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Abstract: The growing advancements in computational power, algorithmic innovation,
and the availability of data resources have started shaping the way we numerically
model physical problems now and for years to come. Many of the physical phenomena,
whether it be in natural sciences and engineering disciplines or social sciences, are
described by a set of ordinary differential equations or partial differential equations
which is referred as the mathematical model of a physical system. High-fidelity
numerical simulations provide us valuable information about the flow behavior of the
physical system by solving these sets of equations using suitable numerical schemes and
modeling tools. However, despite the progress in software engineering and processor
technologies, the computational burden of high-fidelity simulation is still a limiting
factor for many practical problems in different research areas, specifically for the large-
scale physical problems with high spatio-temporal variabilities such as atmospheric
and geophysical flows. Therefore, the development of efficient and robust algorithms
that aims at achieving the maximum attainable quality of numerical simulations with
optimal computational costs has become an active research question in computational
fluid dynamics community. As an alternative to existing techniques for computational
cost reduction, reduced order modeling (ROM) strategies have been proven to be
successful in reducing the computational costs significantly with little compromise
in physical accuracy. In this thesis, we utilize the state of the art physics-based and
data-driven modeling tools to develop efficient and improved ROM frameworks for
large-scale geophysical flows by addressing the issues associated with conventional
ROM approaches. We first develop an improved physics-based ROM framework by
considering the analogy between dynamic eddy viscosity large eddy simulation (LES)
model and truncated modal projection, then we present a hybrid modeling approach
by combining projection based ROM and extreme learning machine (ELM) neural
network, and finally, we devise a fully data-driven ROM framework utilizing long
short-term memory (LSTM) recurrent neural network architecture. As a representative
benchmark test case, we consider a two-dimensional quasi-geostrophic (QG) ocean
circulation model which, in general, displays an enormous range of fluctuating spatial
and temporal scales. Throughout the thesis, we demonstrate our findings in terms of
time series evolution of the field values and mean flow patterns, which suggest that
the proposed ROM frameworks are robust and capable of predicting such fluid flows
in an extremely efficient way compared to the conventional projection based ROM
framework.
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CHAPTER I

Introduction

Modeling of large-scale turbulent flows has been subject to an active research for over

the past half century due to its impact on a variety of applications, such as ocean

modeling, weather forecasting, aeronautical applications, energy harvesting and so

on. The reliable prediction, control and diagnostics of the chaotic nature of these

turbulence phenomena have always been a challenging task from the very beginning of

turbulence studies and until now, a plethora of theoretical and computational studies

have been dedicated to understand the characteristics of turbulence. High-fidelity

numerical simulations like direct numerical simulation (DNS) are capable of capturing

the broad range of active spatio-temporal scales in turbulent motions as the full

energy spectra of turbulence can be resolved down to the Kolmogorov scale using

a very fine grid resolution. Due to the continuous growth of the computer power,

we now can obtain DNS of a number of simple turbulent flow problems. However,

the amount of computational resources required to resolve large-scale turbulence

is still unmanageable in most of the cases and even if some of the scales can be

resolved, the process can turn out to be extremely inefficient and computationally

expensive. It should be noted as well that the continuous progress in computer

power and performance following Moore’s law has started to become saturated in

the recent years. As a result, for obvious reasons, a lot of active research projects in

different fields are devoted to develop efficient and robust modeling algorithms that

enhance the capability of maximum attainable quality of numerical simulations with

optimal computational costs. Among these, traditional computational fluid dynamics
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(CFD) researches were mostly based on low-fidelity or coarse grained models by

introducing modeling assumptions and often required a closure model to compensate

the effects of truncated scales. Reynolds averaged Navier-Stokes (RANS) and large

eddy simulation (LES) approaches are the most common coarse-grained models,

although there exist many alternatives. In these approaches, the similar high-fidelity

model is used with a reduced number of grid points. As an alternative to the existing

traditional modeling techniques, reduced order modeling (ROM) strategies have been

proven to be successful in reducing computational expenses greatly and have got a

significant attention to CFD research community. In conventional snapshot-based

ROM approach, the existing data snapshots, obtained from either experiments, field

measurements or high-dimensional numerical simulations, are utilized to generate a

lower dimensional system with an acceptable range of accuracy through a variety of

mathematical operations. There are a several established ways to obtain ROM where

each has their own strengths and weaknesses. Rowley and Dawson have reviewed some

of the most popular ROM techniques, such as proper orthogonal decomposition (POD),

dynamic mode decomposition (DMD), eigensystem realization algorithms (ERA) and

so on, along with the similarities and discrepancies between them (Rowley and Dawson,

2017). In this thesis, we focus mainly on the improvement in the performance of

POD based ROM by addressing their limitations using physics-based and data-driven

modeling ideas.

Developing ROMs of nonlinear dynamical systems has been introduced to the com-

putational fluid dynamics as a computational cost reduction approach and there have

been a number of ROM techniques proposed over the years. These ROM techniques

have been utilized for a wide variety of applications related to, for example, flow

control, data assimilation in weather and climate modeling, uncertainty quantification,

and so on. Among the different variants of ROM strategies, the Galerkin-projection

combined with proper orthogonal decomposition (POD) based ROMs have become
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widely popular in various areas. POD is a mathematical technique to extract the

dominant statistical characteristics from a complex dynamical system by identifying

the modes carrying most of the information of overall system (Lumley, 1967; Benner

et al., 2015; Rowley and Dawson, 2017). These few selected POD modes have the

capability of representing the fine-scale details of the true physics accurately. A

detailed literature review on Galerkin-projection based ROM and different updates

of POD techniques are provided in the following chapters. In general, POD uses

the data obtained from experiments, field measurements or high-fidelity numerical

simulations and generates an orthonormal set of spatial basis vectors describing the

main directions (modes) by which the flow is represented optimally (Berkooz et al.,

1993). The most energetic modes are kept to generate the reduced order system while

the other modes are truncated. Indeed, there are several limitations in conventional

ROM strategies, for example, getting diverging solution due to the effect of truncated

modes. Often the truncated modes contribute to the evolving dynamics of complex

multidimensional turbulent flows like geophysical flows. Several other issues related to

POD and projection based ROM and some possible solutions proposed in different

recent literature are discussed with references in the later chapters.

In this thesis work, we present three different ideas to develop an efficient and

robust POD based ROM framework using three distinct type of modeling approaches:

physics-based (intrusive) approach, hybrid (semi non-intrusive) approach and data-

driven (fully non-intrusive) approach. To be specific, the main goal is to capture the

true flow behavior using minimal amount of POD modes with optimal computational

expenses. In physics-based approaches, the online ROM computation is done using

some parts (or whole) of the high-fidelity model, i.e., the underlying governing equation

is required to generate the ROM. In contrast, the data-driven modeling only requires

the high-fidelity data snapshots to generate the ROM, i.e., no prior information about

the physical system or model is required. In the data-driven approach, we replace
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the physics-based Galerkin projection with any state-of-the-art data-driven tools to

make the whole system fully non-intrusive or data-driven. Until recently, purely

data-driven machine learning (ML) algorithms have been considered one of the most

promising fields to benefit greatly from existing datasets. In the past few years,

artificial neural networks (ANNs) and other ML techniques have started to make an

impact in the turbulence modeling community (Raissi et al., 2019; Maulik et al., 2018;

Faller and Schreck, 1997; San and Maulik, 2018b; Wang et al., 2019; Moosavi et al.,

2015; Kani and Elsheikh, 2017). Interested readers are directed to Refs. (Brunton

et al., 2019; Kutz, 2017; Durbin, 2018; Duraisamy et al., 2018; Gamboa, 2017) for more

information on ML in fluid mechanics, specifically turbulence modeling. Both physics-

based and data-driven modeling strategies have some positive and negative aspects.

This has led to the development of a another category of ROM framework, known as

hybrid modeling approach, where both physics-based and data-driven approaches are

combined in such a way that a significantly enhanced performance can be obtained

than the performance of component models alone. A detailed literature review and

discussion on physics-based, hybrid, and data-driven ROM techniques are presented

in the following chapters.

To evaluate the performance of any ROM framework, the selection of test problem

is particularly very crucial. This is because the development of ROM starts to become

very challenging for large-scale turbulent flow systems with complex, nonlinear spatio-

temporal scales interactions. As a result, an increased number of retained modes

are required to obtain a physical and stable solution. However, increasing number

of modes beyond some threshold would increase the computational cost of solving

ROMs or even exceeds the cost of the original full-order model. Hence, a better ROM

model should be capable of resolving the scales of such flow problems with a minimal

amount of POD modes. To test our proposed frameworks, we consider the barotropic

vorticity equation (BVE) representing the single-layer quasi-geostrophic (QG) ocean
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circulation model as a representative of large-scale geophysical flow problems. It is

well-known that much of the world’s ocean circulation is wind-driven in large-scale.

Furthermore, there is an apparent connection between ocean currents and climate

dynamics since the oceans are a significant part of the climate system. Due to the

difference in heat capacity and density between atmospheric air and ocean water,

the ocean currents are comparatively quite slow with respect to the movement of air

masses in the atmosphere. The slowness of ocean current means a long timescale

motions which regulate a connection between the typically shorter temporal motions of

the atmosphere with the long time evolution of the climate system. It should be noted

that the ocean circulation has effects on the weather as well on shorter timescales.

Hence, wind-driven flows of mid-latitude ocean basins have been studied frequently

by modelers using idealized single- and double-gyre wind forcing, which helps in

understanding various aspects of ocean dynamics, including the role of mesoscale

eddies and their effect on mean circulation (Holm and Nadiga, 2003; San et al., 2011).

However, modeling the vast range of spatio-temporal scales of the oceanic flows with all

the relevant physics has always been challenging. As a result, the numerical simulation

of oceanic and atmospheric flows still requires approximations and simplifications of

the full model. The BVE model is a simplified version of the full-fledged geophysical

flow equations by considering the hydrostatic balance, geostrophic balance, the β-plane

approximation, and horizontal eddy viscosity parameterizations. To avoid complexity,

we perform all the analyses in a single test problem only to quantify the predictive

performance of the proposed ROM frameworks with respect to conventional projection

based ROM and full order model simulation results. Throughout this document, we

assess and quantify the performance of the models using mean flow fields, L2-error

norms, and time series response of field values for different flow conditions. The nature

and physical aspects of the wind-driven QG turbulence are detailed with references in

the later chapters.
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The individual chapters of this thesis apart from the introduction and conclusions

are dedicated to an individual ROM development idea based on different modeling

approaches. A brief summary of the core chapters of this document is presented below:

1. In chapter 2, we present a physics-based, dynamic closure modeling approach to

stabilize the projection-based ROMs for the forced-dissipative QG systems. We

propose an eddy viscosity closure approach to stabilize the resulting surrogate

model considering the analogy between LES and truncated modal projection.

Our efforts, in particular, include the translation of the dynamic subgrid-scale

model into our ROM setting by defining a test truncation similar to the test

filtering in LES (Rahman et al., 2019a).

2. In chapter 3, we put forth a robust hybrid ROM framework for the QG system

by introducing a weighting parameter between the Galerkin projection (physics-

based contribution) and extreme learning machine neural network architecture

(data-driven contribution) (Rahman et al., 2018).

3. In chapter 4, we propose a fully data-driven ROM framework for large-scale QG

systems which exploits the time series prediction capability of long short-term

memory (LSTM) recurrent neural network architecture such that: (i) in the

training phase, the LSTM model is trained on the modal coefficients extracted

from the high-resolution data snapshots using POD transform, and (ii) in the

testing phase, the trained model predicts the modal coefficients for the total

time recursively based on the initial time history. The mean flow fields and

time series response of the field values are then reconstructed from the predicted

modal coefficients by using an inverse POD transform (Rahman et al., 2019b).
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CHAPTER II

A Dynamic Closure Modeling Framework for Model Order Reduction of

Geophysical Flows†

2.1 Abstract

In this paper, a dynamic closure modeling approach has been derived to stabilize the

projection-based reduced order models in the long-term evolution of forced-dissipative

dynamical systems. To simplify our derivation without losing generalizability, the

proposed reduced order modeling (ROM) framework is first constructed by Galerkin

projection of the single-layer quasi-geostrophic equation, a standard prototype of

large-scale general circulation models, onto a set of dominant proper orthogonal

decomposition (POD) modes. We then propose an eddy viscosity closure approach to

stabilize the resulting surrogate model considering the analogy between large eddy

simulation (LES) and truncated modal projection. Our efforts, in particular, include

the translation of the dynamic subgrid-scale model into our ROM setting by defining

a test truncation similar to the test filtering in LES. The a posteriori analysis shows

that our approach is remarkably accurate, allowing us to integrate simulations over

long time intervals at a nominally small computational overhead.

2.2 Introduction

High-fidelity numerical simulations are crucial for reliable predictions, control and

diagnostics. Thanks to the huge advancement in computational power, in terms of

speed (e.g., number of arithmetic operations per second) and memory, computational

†The chapter is adapted from Rahman et al., Physics of Fluids 31.4 (2019): 046602.
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fluid dynamics has witnessed substantial development during the last century. This

includes using much finer numerical resolution and fewer approximations. However,

there are still some situations in which computational resources cannot meet the

requirements for feasible simulations. This is evident, especially in numerical weather

predictions, where accurate simulations are solely applicable to regional weather

models, while solution of global models is still restricted to relatively coarse grids

(Kalnay, 2003; Powers et al., 2017).

Although the progress in computer power and performance has been adequately

following Moore’s law (Moore, 1965, 1975) during the past decades, it is becoming

increasingly obvious in worldwide semiconductor industry that it is nearing its end

(Powell, 2008; Waldrop, 2016; Kumar, 2018). Therefore, the development of efficient

algorithms that elevate the maximum attainable quality of numerical simulations

with the available resources, or at least reduce the computational cost of traditional

simulations, has become a must. The latter is particularly important when multiple

forward simulations are required, like those encountered in inverse problems (Daescu

and Navon, 2007; Navon, 2009; Cao et al., 2007; He et al., 2011; Houtekamer and

Mitchell, 1998, 2001; Bennett, 2005; Evensen, 2009; Law and Stuart, 2012; Buljak,

2011). Reduced order modeling (ROM), also known as model order reduction, is such

a way of representing high-dimensional systems with much lower-dimensional (but

dense) systems, resulting in substantial reduction in computational cost while keeping

output quality within acceptable range (Quarteroni et al., 2015; Taira et al., 2017).

This is feasible due to the fact that most high-dimensional complex systems, basically

follow low-dimensional characteristic dynamics. For example, complex fluid flows often

consist of superposition of spatially or temporally developing coherent structures, either

growing/decaying with a specific rate, oscillating with constant frequency or containing

the largest possible kinetic energy. The evolution of such structures is responsible

for the bulk mass, momentum, and energy transfer. Therefore, the development of
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reduced order surrogate models through extracting these underlying characteristics,

would be an effective way to reduce the computational cost of numerical simulations

and address more complex problems.

Among different ROM techniques, snapshot-based projection methods are particu-

larly important where the time response of a system, either recorded from experiments

or high-fidelity numerical simulations and given a certain input, is assumed to contain

the essential behavior of that system. Proper orthogonal decomposition (POD), also

known as principal component analysis, is a widely popular technique for snapshot-

based ROMs (Antoulas et al., 2001a; Chinesta et al., 2011; Benner et al., 2015; Rowley

and Dawson, 2017), and it has been introduced to the fluid dynamics community as

a mathematical technique to extract coherent structures from turbulent flow fields

(Lumley, 1967). The spatiotemporal biorthogonal decomposition, a variant of POD,

has been introduced to recover the temporal information associated with the POD

modes (Aubry et al., 1991; Aubry, 1991). More recently, a spectral POD (SPOD)

(Sieber et al., 2016) has been applied to extract low-dimensional compression of the

full order model (FOM) extending POD to account for temporal dynamics in addition

to energetic optimality. Although the spatial SPOD modes are no longer orthonormal,

it was shown that the norm of the spatial modes gives further insights into the data set

and reduces POD in the limiting case. A frequency domain form of POD (also called

as SPOD) has been also introduced in order to account for the statistical variability

of turbulent flows and a connection between their approach and resolvent analysis has

been established. Loiseau et al. (Loiseau et al., 2018) have also introduced manifold

modeling approach as a potentially viable compression model. They showed that a

two-dimensional manifold is more accurate than an expansion with using 50 POD

modes for the transient cylinder wake.

In general, POD computes a set of orthonormal basis vectors which describe the

main directions (modes), by which the given dataset is characterized, in the L2 sense
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(Berkooz et al., 1993). Based on the energy cascade between different modes, the

most energetic POD modes are selected to generate a reduced order system. POD

coupled with the Galerkin projection has been considered an efficient approach to

generate ROMs for linear and nonlinear systems (Ito and Ravindran, 1998; Iollo et al.,

2000; Rowley et al., 2004; Pinnau, 2008; Sachs and Volkwein, 2010; Noack et al., 2017;

Puzyrev et al., 2019). It has been applied in a large number of problems involving

fluid flows during the past few decades where the governing equations are projected

onto these selected modes. While the high-dimensional approximation using standard

discretization techniques often generates spaces with millions of degrees of freedoms,

the reduced spaces spanned by ROMs are typically of order 100 or smaller (Milk

et al., 2016). In practice, ROM approximation can lead to speedups of several orders

of magnitude as well as great reduction in memory requirements. In fluid dynamics

applications, the resulting dense system consists of triadic interactions due to the

quadratic nonlinearity with an order of O(R3) computational load, where R refers to

the retained number of modes.

However, it has been noted that truncated modes often contribute to the evolving

dynamics of complex multidimensional turbulent flows, especially encountered in

geophysical systems (Lassila et al., 2014), resulting in diverging POD-based solution.

This leads to either increasing the number of selected modes to better embed the

underlying system, or sacrificing results quality. The latter is, of course, unacceptable

and would ruin the reliability and applicability of such models. On the other hand,

increasing number of modes beyond some threshold, would increase the computational

cost of solving ROMs in a way that approaches, or even exceeds, the cost of the

original full-order model. Moreover, Rempfer (Rempfer, 2000) has shown that a

complete set of POD modes is not sufficient for a POD-Galerkin model to reproduce

the full order dynamics accurately, even for many non-turbulent flows. He found

that adding just small perturbations to the flow field (like those created by a small
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numerical error in the integration of the ODEs) would result in a ROM that, in

general, may not faithfully represent the full order model anymore, and the dynamics

of the POD-Galerkin model could show instabilities while the true dynamics of the

system is stable. Noack et al. (Noack et al., 2003) also reported the same observations.

They proposed including an extra ’shift-mode’ that represents the shift of short-term

averaged flow away from the POD space such that the Galerkin approximation also

includes an accurate representation of the unstable steady solution.

Numerical instabilities due to the truncation in Galerkin models have been ad-

dressed considering turbulence models (Aubry et al., 1988; Rempfer, 1994; Rempfer

and Fasel, 1994b,a; Cazemier et al., 1998; Protas et al., 2015). Generally, POD

modes resolve the production much better than the dissipation, leading to an excess

production of turbulent kinetic energy in the POD subspace (Cordier et al., 2013).

Several studies have approached this weak dissipation through the introduction of

eddy-viscosity terms. Sirisup and Karniadakis (Sirisup and Karniadakis, 2004) pro-

posed a dissipative model based on a spectral viscosity diffusion convolution operator

to improve the long-term predictions of Galerkin-based ROMs. In their approach

viscosity amplitude decreases with the mode number, and it was shown to guarantee a

non-oscillatory behavior except for some negligible bounded oscillations. Cordier et al.

(Cordier et al., 2013) reported that constant eddy viscosity, even carefully calibrated,

is nonphysical and would lead to incorrect scaling characteristics. They proposed an

improved nonlinear eddy-viscosity model using data assimilation techniques (4D-Var

in particular). Having a globally defined eddy viscosity coefficient might imply that

the coherent structures of a high Reynolds number flow are represented by a fully

resolved low Reynolds number computation. For example, Östh et al. (Östh et al.,

2014) have used modal eddy viscosities to model high Reynolds number Ahmed body

wake.

In this paper, we aim at proposing an automated framework to produce stable
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Galerkin projection based reduced order models, using a sufficiently small number of

modes, without sacrificing much accuracy through the introduction of closure ideas

(Cordier et al., 2013; Sirisup and Karniadakis, 2004; Östh et al., 2014; Couplet et al.,

2003; Kalb and Deane, 2007; Kalashnikova and Barone, 2010; Wang et al., 2011, 2012;

Borggaard et al., 2011; Akhtar et al., 2012; Amsallem and Farhat, 2012; Balajewicz

and Dowell, 2012; San and Iliescu, 2014, 2015; Östh et al., 2014; Protas et al., 2015;

Wells et al., 2017). Dynamic eddy viscosity based closure models have been applied

in large eddy simulation (LES) area to provide numerical stabilization as well as

statistical fidelity preservation using an explicit test filtering procedure (Germano

et al., 1991; Vreman, 2004). The filtering operation that is centred in LES has been

less investigated in the ROM community. Therefore, extending state-of-the-art LES

methodologies to the ROM field has been considered as a promising approach (Xie

et al., 2017, 2018b,a; Mohebujjaman et al., 2019). Wang et al.(Wang et al., 2012)

developed the variational multiscale and dynamic Smagorinsky models for the POD-

based ROMs of structurally dominated turbulent flows, where the POD filtering has

been implemented in the reconstructed space. Using dynamic LES and ROM analogy,

the chief novelty of this paper is to introduce a “test truncation” mechanism, which is

implemented in the reduced order space (i.e., aiming at obtaining an efficient ROM

with a small computational overhead), to generate stable, self-adapted, dynamic ROMs

for estimating long term dynamics of forced-dissipative turbulent flows.

To the authors’ knowledge, the application of such dynamic closure models in ROMs

is very limited, and the current work is an effort for such incorporation. Following LES

ideology, the eddy viscosity concept is thought to provide an efficient framework to

account for the unrepresented scales due to intense mode truncation. Eddy viscosity

is computed on the fly using test truncation idea, similar to test filtering in LES. To

assess our idea, the barotropic vorticity equation is selected as our test bed. It is

a widely used mathematical model to study the forced-dissipative large scale ocean
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circulation problems, also known as the single-layer quasi-geostrophic (QG) model, first

introduced by Jule Charney (Charney, 1949). We found that the proposed dynamic

closure approach gives stabilized results over longer time intervals, compared with

regular ROMs, with a negligible computational overhead. While presented in the

vorticity-streamfunction formulation, we highlight that our modular approach can be

easily generalized to the projection-based reduced order models in primitive variables.

The rest of the paper is organized as follows: Sec. 2.3 describes the governing

equations briefly for the adopted test bed to generate snapshots; Sec. 2.4 is devoted

to the description and derivation of the dynamic eddy viscosity closure in ROM; in

Sec. 2.5, we present and discuss our results of the proposed framework; and Sec. 2.6

provides a summary of this study and the conclusions drawn from it. The numerical

discretization schemes used for spatial and temporal derivative approximations as well

as the generation and selection criteria of POD modes are specified in the Appendix

at the end of this manuscript.

2.3 Barotropic Vorticity Equation Model

Atmospheric and oceanographic flows often take place over horizontal length scales,

much larger than their vertical length scale. Therefore, they can be adequately de-

scribed by using the shallow water equations (SWE). The single layer two-dimensional

QG equation is an approximation of the SWE, filtering the inertia-gravity waves,

under the following assumptions (Vallis, 2006):

• Rossby number, Ro is small, such that inertial forces are an order of magnitude

smaller than the Coriolis and pressure forces,

• Horizontal scale of motion is the same order of magnitude as the deformation

scale, implying that the variations in fluid depth are small compared to its total

depth,
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• Variations in the Coriolis parameter are small,

• The timescale is the advective timescale, hence the gravity waves, which evolve

on a short timescale, are filtered out.

Much of the world’s ocean circulation is wind-driven in large-scale. Therefore,

wind-driven flows of mid-latitude ocean basins have been studied by modelers using

idealized single- and double-gyre wind forcing which helps in understanding various

aspects of ocean dynamics, including the role of mesoscale eddies and their effect on

mean circulation. The barotropic vorticity equation (BVE) describing the single-layer

QG equation with dissipative and forcing terms is one of the most commonly used

models for the double-gyre wind-driven geophysical flows (Majda and Wang, 2006).

The BVE model is a simplified version of the more general primitive equations used

in operational weather forecast centers (Kalnay, 2003), making it a suitable model

for testing new ideas. Detailed discussions on different underlying mechanisms and

formulations have been presented in literature (Holland and Rhines, 1980; Munk and

Wunsch, 1982; Griffa and Salmon, 1989; Cummins, 1992; Greatbatch and Nadiga, 2000;

Nadiga and Margolin, 2001). In dimensionless vorticity-streamfunction formulation,

using β-plane assumption reasonable for most oceanic flows, the forced-dissipative

BVE can be written as follows (Rahman et al., 2018):

∂ω

∂t
+ J(ω, ψ)− 1

Ro

∂ψ

∂x
=

1

Re
∇2ω +

1

Ro
sin(πy), (2.1)

where∇2 refers to the Laplacian in two-dimensions, ω and ψ are the kinematic vorticity

and streamfunction, respectively, defined as:

ω = ∇× u, (2.2)

u = ∇× ψk̂, (2.3)
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where u is the two-dimensional velocity field and k̂ refers to the unit vector perpen-

dicular to the horizontal plane. The nonlinear advection term in Eq. (2.1) is given by

the Jacobian

J(ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (2.4)

Eq. (2.1) has two dimensionless parameters, Reynolds number, Re and Rossby

number, Ro, which are related to the characteristic length and velocity scales in the

following way:

Re =
V L

ν
, Ro =

V

βL2
, (2.5)

where ν is the horizontal eddy viscosity of the BVE model and β is the gradient of

the Coriolis parameter at the basin center (y = 0). L is the basin length scale and

V is the velocity scale, also known as the Sverdrup velocity(Sverdrup, 1947), and is

given by

V =
τ0

ρH

π

βL
, (2.6)

where τ0 is the maximum amplitude of the double-gyre wind stress, ρ is the mean

fluid density, and H is the mean depth of the ocean basin.

Despite not being explicitly represented in Eq. (2.1), there are two important

relevant physical parameters, the Rhines scale, δI and the Munk scale, δM which are

the nondimensional boundary layer thicknesses for the inertial and viscous (Munk) layer

of the basin geometry, respectively. As a physical interpretation of these parameters

in BVE model, δI accounts for the strength of nonlinearity and δM is a measure of

dissipation strength. δI and δM can be defined as

δI
L

=

(
V

βL2

) 1
2

,
δM
L

=

(
ν

βL3

) 1
3

(2.7)
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and are related to Ro and Re by the following relations

δI
L

= (Ro)
1
2 ,

δM
L

=

(
Ro

Re

) 1
3

. (2.8)

Finally, in order to satisfy the incompressibility constraint, the vorticity and stream-

function are related through the following Poisson equation:

∇2ψ = −ω. (2.9)

Following (Holm and Nadiga, 2003; San et al., 2011), a four-gyre circulation

problem is considered as a benchmark for oceanic flow to generate numerical data.

Since ocean circulation models where the Munk and Rhines scales are close to each

other, like the QG model, remain time dependent rather being converged to a steady

state as time approaches to infinity (Medjo, 2000), numerical computations of these

models are conducted in a statistically steady state, also known as the quasi-stationary

state. Hence, in our study, we utilize numerical schemes suited for simulation of such

type of ocean models and for long-time integration. In our full order model (FOM)

simulations, we use a second-order accurate kinetic energy and enstrophy conserving

Arakawa finite difference scheme (Arakawa, 1966). The derivatives in the linear terms

are also approximated using the standard second-order finite differences. Our time

advancement scheme is given by the classical total variation diminishing third-order

accurate Runge-Kutta scheme (Gottlieb and Shu, 1998). Details of the numerical

schemes are given in Appendix.

To close the problem, boundary and initial conditions need to be specified. Follow-

ing previous studies, we use slip boundary condition for the velocity, which implies

homogeneous Dirichlet boundary condition for the vorticity. Also, the impermeabil-

ity boundary condition forces homogeneous Dirichlet boundary condition for the
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streamfunction:

ω|Γ = ψ|Γ = 0, (2.10)

where Γ refers to all boundary coordinates. As an initial state, we start our computa-

tions from a quiescent state (i.e., ωt=0 = ψ|t=0 = 0) and integrate the model until a

statistically steady state is obtained, i.e., the wind forcing, dissipation, and Jacobian

(eddy flux of potential vorticity) balance each other.

2.4 Dynamic Closure Modeling for Reduced Order Models
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Figure 2.1: Closure modeling analogy between large eddy simulation (left) and reduced
order modeling (right) where higher k index refers to smaller scales. In LES, kc and kf
refer to the grid cut-off and test filtering scales, whereas in ROM, R and R̃ indicate the
number of POD modes retained in the model and test truncation process, respectively.

The main idea of this paper is that the effect of truncated modes can be approxi-

mated dynamically. To illustrate this online ROM closure idea, we first rewrite the

governing equation as

∂ω

∂t
= −J(ω, ψ) +

1

Ro

∂ψ

∂x
+

1

Re
∇2ω +

1

Ro
sin(πy), (2.11)

where we approximate the prognostic variable (i.e., kinematic vorticity in this case)
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using the most energetic R POD modes

ω(x, y, t) = ω̄(x, y) +
R∑
k=1

αk(t)φk(x, y), (2.12)

where ω̄(x, y) refers to the mean vorticity field of the training data set of snapshots,

αk(t) is the kth time-dependent coefficient and φk(x, y) is the kth spatial POD mode

for the fluctuating vorticity field. The derivation of such POD modes is detailed

in Appendix. We note that the POD modes are orthonormal (both orthogonal and

normalized), i.e., ∫
Ω

φi(x, y)φj(x, y)dxdy = δij, (2.13)

where Ω is the entire spatial domain and δij is the Kronecker delta defined by

δij =


1, if i = j,

0, if i 6= j.

(2.14)

To simplify our notation we use the following angle-parenthesis definition for the inner

product ∫
Ω

f(x, y)g(x, y)dxdy = 〈f ; g〉, (2.15)

and hence 〈φi;φj〉 = δij. Since the vorticity and streamfunction are related through

the kinematic relationship given by Eq. (2.9), we can expand the streamfunction using

the same time-dependent coefficient,

ψ(x, y, t) = ψ̄(x, y) +
R∑
k=1

αk(t)θk(x, y), (2.16)

where ψ̄(x, y) refers to the mean streamfunction field of the training data set of

snapshots, and θk(x, y) is the kth spatial POD mode for the streamfunction, which
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can be obtained through solving the following Poisson equations (offline computing):

∇2ψ̄(x, y) = −ω̄(x, y), (2.17)

∇2θk(x, y) = −φk(x, y), k = 1, 2, ..., R. (2.18)

We note that the POD modes for streamfunction do not need to be orthonormal

since the streamfunction is not a prognostic variable. Substituting Eq. (2.12) and

Eq. (2.16) into Eq. (2.11), an orthogonal Galerkin projection is then performed by

multiplying Eq. (2.11) with the spatial POD modes φk(x, y), and integrating over the

entire domain Ω. The resulting dense dynamical system for αk can be written as

dαk
dt

= Bk +
R∑
i=1

Likαi +
R∑
i=1

R∑
j=1

Nij
k αiαj, k = 1, 2, ..., R, (2.19)

where the predetermined model coefficients can be computed by the following numerical

integration (offline computing)

Bk =
〈
− J(ω̄, ψ̄) +

1

Ro

∂ψ̄

∂x
+

1

Re
∇2ω̄ +

1

Ro
sin(πy);φk

〉
,

Lik =
〈
− J(ω̄, θi)− J(φi, ψ̄) +

1

Ro

∂θi
∂x

+
1

Re
∇2φi;φk

〉
,

Nij
k =

〈
− J(φi, θj);φk

〉
. (2.20)

To complete the dynamical system given by Eq. (2.19), the initial conditions for αk(t)

may be obtained by the following projection

αk(t0) =
〈
ω(x, y, t0)− ω̄(x, y);φk

〉
, (2.21)

where ω(x, y, t0) is the vorticity field specified at initial time t0. The standard Galerkin

projection ROM given by Eq. (2.19), denoted as ROM-G in this study, often yields

unstable solutions when the largest R modes might not adequately capture the
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system’s dynamics (Couplet et al., 2003; Kalb and Deane, 2007; Bergmann et al.,

2009; Kalashnikova and Barone, 2010; Wang et al., 2011; Carlberg et al., 2011; Wang

et al., 2012; Borggaard et al., 2011; Akhtar et al., 2012; Amsallem and Farhat, 2012;

Balajewicz and Dowell, 2012; Balajewicz et al., 2013; Lassila et al., 2013; San and

Iliescu, 2014, 2015; Baiges et al., 2015; Wells et al., 2017; Xie et al., 2017). As we will

illustrate in our numerical examples, this is particularly true for turbulent flows. Using

an eddy viscosity approach (e.g., see FIG. 2.1 for the analogy between ROM and LES

that is first illustrated by Akhtar et al. (Akhtar et al., 2012)), the stabilization of the

ROM can be achieved by adding a regularization term to the governing equation (San

and Iliescu, 2015)

∂ω

∂t
= −J(ω, ψ) +

1

Ro

∂ψ

∂x
+

1

Re
∇2ω +

1

Ro
sin(πy) + νe∇2ω, (2.22)

where νe refers to the eddy viscosity. To account for the effects of the truncated modes,

following the similar Galerkin projection approach we may obtain a regularized ROM

model

dαk
dt

= Bk + B̃k +
R∑
i=1

(Lik + L̃ik)αi +
R∑
i=1

R∑
j=1

Nij
k αiαj, (2.23)

where the additional two terms can be written as

B̃k = 〈νe∇2ω̄;φk〉,

L̃ik = 〈νe∇2φi;φk〉. (2.24)

The free stabilization parameter νe may be simply considered as a given empirical

constant (Aubry et al., 1988; Wang et al., 2012). This empirical eddy viscosity idea

may be improved by supposing that the amount of dissipation is not identical for all

the POD modes (Rempfer, 1991; Cazemier, 1997; San and Iliescu, 2014). It has been,

however, shown that finding an optimal value for this parameter significantly improves
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the predictive performance of ROMs (San and Iliescu, 2014, 2015). Therefore, the

main novelty of the present study is the derivation of an automated approach to

estimate this νe parameter dynamically at each time step (online computing). An

alternative dynamic determination of νe has been presented by San and Maulik using

a supervised neural network approach (San and Maulik, 2018a). However, our effort

in this paper aims at developing a mathematical model based on the idea of the “test

truncation”, translating the idea of the test filtering approach (Germano et al., 1991)

in dynamic LES subgrid-scale models into the ROM setting.

To demonstrate our approach, we first utilize the test truncation to Eq. (2.23)

considering less number of modes R̃ (i.e., R̃ < R)

dα̃k
dt

= Bk + B̃k +
R̃∑
i=1

(Lik + L̃ik)α̃i +
R̃∑
i=1

R̃∑
j=1

Nij
k α̃iα̃j, (2.25)

where the α̃k refers to our approximation for kth time-dependent coefficient on a test

truncated space and we subtract the resulting model given by Eq. (2.25) from the

original model given by Eq. (2.23) to yield the difference equation at each kth mode

R∑
i=1

(Lik + L̃ik)αi +
R∑
i=1

R∑
j=1

Nij
k αiαj

−
R̃∑
i=1

(Lik + L̃ik)α̃i −
R̃∑
i=1

R̃∑
j=1

Nij
k α̃iα̃j =

dαk
dt
− dα̃k

dt
, (2.26)

and we can approximate Eq. (2.26) by the modal scale similarity hypothesis

R∑
i=1

Likαi +
R∑
i=1

R∑
j=1

Nij
k αiαj −

R̃∑
i=1

Likαi −
R̃∑
i=1

R̃∑
j=1

Nij
k αiαj

= −
R∑
i=1

L̃ikαi +
R̃∑
i=1

L̃ikαi, (2.27)

where we assume that α̃k ≈ αk when we use the eddy viscosity closure. Therefore,
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using the definitions given by Eq. (2.24), we can rewrite Eq. (2.27) as

Hk = νeMk, (2.28)

where

Hk =
R∑

i=R̃+1

Likαi +
R∑
i=1

R∑
j=1

Nij
k αiαj −

R̃∑
i=1

R̃∑
j=1

Nij
k αiαj

Mk = −
R∑

i=R̃+1

L̃ikαi, (2.29)

in which the predetermined coefficients of L̃ik can be given (offline computing)

L̃ik = 〈∇2φi;φk〉, (2.30)

where we assume that νe is treated as constant locally in Eq. (2.24), i.e., frozen eddy

viscosity field hypothesis expressed by L̃ik = νeL̃
i
k. Similar to the approach driven

by Lilly (Lilly, 1992) for LES, we propose a least-squares based estimation for νe in

Eq. (2.28) where we define the error at each mode, Ek = Hk − νeMk. Once we square

this error term

E2
k = H2

k − 2νeHkMk + ν2
eM

2
k , (2.31)

then the eddy viscosity coefficient in our ROM model can be computed by minimizing

the sum of square errors with respect to the free model parameter νe to obtain

∂(
∑R̃

k=1 E
2
k)

∂(νe)
= −2

R̃∑
k=1

HkMk + 2νe

R̃∑
k=1

MkMk. (2.32)

The right-hand side of the above equation becomes zero when the error is minimized
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to give us finally the following expression for the eddy viscosity coefficient

νe =

∑R̃
k=1HkMk∑R̃
k=1MkMk

, (2.33)

where Hk and Mk are computed by Eq. (2.29) at each time step (online computing).

To provide always a positive eddy viscosity in our ROM simulations, we have also

applied the following clipping rule (Sagaut, 2006)

νe = max
(

0,

∑R̃
k=1HkMk∑R̃
k=1MkMk

)
. (2.34)

This completes the derivation of our dynamic closure model for ROM settings. We

denote our proposed model as ROM-D (i.e., Eq. (2.23) equipped with Eq. (2.34)). We

note that our dynamic closure framework can be applied to modal eddy viscosities

(e.g., see Östh et al. (Östh et al., 2014) on the need for a nonlinear subscale turbulence

term in POD models) by replacing Eq. (2.32) with the modal pendant, a topic we will

investigate further in future studies.

2.5 Numerical Experiments

In this section, we primarily focus on the comparative performance of the standard

ROM-G model and our proposed ROM-D model in estimating the flow behavior at

different flow conditions. In addition, we also assess the robustness and prediction

capability of the ROM-D model through the extrapolatory prediction and sensitivity

tests. To produce the ideal data set and simulation results for our evaluations, we

select the single-layer QG model as our benchmark test case which has been appeared

in numerous studies as test problem (Cushman-Roisin and Beckers, 2011; Holm and

Nadiga, 2003; San et al., 2011; Cummins, 1992; Greatbatch and Nadiga, 2000). Indeed,

the QG test problem comes with a great challenge of capturing wide range of scales

and complex flow behavior on coarse spatial resolutions, for example, resolving the
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four-gyre circulation (in the time mean) (Greatbatch and Nadiga, 2000), which makes

this problem a suitable test bed to evaluate the capability of ROMs.

In the current study, we present our performance evaluations of the aforementioned

reduced order methodologies based upon four distinct numerical experiments. In

the first experiment, we investigate the predictive performance of both modeling

frameworks at lower (Re, Ro) combination using the data snapshots extracted from a

256× 512 resolution FOM simulation at the same flow condition. Next, we perform

the similar analysis for comparatively higher (Re, Ro) combination in the second

experiment. Finally, in the last two experiments, we test the extrapolatory predictive

performance of the models using the data snapshots collected at higher/lower (Re, Ro)

combination to predict a flow field at lower/higher (Re, Ro) combination, respectively.

Throughout the analyses, we utilize the true projection of the FOM simulations as

the baseline or reference for all the relative comparisons between ROMs.
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Figure 2.2: Graphical representation of the snapshots selection (shaded in orange)
from the time histories of total kinetic energy for various (Re, Ro) combinations.
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Figure 2.3: The decay of the POD eigenvalues. Note that only the first 100 largest
eigenvalues (out of 400) are shown.
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Figure 2.4: The relative information content showing the POD percentage energy
accumulation with respect to modal index.
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2.5.1 FOM simulation and data snapshots collection

The computational domain of our test problem is (x, y) ∈ [0, 1]× [−1, 1]. The FOM

simulation is conducted starting from t = 0 to t = 100 using a fixed time step of

∆t = 2.5× 10−5 on a Munk layer resolving 256× 512 grid resolution (i.e., consisting of

about four grid points in the Munk scale, i.e., δM/L = 0.02). In FIG. 2.2, we present

the plots of time histories of the basin integrated total kinetic energy for both (Re,

Ro) combinations, which can be calculated by:

E(t) =
1

2

∫
Ω

((∂ψ
∂x

)2

+
(∂ψ
∂y

)2
)
dxdy. (2.35)

In general, the time evolution of the kinetic energy for QG model shows an initial

short transient interval followed by the statistically steady state. As we can see from

the time series plots, both (Re, Ro) combinations show a similar trend with the higher

(Re, Ro) combination showing comparatively steady state fluctuations (with larger

amplitude) and the lower (Re, Ro) combination showing comparatively more unsteady

fluctuations. As shown in FIG. 2.2, we store 400 snapshots from t = 10 to t = 50 to

collect data snapshots at statistically steady state after the initial transient period.

To get an idea of the energy captured by the POD modes for different flow

conditions, we plot the decay of the POD eigenvalues in FIG. 2.3. We also present

the percentage of energy accumulation with respect to the POD modes in FIG. 2.4.

Here, we compute the percentage modal energy using the relative information content

formula given by (Gunzburger, 2012):

P (k) =

(∑k
j=1 λj∑N
j=1 λj

)
× 100, (2.36)

where the number of snapshots is set to N = 400 in our study. It is apparent in

the percentage modal energy plot that 50 POD modes capture around 80% of total

energy of the system for lower (Re, Ro) combination whereas capture around 85%
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of total energy of the system for higher (Re, Ro) combination. Since we have seen

a comparatively more steady fluctuations in the time series plot of the total energy

for higher (Re, Ro) combination, it is expected to accumulate more energy in less

POD modes in higher (Re, Ro) combination case. Surely, if we increase the number of

modes, the captured percentage modal energy will increase for both cases. Regardless

of that, we represent most of our simulation results up to 80 modes in this study.

FIG. 2.5 shows the instantaneous vorticity fields for Experiment I and II, and gives a

visualization of the vigorous eddying nature of this test problem. The mixing between

outer and inner-gyre in the instantaneous fields demonstrates that the flow is in the

turbulent state and a strong distortion of the vorticity contours can be noticed in both

experiments. As outlined in Table 2.1, we also include two out-of-sample experiments

to assess the performance of the proposed method.

Table 2.1: Numerical experiments for various (Re, Ro) combinations.

Experiment Data collection Prediction
(Re, Ro) (Re, Ro)

I (200, 0.0016) (200, 0.0016)
II (450, 0.0036) (450, 0.0036)
III (450, 0.0036) (200, 0.0016)
IV (200, 0.0016) (450, 0.0036)

2.5.2 Experiment I: Both data collection and prediction at Re = 200, Ro

= 0.0016

In Experiment I, we collect our training snapshots data from a 256× 512 resolution

FOM simulation at Re = 200 and Ro = 0.0016. FIG. 2.6 shows the streamfunction

contours, averaged in time, obtained by FOM, ROM-G (with R = 10, 20, 30, 40

and 50) and ROM-D (with R = 10 and 20), respectively. Although the dynamics

of instantaneous flows is chaotic and fluctuates in time, the time-averaged contour

plot shows the four-gyre circulation pattern for FOM simulation as displayed in
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Figure 2.5: Some snapshots from the training data set showing the instantaneous
vorticity fields. (a) Experiment I (t = 10); (b) Experiment I (t = 20); (c) Experiment
I (t = 30); (d) Experiment I (t = 40); (e) Experiment II (t = 10); (f) Experiment II
(t = 20); (g) Experiment II (t = 30); (h) Experiment II (t = 40).
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FIG. 2.6. This four-gyre pattern indicates that the model reaches a state of turbulent

equilibrium where the two inner gyres circulation are similar as the the wind stress

curl forcing while the outer gyres correspond to the northern and southern gyres found

in geostrophic turbulence experiments (i.e., time-averaged field data is obtained by

averaging between t = 10 and t = 100). The circulations of the two gyres in both

inner and outer regions can be seen in the figure where the red color represents the

circulation in positive direction (i.e., counter-clock wise) and the blue color indicates

the circulation in opposite direction.

Since we conduct the experiment for this test problem in highly turbulent regime,

i.e., turbulence with weak dissipation, the four-gyre circulation pattern is expected

when the flow reaches statistically steady state and the simulation result is consistent

with the existing literature (Greatbatch and Nadiga, 2000). The physical interpretation

of this four-gyre circulation can be the wind stress curl represented by the two inner-

gyres is equilibriated by the two outer-gyres driven by the eddy flux of potential

vorticity. In FIG. 2.6, we can also observe the nonphysical flow prediction in the

contour plots for ROM-G solutions with lower R (Note the range in the legend for

R = 30, R = 20 and R = 10). For R = 40, the ROM-G gives a good prediction of

the FOM solution and the R = 50 result is comparatively even better. The proposed

ROM-D solutions, however, show a better estimation of the FOM solution for only

R = 10 and R = 20 than the ROM-G solution with R = 50. We can clearly visualize

the presence of four-gyre circulation in reasonable range for only R = 20 which

indicates the balance between the wind stress curl and the divergence of the eddy

potential vorticity flux. A point should be noted here that we utilize ∆t = 2.5× 10−4

for all of our ROM-G and ROM-D computations since ROMs are free of the stability

constraint (even though time step is set to ∆t = 2.5× 10−5 for the FOM simulation).

In another analysis, we plot the time series evolution of the first modal coefficient for

Experiment I in FIG. 2.7 which show the true data projection of the FOM simulation
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in each row, the ROM-G solutions with R = 10, R = 20, R = 30, R = 40 and R = 50

in consequent rows starting from the first row, and the ROM-D solution with R = 10

and R = 20 in the last two rows, respectively. We extend the time series plot to

100 to show the range of prediction capability of different models. In the plots, the

orange colored part of the true projection data represents the training zone, the black

colored part represents the extended zone, and the blue colored line in each figure

indicates the solution obtained by the ROMs. Similar to the findings from mean

contour plots, we can observe that the ROM-G model with R = 50 produces the

result closest to the FOM solution although a clear gap is present between the true

projection and ROM-G solutions for all the modes up to R = 50. In contrast, the

ROM-D solutions for R = 10 and R = 20, undoubtedly, show better performance

than ROM-G solutions and an almost overlap can be noticed between ROM-D with

R = 20 and the true projection. Similar statistical observations can be seen for other

modal coefficients (not shown here due to clarity and space limitation reasons). To

investigate the robustness of the proposed ROM-D model, we perform a sensitivity

test with respect to the dynamic model parameter, R̃ for different test truncation, ∆R

values. In our ROM-D framework formulation, we define ∆R = R− R̃ as a modeling

parameter analogous to the test filter strength in LES. We must mention here that we

use ∆R = 3 value in all of our experiments (except the sensitivity analyses where we

vary the ∆R value) in this study.

For sensitivity analysis, we first present the time series of the first modal coefficient

for Experiment I with different (∆R, R) combinations of the proposed ROM-D model

in FIG. 2.8. As we can see, the results do not vary much statistically for any R

with different ∆R combinations. However, it seems that there are some correlations

between ∆R and the amplitude of the fluctuations for ROM-D with R = 10. On the

other hand, the time series of ROM-G with R = 20 on the bottom last row reveals

that the both R = 10 and R = 20 combined with different ∆R values ROM-D models
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exhibit a better estimation of the true projection than the ROM-G solution. Since

we take into account the truncated modes in ROM-D models, the results improve

significantly with respect to the ROM-G model with lower R.

We further illustrate the sensitivity analysis based on the mean streamfunction

contour plots in FIG. 2.9 which clearly show that the R = 20 for different ∆R give a

very promising prediction of the FOM solution. Furthermore, results do not vary much

qualitatively with respect to different ∆R. These results indicate the ROM-D model

for R = 20 is robust in predicting the true solution for this experiment. Moreover,

we provided our quantitative assessments of the ROM-G and ROM-D models for

Experiment I in Table 2.2 showing the computational overhead and L2-norm error for

the mean streamfunction field. Although the dynamic methodology requires additional

computational overhead, it can be easily seen that this computational overhead will

be always small (i.e., CPU time of ROM-D < 2 times CPU time of ROM-G), since R̃

is less than R, and we formulate our dynamic approach at the reduced order space

using the time dependant coefficients without a cost related to field reconstruction.

Furthermore, it is evident that we can achieve more accuracy for ROM-G model with

the increment of R and computational time (for example, ROM-G with R = 80 gives

1.18×10−1 of accuracy in 1741.60 seconds). However, the similar order of accuracy can

be obtained by the ROM-D with R = 10 and ∆R = 4 in around 224 times speedup.

Additionally, ∆R in ROM-D model gives us a freedom (combining with higher R) to

increase the accuracy of the solution with a little increase in computational time.

2.5.3 Experiment II: Both data collection and prediction at Re = 450,

Ro = 0.0036

For Experiment II, we carry out similar analyses as Experiment I using higher (Re,

Ro) combination. Since the flow is in highly turbulent regime for this experiment, we

expect to observe the four-gyre circulation again in the mean field contours because
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Table 2.2: Quantitative assessments for Experiment I demonstrating the CPU time
in seconds for ROM simulations (using computational time step ∆t = 2.5 × 10−4),
and L2-norm error for the mean streamfunction field (with respect to FOM). Note
that the CPU time for the FOM simulation is about 135 hours (between t = 0 and
t = 100), where computational time step is set ∆t = 2.5 × 10−5 due to the CFL
restriction of numerical stability for our explicit forward model on the resolution of
256× 512. Offline computing time for solving the eigensystem to find POD modes is
about 21 minutes (including about 8 seconds (per 10 modes) for performing numerical
integration to calculate the predetermined coefficients). Note that ∆R = R− R̃.

CPU (s) ||ψROM − ψFOM||2

Galerkin ROM
ROM-G (R = 80) 1741.60 1.18× 10−1

ROM-G (R = 60) 723.88 1.35× 100

ROM-G (R = 50) 432.35 1.17× 101

ROM-G (R = 40) 287.59 1.19× 101

ROM-G (R = 30) 94.54 1.11× 102

ROM-G (R = 20) 29.71 3.74× 102

ROM-G (R = 10) 4.43 1.07× 106

Dynamic ROM
ROM-D (R = 10, ∆R = 4) 7.75 2.39× 10−1

ROM-D (R = 10, ∆R = 3) 8.58 2.67× 10−1

ROM-D (R = 10, ∆R = 2) 9.75 1.69× 100

ROM-D (R = 20, ∆R = 4) 68.45 5.25× 10−2

ROM-D (R = 20, ∆R = 3) 72.72 3.15× 10−2

ROM-D (R = 20, ∆R = 2) 77.26 7.72× 10−2
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Figure 2.6: Mean streamfunction contours for Experiment I (for training snapshots
between t = 10 and t = 50). (a) FOM at a resolution of 256× 512; (b) ROM-G with
R = 50 modes; (c) ROM-G with R = 40 modes; (d) ROM-G with R = 30 modes; (e)
ROM-G with R = 20 modes; (f) ROM-G with R = 10 modes; (g) proposed ROM-D
with R = 20 modes and ∆R = 3; (h) proposed ROM-D with R = 10 modes and
∆R = 3. Note that ∆R = R− R̃.
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Figure 2.7: Time series of the first modal coefficient for Experiment I. (a) ROM-G
with R = 10 modes; (b) ROM-G with R = 20 modes; (c) ROM-G with R = 30
modes; (d) ROM-G with R = 40 modes; (e) ROM-G with R = 50 modes; (f) proposed
ROM-D with R = 10 modes and ∆R = 3; (g) proposed ROM-D with R = 20 modes
and ∆R = 3. Note that ∆R = R − R̃. True projection data is underlined in each
figure with orange (training zone) and black (extended zone).
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Figure 2.8: A sensitivity test with respect to the dynamic model parameter R̃ showing
the time series of the first modal coefficient for Experiment I. (a) ROM-D (R = 20)
with ∆R = 2; (b) ROM-D (R = 20) with ∆R = 3; (c) ROM-D (R = 20) with ∆R = 4;
(d) ROM-D (R = 10) with ∆R = 2; (e) ROM-D (R = 10) with ∆R = 3; (f) ROM-D
(R = 10) with ∆R = 4; (g) ROM-G with R = 20 modes. Note that ∆R = R − R̃.
True projection data is presented in each figure with orange (training zone) and black
(extended zone).
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Figure 2.9: A sensitivity test with respect to the dynamic model parameter R̃ showing
the mean streamfunction contours for Experiment I. (a) FOM at a resolution of
256× 512; (b) ROM-D (R = 20) with ∆R = 2; (c) ROM-D (R = 20) with ∆R = 3;
(d) ROM-D (R = 20) with ∆R = 4; (e) ROM-G with R = 20 modes; (f) ROM-D
(R = 10) with ∆R = 2; (g) ROM-D (R = 10) with ∆R = 3; (h) ROM-D (R = 10)
with ∆R = 4. Note that ∆R = R− R̃.

36



the eddy flux of potential vorticity balances the vorticity input from the wind stress

forcing. Based on the visualizations of the mean streamfunction contour plots in

FIG. 2.10, Experiment II reveals that the ROM-G gives a physical result from R = 30

although R = 20 and R = 10 show a nonphysical two-gyre circulation instead of

four-gyre circulation (i.e., due to the instability of the POD-G approach with such

number of retained modes). In contrast, the ROM-D models with R = 10 and R = 20

exhibit a good estimation of the FOM solution whereas the R = 20 shows the visible

four-gyre circulation. The time series evolution for the first modal coefficient plots in

FIG. 2.11 gives us a better statistical view on the comparative performance of both

models. As we can see in the first two rows of the figure that the solutions obtained

by ROM-G with R = 10 and R = 20 modes become nonphysical after a while whereas

the true physics suggests a statistically steady flow field after t = 10. At the same

time range, the R = 30, R = 40 and R = 50 modes for ROM-G give a statistically

steady and satisfactory prediction of the true solution which is consistent with the

findings of the mean streamfunction contour plots. On the other hand, the ROM-D

model with both R = 10 and R = 20 modes give an excellent prediction of the truth

compared to the ROM-G solutions in lower modes. As we have seen in the POD

analysis in FIG. 2.2, Experiment II displays a statistically more stable time series

evolution (compared to Experiment I), and it is expected that comparatively more

energy will be accumulated in lower R for this case.

Next, we perform the sensitivity tests for Experiment II and it can be observed

in FIG. 2.12 that the ROM-D model is showing consistent predictions for even

R = 10 invariant to the change in the value of ∆R. Nonetheless, the ROM-G with

R = 20 prediction is nonphysical yet again after certain time. Similarly, the mean

streamfunction contours in FIG. 2.13 indicates the ROM-D model is very robust for

R = 20 and also, showing a good prediction for R = 10. In Table 2.3, we report the

computational time and L2-norm error of the ROM-G and ROM-D model simulation

37



results for Experiment II. Similar to Experiment I, we can obtain equivalent order of

accuracy as ROM-G (R = 80) in ROM-D (R = 10, ∆R = 4) with around 219 times

reduction in overall computational time. It is also apparent that we can gain more

accurate solutions for R = 20 with different ∆R using ROM-D model.

Table 2.3: Quantitative assessments for Experiment II demonstrating the CPU time
in seconds for ROM simulations (using computational time step ∆t = 2.5 × 10−4),
and L2-norm error for the mean streamfunction field (with respect to FOM). Note
that the CPU time for the FOM simulation is about 130 hours (between t = 0 and
t = 100), where computational time step is set ∆t = 2.5 × 10−5 due to the CFL
restriction of numerical stability for our explicit forward model on the resolution of
256× 512. Offline computing time for solving the eigensystem to find POD modes is
about 22 minutes (including about 8 seconds (per 10 modes) for performing numerical
integration to calculate the predetermined coefficients). Note that ∆R = R− R̃.

CPU (s) ||ψROM − ψFOM||2

Galerkin ROM
ROM-G (R = 80) 1752.79 3.84× 10−1

ROM-G (R = 60) 722.02 3.33× 10−1

ROM-G (R = 50) 554.14 3.63× 10−1

ROM-G (R = 40) 218.06 4.33× 10−1

ROM-G (R = 30) 96.00 9.99× 10−1

ROM-G (R = 20) 29.32 9.87× 102

ROM-G (R = 10) 4.36 5.59× 103

Dynamic ROM
ROM-D (R = 10, ∆R = 4) 8.00 3.55× 10−1

ROM-D (R = 10, ∆R = 3) 8.96 7.82× 10−1

ROM-D (R = 10, ∆R = 2) 9.51 1.51× 100

ROM-D (R = 20, ∆R = 4) 68.32 3.02× 10−1

ROM-D (R = 20, ∆R = 3) 72.70 2.88× 10−1

ROM-D (R = 20, ∆R = 2) 77.27 1.22× 10−1

2.5.4 Experiment III: Data collection at Re = 450, Ro = 0.0036, predic-

tion at Re = 200, Ro = 0.0016

The first two experiments clearly address the improvements we can achieve through

the dynamic closure ROM approach for the prediction of the flow field within the

range of training data. However, to further investigate the prediction capability of the

proposed ROM-D model for out-of-sample flow condition, we perform an extrapolatory
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Figure 2.10: Mean streamfunction contours for Experiment II (for training snapshots
between t = 10 and t = 50). (a) FOM at a resolution of 256× 512; (b) ROM-G with
R = 50 modes; (c) ROM-G with R = 40 modes; (d) ROM-G with R = 30 modes; (e)
ROM-G with R = 20 modes; (f) ROM-G with R = 10 modes; (g) proposed ROM-D
with R = 20 modes and ∆R = 3; (h) proposed ROM-D with R = 10 modes and
∆R = 3. Note that ∆R = R− R̃.
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Figure 2.11: Time series of the first modal coefficient for Experiment II. (a) ROM-G
with R = 10 modes; (b) ROM-G with R = 20 modes; (c) ROM-G with R = 30
modes; (d) ROM-G with R = 40 modes; (e) ROM-G with R = 50 modes; (f) proposed
ROM-D with R = 10 modes and ∆R = 3; (g) proposed ROM-D with R = 20 modes
and ∆R = 3. Note that ∆R = R − R̃. True projection data is underlined in each
figure with orange (training zone) and black (extended zone).
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Figure 2.12: A sensitivity test with respect to the dynamic model parameter R̃ showing
the time series of the first modal coefficient for Experiment II. (a) ROM-D (R = 20)
with ∆R = 2; (b) ROM-D (R = 20) with ∆R = 3; (c) ROM-D (R = 20) with ∆R = 4;
(d) ROM-D (R = 10) with ∆R = 2; (e) ROM-D (R = 10) with ∆R = 3; (f) ROM-D
(R = 10) with ∆R = 4; (g) ROM-G with R = 20 modes. Note that ∆R = R − R̃.
True projection data is presented in each figure with orange (training zone) and black
(extended zone).
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Figure 2.13: A sensitivity test with respect to the dynamic model parameter R̃ showing
the mean streamfunction contours for Experiment II. (a) FOM at a resolution of
256× 512; (b) ROM-D (R = 20) with ∆R = 2; (c) ROM-D (R = 20) with ∆R = 3;
(d) ROM-D (R = 20) with ∆R = 4; (e) ROM-G with R = 20 modes; (f) ROM-D
(R = 10) with ∆R = 2; (g) ROM-D (R = 10) with ∆R = 3; (h) ROM-D (R = 10)
with ∆R = 4. Note that ∆R = R− R̃.
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predictive performance analysis where we collect the training data for POD basis

function generation at higher (Re, Ro) combination, i.e., at (Re = 450, Ro = 0.0036)

and then, test to predict the flow field at (Re = 200, Ro = 0.0016). Indeed, it should

be challenging since we have seen the analyses in the previous sections that the (Re

= 200, Ro = 0.0016) combination introduces comparatively uneven fluctuations than

the higher (Re, Ro) flow condition. As a result, the lower (Re, Ro) flow condition

requires higher POD modes to capture greater percentage of energy of the system.

The mean streamfunction plots for this set up is presented in FIG. 2.14 which

show the FOM simulation result at (Re = 200, Ro = 0.0016) on the top left corner of

the figure. In the same figure, we can also observe that the physical four-gyre pattern

is captured by the standard ROM-G with R = 50 and R = 40. However, retaining the

lower R number of modes might fail to capture the true physics. On the contrary, the

ROM-D model shows a hint of capturing the four-gyre for R = 20. It is evident from

the figure that the ROM-D with lower R values clearly showing a better prediction

than the ROM-G with higher R values. The sensitivity of ROM-D with respect to

∆R is also shown for two values of the R = 20 case. Eventually, we present the time

series evolution of the first modal coefficient plots for Experiment III in FIG. 2.15

to get a lucid idea of the underlying physics. It can be observed that the ROM-D

with R = 10 exhibits the fluctuations with larger amplitude, but the R = 20 yields a

comparatively better estimation. Also, we can see that the estimations of ROM-G

models are showing a good prediction for R = 40 and R = 50. Even so, if we only

compare the performance of both ROM-G and ROM-D for the same retained number

of modes (e.g., R = 20), we can clearly identify the difference in performance.
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Figure 2.14: Mean streamfunction contours for Experiment III showing the extrapo-
latory predictive performance at Re = 200, and Ro = 0.0016 (i.e, using POD basis
functions and mean fields associated with the training data obtained at Re = 450, and
Ro = 0.0036). (a) FOM at a resolution of 256× 512; (b) ROM-G with R = 50 modes;
(c) ROM-G with R = 40 modes; (d) ROM-G with R = 30 modes; (e) ROM-G with
R = 20 modes; (f) proposed ROM-D with R = 20 modes and ∆R = 4; (g) proposed
ROM-D with R = 20 modes and ∆R = 3; (h) proposed ROM-D with R = 10 modes
and ∆R = 3. Note that ∆R = R− R̃.
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Figure 2.15: Time series of the first modal coefficient for Experiment III showing
the extrapolatory predictive performance at Re = 200, and Ro = 0.0016 (i.e, using
POD basis functions and mean fields associated with the training data obtained at
Re = 450, and Ro = 0.0036). (a) ROM-G with R = 10 modes; (b) ROM-G with
R = 20 modes; (c) ROM-G with R = 30 modes; (d) ROM-G with R = 40 modes; (e)
ROM-G with R = 50 modes; (f) proposed ROM-D with R = 10 modes and ∆R = 3;
(g) proposed ROM-D with R = 20 modes and ∆R = 3. Note that ∆R = R− R̃. True
projection data is underlined in each figure with orange (training zone) and black
(extended zone).
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2.5.5 Experiment IV: Data collection at Re = 200, Ro = 0.0016, predic-

tion at Re = 450, Ro = 0.0036

Our final experiment is based on the prediction at (Re = 450, Ro = 0.0036) flow

configuration using the data snapshots at (Re = 200, Ro = 0.0016). Following

the similar analyses to Experiment III, here we put an effort to understand the

extrapolatory predictive behavior of the ROM-D model for the opposite test condition

than the previous experiment. In FIG. 2.16, we can see in the mean streamfunction

contours that the ROM-D model is showing a good prediction of the FOM solution for

both R = 10 and R = 20 by capturing the four-gyre circulation pattern. Additionally,

ROM-G with higher R also displays an accurate prediction of the true solution. The

time series evolution plots in FIG. 2.17 shows that the ROM-D solutions are showing a

slight phase shift from true projection states. However, the amplitude of the fluctuation

for ROM-D with R = 10 is comparatively smaller, unlike the scenario in Experiment

III, than the true projection fluctuation amplitudes. Though we observe a very good

prediction of the true solution using ROM-G with R = 50, we can see the the ROM-D

predictions for lower R values are impressive compared to the ROM-G solutions for

R = 10, R = 20 and R = 30.

2.6 Summary and Conclusions

In this work, we put forth a dynamic closure modeling framework for reduced order

models (ROM-D) based on the idea of test truncation, analogous to the test filtering

in dynamic eddy viscosity model in LES, in order to stabilize the ROM for systems

with complex flow dynamics. Our closure is based on a global eddy viscosity model

dynamically obtained from POD coefficients at each time step, and follows the idea

as dynamic subgrid model of LES with two modal resolution levels. Previously, it

has been shown that the stabilization of ROM for large scale turbulent flows can be

achieved using an eddy viscosity parameter with an optimal value that can improve
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Figure 2.16: Mean streamfunction contours for Experiment IV showing the extrapo-
latory predictive performance at Re = 450, and Ro = 0.0036 (i.e, using POD basis
functions and mean fields associated with the training data obtained at Re = 200, and
Ro = 0.0016). (a) FOM at a resolution of 256× 512; (b) ROM-G with R = 50 modes;
(c) ROM-G with R = 40 modes; (d) ROM-G with R = 30 modes; (e) ROM-G with
R = 20 modes; (f) proposed ROM-D with R = 20 modes and ∆R = 4; (g) proposed
ROM-D with R = 20 modes and ∆R = 3; (h) proposed ROM-D with R = 10 modes
and ∆R = 3. Note that ∆R = R− R̃.
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Figure 2.17: Time series of the first modal coefficient for Experiment IV showing
the extrapolatory predictive performance at Re = 450, and Ro = 0.0036 (i.e, using
POD basis functions and mean fields associated with the training data obtained at
Re = 200, and Ro = 0.0016). (a) ROM-G with R = 10 modes; (b) ROM-G with
R = 20 modes; (c) ROM-G with R = 30 modes; (d) ROM-G with R = 40 modes; (e)
ROM-G with R = 50 modes; (f) proposed ROM-D with R = 10 modes and ∆R = 3;
(g) proposed ROM-D with R = 20 modes and ∆R = 3. Note that ∆R = R− R̃. True
projection data is underlined in each figure with orange (training zone) and black
(extended zone).
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the predictive performance of the model significantly (San and Iliescu, 2015). Inspired

by the LES and ROM analogy, we devise the proposed ROM-D framework which

takes into account the stabilization parameter in an automated fashion at each time

step and dynamically stabilizes the system of any flow condition without any external

computation of optimal eddy viscosity. Since the test filtering is done at the projected

reduced order space (i.e, test truncation), the computational overhead associated

with this secondary test filtering operation is relatively minor. This ensures that

the proposed ROM-D is not significantly more expensive than the standard ROM-G.

Through a series of numerical experiments, we show that the predictive performance

of the ROM-D framework is not only promising but also consistent for different flow

conditions. All performance evaluations of the ROM-D framework are done with respect

to the standard ROM-G models with various levels of complexity. As a benchmark test

case for our numerical investigations, we consider the BVE describing the single-layer

QG ocean model. For data snapshots collection and comparison purpose, we use the

Munk layer resolving FOM simulation results obtained at 256× 512 resolution.

We perform our numerical assessments based upon two different flow conditions.

Based on the existing literature and our findings in FOM simulations, the BVE

model driven by two-gyre wind forcing shows a four-gyre circulation pattern in time

mean once the model reaches the turbulent equilibrium state under these conditions.

Physically, this means the balance between the wind stress curl forcing and the eddy

flux of potential vorticity. For this reason, we investigate both mean streamfunction

contour and time series evolution (after the statistically steady state achieved) plots to

get a clear understanding on the simulation results in capturing the four-gyre pattern

or attaining the statistically steady state. Owing to the wide range of temporal and

spatial scales of the QG test problem, it is observed in the POD analysis that 50 POD

modes (R = 50) capture around 80% of total energy of the system for lower (Re, Ro)

combination whereas capture around 85% of total energy of the system for higher
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(Re, Ro) combination. For the experiments on both flow conditions, we come to the

main conclusion that the ROM-D model with R = 10 predicts the true solution with

a same order accuracy as a ROM-G solution with R = 80. This implies considerable

savings in terms of both storage needs and computing time.

Since the ROM-D model includes dissipative contributions from truncated modes

through the stabilization parameter, it is expected to capture a greater percentage of

the energy in the system using lower R values in ROM-D model. As a result, we can

see a huge reduction in overall computational overhead for equally accurate solution

using ROM-D model. Moreover, the higher value of R combined with different values

of ∆R in ROM-D exhibits more gain in accuracy of the predictions. To demonstrate

the robustness of the ROM-D model, we also perform the sensitivity analysis on

both flow conditions which display a consistent prediction for R = 20 irrespective

to different ∆R values. Finally, we test the extrapolatory predictive performances

for both ROM frameworks which reveal a better prediction of FOM solution by the

ROM-D model than the ROM-G model for same value of R. Based on the numerical

experiments and analyses above, the ROM-D framework has a great potential for

efficient model order reduction of complex turbulent flow problems.

2.7 Appendix

2.7.1 Time advancement scheme

We apply a conservative finite difference formulation for our numerical framework in

the current study. Using method of lines, we cast the governing equation given by

Eq. (2.1) in the following semi-discretized ordinary differential equations form:

dωi,j
dt

= £i,j, (2.37)
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where subscripts i and j represent the discrete spatial indices in x- and y-directions,

respectively. Here, £i,j denotes the discrete spatial derivative operators. For our time

advancement scheme, we apply a third order Runge-Kutta scheme given as (Gottlieb

and Shu, 1998):

ω
(1)
i,j = ω

(n)
i,j + ∆t£

(n)
i,j ,

ω
(2)
i,j = 3

4
ω

(n)
i,j + 1

4
ω

(1)
i,j + 1

4
∆t£

(1)
i,j , (2.38)

ω
(n+1)
i,j = 1

3
ω

(n)
i,j + 2

3
ω

(2)
i,j + 2

3
∆t£

(2)
i,j ,

where ∆t = 2.5 × 10−5 for our FOM simulations to satisfy the numerical stability

criteria through the Courant–Freidrichs–Lewy (CFL) number. Similarly, the ROM

equation can be rewritten as

dαk
dt

= Rk, (2.39)

where Rk refers to the right-hand-side of Eq. (2.23). We use the same algorithm to

compute α
(n+1)
k from α

(n)
k

α
(1)
k = α

(n)
k + ∆tR

(n)
k ,

α
(2)
k = 3

4
α

(n)
k + 1

4
α

(1)
k + 1

4
∆tR

(1)
k , (2.40)

α
(n+1)
k = 1

3
α

(n)
k + 2

3
α

(2)
k + 2

3
∆tR

(2)
k ,

where we specify larger time step, ∆t = 2.5×10−4, since there is no such CFL stability

constraints in the time advancement of ROMs. Although not shown here, we have

verified that stable and accurate solutions can still be obtained by much bigger ∆t

using the ROM-D model.
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2.7.2 Numerical discretizations

The source term, £i,j in Eq. (2.37) includes nonlinear convective terms as well as the

linear rotational and diffusive terms which can be written as:

£i,j = −J(ωi,j, ψi,j)

+
1

Ro

∂ψi,j
∂x

+
1

Re
∇2ωi,j +

1

Ro
sin(πyi,j), (2.41)

where we use the standard second-order central finite difference schemes for linear

terms. Therefore, the derivative operators in Eq. (2.41) can be written in following

discrete form:

∂ψi,j
∂x

=
ψi+1,j − ψi−1,j

2∆x
, (2.42)

∇2ωi,j =
ωi+1,j − 2ωi,j + ωi−1,j

∆x2

+
ωi,j+1 − 2ωi,j + ωi,j−1

∆y2
, (2.43)

where ∆x and ∆y are the step sizes in x- and y-directions, respectively. For the

modeling of nonlinear term, we use second-order Arakawa scheme (Arakawa, 1966) to

avoid computational instabilities arising from nonlinear interactions for the Jacobian

term, J(ωi,j, ψi,j) in Eq. (2.41), defined as

J(ωi,j, ψi,j) =
1

3
(J1 + J2 + J3), (2.44)

where the discrete parts of the Jacobians have the following forms:

J1 =
1

4∆x∆y
[(ωi+1,j − ωi−1,j)(ψi,j+1 − ψi,j−1)

− (ωi,j+1 − ωi,j−1)(ψi+1,j − ψi−1,j)], (2.45)

52



J2 =
1

4∆x∆y
[ωi+1,j(ψi+1,j+1 − ψi+1,j−1)

− ωi−1,j(ψi−1,j+1 − ψi−1,j−1)− ωi,j+1(ψi+1,j+1

− ψi−1,j+1)− ωi,j−1(ψi+1,j−1 − ψi−1,j−1)], (2.46)

J3 =
1

4∆x∆y
[ωi+1,j+1(ψi,j+1 − ψi+1,j)

− ωi−1,j−1(ψi−1,j − ψi,j−1)− ωi−1,j+1(ψi,j+1

− ψi−1,j)− ωi+1,j−1(ψi+1,j − ψi,j−1)]. (2.47)

We refer the article by San and Illiescu (San and Iliescu, 2015) for reader’s interest

on the derivation of higher-order Arakawa schemes. In addition, we require to solve

an elliptic Poisson equation at each substep in the time integration to find the

streamfunction from the updated vorticity values which is the most computationally

heavy part of our QG model solver. Since our computational domain is simple and

uniform in this study, we utilize the fast Fourier transform (FFT) method to solve the

Poisson equation. In our framework, not to deviate from the main focus of this paper,

we use the FFT algorithm given by Press et al. (Press et al., 1992) to compute the

forward and inverse sine transforms. The formulation of our FFT algorithm can be

found in the referred article (San and Iliescu, 2015). We must note here that even

though an FFT based Poisson solver reduces the overall computational burden of

elliptic equations, it is limited to simple geometries on structured grids. Alternatively,

a multigrid Poisson solver might be a better option for more complex basin problems

which works well in complex geometries (San and Staples, 2013b).
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2.7.3 Numerical integration

As stated before, we take the inner products of two quantities to compute the POD

modes in our ROM frameworks which is done by taking the integral of the product

over the domain Ω. For the two-dimensional numerical integration over Ω, we use

the fourth-order accurate Simpson’s 1/3rd rule (Moin, 2010; Hoffman and Frankel,

2001). To illustrate the integration technique, we can consider f(x, y) = u(x, y)v(x, y)

so that it can be written as follows

〈u; v〉 =

∫
Ω

f(x, y)dxdy

=
∆y

3

Ny/2∑
j=1

(
f̂2j−1 + 4f̂2j + f̂2j+1

)
, (2.48)

where

f̂j =
∆x

3

Nx/2∑
i=1

(f2i−1,j + 4f2i,j + 4f2i+1,j), (2.49)

j = 1, 2, ..., Ny.

Here, Nx and Ny are the number grid points in both x- and y-directions, respectively.

For valid implementation of Simpson’s 1/3rd rule, the number of intervals in the x-

and y-directions should be even. Also, the uniform interval sizes in each direction is

assumed in the above formulae.

2.7.4 Proper orthogonal decomposition modes

A number of snapshots of the 2D vorticity field, denoted as ω(x, y, tn), are stored at

consecutive times tn for n = 1, 2, . . . , N . The time-averaged field, called “base flow”,

can be computed as

ω̄(x, y) =
1

N

N∑
n=1

ω(x, y, tn). (2.50)
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The mean-subtracted snapshots, also called as anomaly or fluctuation fields, are then

computed as the difference between the instantaneous field and the mean field

ω′(x, y, tn) = ω(x, y, tn)− ω̄(x, y). (2.51)

This subtraction has been common in ROM community, and it guarantees that ROM

solution would satisfy the same boundary conditions as full order model (Chen et al.,

2012). This anomaly field procedure can be also interpreted as a mapping of snapshot

data to its origin.

For generating the POD modes, we are following the standard method of snapshots

proposed by Sirovich (Sirovich, 1987) as an efficient numerical procedure to save time

in solving the eigenvalue problem necessary for POD, when the data dimension is much

bigger than number of snapshots. First, an N ×N snapshot data matrix A = [aij] is

computed from the inner product of mean-subtracted snapshots

aij = 〈ω′(x, y, ti);ω′(x, y, tj)〉 (2.52)

Then, an eigen decomposition of A is performed as

AV = VΛ (2.53)

where Λ is a diagonal matrix whose entries are the eigenvalues λk of A, and V is a

matrix whose columns vk are the corresponding eigenvectors. In our computations, we

use the eigensystem solver based on the Jacobi transformations since A is a symmetric

positive definite matrix (Press et al., 1992). It should be noted that eigenvalues need

to be arranged in a descending order (i.e., λ1 ≥ λ2 ≥ · · · ≥ λN), for proper selection
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of the POD modes. The POD modes φk are then computed as

φk(x, y) =
1√
λk

N∑
n=1

vnkω
′(x, y, tn) (2.54)

where vnk is the nth component of the eigenvector vk. The scaling factor, 1/
√
λk, is to

guarantee the orthonormality of POD modes, i.e., 〈φi;φj〉 = δij.
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CHAPTER III

A Hybrid Approach for Model Order Reduction of Barotropic

Quasi-Geostrophic Turbulence†

3.1 Abstract

We put forth a robust reduced-order modeling approach for near real-time prediction

of mesoscale flows. In our hybrid-modeling framework, we combine physics-based

projection methods with neural network closures to account for truncated modes.

We introduce a weighting parameter between the Galerkin projection and extreme

learning machine models and explore its effectiveness, accuracy and generalizability.

To illustrate the success of the proposed modeling paradigm, we predict both the mean

flow pattern and the time series response of a single-layer quasi-geostrophic ocean

model, which is a simplified prototype for wind-driven general circulation models. We

demonstrate that our approach yields significant improvements over both the standard

Galerkin projection and fully non-intrusive neural network methods with a negligible

computational overhead.

3.2 Introduction

The modeling of large-scale turbulent flow problems has observed a continuous change

over the years with the rapid growth of the computational power, technological

breakthrough, algorithmic innovation, and the availability of data resources. Many

of these physical phenomena are described by a set of ordinary differential equations

(ODEs) or partial differential equations (PDEs) to construct the mathematical model

†The chapter is adapted from Rahman et al., Fluids 3.4 (2018): 86.
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of a physical system. Thus far, many computational approaches are based on solving

these sets of equations of a mathematical model after applying suitable discretization

schemes and numerical tools which may be referred to as a physics-based solution

approach. Despite the advances in software engineering and processor technologies,

the computational burden of high-fidelity simulation is still a limiting factor for

many practical problems in different areas of research, specifically for the large-scale

physical problems with high spatiotemporal variabilities such as turbulence modeling

of geophysical flows, weather forecasting, and climate modeling. Indeed, low-fidelity

models such as large eddy simulation (LES) (Sagaut, 2006) and Reynolds-averaged

Navier–Stokes (RANS) (Wilcox, 1998) are introduced with additional approximations

to neglect some of the physical aspects for closure modeling, and, as a result, the

computational cost is reduced. However, these techniques require parameter calibration

to approximate the true solution to any degree of confidence and may thus increase

costs related to model validation and benchmark data generation.

As a first attempt to perform efficient physics-based surrogate modeling, projection

based implementations of model order reduction strategies have proven to be successful

in reducing computational cost significantly with little compromise in physical accuracy,

and have been extensively utilized in the literature to address challenging fluid flow

problems. In contrast to the physics-based modeling technique, the non-intrusive,

data-driven modeling has recently become extremely popular in turbulence modeling

because of the abundance of data resources from both high-fidelity simulations and

experiments (Durbin, 2018; Duraisamy et al., 2018). Until recently, fully non-intrusive

artificial intelligence and machine learning algorithms have been considered one of

the most promising fields to benefit greatly from existing datasets. Because of their

black box nature in predicting the solution, the data-driven techniques are yet to be

fully accepted in the community. This has led to the development of a new and fast

emerging hybrid modeling approach (i.e., hybrid analytics) that combines a physics-
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based modeling strategy with a data-driven model to develop a robust scheme with

significantly enhanced potential for performance than the component models alone. In

this paper, we propose a hybrid framework to develop a robust and improved reduced-

order model by combining a standard projection based reduced-order modeling with a

simple artificial neural network architecture. This approach is applied to a single-layer

quasi-geostrophic ocean model.

The study of ocean circulation, specifically the wind-driven circulation, is one of

the most demanding areas of research from engineering and scientific points of view

because of the energy potential in the motions of water masses within oceans in the

form of heat and strong currents as well as the connection between ocean currents and

climate dynamics (Munk, 1950; Pelc and Fujita, 2002; Esteban and Leary, 2012). Since

ocean circulation is a significant part of climate systems, it is extremely important

to study and understand the underlying physics to get the benefits from the rich

potential of oceans. There have been many efforts put on developing models for ocean

dynamics in the last few decades (McWilliams, 2006; Berloff, 2015; San et al., 2011;

Berloff, 2016; Miller, 2007; Kondrashov et al., 2018). However, it is computationally

challenging to model the ocean dynamics because of its large range of spatiotemporal

scales and sporadic random transitions between coexisting eddies and vortices (Lynch,

2008; Laurie and Bouchet, 2015). In our study, we use a two-dimensional single layer

quasi-geostrophic ocean model as a test case for our proposed reduced-order model

and consider the barotropic vorticity equation (BVE) with dissipative and forcing

terms which is one of the most commonly used models for the double-gyre wind-driven

geophysical flows. The BVE model is a simplified version of the full-fledged geophysical

flow equations by considering the hydrostatic balance, geostrophic balance, the β-

plane approximation, and horizontal eddy viscosity parameterizations. However, the

computational cost of simulation and analysis of the BVE model is high which makes

this model a suitable test case to investigate an improved and robust reduced-order
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model.

Reduced-order modeling (ROM) techniques have been commonly introduced to

reduce the computational cost of obtaining high-fidelity simulation results by generating

a lower dimensional system with a similar range of accuracy through a variety of

mathematical operations. Based on the approach, there have been a considerable

number of promising reduced-order modeling techniques introduced, such as proper

orthogonal decomposition (POD), Koopman mode decomposition (KMD), dynamic

mode decomposition (DMD), reduced bases, etc. A detailed overview of such techniques

and recent developments can be found in Refs. (Rowley and Dawson, 2017; Taira

et al., 2017). To predict the flow behavior in reduced-order space, we utilize the POD

framework to generate the POD basis function and then use the Galerkin projection to

find a set of ODEs that yield a low dimensional dynamical system (Ito and Ravindran,

1998). Even though the Galerkin projection based ROMs have been successfully

used in various areas of work (Lucia et al., 2004; Brenner et al., 2012; Iollo et al.,

2000; Freno and Cizmas, 2014), they are limited by modeling errors and numerical

instabilities due to the truncation of POD modes for complex systems, such as the

ocean circulation system considered in this study. See Refs. (San and Iliescu, 2015;

Behzad et al., 2015; Cizmas et al., 2008; Bistrian and Navon, 2015; Behzad et al.,

2018; Bistrian and Navon, 2017) to find some recent developments made to improve

physics-based ROM techniques by stabilizing the numerical instabilities and taking

into account the truncated mode contributions. Furthermore, Table 3.1 summarizes

our descriptions for classifying several ROM approaches.

In the present study, we utilize an artificial neural network (ANN) to develop our

ROM framework. Neural networks, one of many machine learning (ML) strategies,

have become an area of interest for researchers from diverse fields of study because of

their self-adaptive and flexible nature, while approximating complex functions of any

physical process with a high degree of accuracy. Even though ML tools such as ANN
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Table 3.1: A classification of reduced-order modeling approaches.

Approaches Comments

Fully non-intrusive models Data-based modeling; data could be generated by
experimental measurements (observational data)
or high-fidelity numerical simulations (synthetic
data); no need to know the underlying physical
system or model (no need to have access to a full
order model generating data).

Semi non-intrusive models It is a mixed approach with offline intrusive and
online non-intrusive models; in addition to snap-
shot data, we should have access to the high-
fidelity model to generate our surrogate model
(ROM); after built, ROM stays on a reduced
subspace, and we do not need to have access
to a high-fidelity model during ROM computa-
tions; we often use a projection approach (with
truncation) to obtain a dense low-order system.

Intrusive models We need to have access to some parts (or whole)
of a high-fidelity model during online ROM com-
putations; sparse sampling or interpolation ap-
proaches might be incorporated; multilevel, multi-
grid, adaptive mesh refinement and dynamic time
stepping approaches to accelerate high-fidelity
simulations can be considered in this category.

Coarse-grained models It is a special case of intrusive modeling; reduc-
tion approach might utilize a similar high-fidelity
model with a reduced computational complex-
ity (i.e., fewer grid points in LES or RANS ap-
proaches); they often need a closure model to
compensate the effects of truncated scales; clo-
sure effects can be embedded into numerics as
well.
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have been utilized in flow control community for the last couple of decades (Gautier

et al., 2015; Lee et al., 1997), the data-driven idea has recently been popular in

computational fluid dynamics community for modeling and solving complex fluid flow

problems (Gamahara and Hattori, 2017; Duraisamy et al., 2015; Maulik and San, 2017;

San and Maulik, 2018a; Wu et al., 2018; Moosavi et al., 2015). These data-driven

models can be developed either in a black box fashion or in combination with existing

models. We utilize a simple single hidden layer feedforward network (SLFN), known as

extreme learning machine (ELM), in this paper for both fully data-driven model and

hybrid model. The resolved reduced-order model coefficients and full order simulation

data are used to train the ELM architecture. The descriptive idea on ELM and its

implementations can be found in Refs. (Huang et al., 2006; Huang and Chen, 2007;

Xiang et al., 2014).

The purpose of this paper is to develop a robust and efficient ROM framework

using a hybrid approach, and test the performance of the proposed model with respect

to the component models, i.e., physics-based and data-driven models. Recently, several

promising works have been conducted to develop more efficient and improved reduced-

order model frameworks using the hybridization of traditional projection based ROMs

and data-driven ROMs (Williams et al., 2013; Xie et al., 2018a; Mohebujjaman et al.,

2018). The proposed hybrid framework is developed by combining two component

models, the standard projection based ROM and an ANN framework. Our main

motivation of this study comes from addressing the strengths and weaknesses of the

component models to find a bridge between both models to benefit from the strength

of both approaches. Combining an imperfect physics-based model with a data-driven

technique to get a hybrid scheme is not an entirely new idea in scientific research

(Wan et al., 2018; Pathak et al., 2018). Even though the hybridization approach varies

with respect to the physical problem, selection of ML architecture, approach to find

the solution, and the associated physics-based models, the main idea remains similar
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for most of the works. We then choose a challenging test problem for model order

reduction for validation and comparison purpose, and perform a number of statistical

analyses on the hybrid model as well as on the component models. The results of

our tests suggest that the proposed model is robust and can be extremely useful for

complex flow problems.

The rest of this manuscript is outlined as follows: in Section 3.3, we review the

underlying governing equation of the physical problem considered in this study to

generate data bank in full order space for POD basis construction and training the

ANN architecture as well as the numerical schemes used for full order simulation.

We briefly discuss the standard Galerkin projection based ROM approach and fully

non-intrusive data-driven ROM approach in Sections 3.4 and 3.5, respectively. In

Section 3.6, we introduce our proposed hybrid ROM framework. In Section 3.7, we

perform a variety of analyses to assess the performance and viability of the proposed

model with respect to the performance of its physics-based component or data-driven

component alone. We also include the full order simulation results as reference. Finally,

we summarize our findings in Section 3.8.

3.3 Full Order Model (FOM)

In FOM, we solve the underlying governing equations using a suitable numerical model

and generate the data bank of snapshots for ROM. In this section, we introduce the

quasi-geostrophic ocean model as a test case and provide a brief description of the

numerical schemes employed in this study.

3.3.1 Quasi-geostrophic (QG) ocean model

Since it is well established that much of the world’s ocean circulation is wind-driven in

large-scale, and oceanic mesoscale processes are also extremely prevalent in the large-

scale oceanic circulations, studies of wind-driven circulation using an idealized double
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gyre wind forcing have become increasingly important in understanding various aspects

of ocean and climate dynamics, such as the role of mesoscale eddies and their effect

on mean circulation (Laurie and Bouchet, 2015; Siedler et al., 2013; Byrne et al., 2016;

Holland, 1978; Hogg et al., 2009). However, the numerical simulation of oceanic and

atmospheric flows, up to this point, still requires approximations and simplifications

of the full model to resolve some of the enormous range of spatial and temporal

scales of the full form of the general circulation models. Even though remarkable

advances in developing simplified models have been made during the last few decades

in producing increasingly accurate results (McWilliams, 2006; Hua and Haidvogel,

1986), an additional computational challenge is in being able to implement them in

long time integration such as those required by the climate modeling (Ghil et al., 2008;

Lynch, 2008). Therefore, with this in mind, we consider the simple single-layer QG

model, also known as barotropic vorticity equation (BVE) that can capture the random

inter-decade and inter-annual transitions in large-scale ocean basins (Charney et al.,

1950). This mathematical model shares many analogies with the two-dimensional

Euler equation and Navier–Stokes equation (Bouchet and Simonnet, 2009) and has

been extensively used over the years to describe various aspects of the largest scales of

turbulent geophysical fluid dynamics (Cushman-Roisin and Beckers, 2011; Majda and

Wang, 2006; Vallis, 2017). The dimensionless BVE for QG single-layer ocean model

can be written as (Greatbatch and Nadiga, 2000; San and Maulik, 2018a)

∂ω

∂t
+ J(ω, ψ) =

1

Ro

∂ψ

∂x
+

1

Re
∇2ω +

1

Ro
sin(πy), (3.1)

where the left hand side terms account for local acceleration and nonlinear advection,

respectively, and the right hand side terms represent the rotational, dissipative, and

forcing effects, respectively, in the governing equation. Here, ω is the kinematic
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vorticity, expressed as

ω = ∇× u, (3.2)

where u is the velocity vector. For two-dimensional flow in the x-y plane, the kinematic

vorticity becomes

ω =
∂v

∂x
− ∂u

∂y
. (3.3)

Here, the flow velocity components can be found from the stream function, ψ, using

the following definition:

u = ∇× ψk̂. (3.4)

In Cartesian co-ordinates,

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.5)

The kinematic equation connecting the vorticity and stream function can be found

by substituting the velocity components in terms of stream function in Equation (3.3),

which forms the following divergence-free constraint satisfying Poisson equation:

∇2ψ = −ω, (3.6)

where ∇2 is the standard two-dimensional Laplacian operator. The dimensionless

formulation of BVE in Equation (3.1) contains Reynolds number (Re) and Rossby

number (Ro), two dimensionless numbers which are related to the physical parameters
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and non-dimensional variables in the following way:

Re =
V L

ν
, Ro =

V

βL2
, (3.7)

where ν is the horizontal eddy viscosity coefficient for ocean basin and β is the Rossby

parameter. It should be noted that the BVE model presented here uses the beta-plane

approximation, valid for most mid-latitude simplified ocean basins, i.e., the Coriolis

parameter to account for Earth’s rotational effect is approximated by f = f0 + βy,

where f0 is the constant mean Coriolis parameter and β is the gradient of the Coriolis

parameter at the basin center. The characteristic horizontal length scale, L (for the

non-dimensional purpose) is the basin dimension in x-direction in this study and the

reference Sverdrup velocity scale, V , is given by

V =
τ0

ρH

π

βL
, (3.8)

where τ0 is the maximum amplitude of the sinusoidal double-gyre wind stress, and ρ

and H are the reference fluid density and depth of the ocean basin, respectively. In

our study, we consider the benchmark four-gyre circulation problem where the time

average of the statistically steady equilibrium state exhibits a four-gyre circulation

pattern for relatively high Re instead of the symmetric double-gyre standard structure

(Nadiga and Margolin, 2001; Greatbatch and Nadiga, 2000; San et al., 2011). Based

on reference literature (San, 2016; San and Staples, 2013a; San et al., 2011; Özgökmen

and Chassignet, 1998; Holm and Nadiga, 2003), we use slip boundary condition for

the velocity, which translates into homogeneous Dirichlet boundary condition for the

vorticity ω|Γ = 0 and corresponding ψ|Γ = 0, where Γ symbolizes all the Cartesian

boundaries. We initiate our computations from a quiescent state (i.e., ω = 0 and

ψ = 0) and integrate Equation (3.1) until a statistically steady state is obtained.
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3.3.2 Numerical schemes

Since for most of the physically relevant ocean circulation models, such as the QG

models, the solutions remain in a quasi-stationary state as time goes to infinity

(Medjo, 2000), schemes designed for the numerical integration of such phenomena

should be suited for quasi-stationary behavior of the solutions as well as for the

long time integration. In our study, we use the second-order central finite difference

schemes in linear terms. For the modeling of nonlinear term, we use second-order

skew-symmetric, energy- and enstrophy-conserving Arakawa scheme (Arakawa, 1966)

to avoid computational instabilities arising from nonlinear interactions for the Jacobian

term, J(ωi,j, ψi,j) in Equation (3.1), defined as

J(ωi,j, ψi,j) =
1

3
(J1(ωi,j, ψi,j) + J2(ωi,j, ψi,j) + J3(ωi,j, ψi,j)), (3.9)

where

J1(ωi,j, ψi,j) =
1

4∆x∆y
[(ωi+1,j − ωi−1,j)(ψi,j+1 − ψi,j−1)

− (ωi,j+1 − ωi,j−1)(ψi+1,j − ψi−1,j)], (3.10)

J2(ωi,j, ψi,j) =
1

4∆x∆y
[ωi+1,j(ψi+1,j+1 − ψi+1,j−1)− ωi−1,j(ψi−1,j+1 − ψi−1,j−1)

− ωi,j+1(ψi+1,j+1 − ψi−1,j+1)− ωi,j−1(ψi+1,j−1 − ψi−1,j−1)], (3.11)

J3(ωi,j, ψi,j) =
1

4∆x∆y
[ωi+1,j+1(ψi,j+1 − ψi+1,j)− ωi−1,j−1(ψi−1,j − ψi,j−1)

− ωi−1,j+1(ψi,j+1 − ψi−1,j)− ωi+1,j−1(ψi+1,j − ψi,j−1)]. (3.12)

Here, ∆x and ∆y are the step size in x- and y-directions, respectively. The detailed

derivation of higher-order Arakawa schemes can be found in Ref. (San and Iliescu,

2015). To implement the Runge–Kutta scheme, we use the method of lines to cast
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our system in the following form:

dωi,j
dt

= £(ωi,j). (3.13)

Here, subscripts i and j represent the discrete spatial indices in x and y directions,

respectively. £(.) denotes the discrete spatial derivative operators. For our time ad-

vancement scheme, we use the optimal third order accurate total variation diminishing

Runge–Kutta (TVDRK3) scheme given as (Gottlieb and Shu, 1998):

ω
(1)
i,j = ω

(n)
i,j + £(ω

(n)
i,j )∆t,

ω
(2)
i,j =

3ω
(n)
i,j + ω

(1)
i,j + £(ω

(1)
i,j )∆t

4
,

ω
(n+1)
i,j =

ω
(n)
i,j + 2ω

(2)
i,j + 2£(ω

(2)
i,j )∆t

3
,


(3.14)

where ∆t is the adaptive time step, which can be computed at the end of each time step

satisfying the stability criteria through the Courant–Freidrichs–Lewy (CFL) number.

Finally, taking advantage of the simple Cartesian domain, an efficient fast Fourier

transform (FFT) method is utilized for the solution of the elliptic Poisson equation

which is the most computationally expensive part of the QG models (Miller, 2007).

Details of the aforementioned numerical methods used for this study can be found in

Refs. (San, 2016; San et al., 2011).

3.4 Galerkin Projection Based Reduced-Order Model (ROM-GP)

Similar to the area of interest in the present study, many areas of physical science and

engineering often require iterative computations, data assimilation, and finer scale

simulation for large dynamical systems to resolve the underlying physical phenomena

(Wedi, 2014; Brunton and Noack, 2015; Navon et al., 1992; Kalnay, 2003). The efficiency

of these large-scale simulations decreases with increasing computational complexity
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of the full order models due to the accumulation of the less significant intermediate

results. Hence, the reduced-order models (ROMs) have come into wide use in large-

scale simulations to replace large dynamical systems with lower dimensional systems

having a similar range of validity and input/output characteristics. Proper orthogonal

decomposition (POD), also referred as Karhunen–Loève transform (KLT), principal

component analysis (PCA) or singular value decomposition (SVD), is a widely applied

snapshot-based ROM technique in science and engineering applications with large

dimensional systems of nonlinear ODEs or PDEs (Holmes et al., 2012; Lumley, 1970;

Kosambi, 2016). In this section, we develop a standard projection methodology for

Equation (3.1) where a POD-GP ROM framework is developed from the field variables,

ω and ψ on the flow domain, and Ω based on the method of snapshots (Sirovich,

1987). The snapshots are obtained from the stored sample solution of FOM. The

main procedure of ROM in the current study consists of generating low-dimensional

orthogonal basis functions from snapshots and next, performing Galerkin projection to

obtain the ROM. For POD basis construction, we first obtain N number of snapshots

and denote the vorticity field, ω(x, y) as ω(x, y, tn) for n = 1, 2, ..., N at pseudo-time

t = tn. Then, we decompose the solution field by following way into a time-invariant

mean, ω̄(x, y) and a fluctuating part, ω′(x, y, t) to represent the full field with only

fluctuating part (Noack et al., 2003):

ω(x, y, t) = ω̄(x, y) + ω′(x, y, t), (3.15)

for x, y ∈ Ω where Ω stands for the two-dimensional domain and the mean of the

snapshot is

ω̄(x, y) =
1

N

N∑
n=1

ω(x, y, tn). (3.16)

The following algorithm describes the POD-GP procedure:
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1. POD basis construction:

* Construct a data correlation matrix of the fluctuating part, A = [αij ] from

the snapshots where αij =
∫

Ω
ω′(x, y, ti)ω

′(x, y, tj)dxdy. Here, i and j refer

to the snapshot indices.

* Compute the optimal POD basis functions by solving AΓ = ΓΛ, where

Λ = diag[λ1, ...., λQ] is the diagonal eigenvalue matrix and Γ = [γ1, ...., γN ]

refers to right eigenvector matrix whose columns are eigenvectors of A. In

general, most of the subroutines for solving above eigenvalue equation give

Γ with all of the eigenvectors normalized to unity.

* Using the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λN stored in a descending order in

the diagonal matrix, Λ, define the orthogonal POD basis functions for the

vorticity field as

φk(x, y) =
1√
λk

N∑
n=1

γknω
′(x, y, tn), (3.17)

where λk is the kth eigenvalue, γkn is the nth component of the kth eigen-

vector, and φk(x, y) is the kth POD mode. We must mention that the

eigenvectors must be normalized in such a way that the basis functions

satisfy the orthogonality condition.

* Obtain the kth mode for the stream function, ϕk(x, y), utilizing the linear

dependence between stream function and vorticity given by Equation (3.6):

∇2ϕk = −φk.

* Span the fluctuating component of the field variables into the POD modes
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by doing the separation of variable as

ω′(x, y, t) =
N∑
k=1

ak(t)φk(x, y), (3.18)

ψ′(x, y, t) =
N∑
k=1

ak(t)ϕk(x, y), (3.19)

where ak(t) is the time-dependent modal coefficients and φk(x, y) and

ϕk(x, y) refer to the POD modes. It should be noted that the same ak(t)

accounts for both stream function and vorticity based on the kinematic

relation given by Equation (3.6).

* Retain R modes where R << N , such that these R largest energy containing

modes correspond to the largest eigenvalues (λ1, λ2, ..., λR). The resulting

full expression for the field variables can be written as

ω(x, y, t) = ω̄(x, y) +
R∑
k=1

ak(t)φk(x, y), (3.20)

ψ(x, y, t) = ψ̄(x, y) +
R∑
k=1

ak(t)ϕk(x, y). (3.21)

2. Galerkin projection to obtain ROM:

* Perform an orthogonal Galerkin projection by multiplying the governing

equation with the POD basis functions and integrating over the domain Ω

(Rapún and Vega, 2010), which yields the following dynamical system for

ak:

dak
dt

= ζk +
R∑
i=1

ηikai +
R∑
i=1

R∑
j=1

χijk aiaj, (3.22)
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where

ζk = 〈 1

Re
∇2ω̄ +

1

Ro
sin(πy) +

1

Ro

∂ψ̄

∂x
− J(ω̄, ψ̄), φk〉,

ηik = 〈 1

Re
∇2φi +

1

Ro

∂ϕi
∂x
− J(ω̄, ϕi)− J(φi, ψ̄), φk〉,

χijk = 〈−J(φi, ϕj), φk〉.

We can define the right hand side of Equation (3.22) as rGP
k to express the equation

in the following form:

dak
dt

= rGP
k . (3.23)

The system given by above algorithm consists of R coupled ODEs for modal coeffi-

cients, ak which can be solved numerically by any suitable time integration scheme.

Additionally, the POD basis functions and ROM coefficients can be precomputed from

the data, which makes the system more efficient. Defining the vorticity field, ω(x, y, t0)

at time t0, a complete specification of the dynamical system given by Equation (3.22)

can be calculated by the following projection of the initial condition:

ak(t0) = 〈ω(x, y, t0)− ω̄(x, y), φk〉. (3.24)

It is worth mentioning that there are occasions in our POD-GP ROM framework

where we compute the inner product of two functions f = f(x, y) and g = g(x, y) as

〈f, g〉 =

∫
Ω

f(x, y)g(x, y)dxdy. (3.25)

In the present study, we compute the inner products by taking the integral of the

product over the domain, Ω using the dual integration method for Simpson’s 1/3rd

rule. We refer to Ref. (Hoffman and Frankel, 2001) for the details of the integration
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technique.

3.5 Artificial Neural Network Based Non-Intrusive Reduced-Order

Model (ROM-ANN)

The study of artificial neural networks (ANN) was introduced in the 1990s as a

multilayered perceptron based on the idea of mimicking the functions of neurons in

human brain (Hagan et al., 1996). ANNs consist of layers possessing a predefined

number of unit cells called neurons and connections between the neurons called weights

to establish a map between an input layer and an output layer. Other than the input

and output layers, an ANN architecture also contains at least one hidden layer which is

independent of the training data. The learning can be supervised or unsupervised. In

unsupervised learning, the network extracts data features without knowing the target

output and input label (Jang et al., 1997). On the other hand, we have used a supervised

learning network named single-hidden layer feedforward neural networks (SLFNs) based

on the precomputed inputs from ROM-GP model which discovers the mapping between

inputs and outputs from provided labeled sample. Mathematically, the input layer

distributes input signals xp : p = 1, 2, ..., P ∈ RP to the Q dimensional hidden layer

feature space (i.e., Q is the number of hidden neurons). Let yj : j = 1, 2, ..., J ∈ RJ

represent the outputs from J number of output neurons. cpq ∈ RQ×P are the weights

connecting the neurons in input and hidden layers, βqj ∈ RJ×Q are the output weights

between the hidden and output layers, and εq ∈ RQ and ξj ∈ RJ are the random

biases operating as thresholds for the hidden and output layers. Then, the feed-forward

operation can be written as:

yj = G

[
ξj +

Q∑
q=1

βqjF

(
P∑
p=1

cpqxp + εq

)]
, (3.26)
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where differentiable functions F and G are the transfer or activation functions (Hornik

et al., 1989; Lapedes and Farber, 1988) which can be log-sigmoid, hyperbolic tangent

sigmoid, or linear transfer function. The training process of ANN is adjusting the

weights to reproduce the desired outputs when the given inputs are fed forward. In the

present study, we use Extreme Learning Machine (ELM) architecture which randomly

chooses weights for the hidden nodes and bias terms and analytically determines the

output weights of SLFNs (Huang et al., 2011). Huang et al. (Huang et al., 2006)

first introduced ELM with a goal to achieve a learning speed thousands time faster

than the traditional feedforward network learning algorithm while producing a better

generalization performance. Later, several extensions of general ELM method are

developed in different works (Huang and Chen, 2007; Zhou et al., 2015; Kasun et al.,

2013). In our study, the ANN architecture is trained by utilizing an ELM approach

which requires no biases in the output layer (ξ = 0) as well as the weights (cpq) and

biases (εq) are initialized randomly from a uniform distribution between −1 and +1

and no longer modified. Therefore, βqj weights are only unknown to be determined in

this case. We note that we utilized the tan-sigmoid activation function for the hidden

layer neurons given by

F (x) =
1− exp(−2x)

1 + exp(+2x)
, (3.27)

and a linear activation function for the output layer neurons which is G(x) = x.

Finally, from Equation (3.26), the output of ELM can be written as for N sample

training data examples,

ynj =

Q∑
q=1

βqjF

(
P∑
p=1

cpqx
n
p + εq

)
, (3.28)
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where xnp ∈ RP×N and ynj ∈ RJ×N refer to training input–output data pairs. To

illustrate further, we can show our problem in following matrix form:



y1
1 . . . . yN1

. . . . . .

. . . . . .

y1
J . . . . yNJ


(J×N)

=



β1
1 . . βQ1

. . . .

. . . .

β1
J . . βQJ


(J×Q)



(H1
1 )T . . . . (HN

1 )T

. . . . . .

. . . . . .

(H1
Q)T . . . . (HN

Q )T


(Q×N)

,

(3.29)

where the superscript “T” refers to “Transpose”. In our study, the value of J is always

1 since there is only one output neuron. HT ∈ RQ×N on the right hand side of the

above equation is given by

HT
(Q×N) = F





ε1 . . . . ε1

. . . . . .

. . . . . .

εQ . . . . εQ


(Q×N)

+



C1
1 . CP

1

. . .

. . .

C1
Q . CP

Q


(Q×P )


x11 . . . . xN1

. . . . . .

x1P . . . . xNP


(P×N)


.

(3.30)

By taking the transpose of Equation (3.29), the solution for the weights can be

computed by



β1
1 . . βJ1

. . . .

. . . .

β1
Q . . βJQ


(Q×J)

= H†(Q×N)



(y1
1)T . . (yJ1 )T

. . . .

. . . .

. . . .

. . . .

(y1
N)T . . (yJN)T


(N×J)

. (3.31)
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Here, H† ∈ RQ×N is the pseudo-inverse of H ∈ RN×Q and “†” refers to “pseudo-

inverse”. Since N ≥ Q for H matrix, we can apply following single value decomposition

(SVD) to H to compute the pseudo-inverse,



H1
1 . HQ

1

. . .

. . .

H1
N . HQ

N


(N×Q)

=



U1
1 . UQ

1

. . .

. . .

U1
N . UQ

N


(N×Q)


Σ1

1 . 0

. . .

0 . ΣQ
Q


(Q×Q)


(V 1

1 )T . (V Q
1 )T

. . .

(V 1
Q)T . (V Q

Q )T


(Q×Q)

,

(3.32)



(H1
1 )† . (HN

1 )†

. . .

(H1
Q)† . (HN

Q )†


(Q×N)

=



V 1
1 . V Q

1

. . .

V 1
Q . V Q

Q


(Q×Q)



(Σ1
1)† . 0

. . .

0 . (ΣQ
Q)†


(Q×Q)



(U1
1 )T . (UN

1 )T

. . .

(U1
Q)T . (UN

Q )T


(Q×N)

,

(3.33)

where U and V are column-orthogonal and orthogonal matrices, and Σ is a diagonal

matrix whose elements (i.e., Σq
q where q = 1, 2, . . . , Q) are non-negative and called

singular values. To minimize the numerical instability introduced while calculating

the inverse of Σ by taking the reciprocal of each non-zero element, a well-known

Tikhonov-type regularization (Cordier et al., 2010) is used as

(Σq
q)
† =

Σq
q

(Σq
q)2 + τ

. (3.34)

We choose τ = 10−12 for the present study which indicates the trade-off between the

least-squares error and the penalty term for regularization (Cancelliere et al., 2017).

The unknown weights can be calculated by using Equation (3.31).

In the present study, our ELM layers and architecture are devised with five inputs
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(P = 5) and a single output (J = 1) mechanism, as shown in Figure 3.1. Here, “LT”

refers to “linear term”, “NT” refers to “nonlinear term”, and “TP” refers to “true

projection” in the figure. The inputs are resolved ROM-GP variables in each time

integration step which can be denoted from Equation (3.22) as

ak = 〈ω − ω̄, φk〉, (3.35)

rLT
k =

R∑
i=1

ηikai, (3.36)

rNT
k =

R∑
i=1

R∑
j=1

χijk aiaj, (3.37)

rGP
k = ζk + rLT

k + rNT
k , (3.38)

and the single true solution output for training set can be expressed as

rTP
k =

〈
−J(ω, ψ) +

1

Ro

∂ψ

∂x
+

1

Re
∇2ω +

1

Ro
sin(πy), φk

〉
, (3.39)

which is the Galerkin projection to the FOM given by Equation (3.1). We denote the

ANN predicted solution output as rANN
k for the rest of this paper. Using the ANN

prediction, rANN
k , we can compute the modal coefficients, ak, for fully non-intrusive

ROM using the following equation similar to Equation (3.23):

dak
dt

= rANN
k , (3.40)

where rANN
k is computed using Equation (3.28) in our neural network model deployment.

We use the trained weights from the model to get the outputs (denoted as Y, i.e.,

y1 = rANN
k in our study) for corresponding inputs of each time integration steps. We

note that we normalize the computed ROM variables before using them as inputs for

ELM training set to stabilize the system from any kind of numerical errors or biases,
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and to ensure that all the input variables are at a similar range. The normalized input

sets in our study can be expressed as

X =

[
k,

ak
||a|| ,

rLT
k

||rLT|| ,
rNT
k

||rNT|| ,
rGP
k

||rGP||

]
, (3.41)

where

||g|| =

√√√√ 1

R

R∑
k=1

(gk)2, where g = a, rLT, rNT, rGP. (3.42)

Finally, we normalize our training set input and output in (max,min) ∈ [+1,−1] limit

as

X̃ =
2X− (Xmax + Xmin)

(Xmax −Xmin)
, (3.43)

Ỹ =
2Y− (Ymax + Ymin)

(Ymax −Ymin)
. (3.44)

The physical output, Y is then recovered from the ANN predicted output, Ỹ, by

following unnormalization method for the normalized data:

Y =
Ỹ(Ymax −Ymin) + (Ymax + Ymin)

2
. (3.45)

This normalization ensures that the input variables lie in the data range of the

tan-sigmoid activation function, i.e., −1 to +1 (Huang and Babri, 1998; Sun et al.,

2008).
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y1 = rTPk

x1 = k

x2 = ak

x3 = rLTk

x4 = rNT
k

x5 = rGP
k

1

2

3

...

Q

Input layer

(P dimensional)

Hidden layer

(Q dimensional)

Output layer

(J dimensional)

βq
jcpq

Random weights Trained weights

Figure 3.1: Schematic representation of the extreme learning machine (ELM) neural

network architecture utilized for the data-driven reduced-order modeling framework

in this study.

3.6 Hybrid Modeling (ROM-GP + ROM-ANN) Based Reduced-Order

Model (ROM-H)

Hybrid modeling, as a combination of physics-based and data-driven modeling, is a fast

emerging modeling approach in fluids community since both of these distinct modeling

approaches are well-established in the community at this point. As illustrated in the left

part of Figure 3.2, the traditional physics-based modeling approach can be described as

understanding a part of the full physics (full physics is represented by the black colored

region whereas the orange colored region displays the understood physics), developing a

mathematical understanding through equations (green colored region in the figure), and

finally resolving some part of the true physics (represented by the blue colored region)

by using further assumptions and computational constraints. On the other hand,

data-driven modeling works as a black box where we make an estimation of the true
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solution by using available observed data snapshots without having any knowledge of

the governing physics. For model order reduction, the physics-based approach is widely

applied as mentioned in previous sections, and nowadays, with the rapid growth of the

availability of data, data-driven approach has become a popular route for reduced-order

modeling. A comparative representation of these two approaches has been outlined

in Table 3.2. Considering the pros and cons of both sides, our hybrid reduced-order

modeling (ROM-H) comes up with the idea to address the negative aspects of both

approaches, whereas the positive aspects can be leveraged simultaneously. Similar to

any kind of hybrid approach, the primary goal of this paper is to establish a robust

hybrid ROM framework which aims at making the model more efficient as compared

to either the physics-based or data-driven ROM models.

(a) (b)

Figure 3.2: A schematic representation of the two distinct modeling approaches: (a)

physics-based modeling approach; and (b) data-driven modeling approach.
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Table 3.2: Physics-based ROM vs. data-driven ROM.

Physics-Based Modeling (ROM-GP) Data-Driven Modeling (ROM-ANN)

+ Solid foundation based on physics, first

principles and reasoning (high inter-

pretability)

− Thus far, most of the algorithms have

worked as black boxes (low inter-

pretability)

− Difficult to assimilate very long-term

historical/archival data into the com-

putational models

+ Takes into account long-term histori-

cal/archival data and experiences

− Sensitive and susceptible to numerical

instability due to a range of reasons

(boundary conditions, uncertainties in

the input parameters and meshing)

+ Once the model is trained, it is very

stable for making predictions

+ Errors/uncertainties can be bounded

and estimated

− Not quite possible to bound er-

rors/uncertainties

+ Less biases − Bias in data is reflected in the predic-

tion

+ Generalizes well to new problems with

similar physics

− Poor generalization on unseen prob-

lems

We build our ROM-H framework by introducing a free parameter to dynamically

account for the contribution of the physics-based ROM and data-driven ROM. The

ROM-H methodology can be summarized by following key steps:

Step 1 (offline): Generate a set of basis functions φk for k = 1, 2, 3, ...., R from the

snapshot data obtained from FOM.

Step 2 (offline): Apply Galerkin projection to compute the coefficients required for

ROM-GP.
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Step 3 (offline): Train the ELM network using the resolved ROM-GP coefficients

and true projections datasets.

Step 4 (online): Compute ak by solving the following ordinary differential equations

in reduced-order space:

dak
dt

= (1− η)rGP
k + ηrANN

k , (3.46)

where we define η as a free weighting parameter in a range of 0 ≤ η ≤ 1 to estab-

lish a relationship between the standard ROM-GP and non-intrusive ROM-ANN

models. If η = 0, we recover Equation (3.23), whereas, for η = 1, Equation (3.40)

can be obtained.

Step 5 (offline): Obtain the full order solution by transferring data from reduced-

order space by using Equation (3.20) as a post-processing task if needed.

The hybridization between the physics-based and data-driven based ROM happens

in Step 4, where, in each time step, rGP
k is calculated using Equation (3.23), and rANN

k

is obtained from Equation (3.40). The parameter η gives us a freedom to benefit from

both modeling techniques mentioned above rather than fully depending on a single

modeling technique, and, as we show in Section 3.7, the hybrid model with optimal

contribution from both modeling approaches gives a better prediction of the true

solution than the individual modeling approaches. The limiting values of η will result

in the standard ROM-GP and ROM-ANN model solutions, respectively, and any value

between the limits of 0 to 1 will give a solution with contribution from both ROM-GP

and ROM-ANN models. Based on the working physical problem, we assume that

either more physics-based model contribution or more data-driven model contribution

can produce a better estimation of the truth. Keeping this in mind, instead of forcing

an arbitrary value to specify η for hybridization, we apply the following dynamic
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optimization strategy based on the values of rGP
k and rANN

k in each time integration

steps:

η =

∣∣∣∣tanh

( ||rGP|| − ||rANN||
||rANN||

)∣∣∣∣ . (3.47)

Here, we utilize the absolute value of hyperbolic tangent function, which always

produces a value for η between 0 and 1. If the values of rGP
k and rANN

k are closely

related (||rGP|| ∼= ||rANN||), the value of η parameter will be 0, i.e., it indicates the

use of ANN prediction for that particular case will be redundant. Similarly, if the

values are far away, the ANN prediction contribution will be more dominant. However,

we emphasize that the estimation technique we utilized here for η calculation is on

an ad-hoc basis for the present study. On this hybrid framework, the process of

finding the optimal η can be a potential topic for another research direction where

optimization techniques such as trust-region method, conjugate gradient methods, or

quasi-Newton methods can be used (Wright and Nocedal, 1999; Lin et al., 2008).

3.7 Numerical Results

For validation purpose, our reduced-order model resulting from the hybridization of

the standard ROM-GP approach and fully non-intrusive ROM-ANN approach has

been used to model a four-gyre barotropic ocean circulation problem. In this section,

we present the numerical results and analyses demonstrating the computation and

prediction performance of our proposed hybrid framework as well as the component

models (ROM-GP and ROM-ANN) and FOM simulation for comparisons. We select

this particular test problem (as many other studies do (Cushman-Roisin and Manga,

1995; Holm and Nadiga, 2003; San et al., 2011; Greatbatch and Nadiga, 2000; Cummins,

1992)) because of its complexity induced by the symmetric double-gyre wind forcing

developing a four-gyre circulation pattern which makes this problem challenging
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enough to assess the viability of proposed models. Based on the following results, it is

apparent that the ROM-H model provides a better estimation of the true solution as

compared to the individual component model solutions. Indeed, it was shown before

that adding a stabilization to the standard ROM-GP improves the model prediction

and resolve more mean dynamics (San and Iliescu, 2015). However, our proposed

hybrid model idea is data-driven without taking any additional phenomenological

arguments (e.g., eddy viscosity) to stabilize the model, and can be applied to most of

the flow phenomena. On the other hand, we would like to note that the ROM-GP

model can be cured with nonlinear modal eddy viscosities, i.e., with an energy-flow

correction (Östh et al., 2014) or other closure approaches (Wang et al., 2012; San and

Iliescu, 2014).

3.7.1 Case setup specifications for FOM simulations

In the present work, we consider the dimensionless form of the BVE describing the

QG problem in the Cartesian domain (x, y) ∈ [0, 1] × [−1,+1] as a reference. The

FOM simulation is conducted starting from t = 0 to t = 60 using a fixed time step

of ∆t = 1 × 10−4 on a Munk layer resolving 128 × 256 grid resolution. We collect

900 data snapshot from time t = 15 to t = 60 to avoid collecting data from initial

transition period for POD basis generation and ELM training, i.e., the sampling time

∆s is 5× 10−2. We use dimensionless parameters Re = 25, 100, 400 and constant Ro

= 3.6× 10−3 for all the simulations throughout the paper.

3.7.2 Analysis of the standard ROM-GP method

We first construct the POD data correlation matrix using the snapshots data from

FOM simulation to generate the POD basis function for all the ROM approach in

this paper. Hence, it is important to observe the characteristics and distribution of

the eigenvalues with respect to modal index as presented in Figure 3.3. To estimate
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the total kinetic energy accumulation of the system, we compute the percentage of

each eigenvalue by

P (λk) =

(∑k
j=1 λj∑Ns

j=1 λj

)
× 100, (3.48)

where Ns = 900 is the total number of snapshots. Since higher Re incorporates more

stratification or, to be specific, as more energy is added to the system, more modes

are required to capture majority percentage of the energies in the system. Figure 3.3

shows that, while only around 10 modes is enough to capture most of the system’s

kinetic energy for Re = 25, a large percentage of energies (close to 85% and 75%)

are accumulated in the first 30 and 40 modes for Re = 100 and Re = 400 cases,

respectively. However, the percentage of captured energy is lower in higher Re cases

which indicates the challenges associated with model order reduction of this test case

in higher Re. These findings are supported by Figure 3.4 where we present the first

few POD basis functions, the most important ones regarding the captured information,

for Re = 100. We can identify the increase in the equal number of smaller structures

(maxima and minima) which correspond to higher POD indices. Using more POD

bases will result in better approximation until the corresponding eigenvalue stagnation

point reaches. Based on the POD analysis, we develop the rest of our studies using

POD modes up to 40 to incorporate most of the physics within the system.

Figures 3.5–3.7 show the mean stream function field evolution with respect to

increasing modes, R using standard ROM-GP approach for Re = 25, 100, 400, re-

spectively. It is apparent in Figure 3.5 that, for Re = 25 case, even R = 10 shows

a good prediction of the FOM solution. We can also notice in the figure that the

mean stream function plot shows a consistent result for R = 20 with respect to

R = 10 result, but we get a worse result for R = 30. This can be explained as an

over-fitting, as we have seen in Figure 3.3 that, for Re = 25, R = 20 modes contain

more than 99% of the system’s total kinetic energy. It has also been noted in (Giere
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(a) (b)

Figure 3.3: Proper orthogonal decomposition (POD) analysis by using 900 equally
distributed snapshots for Re = 25, 100, 400: (a) Eigenvalue spectrum of the correlation
matrix, A; and (b) Eigenvalue percentage energy accumulation with respect to modal
index.

(a) (b) (c) (d) (e)

Figure 3.4: Contour plots of some illustrative examples of POD basis functions for Re
= 100 generated by the method of snapshots: (a) ϕ1(x, y); (b) ϕ10(x, y); (c) ϕ20(x, y);
(d) ϕ30(x, y); and (e) ϕ40(x, y).
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et al., 2015) that adding more modes might yield worse solutions due to the noise in

the system. The inaccurate result for R = 30 is understandable in a sense that the

previous modes contain most of the energies (more than 99%) of the system which is

considered a sufficient total kinetic energy for the optimal number of modes in most

of the POD studies (Cordier et al., 2010). Even though R = 40 modes shows a very

good estimation of FOM result, it is recommended not to use more than the optimal

number of POD modes to avoid instabilities in the solution field. This occurrence can

also be seen in Figures 3.8 and 3.9 for Re = 25. On the other hand, for Re = 100 case,

R = 10 shows a nonphysical two-gyre circulation pattern in Figure 3.6 similar to the

plots of coarse truncated modes (R = 10 and R = 20) for Re = 400 case in Figure 3.7.

We further illustrate the effect of R and Re for ROM-GP approach in the prediction

of true solution in Figures 3.8 and 3.9. For the purpose of comparison, we include the

FOM data projection to reduced-order space using corresponding POD basis functions

for Re = 25, 100, 400. In Figure 3.8, we show the non-dimensional time evolution of

the first modal coefficient, a1(t) in reduced-order space for different Re and R. The

plot supports the conclusions drawn from the POD analysis and the mean stream

function plots that for Re = 100, 10 POD modes provide an unphysical result. For

even higher Re = 400, 20 POD modes show the numerical instabilities as we can see a

sudden burst of random oscillations in much higher scales. To put extra emphasis on

our findings, we present the results for tenth modal coefficient in Figure 3.9 where we

can observe the same scenario as Figure 3.8 on a different scale. We can notice that

the scales for tenth modal coefficient are much smaller than the first modal coefficient

time series which is expected for higher modes, but the performance of the ROM-GP

model is consistent.
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(a) (b) (c) (d) (e)

Figure 3.5: Mean stream function contour plots between t = 15 and t = 60 obtained by
reference FOM and standard ROM-GP simulations for Re = 25: (a) ψFOM at a resolution
of 128× 256; (b) ψROM-GP with R = 10 modes; (c) ψROM-GP with R = 20 modes; (d)
ψROM-GP with R = 30 modes; and (e) ψROM-GP with R = 40 modes. Note that a stable
and well-estimated solution can be found using R = 10 modes and adding more modes
might yield worse solutions due to a possible over-fitting as occurred in R = 30 case.

(a) (b) (c) (d) (e)

Figure 3.6: Mean stream function contour plots between t = 15 and t = 60 obtained
by reference FOM and standard ROM-GP simulations for Re = 100: (a) ψFOM at a
resolution of 128 × 256; b) ψROM-GP with R = 10 modes; (c) ψROM-GP with R = 20
modes; (d) ψROM-GP with R = 30 modes; and (e) ψROM-GP with R = 40 modes. Note
that a stable and well-estimated solution can be found within R = 30 or 40 modes for
this case.
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(a) (b) (c) (d) (e)

Figure 3.7: Mean stream function contour plots between t = 15 and t = 60 obtained
by reference FOM and standard ROM-GP simulations for Re = 400: (a) ψFOM at a
resolution of 128× 256; (b) ψROM-GP with R = 10 modes; (c) ψROM-GP with R = 20
modes; (d) ψROM-GP with R = 30 modes; and (e) ψROM-GP with R = 40 modes. Note
that a stable and well-estimated solution can be found within R = 40 modes for this
case.

3.7.3 Assessments of the prediction performance of ROM-GP, ROM-

ANN, ROM-H

We observed the inability of the standard ROM-GP model to estimate the correct

physics using coarse truncated modes (R = 10 or 20) for Re = 400 in Section 3.7.2.

For this reason, we consider R = 10 modes only for the rest of the analyses to assess

the predictive performances of the models. As we can see in Figure 3.10 for Re = 25,

all models capture the two-gyre pattern, which is consistent with the true solution

as well as previous observations. Similar to Section 3.7.2, the ROM-GP model fails

to capture four-gyre pattern for Re = 100 and R = 10 combination, as shown in

Figure 3.11, but the ROM-ANN and ROM-H models exhibit a successful prediction.

Nevertheless, Figure 3.12 demonstrates the most promising findings that the ROM-H

model successfully predicts the four-gyre pattern while the other two basic ROM

approaches fail for Re = 400 and R = 10 combination. To support this finding, we

again plot the time series evolution for both a1 and a10, as presented in Figures 3.13
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Figure 3.8: Time series evolution of the first modal coefficient, a1(t) between t = 15 and
t = 60 for FOM projection and standard ROM-GP with varying Re (Re = 25, 100, 400)
and POD modes (R = 10, 20, 30, 40). R = 20 modes for Re = 100, and R = 30 modes
for Re = 400.
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Figure 3.9: Time series evolution of the tenth modal coefficient, a10(t) between
t = 15 and t = 60 for FOM projection and standard ROM-GP with varying Re (Re
= 25, 100, 400) and POD modes (R = 10, 20, 30, 40).
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and 3.14, to find that the ROM-H model shows an impressive prediction of the FOM

projected time series for even higher Re. The prediction of ROM-ANN model is better

than the ROM-GP model using same values for the parameters, but not as accurate

as the ROM-H model for Re = 400. As we can see, the ROM-H model is capable of

capturing the physics utilizing only 10 modes, which leads to an excellent development

of a more efficient ROM than the standard ROM-GP, which requires higher modes to

capture the physics for Re = 400. A summary of computational overhead is presented

in Table 3.3.

(a) (b) (c) (d)

Figure 3.10: Mean stream function contour plots between t = 15 and t = 60 obtained
by reference FOM and different ROM simulations for Re = 25 and R = 10 modes:
(a) ψFOM at a resolution of 128 × 256; (b) ψROM-GP; (c) ψROM-ANN; and (d) ψROM-H.
This figure clearly illustrates that all models have captured the two-gyre circulation
pattern successfully.

3.7.4 Sensitivity analysis with respect to ELM neurons

Based on the results in Section 3.7.3, we can state that the prediction performance of

our proposed ROM-H model is better than the ROM-ANN model for this test case.

However, sensitivity analysis of the ANN architecture should be performed before
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(a) (b) (c) (d)

Figure 3.11: Mean stream function contour plots between t = 15 and t = 60 obtained
by reference FOM and different ROM simulations for Re = 100 and R = 10 modes:
(a) ψFOM at a resolution of 128 × 256; (b) ψROM-GP; (c) ψROM-ANN; and (d) ψROM-H.
The figure shows that ROM-ANN and ROM-H have captured the four-gyre circulation
pattern similar to the FOM solution while ROM-GP has shown an unphysical two-gyre
pattern.

Table 3.3: The computational CPU time in seconds required for ROM simulations
between t = 15 and t = 60. Note that the FOM simulation is 4.82 h and offline POD
basis generation takes about 23.38 min. The offline training time for ANN is less than
one second due to the extremely fast ELM approach.

R = 10 R = 20 R = 30 R = 40

Pre-computing time for the inner products 1.06 4.37 11.10 22.93
ROM-GP simulation time 5.56 41.51 153.68 380.54
ROM-ANN simulation time 16.41 96.73 209.16 428.51
ROM-H simulation time 21.29 92.67 273.70 496.32
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(a) (b) (c) (d)

Figure 3.12: Mean stream function contour plots between t = 15 and t = 60 obtained
by reference FOM and different ROM simulations for Re = 400 and R = 10 modes:
(a) ψFOM at a resolution of 128 × 256; (b) ψROM-GP; (c) ψROM-ANN; and (d) ψROM-H.
Note that only the proposed ROM-H model has successfully captured the four-gyre
circulation.

reaching any conclusion to verify whether the network output alters with the change in

the total number of neurons in hidden layer, Q (Montano and Palmer, 2003). Because

of the black box nature of ANN, we perform a sensitivity analysis with respect to

Q = 20, 40, 80 neurons for both ROM-ANN and ROM-H models. It can be clearly

seen in Figure 3.15 of mean stream function results that the ROM-ANN model is

showing similar performance improvements for all different number of neurons for

R = 10 and Re = 100 cases. Furthermore, in Figure 3.16, the ROM-H model is

showing an excellent agreement with FOM solution for all different number of neurons.

On the other hand, the time series of modal coefficient plots for ROM-ANN model in

Figures 3.17 and 3.18 exhibit some noticeably unusual traits in a number of cases, for

example, a1 (Q = 40, Re = 25), a1 (Q = 20, Re = 100), a10 (Q = 40, Re = 25). In

addition, the ROM-H model displays satisfactory consistency in its predictive behavior

with respect to the variation of Q, as shown in Figures 3.19 and 3.20. This suggests
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Figure 3.13: Time series evolution of the first modal coefficient, a1(t), between t = 15
and t = 60 for FOM projection and different ROM approaches (ROM-GP, ROM-ANN,
and ROM-H) with varying Re (Re = 25, 100, 400) and POD modes (R = 10, 20, 30, 40).
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Figure 3.14: Time series evolution of the tenth modal coefficient, a10(t), between t = 15
and t = 60 for FOM projection and different ROM approaches (ROM-GP, ROM-ANN,
and ROM-H) with varying Re (Re = 25, 100, 400) and POD modes (R = 10, 20, 30, 40).
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that the ROM-H model is robust with respect to the change in total number of neurons

included in the hidden layer.

(a) (b) (c) (d) (e)

Figure 3.15: Sensitivity analysis with respect to the number of neurons in ELM of
fully non-intrusive ROM-ANN approach using mean stream function contour plots
(R = 10 and Re = 100): (a) ψFOM; (b) ψROM-GP; (c) ψROM-ANN with Q = 20 neurons;
(d) ψROM-ANN with Q = 40 neurons; and (e) ψROM-ANN with Q = 80 neurons.

3.7.5 Time series evolution and out-of-sample forecasting

To further illustrate the robustness and enhanced potential of the proposed model, here

we present a couple more analyses on the ROM-GP, ROM-ANN, and ROM-H approaches.

In Figure 3.21, we present the temporal evolution of a1 obtained by ROM-GP, ROM-ANN

and ROM-H model along with FOM projection for Re = 25. The figure displays the

forecasting capability of ROM models for a long period of time up to t = 180 even though

the data snapshots were taken between t = 15 and t = 60. For Re = 100 and 400 in

Figures 3.22 and 3.23, respectively, the ROM-ANN and ROM-H models still show a

stable time series results, whereas the ROM-GP prediction becomes unphysical. The

long time forecasting can be a very useful property of the ROM-H model to reduce the

computational cost, and can be applied for practical applications related to forecasting.

An out-of-sample a posteriori analysis is also performed where the snapshot data and

training dataset are prepared at a particular physical condition to predict the performance
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(a) (b) (c) (d) (e)

Figure 3.16: Sensitivity analysis with respect to the number of neurons in ELM of
ROM-H approach using mean stream function contour plots (R = 10 and Re = 100):
(a) ψFOM; (b) ψROM-GP; (c) ψROM-H with Q = 20 neurons; (d) ψROM-H with Q = 40
neurons; and (e) ψROM-H with Q = 80 neurons.

Figure 3.17: Sensitivity analysis with respect to the number of ELM neurons of fully
non-intrusive ROM-ANN approach using time series of the first modal coefficient,
a1(t) for Re = 25, 100, 400 and Q = 20, 40, 80.
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Figure 3.18: Sensitivity analysis with respect to the number of ELM neurons of fully
non-intrusive ROM-ANN approach using time series of the tenth modal coefficient,
a10(t) for Re = 25, 100, 400 and Q = 20, 40, 80.
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Figure 3.19: Sensitivity analysis with respect to the number of ELM neurons of ROM-
H approach using time series of the first modal coefficient, a1(t) for Re = 25, 100, 400
and Q = 20, 40, 80.
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Figure 3.20: Sensitivity analysis with respect to the number of ELM neurons of ROM-
H approach using time series of the tenth modal coefficient, a10(t) for Re = 25, 100, 400
and Q = 20, 40, 80.
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of the models at different physical condition. In this study, we conduct two out-of-sample

analyses: in one case, we generate the snapshots and training data at Re = 100 (lower

value than the target prediction state) to predict the performance at Re = 200 and, in

the other case, we generate the snapshots and training data at Re = 400 (higher value

than the target prediction state) to predict the performance at Re = 200. As displayed in

Figure 3.24 for the time series of a1, the ROM-GP again fails to capture the underlying

physics for R = 10. The ROM-ANN prediction seems not so random but still does not

represent the true statistics. However, the ROM-H prediction series matches the scales

of the time series of FOM data projection. We can get a clear idea of this quantitative

analysis by observing the visual representation of the mean stream function field in

Figure 3.25. It is apparent that only the ROM-H prediction matches the FOM result

since the underlying four-gyre dynamics is captured. Finally, we analyze the prediction

performance at Re = 200 by using the data collected at Re = 400. The time series plot

in Figure 3.26 reveals that neither ROM-GP nor ROM-ANN can capture the true scales

while once again, the ROM-H model shows an impressive prediction of the true physics

at Re = 200 using Re = 400 data. Figure 3.27 shows the mean field representation which

indicates the ROM-H model is capable of out-of-sample forecasting using data from higher

Re. These analyses of longer time forecasting and out-of-sample validation puts more

strength on the conclusion drawn above that the proposed ROM-H method is more robust

in predicting the underlying full order physics than the fully non-intrusive ROM-ANN

and standard ROM-GP methods.

3.8 Summary

In this work, we propose a reliable and robust reduced-order modeling technique

using a hybrid framework. The hybridization is done by combining the standard

Galerkin projection based ROM and ELM neural network architecture. We consider

an ocean circulation problem governed by a single-layer quasi-geostrophic model as
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Figure 3.21: Forecasting of temporal mode evolution of a1(t) for Re = 25. Note that
ROMs are trained by the data snapshots obtained between t = 15 and t = 60.

Figure 3.22: Forecasting of temporal mode evolution of a1(t) for Re = 100. Note
that all ROMs are trained by the data snapshots obtained between t = 15 and
t = 60. Although the ROM-GP approach provides reasonable (physical) results at the
beginning (i.e., t < 18), the error then is amplified exponentially.
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Figure 3.23: Forecasting of temporal mode evolution of a1(t) for Re = 400. Note
that all ROMs are trained by the data snapshots obtained between t = 15 and
t = 60. Although the ROM-GP approach provides reasonable (physical) results at the
beginning (i.e., t < 18), the error is then amplified exponentially.
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Figure 3.24: Time series evolution of the first temporal coefficient a1(t) for the out-of-
sample forecast by FOM and different ROM approaches (ROM-GP, ROM-ANN, and
ROM-H) using R = 10 POD modes. Predictive performance is shown for Re = 200
while the training has been performed using the data generated at Re = 100.
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(a) (b) (c) (d)

Figure 3.25: Out-of-sample forecast of mean stream function by: (a) FOM; (b)
ROM-GP; (c) ROM-ANN; and (d) ROM-H using R = 10 POD modes. Predictive
performance is shown for Re = 200 while the training has been performed using the
data generated at Re = 100. This figure clearly illustrates that the ROM-H model
has successfully predicted the FOM solution while the ROM-GP model prediction is
unphysical and the ROM-ANN prediction is not as accurate as the ROM-H prediction.
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Figure 3.26: Time series evolution of the first temporal coefficient a1(t) for the out-of-
sample forecast by FOM and different ROM approaches (ROM-GP, ROM-ANN, and
ROM-H) using R = 10 POD modes. Predictive performance is shown for Re = 200
while the training has been performed using the data generated at Re = 400.
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(a) (b) (c) (d)

Figure 3.27: Out-of-sample forecast of mean stream function by: (a) FOM; (b)
ROM-GP; (c) ROM-ANN; and (d) ROM-H using R = 10 POD modes. Predictive
performance is shown for Re = 200 while the training has been performed using the
data generated at Re = 400. Similar to the previous results, this figure also shows
that the ROM-H prediction is better than the other two model predictions.

a test platform to analyze the prediction performance and robustness of the model

compared to the physics-based and data-driven models. The training and snapshots

data for POD basis construction are generated using a FOM simulation. The resolved

ROM coefficients are utilized as inputs for the simple feedforward ELM network.

We then introduce a weighting parameter to dynamically account for contributions

from the physics-based and data-driven models. In other words, we propose a hybrid

reduced-order model (ROM) comprising a first principle Galerkin model and a data

driven ANN model for the dynamics based on POD mode amplitudes. Therefore,

the key novelty of this hybrid ROM is a simple weighting between first-principle and

data-driven model. Furthermore, we show an ad-hoc dynamical approach to estimate

this weighting parameter which provides a freedom in the hybridization procedure to

come up with a good possible combination of component model contributions.

To assess the performance of our proposed model, we perform a number of analyses
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based on the mean stream function field variable and time series evolution statistics.

Our study reveals that the proposed hybrid ROM model can successfully capture the

underlying physics using a small number of modes which means the hybrid model

is capable of performing a robust model order reduction process than the standard

projection based ROM and data-driven ROM approaches. To validate the fidelity of

the results obtained by the hybrid framework, we conduct a sensitivity analysis which

reveals that the hybrid model is consistent with respect to the total number of hidden

layer neurons of the ELM network. To show the robustness of the model, we also

perform a long time forecasting and out-of-sample validation analysis. The hybrid

model successfully captures the flow dynamics for these cases, while the other two

component models fail to predict the true physics for higher Re and lower number of

modes. Overall, our primary goal of leveraging the advantages of two basic reduced-

order modeling techniques is fulfilled by the proposed hybrid ROM model in a sense

that the model is data-driven and can be generalized for complex fluid flow problems,

the model is robust and capable of reducing the total computational cost significantly,

and the model neither requires any extra stabilization modification to account for

numerical instabilities nor is it fully dependent on black box predictions.
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CHAPTER IV

A Non-Intrusive Reduced Order Modeling Framework for

Quasi-Geostrophic Turbulence†

4.1 Abstract

In this study, we present a non-intrusive reduced order modeling (ROM) framework

for large-scale quasi-stationary systems. The framework proposed herein exploits

the time series prediction capability of long short-term memory (LSTM) recurrent

neural network architecture such that: (i) in the training phase, the LSTM model is

trained on the modal coefficients extracted from the high-resolution data snapshots

using proper orthogonal decomposition (POD) transform, and (ii) in the testing

phase, the trained model predicts the modal coefficients for the total time recursively

based on the initial time history. Hence, no prior information about the underlying

governing equations is required to generate the ROM. To illustrate the predictive

performance of the proposed framework, the mean flow fields and time series response

of the field values are reconstructed from the predicted modal coefficients by using

an inverse POD transform. As a representative benchmark test case, we consider a

two-dimensional quasi-geostrophic (QG) ocean circulation model which, in general,

displays an enormous range of fluctuating spatial and temporal scales. We first

illustrate that the conventional Galerkin projection based reduced order modeling of

such systems requires a high number of POD modes to obtain a stable flow physics. In

addition, ROM-GP does not seem to capture the intermittent bursts appearing in the

†This chapter is adapted from Rahman et al., arXiv preprint arXiv:1906.11617 (2019), (under
review for publication at Physical Review E).
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dynamics of the first few most energetic modes. However, the proposed non-intrusive

ROM framework based on LSTM (ROM-LSTM) yields a stable solution even for a

small number of POD modes. We also observe that the ROM-LSTM model is able to

capture quasi-periodic intermittent bursts accurately, and yields a stable and accurate

mean flow dynamics using the time history of a few previous time states, denoted as

the lookback time-window in this paper. Throughout the paper, we demonstrate our

findings in terms of time series evolution of the field values and mean flow patterns,

which suggest that the proposed fully non-intrusive ROM framework is robust and

capable of predicting noisy nonlinear fluid flows in an extremely efficient way compared

to the conventional projection based ROM framework.

4.2 Introduction

Large-scale turbulent flows, such as atmospheric and geophysical flows, are nonlinear

dynamical systems which exhibit an enormous range of complex, coherent spatio-

temporal scales. Over the past half century, computational approaches have made

a significant contribution to characterize and understand the behavior of such flow

phenomena. To resolve physical problems with high spatio-temporal variabilities

through numerical simulation, one needs a high-fidelity modeling technique like direct

numerical simulation (DNS). However, a huge amount of computational resources are

required to capture the fine details of the flow dynamics which can become inefficient

and unmanageable after some level of accuracy. Although there has been a continuous

growth in computer power and performance following Moore’s law during the past few

decades (Mack, 2011), the progress has started to stagnate in the recent years (Powell,

2008; Waldrop, 2016; Theis and Wong, 2017; Kumar, 2018). As a result, one of the

most active research areas in modeling of turbulent flow dynamics is the development of

efficient and robust algorithms that aim at achieving the maximum attainable quality

of numerical simulations with optimal computational costs. Indeed, computational
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costs can be reduced by using low-fidelity models such as large eddy simulation (LES)

(Sagaut, 2006) and Reynolds-averaged Navier-Stokes (RANS) (Tennekes et al., 1972)

with additional approximations in the governing equations to neglect some of the

physical aspects for closure modeling. Even so, these techniques require parameter

calibration to approximate the true solution to any degree of confidence and may thus

increase costs related to model validation, benchmark data generation, and efficient

analysis of the generated data sets. As an alternative to the existing techniques, the

reduced order modeling (ROM) approach has quickly become a promising approach

to reduce the computational burden of high-fidelity simulations. In general, ROM

works in such a way that the high-dimensional complex dynamical systems will be

represented with much lower-dimensional (but dense) systems while keeping the

solution quality within the acceptable range (Quarteroni et al., 2015; Taira et al.,

2017). An introduction to ROM methodologies can be found in recent review articles

(Benner et al., 2015; Taira et al., 2017; Rowley and Dawson, 2017).

There have been a significant number of strategies proposed over the years to

obtain ROMs of nonlinear dynamical systems. These ROM techniques have been

utilized for a wide variety of applications related to, e.g., flow control (Noack et al.,

2011; Brunton and Noack, 2015; Ito and Ravindran, 1998), data assimilation in weather

and climate modeling (Daescu and Navon, 2008; Cao et al., 2007), and uncertainty

quantification (Ullmann and Lang, 2014; Chen and Quarteroni, 2015; Haasdonk et al.,

2013). Among the different variants of ROM strategies, the Galerkin projection

combined with proper orthogonal decomposition (POD) based ROMs (ROM-GP)

have been utilized extensively in various areas (Carlberg et al., 2011; Lucia et al.,

2004; Bistrian and Navon, 2015; Brenner et al., 2012; Burkardt et al., 2006; Iollo et al.,

2000; Freno and Cizmas, 2014). POD, also known as principal component analysis

(PCA), is a mathematical technique to extract the dominant statistical characteristics

from turbulent flow fields by identifying the most energetic modes (Lumley, 1967;
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Antoulas et al., 2001b; Chinesta et al., 2011; Benner et al., 2015; Rowley and Dawson,

2017). These few POD modes possess the fine-scale details of the system and have the

capability of representing the true physics accurately. Over the years, considerable

work has been done to improve the regular POD approaches (Hesthaven et al., 2015;

Lassila et al., 2013; Quarteroni et al., 2015; Berkooz et al., 1993; Taira et al., 2017;

Aubry et al., 1992; Benner et al., 2015; Rowley et al., 2004; Noack et al., 2011; Sieber

et al., 2016).

In general, POD uses the data obtained from experiments or high-fidelity numerical

simulations and generates an orthonormal set of spatial basis vectors describing the

main directions (modes) by which the flow is represented optimally, in an L2 sense

(Berkooz et al., 1993). The most energetic modes are kept to generate the reduced

order system while the other modes are truncated. However, it has been observed that

the discarded modes often contribute to the evolving dynamics of large-scale complex

turbulent flow systems, like the geophysical flows (Lassila et al., 2014), resulting in

instabilities and modeling errors in the solution (Akhtar et al., 2009; Rempfer, 2000;

Rowley and Williams, 2006; Iollo et al., 2000). Thus, several research efforts have been

devoted to improve the stability of ROM-GP frameworks by addressing the truncated

modes contributions (Aubry et al., 1988; Rempfer and Fasel, 1994b,a; Cazemier et al.,

1998; Xie et al., 2017). Noack et al. (Noack et al., 2003) proposed an extra ‘shift-mode’

for accurate representation of the unstable steady solution. Several closure modeling

ideas are devised to resolve the weak dissipation associated with POD modes by

introducing eddy-viscosity terms (similar to LES eddy-viscosity models) (Sirisup and

Karniadakis, 2004; Cordier et al., 2013; Östh et al., 2014). San and Iliescu (San

and Iliescu, 2014) improved the ROM performance by finding an optimal value for

eddy-viscosity parameter with the assumption that the amount of dissipation is not

identical for all the POD modes. In our recent work, we proposed an automated

approach to find the eddy-viscosity parameter dynamically to stabilize the ROM-GP
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model (Rahman et al., 2019a). An alternative approach to find the eddy-viscosity

parameter dynamically has been proposed by using an extreme learning machine

architecture (San and Maulik, 2018a). With the growing interest in data-driven

modeling of ROMs using machine learning (ML) architectures, there has been another

dimension of research introduced to the community for the improvement in ROM

performance, referred as hybrid ROM approach. Generally, the hybridization is done

by combining an imperfect physics-based model with a data-driven technique to get

a hybrid scheme, and it is observed that the hybrid model shows better predictive

performance than the component models (Rahman et al., 2018; Wan et al., 2018; Xie

et al., 2018a; Pathak et al., 2018).

In this paper, we develop a fully non-intrusive ROM approach as a potential

alternative to already existing ROM methodologies. Indeed, physics-based (intrusive)

ROM frameworks require an approximation of stabilization or regularization parame-

ters and depend on underlying governing equation to get the solution. On the other

hand, the hybrid approaches require computation of both intrusive and non-intrusive

contributions, which can make the overall computation expensive. However, it is

well-known that a non-intrusive approach can make the framework greatly efficient

when it can be implemented successfully. With the abundance of massive amounts of

data resources from high-fidelity simulations, field measurements, and experiments, the

data-driven modeling approaches are currently considered some of the most promising

methods across different scientific and research communities. In the past few years,

artificial neural networks (ANNs) and other ML techniques have started a revolution

in turbulence modeling community (Raissi et al., 2019; Maulik and San, 2017; Raissi

et al., 2018; Lee et al., 1997; Maulik et al., 2018; Faller and Schreck, 1997; San and

Maulik, 2018b; Wang et al., 2019; Moosavi et al., 2015; Kani and Elsheikh, 2017).

Interested readers are directed to Refs. (Brunton et al., 2019; Kutz, 2017; Durbin,

2018; Duraisamy et al., 2018; Gamboa, 2017) for more on the influence of ML on fluid
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mechanics, specifically turbulence modeling.

With a goal to develop an efficient and robust non-intrusive ROM framework for

large-scale quasi-stationary systems like geophysical flows, we propose a methodology

based on long short-term memory (LSTM) recurrent neural networks. Since reduced

order modeling of such noisy large-scale systems is comparatively difficult due to

instabilities, which results in using a very large number of POD modes to capture the

true physics, our main motivation in this study is to utilize the time series prediction

capability of LSTM (Gers et al., 2002; Wang et al., 2018; Yeo and Melnyk, 2019; Sak

et al., 2014; Gamboa, 2017) to capture the flow physics with a very few POD modes.

As detailed in Ref. (Yeo and Melnyk, 2019), LSTM is very robust in predicting a very

noisy sequential time series. In general, for this type of random time series, LSTM

does the prediction using its own internal dynamics, which is found stable and close

to the true solution (Yeo and Melnyk, 2019; Mohan and Gaitonde, 2018). For this

reason, we choose to utilize LSTM architecture based on our problem of interest,

which is the large-scale quasi-stationary turbulence. However, we emphasize that

this non-intrusive model can be developed by using other relevant neural network

architectures as well. We also mention that the development of ROM using POD and

LSTM has been used only in a few other works and proven to be successful in capturing

the temporal dynamics of fluid flows. Wang et al. (Wang et al., 2018) proposed a

non-intrusive ROM (NIROM) based on LSTM and used it to predict laminar flows.

In another recent work, Vlachas et al. (Vlachas et al., 2018) proposed a data-driven

method based on LSTM to predict the state derivative of chaotic systems using the

short-term history of the reduced order states. The predicted derivatives are then

used for one-step forward prediction of the high-dimensional dynamics. The authors

further developed a hybrid framework combining mean stochastic model and LSTM for

data-driven to extend the forecasting capability of the proposed approach. To do the

dimensionality reduction, the authors utilized discrete Fourier transform, singular value
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decomposition, and empirical orthogonal functions. Mohan and Gaitonde (Mohan

and Gaitonde, 2018) developed a non-intrusive ROM using LSTM and POD for flow

control applications through a detailed analysis on different ROM-LSTM training

and testing hyper-parameter tuning parameters. Even though the authors’ idea of

developing non-intrusive ROM based LSTM by replacing Galerkin projection is similar

to our present work, their work is mostly focused on exploring the capability of

LSTM in modeling the flow in reduced order space for data sets with less randomness.

Indeed, the data sets with less randomness have more “memory” in it, i.e., there are

persistent or anti-persistent trends and thus, are more controllable through LSTM

hyper-parameters. On the other hand, our present work is focused on exploring the

capability of ROM-LSTM framework in resolving large-scale geophysical flow problem

where the data sets mostly do not follow any particular trend. To this end, we develop a

modular ROM-LSTM approach in chaotic and quasi-stationary systems to see whether

it can overcome the instability issues associated with conventional ROMs for noisy

dynamical systems. To assess our proposed framework, we consider the barotropic

vorticity equation (BVE) representing the single-layer quasi-geostrophic (QG) model

as an example of the quasi-stationary system. We observe a remarkably efficient

predictive performance by the proposed framework based on LSTM (ROM-LSTM)

through a number of numerical experiments and analyses.

The layout of the paper is as follows: Section 4.3 provides an overview of the

barotropic vorticity equation describing a single-layer QG ocean model. In Section 4.4,

dimension reduction through Galerkin-projection and proper orthogonal decomposition

is illustrated briefly. Our proposed non-intrusive ROM-LSTM framework with a brief

introduction to LSTM are presented in Section 4.5. In Section 4.6, we evaluate the

predictive performance of the proposed ROM framework with respect to the standard

ROM and full order model solutions. Finally, Section 4.7 provides a summary of this

study and the conclusions drawn from it.
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4.3 Single-Layer Quasi-Geostrophic (QG) Ocean Circulation Model

In the present study, we consider the simple single-layer QG ocean circulation model

to develop and assess the performance of different ROM approaches. Following

Refs. (Holm and Nadiga, 2003; San et al., 2011), we consider the single-layer QG

problem as a benchmark for wind-driven, large-scale oceanic flow. Wind-driven

flows of mid-latitude ocean basins have been studied frequently by modelers using

idealized single- and double-gyre wind forcing, which helps in understanding various

aspects of ocean dynamics, including the role of mesoscale eddies and their effect on

mean circulation. However, modeling the vast range of spatio-temporal scales of the

oceanic flows with all the relevant physics has always been challenging. As a result, the

numerical simulation of oceanic and atmospheric flows still requires approximations and

simplifications of the full model. The barotropic vorticity equation (BVE) describing

the single-layer QG equation with dissipative and forcing terms is one of the most

commonly used models for the double-gyre wind-driven geophysical flows (Majda and

Wang, 2006).

The BVE model shares many features with the two-dimensional Euler and Navier-

Stokes equations and has been extensively used over the years to describe various

aspects of the largest scales of turbulent geophysical fluid dynamics (Holland and

Rhines, 1980; Munk and Wunsch, 1982; Griffa and Salmon, 1989; Cummins, 1992;

Greatbatch and Nadiga, 2000; Nadiga and Margolin, 2001). Using β−plane assump-

tion reasonable for most oceanic flows, the dimensionless vorticity-streamfunction

formulation of the forced-dissipative BVE can be written as (Rahman et al., 2018):

∂ω

∂t
+ J(ω, ψ)− 1

Ro

∂ψ

∂x
=

1

Re
∇2ω +

1

Ro
sin(πy), (4.1)

where ∇2 is the standard two-dimensional Laplacian operator. ω and ψ are the
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kinematic vorticity and streamfunction, respectively, defined as:

ω = ∇× u, (4.2)

u = ∇× ψk̂, (4.3)

where u is the two-dimensional velocity field and k̂ refers to the unit vector perpen-

dicular to the horizontal plane. The kinematic equation connecting the vorticity and

streamfunction can be found by substituting the velocity components in terms of

streamfunction in Equation (4.2), which yields the following Poisson equation:

∇2ψ = −ω. (4.4)

Equation (4.1) contains two dimensionless parameters, Reynolds number (Re) and

Rossby number (Ro), which are related to the physical parameters and non-dimensional

variables in the following way:

Re =
V L

ν
, Ro =

V

βL2
, (4.5)

where ν is the horizontal eddy viscosity of the BVE model and β is the gradient of

the Coriolis parameter at the basin center (y = 0). L is the basin length scale and

V is the velocity scale, also known as the Sverdrup velocity (Sverdrup, 1947), and is

given by

V =
τ0

ρH

π

βL
, (4.6)

where τ0 is the maximum amplitude of the double-gyre wind stress, ρ is the mean fluid

density, and H is the mean depth of the ocean basin. Despite not being explicitly

represented in Equation (4.1), there are two important relevant physical parameters,

the Rhines scale, δI , and the Munk scale, δM , which are the non-dimensional boundary
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layer thicknesses for the inertial and viscous (Munk) layer of the basin geometry,

respectively. As a physical interpretation of these parameters in BVE model, δI

accounts for the strength of nonlinearity and δM is a measure of dissipation strength.

δI and δM can be defined as

δI
L

=

(
V

βL2

) 1
2

,
δM
L

=

(
ν

βL3

) 1
3

(4.7)

and are related to Ro and Re by the following relations

δI
L

= (Ro)
1
2 ,

δM
L

=

(
Ro

Re

) 1
3

. (4.8)

Finally, the nonlinear advection term in Equation (4.1) is given by the Jacobian

J(ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (4.9)

Since ocean circulation models where the Munk and Rhines scales are close to each

other, like the QG model, remain time dependent rather being converged to a steady

state as time approaches to infinity (Medjo, 2000), numerical computations of these

models are conducted in a statistically steady state, also known as the quasi-stationary

state. Hence, in our study, we utilize numerical schemes suited for simulation of such

type of ocean models and for long-time integration. Details of the relevant numerical

discretization schemes, Poisson solver, and problem definitions for this study can be

found in elsewhere (Rahman et al., 2018; San et al., 2011; San, 2016).

4.4 Intrusive ROM-GP Methodology

The intrusive ROM framework is developed based on a standard Galerkin projection

methodology using the method of snapshots, an efficient method for computing the

POD basis functions (Sirovich, 1987). In this section, we give a brief idea on the
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ROM-GP framework utilized in our work. We obtain N number of snapshots for

vorticity field, ω(x, y, tn) for n = 1, 2, ..., N at pseudo-time t = tn from full order model

simulation (FOM). Algorithm 1 describes the POD basis construction procedure from

the stored snapshots.

We can approximate the field variables, i.e., kinematic vorticity and streamfunction

using the most energetic R POD modes, where R << N , such that these R largest

energy containing modes correspond to the largest eigenvalues (λ1, ..., λR). The

resulting full expression for the field variables can be written as:

ω(x, y, t) = ω̄(x, y) +
R∑
k=1

ak(t)φk(x, y), (4.10)

ψ(x, y, t) = ψ̄(x, y) +
R∑
k=1

ak(t)θk(x, y), (4.11)

where ak(t) accounts for both streamfunction and vorticity based on the kinematic

relation given by Eq. (4.4). It should be mentioned that in our ROM formulations, we

use the following angle-parenthesis definition for the inner product of two arbitrary

functions f and g: ∫
Ω

f(x, y)g(x, y)dxdy = 〈f ; g〉. (4.12)

Algorithm 1 POD basis construction

1: Compute the time-invariant mean fields and the fluctuation fields (mean-subtracted

snapshots) for the given number of snapshots of the 2D vorticity field as:

ω̄(x, y) =
1

N

N∑
n=1

ω(x, y, tn), (4.13)

ω′(x, y, tn) = ω(x, y, tn)− ω̄(x, y). (4.14)

2: An N ×N snapshot data matrix A = [aij ] is computed from the inner product of

mean-subtracted snapshots
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aij = 〈ω′(x, y, ti);ω′(x, y, tj)〉, (4.15)

where i and j refer to the snapshot indices.

3: Compute the optimal POD basis functions by performing an eigendecomposition

of A as AV = VΛ, where Λ is a diagonal matrix whose entries are the eigenvalues

λk of A, and V is a matrix whose columns vk are the corresponding eigenvec-

tors. In our computations, we use the eigensystem solver based on the Jacobi

transformations since A is a symmetric positive definite matrix (Press et al., 1992).

4: Using the eigenvalues stored in a descending order (i.e., λ1 ≥ λ2 ≥ · · · ≥ λN),

for proper selection of the POD modes in Λ, compute the orthogonal POD basis

functions for the vorticity field φk as

φk(x, y) =
1√
λk

N∑
n=1

vnkω
′(x, y, tn), (4.16)

where vnk is the nth component of the eigenvector vk. The scaling factor, 1/
√
λk,

is to guarantee the orthonormality of POD modes, i.e., 〈φi;φj〉 = δij, where δij is

the Kronecker delta.

5: Obtain the kth mode for the streamfunction, θk(x, y) utilizing the linear dependence

between streamfunction and vorticity given by Equation (4.4):

∇2θk = −φk, (4.17)

for each k = 1, 2, ..., R where R is the number of retained modes (R << N). To

be able to use the same ak(t) coefficients for both streamfunction and vorticity

fields, the following elliptic equation holds true for the mean variables:

∇2ψ̄ = −ω̄. (4.18)

6: Construct kth time-dependent modal coefficients ak(tn) for N snapshots by using
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POD modes and forward transformation:

ak(tn) = 〈ω(x, y, tn)− ω̄(x, y);φk〉. (4.19)

We refer to (Rahman et al., 2019a) for the details of the integration technique

utilized in this study. In conventional projection based intrusive ROM framework, we

apply Galerkin Projection to the governing equation, which yields R coupled ordinary

differential equations (ODEs) for the time evolution of the temporal modes of the

system while the spatial modes are kept constant (Kunisch and Volkwein, 2002; Rowley

et al., 2004; Aubry et al., 1988). Any standard time integration technique can be

utilized to solve the coupled ODE system, since the basis functions and corresponding

modal coefficients will be precomputed in the offline computation stage. The Galerkin

projection approach is summarized in Algorithm 2.

Algorithm 2 Galerkin projection to obtain ROM

1: Given an initial condition ω(x, y, t0) at time t0, compute the initial modal coeffi-

cients ak(t0) using the relation below:

ak(t0) = 〈ω(x, y, t0)− ω̄(x, y);φk〉. (4.20)

2: Perform an orthogonal Galerkin projection by multiplying the governing equation

with the POD basis functions and integrating over the domain (Rapún and Vega,

2010), which will yield the following dynamical system for ak:

dak
dt

= Bk +
R∑
i=1

Likai +
R∑
i=1

R∑
j=1

Nij
k aiaj, (4.21)

where k = 1, 2, ..., R and the predetermined model coefficients can be computed

by the following numerical integration (offline computing):
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Bk =
〈
− J(ω̄, ψ̄) +

1

Ro
(sin(πy) +

∂ψ̄

∂x
) +

1

Re
∇2ω̄;φk

〉
,

Lik =
〈
− J(ω̄, θi)− J(φi, ψ̄) +

1

Ro

∂θi
∂x

+
1

Re
∇2φi;φk

〉
,

Nij
k =

〈
− J(φi, θj);φk

〉
. (4.22)

4.5 Non-Intrusive ROM-LSTM Methodology

In this section, we discuss our proposed ROM-LSTM methodology. As outlined in

Algorithm 1, we obtain the time-dependent modal coefficients ak by performing a

POD transform on stored snapshot data. The modal coefficients are a sequence

of data points with respect to time, i.e., a time series representing the underlying

dynamical system. In intrusive or physics-based ROM, we do Galerkin projection using

governing equation to obtain a coupled system of ODEs for ak, and then solve the

ODE system on the given time interval. However, the limitations of projection based

ROMs, such as susceptibility to instability for noisy data set, numerical constraints for

solving ODE system, or inefficient reduced order modeling, encourage us to replace the

physics-based Galerkin projection phase of ROM-GP methodology with a data-driven

approach. Among the variety of ideas to resolve the issues associated with projection

based ROM, a number of published works related to ROM based on POD and neural

networks have shown signs of future success. The recurrent neural network (RNN) is

one of the widely used neural network architectures in ROMs which is designed to

operate on input information as well as the previously stored observations to predict

the dependencies among the temporal data sequences (Jaeger and Haas, 2004; LeCun

et al., 2015). LSTM is a special variant of RNN which is capable of tracking long-term

dependencies among the input data sequences. Hence, we consider LSTM recurrent

neural network to develop our non-intrusive ROM-LSTM framework. Before describing

the ROM-LSTM procedure, we first briefly review the LSTM architecture.
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As the name suggests, RNNs contain recurrent or cyclic connections that enable

them to model complex time-varying data sequences with a wide range of temporal

dependencies or correlations between them. In general, RNNs map a sequence of data

to another sequence through time using cyclic connections, and constrain some of the

connections to hold the same weights using back-propagation algorithm (Rumelhart

et al., 1988). However, the standard RNN architecture suffers from vanishing gradient

problem when the gradient of some weights starts to become too small or too large

(Bengio et al., 1994). This leads to the development of improved RNN architectures

which overcome the modeling issues of standard RNNs. One of the most successful

forms of improved RNN architectures is the LSTM network, which solves the limitation

of vanishing gradients (Hochreiter and Schmidhuber, 1997). In contrast to most of the

ANN architectures, LSTM operates by cell states and gating mechanisms to actively

control the dynamics of cyclic connections and thus, resolves the vanishing gradient

issues. Similar to the standard RNNs, LSTM can learn and predict the temporal

dependencies based on the input information and previously acquired information,

i.e., the internal memory of LSTM allows the network to find the relationship between

the current input and stored information to make a prediction.

The conventional LSTM architecture contains memory blocks in the recurrent

hidden layers, which have memory cells to store the cell states and gates to control

the flow of information. Each memory block has an input gate controlling the flow

of input activations into the cell, a forget gate to adaptively forgetting and resetting

the cell’s memory (to prevent over-fitting by processing continuous inflow of input

streams), and the output gate controlling the output flow of cell activations into the

next cell. In our LSTM architecture, we consider an input sequential data matrix

Xk =
{
a

(1)
k , a

(2)
k , ..., a

(N−σ)
k

}
for training, where σ is the lookback time-window. The

lookback time-window, in our definition, means the time history over which the LSTM

model does the training and prediction recursively. Indeed, increasing the value of
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σ increases the quality of training the model, but makes the model dependent on

an increased number of initial states during prediction. The LSTM model is trained

to an output sequential data matrix Yk =
{
a

(σ+1)
k , a

(σ+2)
k , ..., a

(N)
k

}
recursively (here,

k = 1, 2, ..., R and X ,Y ∈ a). Considering input gate as I, the forget gate as F ,

the output gate as O, the cell activation vectors as c, and the cell output as h, the

LSTM model does the mapping from the input states to an output state by using the

following equations at any instance n (Sak et al., 2014; Yeo and Melnyk, 2019):

Input network: X (n)
k = tanh

(
Whh

(n)
k +WYY(n)

k

)
, (4.23)

Gate functions: m
(n)
k = ζ

(
WmX (n)

k + bm

)
, (4.24)

for m ∈ (I,F ,O)

Internal cell state: c
(n+1)
k = F (n)

k � c
(n)
k + I(n)

k � ξ, (4.25)

where ξ = tanh
(
WcX (n)

k + bc

)
Output state: h

(n+1)
k = O(n)

k � tanh
(
c

(n+1)
k

)
, (4.26)

Output network: Ŷk
(n+1)

= WY2tanh
(
WY1h

(n+1)
k

+ bY1

)
+ bY2, (4.27)

where W represents the weight matrices for each gates, Ŷk
(n+1)

is the LSTM prediction,

b denotes the bias vectors for each gates, � is the element-wise product of vectors,

and ζ is the logistic sigmoid function.

Similar to the ROM-GP methodology, the workflow of the ROM-LSTM framework

consists of two phases as displayed in Figure 4.1. In the offline training phase, we first

obtain POD basis functions and modal coefficients using Algorithm 1. The known

time series of modal coefficients from training snapshots are used to train the LSTM

model. Based on the values of σ, the input of the LSTM modelM will be the previous

time states of the input modal coefficients for R retained modes and the output of
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the model will be the next time state recursively for R modes. Training LSTM model

is the computationally heavier part of the ROM-LSTM framework, but this is done

offline. In online testing phase, we recursively predict the modal coefficients for the

total time using the trained model M. The input of the trained model M will be the

initial states
{
a

(1)
1 , . . . , a

(1)
R ; . . . ; a

(σ)
1 , . . . , a

(σ)
R

}
based on the preselected value of σ and

the output will be recursive prediction of corresponding future time states. Thus, we

bypass the physics-based Galerkin projection part with completely data-driven neural

network approach to predict the modal coefficients. Also, the computational cost of

prediction through trained LSTM network is significantly lower than the physics-based

approach. Finally, we reconstruct the mean vorticity and streamfunction fields using

inverse transform to analyze the behavior of the quasi-stationary flow. The key steps

of the ROM-LSTM framework are outlined below in Algorithm 3.

Figure 4.1: Workflow diagram of the ROM-LSTM framework. Note that the training
phase (offline computation) is computationally heavier compared to the testing (online
computation) phase.

To design our LSTM architecture for ROM-LSTM framework, we utilize Keras
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(Chollet et al., 2015), a high level API designed for deep learning, combined with

standard Python libraries. The FOM simulation for data snapshots generation and

POD basis construction codes are written in FORTRAN programming language. We

utilize a deep LSTM network stacking 6 LSTM layers with 40 neurons in each layer.

The computational cost is found manageable in this deep architecture setup, which

encourages us to perform all the numerical experiments with this same setup. The

mean-squared error (MSE) is chosen as the loss function, and a variant of stochastic

gradient descent method, called ADAM (Kingma and Ba, 2014), is used to optimize

the mean-squared loss. The other relevant hyper-parameters utilized in our LSTM

architecture are documented in Table. 4.1. The hyper-parameters are kept constant for

all simulations to obtain a fair comparison between the results in different numerical

experiment runs. It should be noted that the training data is normalized by the

minimum and maximum of each time series to be in between the range [−1,+1].

Algorithm 3 ROM-LSTM framework

Training (offline)

1: Collect N snapshot data for the vorticity field, ω(x, y, tn) from the FOM simulation.

Here, ω(x, y, tn) =
{
ω(1)(x, y), ω(2)(x, y), . . . , ω(N)(x, y)

}
.

2: Compute R POD modes for kinematic vorticity, φk and streamfunction, θk using

Equation (4.16) and Equation (4.18), respectively, for k = 1, 2, ..., R.

3: Construct modal coefficients by a forward transform through projection

ak(tn) = 〈ω(x, y, tn)− ω̄(x, y);φk〉, (4.28)

where ak(tn) =
{
a

(1)
k , a

(2)
k , . . . , a

(N)
k

}
.

4: Train LSTM model on reduced order snapshots for selected lookback time-window

σ:
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M :
{
a

(n)
1 , . . . , a

(n)
R ; . . . ; a

(n−σ)
1 , . . . , a

(n−σ)
R

}
⇒
{
a

(n+1)
1 , . . . , a

(n+1)
R

}
. (4.29)

Testing (Online)

5: Given initial values {a(1)
k , a

(2)
k , . . . , a

(σ)
k } based on σ, precomputed mean values and

basis functions.

6: Use the trained LSTM model M to recursively predict ak(t) until final time

reached.

7: Reconstruct the mean fields by inverse transform using Equation (4.10) and

Equation (4.11).

Table 4.1: A list of hyper-parameters utilized to train the LSTM network for all
numerical experiments.

Parameters Values

Number of hidden layers 6
Number of neurons in each hidden layer 40
Batch size 16
Epochs 500
Activation functions in the LSTM layers tanh
Training-testing ratio 4:9
Validation data set 20%
Loss function MSE
Optimizer ADAM

4.6 Numerical Results

The predictive performance of the ROM-LSTM framework is thoroughly examined in

this section in terms of time series evolution of the modal coefficients and mean flow

fields. It is well documented in literature that the ROM-GP framework is incapable

of capturing mean flow dynamics for quasi-stationary flows using lower number of

POD modes, and susceptible to instability (San and Iliescu, 2014, 2015). There have
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been a number of approaches proposed in previous literature to improve the ROM

performance. One way to stabilize the ROM is by adding an empirical stabilization

parameter based on the analogy between large eddy simulation and truncated modal

projection (Aubry et al., 1988; Wang et al., 2012). Later, it is found that the ROM

performance further improves taking the optimal value for the stabilization parameter

rather than selecting it arbitrarily (Rempfer, 1991; San and Iliescu, 2014; Cazemier,

1997; San and Iliescu, 2015). In our previous work, we have shown that computing the

stabilization parameter dynamically at each time step improve the ROM performance

significantly (Rahman et al., 2019a).

However, the proposed ROM-LSTM methodology has several advantages over

the physics-based approaches, such as, no dependence on the underlying governing

dynamical system to obtain the solution, i.e., the process is free of numerical constraints,

no burden of adding stabilization parameter to account for instability issues and so

on.

To reach a conclusion about the performance of the ROM-LSTM framework,

we compare ROM-LSTM predictions with the FOM simulation and the standard

ROM-GP results. Moreover, we present the performance of the ROMs based on

lookback time-window σ and LSTM training for different number of POD modes

to show the robustness and capability of the proposed framework. Furthermore, we

present the L2-norm errors to perform a quantitative assessment on the accuracy of

the ROM-LSTM solutions with respect to ROM-GP solutions.

We choose the single-layer QG problem as our test bed to evaluate the performance

of ROMs. Because of the complex flow behavior with wide range of scales, QG problem

has been utilized as test problem in many notable literature (Cushman-Roisin and

Beckers, 2011; Holm and Nadiga, 2003; San et al., 2011; Cummins, 1992; Greatbatch

and Nadiga, 2000). To make the analyses simple and easily understandable, we present

simulation results only for Re= 450 and Ro= 3.6 × 10−3 flow condition, which can
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be considered turbulent enough and suitable for reduced order modeling. The FOM

simulation is done from t = 0 to t = 100 using a constant time step of ∆t = 2.5× 10−4

on a Munk layer resolving 256 × 512 grid resolution (i.e., consisting of about four

grid points in the Munk scale, i.e., δM/L = 0.02). To avoid the initial transient time

interval, we store 400 data snapshots from t = 10 to t = 50 to generate the POD bases

and modal coefficients to train the LSTM model. We refer to Ref. (Rahman et al.,

2019a) to get an idea on the POD analysis as well as the instantaneous vorticity field

plots for the same flow condition. The computational domain of our test problem is

(x, y) ∈ [0, 1]× [−1, 1]. To understand the nature of the QG data set, we compute the

Hurst exponent, H, for the modal coefficients. The Hurst exponent is a statistical

measure of the presence of long-term trends in a non-stationary time series (Hurst,

1951). Thus, the Hurst exponent can help in selecting the appropriate model for a

given time series prediction. We also note that the Hurst exponent has been utilized

in many research fields, e.g., hydrology, finance, and healthcare indsutry (Chandra

et al., 2013; Koutsoyiannis, 2003; Lahmiri and Boukadoum, 2014; Bassler et al., 2006;

Carbone et al., 2004). H can be statistically defined as (Qian and Rasheed, 2004):

E

[
Range(n)

SD(n)

]
= knH , as n→∞. (4.30)

Here, E is the expected value of the ratio between the range of the first n cumulative

deviations from the mean and their corresponding standard deviations (SD), n is the

time span of the observations, and k is constant. The range of H is in between 0 and

1. H → 1 means a persistent series (a strong trend in the time series at hand), H → 0

means an anti-persistent series (a time series with long-term switching between high

and low values) and H ≈ 0.5 indicates a random series (fewer correlations between

current and future observations). Interested readers are directed to Ref. (Mohan

and Gaitonde, 2018) for a detailed description of suitability of LSTM as a predictive

modeling approach for different time series data using the measurement of H. We
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calculate the H for modal coefficients of QG data set for given flow conditions using

the so called rescaled range (R/S) analysis, popularized by Mandelbrot and Wallis

(Mandelbrot and Wallis, 1968, 1969). The details of (R/S) analysis can be found in

Ref. (Qian and Rasheed, 2004). The Hurst exponents for the modal coefficients of QG

case are tabulated in Table 4.2, where we can see that the values of H are around 0.5.

This indicates the randomness of the QG problem, which can be a good representative

of large-scale quasi-stationary geophysical turbulent flow systems.

Table 4.2: Hurst exponents of modal coefficients.

Modal coefficient Hurst exponent

a1(t) 0.52
a2(t) 0.35
a3(t) 0.63
a4(t) 0.59
a5(t) 0.49
a6(t) 0.59
a7(t) 0.59
a8(t) 0.46
a9(t) 0.58
a10(t) 0.53

Figure 4.2 shows the mean streamfunction and vorticity field contours obtained by

the ROM-GP model. To compare the predictive performance of the ROM-GP model

with respect to the true solution, we include the mean contour plots of FOM simulation

on the left column as well. We can see the full order solution displays a four-gyre

circulation patterns for both mean streamfunction and vorticity fields. Since the

instantaneous fields for the QG flow is always fluctuating in time, it becomes difficult

to compare solutions of different models at the same time state. However, the mean

fields always exhibit the four-gyre circulation for higher Re (highly turbulent regime,

i.e., turbulence with weak dissipation) which implies a state of turbulent equilibrium

between two inner gyres circulation representing the wind stress curl forcing and

the outer gyres representing the eddy flux of potential vorticity (the northern and
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southern gyres found in geostrophic turbulence) (Greatbatch and Nadiga, 2000). In

our study, the time-averaged (mean) field data are obtained by averaging between

t = 10 to t = 100. Another point to be noted in FOM field plots that the bright orange

circulations in the four-gyres (top circulation of the inner gyres and bottom circulation

of the outer gyres) indicate the circulation in counter clockwise or positive direction

and the other two circulations signifies the circulation in clockwise direction. We can

observe in Figure 4.2 that the ROM-GP simulations with R = 10 and R = 20 modes

display a non-physical two-gyre circulation for streamfunction whereas the vorticity

field does not capture almost any conclusive physical pattern. However, the results

improve with increasing modes as we can see the streamfunction contour is showing

clear four-gyre patterns even though the vorticity plots are very noisy compared to

the true solution. These observations are supported by the time series evolution of

first and tenth modal coefficient plots in Figure 4.3. It is apparent that the increasing

modes stabilize the noise to reach a physical solution for both modal coefficients.

We note that the time scale in our formulation is normalized by L/V to obtain

dimensionless time unit. Following (San and Staples, 2013a), typical oceanic values

(e.g., L = 2000 km and β = 1.75 × 10−11 m−1s−1) yield approximately L/V = 0.25

year for Ro = 0.0036. Therefore, a numerical simulation over 100 computational time

units refers to the evolution of flow dynamics over 25 years in physical time. Therefore,

the intermittent bursts appeared in the true projection of the most energetic mode

(i.e., a1(t) indicate the seasonal variations in QG dynamics. Although ROM-GP

yields non-physical solution for R = 10 and R = 20 cases, ak(t) series reaches more

meaningful levels for R = 30 and beyond. However, it is hard to claim from Figure 4.3

that the ROM-GP yields an accurate prediction of these seasonal bursts even for

higher R values.

We present the field contours obtained by ROM-LSTM based on different σ values

in Figure 4.4. It can be seen that σ = 1 and σ = 2 do not provide much accurate
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results as the patterns get distorted in some extent even though they are being able

to capture the four-gyre. However, both streamfunction and vorticity contours show a

stable and accurate prediction of the true mean fields for σ = 4 and σ = 5. Though

the vorticity field contour is not displaying as smooth contour lines as the true solution

due to the reduction of dimension order, it is showing a better performance compared

to the ROM-GP solutions. As shown in the recent work of Yeo (Yeo, 2019), the LSTM

network trained on a noisy data learns to reduce the contributions of noisy input data

by developing its own dynamics and thus, the prediction remains close to the truth

rather than being unstable due to noisy input data. Hence, the LSTM prediction

is expected to yield a stable and physical solution for a fluctuating quasi-stationary

system. It should be noted that these results are obtained for LSTM training with

R = 10 modes. The time series evolution plots for the modal coefficients based on

σ = 5 and R = 10 modes in Figure 4.5 show that ROM-LSTM time series predictions

are almost on top of the true projection of modal coefficients. Even though the model

is trained for t = 10 to t = 50 only, the ROM-LSTM model is able to obtain a stable

and accurate prediction up to the final time t = 100.

Another impressive observation on the predictive capability of the ROM-LSTM

framework is presented in Figure 4.6 where we show the mean field plots based on

the number of modes retained to train the LSTM model. We keep σ = 5 for this

numerical experiment. As we can see the ROM-LSTM model is being able to capture

the four-gyre circulation even with only two modes. Indeed, the first few modes

contain most of the dynamics in the system and we can also see reduction of some

smaller scales for lower mode predictions. Nevertheless, this finding indicates the

prediction capability of the ROM-LSTM framework to produce a stable solution of

a noisy system. However, we have seen the ROM-GP model becomes unstable to

predict noisy data set with lower number of modes which makes it very inefficient. In

contrast, the proposed non-intrusive framework can be very efficient to produce stable
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solution with a very few modes. Since we observe promising predictive performance for

training with 2 modes only, we present a couple of more analyses on results obtained

by the ROM-LSTM framework retaining 2 modes for LSTM training. We can see

in Figure 4.7 that lower σ values simulations are unable to capture the fluctuations

along the mean and goes almost straight along the line after a few time states. The

model starts to capture the fluctuating flow fields with the increase of σ values. The

field plots in Figure 4.8 also displays the similar conclusions. Since the lower σ value

solutions stay along the line around the mean (unlike rapid oscillations in ROM-GP

solutions), the field plots still show the mean physics to some extent. It is obvious

that the model with lower σ ignores most of the scales of the system. However, the

prediction improves with higher σ as displayed in the Figure 4.8.

Finally, we include a comparison plot in Figure 4.9 where we present the first two

modal coefficients prediction obtained by different ROM set up. The σ value is kept

5 for all the ROM-LSTM simulations. As expected, the ROM-GP solutions for 10

modes become totally non-physical and unstable. On the contrary, the ROM-LSTM

predictions for R = 2, R = 4, R = 8 and R = 10 modes show a good match between

the true solution and the prediction. For the quantitative assessment on the accuracy

of both ROM-GP and ROM-LSTM frameworks, L2-norm errors of the reduced order

models (with respect to FOM) for the mean vorticity and streamfunction fields are

tabulated in Table 4.3. The root mean-square error or Euclidean L2-norm error is

computed by:

L2 = ||e||2 =

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

e2
i,j (4.31)

where Nx and Ny are the grid resolutions in x and y directions. For the vorticity field,
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the error i.e., the difference between the predicted mean and FOM solution mean is:

ei,j =
∣∣ω̄ROM

i,j − ω̄FOM
i,j

∣∣. (4.32)

For ROM-LSTM framework, the results are presented for R = 10 modes. We can

observe that the prediction accuracy increases with the increase in lookback time-

window σ and we can obtain a more accurate result than the ROM-GP simulation with

R = 80 using only 10 modes in ROM-LSTM framework. We present the CPU time per

time step (between t = 10 and t = 100) for ROM-LSTM framework simulations based

on R = 10 modes and different σ in Table 4.4. We can observe a gradual reduction of

computational time (for both training and testing) with lower values of σ. All the

simulations of ROM-LSTM frameworks are done in Python programming environment

and CPU time is computed as per time step. The computational time step is set to

1.00× 10−1 for online testing. In our FOM simulation in FORTRAN, the CPU time

is about 1.17× 10−1 (between t = 0 and t = 100), where computational time step is

set ∆t = 2.5× 10−5 due to the CFL restriction of numerical stability for our explicit

forward model on the resolution of 256× 512. We refer to Ref. (Rahman et al., 2019a)

to get an idea about the computational overhead for ROM-GP frameworks using same

flow conditions. It should be mentioned that the ROM-GP computations are done

using FORTRAN programming platform. Even so, we observe our ROM-LSTM CPU

times are in the same order of ROM-GP simulations with R = 80 modes. In Table 4.4,

we show the computational cost for R = 10 modes only since the CPU time (both

training and testing) for other ROM-LSTM runs using different modeling conditions

are in same order.
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Figure 4.2: Mean streamfunction and vorticity fields obtained by the FOM simulation
and the standard ROM-GP simulation at Re = 450 and Ro = 3.6×10−3 flow condition.
(a) ψFOM at a resolution of 256× 512, (b) ψROM-GP with R = 10 modes, (c) ψROM-GP

with R = 20 modes, (d) ψROM-GP with R = 40 modes, (e) ψROM-GP with R = 80
modes, (f) ωFOM at a resolution of 256× 512, (g) ωROM-GP with R = 10 modes, (h)
ωROM-GP with R = 20 modes, (i) ωROM-GP with R = 40 modes, (j) ωROM-GP with
R = 80 modes.
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Figure 4.3: Time series evolution of the first and tenth modal coefficients, a1(t) and
a10(t) respectively, between t = 10 to t = 100 for standard ROM-GP simulation at Re
= 450 and Ro = 3.6× 10−3. (a) a1(t) for ROM-GP with R = 10 modes, (b) a10(t) for
ROM-GP with R = 10 modes, (c) a1(t) for ROM-GP with R = 20 modes, (d) a10(t)
for ROM-GP with R = 20 modes, (e) a1(t) for ROM-GP with R = 30 modes, (f)
a10(t) for ROM-GP with R = 30 modes, (g) a1(t) for ROM-GP with R = 40 modes,
(h) a10(t) for ROM-GP with R = 40 modes, (i) a1(t) for ROM-GP with R = 80 modes,
(j) a10(t) for ROM-GP with R = 80 modes. True projection series is underlined in
each figure with black straight line. The training zone is shown with orange dashed
line (from t = 10 to t = 50) and the out-of-sample testing zone is shown with red
dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each figure.
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Figure 4.4: Mean streamfunction and vorticity fields obtained by the ROM-LSTM
simulation based on different lookback time-window, σ at Re = 450 and Ro = 3.6×10−3

flow condition. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM with σ = 1,
(c) ψROM-LSTM with σ = 2, (d) ψROM-LSTM with σ = 4, (e) ψROM-LSTM with σ = 5, (f)
ωFOM at a resolution of 256 × 512, (g) ωROM-LSTM with σ = 1, (h) ωROM-LSTM with
σ = 2, (i) ωROM-LSTM with σ = 4, (j) ωROM-LSTM with σ = 5. Note that the LSTM
model is trained with R = 10 modes.
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Figure 4.5: Time series evolution of the modal coefficients between t = 10 to t = 100
for ROM-LSTM simulation at Re = 450 and Ro = 3.6× 10−3. Note that the LSTM
model is trained with R = 10 modes and σ = 5. True projection series is underlined
in each figure with black straight line. The training zone is shown with orange dashed
line (from t = 10 to t = 50) and the out-of-sample testing zone is shown with red
dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each figure.
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Figure 4.6: Mean streamfunction and vorticity fields obtained by the ROM-LSTM
simulation based on the number of modes to train the LSTM model at Re = 450 and
Ro = 3.6× 10−3 flow condition. (a) ψFOM at a resolution of 256× 512, (b) ψROM-LSTM

for LSTM training with R = 2 modes, (c) ψROM-LSTM for LSTM training with R = 4
modes, (d) ψROM-LSTM for LSTM training with R = 8 modes, (e) ψROM-LSTM for LSTM
training with R = 10 modes, (f) ωFOM at a resolution of 256 × 512, (g) ωROM-LSTM

for LSTM training with R = 2 modes, (h) ωROM-LSTM for LSTM training with R = 4
modes, (i) ωROM-LSTM for LSTM training with R = 8 modes, (j) ωROM-LSTM for LSTM
training with R = 10 modes. Note that the LSTM model is trained with σ = 5.
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Figure 4.7: Time series evolution of the modal coefficients between t = 10 to t = 100
for ROM-LSTM simulation based on different lookback time-windows, σ and LSTM
training with R = 2 modes at Re = 450 and Ro = 3.6× 10−3. (a) a1(t) with σ = 1,
(b) a2(t) with σ = 1, (c) a1(t) with σ = 2, (d) a2(t) with σ = 2, (e) a1(t) with σ = 3,
(f) a2(t) with σ = 3, (g) a1(t) with σ = 4, (h) a2(t) with σ = 4, (i) a1(t) with σ = 5,
(j) a2(t) with σ = 5. True projection series is underlined in each figure with black
straight line. The training zone is shown with orange dashed line (from t = 10 to
t = 50) and the out-of-sample testing zone is shown with red dashed line (from t = 51
to t = 100) in ROM-LSTM solution series in each figure.
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Figure 4.8: Mean streamfunction and vorticity fields obtained by the ROM-LSTM
simulation based on different lookback time-windows, σ and LSTM training with
R = 2 modes at Re = 450 and Ro = 3.6× 10−3. (a) ψFOM at a resolution of 256× 512,
(b) ψROM-LSTM for LSTM training with σ = 2, (c) ψROM-LSTM for LSTM training
with σ = 3, (d) ψROM-LSTM for LSTM training with σ = 4, (e) ψROM-LSTM for LSTM
training with σ = 5, (f) ωFOM at a resolution of 256× 512, (g) ωROM-LSTM for LSTM
training with σ = 2, (h) ωROM-LSTM for LSTM training with σ = 3, (i) ωROM-LSTM for
LSTM training with σ = 4, (j) ωROM-LSTM for LSTM training with σ = 5.
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Figure 4.9: Time series evolution of first two modal coefficients, a1(t) and a2(t)
respectively, between t = 10 to t = 100 for different ROMs at Re = 450 and Ro
= 3.6× 10−3. (a) a1(t) for ROM-GP with R = 10 modes, (b) a2(t) for ROM-GP with
R = 10 modes, (c) a1(t) for ROM-LSTM trained with R = 2 modes, (d) a2(t) for
ROM-LSTM trained with R = 2 modes, (e) a1(t) for ROM-LSTM trained with R = 4
modes, (f) a2(t) for ROM-LSTM trained with R = 4 modes, (g) a1(t) for ROM-LSTM
trained with R = 8 modes, (h) a2(t) for ROM-LSTM trained with R = 8 modes, (i)
a1(t) for ROM-LSTM trained with R = 10 modes, (j) a2(t) for ROM-LSTM trained
with R = 10 modes. True projection series is underlined in each figure with black
straight line. The training zone is shown with orange dashed line (from t = 10 to
t = 50) and the out-of-sample testing zone is shown with red dashed line (from t = 51
to t = 100) in ROM-LSTM solution series in each figure.
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Table 4.3: L2-norm errors of the reduced order models (with respect to FOM) for the
mean vorticity and streamfunction fields. Note that the ROM-LSTM model trained
with R = 10 modes results are presented here.

Vorticity Streamfunction

Intrusive ROM
ROM-GP (R = 10) 3.19× 106 5.59× 103

ROM-GP (R = 20) 4.46× 105 9.87× 102

ROM-GP (R = 30) 9.35× 102 9.99× 10−1

ROM-GP (R = 40) 6.60× 102 4.33× 10−1

ROM-GP (R = 80) 1.16× 103 3.84× 10−1

Non-intrusive ROM
ROM-LSTM (σ = 1) 1.90× 103 6.12× 10−1

ROM-LSTM (σ = 2) 2.50× 103 7.01× 10−1

ROM-LSTM (σ = 3) 8.63× 102 3.65× 10−1

ROM-LSTM (σ = 4) 2.69× 102 2.09× 10−1

ROM-LSTM (σ = 5) 4.70× 102 1.29× 10−1

Table 4.4: Computational overhead for the ROM-LSTM model trained with R = 10
modes. For training, CPU time is presented as per epoch for 400 samples and for
testing, CPU time is presented as per time step. Note that, the time step for testing is
set 1.00× 10−1 since the non-intrusive set up is free of numerical stability constraints.

ROM-LSTM Training time (s) Testing time (s)

σ = 1 8.10× 10−2 1.15× 10−3

σ = 2 1.07× 10−1 1.38× 10−3

σ = 3 1.30× 10−1 1.56× 10−3

σ = 4 1.59× 10−1 1.79× 10−3

σ = 5 1.80× 10−1 2.00× 10−3
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4.7 Summary and Conclusions

In this paper, we propose an efficient and robust fully non-intrusive ROM framework

to capture the large spatio-temporal scale of fluctuating quasi-stationary systems. Due

to the robustness and stability of LSTM recurrent neural network in predicting noisy

dynamical systems, we consider LSTM architecture to develop our data-driven ROM,

denoted as ROM-LSTM in this paper. As an example of large-scale turbulent flows

exhibiting a wide range of spatio-temporal scales, we investigate the reduced order

modeling of a simple general ocean circulation model, single-layer QG turbulence,

to assess the predictive performance of our proposed ROM-LSTM framework. It

was previously observed that the conventional physics-based (or intrusive) ROM of

QG model requires a large number of POD modes to yield stable and physical flow

dynamics. However, the proposed ROM-LSTM framework shows a very promising

improvement in reduced order modeling that only a few modes are able to capture

a physical solution without any prior knowledge about the underlying governing

equations. We first demonstrate that the conventional Galerkin projection ROM

approach yields non-physical predictions when we use a small number of representative

modes. Although ROM-GP converges to a more physical solution when increasing the

number of modes, it does not seem to capture the intermittent bursts appearing in the

dynamics of the first few most energetic modes. However, the proposed ROM-LSTM

approach is able to capture these bursts and yields remarkably accurate results even

when using a small number of modes.

The proposed methodology consists of two phases: offline training and online testing

or prediction phase. Initially, we collect the high-fidelity simulation or experimental

data snapshots for a certain flow condition. The data snapshots are collected up

to a certain time of the full order model simulation for training. Then we do a

mapping of the high-resolution instantaneous data snapshots into a reduced order, i.e.,

low-dimensional space through POD transform. In this process, we generate POD
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basis functions of the field variables and time dependent modal coefficients for training

the LSTM architecture. The LSTM architecture is trained for the modal coefficients

based on a preselected lookback time-window, σ. In the online phase, the trained

model is used to predict the modal coefficients recursively for the total time based on

initial time history and σ. Finally, we reconstruct the mean fields for analyses using

the predicted coefficients, precomputed basis functions, and mean field values.

We demonstrate the performance of the ROM-LSTM through time series evolution

of modal coefficients and mean vorticity and streamfunction fields. To assess the

performance of the proposed model, the ROM-LSTM predictions are compared with

the high-dimensional solutions as well as with the conventional Galerkin projection

based ROM (ROM-GP) solutions. We find that the ROM-LSTM predictions are

stable and accurate even with only a couple of POD modes. On the other hand, the

ROM-GP framework, as expected, requires a very large number of modes to obtain a

physically stable solution, since the ROM-GP framework is susceptible to numerical

instability in quasi-stationary flow fields. We further observe that the ROM-LSTM

framework gives accurate and physical predictions based on a few time history data

points. Indeed, if we increase the value of σ, the prediction accuracy will increase,

but the computational cost of offline training and online prediction will also go up.

To quantify the accuracy of the prediction of ROM-LSTM framework, we present

the L2-norm errors for ROM-GP and ROM-LSTM frameworks, which show that the

proposed framework trained with 10 modes and σ = 5 gets a better accuracy than the

ROM-GP predictions with 40 or 80 modes.

Based on our findings, we conclude that the ROM-LSTM framework is a better

tool than the ROM-GP framework for large-scale quasi-stationary flows in terms of

prediction and reduced order modeling. Since the ROM-LSTM framework is fully

non-intrusive, it does not rely on the governing equations to obtain the solution,

which means that there are no numerical constraints while predicting the solutions.
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Additionally, it is computationally more efficient to predict the solution using a trained

model rather than the physics-based approach of solving ODEs. Hence, the proposed

ROM-LSTM framework can be considered a very promising approach in developing a

robust and efficient ROMs for large-scale flows with noisy spatio-temporal behavior.

In our future works, we will focus on testing the ROM-LSTM framework in more

complex three-dimensional turbulent flow problems. We also plan to improve the

existing framework based on our findings, and implement the updated framework in

suitable ROM applications, such as, flow control, uncertainty quantification, and data

assimilation.
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CHAPTER V

Concluding Remarks

In this chapter, we summarize the major aspects of this work, draw some key conclu-

sions based on the findings from different numerical experiments, and finally articulate

several potential research avenues that may emerge from this thesis work.

5.1 Summary and Discussions

In this thesis, we propose three distinct ROM ideas to improve POD based ROM

framework for quasi-stationary geophysical flows. As a representative test problem of

geophysical flows, we consider the simple single-layer QG ocean circulation model to

investigate the robustness of the proposed frameworks. In the current age of massive

amount of data resources, researchers are more keen to build modeling algorithms

based on existing data information. One benefit of building models based on a data

set is to get rid of dependence on underlying equation of a system. Hence, the same

model can be utilized for any kind of data set with similar trend irrespective to the

governing equations. It has been accepted to the turbulence modeling community that

ROM has great potential to reduce the computational expenses significantly which

can make large-scale turbulent flow simulations manageable with acceptable range of

accuracy. However, developing an efficient and robust ROM model has still been a

subject of active research. The main motivation of conducting this study is to develop

efficient and robust ROM frameworks for complex large-scale flow problems using

physics-based, data-driven, or hybrid of both approaches, solution methodologies.

In the physics-based solution approach, we put forth a dynamic closure modeling

148



framework for ROM (ROM-D) based on the idea of test truncation, analogous to the

test filtering in dynamic eddy viscosity model in LES, in order to stabilize the POD and

Galerkin projection based ROM. Since the solution is obtained using the underlying

governing equation, this solution approach is considered as physics-based approach. In

the data-driven solution approach, we propose a fully non-intrusive ROM framework

(ROM-LSTM) using the time series prediction capability of LSTM recurrent neural

network for noisy dynamical systems. Since the training and prediction is done by

LSTM architecture, this framework is fully free of underlying governing equation

to obtain the solution. For the hybrid ROM approach, we demonstrate one way

of developing hybrid ROM model (ROM-H) by combining the standard Galerkin

projection based ROM (physics-based) and ELM neural network architecture (data-

driven) to obtain the solutions. It should be noted that the hybridization can be done

many other different ways using different variants of physics-based and data-driven

architectures. We also present a qualitative and quantitative assessments of the

proposed models with respect to the full order model simulation and other types of

ROMs using the mean flow field contours and time series evolution of the flow field.

We also present the strengths and weaknesses of different solution strategies in chapter

3. To outline the conclusions, following we present the key sentences drawn from

different numerical experiments in this study:

1. The physics-based ROM-D model with 10 modes predicts the true solution with

a same order of accuracy as a standard Galerkin projection ROM solution with

80 modes. This implies considerable savings in terms of both storage needs and

computing time. Since the ROM-D model includes dissipative contributions

from truncated modes through the stabilization parameter, it is expected to

capture a greater percentage of the energy in the system using lower R values in

ROM-D model. As a result, we can see a huge reduction in overall computational

overhead for equally accurate solution using ROM-D model.
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2. For physics-based dynamic ROM approach, the higher modes combined with

different values of test truncation exhibits more gain in accuracy of the predictions.

The model displays a consistent prediction for 20 modes irrespective to different

test truncation values which indicates the robustness of the ROM-D model.

3. The ROM-D model shows better extrapolatory predictive performance than the

conventional projection based ROM for the same value of POD modes.

4. The ROM-H model proposed in chapter 3 is shown to have better predictive

performance than the standard physics-based ROM and data-driven ROM. The

ROM-H model performs better for long time forecasting and out of sample

prediction as well.

5. Even though there is a compromise in simulation time for ROM-H model, it is

observed that the ROM-H model is successful in leveraging the advantages of

component ROM models to generate an accurate solution using a very lower

number of POD modes.

6. The non-intrusive ROM-LSTM framework shows a stable and accurate prediction

even with only a couple of POD modes and without any prior knowledge about

the underlying governing equation. The prediction accuracy of ROM-LSTM

model with 10 modes is equivalent to the conventional ROM predictions with 80

modes.

7. The ROM-LSTM framework gives a consistent prediction based on a very few

time history data for LSTM model training. The prediction is stable and accurate

for the out of sample data which indicates the long time forecasting capability

of the ROM-LSTM model for noisy dynamical systems.
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5.2 Future Work

In future, many engineered systems will have plenty of sensor data and will require fast,

real-time simulation and monitoring of complex systems for on the spot analysis, control

and decision-making in the context of Digital Twin a possibility (Damjanovic-Behrendt

and Behrendt, 2019; Kalashnikova and Barone, 2010; Tao et al., 2018). A Digital Twin

may be defined as: the virtual representation of a physical object or system across its

life cycle, using real-time data and other sources to enable understanding, learning,

reasoning, and dynamic re-calibration for improved decision-making (Grieves, 2011).

Some examples of such systems are self-aware aerospace vehicles, smart manufacturing,

real-time adaptive emergency response, quantification of the compressible captive-

carry environment, and so on. In Ref. (Tao et al., 2018) and the references therein,

the concept and development of Digital Twin and their future prospect and current

challenges in the industry applications are reviewed in details. To develop Digital

Twin in complex environments, the system will require adaptive and computationally

efficient data-enabled modeling frameworks and algorithms which can leverage the

advantages of existing data. Since ROMs are by construction small in terms of

computational memory and fast, they can be a good fit for these purposes. Using an

offline/online decomposition of tasks, ROMs can enable rapid prediction, inversion,

control, and uncertainty quantification of large-scale scientific and engineering systems

(Aguado et al., 2017; Belkadi et al., 2019; Borzacchiello et al., 2019, 2017). Indeed,

there exists a number of reduced order modeling techniques and we yet need to address

several shortcomings of conventional ROM frameworks to reach fully application level.

Hence, in this thesis work, we concentrate on improving the performance of POD

based ROM by utilizing several modeling strategies and the proposed models are

observed to improve the performance significantly. As a continuation of this work, the

following studies can be devised:

1. In this study, we implement the proposed models in a static fashion, i.e., we
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collect a set of data, then develop a new reduced model from scratch for that

data set only for prediction. However, to do real-time analysis, we will encounter

a rapid change in input data set and it will become costly to recourse to the high-

dimensional system every time. Hence, we can implement the proposed ROMs

in a dynamical sense where the reduced models will be adapted during online

phase with respect to dynamically collected data from simulations (Peherstorfer

and Willcox, 2015). This will enable us to do online control, optimization,

uncertainty quantification type of applications using ROMs.

2. Using unsupervised machine learning strategy like k-means clustering, cluster

set of snapshot data can be generated to construct separate local ROM for each

cluster. During the online prediction phase, the state of the input data stream

can be classified and the local ROM can be selected accordingly (Peherstorfer

et al., 2014).

3. The proposed ROMs can be tested for parametric industrial applications in CFD

as a future work. Rozza et al. presented an overview of the challenges faced

and possible solutions in using ROMs for industrial CFD problems (Rozza et al.,

2018).

4. ROMs can be utilized to reduce the computational cost associated with the

optimization loops in data assimilation. Data assimilation is a powerful technique

which provides an optimal state estimate of an evolving system , widely used in

operational weather and ocean forecasting, satellite observations and so on. An

efficient ROM framework, as proposed in this study, can enhance the performance

efficiency of data assimilation as well.

5. There have been a number of published literature on the flow control applications

using ROMs which can also be a future research direction of testing the proposed

ROM frameworks.
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6. The development of Digital Twin for the offshore wind power generation can be

a promising future prospect of developing efficient ROM frameworks for wind

driven ocean circulation model. To harvest offshore wind energy, the wind farms

are constructed in the bodies of water. Based on the collection of sparse data

from different wind turbines of the wind farms through sensors, the direction

of the wind turbine blades can be manipulated using real-time simulation to

generate more energy or to reduce the damage on the interior and exterior of

the wind turbines due to terrain induced turbulence.
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