit for both the blue light and thirty 
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minute epoxy paint samples (see Table 4.1).  For the clear coat layer, the correct match was 

the first hit for the blue light epoxy sample, whereas the third hit was the correct match for 

the thirty minute epoxy paint sample (see Table 1).  The hit quality index HQI) for each of 

these matches against the PDQ library was greater than 90%, which is indicative of a high 

quality match [20].  

 

Table 4.1. Library search results for UAZP00331 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
  
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 4.1. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00331) in the PDQ library (solid line) for the thirty minute 

epoxy. a) Clear Coat layer (OT2), b) Surfacer-primer layer (OU1), and c) e-coat layer 

(OU2). 

Epoxy Layer HQI Value of 

Match 

Position in Search 

/(Top Five Hits) 

Thirty Minute Clear Coat 97.10 3 

Thirty Minute Surfacer-Primer 95.10 1 

Thirty Minute E-Coat 97.70 1 

Blue Light Clear Coat 98.07 1 

Blue Light Surfacer-Primer 91.03 1 

Blue Light E-Coat 93.63 1 

a) b) 

c) 
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Figure 4.2. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00331) in the PDQ library (solid line) for the blue light 

epoxy. a) Clear Coat layer (OT2), b) Surfacer-primer layer (OU1), and c) e-coat layer 

(OU2). 
 

 

The General Motors Suburban was the only model in the top five hits for each layer 

that was common in these six searches.  Although the IR spectrum of the color coat layer 

can also be reconstructed from MCR for both the blue light and thirty minute epoxy 

samples, the large variation in the IR spectrum of the color coat layer due to the pigments 

present in the layer precluded its use in library matching against the General Motors 

spectral database.  Previous studies performed in our laboratory have demonstrated that 

paint samples can be identified as to make and model of the vehicle using IR spectra of 

only the clear coat, surfacer-primer, and e-coat layers [21-24]. 

Figures 4.3 and 4.4 show the reconstructed IR spectra of the clear coat, surfacer-

primer, and e-coat layers for UAZP00436 (2002 General Motors Chevrolet Tahoe) from 

line maps generated using both thirty minute epoxy (60 IR spectra) and blue light epoxy 

a) b) 

c) 
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(64 IR spectra).  All reconstructed IR spectra, in the case of the thirty minute epoxy, were 

good matches for the same paint sample in the General Motors library (see Figure 4.3). As 

for the clear coat layer, the correct library match was the fifth hit, which corresponded to 

the actual paint sample in the General Motors library, whereas the correct library match for 

both the surfacer-primer and the e-coat layers was the third hit, which also corresponded 

to the actual paint sample in the library (see Table 4.2).  Furthermore, Chevrolet Tahoe was 

the only model listed in the top five hits for each layer that was common in these three 

searches. 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 Figure 4.3. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00436) in the PDQ library (solid line) for the thirty minute 

epoxy. a) Clear Coat layer (OT2), b) Surfacer-primer layer (OU1), and c) e-coat layer 

(OU2). Each layer was a good match. 

 

 

a) 

c) 

b) 
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Table 4.2. Library search results for UAZP00436 

Epoxy Layer HQI Value of 

Match 

Position in Search 

(Top Five Hits) 

Thirty Minute Clear Coat 97.87 5 

Thirty Minute Surfacer-Primer 92.81 3 

Thirty Minute E-Coat 96.86 3 

Blue Light Clear Coat 97.43 2 

Blue Light Surfacer-Primer 94.01 1 

Blue Light E-Coat 76.94 No match 
 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 4.4. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum of 

the actual paint sample (UAZP00436) in the PDQ library (solid line) for the blue light 

epoxy. Although the clear coat and e-coat layers were a good match, there is substantial 

mixing of the blue light epoxy with the reconstructed IR spectra of OU2. a) Clear Coat 

layer (OT2), b) Surfacer-primer layer (OU1), and c) e-coat layer (OU2). 1550 cm−1 which 

is indicative of the blue light epoxy (see enclosed square in 4.4c) is absent in the IR 

spectrum of the e-coat layer (see solid line of Figs. 4.3c and 4.4c) but is present in the 

reconstructed e-coat layer IR spectrum. 

 

 

In the case of the blue light epoxy (see Figure 4.4), the matches for both the clear 

coat and surfacer- primer layers were good.  However, the blue light epoxy mixed with the 

a) 

c) 

b) 
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e-coat layer in the reconstructed IR spectrum of the e-coat layer.  The correct library match 

for both the clear-coat and the surfacer-primer layers in the blue light embedded paint 

sample was the second and first hits respectively (see Table 4.2), which corresponded to 

the actual paint sample. However, the reconstructed IR spectrum of the e-coat layer could 

not be correctly matched in the library search of the PDQ database as reflected by its low 

HQI score (76.94%) for the top hit of the reconstructed IR spectrum of the e-coat layer (see 

Table 4.2). 

Figures 4.5 and 4.6 show the reconstructed IR spectra of the clear coat, surfacer-

primer, and e-coat layers for UAZP00484 (2003 Toyota Highlander) from line maps 

generated using both blue light and thirty minute epoxy.  For both the blue light epoxy (45 

IR spectra) and thirty minute epoxy (65 IR spectra), only two of the reconstructed IR 

spectra were good matches for the actual paint sample. For the thirty minute epoxy (see 

Figure 4.5), only the e-coat and the surfacer-primer layers were good matches, whereas the 

reconstructed clear-coat IR spectrum did not match the actual paint sample due to mixing 

of the clear coat IR spectra with that of the thirty minute epoxy (see Figure 4.7).  The clear 

coat, surfacer-primer and e-coat reconstructed IR spectra were also matched against the IR 

spectra from the corresponding PDQ (Toyota) libraries (see Table 4.3) for the clear coat, 

surfacer-primer, and e-coat layers with 269, 308, and 298 IR spectra respectively 

comprising each library. For the two undercoat layers (e-coat and surfacer-primer), the 

actual sample was also the first hit (see Table 4.3) in the search.   The reconstructed clear 

coat IR spectrum was a poor match for IR spectra in the Toyota library as the HQI value 

for the top hit in the search was only 83.99%, and the correct model was not in the top five 

hits. 
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Figure 4.5. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00484) in the PDQ library (solid line) for the thirty minute 

epoxy. a) Surfacer-primer layer (OU1) and b) e-coat layer (OU2). 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 4.6. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00484) in the PDQ library (solid line) for the blue light 

epoxy. a) Clear coat layer (OT2) and b) Surfacer-primer layer (OU1).  

 

 

 

a) b) 

b) a) 
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Table 4.3. Library search results for UAZP00484 

 

 

In the case of the blue light epoxy, only the clear coat and surfacer-primer layers 

were successfully reconstructed by MCR (see Figure 4.6).  The reconstructed IR spectrum 

of the e-coat layer exhibited mixing with the blue light epoxy (see Figure 4.7).  As a result, 

its IR spectrum did not yield a good match to the spectrum of the actual sample.   When 

the reconstructed IR spectrum of the clear coat and surfacer-primer layers were matched 

against the corresponding Toyota libraries, the correct model was the third and first hit 

respectively (see Table 4.3).  The reconstructed IR spectrum of the e-coat layer was a poor 

match for IR spectra in the Toyota library as its HQI value for its top hit in the search of 

the library was only 73.44% and the correct model was not in its top five hits.  Clearly, the 

mixing of spectra of the epoxy with spectra of either the clear coat or e-coat layers can 

adversely impact the MCR results.   

 

 

 

 

 

Epoxy Layer HQI Value of 

Match 

Position in Search 

(Top Five Hits) 

Thirty Minute Clear Coat 83.99 No Match 

Thirty Minute Surfacer-Primer 95.39 1 

Thirty Minute E-Coat 96.01 1 

Blue Light Clear Coat 97.3 3 

Blue Light Surfacer-Primer 96.59 1 

Blue Light E-Coat 73.44 No Match 
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Figure 4.7. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the thirty minute and blue light epoxy (solid line). a) Mixing of the thirty minute epoxy 

spectrum with the reconstructed clear coat IR spectrum: 1510 cm−1 and 1609 cm−1 are 

absent in the IR spectrum of the clear coat layer (see solid line of Fig. 4.7a) for this sample. 

b) Mixing of the blue light epoxy spectrum with the reconstructed IR spectrum of the e-

coat layer: the peaks present in the spectral region of 1350–1550 cm−1are absent in the IR 

spectrum of the e-coat layer (see solid line of Fig. 4.7b) for this sample. 

 

 

4.4.2 Data Set 2 

If an automotive paint chip is cast in epoxy, the clear-coat and e-coat layers of the 

cross sectioned chip are in direct contact with the epoxy and infiltration of the epoxy into 

these layers can occur, which may prevent accurate reconstruction of their IR spectra by 

ALS.   When the paint chip is not cast in epoxy prior to cross sectioning, the sample 

preparation is easier and extracting the IR spectrum of each paint layer by ALS is 

straightforward as there is no spectral interference from the epoxy. To demonstrate the 

advantages of this approach (i.e., not using epoxy to prepare the sample for cross 

sectioning), four automotive paint samples (each from a different vehicle) were selected 

b) a) 
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for infrared imaging and ALS analysis. All four paint chips were similar in size and shape 

to those cast in epoxy as they were angled because of their small size (3 mm in length).  

The starting point and endpoint for each transit in the IR image of the unembedded paint 

samples was the unoccupied region of the BaF2 disk adjacent to the paint sample. For paint 

chips embedded in epoxy, the starting point and endpoint was the pure spectra of the epoxy 

used to cast the sample.   

Four paint samples, each from the same vehicle as the unembedded cross sectioned 

paint samples, were also cast in an epoxy block for cross sectioning as part of this study to 

compare reconstructions of the IR spectra of the individual paint layers computed by ALS 

with and without the use of epoxy as an embedding medium.  Figure 4.8 shows an image 

of a microtomed paint chip (UAZP00565) from a 2006 Buick Lacrosse in the presence and 

absence of epoxy on a BaF2 disk.  In Figure 4.8a, the cross sectioned paint chip without 

epoxy is displayed. All layers (clear coat, color coat, surfacer primer, and e-coat) are visible 

and the borders between the layers are well defined.  By comparison, a large fraction of the 

same paint chip when cast in epoxy and cross sectioned (see Figure 4.8b) is barely visible. 

Most of the clear coat layer is buried under the epoxy, and the IR spectra collected in this 

region is likely to be more representative of the epoxy, not the clear coat layer of the paint 

sample. 
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Figure 4.8.  Image of a microtomed paint chip (UAZP00565) from a 2006 Buick Lacrosse 

in the presence and absence of epoxy on a BaF2 disk.  a) The cross sectioned paint chip 

without epoxy is displayed. All layers are visible and the borders between the layers are 

well defined.  b) The same paint chip is cast in an epoxy block and cross sectioned.  A large 

fraction of the paint chip is barely visible. 

 

 

Figures 4.9 and 4.10 show reconstructed IR spectra of the clear coat, surfacer-

primer, and e-coat layers from line maps of UAZP00565 samples generated with epoxy 

(60 spectra) and without epoxy (50 spectra).  All reconstructed IR spectra for the paint chip 

that is not cast in epoxy were good matches for the same paint sample in the General Motors 

library (see Figure 4.9).  As for the clear coat layer, the correct library match was also the 

first hit in the library search, which corresponded to the actual paint sample, whereas the 

correct match (i.e., the same assembly line and model of the vehicle) for the surfacer-primer 

and e-coat layers was the first and fifth hits respectively (see Table 4.4).  When a 

UAZP00565 paint chip was cast in epoxy prior to cross sectioning (see Figure 4.10), the 

reconstructed IR spectra of both the e-coat and surfacer-primer layers were a poor match 

for the IR spectra of the e-coat and surfacer-primer layers of the UAZP00565 paint sample 

in the General Motors library.  Furthermore, the reconstructed IR spectrum of the e-coat 

layer was not correctly matched (as to line and model of the vehicle) to any of the paint 
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samples in the hit-list (see Table 4.4) due to spectral interference from the epoxy.  For both 

the surfacer-primer and clear coat layers, the reconstructed IR spectra were the fourth and 

third hits respectively in the library search (see Table 4.4).  The hit quality index (HQI) 

value for each of these hits was greater than 90%. (A sample was judged to be correctly 

matched if the line and model of the vehicle corresponds to any of the samples in the top 

five hits using the HQI to rank the library IR spectra in the search).  

 

 

 

Figure 4.9. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00565 – 2006 Buick Lacrosse) in the General Motors 

spectral library for the paint sample not cast in epoxy.  a) Clear coat layer, b) surfacer-

primer layer, and c) e-coat layer. 
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Figure 4.10.  Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00565 – 2006 Buick Lacrosse) in the General Motors 

spectral library for the paint sample cast in epoxy.  a) Clear coat layer, b) surfacer-primer 

layer, and c) e-coat layer. 

 

 

Table 4.4.  Library Search Results for UAZP00565 

 1Correct model 

  2Actual paint sample   

 

Figures 4.11 and 4.12 show reconstructed IR spectra of the clear coat, surfacer-

primer, and e-coat layers from line maps of UAZP00731 (2003 Nissan Murano) generated 

with epoxy (35 spectra) and without epoxy (63 spectra).  When the paint chip was not cast 

in epoxy prior to cross sectioning, all reconstructed IR spectra were again good matches 

Medium Layer HQI Value of 

Match 

Position in Search 

/(Top Five Hits) 

None Clear Coat1,2 97.07 1 

None Surfacer-Primer1 96.25 1 

None E-Coat1 94.31 5 

Thirty Minute Epoxy Clear Coat1 94.50 3 

Thirty Minute Epoxy Surfacer-Primer1 90.92 4 

Thirty Minute Epoxy E-Coat 68.53 No Match 
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for the actual paint sample (see Figure 4.11), and the correct library match for each layer 

(see Table 4.5) was also the first hit, which corresponded to the actual paint sample. When 

the paint chip was cast in epoxy, all three reconstructed IR spectra (see Figure 4.12) were 

poor matches for the actual paint sample, and the reconstructed IR spectra of both the 

surfacer-primer and e-coat layers were not correctly matched to any of the paint samples 

in the hit-list (see Table 4.5) as the correct line and model was not in the top five hits.  For 

the reconstructed clear coat layer, the correct match was the second hit (see Table 4.5), 

which gave the correct line and model of the vehicle from which the paint chip originated.  

However, the HQI value for this hit was less than 90%, which is indicative of the match 

not being of high quality.  For both the clear coat and e-coat layers (see Figure 4.12), there 

were peaks in the reconstructed IR spectra due to the thirty minute epoxy. 

 

 

Figure 4.11.  Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00731 – 2003 Nissan Murano) in the Nissan spectral 

library for the paint sample not cast in epoxy.  a) Clear coat layer, b) surfacer-primer layer, 

and c) e-coat layer. 
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Figure 4.12.  Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00731 – 2003 Nissan Murano) in the Nissan spectral 

library for the paint sample cast in epoxy.  a) Clear coat layer, b) surfacer-primer layer, and 

c) e-coat layer. Peaks from the thirty minute epoxy are denoted by an arrow enclosed in a 

solid rectangle. 

 

 

 

Table 4.5.  Library Search Results for UAZP00731 

1Correct model 

2Actual paint sample 

 

 

Figures 4.13 and 4.14 show the reconstructed IR spectra of the clear coat, surfacer-

primer, and e coat layers of UAZP00331 (2001 General Motors suburban) and UAZP00484 

(2003 Toyota Highlander) generated from line maps (45 spectra for UAZPOO331 and 43 

Medium Layer HQI Value of 

Match 

Position in Search 

/(Top Five Hits) 

None Clear Coat1,2 94.83 1 

None Surfacer-Primer1,2 95.49 1 

None E-Coat1,2 90.05 1 

Thirty Minutes Epoxy 

Thirty Minute Epoxy 

Clear Coat1 

Surfacer-Primer 

89.36 

62.45 

2 

No Match 

Thirty Minute Epoxy E-Coat 79.56 No Match 
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spectra for UAZPOO484) prepared from paint chips not cast in epoxy.  All reconstructed 

IR spectra were good matches for the actual paint samples, and yielded good matches when 

searched against the General Motors and Toyota libraries. For UAZP00331 (see Table 4.6), 

the correct line and model was the first hit for both the clear coat and e-coat layers, whereas 

the second hit was the correct match for the surfacer-primer layer.  Library search results 

for UAZP00484 (see Table 4.7) were also encouraging.  For the surfacer primer and e-coat 

layers, the actual sample was also the first hit, whereas the correct line and mode was the 

top hit for the clear coat layer. 

 

 

 

Figure 4.13.  Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00331 – 2001 General Motors Suburban) in the General 

Motors spectral library for the paint sample not cast in epoxy.  a) Clear coat layer, b) 

surfacer-primer layer, and c) e-coat layer. 
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Figure 4.14.  Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00484 - 2003 Toyota Highlander) in the Toyota spectral 

library for the paint sample not cast in epoxy.  a) Clear coat layer, b) surfacer-primer layer, 

and c) e-coat layer. 
 

 

Table 4.6.  Library Search Results for UAZP00331 

  1Correct model 

  2Actual paint sample 

 

 

 

 

 

 

 

 

Medium Layer HQI Value of 

Match 

Position in Search 

/(Top Five Hits) 

None Clear Coat1 97.70 1 

None Surfacer-Primer1 94.44 2 

None E-Coat1 96.58 1 

Thirty Minute Epoxy Clear Coat 97.10 3 

Thirty Minute Epoxy Surfacer-Primer 95.10 1 

Thirty Minute Epoxy E-Coat 97.70 1 
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Table 4.7.  Library Search Results for UAZP00484 

1Correct model 
2Actual paint sample 

 

 

In a previously published study [20], reconstructed IR spectra of the clear coat, 

surfacer-primer, and e-coat layers for UAZP00331 and UAZP00484 were generated using 

line maps (76 IR spectra for UAZPOO331 and 65 IR spectra for UAZP00484) prepared 

from paint chips cast in epoxy prior to cross sectioning. For both UAZP00331 and 

UAZP00484, the correct match for the two undercoat layers (e-coat and surfacer-primer) 

was the first hit (see Tables 4.6 and 4.7). As for the clear coat layer, the third hit was the 

correct match for UAZP00331, whereas the reconstructed clear coat IR spectrum of 

UAZP00484 was a poor match for spectra in the Toyota library due to mixing of the thirty 

minute epoxy with the clear coat layer (see Tables 4.6 and 4.7). Clearly, the mixing of the 

IR spectra of the epoxy with spectra of the clear coat layer can adversely impact both the 

ALS and library search results. 

The approach to automotive paint analysis described in this paper eliminates the 

need to analyze each layer of automotive paint separately and ensures that recovered IR 

spectra of the paint layers are not contaminated by epoxy or other media.   This study, 

which is directly targeted to enhance current approaches to forensic automotive paint 

examination through decreased analyses times as compared to current practices and aid in 

evidential significance assessment, both at the investigative lead stage and at the courtroom 

Medium Layer HQI Value of 

Match 

Position in Search 

/(Top Five Hits) 

None Clear Coat1 97.42 1 

None Surfacer-Primer1,2 90.97 1 

None E-Coat1,2 94.35 1 

Thirty Minute Epoxy Clear Coat 83.99 No match 

Thirty Minute Epoxy Surfacer-Primer1,2 95.39 1 

Thirty Minute Epoxy E-Coat1,2 96.01 1 
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testimony stage, is a direct response to Recommendation 3 of the National Academies 

February 2009 Report [21].  

 

4.5.  Conclusion 

IR spectra of the clear coat, surfacer-primer, and e-coat layers were collected in a 

single analysis from multi-layered automotive paint chips using a transmission FTIR 

imaging microscope. Decatenation of the spectral image as represented by a line map was 

achieved using VER/ALS to obtain a pure IR spectrum of each paint layer. The successful 

spectral reconstructions of each layer allowed us to quantify the discrimination power of 

the original automotive paint through library searching. The results of this study suggest 

that reconstructed IR spectra of the paint layers extracted from spectral line maps of IR 

images of cross sectioned paint samples using MCR can be searched against the PDQ 

database to yield good matches.  The proposed IR imaging method is faster than hand 

sectioning and analyzing each layer separately by FTIR.   

It has also been demonstrated that if the automotive paint chip is not embedded in 

an epoxy before cross sectioning, the IR spectra of the clear coat, surfacer-primer and e-

coat layers can be successfully reconstructed and searched against a spectral library to yield 

a correct match.  By comparison, this was not always the case when the paint chip was first 

cast in epoxy prior to cross sectioning with a microtome because the epoxy infiltrated 

specific layers of some automotive paint chips contaminating their IR spectra and 

preventing accurate library matching of the e-coat or surfacer-primer layers. 
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CHAPTER V 

 

TRANSMISSION INFRARED MICROSCOPY FOR THE FORENSIC 

EXAMINATION OF AUTOMOTIVE PAINT – PATTERN RECOGNITION 

ASSISTED INFRARED LIBRARY SEARCHING 

 

 

5.1. Introduction 

 

In the previous chapter, a new method to characterize automotive paint samples 

recovered from a crime scene involving a vehicle related fatality such as a hit-and-run was 

discussed.  Infrared spectra data from all the layers of an automotive paint chip was 

collected in a single analysis by scanning across a cross-sectioned paint sample using an 

FTIR imaging microscope.  After the data had been collected, it underwent decatenation 

using multivariate curve resolution to obtain the “pure” IR spectrum of each layer.  

Comparing the reconstructed IR spectrum of each layer against an IR spectral library from 

the PDQ database demonstrated that it was possible to identify the correct line and model 

of the vehicle using these reconstructed spectra. This imaging experiment not only saves 

time and eliminate the need to analyze each layer separately, but also ensures that the final 

spectrum of each layer is “pure” and not a mixture, which can occur when using a scalpel 

to separate the individual layers and sampling too close to the boundary between adjacent 

layers.   

In this chapter, the coupling of the proposed FTIR imaging experiment with a 

prototype pattern recognition infrared library searching system previously developed by 
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Lavine and co-workers is discussed.  The forensic examination of automotive paint is  

facilitated in terms of both the accuracy and speed of the analysis as a result of this 

coupling.  The library searching system consists of two separate but interrelated 

components: search prefilters to cull the library spectra to a specific assembly plant or 

assembly plants and a cross correlation library searching algorithm to identify spectra most 

similar to the unknown in the set of spectra identified by the search prefilters as potential 

matches for the unknown.  As the size of the library is culled for a specific match, the 

search prefilters increase both the selectivity and accuracy of the search.   

5.2. Data Set 

 

Thirty-two automotive paint samples from vehicles sold in North America between 

2000 and 2006 were obtained from the Royal Canadian Mounted Police Forensic Services 

Laboratory.  Each paint sample was from a metallic automobile component. Paint samples 

from plastic substrates were excluded as these components are often not painted in the 

same plant where the vehicle was assembled.   

The colors of the paint samples were white, red, blue, silver and black. Thin cross 

sections of each paint chip in the range of 4-7µm for infrared microscopy were obtained 

using a microtome.   The thirty-two paint samples obtained from cars and trucks spanned 

six different manufacturers: Chrysler, Ford, General Motors, Toyota, Honda, and Nissan. 

The PDQ identification number, the make, line and model as well as the vehicle type (car 

or truck) are listed in Table 5.1 for the transmission infrared microscopy data set. 

Each paint sample was removed from the metal substrate using a shark knife, 

washed with methanol to remove dirt and particulate matter, and cast in thirty minute epoxy 

or placed between two rigid polyethylene plastic pieces to prepare thin sections which 
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involved exposing the edge of the paint sample.   Each paint sample was positioned in the 

microtome to ensure that a thin cross section cut by the microtome contained all four paint 

layers. For automotive paint samples cast in blue light epoxy, mixing of the spectral 

features from the epoxy with the clear coat or e-coat layers occurred in 13 of these 32 paint 

samples.  For these 13 samples, the entire procedure (including the sectioning of the 

embedded sample) was repeated several times with the same results.  We believe this 

problem is linked to the compression of the cross sectioned paint sample by the epoxy, 

which caused a decrease in the thickness of each layer of the automotive paint.  For an 

OEM automotive paint system, embedding a paint sample in an epoxy may be problematic 

for some samples when one or more layers are too thin. 

     Table 5.1.  Paint Samples Analyzed by Transmission Infrared Microscopy 

PDQ Number Make Line/Model Type 

UAZP00412 Chrysler DOD/RAM Truck 

UAZP00421 Chrysler JEE/JBT Car 

UAZP00451 Chrysler CHR/CND Car 

UAZP00569 Chrysler DOD/RAM Truck 

UAZP00600 Chrysler DOD/NEO Car 

UAZP00401 Chrysler DOD/DUR Truck 

UAZP00342 Ford FOR/FOC Car 

UAZP00404 Ford FOR/EPR Car 

UAZP00467 Ford FOR/ECP Car 

UAZP00596 Ford FOR/MUS Car 

UAZP00477 Ford FOR/MUS Car 

UAZP00436 General Motors CHE/CTA Car 

UAZP00271 General Motors CHE/CTA Car 

UAZP00507 General Motors CHE/TBZ Car 

UAZP00331 General Motors CHE/SUB Car 

UAZP00499 General Motors PON/BON Car 

UAZP00565 General Motors BUI/LUC Car 

UAZP00729 Honda Honda/CR-V Car 

UAZP00277 Honda Honda/Odyssey Car 

CONT00726 Honda Honda/Pilot Car 

CONT00736 Honda Honda/Accord Car 

UAZP00730 Honda Honda/Civic Car 
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Table 5.1.  Paint Samples Analyzed by Transmission Infrared Microscopy 

 (Continue) 

 

 

5.3. Results and Discussion 

 

 This section of the chapter is divided into three subsections.  The first subsection is 

the reconstruction of the IR spectra of the individual paint layers of each sample from the 

spectral line maps using alternating least squares.  The second and third subsections focus 

on the application of the prototype pattern recognition assisted infrared library search 

system using the reconstructed IR spectra of the automotive paint layers to identify the 

make and model of the vehicle from which the paint sample originated. All thirty-two of 

the original paint samples without epoxy were analyzed.  Only twenty-seven of the thirty-

two original paint samples were analyzed using epoxy resin because there was an 

insufficient amount of sample remaining after the analysis was completed in transmission 

and ATR mode with the unembedded paint samples. 

5.3.1. Multivariate Curve Resolution 

The thirty-two paints samples used in this study comprised a test bed to cross 

validate the multivariate curve resolution procedure discussed in the previous chapter.   The 

presence or absence of epoxy did not change the method used to generate the sample line 

maps.  Furthermore, the cross section was typically angled (whether in the presence or 

PDQ Number Make Line/Model Type 

UAZP00745 Nissan Nissan/Titan Car 

UAZP00731 Nissan Nissan/Murano Car 

UAZP00527 Nissan Nissan/Altima Car 

UAZP00537 Nissan Nissan/Pathfinder Car 

UAZP00381 Toyota Toyota/Camry Car 

UAZP00313 Toyota Toyota/Camry-Solara Car 

UAZP00733 Toyota Toyota/Camry Car 

UAZP00561 Toyota Toyota/Tacoma Car 

UAZP00440 Nissan Nissan/Altima Car 
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absence of epoxy) as a result of the small size of the paint chip and the difficulty associated 

with the placement of the sample in the microtome.  For this reason, the line map of each 

sample was generated from a cut taken along the diagonal of the paint chip to maximize 

the number of relevant spectra in the map.  Earlier problems encountered in the generation 

of line maps with respect to these small samples were addressed through standardization 

of the method for taking the diagonal.   

The cut sample to be scanned was positioned under a Thermo Nicolet iN 10 MX 

microscope equipped with a liquid nitrogen cooled MCT detector and the line map was 

generated along the diagonal of the sample.  As in the previous experiment, all spectra 

within the line map had the region from 2280 cm-1 to 2400 cm-1 replaced with a blank line 

to negate the effects of CO2 gas, and the spectral region below 748cm-1 was discarded 

because it was often too noisy.  After this preprocessing was completed, spectra were 

extracted from the sample line map and examined for artifacts.  Spectra with very large or 

small peak intensities were discarded from the line map as were spectra that exhibited signs 

of peak shifting.  The paint samples generally did not exhibit peak shifting as was observed 

in our initial set of test samples analyzed using a Nicolet Magna-IR 550 Series II 

Spectrometer coupled to a Nic-Plan Analytical IR Microscope. 

Using the entire spectral range (4000 cm-1 to 748 cm-1) was more effective for 

decatenation by ALS than selecting a wavelength subset, e.g., the fingerprint region, as 

more information about how each layer changed as a function of sample position during 

scanning was obtained when the entire spectrum was subject to decatenation.    Figures 5.1 

through Figures 5.6 show the ALS spectral reconstructions of the clear coat, surfacer-

primer, and e-coat layers from six automotive paint samples not encapsulated in epoxy.  
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Each paint sample is from a different manufacturer and is representative of the quality of 

the ALS reconstructions from that manufacturer.  The clear coat, surfacer-primer and e-

coat layers were successfully reconstructed for all six paint samples.   All reconstructed IR 

spectra were good matches for the same paint sample in the PDQ library. 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
  
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 5.1. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00421-Chrysler Jeep) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.2. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00477-Ford Mustang) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.3. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00331-General Motors Chevrolet Suburban) in the PDQ 

spectral library. a) Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.4. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (CONT00726-Honda Pilot) in the PDQ spectral library. a) Clear 

coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.5. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00527-Nissan Altima) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.6. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00561-Toyota Tacoma) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 

 

 

Figures 5.7 through Figures 5.12 show the ALS spectral reconstructions of the clear 

coat, surfacer-primer, and e-coat layers from six automotive paint samples encapsulated in 

epoxy.  Each paint sample is from a different manufacturer and is representative of the 

quality of the ALS reconstructions from that manufacturer.  The clear coat, surfacer-primer 

and e-coat layers were successfully reconstructed for all six paint samples and were good 

matches for the same paint sample in the PDQ library.   
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Figure 5.7. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00421-Chrysler Jeep) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.8. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00477-Ford Mustang) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.9. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00331-General Motors Chevrolet Suburban) in the PDQ 

spectral library. a) Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.10. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (CONT00726-Honda Pilot) in the PDQ spectral library. a) Clear 

coat layer, b) surfacer-primer layer, and c) e-coat layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 

Figure 5.11. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00527-Nissan Altima) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 
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Figure 5.12. Comparison of the reconstructed IR spectrum (dashed line) to the IR spectrum 

of the actual paint sample (UAZP00561-Toyota Tacoma) in the PDQ spectral library. a) 

Clear coat layer, b) surfacer-primer layer, and c) e-coat layer. 

 

 

ALS reconstructions of each paint layer for the thirty two automotive paint samples 

were evaluated using OMNIC library search routines that were configured as correlation 

for the search type with Happ-Genzel apodization.  All library searches were restricted to 

the spectral region between 1641 cm-1 and 860 cm-1. The quality of each search was 

assessed using the hit quality index (HQI).  A library search was considered to be successful 

when the actual paint sample or the correct line and model of the vehicle from which the 
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paint sample originated was included in the top five hits of the search.  Each library 

searched was the same manufacturer (e.g., General Motors) and the same production year 

range (e.g., 2000-2006) as the automotive paint sample from which the reconstructed IR 

spectra were obtained.  Table 5.2 summarizes the library search results for the paint 

samples without epoxy.  For the clear coats, 29 of the 32 paint samples were correctly 

matched, whereas for the surfacer primer layer it was 31 out of 32 and 27 out of 32 for the 

e-coat layer.  Table 5.3 summarizes the library search results for the paint samples with 

epoxy.  For the clear coats, 23 of the 27 paint samples were correctly matched, whereas for 

the surfacer primer layer it was 22 out of 27 and 14 out of 27 for the e-coat layer.  

An examination of the PDQ library spectra and the reconstructed IR spectra of the 

same paint sample for the IR spectra not correctly matched reveals large peak shifts 

(approximately 10cm-1) for some vibrational modes.  When IR spectra from a high pressure 

diamond cell were compared to spectra obtained at ambient pressure from an IR 

microscope, frequency shifts for some modes were observed. Emmons et al., [1] attributed 

these observed frequency shifts to the removal of void spaces in the polymer (paint layer) 

which occurred during the compression of the paint sample by the diamond cell.   For 

library searching algorithms based on correlation, these shifts will reduce the HQI value of 

a spectral match.  To ensure accurate spectral library searching, it is necessary to address 

this problem.  A brief summary of the solution to this problem is described in the next 

subsection. 
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Table 5.2.  Library Search Results for the Unembedded Paint Samples 

 

 

 

 

 

 

PDQ 

Number 

Manufacturer Clear Coat Surfacer-

Primer 

E-Coat 

  HQI % 

Match 

HQI % 

Match 

HQI % 

Match 

UAZP00412 Chrysler 8 96.80 1 97.44 1 98.63 

UAZP00421 Chrysler 1 95.49 1 96.28 3 98.58 

UAZP00451 Chrysler 9 92.77 1 98.05 4 95.91 

UAZP00569 Chrysler 1 94.56 1 98.65 4 96.47 

UAZP00600 Chrysler 1 91.54 1 93.85 1 93.36 

UAZP00401 Chrysler 1 97.81 1 98.61 1 97.30 

UAZP00342 Ford 1 98.61 2 95.63 - - 

UAZP00404 Ford 1 98.18 2 95.67 3 93.83 

UAZP00467 Ford 1 97.31 1 95.53 1 94.77 

UAZP00596 Ford 1 98.80 1 92.39 1 98.11 

UAZP00477 Ford 1 98.14 1 96.37 1 91.36 

UAZP00436 General Motors 1 96.37 1 92.88 1 97.06 

UAZP00271 General Motors 1 98.15 5 90.50 - - 

UAZP00507 General Motors 8 98.14 4 86.05 1 93.11 

UAZP00331 General Motors 1 97.70 2 94.44 1 96.58 

UAZP00499 General Motors 1 98.52 5 92.36 - - 

UAZP00565 General Motors 1 97.07 1 96.25 5 94.31 

UAZP00729 Honda 1 96.52 9 91.93 1 97.06 

UAZP00277 Honda 1 96.77 1 98.00 3 94.87 

CONT00726 Honda 2 95.96 1 96.48 1 90.84 

CONT00736 Honda 5 87.90 1 97.38 1 96.69 

UAZP00730 Honda 2 95.28 1 97.88 2 94.38 

UAZP00440 Nissan 1 98.10 1 95.19 1 89.12 

UAZP00745 Nissan 1 96.38 1 85.73 1 97.47 

UAZP00731 Nissan 1 94.83 1 95.49 1 90.05 

UAZP00527 Nissan 1 96.93 1 95.68 1 97.07 

UAZP00537 Nissan 2 91.07 3 94.77 - - 

UAZP00381 Toyota 2 92.78 5 96.55 3 95.96 

UAZP00313 Toyota 1 94.74 1 92.19 - - 

UAZP00733 Toyota 1 96.26 2 98.08 4 94.96 

UAZP00561 Toyota 1 97.51 1 96.85 2 92.30 

UAZP00484 Toyota 1 97.42 1 90.97 1 94.35 
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Table 5.3.  Library Search Results for the Embedded Paint Samples 

 

 

 

 

 

 

 

 

 

 

 

 

PDQ 

Number 

Manufacturer Clear Coat Surfacer-

Primer 

E-Coat 

  HQI % 

Match 

HQI % 

Match 

HQI % Match 

UAZP00412 Chrysler 1 97.13 4 98.09 1 97.63 

UAZP00421 Chrysler 1 97.03 1 96.39 9 97.98 

UAZP00451 Chrysler 5 96.03 1 96.77 7 97.90 

UAZP00569 Chrysler 1 90.04 1 98.44 1 96.28 

UAZP00600 Chrysler 1 98.05 3 98.74 10 97.54 

UAZP00401 Chrysler 1 97.60 1 96.86 1 96.60 

UAZP00342 Ford 1 96.47 1 93.95 8 97.36 

UAZP00596 Ford 1 97.32 2 94.10 1 97.03 

UAZP00436 General Motors 5 97.87 3 92.81 3 96.86 

UAZP00507 General Motors - - 2 87.60 - - 

UAZP00331 General Motors 3 97.10 1 95.10 1 97.70 

UAZP00565 General Motors 3 94.50 4 90.92 8 68.53 

UAZP00277 Honda 1 97.46 1 97.49 3 98.15 

CONT00736 Honda - - 1 97.11 1 94.00 

UAZP00730 Honda 1 95.60 1 97.09 3 96.94 

UAZP00440 Nissan 1 92.73 1 96.12 1 96.53 

UAZP00731 Nissan 2 89.36 6 62.45 6 79.56 

UAZP00527 Nissan 4 92.55 1 92.72 1 94.20 

UAZP00537 Nissan - - 7 85.73 - - 

UAZP00381 Toyota 1 90.73 - - 1 96.96 

UAZP00733 Toyota 4 87.55 - - - - 

UAZP00484 Toyota - 83.99 1 95.39 3 96.01 

UAZP00385 Nissan 1 97.20 1 95.75 - - 

UAZP00404 Ford 1 92.14 2 85.93 9 95.14 

UAZP00477 Ford 2 94.06 1 86.98 2 96.62 

UAZP00729 Honda 2 85.46 - - 10 92.75 

UAZP00745 Nissan 2 90.73 2 89.27 - - 
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5.3.2 Search Prefilters for Pattern Recognition Assisted Infrared Library Searching  

 

The frequency shifts observed for some vibrational modes posed an even greater 

problem when using pattern recognition techniques.  For almost all library searching 

algorithms, the Euclidean distance or the correlation coefficient between pairs of spectra is 

computed, whereas with pattern recognition methods, the metric that is computed 

minimizes within-source variability and maximize between-source variability (e.g., the 

assembly plant from which the vehicle originated).  This more stringent requirement for 

spectral library matching necessitates higher quality data containing fewer artifacts.  To 

solve the problem of frequency shifts encountered with some vibrational modes, IR 

transmission spectra from the PDQ database (generated using a high pressure diamond 

transmission cell) and the transmission IR microscope (generated at ambient pressure using 

a BaF2 cell) were transformed to ATR spectra using an ATR simulation algorithm 

previously developed by Lavine [2, 3]. Using this correction algorithm, the large frequency 

shifts encountered for some vibrational modes in the polymer were diminished when 

applying this conversion to IR spectra in the PDQ library and to the paint samples analyzed 

by the infrared microscope.  We attribute this success to removing the effect of the 

refractive index on the IR spectra.  The correction algorithm uses a set of six equations to 

standardize the real and imaginary components of the refractive index for the IR spectra.   

The reconstructed IR spectra of each paint sample were analyzed using a prototype 

pattern recognition library search engine [4-7] for multiple automotive paint layers (clear 

coat, surfacer primer, and e-coat layers) consisting of prefilters developed from the clear 

coat, surfacer-primer and e-coat layers for 1652 OEM paint systems spanning six 

manufacturers (General Motors, Ford, Chrysler, Honda, Nissan, and Toyota) within a 
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limited production year (2000-2006).  A hierarchical classification scheme was utilized to 

identify the make and model of the vehicle from the reconstructed IR spectra.  A search 

prefilter was developed to differentiate automotive paint samples by manufacturer. For 

each manufacturer, search prefilters were developed to identify the assembly plant (and 

hence the line and model of the vehicle) from FTIR spectra of OEM paint system using the 

clear coat, surfacer-primer and e-coat layers.   

5.3.2.1. Methodology and Data Preprocessing for Search Prefilter Development 

For pattern recognition analysis, each transmission spectrum was normalized to unit 

length. The discrete wavelet transform [8] using the 8sym6 mother wavelet (Symlet wavelet 

family, sixth smallest filter size, eighth level of decomposition) was applied to the 

fingerprint region (1641 cm–1 to 680 cm–1) of each layer using the Matlab Wavelet toolbox 

3.0.4 (The Mathworks Inc.). The Symlet 6 mother wavelet was chosen because the shape 

of its scaling function closely matched the shape of the bands comprising the IR spectra of 

the automotive paints. Three sets of wavelet coefficients were concatenated to form the 

sample pattern vectors used by the search prefilters as shown in Figure 5.13. Wavelet 

coefficients from the lower levels of decomposition were retained, resulting in 3426 

wavelet coefficients per paint sample (i.e., 1142 coefficients each from the clear coat, 

surfacer–primer, and e-coat layers). Prior to pattern recognition analysis, the wavelet 

transformed spectra were autoscaled to ensure that each coefficient had a mean of zero and 

a standard deviation of one throughout all transformed IR spectra. Autoscaling removed 

any inadvertent weighing of the data that otherwise would occur due to differences in the 

magnitude among the wavelet coefficients comprising the spectral data.  
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Figure 5.13. Clear coat, surfacer-primer, e-coat and fused wavelet preprocessed FT-IR 

data. 

 

 

The automotive paint database used in this study consisted of 1652 paint samples 

from six manufacturers: General Motors (19 assembly plants), Chrysler (15 assembly 

plants), Ford (25 assembly plants), Honda (6 assembly plants), Nissan (6 assembly plants), 

and Toyota (5 assembly plants). These six manufacturers account for 80% of the vehicles 

purchased in North America. 

Before the paint samples in this database were analyzed by the genetic algorithm 

for pattern recognition, they were investigated for outliers by examining principal 

component (PC) plots of each paint layer from each assembly plant and flagging samples 

that appeared discordant in the corresponding PC plots. These discordant observations 

were compared to the average IR spectrum of each layer for the given assembly plant. If 

the IR spectrum of the observation in question differed markedly from the average IR 

spectrum of the assembly plant in question, the sample was designated as an outlier and 

Clear coat Surfacer-primer E-coat 

Clear coat Surfacer-primer E-coat 
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removed from the analysis. Many of these discordant observations were paint samples 

obtained from replaceable automotive substrates that did not have the original 

manufacturer’s paint system. For other discordant observations, the paint layers may have 

been mislabeled (e.g., primer surfacer labeled as the e-coat layer). The database of 1652 

paint samples was divided into a training set of 1484 samples and a prediction set of 168 

samples (see Table 5.4). Samples comprising the prediction set were selected by random 

lot. 

Table 5.4. Automotive Paint Data 

 

5.3.2.2. Manufacture Search Prefilter System 

A hierarchical classification scheme was implemented to develop a search prefilter 

to identify the vehicle manufacturer of an intact paint chip from the IR spectra of the clear 

coat, surfacer–primer, and e-coat layers. The first step was to divide the automotive paint 

samples into two groups based on the chemical formulation of the clear coat layer. Modern 

automotive clear coats are either acrylic melamine styrene (singlet for the carbonyl band) 

or acrylic melamine styrene polyurethane (doublet for the carbonyl band). Paint samples 

whose clear coat layer exhibits a doublet for the carbonyl band were flagged and isolated 

Manufacturer Training Prediction Total 

General Motors 408 44 452 

Chrysler 350 40 390 

Ford 345 39 384 

Honda 126 16 142 

Nissan 94 9 103 

Toyota 161 20 181 

Total 1484 168 1652 
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from the other paint samples. Nissan and Toyota were only represented by paint samples 

whose clear coat layer was acrylic melamine styrene (singlet for the carbonyl band). 

A search prefilter was developed to classify IR spectra by vehicle manufacturer for 

paint samples with an acrylic melamine styrene polyurethane clear coat layer. Since the 

clear coat layer of the Nissan and Toyota paint samples was acrylic melamine styrene, this 

search prefilter was limited to four manufacturers: General Motors, Chrysler, Ford, and 

Honda. Table 5.5 summarizes the 209 training set samples analyzed by the pattern 

recognition GA in this phase of the study. Figure 5.14 shows a plot of the two largest PCs 

of the 3426 wavelet coefficients of the concatenated pattern vector (clear coat, surfacer–

primer, and e-coat layers). Each sample is represented as a point in the PC plot of the 

wavelet transformed ATR spectral data. There is overlap between the four vehicle 

manufacturers in the PC plot. 

 

Table 5.5. Acrylic Melamine Styrene Polyurethane 

 

 

 

 

 

 

Manufacturer Training Prediction Total 

General Motors 104 16 120 

Chrysler 65 6 71 

Ford 23 3 26 

Honda 17 2 19 

Total 209 27 236 
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Figure 5.14. Principal component plot of the 3426 wavelet coefficients and the 209 

concatenated IR spectra comprising the training set for those samples whose clear coats are 

defined by the formulation acrylic melamine styrene polyurethane. Each sample is 

represented as a point in the plot: 1 = GM, 2 = Chrysler, 3 = Ford, and 4 = Honda.  

 

 

The pattern recognition GA identified wavelet coefficients characteristic of the 

manufacturer by sampling key feature subsets, scoring their PC plots, and tracking those 

samples or classes (i.e., automotive manufacturers) that were difficult to classify. The 

boosting routine used this information to steer the population to an optimal solution. After 

200 generations, the pattern recognition GA identified 48 wavelet coefficients whose PC 

plot (Figure 5.15) shows clear delineation of the training set samples on the basis of 

automotive manufacturer. Projecting the 27 prediction set samples onto the PC plot 

developed from the 209 training set samples and the 48 wavelet coefficients identified by 

the pattern recognition GA showed that each projected prediction set sample was located 
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in a region of the PC plot (Figure 5.16) with samples from the same automotive 

manufacturer. 

 

 
 

 

Figure 5.15. PC plot of the 48 wavelet coefficients identified by the pattern recognition GA 

and the 209 concatenated IR spectra comprising the training set. Training set: 1 = GM, 2 = 

Chrysler, 3 = Ford, 4 = Honda.  
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Figure 5.16. Projection of the 27 prediction set samples onto the PC plot of the 33 wavelet 

coefficients identified by the pattern recognition GA and the 209 concatenated IR spectra 

comprising the training set. Training set: 1 = GM, 2 = Chrysler, 3 = Ford, 4 = Honda. 

Prediction set: A = GM, B = Chrysler, C = Ford, and D = Honda. 

 

 

The next step was to develop a classifier capable of discriminating IR spectra by 

manufacturer for paint samples that possessed an acrylic melamine styrene clear coat layer. 

All six manufacturers were represented by samples that exhibited a singlet for the carbonyl 

in their clear coat IR spectra. The 1416 paint samples in this phase of the study were divided 

into a training set of 1275 samples and a prediction set of 141 samples (see Table 5.6). 

Figure 5.17 shows a plot of the two largest PCs of the 1275 paint samples and the 3426 

wavelet coefficients comprising the training set. A visual examination of the PC plot shows 
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two distinct clusters. One is for the Chryslers (6 assembly plants) and the other is for the 

other automotive manufacturers which includes some Chrysler assembly plants. 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 5.17. Principal component plot of the 3426 wavelet coefficients and the 1275 

samples whose clear coats are formulated using acrylic melamine styrene. Each sample is 

represented as a point in the plot: 1 = General Motors, Chrysler, Honda, Nissan, and 

Toyota; 2 = Chrysler (3 plants). 

 

 

 

 

Table 5.6. Acrylic Melamine Styrene 

 

 

Manufacturer Training Prediction Total 

General Motors 304 28 332 

Chrysler 285 34 319 

Ford 322 36 358 

Honda 109 114 123 

Nissan 94 9 103 

Toyota 161 20 181 

Total 1275 141 1416 
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A classifier was developed using the pattern recognition GA for separating the 

Chryslers (6 assembly plants) from the other automotive manufacturers. Figure 5.18 shows 

a plot of the two largest PCs of the 1275 paint samples comprising the training set and the 

19 wavelet coefficients identified by the pattern recognition GA for this two-way 

classification problem (Chrysler versus General Motors, Chrysler, Honda, Nissan, Ford 

and Toyota). The 6 assembly plants for Chrysler are well separated from the other vehicle 

manufacturers in the PC plot. The prediction set samples for this training set were then 

projected onto the PC plot of the 1275 paint samples and the 19 wavelet coefficients 

selected by the pattern recognition GA (see Figure 5.19). Each projected sample lies in a 

region of the PC plot with samples that are tagged with the same class label. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

Figure 5.18. PC plot of the 1275 training set samples and the 19 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = General Motors, Chrysler, 

Honda, Nissan, and Toyota; 2 = Chrysler (3 plants).  
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Figure 5.19. Projection of the prediction set samples onto the PC plot of the 1275 training 

set samples and the 19 wavelet coefficients identified by the pattern recognition GA. 

Training set: 1 = General Motors, Chrysler, Honda, Nissan, and Toyota; 2 = Chrysler (3 

plants). Prediction set: A = General Motors, Chrysler, Honda, Nissan, and Toyota; B = 

Chrysler.  

 

 

A second discriminant was developed using the pattern GA for separating the 6 

Chrysler and General Motors assembly plants from Toyota, Nissan, Honda, and the 

remaining Chrysler and General Motors automotive paint samples. Figure 5.20 shows a 

plot of the two largest PCs of the remaining 1135 training set samples (without the six 

Chrysler assembly plants) and the 45 wavelet coefficients identified by the pattern 

recognition GA for this classification problem: General Motors (4 assembly plants) and 

Chrysler (2 assembly plants) versus Honda, Nissan, Toyota, Ford and the remaining 

General Motors (11 assembly plants) and Chrysler (7 assembly plants) paint samples. The 

6 General Motors and Chrysler assembly plants paint samples were well separated from 
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the others in the PC plot. Projection of the 127 prediction set samples onto the PC plot 

developed from the 1135 samples and the 45 wavelet coefficients identified by the pattern 

recognition GA is shown in Figure 5.21.  All prediction set samples were located in a region 

of the PC map with samples that have the same class label. 

 

 

Figure 5.20. PC plot of the 1135 training set samples and the 45 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = General Motors, Chrysler, 

Honda, Nissan, Toyota and Ford; 2 = Chrysler (2 plants) and General Motors (4 plants).  
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Figure 5.21. Projection of the 127 prediction set samples onto the PC plot of the 1135 

training set samples and the 45 wavelet coefficients identified by the pattern recognition 

GA. Training set: 1 = General Motors, Chrysler, Honda, Nissan, Toyota and Ford; 2 = 

Chrysler (2 plants) and General Motors (4 plants). Prediction set: A = All manufactures 

(General Motors, Honda, Nissan, Toyota, Ford and Chrysler); B = Chrysler (2 plants) and 

General Motors (4 plants).  

 

The sample cluster in Figure 5.22 and Figure 5.23 corresponding to the four General 

Motors and two Chrysler assembly plant samples was subsequently divided into two 

categories according to vehicle manufacturer. Figure 5.22 shows a plot of the 103 paint 

samples and 12 wavelet coefficients identified by the pattern recognition GA for this two-

class problem. Figure 5.23 shows the prediction set samples projected onto the PC plot 

shown in Figure 5.22. All prediction set samples were correctly classified. 
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Figure 5.22. PC plot of the 103 training set samples and the 12 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = General Motors (4 plants); 2 = 

Chrysler (2 plants).  
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Figure 5.23. Projection of the prediction set samples onto the PC plot of the 103 training 

set samples and the 12 wavelet coefficients identified by the pattern recognition GA. 

Training set: 1 = General Motors (4 plants); 2 = Chrysler (2 plants). Prediction set: A = 

General Motors (4 plants); B = Chrysler (2 plants). 

 

Another classifier was developed using the pattern recognition GA to separate 

Chrysler (three assembly plants) from those of General Motors, Honda, Nissan, and Toyota 

as well as Chrysler (three other assembly plants). For this study, the 1050 training set 

samples (without the 2 Chrysler and the 4 General Motors assembly plants) were divided 

into two classes: three Chrysler assembly plants versus General Motors, Honda, Nissan, 

Ford, Toyota and the remaining three Chrysler assembly plants. The pattern recognition 

GA identified 44 wavelet coefficients that achieved separation for 3 Chrysler assembly 

plants from the General Motors, Honda, Nissan, Toyota and the remaining 3 Chrysler 
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assembly plants paint samples. Figure 5.24 shows a plot of the two largest PCs of the 1050 

training set samples and the 44 wavelet coefficients identified by the pattern recognition 

GA. The 3 Chrysler assembly plant paint samples are well separated from those of General 

Motors, Honda, Nissan, Toyota and the other 3 remaining Chrysler assembly plants. Figure 

5.25 shows the projection of the 117 prediction set samples onto the plot of the two largest 

PCs of the 1050 training set samples and the 44 wavelet coefficients identified by the 

pattern recognition GA. All prediction set samples were correctly assigned to their 

respective category.  

 

 

Figure 5.24. PC plot of the 1050 training set samples and the 44 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = General Motors, Nissan, Toyota, 

Ford, Honda and Chrysler; 2 = Chrysler (3 plants).  
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Figure 5.25. Projection of the 117 prediction set samples onto the PC plot of the 1050 

training set samples and the 44 wavelet coefficients identified by the pattern recognition 

GA. Training set: 1 = General Motors, Nissan, Toyota, Ford, Honda and Chrysler; 2 = 

Chrysler (3 plants). Prediction set: A = General Motors, Nissan, Toyota, Ford, Honda and 

Chrysler; B = Chrysler (3 plants). 

 

 

The remaining 1070 paint samples from the cluster representing General Motors, 

the remaining 3 Chrysler assembly plants as well as Honda, Nissan, Toyota and Ford were 

analyzed in a two-way classification study. Figure 5.26 shows a plot of the 966 training set 

samples comprising General Motors versus Honda, Toyota, Ford, Nissan and the remaining 

3 assembly plants for Chrysler paint samples and the 22 wavelet coefficients identified by 

the pattern recognition GA for this two-way classification problem. Figure 5.27 shows a 

plot of the projection of the 104 prediction set samples onto the two largest PCs of the 966 

training set samples and the 22 wavelet coefficients identified by the pattern recognition 

GA. General Motors paint samples are well separated from the paint samples from the other 
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manufacturers (Honda, Nissan, Ford, Toyota and the remaining 3 Chrysler assembly 

plants).  

 

 

 
 
 
 
 
 

 
 
 
 

Figure 5.26. PC plot of the 966 training set samples and the 22 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = Chrysler, Nissan, Toyota, Ford, 

and Honda; 2 = General Motors (all plants).  
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Figure 5.27. Projection of the 104 prediction set samples onto the PC plot of the 966 

training set samples and the 22 wavelet coefficients identified by the pattern recognition 

GA. Training set: 1 = Chrysler, Nissan, Toyota, Ford, and Honda; 2 = General Motors (all 

plants). Prediction set: A = Chrysler, Nissan, Toyota, Ford, and Honda; B = General Motors 

(all plants). 

 

 

The 799 paint samples from the cluster representing Honda, Nissan, Toyota, Ford 

and Chrysler were also analyzed in a two-way classification study. Figure 5.28 shows a 

plot of the 717 training set samples comprising Toyota, Honda, Nissan, Ford and Chrysler 

paint samples and the 28 wavelet coefficients identified by the pattern recognition GA for 

this two-way classification problem. Figure 5.29 shows a plot of the projection of the 82 

prediction set samples onto the PC plot defined by the 717 Toyota, Honda, Nissan, Ford 

and the 3 Chrysler assembly plants paint samples and the 28 wavelet coefficients identified 

by the pattern recognition GA. The Toyota paint samples are well separated from Honda, 
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Nissan, Ford and Chrysler and all 82 prediction set samples are correctly classified by the 

PC plot. Each cluster in Figure 5.28 and Figure 5.29 was analyzed the pattern recognition 

GA. The 181 paint samples from Toyota could be differentiated from Honda, Nissan, Ford 

and Chrysler paint samples using the pattern recognition GA configured in the asymmetric 

classification mode. For this two-way classification study, the value of K was set at 161 for 

the Toyota assembly plant which represent the total number of Toyota paint samples (the 

target class) and 5 for the remaining paint samples (Honda, Nissan, Ford and Chrysler).  

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 5.28. PC plot of the 717 training set samples and the 28 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = Nissan, Ford, Honda and 

Chrysler; 2 = Toyota (all plants).  

 

 

 

 

Toyota 
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Figure 5.29. Projection of the 82 prediction set samples onto the PC plot of the 717 training 

set samples and the 28 wavelet coefficients identified by the pattern recognition GA. 

Training set: 1 = Nissan, Ford, Honda and Chrysler; 2 = Toyota (all plants). Prediction set: 

A = Nissan, Ford, Honda and Chrysler; B = Toyota (all plants). 

 

 

 

Figure 5.30 shows a plot of the 618 comprising Chrysler (3 plants) and Ford 

assembly plants versus those of Nissan and Honda paint samples and the 36 wavelet 

coefficients identified by the pattern recognition GA. Figure 5.31 shows a plot of the 

projection of the 62 prediction set samples onto the PC plot defined by Chrysler (3 plants) 

and Ford assembly plants versus those of Nissan and Honda paint samples and the 36 

wavelet coefficients identified by the pattern recognition GA. Both Honda and Nissan 

samples are well separated from those of Chrysler and Ford and all 62 prediction set 

samples were correctly assigned to their respective manufacturer.  

 

Toyota 
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Figure 5.30. PC plot of the 618 training set samples and the 36 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = Chrysler and Ford; 2 = Nissan 

and Honda 
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Figure 5.31. Projection of the 62 prediction set samples onto the PC plot of the 556 training 

set samples and the 36 wavelet coefficients identified by the pattern recognition GA. 

Training set: 1 = Chrysler and Ford; 2 = Nissan and Honda. Prediction set: A = Chrysler 

and Ford; B = Nissan and Honda. 

 

 

The 123 Honda paint samples were differentiated from the 103 Nissan paint 

samples using the pattern recognition GA. Figure 5.32 shows a plot of the 203 Honda and 

Nissan training set samples and the 27 wavelet coefficients identified by the pattern 

recognition GA. Figure 5.33 shows the projection of the 23 prediction set samples 

associated with this training set onto the PC plot defined by the 226 Honda and Nissan 

paint samples and the 27 wavelet coefficients. The Honda paint samples form a compact 

cluster and all 23 prediction set samples were correctly classified by the PC plot.  
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Figure 5.32. PC plot of the 203 training set samples and the 27 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = Nissan; 2 = Honda.  
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Figure 5.33. Projection of the 23 prediction set samples onto the PC plot of the 203 training 

set samples and the 27 wavelet coefficients identified by the pattern recognition GA. 

Training set: 1 = Nissan; 2 = Honda. Prediction set: A = Nissan; B = Honda. 

 

 

Finally the 358 Ford paint samples were differentiated from the 34 Chrysler paint 

samples (3 assembly plants) using the pattern recognition GA. Figure 5.34 shows a plot of 

the 353 Ford and Chrysler training set samples and the 28 wavelet coefficients identified 

by the pattern recognition GA. Figure 5.35 shows the projection of the 39 prediction set 

samples associated with this training set onto the two largest PCs of the 353 Ford and 

Chrysler training set samples and the 28 wavelet coefficients. The Chrysler paint samples 

form a compact cluster and all 39 prediction set samples were correctly classified by the 

PC plot.   
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Figure 5.34. PC plot of the 353 training set samples and the 28 wavelet coefficients 

identified by the pattern recognition GA. Training set: 1 = Ford; 2 = Chrysler.  
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Figure 5.35. Projection of the 39 prediction set samples onto the PC plot of the 353 training 

set samples and the 28 wavelet coefficients identified by the pattern recognition GA. 

Training set: 1 = Ford; 2 = Chrysler. Prediction set: A = Ford; B = Chrysler. 

 

 

 

Figure 5.36 provides an overview of the manufacturer search prefilter system 

developed from discriminants for paint samples whose clear coat layer is acrylic melamine 

styrene. A nine-tiered hierarchical classification scheme was developed by exploiting the 

linear separability of the sample classes comprising the training set. Classifier 1 separated 

the Chrysler (6 plants) from the other automotive manufacturers including some Chryslers. 

Classifier 2 separated Chrysler (2 plants) and General Motors (4 plants) from some General 

Motors, Chryslers, Honda, Nissan, Ford and Toyota. Classifier 3 separated the 2 Chrysler 

assembly plants from the 4 General Motors assembly plants. Classifier 4 was developed to 
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separate 3 Chrysler assembly plants from the remaining General Motors, Ford, Nissan, 

Toyota, Honda and the remaining 3 assembly plants for Chrysler. All the remaining paint 

samples for General Motors were separated from the remaining manufacturers using 

classifier 5. Classifier 6 effectively separated Toyota (all plants) from Honda, Nissan, Ford 

and the Chrysler (3 plants). Classifier 7 separated Chrysler and Ford from Honda and 

Nissan. Subsequently, Classifiers 8 and 9 were developed to effectively separate Honda 

from Nissan and Ford from the 3 remaining assembly plants for Chrysler respectively. 

 

 

 

 
 
 
 
 
 

Figure 5.36. An overview of the manufacturer search prefilter system for paint samples 

whose clear coat layer is acrylic melamine styrene. 
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To demonstrate the operation of the manufacturer search prefilter system to identify 

the “make” of a vehicle from an unknown automotive paint sample whose clear coat layer 

is acrylic melamine styrene, infrared spectra of the clear coat, surfacer primer, and e-coat 

layers of a Chrysler (UAZP00421 – Jeep) were passed through the manufacturer search 

prefilter.  Figure 5.37 depicts the steps implemented by the search prefilter system to 

identify the “make.”  In the first step (Prefilter 1), UAZP00421 was assigned to a collection 

of paint samples that spanned all six manufacturers (see Figures 5.18 and 5.38).  In the 

second step (Prefilter 2), UAZP00421 was assigned to a smaller collection of paint samples 

that again spanned all six manufacturers (see Figures 5.20 and 5.38). In the third and final 

step (Prefilter 4), UAZP00421 was assigned to a collection of samples representing three 

Chrysler assembly plants (see Figure 5.24 and 5.40).  Thus, the “make” of the vehicle is 

Chrysler.  

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 5.37.  Flowchart explaining how the make for UAZP00421 was determined using 

the manufacturer search prefilter. 
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Figure 5.38.  Assignment of UAZP00421 by Prefilter 1.  4 = UAZP00421. 

 

 

 
 

 

Figure 5.39.  Assignment of UAZP00421 by Prefilter 2.  4 = UAZP00421. 
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Figure 5.40.  Assignment of UAZP00421 by Prefilter 4.  4 = UAZP00421. 

 

To demonstrate the operation of the manufacturer search prefilter system to identify 

the “make” of a vehicle from an unknown automotive paint sample whose clear coat layer 

is acrylic melamine styrene polyurethane, a data vector consisting of the wavelet 

transformed infrared spectra of the clear coat, surfacer primer, and e-coat layers of a 

General Motors (UAZP00565 – Buick Lucerne) was projected onto a PC plot defined by 

the two largest principal components of the 48 wavelet coefficients identified by the pattern 

recognition GA and the 209 concatenated IR spectra comprising the training set (see 

Figures 5.15 and 5.41).  Because the sample is projected into a region of the PC plot 

containing General Motors (GM) samples, the “make” of the vehicle is GM. 
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Figure 5.41.  Projection of UAZP00565 onto the PC plot of the 33 wavelet coefficients 

identified by the pattern recognition GA and the 209 concatenated IR spectra comprising 

the training set for the manufacturer search prefilter developed for acrylic melamine 

styrene polyurethane. Training set: 1 = GM, 2 = Chrysler, 3 = Ford, 4 = Honda. 6 = 

UAZP00565. 

 

 

 

Tables 5.7 and 5.8 summarize the results obtained from the manufacturer search 

prefilter system for identifying the “make” of the vehicle from the wavelet transformed 

spectra of the clear coat, surfacer-primer and e-coat layers of the automotive paint samples 

with and without epoxy.  For the paint samples that were not cast in epoxy, the results are 

truly impressive.  All 32 paint samples were correctly classified as to the “make” of the 

vehicle.  For the paint samples cast in epoxy, the final results are not as impressive.   Only 

twenty-two of twenty-seven paint samples were correctly classified as to the “make” of the 

vehicle.  This can be attributed to the presence of epoxy in the clear coat and e-coat layers 

of these five misclassified paint samples. 
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Table 5.7 Unembedded Paint Samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
  
 
 
 
 

 

  

 

 

 

PDQ Number Manufacturer Search Prefilter Output 

   

UAZP00412 Chrysler Chrysler 

UAZP00421 Chrysler Chrysler 

UAZP00451 Chrysler Chrysler 

UAZP00569 Chrysler Chrysler 

UAZP00600 Chrysler Chrysler 

UAZP00401 Chrysler Chrysler 

UAZP00342 Ford Ford 

UAZP00404 Ford Ford 

UAZP00467 Ford Ford 

UAZP00596 Ford Ford 

UAZP00477 Ford Ford 

UAZP00436 General Motors General Motors 

UAZP00271 General Motors General Motors 

UAZP00507 General Motors General Motors 

UAZP00331 General Motors General Motors 

UAZP00499 General Motors General Motors 

UAZP00565 General Motors General Motors 

UAZP00729 Honda Honda 

UAZP00277 Honda Honda 

CONT00726 Honda Honda 

CONT00736 Honda Honda 

UAZP00730 Honda Honda 

UAZP00440 Nissan Nissan 

UAZP00745 Nissan Nissan 

UAZP00731 Nissan Nissan 

UAZP00527 Nissan Nissan 

UAZP00537 Nissan Nissan 

UAZP00381 Toyota Toyota 

UAZP00313 Toyota Toyota 

UAZP00733 Toyota Toyota 

UAZP00561 Toyota Toyota 

UAZP00484 Toyota Toyota 
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Table 5.8.  Embedded Paint Samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDQ Number Manufacturer Search Prefilter Output 

UAZP00412 Chrysler Chrysler 

UAZP00421 Chrysler Chrysler 

UAZP00451 Chrysler Chrysler 

UAZP00569 Chrysler Chrysler 

UAZP00600 Chrysler Chrysler 

UAZP00401 Chrysler Chrysler 

UAZP00342 Ford Ford 

UAZP00596 Ford Ford 

UAZP00436 General Motors General Motors 

UAZP00507 General Motors General Motors 

UAZP00331 General Motors General Motors 

UAZP00565 General Motors General Motors 

UAZP00277 Honda Honda 

CONT00736 Honda Honda 

UAZP00730 Honda Honda 

UAZP00440 Nissan Nissan 

UAZP00731 Nissan Nissan 

UAZP00527 Nissan Nissan 

UAZP00537 Nissan Nissan 

UAZP00381 Toyota Toyota 

UAZP00733 Toyota Toyota 

UAZP00484 Toyota Toyota 

UAZP00404 Ford Not Correctly Classified 

UAZP00477 Ford Not Correctly Classified 

UAZP00561 Toyota Not Correctly Classified 

UAZP00729 Honda Not Correctly Classified 

UAZP00745 Nissan Not Correctly Classified 
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5.3.2.3. Assembly Plant Search Prefilters 

 After the “make” of the vehicle has been identified by the manufacturer search 

prefilter, the line and model of the vehicle was identified from IR spectra of OEM paint 

systems using a two-tiered process.  First, the vehicle assembly plants of each manufacturer 

were divided into assembly plant groups by applying cluster analysis to the fingerprint 

region of the average IR spectrum of the clear coat layer which served as a prototypical 

data vector to represent the paint formulation used by each assembly plant.  Second, each 

plant group was divided into its constituent assembly plants using the wavelet transformed 

IR spectra of the clear coat, surfacer-primer and e-coat layers to develop a discriminant.  

Further details on the formulation of these search prefilters to OEM paint systems can be 

found elsewhere [5-5 to 5-7].   

 To demonstrate the performance of the assembly plant search prefilters, a paint 

sample (UAZP00421 – Chrysler Jeep) correctly identified as Chrysler by the manufacturer 

search prefilter system for acrylic melamine styrene was assigned to one of the two 

Chrysler assembly plant groups (see Figure 5.42) and then one of the six assembly plants 

comprising the plant group (see Figure 5.43) by projecting the paint sample onto the PC 

plot defined by the two largest principal components of the 285 OEM paint systems and 

the 12 wavelet coefficients identified by the pattern recognition GA for plant group (see 

Figure 5.42) and the 155 OEM paint systems and 32 wavelet coefficients identified by the 

pattern recognition GA for assembly plant (see Figure 5.43).  Using this hierarchical 

approach to classification, the assembly plant of the vehicle from which this paint sample 

(UAZP00421Chrysler Jeep) originated was correctly identified. 
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 Tables 5.9 and 5.10 summarize the results obtained from the search prefilters for 

identifying the plant group and assembly plant of the vehicle from the wavelet transformed 

IR spectra of the clear coat, surfacer-primer and e-coat layers of the automotive paint 

samples with and without epoxy.   If a paint sample is projected into a region of the PC 

plot with OEM paint systems from the same plant group or assembly plant as the sample, 

then the paint sample is correctly classified.  Again, all 32 paint samples not cast in epoxy 

were correctly as classified and twenty-two of the twenty-seven paint samples cast in epoxy 

were correctly classified as to plant group and assembly plant.    

 

 

Figure 5.42.  Assignment of UAZP00421 to Plant Group 11.  4 = UAZP00421. 
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Figure 5.43.  Assignment of UAZP00421 to Assembly Plant 1017 (Saltillo and Toluca).  

4 = UAZP00421. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 

 

             Tables 5.9. Unembedded Paint Samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDQ Number  Manufacturer Plant 

Group 

Assembly 

Plant 

Search Prefilter 

Output 

UAZP00412 Chrysler 11 1007 11/1007 

UAZP00421 Chrysler 12 1009 12/1009 

UAZP00451 Chrysler 12 1102 12/1102 

UAZP00569 Chrysler 13 1109 13/1109 

UAZP00600 Chrysler 11 1000 11/1000 

UAZP00401 Chrysler 13 1006 13/1006 

UAZP00342 Ford 22 2006 23/2006 

UAZP00404 Ford 21 2010 21/2010 

UAZP00467 Ford 21 2007 21/2007 

UAZP00596 Ford 22 2005 23/2005 

UAZP00477 Ford 22 2003 22/2003 

UAZP00436 General Motors 1 1 1/1 

UAZP00271 General Motors 4 12 4/12 

UAZP00507 General Motors 1 20 1/20 

UAZP00331 General Motors 5 26 5/26 

UAZP00499 General Motors 2 21 2/21 

UAZP00565 General Motors 2 10 2/10 

UAZP00729 Honda 31 3007 31/3007 

UAZP00277 Honda 31 3000 31/3000 

CONT00726 Honda 31 3000 31/3000 

CONT00736 Honda 31 3006 31/3006 

UAZP00730 Honda 31 3002 31/3002 

UAZP00440 Nissan 41 4006 41/4006 

UAZP00745 Nissan 41 4001 41/4001 

UAZP00731 Nissan 41 4017 41/2017 

UAZP00527 Nissan 41 4017 41/4017 

UAZP00537 Nissan 41 4001 41/4001 

UAZP00381 Toyota 51 2347 51/2347 

UAZP00313 Toyota 51 2347 51/2347 

UAZP00733 Toyota 51 2347 51/2347 

UAZP00561 Toyota 51 2347 51/2347 

UAZP00484 Toyota 51 5005 51/5005 
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            Tables 5.10. Embedded Paint Samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2.4. Forward and Reverse Library Searching 

The prototype pattern recognition library search engine consists of search prefilters 

to reduce the size of the infrared spectral library to a specific assembly plant or plants and 

library search algorithms that utilize both forward and reverse searching to identify IR 

spectra most similar to the unknown in the truncated spectral library identified by the 

search prefilters.  All library searches were restricted to the spectral region between 1641 

cm-1 and 860 cm-1. For the forward search, the spectra in the library that are most similar 

to the unknown are identified.  The quality of each spectral match was evaluated using the 

OMNIC library search routines configured as correlation for the search type and Happ-

PDQ 

Number 

Manufacturer  Plant 

Group 

Assembly 

Plant 

Search Prefilter 

Output 

UAZP00412 Chrysler 11 1007 11/1007 

UAZP00421 Chrysler 12 1009 12/1009 

UAZP00451 Chrysler 12 1102 12/1102 

UAZP00569 Chrysler 13 1109 13/1109 

UAZP00600 Chrysler 11 1000 11/1000 

UAZP00401 Chrysler 13 1006 13/1006 

UAZP00342 Ford 23 2006 23/206 

UAZP00596 Ford 23 2005 23/2005 

UAZP00436 General Motors 1 1 1/1 

UAZP00507 General Motors 1 20 1/20 

UAZP00331 General Motors 5 26 5/26 

UAZP00565 General Motors 2 10 2/10 

UAZP00277 Honda 31 3000 31/3000 

CONT00736 Honda 31 3006 31/3006 

UAZP00730 Honda 31 3002 31/3002 

UAZP00440 Nissan 41 4006 41/4006 

UAZP00731 Nissan 41 4017 41/4017 

UAZP00527 Nissan 41 4017 41/4017 

UAZP00537 Nissan 41 4001 41/4001 

UAZP00381 Toyota 51 2347 51/2347 

UAZP00733 Toyota 51 2347 51/2347 

UAZP00484 Toyota 51 5005 51/5005 
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Genzel for apodization.  The top five hits, i.e., the five library spectra with the largest hit 

quality index values are reported.   

The reverse search was performed using a cross correlation library search algorithm 

[5-4 to 5-7].  The IR spectra were divided into three regions: 3675 to 2856 cm-1 (interval 

after absorption by the diamond cell), 1891 to 668 cm-1 (fingerprint interval and carbonyl 

band), and 1650 to 668 cm-1 (fingerprint interval).  The overlap between the second and 

third spectral intervals enforces the relative scale of the peaks and captures the broader 

trends in the spectral data and effectively increases the importance of the fingerprint region 

in the spectral matching.  It is better than using a disjoint set of intervals (e.g., 1650 cm-1 

to 668 cm-1 with either single or double weighting, 1891 cm-1 to 1650 cm-1, and 3675 cm-1 

to 2856 cm-1).  Each region was normalized to unit length. 

Within the intervals described, each comparison was made using a system of 

windows centered at the midpoint of the cross-correlated data interval. This midpoint 

corresponds to cross-correlation between the two signals with a zero time lag. From the 

midpoint, the windows expand in steps of 10 points or 100 points to include the entire 

cross-correlated spectrum. Because of the symmetry inherent to cross-correlation, the 

comparisons only need to be made from one side of the center burst. The Euclidian distance 

was used to evaluate the similarity index (see Equation 5.1) between the unknown and each 

library spectrum where sij is the similarity of the match, dij is the distance between the cross 

correlated (library versus sample) and autocorrelated (sample versus sample) spectrum and 

dmax is the largest distance in the set of cross correlated and autocorrelated spectra that were 

compared.  The similarity metric in Equation 5.1 was used instead of the hit quality index, 

as it proved to be more informative. 
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d
s

ij

ij                  (5.1) 

 

The backward search utilized autocorrelation and cross correlation to provide a 

probability index for the line and model of the unknown vehicle.  For each window in each 

interval, the IR spectra in the library were ranked by their similarity index to the unknown, 

but only the label (i.e., the line and model of the automotive vehicle) of each of the top five 

hits in the window was preserved.  After each window was processed, the number of hits 

for a specific line model and line was computed and divided by the number of comparisons 

that have been made by the algorithm. This generates a set of percentages that represent 

that likelihood of a particular line and/or model being a match for the unknown.  Only those 

lines and models with a frequency of occurrence equal to or greater than 20% are included 

in the hit list.   

While the forward search identified the library spectrum most similar to the 

unknown, the backward search provided insight into how well the library matched the 

unknown. For each unknown sample, the forward and backward searches were used in 

tandem to identify the corresponding vehicle information from the truncated PDQ library 

generated by the search prefilters.  If there was agreement between the forward and reverse 

search results, the specific line and model of the vehicle common to both hit lists was 

always found to be the correct assignment.  Samples assigned to the same line and model 

by both searches (forward and reverse) are well represented in the spectral library and also 

correlate well on an individual basis to a specific library sample.  Further details about the 

cross correlation library search algorithm can be found elsewhere. 
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Tables 5.11 and 5.12 summarizes the results of the library searches for the 

unembedded and embedded paint samples for each layer using both forward and reverse 

searching.  The forward search correctly matched all 32 unembedded paint samples.  The 

correct line and model of the vehicle was present in the top five hits of the search for each 

paint sample.  Although the reverse search did not perform as well as the forward search 

(18 of 32 were correctly identified as to line and model versus 32 out of 32), the reverse 

search has the advantage of providing insight into how well the truncated spectral library 

matched each unknown, rather than how well an individual sample matched spectra in the 

truncated spectral library.   In all likelihood, the peak shifts encountered for some 

vibrational modes were not completely ameliorated using the ATR correction algorithm.  

As cross correlation is even more sensitive to changes in the band position than principal 

component analysis based methods, this discrepancy does not come as a surprise. For the 

embedded paint samples, the forward search correctly matched all of the samples 

successfully passed through the search prefilters.  As for the reverse search, only 15 of the 

22 paint samples were correctly identified as to line and model.   

 The prototype pattern recognition assisted infrared library search system applied to 

the reconstructed IR spectra of each paint layer categorized each unknown paint system by 

identifying successively smaller sets of spectra to which an unknown is assigned, thereby 

facilitating spectral library searching as the size of the library is culled to those spectra 

obtained from vehicles manufactured at the same assembly plant as that of the unknown.  

For the prototype pattern recognition library search system, the accuracy of the hit-list can 

be assessed as samples assigned to the same line and model by both the forward and reverse 

searches are always correctly matched.  The infrared imaging experiment described in this 
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chapter when coupled to the prototype pattern recognition infrared library search system 

may be a potentially significant development that has the potential to enhance current 

approaches to forensic automotive paint examinations and aid in evidential significance 

assessment.   
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             Tables 5.11. Unembedded Paint Samples 

 

 

 

PDQ 

Number 

Manufacturer Forward Search 

Method 

Reverse Search 

Method 

  OT2 OU1 OU2 OT2 OU1 OU2 

UAZP00412 Chrysler       

UAZP00421 Chrysler       

UAZP00451 Chrysler       

UAZP00569 Chrysler       

UAZP00600 Chrysler       

UAZP00401 Chrysler       

UAZP00342 Ford       

UAZP00404 Ford       

UAZP00467 Ford       

UAZP00596 Ford       

UAZP00477 Ford       

UAZP00436 General Motors       

UAZP00271 General Motors       

UAZP00507 General Motors       

UAZP00331 General Motors       

UAZP00499 General Motors       

UAZP00565 General Motors       

UAZP00729 Honda       

UAZP00277 Honda       

CONT00726 Honda       

CONT00736 Honda       

UAZP00730 Honda       

UAZP00440 Nissan       

UAZP00745 Nissan       

UAZP00731 Nissan       

UAZP00527 Nissan       

UAZP00537 Nissan       

UAZP00381 Toyota       

UAZP00313 Toyota       

UAZP00733 Toyota       

UAZP00561 Toyota       

UAZP00484 Toyota       

Green  = Correct, Red = Incorrect 
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 Tables 5.12. Embedded Paint Samples 

 

 

 

 

 

 

 

 

 

PDQ Number Manufacturer Forward Search 

Method 

Reverse Search 

Method 

  OT2 OU1 OU2 OT2 OU1 OU2 

UAZP00412 Chrysler       

UAZP00421 Chrysler       

UAZP00451 Chrysler       

UAZP00569 Chrysler       

UAZP00600 Chrysler       

UAZP00401 Chrysler       

UAZP00342 Ford       

UAZP00596 Ford       

UAZP00436 General Motors       

UAZP00507 General Motors       

UAZP00331 General Motors       

UAZP00565 General Motors       

UAZP00277 Honda       

CONT00736 Honda       

UAZP00730 Honda       

UAZP00440 Nissan       

UAZP00731 Nissan       

UAZP00527 Nissan       

UAZP00537 Nissan       

UAZP00381 Toyota       

UAZP00733 Toyota       

UAZP00484 Toyota       

Green  = Correct, Red = Incorrect 
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CHAPTER VI 
 

 

ANALYSIS OF EDIBLE OILS USING RAMAN SPECTROSCOPY AND PATTERN 

RECOGNITION METHODS 

 

 

6.1. Introduction 

Edible oils are mixtures of triglycerides that differ in their relative composition of 

fatty acids (e.g. palmitic, oleic, steric and linoleic). Because of their high nutritional value, 

edible oils are an important component of the human diet [1]. They are a source of essential 

fatty acids and are a carrier of fat soluble vitamins [2, 3]. Edible oils are used in cooking 

and are also ingredients in many processed or precooked foods because of their sensory 

characteristics. Most edible oils sold commercially are derived from plants, e.g., olive, 

corn, canola, sunflower, peanut, and safflower oil, although some are derived from animals, 

e.g., tallow and lard.   

Adulteration of more expensive edible oils, for example, extra virgin olive oil or 

sesame oil by substitution or by blending with less expensive oils (such as corn or canola 

oil) is a problem that is of concern to government and regulatory officials [4]. Analysis of 

edible oils for purposes of classification or authentication is usually carried out by gas 

chromatography/mass spectrometry (GC/MS) [5]. However, GC/MS analysis of edible oils 

can be laborious and time consuming.  Approximately twenty years ago, analysis of edible 
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oils (e.g. olive, sesame, and canola) for authentication [6], adulteration [7], and 

classification [8] was demonstrated using Raman spectroscopy, which allowed spectra to 

be collected in a short time period without the need for sample preparation.  More recently, 

multivariate classification and calibration methods have been applied to Raman and IR 

spectra of edible oils to improve classification success rates [9-15] and lower detection 

limits for adulterants [13, 16-18]. Generally, classification success rates of around 90% for 

edible oils as well as adulterant detection limits of around 10% have been reported in the 

literature. However, these studies, which used the 900 cm-1 to 1800 cm-1 region, were 

typically limited to 20 samples spanning five or six edible oils using PLS or linear 

discriminant analysis to perform a flat classification of the data.  Furthermore, the edible 

oils investigated were represented by samples obtained from a single brand within a limited 

production year range.  Many of these studies may have provided an overly optimistic 

estimate of the ability of Raman spectroscopy to classify edible oils by type or to detect 

low levels of adulterants present in these oils. 

Raman spectra of edible oils usually contain weak narrow bands superimposed over 

a broad, high intensity fluorescence background (often referred to as baseline) that may 

distort the Raman bands of the components characteristic of the sample [19]. In these 

circumstances, baseline correction is necessary to ensure successful numerical processing 

of the Raman spectra by multivariate methods of data analysis such as principal component 

analysis (PCA) or partial least squares [20]. 

The application of Raman spectroscopy and pattern recognition methods to the 

problem of discriminating edible oils by type was investigated.  In one study (designated 

as Data Set 1), 296 Raman spectra obtained from 53 samples spanning 15 varieties of edible 
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oils from different vendors (possibly the same company but a different batch and from a 

different manufacturing plant) were collected for 90 seconds at 2cm-1 resolution.  The large 

number of classes (i.e., varieties of edible oils), samples, and spectra (i.e., replicates) were 

necessary to build better statistical distributions of expected in-class variance to determine 

classification performance when developing discriminants from training sets and to have 

sufficient number of spectra to construct independent training and validation sets. The 

Raman spectral data were then examined using the three major types of pattern recognition 

methodology: mapping and display, discriminant development and clustering. The 15 

varieties of edible oils could be partitioned into five distinct groups based on their degree 

of saturation and the ratio of polyunsaturated fatty acids to monounsaturated fatty acids.  

Edible oils assigned to one group could be readily differentiated from those assigned to 

other groups, whereas Raman spectra within the same group more closely resembled each 

other and therefore would be more difficult to classify by type.  

In another study (designated as Data Set 2), 215 Raman spectra of 15 edible 

oils/blends of edible oils were also collected at 2 cm-1 resolution.  Using a genetic algorithm 

for pattern recognition, the discrimination of the edible oils by type was investigated.  The 

53 edible oil samples spanned multiple brands purchased over 3 years (representing 

different production years) for 9 of the 15 edible oils investigated.  Supplier to supplier 

variation (and seasonal variation within a supplier) was a major source of variability within 

the Raman spectral data as it is not only greater than variability within a supplier but was 

comparable in magnitude to the variability associated with edible oil type.  The novelty of 

these two studies arises from the incorporation of edible oils gathered systematically over 

three years, which introduces a heretofore unseen variability to the chemical compositions 
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of the edible oils that are being classified by type.  This is the first time that many different 

edible oils and commercially available brands thereof have been classified simultaneously. 

6.2. Experimental 

Edible oils in the two studies discussed in this Chapter were purchased from 

supermarkets in the Newark, DE metropolitan area over 3 years, spanning 15 distinct 

varieties of edible oils (see Table 6.1 and Table 6.2).   Each sample represented a different 

brand of edible oil or the same brand of oil but a different production year.  In both studies, 

a sampling scheme was chosen to get as much variation as possible to simulate real world 

conditions, which was not the case in previously published work on this subject.  We 

recognized this at the start of this investigation as this was our working hypothesis. 

For the first study, an Ocean optics QE65000 Raman spectrograph (Dunedin, FL, 

USA) equipped with a Hamamatsu TE cooled CCD detector (Hamamatsu City, Shizuoka 

Pref., JP) and a Inphotonics (Norwood, MA, USA) fiber optic probe for sampling was used 

to collect 296 Raman spectra of the 15 edible oils/edible oil blends at 785nm.  Each Raman 

spectrum (2000-50 cm-1) was collected for 90 seconds integration at 2 cm-1 resolution and 

consisted of 1044 points.  For the second study, 215 Raman spectra of 15 edible oils/blends 

of edible oils were collected at 785nm using a Kaiser Optical Systems Holospec f/1.8i 

spectrometer (Ann Arbor, MI) equipped with a liquid N2 cooled detector (Princeton 

Instruments, Trenton, NJ) and a fiber optic probe (Kaiser Optical Systems, Ann Arbor, MI) 

for sampling.  Each Raman spectrum (2000-50 cm-1) was collected for 120 seconds through 

the side of 24mm glass vials.   
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Table 6.1.  Edible Oil Data Set One 

Oil Type Oil ID Number of Samples Number of 

Spectra 

Extra Virgin Olive Oil 

(EVOO) 

1 12 63 

Extra Light Olive Oil (ELOO) 2 4 31 

Pure Olive Oil 3 6 75 

Coconut Oil 4 1 4 

Avocado Oil 5 1 14 

Peanut Oil 6 3 10 

Corn Oil 7 5 25 

Grapeseed Oil 8 5 29 

Safflower Oil 9 1 5 

Hazelnut Oil 10 3 5 

Flaxseed Oil 11 1 5 

Canola Oil 13 7 11 

Avocado/Flaxseed/Olive Oil 14 1 4 

Sesame Oil 15 1 10 

Vegetable Oil 17 2 5 

Total 15 Oils 53 296 

 

 

Table 6.2.  Edible Oil Data Set Two 

Oil Type Oil ID Number of 

Samples 

Number of Spectra 

Extra Virgin Olive Oil 1 12 44 

Extra Light Olive Oil 2 4 13 

Pure Olive Oil 3 6 24 

Avocado 5 1 5 

Peanut 6 3 13 

Corn 7 5 24 

Grapeseed 8 5 24 

Safflower 9 1 3 

Hazelnut 10 3 12 

Canola 13 7 27 

Sesame 15 1 4 

Canol-Vegetable 16 1 8 

Vegetable 17 2 5 

Canola-Sun-Soybean 18 1 5 

Sunflower 19 1 4 

Total 15 Oils 53 215 
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6.3. Data Preprocessing and Pattern Recognition Analysis 

For each Raman spectrum (see Figure 6.1a), the noise and background were 

stripped away from the signal by a three-step procedure performed using the PLS Toolbox 

8.6 (Eigenvector Technology).  First, a Whittaker filter  [21] was applied to each spectrum. 

Next, the baseline corrected Raman spectrum was smoothed using a Savitzky-Golay linear 

filter with a 15 point window, and each spectrum was normalized to unit length.  Figure 

6.1 shows a representative Raman spectrum of corn oil that was baseline corrected, 

smoothed, and normalized to unit length. The bands at 2200cm-1 and 300cm-1 are an artifact 

of applying the Whittaker filter to the entire Raman spectrum (see Figure 6.1a).  This 

artifact is due to the large changes in scattering intensity that occurs in these two regions.  

Furthermore, edible oils in the region 1000 cm-1 to 500 cm-1 do not have active Raman 

bands [22].  (If one looks at the signal to noise of all the Raman spectra for this region, it is 

very low.)  Therefore, the baseline corrected, smoothed and normalized spectra (shown in 

Figure 6.1b) were truncated to 1772.6 cm-1 - 1127.6 cm-1 which corresponded to 361 points. 

Below this region, the spectra were too noisy, and above this region there did not appear 

to be any information present about edible oil type.  Table 3.3 lists the wave-numbers of 

the five Raman active bands in this region characteristic of the major components (i.e., 

triglycerides) found in edible oils [22].  
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Figure 6.1.  A representative Raman spectrum of corn oil: a) before baseline correction, 

smoothing, and normalization to unit length, b) after baseline correction, smoothing and 

normalization to unit length, and c) truncation of the uninformative regions to yield the 

spectral range (1772.6 cm-1 -1127.6 cm-1) used for pattern recognition analysis.    

 

 

 

 

Table 6.3.  Raman Shift Assignments 

Wavenumber Assignment 

1270 cm-1 In plane =CH deformation in an unconjugated cis C=C 

1305 cm-1 In phase methylene twisting 

1440 cm-1 CH2 scissoring deformation 

1660 cm-1 C=C stretching (cis) 

1750 cm-1 C=O stretching in an ester 
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6.4. Results and Discussion 

6.4.1.   Data Set 1 

 

Outliers can obscure relationships present in data.  For this reason, outlier analysis 

was performed on each class of edible oil in the training set using PCA prior to 

classification of the data. One corn oil spectrum (spectrum 296 in Figure 6.2) and one extra 

virgin olive oil spectrum (spectrum 149 in Figure 6.3) were judged to be outliers based on 

the PC plot of each edible oil and a comparison of the average Raman spectrum of corn oil 

and extra virgin olive oil to the Raman spectrum of the suspected outlier, see Figures 6.2 

and 6.3.   Therefore, these two Raman spectra were removed from the training set.  In all 

likelihood, these two outliers were the result of small changes that occurred in the 

alignment of the fiber probe or the fiber optic connection to the monochromator of the 

Raman microscope.  The spectra of the other replicates for each sample were very similar 

to the average Raman spectrum of corn or extra virgin olive oil.  

Because of the large number of classes in the data set, a hierarchical classification 

scheme was employed to discriminate the Raman spectra of the 15 varieties of the edible 

oils comprising the training set. To implement this scheme, the average Raman spectrum 

of each variety of edible oil was computed.  The 15 average Raman spectra were then 

analyzed using both PCA and cluster analysis [23]. For both PCA and hierarchical cluster 

analysis (Wards method), the spectral data were mean centered.  Both the dendogram and 

the PC plot of the average Raman spectra (see Figure 6.4) were in good agreement, and 

each indicated that dividing the 15 classes of edible oils into five distinct groups is 

appropriate (see Table 6.4).  A visual comparison of the average Raman spectra revealed 

that spectra in the same oil group were more similar to each other than spectra in different 
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oil groups.  For this reason and because of the agreement in the results obtained from the 

PC score plot and the dendogram, we chose to partition the edible oils into five groups.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.  a) Plot of the two largest principal components of the Raman spectra of corn 

oil.  One corn oil spectrum (spectrum id#296) appears as an outlier in the PC plot. b) 

Average Raman spectrum of corn oil (dashed line) and the Raman spectrum of the 

suspected outlier (solid line).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.  a) Plot of the two largest principal components of the Raman spectra of extra 

virgin olive oil.  One extra virgin olive oil spectrum (spectrum id#149) appears as an outlier 

in the PC plot. b) Average Raman spectrum of extra virgin olive oil (dashed line) and the 

Raman spectrum of the suspected outlier (solid line). 

296 
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149 

b) a) 
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Figure 6.4.  a) Dendogram (Wards method) and b) plot of the two largest principal 

components of the average Raman spectra of the 15 edible oils. The two plots are in 

agreement and each indicates that the 15 varieties of edible oils investigated in this study 

can be divided into five distinct groups.  Group 1: 1 = extra virgin olive oil, 2 = extra light 

olive oil, 3 = pure olive oil, 6 = peanut oil, 9 = safflower oil, and 10 = hazelnut oil. Group 

2: 7 = corn oil, 8 = grapeseed oil, 13 = canola oil, 15 = sesame oil, and 17 = vegetable oil.  

Group 3: 11 = flaxseed oil.  Group 4: 4 = coconut oil. Group 5: avocado/flaxseed/olive oil.  

 

 

 

Table 6.4.  Edible Oil Group Assignments 

Oil Type Oil ID Edible Oil Group 

Extra Virgin Olive Oil 1 1 

Extra Light Olive Oil 2 1 

Pure Olive Oil 3 1 

Coconut Oil 4 4 

Avocado Oil 5 1 

Peanut Oil 6 1 

Corn Oil 7 2 

Grapeseed Oil 8 2 

Safflower Oil 9 1 

Hazelnut Oil 10 1 

Flaxseed Oil 11 3 

Canola Oil 13 2 

Avocado/Flaxseed/Olive Oil 14 5 

Sesame Oil 15 2 

Vegetable Oil 17 2 
 

 
  
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 

 
 
 

a) b) 
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The set of data - 265 Raman spectra of 361 points each, which comprised the 

training set (see Table 6.5) – was subject to PCA.  Figure 6.5 shows a plot of the two largest 

principal components of the 361 features obtained from the 265 Raman spectra comprising 

the mean-centered training set.  Each spectrum is represented as a point in the PC plot.  The 

five groups previously detected by cluster analysis are separated from each other in the PC 

plot. Since this projection is made without the use of information about the class 

assignment of each spectrum, the resulting separation is, therefore, a strong indication of 

real differences in the Raman spectral profile of these five edible oil groups.  

A validation set of 29 Raman spectra (see Table 6.5) was employed to assess the 

predictive capability of the PC plot developed from the training set data.  The 29 Raman 

spectra were directly mapped onto the PC plot defined by the 265 spectra and 361 spectral 

features comprising the training set.  Figure 6.6 shows the validation set samples projected 

onto the PC plot of the training set data.  Each projected validation set spectrum lies in a 

region of the plot with Raman spectra from the same edible oil group.  This suggests that 

our approach taken for discriminating these 15 edible oils by first dividing them into five 

groups is supported by the data. 
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Table 6.5.  Training and Validation Set for Edible Oil Group 

Oil Type Group ID Oil ID Training Set Validation Set 

Extra Virgin Olive Oil 1 1 54 8 

Extra Light Olive Oil 1 2 29 2 

Pure Olive Oil 1 3 68 7 

Coconut Oil 4 4 4 0 

Avocado Oil 1 5 12 2 

Peanut Oil 1 6 10 0 

Corn Oil 2 7 21 3 

Grapeseed Oil 2 8 26 3 

Safflower Oil 1 9 4 1 

Hazelnut Oil 1 10 5 0 

Flaxseed Oil 3 11 5 0 

Canola Oil 2 13 11 0 

Avocado/Flaxseed/Olive Oil 5 14 3 1 

Sesame Oil 2 15 9 1 

Vegetable Oil 2 17 4 1 

Total -------- -------- 265 spectra 29 spectra 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
  
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 6.5.  Plot of the two largest principal components of the 361 features obtained from 

the 265 Raman spectra comprising the mean-centered training set.  1 = Group 1, 2 = Group 

2, 3 = Group 3, 4 = Group 4, and 5 = Group 5.  
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Figure 6.6.  Projection of the 29 Raman spectra comprising the validation set onto the plot 

of the two largest principal components of the 361 features obtained from the 265 Raman 

spectra comprising the mean-centered training set.  Training set: 1 = Group 1, 2 = Group 

2, 3 = Group 3, 4 = Group 4, and 5 = Group 5.  Validation set: A = Group 1, B = Group 2, 

and C = Group 5. 

 

 

Three varieties of edible oils are well separated from the other twelve oils in the PC 

plot (see Figures 6.5 and 6.6): Coconut Oil (Group 4), Flaxseed Oil (Group 3) and the blend 

Avocado/Flaxseed/Olive (Group 5). The first principal component functionally 

distinguishes the oils by their degree of saturation.  Of all the oils in this study (see Table 

6.6), coconut oil has significantly higher percentage of saturated fats (~90% compared ~ 

15% for the other oils) than the other oils while flax seed oil has one of the highest 

percentages of polyunsaturated fats (~70%).  As for the remaining 12 edible oils, they were 

assigned to Groups 1 or 2.  Group 1 edible oils (extra virgin olive, extra light olive, pure 

olive, peanut, avocado, safflower, and hazelnut oils) tend to have a greater degree of 

unsaturation than those from Group 2 (corn, vegetable, canola, sesame, and grapeseed oils).  
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This could manifest through a combination of a lower percentage of saturated fatty acids 

and a larger ratio of polyunsaturated fatty acids to monounsaturated fatty acids.  

Table 6.6.  Amounts of Saturated and Unsaturated Fats in Edible Oils 
Edible Oil Saturated Monounsaturated Polyunsaturated 

Olive Oil 13% 74% 8% 

Hazelnut 7% 80% 11% 

Avocado Oil 10% 70% 20% 

Peanut Oil 17% 49% 33% 

Safflower Oil 9% 12% 74% 

Grapeseed Oil 12% 17% 71% 

Corn Oil 13% 24% 59% 

Sesame Oil 14% 40% 46% 

Canola Oil 7% 58% 32% 

Vegetable Oil  15% 24% 61% 

Flaxseed Oil 10% 19% 68% 

Coconut Oil 87% 6% 2% 

 

The next step was to investigate edible oils from Groups 1 and 2 individually using 

variable selection.  The pattern recognition GA was applied to the 71 Raman spectra of 

Group 2 (see Table 6.7) to identify spectral features that were discriminatory as the spectral 

profiles of the edible oils comprising this Group were similar.  For this study, the mutation 

rate of the GA was set at 0.4 and the number of chromosomes at 10,000.  After 200 

generations, the pattern recognition GA identified 23 spectral features that were correlated 

with edible oil type. These spectral features were identified by sampling key feature 

subsets, scoring their PC plots, and tracking those edible oils and/or Raman spectra that 

were difficult to classify. The boosting routine of the pattern recognition GA used this 

information to steer the population to an optimal solution.  Figure 6.7 shows a plot of the 

two largest principal components of the 23 spectral features identified by the pattern 

recognition GA.   The 8 validation set spectra assigned to Group 2 by the PC plot used to 

discriminate edible oils by their oil group (see Figure 6.7) were projected onto the PC plot 
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of the 71 Raman training set spectra from Group 2 and the 23 spectral features identified 

by the pattern recognition GA. All 8 Raman validation set spectra (see Table 6.7) were 

correctly classified, i.e., they were projected in a region of the PC plot (see Figure 6.8) with 

Raman spectra of the same type of edible oil.    

 

Table 6.7.  Training and Validation Set for Group 2 Edible Oils 

Oil Type Oil ID Number of 

Samples 

Training Set 

Spectra 

Validation Set 

Spectra 

Corn Oil 7 5 21 3 

Grapeseed Oil 8 5 26 3 

Canola Oil 13 7 11 0 

Sesame Oil 15 1 9 1 

Vegetable Oil 17 2 4 1 

Total ----- 20 71 8 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
  

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 6.7.  Plot of the two largest principal components of the 71 Raman spectra 

comprising the mean-centered training set for Group 2 and the 23 features identified by the 

pattern recognition GA.  7 = Corn oil, 8 = Grapeseed oil, 13 = Canola oil, 15 = Sesame oil, 

and 17 = Vegetable oil. 
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Figure 6.8.  Validation set spectra projected onto the PC plot of the 71 Raman spectra 

comprising the training set for Group 2 and the 23 spectral features identified by the pattern 

recognition GA.   Training set: 7 = Corn oil, 8 = Grapeseed oil, 13 = Canola oil, 15 = 

Sesame oil, and 17 = Vegetable oil.  Validation set: C = corn oil, G = grapeseed oil, S = 

sesame oil, and V = vegetable oil. 

 

 

Sesame, vegetable, and grapeseed oils were separated from each other and from the 

other edible oils in the plot (see Figures 6.7 and 6.8), whereas canola and corn oil overlap.  

In other studies on the application of vibration spectroscopy to discrimination of edible 

oils, many authors have reported that corn oil can be readily discriminated from canola oil 

[22]. In these studies, the authors only addressed within supplier sample variation in 

making their best case assessment for classification.  In this study, both sample to sample 

variation within a supplier and between suppliers were considered for classification, which 

would explain the differences in our reported results for corn and canola oil from those 

reported in previously published studies.   
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The within class variability associated with each variety of edible oil in the PC plot 

is correlated to the number of samples representing the edible oil, not the number of Raman 

spectra comprising the class.  Both vegetable and sesame oil yielded compact and well 

separated clusters in the PC plot as each oil is represented by only a single brand (i.e., only 

within supplier variation for sesame oil but seasonal variation within supplier variation for 

vegetable oil).  Grapeseed, corn, and canola oils do not form compact clusters in the PC 

plot as each edible oil is represented by five or seven samples representing both within 

supplier including seasonal variation and between-supplier variation.   

The 182 Raman spectra comprising the training set for Group 1 (see Table 6.8) 

were also investigated using the pattern recognition GA.  Extra virgin olive oil, extra light 

olive oil, and pure olive oil could not be differentiated, which can probably be attributed to 

their triglyceride fraction being comparable [22].  For this reason, these three edible oils 

were merged into a single class. Variable selection was performed using the pattern 

recognition GA. After 200 generations, the pattern recognition GA identified 20 spectral 

features. Figure 6.9 shows a plot of the two largest principal components of the 174 Raman 

spectra comprising the training set and the 20 spectral features identified by the pattern 

recognition GA.  Extra virgin olive oil, extra light olive oil, and pure olive oil are separated 

from the other edible oils in the PC plot (see Figure 6.9).  Safflower, hazelnut, and avocado 

oil form compact and well defined clusters.  Each contains spectra from only a single source 

(see Table 6.8). By comparison, peanut oil spectra in the plot are divided into two clusters.  

The three peanut oil samples (obtained from two different suppliers) capture both within-

supplier and between-supplier variability.  When taking into account this second source of 
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variability, it is plausible that peanut oil may not be able to be reliably differentiated from 

safflower oil using Raman spectroscopy.  

 Figure 6.10 shows the 20 validation set Raman spectra assigned to Group 1 by the 

PC plot used to discriminate edible oils by group (see Figure 6.9) projected onto the PC 

plot of the 182 Raman spectra comprising the training set for Group 1 and the 20 spectral 

features identified by the pattern recognition GA.  The 17 extra virgin olive oil, extra light 

olive oil, and pure olive oil spectra (see Table 6.8) were assigned to the correct class in the 

PC plot. The Raman spectrum of safflower in the validation set was also correctly classified 

based on its projected location in the PC plot.    

Table 6.8.  Training and Validation Set for Group 1 Edible Oils 

Oil Type Oil ID Number of 

Samples 

Training Set 

Spectra 

Validation Set 

Spectra 

Extra Virgin Olive Oil 1 12 54 8 

Extra Light Olive Oil 2 4 29 2 

Pure Olive Oil 3 6 68 7 

Avocado Oil 5 1 12 2 

Peanut Oil 6 3 10 0 

Safflower Oil 9 1 4 1 

Hazelnut Oil 10 3 5 0 

Total ----- 30 182 20 
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Figure 6.9. Plot of the two largest principal components of the 182 Raman spectra 

comprising the training set for Group 1 and the 20 spectral features identified by the pattern 

recognition GA. 1 = extra virgin olive oil, extra light olive oil and pure olive oil, 5 = 

avocado oil, 6 = peanut oil, 9 = safflower oil, 10 = hazelnut oil. 
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Figure 6.10.  Validation set spectra projected onto the PC plot of the 182 Raman spectra 

comprising the training set for Group 1 and the 20 spectral features identified by the pattern 

recognition GA.   Training set: 1 = extra virgin olive oil, extra light olive oil, and pure olive 

oil, 5 = avocado oil, 6 = peanut oil, 9 = safflower oil, 10 = hazelnut oil.  Validation set: A 

= olive oils, B = safflower oil.  

 

 

6.4.2. Data Set 2  

 

A hierarchical classification scheme was used to discriminate the Raman spectra of 

the edible oils in the training set by edible oil type. To implement this scheme, the average 

spectrum of each variety or blend of edible oil in the training set was computed. The 15 

average Raman spectra were then analyzed by principal component analysis (PCA) and 

hierarchical cluster analysis. For both PCA and hierarchical cluster analysis (i.e., Wards 

method), the spectral data were again mean centered. The PC plot and dendogram for the 

15 average Raman spectra (see Figure 6.11), which are in agreement, show two clusters. 
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Therefore, the edible oils comprising the training set were divided into two groups of oils 

(see Table 6.9).   

 

 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 6.11.  a) Plot of the two largest principal components and b) dendogram of the 

average Raman spectra of the 15 edible oils.  Both the PC plot and the dendogram (Wards 

method) indicate that the edible oils can be divided into two oil groups. 

 

 

Table 6.9.  Group Assignments for Edible Oils 

Oil Type Oil ID Edible Oil Group 

Extra Virgin Olive Oil 1 1 

Extra Light Olive Oil 2 1 

Pure Olive Oil 3 1 

Avocado 5 1 

Peanut 6 1 

Corn 7 2 

Grapeseed 8 2 

Safflower 9 1 

Hazelnut 10 1 

Canola 13 2 

Sesame 15 1 

Canola-Vegetable 16 2 

Vegetable 17 2 

Canola-Sun-Soybean 18 2 

Sunflower 19 2 
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Figure 6.12 shows a plot of the two largest principal components of the 198 Raman 

spectra and 361 spectral features comprising the training set.  Each spectrum is represented 

as a point in the PC plot. The two groups of edible oils previously detected by cluster 

analysis are separated in the PC plot.   

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 6.12. Plot of the two largest principal components of the 361 point Raman spectra 

comprising the training set.  1 = Group 1, and 2 = Group 2.   

 

 

Variable selection was the next step as the deletion of uninformative features from 

the Raman spectral profiles ensures that discriminatory information about edible oil group 

is the major source of variation in the data.  In addition, variable selection can transform a 

difficult classification problem into a simple one.  However, the variable selection method 

employed should be multivariate in nature to ensure that crucial features will not be feature 

subsets, scoring their PC plots, and tracking those spectra and/or classes that were difficult 
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to classify. After 200 generations, the pattern recognition GA identified 11 wavelengths 

whose PC plot (see Figure 6.13) displayed two resolved and well separated clusters of 

spectra on the basis of the oil group. The first principal component appears to differentiate 

the edible oils by their degree of unsaturation as the edible oils comprising the first cluster, 

i.e., the Group 1 edible oils (olive, peanut, avocado, safflower, hazelnut, and sesame) have 

a greater degree of unsaturation than those edible oils comprising Group 2 (corn, vegetable, 

canola, sunflower, canola-vegetable, canola-sun-soybean, and grapeseed).  discarded.  For 

these reasons, the pattern recognition GA was applied to the 198 training set spectra to 

identify discriminating wavelengths for edible oil group by sampling key. 

 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Figure 6.13. Plot of the two largest principal components of the 257 Raman spectra 

comprising the training set and the 11 spectral features identified by the pattern recognition 

GA.  1 = Group 1 and 2 = Group 2.   

 

 

 

 

 

 

 



161 

 

As for the 11 wavelengths selected by the pattern recognition GA (see Table 6.10), 

they correspond to two fundamental vibrational transitions: the =CH deformation and the 

C=C stretch-cis bands. Figure 6.14 shows the average Raman spectrum of the oils 

comprising each edible oil group.  The 11 wavelengths selected by the pattern recognition 

GA for the training set spectra correspond to the bands in Figure 6.14 that are the most 

informative for discriminating these two groups based on a comparison of the average 

Raman spectrum of each group. 

Table 6.10.  Features Selected for Discrimination of Edible Oil Groups 

Feature (Total of 361) Wavenumber (cm-1) Assignment 

82 1284 =CH deformation 

83 1286 =CH deformation 

291 1657 C=C stretching (cis) 

292 1658 C=C stretching (cis) 

293 1660 C=C stretching (cis) 

294 1662 C=C stretching (cis) 

295 1663 C=C stretching (cis) 

296 1665 C=C stretching (cis) 

305 1680 C=C stretching (cis) 

306 1682 C=C stretching (cis) 

307 1684 C=C stretching (cis) 
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Figure 6.14.  Average Raman spectra are shown for Group 1 (solid line) and Group 2 

(dashed line).  The 11 wavelengths selected by the pattern recognition GA correspond to 

the bands which are the most informative for discriminating these two groups based on a 

comparison of the average Raman spectrum computed for each oil group.  

 

 

 

A validation set of 17 Raman spectra was used to assess the predictive power of the 

PC plot developed from the 198 Raman spectra comprising the training set and the 11 

spectral features identified by the pattern recognition GA. The 17 Raman spectra were 

mapped onto the PC plot developed from these 11 spectral features.  Figure 6.15 shows the 

validation set spectra projected onto this PC plot.  Each projected validation set spectrum 

lies in a region of the PC plot with Raman spectra from the same edible oil group.  This 

suggests that the hierarchical approach to discriminate the 15 varieties of edible oils by 

first dividing them into two groups is supported by the data. 
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Figure 6.15.  Projection of the 17 Raman spectra onto the PC plot developed from the 257 

Raman spectra comprising the training set and the 11 spectral features identified by the 

pattern recognition GA.  Training set: 1 = Group 1 and 2 = Group 2.  Validation set: G = 

Group 1 and H = Group 2. 

 

 

Variable selection was then performed on each edible oil group.  The pattern 

recognition GA was applied to the 110 Raman spectra comprising the training set for Group 

1 (see Table 6.11).  The Raman spectra of EVOO, ELOO, and olive oil could not be 

differentiated using the pattern recognition GA as the triglyceride fraction of these three 

oils is identical.  For this reason, the Raman spectra of EVOO, ELOO, and olive oil were 

combined into a single class.  Furthermore, the pattern recognition GA was configured 

using edible oil type or sample identify as the object function against which variable 

selection was performed.  Figure 6.16  shows a plot of the two largest principal components 

of the 110 Raman spectra comprising the training set and the 14 spectral features identified 
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by the pattern recognition GA using edible oil type as the object function (i.e., the Y-block 

of the classifier) against which variable selection was performed.  (Sample identity refers 

to the spectra collected for a particular brand of edible oil purchased on a specific date). 

Figure 6.17 shows a PC plot of the 110 Raman spectra and 12 spectral features identified 

by the pattern recognition GA using sample identity as the object function.  Each Raman 

spectrum is represented as a point in the two PC plots (see Figures 6.16 and 6.17) with the 

identity of the edible oil designated for each point in each plot.  The 8 Raman spectra 

comprising the validation set for the Group 1 edible oils (see Table 6.11) were projected 

onto both PC plots. All 8 Raman spectra from the validation set were correctly classified 

in both plots, i.e. each spectrum lies in a region of the PC plot with Raman spectra of the 

same edible oil type.     

 

Table 6.11. Training and Validation Set for Group 1 Edible Oils 

 

 

 

 

 

 

 

 

 

 

 

Oil Type Oil ID Number of    

Samples 

Number of 

Training Set 

Spectra 

Number of 

Prediction Set 

Spectra 

Extra Virgin Olive Oil 1 12 42 2 

Extra Light Olive Oil 2 4 11 2 

Pure Olive Oil 3 6 22 2 

Avocado 5 1 5 0 

Peanut 6 3 12 1 

Safflower 9 1 3 0 

Hazelnut 10 3 11 1 

Sesame 15 1 4 0 

Total  31 110 8 
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Figure 6.16.  Plot of the two largest principal components of the 110 Raman spectra of the 

Group 1 edible oils comprising the training set and the 14 spectral features identified by 

the pattern recognition GA using edible oil type as the object function against which 

variable selection was performed by the pattern recognition GA.  Validation set spectra for 

Group 1 are projected onto this PC plot.  Training set: 1 = EVOO, ELOO, and olive oil, 5 

= avocado oil, 6 = peanut oil, 9 = safflower oil, 10 = hazelnut oil, and 15 = sesame oil. 

Validation set: O = olive oils (EVOO, ELOO, and pure olive oil), H = hazelnut oil, P = 

peanut oil. 
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Figure 6.17. Plot of the two largest principal components of the 110 Raman spectra of the 

Group 1 edible oils comprising the training set and the 12 spectral features identified by 

the pattern recognition GA using sample identity as the object function against which 

variable selection was performed by the pattern recognition GA.  Validation set spectra for 

Group 1 are projected onto this PC plot.  Training set: 1 = EVOO, ELOO, and olive oil, 5 

= avocado oil, 6 = peanut oil, 9 = safflower oil, 10 = hazelnut oil, and 15 = sesame oil. 

Validation set: O = olive oils (EVOO, ELOO, and pure olive oil), H = hazelnut oil, P = 

peanut oil.  

 

 

 

When comparing these two PC plots, one observes the same classes being formed 

regardless of whether the object function used for variable selection is edible oil type or 

sample identity.  The separation of the edible oils is better for some using edible oil type 

as the object function (e.g., avocado) and worse for others (e.g., hazelnut).  Edible oils that 

have only samples from one source (e.g., avocado, sesame, and safflower oil) form tight 

clusters in the PC plot, whereas other edible oils that contain multiple sample sources (e.g., 

hazelnut, peanut, and the olive oils) are dispersed in the PC plot. Based upon an 
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examination of the PC plots shown in Figures 6.16 and 6.17, within-source variation (as 

represented by avocado, sesame and safflower oil) is small compared to between-source 

variation (as represented by hazelnut, peanut and the olive oils).     

For the Group 2 edible oils (see Table 6.12), comparable results were obtained (see 

Figures 6.18 and 6.19).  The same classes were formed, and the degree of separation 

between these classes in the two PC plots was the same regardless of the object function 

used by the pattern recognition GA (which was the variety of the edible oil or the identity 

of the sample).  All Raman spectra comprising the validation set were correctly classified 

(see Figures 6.18 and 6.19). Within-source variation (as represented by the Raman spectra 

in the PC plot comprising canola-vegetable, canola-sun-soybean, and sunflower) is small 

compared to between-source variation (as represented by the Raman spectra in the PC plot 

comprising canola, corn, and grapeseed oil).   In addition, between-source variation for the 

Group 2 edible oils was comparable to the variation associated with edible oil type for 

many Group 2 edible oils.  For example, the between source variation for corn oil as 

represented by the average Raman spectra of samples 44 and 33 (see Figure 6.20) is 

comparable to the variation associated with edible oil type as represented by the average 

Raman spectra of canola and vegetable oil (see Figure 6.21).  
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Table 6.12.  Training and Validation Set for Group 2 Edible Oils 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
  
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 6.18.  Plot of the two largest principal components of the 88 Raman spectra of the 

Group 2 edible oils comprising the training set and the 13 spectral features identified by 

the pattern recognition GA using edible oil type as the object function against which 

variable selection was performed by the pattern recognition GA.  Validation set spectra for 

Group 2 are projected onto this PC plot.  Training set: 7 = Corn oil, 8 = Grapeseed oil, 13 

= Canola oil, 16 = Canola-Vegetable oil, 17 = Vegetable oil, 18 = Canola-Sun-Soybean 

oil, and 19 = Sunflower. Validation set: CSS = Canola-Sunflower-Soybean, CA = Canola, 

C = Corn, and G = Grapeseed. 

 

 

Oil Type Oil ID Number of 

Samples 

Number of 

Training Set 

Spectra 

Number of 

Training Set 

Spectra 

Corn 7 5 21 3 

Grapeseed 8 5 21 3 

Canola 13 7 25 2 

Canola-Vegetable 16 1 8 0 

Vegetable 17 2 5 0 

Canola-Sun-Soybean 18 1 4 1 

Sunflower 19 1 4 0 

Total  22 88 9 



169 

 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 6.19.  Plot of the two largest principal components of the 88 Raman spectra of the 

Group 2 edible oils comprising the training set and the 21 spectral features identified by 

the pattern recognition GA using sample identity as the object function against which 

variable selection was performed by the pattern recognition GA.  Validation set spectra for 

Group 2 are projected onto this PC plot.  Training set: 7 = Corn oil, 8 = Grapeseed oil, 13 

= Canola oil, 16 = Canola-Vegetable oil, 17 = Vegetable oil, 18 = Canola-Sun-Soybean 

oil, and 19 = Sunflower. Validation set: CSS = Canola-Sunflower-Soybean, CA = Canola, 

C = Corn, and G = Grapeseed. 
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Figure 6.20.  Average Raman spectrum of corn oil sample 44 (solid line) and the average 

Raman spectrum of corn oil sample 33 (dashed line).  Sample 44 is comprised of the 5 

Raman spectra that form a cluster adjacent to grapeseed oil in the PC plots shown in Figures 

9 and 10 whereas the spectra comprising sample 33 are in the larger corn cluster. 

 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 Figure 6.21. Average Raman spectrum of canola oil (solid line) and vegetable oil 

(dashed line). 
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As to the reason for why a successful classification of the Raman spectral data was 

obtained using sample identity as the GA’s object function, either distinct separate 

subgroups exist within each oil type based on the sample identity or the classification of 

the Raman spectra of the edible oils in the training set  is based on sample identity.  Clearly, 

any classification of the triglyceride profiles of the edible oils as reflected by their Raman 

spectra can lead to spurious results and overfitting when one is attempting to discriminate 

edible oils by type within the same group.      

6.5.   Conclusion 

This study reports on the use of Raman spectroscopic data to classify edible oils, 

using PCA, after the use of a genetic algorithm to perform wavelength selection. More 

importantly, the study’s findings that large subsets of edible oils can be parsed using the 

PCA based methodology, and the validation sample subsets can be successfully classified 

would seem to indicate the validity of using a hierarchical classification scheme.  The 

relative concentration among fatty acids and triglycerides varies among cultivar type, from 

season to season, and with the degree of ripeness of the fruit or seed at harvest [24].  Such 

variance propagates into the vibrational spectra of each oil as each fatty acid and 

triglyceride has a unique Raman spectral profile.  To date, efforts to demonstrate the 

efficacy of vibrational spectroscopy to classify edible oils and to detect adulterants have 

presented ‘best-case’ scenarios with oils from a single batch.  While edible oils from a 

particular batch are “nicely” clustered and can be differentiated from other classes of edible 

oils obtained from a single source, this study demonstrates that it is not possible to construct 

a single model that spans both seasonal and vendor variations for classification of edible 

oils and detection of adulterants in an edible oil.  
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CHAPTER VII 
 

 

CONCLUSION 

 

The focus of this dissertation was forensic automotive paint analysis.  Modern 

automotive paint systems consist of multiple layers of paint: a clear coat over a color coat, 

which in turn is over a surfacer-primer and e-coat layer.  Since forensic laboratories in 

North America analyze each layer of paint individually by FTIR, time must be spent to 

hand-section each layer and then present each separated layer to the spectrometer for 

analysis.  Sampling too close to the boundary between adjacent layers can produce an IR 

spectrum that is a mixture of two layers.  In the situation of searching an automotive paint 

data base, not having a “pure spectrum” of each layer prevents a forensic paint examiner 

from developing an accurate hit list of potential suspects.  One way to minimize the time 

necessary for data collection is to collect IR data from all layers in a single analysis by 

scanning across the cross-sectioned layers of the paint sample using a FTIR microscope 

equipped with an imaging detector. Once the data has been collected, it can then undergo 

decatenation using chemometrics to obtain a “pure” IR spectrum of each layer.  This 

approach, not only eliminates the need to analyze each layer separately resulting in a 

considerable time savings, but can also ensure that the final spectrum of each layer is “pure” 

and not a mixture.  
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Thirty-two automotive paint samples from six manufacturers (General Motors, 

Chrysler, Ford, Toyota, Nissan, and Honda) within a limited production year range (2000-

2006) were obtained from the Royal Canadian Mounted Police.  Although several resins 

were investigated as embedding media in this project (including Tuffleye® Finish blue 

light – Wet A hook Technologies, Quick cure™ (Bob Smith Industries 5 min epoxy) and 

Embed-it™ Low viscosity epoxy kit (Polysciences®), it was the Slow-cure™ (Bob Smith 

Industries) thirty minute epoxy resin that was selected as the embedding medium. The 

thirty minute epoxy resin and hardener mixture were poured into flat polyurethane 

embedding molds (BEEM®, Polysciences), and the paint sample was placed into the mold 

and oriented perpendicular to the bottom surface prior to polymerization of the epoxy.  

Paint samples in the thirty minute epoxy block were then placed in an oven at 60oC for 

ninety minutes to ensure total curing. After hardening, the epoxy block was removed from 

the mold and positioned in the microtome to ensure that a thin cross section (approximately 

4 to 5 µm thick) cut by the microtome contained all four paint layers.   

Each thin cross section was collected, placed on a barium fluoride disk, and 

examined for defects, which would appear as dirt or cracks and crevices in an otherwise 

smooth surface when examined under a Leica light microscope.  For embedded paint 

samples, a portion of the barium fluoride disk covered with cured epoxy without sample 

was run for background at 4cm-1 resolution before the image map of the embedded paint 

sample was obtained.  Transmission IR image maps generated at 4cm-1 resolution using an 

iN10 MX microscope (Thermo-Nicolet, Madison, WI) equipped with a liquid nitrogen 

cooled mercury cadmium telluride (MCT) single imaging detector were collected for each 

cross sectioned automotive paint sample.  For the analysis of the automotive paint samples, 
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a 20 micron aperture and 5 micron step size yielded the best results when the microscope 

was operated in transmission mode.   

For multivariate curve resolution (MCR), a line map was extracted from the IR 

image of each cross sectioned paint sample.  To obtain a line map, a transit (line) was 

passed through an IR image map of each paint sample.  All spectra in contact with the 

transit were extracted, and the resulting collection of spectra was referred to as a line map.  

The data for the line map was taken on an oblique transit in order to include all paint layers 

and as many spectra of each layer and of the mixed interfacial region between the layers. 

Because the spatial resolution of the imaging microscope in transmission mode (for 

example) is 25microns, the likelihood of capturing spectra characteristic of the boundary 

between two layers using the set of criteria for defining the oblique transit is high as the 

thickness of the undercoat (e-coat and surfacer primer) layers are approximately 10m and 

20m respectively and the clear coat layer is approximately 50m thick.  

For MCR analysis, it was necessary for the data to be free of both noise and 

experimental artifacts.  For this reason, spectra were extracted from the line map and 

checked for artifacts that may have been a direct result of the extraction procedure used.  

The IR spectrum of each layer of the automotive paint was reconstructed from the line map 

using ALS.  Our previous experience with ALS has shown that initial estimates of the 

concentration (score) or spectral (loading) matrices are crucial for rotating these two 

matrices towards a correct solution.   For this reason, a varimax extended rotation 

developed by Lavine and used in two previous studies to resolve severely overlapped liquid 

chromatographic peaks or decatenate Raman images of oil in water emulsions was applied 

to the spectral line maps to compute the initial estimates of the concentration and spectral 
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matrices for ALS.  The spectral region for decatenation of the IR spectra from each line 

map was 4000cm-1 - 748cm-1.    

Library searching of IR spectra from the PDQ database was performed using search 

prefilters (i.e., discriminants) to identify the vehicle manufacturer and assembly plant of 

the vehicle from the reconstructed IR spectra of the clear coat, surfacer-primer and e-coat 

layers of the cross sectioned paint sample.  To develop these search prefilters, the IR spectra 

were preprocessed using the discrete wavelet transform, which was applied to the 

fingerprint region of each layer to enhance subtle but significant features in the IR spectra.  

The Symlet mother wavelet (sixth smallest filter size, eighth level of decomposition) was 

chosen for preprocessing because the shape of its scaling function closely matched that of 

the shape of the bands comprising the IR spectra of the automotive paints. Three sets of 

wavelet coefficients, one for each layer, were concatenated (both approximation and detail 

coefficients) to form the sample pattern vectors used by the search prefilters.  Wavelet 

coefficients characteristic of manufacturer or assembly plant were identified using a 

genetic algorithm for pattern recognition and feature selection.  The wavelet transformed 

spectra were autoscaled to ensure that each coefficient has a mean of zero and a standard 

deviation of one throughout the entire set of transformed spectra.  Search prefilters to 

identify automotive manufacturer were developed using 1652 OEM paint systems from 

General Motors, Chrysler, Ford, Honda, Nissan, and Toyota within a limited production 

year range (2000-2006).  Search prefilters for assembly plant of a specific manufacturer 

were previously developed by members of our research group.   

Initially, all cross sectioned paint samples were incorrectly classified by the library 

search prefilters for manufacturer and assembly plant when they were applied to the 
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reconstructed IR spectra obtained from the transmission line maps.  Almost all peaks in the 

reconstructed IR transmission spectra were shifted compared to the corresponding PDQ 

transmission spectra of the same sample. The PDQ library consists of IR spectra collected 

by FTIR spectrometers, each equipped with a diamond cell.  The diamond cell applies high 

pressure to the sample which causes shifts to occur in some IR bands due to a reduction in 

the free volume of the polymer. For some peaks in the fingerprint region, these shifts are 

large (at least 4cm-1), whereas for others they are smaller (~0.3cm-1).   

To solve this problem, IR transmission spectra from the PDQ library used to 

develop the search prefilters were converted into ATR spectra using an ATR simulation 

algorithm previously developed by Lavine and coworkers.  The ATR simulation algorithm, 

which was developed to convert transmission spectra from PDQ into ATR spectra, is able 

to compensate for most of these spectral shifts.  The search prefilters were recomputed 

using the transformed IR spectral data, and the reconstructed IR spectra from the line maps 

were transformed to ATR spectra using the ATR simulation algorithm. The IR spectrum 

of each reconstructed paint layer was preprocessed in the same manner as the ATR spectra 

that comprised the training sets for the search prefilters.  All thirty-two unembedded paint 

samples were then correctly classified as to the manufacturer, line, and model of the vehicle 

from which the paint sample originated.   

These results are significant as there are clear advantages for cross sectioning paint 

samples without the use of epoxy in IR imaging.  Sample preparation is faster and more 

straight-forward.  Decatenation of the image data is also more straight-forward as spectral 

interference from the epoxy layer, which is a well-known problem among workers in IR 

and Raman microscopy, does not occur. Strict unimodality can be enforced in the 
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mathematics of the decatenation process implemented in this study using ALS since there 

are no epoxy layers to model. (The epoxy is in contact with both the clear coat and e-coat 

layer as they are the outer- and inner-most layers of the intact paint sample.)  Third, library 

searches are also simplified as the number of components that need to be specified by the 

ALS algorithm are fewer and the accuracy of the reconstructed IR spectra for which the 

search is run is higher. 

Only twenty-seven of the thirty-two original paint samples were analyzed using 

epoxy resin because there was an insufficient amount of sample remaining after analysis 

in transmission and ATR modes with unembedded paint samples. Of the twenty-seven 

embedded paint samples, twenty-two were correctly identified as to manufacturer and 

assembly plant using the search prefilters.  Although improvements in baseline correction 

and restricting the MCR analysis to the fingerprint region improved the decatenation of the 

spectral line maps for these six samples, the problems encountered with these samples - 

the mixing of IR spectra of the epoxy with the clear coat or e-coat layers or the mixing of 

IR spectra of adjacent paint layers -  remained.  These problems appear to be linked to the 

compression of the cross sectioned paint sample by the epoxy, which causes a decrease in 

the thickness of each layer of the automotive paint.  For an OEM automotive paint system, 

embedding a paint sample in an epoxy may be problematic for some paint systems when 

one or more layers are too thin. 

Much of the research described in this final summary overview is directly targeted 

to enhance current approaches to forensic automotive paint analysis through decreased data 

collection times as compared to current practices and to aid in evidential significance 

assessment, both at the investigative lead stage and at the courtroom testimony stage.  
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Direct impact on over 75 local, state, and federal forensic laboratories that are currently 

using the PDQ database in the United States is anticipated.  There may also be direct impact 

on international forensic laboratories using the database, including the Forensic Laboratory 

Services Division of the RCMP, the Centre of Forensic Sciences in Toronto, Canada, the 

ENFSI network of European forensic science institutes, the Australian Police Services, and 

the New Zealand Police Services.  The research described in this dissertation is an 

international collaborative effort between the Lavine research group at Oklahoma State 

University and Mark Sandercock of the RCMP.   The use of the prototype pattern 

recognition assisted infrared library search system previously developed by Lavine and 

Sandercock in tandem with FTIR imaging will ensure that fewer hits are generated in a 

PDQ library search.  This can translate into a significant time savings for the forensic 

scientist.  Furthermore, information derived from the search prefilters for vehicle 

manufacturer can serve to quantify the general discrimination power of original automotive 

paint comparisons and further efforts to succinctly communicate the significance of the 

evidence. 
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