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Name: JORGE LIGHTFOOT 

Date of Degree: JULY, 2019 

Title of Study: METABOLICALLY ENGINEERING ASPERGILLUS NIDULANS FOR CLIENT 
PROTEIN PRODUCTION 

Major: MICROBIOLOGY AND MOLECULAR GENETICS 

Abstract:  The filamentous fungi, A. nidulans, can produce nearly 100 grams per liter of 
industrially relevant proteins under optimal conditions. However, many of these proteins are 
degraded or produced alongside other proteins, which drastically reduce their efficacy in a 
cellulose fermentation reaction. 

The aim of this work is to redesign the regulatory genetic circuitry of Aspergillus nidulans to 
efficiently produce client proteins. We have successfully reengineered the cellulase regulatory 
network to produce cellulases in the presence of the C5-sugar xylose. By replacing expensive 
substrates with a cheap by-product carbon source we reduce enzyme production costs and lower 
operational costs by eliminating the need for off-site enzyme production, purification, 
concentration, transport and dilution.  

We also propose a novel mechanism, utilizing RNA interference, to combinatorially silence 
genes, which degrade or contaminate client proteins. Using dual promoters, we will flank a 
sequence containing 30 or 40bp complementary sequences for multiple client genes. This will 
induce double stranded RNA production, in turn loading these individual complementary 
sequences into the Argonaute complex, silencing the messenger RNA for each target gene.  

We have also utilized LC-MS/MS to examine changes in the proteome of our silenced strains. We 
have seen marked decreases in our target gene sequences as well as the induction of new proteins, 
acting as a compensation mechanism for the fungus. 

Our silenced strains, when transformed to produce client proteins, have also had a marked change 
in the amount of protein produced, as well as how long it lasts in the media during production. 
We have continued this work by silencing genes responsible for unwanted amylolytic activity in 
client protein production. 
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CHAPTER I 
 

REVIEW OF LITERATURE 

1.1 Lignocellulose as an energy source 

Lignocellulose is a promising renewable energy source for biofuel production (Lynd, van 

Zyl et al. 2005, Harris, Xu et al. 2014, Kim, Lee et al. 2014). Historically the conversion of 

lignocellulose to biofuels has been completed in three main steps: pretreatment, enzymatic 

hydrolysis, and fermentation of the released reducing sugars (Lynd, van Zyl et al. 2005, Lynd, 

Laser et al. 2008). Due to the rigidity of the structure of cellulose contained in lignocellulose, the 

enzymatic hydrolysis of this molecule is notoriously slow and expensive. (Selig, Viamajala et al. 

2007, Lynd, Laser et al. 2008). Recent attention has been directed towards the use of synergistic 

fungal proteins to enhance the speed and cost of the enzymatic hydrolysis of cellulose (Kim, Lee 

et al. 2009, Harris, Welner et al. 2010, Kim, Ko et al. 2013, Kim, Lee et al. 2014).  

Lignocellulose, which is composed of cellulose, hemicellulose and lignin, is the most 

abundant renewable biomass on earth (Kim, Lee et al. 2014). The cellulose fiber is composed of 

β1, 4- glycosidic bond-linked polymers that are tightly packed into a microfibril structure 

(Somerville, Bauer et al. 2004, Hall, Bansal et al. 2010). These cellulose microfibrils are 

surrounded by a matrix of hemicellulose and the aromatic molecule, lignin (Somerville, Bauer et 

al. 2004, Hall, Bansal et al. 2010). Thus far, hydrolytic cellulases such as endoglucanases, 

cellobiohydrolases and β- glucosidases, have only had moderate success in hydrolyzing cellulose 

completely (Garvey, Klose et al. 2013). 
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Low accessibility to the cellulose for these enzymes impedes efficient hydrolysis, with 

inaccessible regions remaining intact, even after various chemical and physical pretreatments (Ding 

and Himmel 2006, Arantes and Saddler 2010). Furthermore, cellulose in its fibril form has a high 

amount of individuality in its molecular architecture depending on its plant source (Ding and Himmel 

2006, Arantes and Saddler 2010).  

 Microfibrils of cellulose are composed of 30-26 glucan chains, which aggregate laterally 

using hydrogen bonds in order to produce crystalline structures (Somerville, Bauer et al. 2004, Ding 

and Himmel 2006). It is likely that the crystal structures of cellulose affect the rate of diffusion of key 

enzymes and other reactants and therefore play an important role in the accessibility of cellulose, thus 

affecting its hydrolysis (Arantes and Saddler 2010). A higher degree of microfiber aggregation 

produces a more compact structure, creating an environment that is impenetrable even by water 

molecules (Krassing 1993). This type of structure means that only the cellulose molecules on the 

surface are capable of being hydrolyzed by cellulase enzymes (Krassing 1993). Therefore, if cellulose 

is only susceptible to enzyme activity at the surface area, then creating an environment that 

maximizes the amount of surface area of cellulose which would contribute to accessibility by 

cellulases (Wood, McCRAE et al. 1989, Laureano-Perez, Teymouri et al. 2005). In order to do this, 

synergistic proteins and treatments have been implemented to reduce the degree of aggregation 

among fibers and create a larger surface area (Arantes and Saddler 2010). 

 

1.2 Processing lignocellulose 

 Biomass, lignocellulosic polymers are a massive, renewable, and available source for 

production of biofuels and biochemicals, because they trap about 60% of all sugars produced by 

plants on earth.  Just as it happens in nature, man-made lignocellulosic biomass such as corn stover 

and sugar cane bagasse pileup along bio refineries and could be broken down enzymatically (Lal 
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2005, Amorim, Lopes et al. 2011).  However, the cost of cellulase cocktails are the bottleneck to the 

economical production of these second generation biofuels (Phillips, Beeson et al. 2011).  Enzymatic 

conversion of lignocellulose into sugars is a slow and expensive process, largely because cellulose is 

an insoluble crystalline substance (Himmel and Bayer 2009, Regalbuto 2009, Regalbuto 2011). 

 For cellulase aided breakdown of cellulose to take place, a single chain must be separated 

from the crystalline fiber and fitted into an enzyme binding site where catalytic Asp or Glu residues 

hydrolyze through a general acid/base mechanism the glycosydic bond (Divne, Stahlberg et al. 1994, 

Stahlberg, Divne et al. 1996).  The disconnection of the glucan chain from crystalline cellulose fibers 

has been proposed to be the bottleneck in enzymatic hydrolysis of cellulose (Himmel and Bayer 

2009). 

 The typical process for converting biomass to biofuel and bio based chemicals is composed 

of three steps: biomass pretreatment, enzymatic hydrolysis, and fermentation (He, Ding et al. 2017). 

Since the cellulose and cellulose are tightly packed into the biomass with lignin, this results in low 

accessibility for enzymes to saccharify the biomass (He, Ding et al. 2017). Ideally the biomass will be 

pretreated in such a way that the recalcitrant lignin structures are disrupted to expose the cellulose and 

hemicellulose increasing the accessibility of these important carbohydrate sources to the enzymes to 

enhance the yield of sugars through fermentation (Wyman, Dale et al. 2005). Various technologies for 

pretreatment exist such as: physical (milling, chipping, and grinding), chemical (alkaline, acidic, 

oxidizing chemicals, and organic solvents). (Hendriks and Zeeman 2009) There is also the potential 

to use these pretreatments in combination. (Hendriks and Zeeman 2009) However, while the methods 

of pretreatment may vary, the goals remain the same. Pretreatment technology aims to: produce solids 

that are highly digestible enzymatically, avoid the degradation of the final product, and minimize the 

production of inhibitory chemicals (such as phenolics). 
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1.3 Fungal enzymes for the degradation of lignocellulose 

This recalcitrance towards the degradation of cellulose is abundantly illustrated in the 

repertoire of cellulose degrading enzymes (cellulases) produced by microorganisms that try to use this 

polymer as a carbon source.  Cellulases belong to the hydrolase class of enzymes responsible for 

hydrolyzing the 1-4 glycosidic linkages found in cellulose(EC 3.2.1.4). (Srivastava, Srivastava et al. 

2018) Most microorganisms produce at least three types of cellulose hydrolytic bond breaking 

enzymes; cellobiohydrolases, endoglucanases and glucosidases. (Payne, Knott et al. 2015) 

Endoglucanases initiate hydrolysis by exposing reducing and non-reducing ends, which are acted 

upon by the cellobiohydrolases to produce cello-oligosaccharides and cellobiose units. Glucosidases 

then can reduce the cellobioses to release glucose molecules completing the hydrolysis process. (Bhat 

and Bhat 1997) Fungal species are particularly adept at breaking down biomass in nature and can be 

of great importance in an industrial setting as well. 

Cellulases from fungus are currently the third largest industrial enzyme worldwide and could 

become the largest volume industrial enzyme if a fermentation product (such as ethanol and butanol) 

becomes a major transportation fuel. (Wilson 2009) Currently industrial cellulases are almost all 

produced by aerobic cellulolytic fungi such as Trichoderma reesei and Aspergillus nidulans. (Ortega, 

Busto et al. 2001) Filamentous fungi are major cellulase producers and are widely utilized due to their 

ability to produce large amounts of enzymes cheaply. (Segato, Damásio et al. 2012) 

 

1.4 Fungal cell factories 

Fungal cell factories (Segato, Damásio et al. 2012) or plant and mammalian cell lines are 

widely utilized in industry to produce large amounts of enzymes for low-cost applications or low 

quantities of high valued pharmaceuticals, respectively.  When naturally occurring, cells are 

manipulated to forcibly synthesize a product, they often need to be genetically rewired to redirect 
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metabolic pathways towards a desired product.  For example, the genus Aspergillus and Trichoderma 

are the main cell factories utilized in large-scale protein production (Bodie, Bower et al. 1994, 

Conesa, Punt et al. 2001, Punt, van Biezen et al. 2002, Nevalainen, Te'o et al. 2005, Sims, Gent et al. 

2005, Squina, Mort et al. 2009, Fleissner and Dersch 2010, Kuck and Hoff 2010, Damásio, Silva et 

al. 2011).  In order to achieve high yield protein production strains need to be manipulated (Verdoes, 

Punt et al. 1994, Nieto, Prieto et al. 1999, Meyer, Wu et al. 2011) such as design of strong promoters 

and secretion signals (Wiebe, Robson et al. 2001, Record, Asther et al. 2003, Meyer, Wu et al. 2011); 

construction of fusion proteins which allow efficient secretion of the target protein (Joosten, Lokman 

et al. 2003); construction of protease deficient expression strains (de Vries, Burgers et al. 2004, Punt, 

Schuren et al. 2008, Yoon, Maruyama et al. 2011); specialized medium development (Swift, 

Karandikar et al. 2000); and random mutagenesis of proteins along with screening for variants for 

increased secretion potential (Weenink, Punt et al. 2006). 

In Aspergillii over-expression, translation and secretion of industrial useful proteins, 

sometimes exceeds 30 g/liter  (van den Hondel, Punt et al. 1992, Segato, Damásio et al. 2012), though 

often other proteins are poorly secreted with yields below the 1g/liter mark.  Over-expression and 

secretion of recombinant proteins in fungal hosts often results in greatly diminished rates 

(Nevalainen, Te'o et al. 2005).  Thus, over-expressing a given protein is not enough to deliver high 

extracellular protein yields and only a limited number of studies successfully address the 

posttranslational modifications and extracellular mechanisms that interfere with secretion and 

accumulation of extracellular proteins (Jeenes, Mackenzie et al. 1991, Guillemette, van Peij et al. 

2007, Wang, Xue et al. 2008, Yoon, Kimura et al. 2009, Fleissner and Dersch 2010, Yoon, Aishan et 

al. 2010, Guillemette, Ram et al. 2011, Yoon, Maruyama et al. 2011, Segato, Damásio et al. 2012). 
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1.5 Cellulase production in fungi 

Cellulases can be produced biologically by fungal fermentation (Yoon, Ang et al. 2014). 

Commercial cellulases are most commonly produced by Trichoderma sp. and Aspergillus sp. via 

submerged fermentation methods (Singhania, Sukumaran et al. 2010). Although these fungi are able 

to produce a complete cellulose degradation system, cultivation of either system results in 

deficiencies of one or more particular cellulase components. Trichoderma reesei for example does not 

produce substantial amounts of b-glucosidase, and Aspergillus niger does not produce large amounts 

of endoglucanase and exoglucanase (Ahamed and Vermette 2008, Chandel, Chandrasekhar et al. 

2012). Other drawbacks are that submerged fermentation often leads to a low concentration of the 

end-product as well as the need for further purification of the product for downstream applications 

(Rodríguez Couto and Sanromán 2005). 

 Due to the shortcomings with submerged fermentation of fungal cellulases, research has been 

focused on improving the titers of cellulases alongside with reducing production costs (Yoon, Ang et 

al. 2014). One such solution has been the use of solid state fermentation (SSF) as an alternative 

production route for cellulases (Rodríguez Couto and Sanromán 2005). SSF more closely resembles 

the natural habitat of the fungus and it radically improves the titer compared to submerged 

fermentation (Hölker, Höfer et al. 2004, Singhania, Patel et al. 2009). For example, when A. niger has 

been cultivated on wheat-bran as a lignocellulosic substrate it can produce a cellulase with activities 

of 10.81 U per g-1(Kumar, Sharma et al. 2011). T. reesei cultivation results in cellulase activities of 

250-430 U per g-1 (Chahal 1985).  

 The demand of cellulase enzymes are increasing, due to their importance in the emerging 

biofuels industry, and fungi are capable of producing large titers of these useful enzymes. However, 

high production costs pose a large problem for this budding field. Additional efforts should be made 

in order to find a suitable combination of fungal strain, lignocellulosic substrate, and process 
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conditions in order to optimize cellulase yields in fungus. 

 

1.6 RNA interference in fungi 

Gene silencing is a generic expression relating epigenetic processes of gene regulation 

(Pastori, Magistri et al. 2010).  The term gene silencing is usually employed to describe the "turning 

off" of a gene by a mechanism other than genetic modification that is, a gene expressed (turned on) 

under normal conditions is turned off by cell-specific machineries.  Genes are usually regulated at the 

transcriptional or post-transcriptional level (Watanabe 2011).  Transcriptional gene silencing is a 

consequence of histone modifications, creating heterochromatin type of condition around a gene that 

makes it unavailable to the transcription machinery (Gonzalez and Li 2012).  Post-transcriptional 

silencing is the product of an mRNA of a particular gene being degraded or prevented from 

translating. 

The destruction of mRNA prevents translation to form a protein and a common mechanism of 

gene silencing is RNA interference (RNAi) (Valencia-Sanchez, Liu et al. 2006).  Thus, RNAi is a 

biochemical activity within cells that regulates the activity of genes.  The RNAi pathway is found in 

eukaryotes including fungi and primed by Dicer, which cleaves double-stranded RNAs (dsRNA) into 

short ~20 nucleotides pieces defined as siRNAs (Kim, Lee et al. 2006).  Each siRNA is denatured 

into single-stranded (ss) ssRNAs, the passenger and the guide strand.  The passenger strand is 

degraded, and the guide strand loaded onto the RNA-induced silencing complex (Risc) (Matranga, 

Tomari et al. 2005, Mah, Buske et al. 2010, Parker 2010).  When the guide strand pairs with a 

complementary mRNAs, cleavage by Argonaute, the catalytic component of Risc (Buker and 

Motamedi 2011) is induced, which in turn spreads systemically.  Thus, destruction of a given gene 

mRNA, results in erasure of the corresponding protein from the given proteome.   
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1.7 Amylolytic profile of Aspergillus nidulans 

 Amylolytic enzymes such as a-amylases, glucoamylases, and a-glucosidases are usually 

produced by many filamentous fungi. (Nakamura, Maeda et al. 2006) Production of these enzymes is 

generally induced by starch, maltose, and malto oligosaccharides. (Kato, Murakoshi et al. 2002)The 

transcription activator AmyR regulates the induction of most amylolytic genes in A. nidulans. 

(Petersen, Lehmbeck et al. 1999) A. nidulans possesses 16 amylolytic genes consisting of: 7 a-

glucosidases (agdA-F), 7 a-amylases (amyA-F), and 2 glucoamylases (glaA and glaB). (Nakamura, 

Maeda et al. 2006) 

 Of the seven a-glucosidase genes, five of them fall into GH family 31 and two of them are 

categorized as GH family 13. (Nakamura, Maeda et al. 2006) GH31a-glucosidases (agdA-E) are 

typically extracellular enzymes and they possess strong glycosylation activity with the formation of 

an a-1,6-linkage. (Pazur and French 1952, McCleary, Gibson et al. 1989) The GH13 a-glucosidases 

(agdF and agdG) have a broader range of substrates. agdF is a homolog of a Saccharomyces 

cerevisiae isomaltose, while agdG bares homology to a Bacillus sp. a-glucosidase. (NAKAO, 

NAKAYAMA et al. 1994, Yamamoto, Nakayama et al. 2004) 

 Of the seven a-amylase genes six of them (amyA-F) were homologous to the well 

characterized Taka-amylase genes of Aspergillus oryzae. (Norihiro, Makoto et al. 1989) amyG is 

homologous is a G6-forming a-amylase gene from Bacillus sp. (Tsukamoto, Kimura et al. 1988) A. 

nidulans’ two glucoamylase genes, glaA and glaB, are homologous to the glaA gene from A. oryzae 

with the exception of their additional starch binding domain. (Yoji, Kozo et al. 1991) 

 

 

 



9 
 

1.8 References 

Ahamed, A. and P. Vermette (2008). "Enhanced enzyme production from mixed cultures of 

Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank 

bioreactor." Biochemical Engineering Journal 42(1): 41-46. 

Amorim, H. V., M. L. Lopes, J. V. de Castro Oliveira, M. S. Buckeridge and G. H. Goldman (2011). 

"Scientific challenges of bioethanol production in Brazil." Appl Microbiol Biotechnol 91(5): 1267-

1275. 

Arantes, V. and J. N. Saddler (2010). "Access to cellulose limits the efficiency of enzymatic 

hydrolysis: the role of amorphogenesis." Biotechnol Biofuels 3(4): 1-11. 

Bhat, M. and S. J. B. a. Bhat (1997). "Cellulose degrading enzymes and their potential industrial 

applications."  15(3-4): 583-620. 

Bodie, E. A., B. Bower, R. M. Berka and N. S. Dunn-Coleman (1994). "Economically important 

organic acid and enzyme products." Prog Ind Microbiol 29: 561-602. 

Buker, S. M. and M. R. Motamedi (2011). "Purification of native Argonaute complexes from the 

fission yeast Schizosaccharomyces pombe." Methods Mol Biol 725: 1-13. 

Chahal, D. S. (1985). "Solid-state fermentation with Trichoderma reesei for cellulase production." 

Applied and Environmental Microbiology 49(1): 205-210. 

Chandel, A. K., G. Chandrasekhar, M. B. Silva and S. Silvério da Silva (2012). "The realm of 

cellulases in biorefinery development." Critical Reviews in Biotechnology 32(3): 187-202. 

Conesa, A., P. J. Punt, N. van Luijk and C. A. van den Hondel (2001). "The secretion pathway in 

filamentous fungi: a biotechnological view." Fungal Genet Biol 33(3): 155-171. 



10 
 

Damásio, A. R. d. L., T. M. Silva, F. B. d. R. Almeida, F. M. Squina, D. A. Ribeiro, A. F. P. Leme, F. 

Segato, R. A. Prade, J. A. Jorge, H. F. Terenzi and M. d. L. T. M. Polizeli (2011). "Heterologous 

expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization 

and application." Process Biochemistry 46(6): 1236-1242. 

de Vries, R. P., K. Burgers, P. J. van de Vondervoort, J. C. Frisvad, R. A. Samson and J. Visser 

(2004). "A new black Aspergillus species, A. vadensis, is a promising host for homologous and 

heterologous protein production." Appl Environ Microbiol 70(7): 3954-3959. 

Ding, S.-Y. and M. E. Himmel (2006). "The maize primary cell wall microfibril: a new model derived 

from direct visualization." Journal of Agricultural and Food Chemistry 54(3): 597-606. 

Divne, C., J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Pettersson, J. K. Knowles, T. T. Teeri and T. 

A. Jones (1994). "The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I 

from Trichoderma reesei." Science 265(5171): 524-528. 

Fleissner, A. and P. Dersch (2010). "Expression and export: recombinant protein production systems 

for Aspergillus." Appl Microbiol Biotechnol 87(4): 1255-1270. 

Garvey, M., H. Klose, R. Fischer, C. Lambertz and U. Commandeur (2013). "Cellulases for biomass 

degradation: comparing recombinant cellulase expression platforms." Trends in biotechnology 

31(10): 581-593. 

Gonzalez, M. and F. Li (2012). "DNA replication, RNAi and epigenetic inheritance." Epigenetics 

7(1). 

Guillemette, T., A. F. Ram, N. D. Carvalho, A. Joubert, P. Simoneau and D. B. Archer (2011). 

"Methods for investigating the UPR in filamentous fungi." Methods Enzymol 490: 1-29. 



11 
 

Guillemette, T., N. N. van Peij, T. Goosen, K. Lanthaler, G. D. Robson, C. A. van den Hondel, H. 

Stam and D. B. Archer (2007). "Genomic analysis of the secretion stress response in the enzyme-

producing cell factory Aspergillus niger." BMC genomics 8: 158. 

Hall, M., P. Bansal, J. H. Lee, M. J. Realff and A. S. Bommarius (2010). "Cellulose crystallinity–a 

key predictor of the enzymatic hydrolysis rate." FEBS journal 277(6): 1571-1582. 

Harris, P. V., D. Welner, K. C. McFarland, E. Re, J. C. Navarro Poulsen, K. Brown, R. Salbo, H. 

Ding, E. Vlasenko, S. Merino, F. Xu, J. Cherry, S. Larsen and L. Lo Leggio (2010). "Stimulation of 

lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and 

function of a large, enigmatic family." Biochemistry 49(15): 3305-3316. 

Harris, P. V., F. Xu, N. E. Kreel, C. Kang and S. Fukuyama (2014). "New enzyme insights drive 

advances in commercial ethanol production." Current opinion in chemical biology 19: 162-170. 

He, Y., Y. Ding, C. Ma, J. Di, C. Jiang and A. J. G. C. Li (2017). "One-pot conversion of biomass-

derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and 

bioreduction."  19(16): 3844-3850. 

Hendriks, A. and G. J. B. t. Zeeman (2009). "Pretreatments to enhance the digestibility of 

lignocellulosic biomass."  100(1): 10-18. 

Himmel, M. E. and E. A. Bayer (2009). "Lignocellulose conversion to biofuels: current challenges, 

global perspectives." Curr Opin Biotechnol 20(3): 316-317. 

Hölker, U., M. Höfer and J. Lenz (2004). "Biotechnological advantages of laboratory-scale solid-state 

fermentation with fungi." Applied Microbiology and Biotechnology 64(2): 175-186. 

Jeenes, D. J., D. A. Mackenzie, I. N. Roberts and D. B. Archer (1991). "Heterologous protein 

production by filamentous fungi." Biotechnology & genetic engineering reviews 9: 327-367. 



12 
 

Joosten, V., C. Lokman, C. A. Van Den Hondel and P. J. Punt (2003). "The production of antibody 

fragments and antibody fusion proteins by yeasts and filamentous fungi." Microb Cell Fact 2(1): 1. 

Kato, N., Y. Murakoshi, M. Kato, T. Kobayashi and N. J. C. g. Tsukagoshi (2002). "Isomaltose 

formed by α-glucosidases triggers amylase induction in Aspergillus nidulans."  42(1): 43-50. 

Kim, E. S., H. J. Lee, W. G. Bang, I. G. Choi and K. H. Kim (2009). "Functional characterization of a 

bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose." 

Biotechnology and bioengineering 102(5): 1342-1353. 

Kim, I. J., H. J. Ko, T. W. Kim, I. G. Choi and K. H. Kim (2013). "Characteristics of the binding of a 

bacterial expansin (BsEXLX1) to microcrystalline cellulose." Biotechnology and bioengineering 

110(2): 401-407. 

Kim, I. J., H. J. Lee, I. G. Choi and K. H. Kim (2014). "Synergistic proteins for the enhanced 

enzymatic hydrolysis of cellulose by cellulase." Appl Microbiol Biotechnol 98(20): 8469-8480. 

Kim, K., Y. S. Lee, D. Harris, K. Nakahara and R. W. Carthew (2006). "The RNAi pathway initiated 

by Dicer-2 in Drosophila." Cold Spring Harb Symp Quant Biol 71: 39-44. 

Krassing, H. (1993). "Cellulose: Structure." Accessibility and Reactivity, Gordon and Breach Science 

Publichers, Swizerland 41. 

Kuck, U. and B. Hoff (2010). "New tools for the genetic manipulation of filamentous fungi." Appl 

Microbiol Biotechnol 86(1): 51-62. 

Kumar, S., H. K. Sharma and B. C. Sarkar (2011). "Effect of substrate and fermentation conditions on 

pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid 

state fermentation (SSF)." Food Science and Biotechnology 20(5): 1289. 



13 
 

Lal, R. (2005). "World crop residues production and implications of its use as a biofuel." Environ Int 

31(4): 575-584. 

Laureano-Perez, L., F. Teymouri, H. Alizadeh and B. E. Dale (2005). "Understanding factors that 

limit enzymatic hydrolysis of biomass." Applied Biochemistry and Biotechnology 124(1-3): 1081-

1099. 

Lynd, L. R., M. S. Laser, D. Bransby, B. E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J. 

D. McMillan, J. Sheehan and C. E. Wyman (2008). "How biotech can transform biofuels." Nat 

Biotechnol 26(2): 169-172. 

Lynd, L. R., W. H. van Zyl, J. E. McBride and M. Laser (2005). "Consolidated bioprocessing of 

cellulosic biomass: an update." Curr Opin Biotechnol 16(5): 577-583. 

Mah, S. M., C. Buske, R. K. Humphries and F. Kuchenbauer (2010). "miRNA*: a passenger stranded 

in RNA-induced silencing complex?" Crit Rev Eukaryot Gene Expr 20(2): 141-148. 

Matranga, C., Y. Tomari, C. Shin, D. P. Bartel and P. D. Zamore (2005). "Passenger-strand cleavage 

facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes." Cell 123(4): 607-

620. 

McCleary, B. V., T. S. Gibson, H. Sheehan, A. Casey, L. Horgan and J. J. C. r. O'Flaherty (1989). 

"Purification, properties, and industrial significance of transglucosidase from Aspergillus niger."  

185(1): 147-162. 

Meyer, V., B. Wu and A. F. Ram (2011). "Aspergillus as a multi-purpose cell factory: current status 

and perspectives." Biotechnol Lett 33(3): 469-476. 



14 
 

Nakamura, T., Y. Maeda, N. Tanoue, T. Makita, M. Kato, T. J. B. Kobayashi, biotechnology, and 

biochemistry (2006). "Expression profile of amylolytic genes in Aspergillus nidulans." 0610020104-

0610020104. 

NAKAO, M., T. NAKAYAMA, A. KAKUDO, M. INOHARA, M. HARADA, F. OMURA and Y. J. 

E. j. o. b. SHIBANO (1994). "Structure and expression of a gene coding for thermostable α‐

glucosidase with a broad substrate specificity from Bacillus sp. SAM1606."  220(2): 293-300. 

Nevalainen, K. M., V. S. Te'o and P. L. Bergquist (2005). "Heterologous protein expression in 

filamentous fungi." Trends Biotechnol 23(9): 468-474. 

Nieto, A., J. A. Prieto and P. Sanz (1999). "Stable high-copy-number integration of Aspergillus 

oryzae alpha-AMYLASE cDNA in an industrial baker's yeast strain." Biotechnol Prog 15(3): 459-

466. 

Norihiro, T., F. Makoto, N. Hiroki, K. Norie, T. Akio and U. J. G. Shigezo (1989). "Isolation of a 

cDNA encoding Aspergillus oryzae Taka-amylase A: evidence for multiple related genes."  84(2): 

319-327. 

Ortega, N., M. a. D. Busto, M. J. I. b. Perez-Mateos and biodegradation (2001). "Kinetics of cellulose 

saccharification by Trichoderma reesei cellulases."  47(1): 7-14. 

Parker, J. S. (2010). "How to slice: snapshots of Argonaute in action." Silence 1(1): 3. 

Pastori, C., M. Magistri, S. Napoli, G. M. Carbone and C. V. Catapano (2010). "Small RNA-directed 

transcriptional control: new insights into mechanisms and therapeutic applications." Cell Cycle 9(12): 

2353-2362. 

Payne, C. M., B. C. Knott, H. B. Mayes, H. Hansson, M. E. Himmel, M. Sandgren, J. Stahlberg and 

G. T. J. C. r. Beckham (2015). "Fungal cellulases."  115(3): 1308-1448. 



15 
 

Pazur, J. H. and D. J. J. b. C. French (1952). "The action of transglucosidase of Aspergillus oryzae on 

maltose."  196(1): 265-272. 

Petersen, K., J. Lehmbeck, T. J. M. Christensen and G. G. MGG (1999). "A new transcriptional 

activator for amylase genes in Aspergillus."  262(4-5): 668-676. 

Phillips, C. M., W. T. Beeson, J. H. Cate and M. A. Marletta (2011). "Cellobiose dehydrogenase and 

a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora 

crassa." ACS Chem Biol 6(12): 1399-1406. 

Punt, P. J., F. H. Schuren, J. Lehmbeck, T. Christensen, C. Hjort and C. A. van den Hondel (2008). 

"Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding 

genes." Fungal Genet Biol 45(12): 1591-1599. 

Punt, P. J., N. van Biezen, A. Conesa, A. Albers, J. Mangnus and C. van den Hondel (2002). 

"Filamentous fungi as cell factories for heterologous protein production." Trends Biotechnol 20(5): 

200-206. 

Record, E., M. Asther, C. Sigoillot, S. Pages, P. J. Punt, M. Delattre, M. Haon, C. A. van den Hondel, 

J. C. Sigoillot and L. Lesage-Meessen (2003). "Overproduction of the Aspergillus niger feruloyl 

esterase for pulp bleaching application." Appl Microbiol Biotechnol 62(4): 349-355. 

Regalbuto, J. R. (2009). "Engineering. cellulosic biofuels--got gasoline?" Science 325(5942): 822-

824. 

Regalbuto, J. R. (2011). "The sea change in US biofuels' funding: from cellulosic ethanol to green 

gasoline." Biofuels, Bioproducts and Biorefining 5(5): 495-504. 

Rodríguez Couto, S. and M. A. Sanromán (2005). "Application of solid-state fermentation to 

ligninolytic enzyme production." Biochemical Engineering Journal 22(3): 211-219. 



16 
 

Segato, F., A. R. L. Damásio, T. A. Gonçalves, R. C. de Lucas, F. M. Squina, S. R. Decker and R. A. 

Prade (2012). "High-yield secretion of multiple client proteins in Aspergillus." Enzyme and Microbial 

Technology(0). 

Selig, M. J., S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel and T. B. Vinzant (2007). 

"Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards 

enzymatic hydrolysis of cellulose." Biotechnology progress 23(6): 1333-1339. 

Sims, A. H., M. E. Gent, K. Lanthaler, N. S. Dunn-Coleman, S. G. Oliver and G. D. Robson (2005). 

"Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-

protein response in vivo." Appl Environ Microbiol 71(5): 2737-2747. 

Singhania, R. R., A. K. Patel, C. R. Soccol and A. Pandey (2009). "Recent advances in solid-state 

fermentation." Biochemical Engineering Journal 44(1): 13-18. 

Singhania, R. R., R. K. Sukumaran, A. K. Patel, C. Larroche, A. J. E. Pandey and M. Technology 

(2010). "Advancement and comparative profiles in the production technologies using solid-state and 

submerged fermentation for microbial cellulases."  46(7): 541-549. 

Somerville, C., S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. 

Persson and T. Raab (2004). "Toward a systems approach to understanding plant cell walls." Science 

306(5705): 2206-2211. 

Squina, F. M., A. J. Mort, S. R. Decker and R. A. Prade (2009). "Xylan decomposition by Aspergillus 

clavatus endo-xylanase." Protein expression and purification 68(1): 65-71. 

Srivastava, N., M. Srivastava, P. Mishra, V. K. Gupta, G. Molina, S. Rodriguez-Couto, A. Manikanta, 

P. J. R. Ramteke and S. E. Reviews (2018). "Applications of fungal cellulases in biofuel production: 

advances and limitations."  82: 2379-2386. 



17 
 

Stahlberg, J., C. Divne, A. Koivula, K. Piens, M. Claeyssens, T. T. Teeri and T. A. Jones (1996). 

"Activity Studies and Crystal Structures of Catalytically Deficient Mutants of Cellobiohydrolase I 

fromTrichoderma reesei." Journal of Molecular Biology 264(2): 337-349. 

Swift, R. J., A. Karandikar, A. M. Griffen, P. J. Punt, C. A. van den Hondel, G. D. Robson, A. P. 

Trinci and M. G. Wiebe (2000). "The Effect of organic nitrogen sources on recombinant 

glucoamylase production by Aspergillus niger in chemostat culture." Fungal Genet Biol 31(2): 125-

133. 

Tsukamoto, A., K. Kimura, Y. Ishii, T. Takano, K. J. B. Yamane and b. r. communications (1988). 

"Nucleotide sequence of the maltohexaose-producing amylase gene from an alkalophilic Bacillus sp.# 

707 and structural similarity to liquefying type α-amylases."  151(1): 25-31. 

Valencia-Sanchez, M. A., J. Liu, G. J. Hannon and R. Parker (2006). "Control of translation and 

mRNA degradation by miRNAs and siRNAs." Genes Dev 20(5): 515-524. 

van den Hondel, C. A., P. J. Punt and R. F. van Gorcom (1992). "Production of extracellular proteins 

by the filamentous fungus Aspergillus." Antonie van Leeuwenhoek 61(2): 153-160. 

Verdoes, J. C., P. J. Punt, A. H. Stouthamer and C. A. van den Hondel (1994). "The effect of multiple 

copies of the upstream region on expression of the Aspergillus niger glucoamylase-encoding gene." 

Gene 145(2): 179-187. 

Wang, Y., W. Xue, A. H. Sims, C. Zhao, A. Wang, G. Tang, J. Qin and H. Wang (2008). "Isolation of 

four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on 

heterologous laccase expression." Fungal genetics and biology 45(1): 17-27. 

Watanabe, Y. (2011). "Overview of plant RNAi." Methods Mol Biol 744: 1-11. 



18 
 

Weenink, X. O., P. J. Punt, C. A. van den Hondel and A. F. Ram (2006). "A new method for 

screening and isolation of hypersecretion mutants in Aspergillus niger." Appl Microbiol Biotechnol 

69(6): 711-717. 

Wiebe, M. G., G. D. Robson, J. Shuster and A. P. Trinci (2001). "Evolution of a recombinant 

(gucoamylase-producing) strain of Fusarium venenatum A3/5 in chemostat culture." Biotechnol 

Bioeng 73(2): 146-156. 

Wilson, D. B. J. C. o. i. b. (2009). "Cellulases and biofuels."  20(3): 295-299. 

Wood, T. M., S. I. McCRAE and K. M. Bhat (1989). "The mechanism of fungal cellulase action. 

Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen 

bond-ordered cellulose." Biochem. J 260: 37-43. 

Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch and Y. J. B. t. Lee (2005). 

"Comparative sugar recovery data from laboratory scale application of leading pretreatment 

technologies to corn stover."  96(18): 2026-2032. 

Yamamoto, K., A. Nakayama, Y. Yamamoto and S. J. E. j. o. b. Tabata (2004). "Val216 decides the 

substrate specificity of α‐glucosidase in Saccharomyces cerevisiae."  271(16): 3414-3420. 

Yoji, H., T. Kozo, K. Katsuhiko, G. Katsuya, K. Chieko, T. Gakuzo and H. J. G. Shodo (1991). 

"Nucleotide sequence and expression of the glucoamylase-encoding gene (glaA) from Aspergillus 

oryzae."  108(1): 145-150. 

Yoon, J., T. Aishan, J. Maruyama and K. Kitamoto (2010). "Enhanced production and secretion of 

heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein 

sorting receptor gene Aovps10." Appl Environ Microbiol 76(17): 5718-5727. 



19 
 

Yoon, J., S. Kimura, J. Maruyama and K. Kitamoto (2009). "Construction of quintuple protease gene 

disruptant for heterologous protein production in Aspergillus oryzae." Appl Microbiol Biotechnol 

82(4): 691-701. 

Yoon, J., J. Maruyama and K. Kitamoto (2011). "Disruption of ten protease genes in the filamentous 

fungus Aspergillus oryzae highly improves production of heterologous proteins." Appl Microbiol 

Biotechnol 89(3): 747-759. 

Yoon, L. W., T. N. Ang, G. C. Ngoh, A. S. M. J. B. Chua and Bioenergy (2014). "Fungal solid-state 

fermentation and various methods of enhancement in cellulase production."  67: 319-338. 

 

. 



20 
 

CHAPTER II 
 

CELLULASE PRODUCTION WITH PRETREATED HEMICELLULOSE C5-SUGAR 

LIQUORS 

2.1 Introduction 

 Lignocellulosic biomass (LCB) is the single most abundant renewable hydrocarbon 

resource on earth (Bar-On, Phillips et al. 2018).  The runner-up hydrocarbon resource, which is 

non-renewable, is petroleum.  Petroleum currently provisions the world-market of starter 

chemicals for everything from low-cost, cents per gallon products (gasoline and diesel) all the 

way to high-end substrates such as the primers for plastics, polymers and fibers (Jadidzadeh and 

Serletis 2018). Two thirds of LCB is composed of hemicellulose (C5-sugars) and cellulose (C6-

sugars), the hydrocarbon substrates for fermentation processes that produce low-cost high-volume 

as well high-cost low-volume chemicals (Lynd, Laser et al. 2008, Ellila, Fonseca et al. 2017, 

Sheldon 2018).  Deconstruction of the LCB sugar moiety has been achieved with a combination 

of cellulolytic enzymes such as endoglucanases, cellobiohydrolases and β-glucosidases (Segato, 

Damasio et al. 2014).  Enzymatic hydrolysis has had only moderate success in breaking the 

crystalline cellulose molecule (Garvey, Klose et al. 2013).  Low accessibility to cellulose 

molecules (recalcitrance) by enzymes hinders hydrolytic activity with water inaccessible regions 

remaining unaffected (Ding and Himmel 2006, Arantes and Saddler 2010, Ding, Liu et al. 2012).
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To overcome this natural physical resistance of LCB’s towards an enzyme driven 

digestion process, several pretreatment technologies have been developed, focused in disrupting 

the intermolecular hydrogen bonds that make LCBs recalcitrant (Ciesielski, Matthews et al. 2013, 

Bhutto, Qureshi et al. 2017, Chen, Liu et al. 2017).  The bottom line on LCB pretreatments is that 

no matter what method or combinations thereof there is always partial decomposition of the 

hemicellulosic fraction, which contains an abundance of C5-sugars (xylose) (Lynd, Laser et al. 

2008, Arantes and Saddler 2010). 

For large-scale production of enzymes that breakdown LCBs, fungi have traditionally 

been used as cell factories to manufacture cellulases, xylanases and other auxiliary activities 

(Punt, van Biezen et al. 2002, Nevalainen, Te'o et al. 2005, Demain and Vaishnav 2009, Ding, 

Liu et al. 2012, Bischof, Ramoni et al. 2016, Zhang, Zhang et al. 2018).  Filamentous fungi such 

as Trichoderma and Aspergillus are able to use a broad range of sugars such as hexoses (C6) and 

pentoses (C5) as a carbon source and are used as common industrial cellulase and xylanase 

producers (Singhania, Sukumaran et al. 2010).  

While fungi have been genetically engineered to secrete economically adequate yields of 

enzymes, the operational costs of synthesizing them continue to be inadequate, largely because 

they demand an expensive carbon source to cultivate a vegetative tissue necessary to synthesize 

client proteins as well as the added costs of making them on distant sites, purification, 

concentration, conditioning and delivery to biomass processing sites (Rana, Eckard et al. 2014, 

Klein-Marcuschamer and Blanch 2015, Kuhad, Deswal et al. 2016, van Rijn, Nieves et al. 2018). 
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Figure 2.1 Proposed schematic of total on-site biomass degradation. 

BIOMASS main hydrocarbon components are cellulose and hemicellulose (~60%).  

PRETREATMENT technologies make cellulose (C6-sugars) accessible to enzymatic hydrolysis 

but compromise integrity of hemicellulose, rendering C5-sugars which could be used to make 

low-cost enzymes that degrade cellulose (C6-sugars) generating GLUCOSE that is converted 

into fermentation PRODUCTS. 

 

Xylose found in C5-hydrolysates the byproducts of LCB pretreatments is a cheap carbon 

source that could be used to make enzymes.  Using the pre-hydrolysate fraction as the raw 

material for the production of cellulases with filamentous fungi opens the prospect for low-cost 

enzyme production.  The problem with low-cost on-site enzyme production is that while most 

fungi grow well with the by-product xylose as a carbon source, they are not prepared to 

synthesize large quantities of cellulases in the presence of these C5-sugars (Kiesenhofer, Mach et 

al. 2018). 
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The research reported here resolves this problem by redesigning the Aspergillus nidulans 

native cellulase gene regulatory circuit, switching the induction mechanism from cellulose to 

xylose.  The strains constructed in this study grow well in C5-hydrolysates simultaneously 

producing and secreting large amounts of cellulases.  We tested two cellobiohydrolases, two 

endoglucanases and one ß-glucosidase. 

Replacing expensive substrates by a cheap by-product carbon source (C5-hydrolysates) 

directly derived from LCB pretreatment processes does not only reduce enzyme production costs, 

but also lowers operational costs such as off-site enzyme production, purification, concentration, 

transport and dilution (Arantes and Saddler 2010, Johnson 2016). 

 

2.2 Materials and Methods 

 

2.2.1 Chemicals and specialty chemicals 

General chemicals, cellulosic and hemicellulosic substrates were purchased from the best 

source possible, Sigma Aldrich (St Louis, MO) and Megazyme (Ireland, UK).  Phosphoric acid 

swollen cellulose (PASC) was prepared according to (Schulein 1997).  Briefly, 5 g of avicel was 

mixed with 150 mL of ice cold ortho-phosphoric acid and the suspension stirred for at least 60 

mins.  100 mL of ice-cold acetone was stirred in and the slurry transferred to a Buchner filter with 

a sintered disc number 3, washed three times with 100 mL of ice-cold acetone and once with 500 

mL of ice-cold water.  The washed slurry was transferred to a 50 mL Falcon tube, filled with 

deionized water (50 mL) and stored in a refrigerator until further use. 

Wheat straw was harvested in 2015 from a local farmer in Rhineland Palatinate (Bad 

Kreuznach, Germany). The composition was determined according to the method suggested by 
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the National Renewable Energy Laboratory (NREL) for measurement of structural carbohydrates 

and lignin (Sluiter, Hames et al. 2008). The wheat straw had 37.1 % (w/w) cellulose, 22.3 % 

(w/w) hemicellulose, 16.8 % (w/w) lignin, 9 % (w/w) extractives and 4.3 % (w/w) ash. HPLC 

analytics were done with the Metacarb 87H column (300 mm x 7.8 mm) purchased from Agilent 

Inc. (Santa Clara, CA, USA). All used chemicals were purchased from VWR International 

(Radnor, PA, USA). 

 

2.2.2 Production of the xylose-containing liquefied wheat straw hydrolysate 

The PPTB, pentosan containing pre-treated biomass liquor was prepared by diluted acid 

hydrolysis of wheat straw in a 100-l stainless steel reactor. The vessel was heated with direct 

steam injection until the desired temperature was reached. In a previous study, the optimized 

treatment process parameters for high xylose and low-by-product concentration were estimated 

(Gasser, Ballmann et al. 2014). Briefly, dried wheat straw (15 % v/w, dry matter content) and 

diluted nitric acid (0.45 % v/v) was heated up at 160 °C for 30 minutes.  After the pretreatment 

the pentose-rich liquor was separated from the solid biomass.  The pre-hydrolysate solution was 

concentrated in a rotary evaporator at 75 °C and 110 mbar to enhance the storability of the pre-

hydrolysate. The concentrated solution contained 162 g/l xylose, 29.4 g/l glucose and, 19.7 g/l 

arabinose. Pretreatment by-products such as furfural and 5-HMF were removed through the 

evaporation process. The concentrated hydrolysate was stored at -20 °C.  

 

2.2.3 Strains and spore (conidia) production 

Standard A. nidulans minimal medium (MM) and general cultivation techniques were 

used throughout this work and are based on the work by Guido Pontecorvo (Pontecorvo, Roper et 

al. 1953, Pontecorvo 1969) and John Clutterbuck (Clutterbuck 1992).  All strains constructed in 
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this work are were derived from A. nidulans A773 (wA3, pyrG89, pyroA4) purchased from the 

Fungal Genetics Stock Center (FGSC, St. Louis, MO).  All gene models and promoters were 

from Aspergillus nidulans FGSC4 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000149205.2) 

and analyzed using the AspGD database (http://aspgd.org (Cerqueira, Arnaud et al. 2014))  

Primers and Gibson Assembly hybrid primers were designed using the NEB Builder Assembly 

Tool (http://nebuilder.neb.com). 

Three types of strains were constructed in this study; First the resident CbhC (AN0494) 

promoter (cbhCp) was replaced with four xylanase promoters (xynABCEp) in such a way that 

recombinant strains induce the production of cellobiohydrolase by xylose, second a XlnR(ORF) 

overexpression strain (PFIX7) was constructed by pabaA ectopic integration of a 

gpdAp::XlnR(ORF) DNA fragment, and third, xylose induced client protein constructs were 

randomly introduced into a XlnR overexpressing strain (PFIX7).  For a detailed description of 

DNA fragment fusion construction strategy, genomic data and genetic validation of genetic 

modifications refer to the supplementary information 

In all types of strain constructions, a linear hybrid recombinant DNA fragment was 

synthesized using Gibson Assembly Technology, GAT (Gibson 2011, Gibson 2014) using hybrid 

primers, Gibson Assembly Master Mix (New England Biolabs, US) and Phusion DNA 

Polymerase (New England Biolabs, US).  DNA fragment size and DNA sequence verified hybrid 

DNA fragments were transformed into A773 or PFIX7 protoplasts.  In the case of promoter 

replacements, a single gene replacement event at the cbh1 locus was selected for each xyn(p) 

promoter replacement by uracil/uridine sufficiency and by diagnostic PCR showing single 

integration (replacement) into the cbh1 locus.  For the XlnR overexpression the hybrid DNA 

fragment was integrated into the pabaA locus by a double crossover event disrupting it.  

Recombinants with a single gene replacement event were searched with diagnostic PCR and the 

resulting strain PFIX7 tested for XlnR over-expression. 
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For the client protein xylose induced strains we created plasmids carrying the 

pUC18UP::pyroA: xynCp::CLIENTORF::pUC18DWN GAT construct that was transformed into PFI-

X7 (XlnR overexpressing) strain and recombinants selected based on the level of client protein 

production rates.  Even though we did not check for multiple integration events in single 

transformants we screened at least 100 transformants for high secretion levels of client proteins. 

 

2.2.4 Preparation of total extracellular protein extracts 

Unless otherwise stated, 5 mL of extracellular fluid (medium) harvested from mycelia 

grown for 24, 36 or 48 h were treated with 3kDa cutoff Nanosep® ultrafiltration OmegaTM 

membrane columns (PALL Corp. USA) and washed with 500 µL of 50 mM ammonium acetate 

(NH4CH3CO2) buffer pH 5 before 10X concentration to a final volume of 50 µL.  Samples that 

were not concentrated (e.g., Figure 4A and B), 5 mL of extracellular fluid was treated as 

described above and resuspended to the original volume (5 mL) with 50 mM ammonium acetate 

buffer pH 5. 

 

2.2.5. Protein quantification and SDS-polyacrylamide gel electrophoresis 

Total protein content was measured in microtiter dishes using the Bio-Rad assay reagent 

(Bio-Rad Laboratories, USA), using a procedure based on the Bradford method (Bradford 1976, 

Marshall and Williams 1992) with bovine serum albumin as standard.  Absorption was measured 

using a UV-Vis 96-well plate reader (Tecan Infinite M200, Männedorf, Switzerland) at 595 nm.  

Quality of total extracellular protein extracts was validated for integrity by SDS polyacrylamide 

gel electrophoresis according to Shapiro (Shapiro, Vinuela et al. 1967). 
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2.2.6. Liquid chromatography-tandem mass spectrometry 

For LC-MS/MS analysis bands of a fully resolved SDS-PAGE gel (shown in Figure 3A) 

were excised and processed for LC-MS/MS according to (Shevchenko, Wilm et al. 1996) with 

modifications.  Isolated gel bands were reduced with Tris (2-carboxyethyl) phosphine, alkylated 

by 2-Iodoacetamide, digested for 6-16 h with 8 μg/mL trypsin using ammonium bicarbonate 

buffer and analyzed by LC-MS/MS using LTQ-Orbitrap XL hybrid mass spectrometer (Thermo 

Scientific).  The LC-MS/MS raw files were used for database Mascot (version 2.2.04, Matrix 

Science, London UK) searches run on a NCBI Aspergillus nidulans FGSC4 subsets.  Searches 

were validated using Scaffold (version 4.0.7, Proteome Software Inc. Portland, OR) with a 

protein threshold of 5% FDR and a peptide threshold of 99%. 

 

2.2.7. Free sugar (reducing end) determinations 

Free sugar determinations were used in two types of experiments: 1) to determine the 

activity of enzymes that use a non-reducing substrate releasing reducing products (sugars) and 2) 

to quantitate the amount of reducing sugar accumulated by enzymes added to a cellulose 

degradations assay (Figure 5).  In both cases we used the DNS assay developed by Sumner and 

Graham (Summer and Graham 1921) for detection of reducing sugars.  The DNS reducing sugar 

assay was based on the method described by Miller (Miller 1959) and adapted to a microtiter dish 

scale.  The DNS reagent we used contained 0.75% di-nitrosalicylic acid, 0.5% phenol, 0.5% 

sodium metabisulfite, and 1.4% sodium hydroxide, 21% sodium and potassium tartarate. 
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2.2.8. Determination of enzyme activities 

Xylanase and endoglucanase activity were determined using beechwood hemicellulose 

or carboxymethylcellulose (CMC) as a substrate, respectively and activity measured by the 

release of reducing sugars that react with DNS (Miller 1959).  Briefly to 300 µL of 1% 

beechwood xylan or 1% CMC, 50 mM ammonium acetate buffer 10-50 µL of total extracellular 

protein extract (treated as described in 2.2) was added and reactions incubated for 10, 20 or 30 

mins at 45 0C prior to the addition of 300 µL of DNS.  Control reactions (blanks that determine 

the presence of reducing sugars in the starting mixture) contained all the same reagents except 

that DNS was added prior to the addition of enzyme sample.  To determine the amount of 

reducing sugar produced during the enzyme catalyzed reaction the ABS540nm of the control was 

subtracted from the enzyme reaction and resulting net gain in ABS540nm converted into enzyme 

units µMOL/min/µg. protein. 

Cellobiohydrolase and β-glucosidase were assayed using pNPC, p-nitrophenyl β-D-

cellobioside or p-nitrophenyl β-D-glucoside (pNPG) (Sigma Aldrich, St. Louis MO)) as a 

substrate, respectively and activity measured by the release of p-nitrophenyl that absorbs at 

ABS420nm on a TECAN microwell reader.  Briefly to 570 µL of 4 mM pNPC, 50 mM ammonium 

acetate buffer 5-10 µL of total extracellular protein extract (treated as described in 2.2) was added 

and reactions incubated for 5, 10 or 30 mins at 45 0C prior to the addition of 60 µL of 2M sodium 

carbonate.  Control reactions contained all the same reagents except that 2M sodium carbonate 

was added prior to the addition of enzyme sample.  To determine the amount of p-nitrophenyl 

produced during the enzyme catalyzed reaction the ABS420nm of the control was subtracted from 

the enzyme reaction and resulting net gain in ABS420nm converted into enzyme units 

µMOL/min/µg. protein. 

 



29 
 

2.2.9 Production of cellulases with C5 pre-hydrolysates 

 Fermentation experiments examining the here constructed strains, PFI-X7, PFI-EA and 

PFI-BA using pre-hydrolysate were done in shaker flasks.  The concentrated pre-hydrolysate was 

adjusted with water to a 30 g/l xylose-concentration and amended with mineral salts as described 

in Clutterbuck (Clutterbuck 1992).  The inoculum was 1x105 spores/ml medium and 

fermentations were carried out at 37 °C with 120 rpm for 72 hrs.  Samples were taken and the 

supernatants stored at -20 °C for later analysis.  

 

2.2.10 Determination of the phenolic content and sugar concentrations 

The total phenolic content was analyzed according to the Folin-Ciocalteau method 

(Singleton and Rossi 1965). Briefly, properly diluted samples (200 µl) were added to distilled 

water (800 µl) and mixed with Folin-Ciocalteau regent (500 µl). Sodium carbonate (2.5 ml, 20% 

w/v) was added after 3 minutes and the samples were incubated in the dark for 30 minutes. The 

absorbance was measured at 725 nm using a photometer. Vanillin was used as external standard. 

The concentrations of glucose, xylose, arabinose, acetic acid, furfural and 5-HMF in the 

pre-hydrolysate and cultivation samples were determined by HPLC measurements (Agilent 1200 

Series). The HPLC was equipped with a pump unit, an autosampler unit, a refractive index 

detector unit and a computer software-based integration system (LC ChemStation). The 

MetaCarb 87H column was maintained at 80 °C at the flow rate of 0.5 ml/min with 0.05 M 

H2SO4 as the mobile phase. Peaks detected by refractive index were identified and quantified by 

comparison with the retention times of authentic standards. 
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2.2.11. Accumulation of glucose by xylose induced cellulases 

Glucose accumulation assays were carried out with 150 µL of 1% phosphoric acid 

swollen avicel (PASC), 150 µL of 100 mM ammonium acetate buffer, pH 5 and addition of 

exactly 1 µg of single or a combination of five cellulases, cellobiohydrolase C, cellobiohydrolase 

B, endoglucanase A, endoglucanase B and β-glucosidase A, incubated at 45 0C for 30 mins.  The 

reaction was stopped by the addition of 300 µL of DNS reagent and samples boiled for 5 mins 

and 200 µL transferred to microtiter dishes.  To determine the amount of glucose produced during 

the hydrolysis reaction the ABS540nm of the control (no enzyme added) was subtracted from 

hydrolysis reactions and the resulting net gain in ABS540nm converted into µMOL of glucose. 

 

2.3 Results 

 

This work aims to switch the A. nidulans natural transcriptional induction regulatory 

mechanism driven by cellulose signals into a xylose driven induction mechanism and thus allow 

A. nidulans to grow on xylose and simultaneously produce large amounts of cellulases. 

In order to figure out which xylanase promoter would induce cellulase production in the 

presence of xylose we replaced 1kb of upstream cbhC (AN0494 ORF) region with ~1kb of four 

xylanase promoter regions, xynAp (AN3613), xynBp (AN9365), xynCp (AN1818) and xynEp 

(AN7401).  In the presence of xylose, xynCp showed the best performance in secreting 

cellobiohydrolase (data not shown).  Even though all tested promoters secreted cellobiohydrolase 

(cbhC) at higher levels than wild-type, the total amount of cellobiohydrolase observed in the 

medium was less than expected and some of the promoters showed interference with pH and 

strong carbon catabolite repression (data not shown). 
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2.3.1 XlnR overexpression and xylose induction 

We thus decided to enhance the expression of client proteins driven by xylose promoters 

by constructing a xlnR (xylanase transcription activator) constitutive overexpression strain.  xlnR 

was placed under the control of the gpdAp promoter which drives constitutive and strong 

expression of G3P dehydrogenase (For a detailed description how strains were constructed with 

gene definition and gene coordinates (see Table S1), strains (Table S2) and primers (Table S3) 

refer to electronic supplemental information ESI). 

 

Figure 2.2 - Constitutive overexpression of XlnR superinduces xylanase production.  

Figure 2.2A- Shows a schematic of the promoter replacement of XlnR and how over-expression 

will affect the xylanase genes under the control of their native promoters. 

Figure 2.2B-Xylanase activity in PFIX7, XlnR over-expression driven by the gpdAp promoter 

(closed symbols) and control (A773) parent strain (open symbols) grown with 1% xylose 

(squares), 1% hemicellulose (diamonds) or 1% PPTB (circles). 
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Figure 2.2 compares xylanase production of PFI-X7, the gpdAp::xlnR over expressing 

strain with the reference strain (A773) when growing in media containing 1% xylose, 1% 

hemicellulose or 2% xylose from PPTB.  Vegetative growth rates of PFI-X7 were comparable to 

A773 (data not shown) in all C5-sugar sources, but PFI-X7 secretes large amounts of xylanases 

while growing on C5-sugar substrates. 

 

Table 2.1 Xylanase overexpression and enhanced extracellular protein secretion in PFI-X7 

 

Table 2.1 shows xylanase production in A773 and PFI-X7 growing on 2, 4 or 6% xylose.  

With 4% xylose the reference strain (A773) accumulated 628 U whereas PFI-X7 produced 16,248 

U representing a 26-fold increase in xylanase accumulation.  Tamayo-Ramos observed a 200-fold 

increase in xylanase activity of A. nidulans strains overexpressing XlnR (gpdAp::xlnR) growing 

on hemicellulose and confirmed XlnR driven overactivation by measuring the reporter α-L-

rhamnosidase (RhaA) on strains where the xynAp and xynBp  promoters were fused to rhaA 

(Tamayo-Ramos and Orejas 2014). 

In addition, as reported by Tamayo-Ramos (Tamayo-Ramos and Orejas 2014) we also 

observed that the total amount of proteins secreted was enhanced in XlnR over-expressing strains.  

For example, Table 2.1 shows that strains growing on 2%, 4% or 6% of xylose secreted 1,442, 
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1,176 and 1,225 µg/mL total proteins, respectively, much higher than the 259, 260 and 302 

µg/mL total proteins, respectively secreted by the reference strain (A773). 

 

 

 

Figure 2.3.  Endo-1,4 β-xylanase C (XynC) is the major xylanase secreted by PFIX7, the XlnR 

overexpression strain when grown on xylose. 
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2.3A SDS-PAGE showing total secreted proteins in WT (A773) and PFIX7 when growing with 2 

or 4% xylose in pH5 or pH8.  Boxes indicate major proteins present under various conditions and 

bands identified by letters were excised and analyzed by LC/MS-MS. 

2.3B Table correlating protein IDs (protein name) with LC/MS-MS spectral counts (abundance) 

of excised protein bands indicated in Panel A. 

 

Figure 2.3A shows protein profiles (SDS-PAGE) of enzymes secreted by A773 

(reference strain) and PFI-X7 (XlnR constitutive expression) growing on xylose.  Figure 2.3B 

lists the spectral counts (determined by LC-MS/MS) of overexpressed protein bands A, B, C, D 

and E.  Remarkably only three proteins were over-secreted in PFI-X7: a chitinase (GH18, band 

E), xylanase C (bands C and D) and a protein of unknown function AN1152 (band B).  Only 

small amounts of xylanase A and no other xylanases (B or D) were detected by LC-MS/MS 

(Figure 2.3B).  In our experiment, which only examined hyper-secreted proteins of the fungus 

grown on xylose as the sole carbon source, the XlnR-induced xylanases secreted (PFI-X7) were 

two versions of xylanase C, namely a full-length version (~34 kDa, band D with CBM1) and a 

truncated version with a catalytic domain and no CBM1 domain (~22 kDa, band C). 

Taken into consideration all of our findings for the overexpression of XlnR in media 

growing on C5-sugars (Figures 2.2, Table 2.1 and Figures 2.3A and B), we concluded that 

overexpressing XlnR (PFI-X7) results in predominant secretion of xylanase C (XynC) when 

mycelia are grown on xylose.  Thus, using the xynCp promoter to drive the production of client 

proteins (cellulases) in a strain that overexpresses XlnR is likely to accumulate large amounts of 

client proteins. 
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2.3.2. Xylose induced production of cellulases 

To test the assumption that XlnR overexpression would drive accumulation of potential 

client proteins driven by the xynCp promoter we constructed a series of strains that overproduce 

five model cellulase genes, predicted to be necessary to completely convert a cellulose molecule 

into glucose.  Based on the evidence reported by Segato and cols. ((Segato, Damasio et al. 2014) 

and others cited within), the selected model genes included two cellobiohydrolases (CbhB and 

CbhC), two endoglucanases (EglA and EglB) and one β-glucosidase (BglA). 

 

 

 

Figure 2.4.  Client protein hyper accumulation induced by xylose in strains overexpressing XlnR 

and regulated by the xynCp promoter. 
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Plasmids carrying the pUC18UP::pyroA::xynCp::CLIENTORF::pUC18DWN Gibson Assembly 

construct were transformed into PFI-X7 (XlnR overexpressing) strain and recombinants selected 

based on the level of client protein production rates. 

Specific enzyme activity (Panel A) and protein accumulation verified by SDS-PAGE (Panel B) 

of five client proteins, two endoglucanases (strain PFIX7-EA, enzyme EglA, strain PFIX7-EB, 

enzyme EglB), two cellobiohydrolases (strain PFIX7-CC, enzyme CbhC, strain PFIX7-CB, 

enzyme CbhB) and a β-glucosidase (strain PFIX7-BA, enzyme BglA). Panel C shows a 

schematic of XlnR over-expression, as well as C-5 sugar induction, driving the production of the 

ectopically integrated xynCp driven cellulases. 

 

Figure 2.4 shows that total enzyme activity and protein accumulation of the five model 

genes grown in the presence of 2% xylose.  For endoglucanases EglA and EglB we found 

3,908+/-190 and 1,570+/-60 enzyme units per milligram total protein, respectively (Figure 2.4A).  

For cellobiohydrolases CbhB and CbhC we found 702+/-3 and 1,054+/-35 enzyme units per 

milligram total protein, respectively (Figure 2.4A).  For β-glucosidase BglA we found 30,436+/-

964 enzyme units per milligram protein (Figure 2.4A).  SDS-PAGE of crude unfiltered extracts 

(Figure 2.4B) shows that all of the enzymes over accumulated in the medium.  For CbhB we 

could not unambiguously detect a clear protein band on SDS-PAGE gels despite detecting 

increased activity (702 U per milligram protein). 

The above result is promising because the engineered strains (PFIX7-EA, PFIX7-EB, 

PFIX7-CB, PFIX7-CB and PFIX7-BA) accumulate large amounts of client proteins relative to 

the production of cellulases in the reference strain when grown on xylose.  The engineered strains 

(PFIX7-EA, PFIX7-EB, PFIX7-CB, PFIX7-CB and PFIX7-BA) showed a 35-, 40-, 16-, 9- and 
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14-fold increase in extracellular specific protein accumulation of β-glucosidase, endoglucanase A, 

endoglucanase B, cellobiohydrolases B and cellobiohydrolase C, respectively. 

 

2.3.3 Production of xylanases and cellulases with C5 pre-hydrolysates 

Next, we prospect the feasibility of using C5 pre-hydrolysates both as a carbon source 

and inducer to produce cellulases.  Because the C5 pre-hydrolysates are a byproduct of LCB 

pretreatments they mainly contain xylose, but other sugars and phenols are also present.  The C5 

pre-hydrolysate, routinely obtained in our laboratories by treating wheat-straw (LCB) with diluted 

nitric acid at 160 C for 30 minutes and concentrated in a vacuum evaporator contains 162 g/l 

(76.7%) of xylose, 29.4 g/l (14%) of glucose and 19.7 g/l (9.3%) of arabinose as potential carbon 

sources. 

We tested two media formulations; First, the reference minimal medium contained 

Clutterbuck salts (Clutterbuck 1992) with xylose as the main carbon source (30 g/l starting 

concentration) and glucose respectively arabinose (5 g/l respectively 4 g/l). Secondly, the pre-

hydrolysate medium with Clutterbuck salts in which the initial C5-sugar concentration was 

adjusted to 30 g/l of xylose with relational reset of glucose and arabinose levels to 5.6 g/l and 4.2 

g/l, respectively. 

 

Three strains were examined for overproduction of enzymes in C5-sugar pre-

hydrolysates, PFI-X7 which due to the overexpression of the XlnR transcription factor naturally 

over-produces xylanases (Figure 5A), PFI-EA which overexpresses endoglucanase A (EglA) and 

PFI-BA overexpressing ß-glucosidase (BglA). 
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Table 2.2: Cellulase and xylanase production in media containing C5-sugars. 

 

2.4. Discussion 

Here we report on a succession of genetic interventions in Aspergillus nidulans that 

redesign the natural regulatory circuitry of cellulase genes in such a way that recombinant strains 

use C5-sugar liquors to grow a vegetative tissue and simultaneously produce large amounts of 

cellulases.  Five cellulases, two cellobiohydrolases (CbhB and CbhC), two endoglucanases (EglA 

and EglB) and a β-glucosidase (BglA) completely digest cellulose producing glucose.  Cellulase 

production using high-xylose containing liquors for biomass digestion releasing C6-sugars 

streamlines the entire biomass degradation process by integrating pretreatment technologies with 

enzyme production and biomass digestion. 

 

2.5. Supplemental Materials 

 

2.5.1 Method details  

Three types of strains were constructed in this study; First the resident CbhC (AN0494) 

promoter (cbhCp) was replaced with four xylanase promoters (xynABCEp) in such a way that 
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recombinant strains induce the production of cellobiohydrolase by xylose, second a XlnR(ORF) 

overexpression strain (PFIX7) was constructed by pabaA ectopic integration of a 

gpdAp::xlnR(ORF) DNA fragment, and third, xylose induced client protein constructs were 

randomly introduced into a XlnR overexpressing strain (PFIX7). 

In all types of strain constructions, a linear hybrid recombinant DNA fragment was 

synthesized using Gibson Assembly Technology, GAT (Gibson, 2011; Gibson, 2014) using 

hybrid primers, Gibson Assembly Master Mix (New England Biolabs, US) and Phusion DNA 

Polymerase (New England Biolabs, US).  DNA fragment size and DNA sequence verified hybrid 

DNA fragments were transformed into A773 or PFIX7 protoplasts.  In the case of promoter 

replacements, a single gene replacement event at the cbh1 locus was selected for each xyn(p) 

promoter replacement by uracil/uridine sufficiency and by diagnostic PCR showing single 

integration (replacement) into the cbhC locus.  For the XlnR overexpression the hybrid DNA 

fragment was integrated into the pabaA locus by a double crossover event disrupting it.  

Recombinants with a single gene replacement event were searched with diagnostic PCR and the 

resulting strain PFIX7 tested for XlnR over-expression. 

For the client protein xylose induced strains we created plasmids carrying the 

pUC18UP::pyroA: xynCp::CLIENTORF::pUC18DWN GAT construct that was transformed into 

PFI-X7 (XlnR overexpressing) strain and recombinants selected based on the level of client 

protein production rates.  Even though we did not check for multiple integration events in single 

transformants we screened at least 100 transformants for high secretion levels of client proteins. 
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2.5.2 Construction of hemicellulose induced cellobiohydrolase production strains. 

 

 

Figure S2.1.  Construction of xylose induced cellobiohydrolase production strains. 

cbhC promoter engineering outline.  A.  Native cbhC (AN0494) locus organization on 

chromosome VIII.  B and B1.  Gibson Assembly construct (GA).  PCR generated DNA 

fragments, cbhUP (AN0495), pyrG (selectable marker) four xyn promoters (see Table S2.1 for 

gene data), xynAp, xynBp, xynCp and xynEp, and cbhDW (AN0494).  PCR fragments were 

amplified from A. nidulans FGSC4 (wild-type) genomic DNA template and GA hybrid primers 

(see Table S2.3).  DNA fragments with hybrid ends (shown in B and B1) were amalgamated 

together using Gibson Assembly Master Mix (Gibson, 2011; Gibson, 2014).  C and C1.  The GA 

linear hybrid recombinant DNA segment (B) was transformed into A773 protoplasts and a single 

gene replacement (double crossover) event that describe the recombinant genotype shown in C 
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was screened by diagnostic PCR.  C1 shows PCR products generated from genomic DNA of 

putative transformants, PFI-1A, PFI-1B, PFI-1C and PFI-1E with primer sets 1, 2 and 3 

identifying bands A, B and C, respectively (C1). 

 

2.5.3 Construction of constitutive XlnR over expression strains 

 

 

Figure S2.2 Construction of XLNR overexpression strains. 

XlnR transcription factor engineering outline.  A.  Native pabaA (AN6550) locus 

organization on chromosome I.  B.  Proposed GA construct.  Five PCR generated DNA 

fragments, pabaAUP, gpdp, xlnRORF, pyrG, pabaADW (see Table S2.1 for gene data).  PCR 

fragments were amplified from A. nidulans FGSC4 (wild-type) genomic DNA template and GA 
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hybrid primers (Table S2.3).  DNA fragments with hybrid ends (shown in B1) were amalgamated 

together using Gibson Assembly Master Mix (Gibson, 2011; Gibson, 2014), and the 7 kb fused 

GA DNA fragment amplified with Phusion DNA polymerase (B2). 

C and C1.  The GA linear hybrid recombinant DNA segment (B2) was transformed into 

A773 protoplasts and a single gene replacement (double crossover) event at the pabaA locus was 

selected among transformants with pabaA auxotrophy and pyrG sufficiency.  Further 

transformants were screened by diagnostic PCR and C1 shows PCR products generated from 

genomic DNA of putative transformants.  PFIX7 shows a pabaA disruption (in C1, primers 

pabaUPf/pabaDWr and gpdp::xlnRA fusion, in C1, primers gpdAf/XlnRr). 

 

2.5.4 Construction of xylose induced overproduction of client (cellulase) proteins 
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Figure S2.3 Construction of strains that over secrete client proteins using xylose, hemicellulose 

or PPTB as a carbon source. 

pUC18 based plasmids were constructed using common DNA fragments (pyroA and 

xynCp) fused to various client protein ORFs (mRNA), CbhB, CbhC, EglA, EglB and BglA (see 

Table S2.1 for ORF/mRNA definitions).  All constructs were done using GA technology with 

hybrid primer sets (see Table S2.3) PCR amplifying the pUC18 plasmid from pUC18 template 

DNA and other hybrid primer sets (see Table S2.3) PCR amplifying pyroA, xynCp and client 

protein ORFs (see Table S2.1) from A. nidulans FGSC4 genomic DNA.  DNA fragments were 

fused with Gibson Assembly Master Mix (Gibson, 2011; Gibson, 2014), and plasmids recovered 

by transformation into DH5 ultracompetent E. coli cells. 

Positive plasmids were directly transformed into PFIX7 protoplasts and recombinants 

selected based on complementation of pyridoxine (pyroA) requirement.  Because multiple 

integrations could enhance the production of individual client proteins, 100 transformants for 

each client protein construct were selected based on their ability to secrete and accumulate the 

specified client proteins.  The best preforming strains selected were PFIX7-BA, PFIX7-EA, 

PFIX7-EB, PFIX7-CB and PFIX7-CC (see Table 2). 
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Table S2.1 Genes and Gene parts utilized in this work 

 

Table S2.2 A. nidulans strains utilized in this work 
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Table S2.3 Primers utilized in this work 
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CHAPTER III 
 

 

COMBINATORIAL GENE SILENCING USING A NOVEL RNA INTERFERENCE 

MECHANISM IN ASPERGILLUS NIDULANS 

3.1 Introduction 

The filamentous fungus Aspergillus nidulans is an important genetic model as well as an 

industrially relevant enzyme production host. (Segato, Damásio et al. 2012) Fungal cell factories 

are used extensively in industry to produce large amounts of enzyme to produce large amounts of 

enzymes when naturally occurring cells are manipulated to forcibly produce a product 

(heterologously or homologously). (Bodie, Bower et al. 1994, Conesa, Punt et al. 2001, de Vries, 

Burgers et al. 2004, Segato, Damásio et al. 2012) Aspergillus and Trichoderma sp. are the main 

genera used in large-scale protein production. (Bodie, Bower et al. 1994, Conesa, Punt et al. 

2001, Punt, van Biezen et al. 2002, Nevalainen, Te'o et al. 2005, Sims, Gent et al. 2005, Squina, 

Mort et al. 2009, Fleissner and Dersch 2010, Kuck and Hoff 2010, Damásio, Silva et al. 2011) In 

Aspergilli overexpression, translation and secretion of industrially useful proteins can exceed 30 

grams per liter. (van den Hondel, Punt et al. 1992) In order to achieve high protein yields strains 

need to be manipulated (Verdoes, Punt et al. 1994, Nieto, Prieto et al. 1999, Meyer, Wu et al. 

2011) such as the design of strong promoters and secretion signals (Wiebe, Robson et al. 2001, 

Record, Asther et al. 2003, Meyer, Wu et al. 2011); and construction of protease deficient strains. 

(de Vries, Burgers et al. 2004, Punt, Schuren et al. 2008, Yoon, Maruyama et al. 2011) 
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Double-stranded RNA (dsRNA) mediated post transcriptional silencing was first 

discovered as quelling in the fungus Neurospora crassa (Romano and Macino 1992). Quelling in 

N. crassa belongs to a broad category of RNA-mediated gene silencing mechanisms typical to 

RNAi(Mittal, Yadav et al. 2012). Recent advances in genomic sequencing has revealed that 

mechanisms of RNA silencing are conserved within many fungi. (Nakayashiki, Kadotani et al. 

2006) In fact RNA silencing is used as an important genetic tool in various fungal species now, 

including A. nidulans. (Barton and Prade 2008) 

RNAi in A. nidulans utilizes the DICER protein to degrade double-stranded RNA into 21 

base pair siRNA duplexes, which then associate with the Argonaute protein forming the RISC 

complex. (Bartel 2005, Baulcombe 2007, Jaskiewicz and Filipowicz 2008) The RISC complex 

uses the guiding strand of the siRNA to target the complementary mRNA sequence and can halt 

the translation, or even degrade, the mRNA sequence.   (Hammond and Keller 2005, Hammond, 

Bok et al. 2008)  For instance, a construct, using inverted repeats of an inducible alcohol 

dehydrogenase promoter (alcAp flanking the brlAb) could silence gene expression in A. nidulans 

using RNAi. (Barton and Prade 2008) The inverted alcAp promoters induce the expression of 

dsRNA and trigger the RNAi mechanism to silence the target gene, brlAb. (Barton and Prade 

2008) 

To address the need for further engineering of genetic networks in cell factories, we 

proposed a serial parallel gene silencing method. Utilizing the conservation of RNA silencing in 

A. nidulans, we prove that entire metabolic pathways can be rewired through a single step genetic 

intervention by examining pathways involved in the proteolysis of heterologous proteins and the 

amylolytic pathway. Fungal cell factories secreting large amounts of heterologous client proteins 

to the extracellular space (Squina, Mort et al. 2009, Damásio, Silva et al. 2011, Santos, Paiva et 

al. 2011, Wang, Squina et al. 2011, Segato, Damasio et al. 2012) are particularly prone to 

degrading the protein with various proteases. (Katz, Bernardo et al. 2008, Pena-Montes, Gonzalez 
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et al. 2008, Wang, Xue et al. 2008, Braaksma, Smilde et al. 2009, Yoon, Kimura et al. 2009, Han, 

Kim et al. 2010, Matsushita-Morita, Tada et al. 2011, Sriranganadane, Waridel et al. 2011, Ward 

2011)  

The proteases produced by the host fungus are often times responsible for the failure of 

the host to accumulate large amounts of these recombinant proteins. Therefore, we propose to 

genetically reengineer the host, using a novel RNA interference mechanism, to inactivate the 

expression of these deleterious proteases. 

 

3.2 Materials and Methods 

3.2.1 Aspergillus nidulans strain manipulations   

DNA mediated transformation will be based on the methods described for A. nidulans by 

Yelton (Yelton, Hamer et al. 1984) and modified as follows; a young mycelium grown overnight 

at 37 0C, 180 rpm in minimal medium with supplements, will be harvested by filtration 

(Whatman filter paper), washed with 0.6 M MgSO4, suspended in 5 ml DSPS (1.1 M KCl, 0.1 M 

citric acid, pH 5.8) with 100 mg of lysing enzymes from Trichoderma harzianum (Sigma L1412), 

100 mg of lysozyme from chicken egg white (Sigma L7651) and 100 mg of albumin bovine 

fraction V (Sigma A4503).  The slurry will be incubated at 30 0C, 100 rpm for 1-2 hours and 

protoplasts harvested by filtration through a one-layer Miracloth, washed by centrifugation 

4,500g, 4 0C, 10 min, twice with 50 ml STC (1.2 M Sorbitol, 50 mM CaCl2, 50 mM TRIS pH 

7.5).  The final pellet will be suspended in 1 ml STC and stored at 4 0C until further use.  In a 

falcon tube 10 mg of pEXPYR plasmid DNA will be added onto 100 ml STC (final volume) 

along with additional 150 ml of protoplasts (~108), incubated at RT for 10-15 minutes prior to the 

addition of 1 ml of 60% PEG solution (60% PEG4000 in STC).  The transforming mixture mixed 

carefully by swirling and incubated at room temperature for 10-15 minutes, 8 ml of STC will be 

added and 1 ml poured onto protoplast-recovery (1.2 M sorbitol) and transformant-selection (no 
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uracil, uridine or 5-FOA) basic medium plates (medium without yeast extract or vitamins).  Plates 

will be incubated at 37 0C for one day and then inverted.  Transformants will be harvested during 

a two to three day period, plated and purified through a single spore conidiation cycle 

(Pontecorvo, Roper et al. 1953, Clutterbuck 1992).  Recombinants will be further selected by 

zeocin resistance (up to 500 ug/ml) and heritable genomic integration validated by PCR 

amplification of a hybrid pEXPYR-flank and client-insert DNA fragment. 

 

3.2.2 Construction of pEXPYR recombinant plasmids  

The starting plasmid will be pEXPYR (Segato, Damásio et al. 2012), a PUC19 based 

backbone E. coli maintaining plasmid, which contains a glucoamylase (glaA), maltose inducible, 

promoter, BbvCI989bp restriction site, glucoamylase signal peptide, NotI1067bp and XbaI1074bp 

restriction sites, a A. niger trpC terminator sequence followed by a zeocin (phleomycin), the 

Aspergillus niger, orotidine 5'-phosphate carboxylase (pyrG) and ampicillin resistance genes.  

Our constructs (ORFs) will be cloned into NotI1067bp and XbaI1074bp restriction sites, validated by 

re-sequencing and transformed into A. nidulans A773 or RF. 

 

3.2.3 Construction of pS-ICDS recombinant plasmids  

DNA fragments which contain double inverted promoter repeats, stuffed with ICDS's 

will be designed “in silico” flanked by suitable cloning restriction sites and resynthesized “in 

vitro” in a PUC19 based plasmid.  The resynthesized inserts will then be transferred to pS 

plasmids carrying or the argB or pyrG89 (recyclable) selectable markers and transformed into A. 

nidulans RF (DargB, pabaA1) or A773 (pyrG89, pyroA), respectively. 
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3.2.4 A. nidulans protein secretion strains  

The A. nidulans high-expression-secretion vector, pEXPYR that directs proteins towards 

the extracellular medium (Segato, Damásio et al. 2012) will be used to secrete proteins designed 

in this study.  Briefly, spores will be inoculated in liquid minimal medium supplemented with 0.5 

to 15 % of maltose (the inducer), distributed onto dishes (10 ml in 60 mm, 20 ml in 150 mm 

Petri-dishes and 500 ml onto cafeteria trays) and incubated (stationary) at 37 0C for 2-3 days.  The 

mycelial mat will be lifted with spatula and discarded and the medium collected by filtration, 

centrifuged at 10,000g for 10 minutes prior to concentration by ultra-filtration (10,000 Dalton 

cutoff Amicon), quantified by the Bradford method (Marshall and Williams 1992), validated for 

purity by SDS PAGE (Shapiro, Vinuela et al. 1967) and used for biochemical studies.  We 

routinely spin about 2.0 mL to about 20 ul, wash column with 0.5 mL of water and 0.5 mL of 

ammonium acetate buffer (10-50 mM).  Supernatant is ready to be used for PAGE, activity 

determinations and LC-MS/MS. 

 

3.2.5 LC-MS/MS methodology  

Samples are analyzed on a hybrid LTQ-Orbitrap mass spectrometer (Thermo Fisher 

Scientific) coupled to a New Objectives PV-550 nanoelectrospray ion source and an Eksigent 

NanoLC-2D chromatography system.  Peptides are analyzed by trapping on a 2.5 cm 

ProteoPrepII pre-column (New Objective) and analytical separation on a 75 µm ID fused silica 

column packed in house with10-cm of Magic C18 AQ, terminated with an integral fused silica 

emitter pulled in house.  Peptides are eluted using a 5-40% ACN/0.1% formic acid gradient 

performed over 40 min at a flow rate of 300 nL/min.  During each one-second full-range FT-MS 

scan (nominal resolution of 60,000 FWHM, 300 to 2000 m/z), the three most intense ions are 

analyzed via MS/MS in the linear ion trap.  MS/MS settings use a trigger threshold of 1000 
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counts, monoisotopic precursor selection (MIPS), and rejection of parent ions that had unassigned 

charge states, were previously identified as contaminants on blank gradient runs, or were 

previously selected for MS/MS (data dependent acquisition using a dynamic exclusion for 150% 

of the observed chromatographic peak width).  Column performance is monitored using trypsin 

autolysis fragments (m/z 421.76), and via blank injections between samples to assay for 

contamination. 

 

3.2.6 Data analysis  

Centroided ion masses are extracted using the extract_msn.exe utility from Bioworks 

3.3.1 and are used for database searching with Mascot v2.2.04 (Matrix Science) and X Tandem 

v2007.01.01.1 (www.thegpm.org).  Peptide and protein identifications are validated using 

Scaffold v2.2.00 (Proteome Software).  Probability thresholds are greater than 99% probability 

for protein identifications, based upon at least 2 peptides identified with 95% certainty.  Proteins 

that contain similar peptides and cannot be differentiated based on MS/MS analysis alone are 

grouped to satisfy the principles of parsimony.  

 

3.2.7 Standard enzyme activity assays  

Enzymatic activity of a variety of glycosyl hydrolases that act on polymeric substrates 

will be determined by adding 10 ml of enzyme to 50 ml of 1 % (wt/vol) substrate in 100 mM 

phosphate buffer, pH 6.0 (or as specified) and incubating with agitation at 85 0C, or as specified 

for 30 to 60 minutes.  The reaction will be terminated by addition of 60 ml of dinitrosalicyclic 

acid (DNS) and incubated in a boiling (95 0C) water bath for 5 min.  The enzymatic release of 

reducing sugars, which react with DNS will be spectrophotometrically quantified at 575 nm with 
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a Multimode Infinte M200 Reader (Tecan, SC) and compared with glucose and cellobiose 

standard curves.  This method is partially based on the DNS method described by Miller (Miller 

1959).  Assays will be carried out on sealed 96-well microtiter plates, or in 96-well-format 

assembled 8-strip 0.2 ml tubes, with attached hinged caps.  Specific activity is defined as U per 

mg protein at 45 0C whereas U is the amount of enzyme that produces one mmole of reducing 

sugar (glucose or cellobiose) per minute.  Other enzyme activities, e.g., protease, glucoamylase 

and kinase assays will be based on published methods. 

3.3 Results and Discussion  

The overall objective was to develop a parallel gene-silencing tool to enable systems 

biology, metabolic pathway, and cellular process reengineering, applicable to the proteolytic 

pathway in A. nidulans. 

 

3.3.1 Construction of a proof of concept silencing vector pSP+G 

We plan to examine the complex extracellular proteolytic pathway that degrades client 

proteins in the model cell factory A. nidulans. While A. nidulans is an efficient cell factory, able 

to secrete large amounts of proteins towards the extracellular space, they also produce many 

proteases that degrade client proteins. These proteases can be secreted as a result of stress induced 

stimuli such as pH, nitrogen, carbon, and other metabolite depletion. Notably, the excessive 

accumulation of extracellular proteins can induce the production of these extracellular proteases. 

(Ferreira-Nozawa, Silveira et al. 2006, Katz, Bernardo et al. 2008, Braaksma, Smilde et al. 2009, 

Han, Kim et al. 2010, Ward 2011) 

To construct the silencing vector (pSP+G) we mined the A. nidulans genome for 

annotated extracellular proteases from NCBI (Johnson, Zaretskaya et al. 2008). Proteases 
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containing a signal peptide were deemed to be extracellular. 11 potential proteases were targeted 

by our silencing vector as well as 3 glucoamylases that were induced by the maltose used in our 

pEXPYR over-expression and protein secretion system (Figure 3.1) 

pSP+G has been constructing using two inverted trpC promoters in order to induce the 

formation of double stranded RNA. In between the two trpC promoters there is an array of 30bp 

DNA segments, each complementary to a different gene (See Figure 3.1). When this construct is 

integrated into the host genome the produced dsRNA will be processed by the conserved RNA 

interference pathway and silence the transcripts of the genes targeted by our construct (Table 

3.1).  

 

 

Figure 3.1 – Construction of a proof of concept silencing vector pSP+G 

Panel A Lineup of DNA elements; trpCpfwd promoter, eleven complementary DNA extracellular 

protease encoding segments of 30bp each, three glucoamylase encoding 30 bp segments, and the 

terminal trpCprev promoter. Panel B BLASTn output of the DNA element lineup, illustrating the 
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perfect match of each 30bp sequence to its target mRNA. Panel C pS-ICDS plasmid; the trpCp 

flanked 30bp segments inserted into plasmid pDCI, an A. nidulans transformation vector carrying 

the argB gene. 

 

Table 3.1- Genes targeted by pSP+G 

The first ten 30bp units of pSP+G are proteases and the final 3 are glucoamylases 

 

3.3.2 pSP+G targeting of extracellular proteases during heterologous protein expression 

The pSP+G plasmid has been transformed into strain RF (DargB, pyrG89, pabaA1), 

recombinants were then selected and validated for permanent integration into the A. nidulans 

genome. Ten independent transformants were grown on minimal media supplemented with 1% 

glucose and 2% maltose and protein profiles determined by SDS PAGE (Figure 3.2). Figure 2A 

shows the protein profiles of four S (Silenced) strains compared to the protein profile of the non-

silenced control strain (RF). A significant number of proteins are missing in all four S strains and 

others appear at reduced levels. However, new proteins appear in S strains that are absent in the 
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RF strains. Appearance of the new proteins might be the result of halted proteolysis or a 

physiological adaptation induced by the systemic silencing of extracellular proteases. It should be 

noted that all S strains have identical protein profiles. 

When the S strains are transformed with our high yield expression and secretion plasmid 

pEXPYR-Cbh1, which carries a heterologous cellobiohydrolase known to be degraded by 

proteases. (Segato, Damásio et al. 2012) Figure 2B shows the protein profiles over a five-day 

period of Cbh1 accumulation in the medium S strain (S1CBH) and the control strain (RFCBH). 

Figure 2B shows significant proteolytic protection in the S strain compared to the RF strain, 

suggesting reduced proteolytic degradation in the medium. However, proteolytic degradation has 

not been completely halted. 

 

 

 

Figure 3.2 (A) The pSP+G erases extracellular proteins (B) and protects recombinant proteins 

from proteolytic degradation. Panel A- SDS-PAGE of extracellular proteins produced by control 

(RF) strain and four independent transformants (S6-9). Note that several proteins are missing 

(denoted by a black dot) in the S6-9 protein extracts, while others appear at reduced levels 
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(yellow dots) consistently in all four strains. New proteins (blue dots) were detected in the S 

strains that were not present in the RF strain. Appearance of the new proteins may be the result of 

halted proteolytic activity or a physiological adaptation induced by the systemic silencing of 

extracellular proteases. Panel B- SDS-PAGE of the extracellular profiles of the non-silenced 

control (RF) and the silenced (S1CBH) over-producing cellobiohydrolase (Cbh1) strains. Note 

that Cbh1 is only partially degraded after the second day of incubation while all of the Cbh1 is 

degraded in the wild type background. 

 

3.3.3 pSP+G silencing of glucoamylase activity 

 Since there are three 30bp dsRNA fragments complementary to glucoamylases we were 

able to test for reduced activity in the S (silenced) strains. Table 3.2 shows that glucoamylase 

activity is significantly reduced in about 50% of the tested S strains when compared to the control 

strain RF. Thus, even though not all glucoamylase activity was erased, a significant portion of the 

activity appeared to be silenced. It should be noted that glucoamylase activity reduction is 

consistent amongst all three strains (46-62%) ruling out the possible transcriptional effects due to 

varied ectopic genome integration.  
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Table 3.2- Silenced glucoamylase activity 

 

Several explanations may account for why the protease and glucoamylase activities are 

not completely silent. First, the silencing construct does not contain 30-mers from all known 

proteases and glucoamylases. Second, RNA interference may induce alternate gene sets that 

complement the inactivated genes. Third, the length of the 30mers may not by the most efficient 

for the RNAi pathway. 

In order to test the first two possibilities, we performed a proteomic analysis of the 

proteins secreted in a reference strain, a strain containing an empty pEXPYR vector, and a strain 

expressing Cbh1 as a client protein. 

 

3.3.4 Proteomics of extracellular client protein production 

Figure 3.3 shows the SDS-PAGE secreted protein profiles of A. nidulans strain A773 

(pyrG89, pyroA1), A773 pEXPYR (A773 with an empty pEXPYR expression/secretion vector), 

and a Cbh1 expressing and secreting strain (pEXPYR-Cbh1) (Segato, Damásio et al. 2012). 

Proteins were extracted from the SDS-PAGE lanes and digested with trypsin, analyzed by LC-

MS/MS and peptides identified with A. nidulans protein database (See methods section). The 

heterologous Cbh1 protein was not detected because it was not in the Mascot database. 
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Figure 3.3 SDS-PAGE extracellular protein profiles of A. nidulans strain A773, A773 containing 

an empty pEXPYR expression/secretion vector, and A773 transformed with pEXPYR-Cbh1.  
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Table 3.3 Proteins secreted by A. nidulans 

 

Table 3.3 describes the proteins found by LC-MS/MS. In all three strains (A773, A773 

containing an empty pEXPYR vector, and A773 pEXPYR-Cbh1), the most abundant proteins 

detected by proteomics were starch degrading enzymes. This result is expected since A. nidulans’ 

expression and secretion system, pEXPYR, is induced by maltose and secretion is driven by the 

glucoamylase signal peptide. However, what was not expected is that the Cbh1 expression strain 

Cbh1* pEXPYR A773 Cbh1* pEXPYR A773

177 507 605 89% 44% 53%
164 347 439 82% 30% 38%

alpha-1,4-glucosidase AN8953 108 5 297 370
alpha-1,4-glucosidase AN2017 110 9 27 28
alpha-1,4-glucosidase AN0941 94 4 20 39

alpha-amylase AN3402 69 117 1 1 59% 0% 0%
alpha-glucoamylase glaB AN7402 71 29 1 1 15% 0% 0%

14 160 166 7% 14% 15%
beta-1,3-endoglucanase AN7950 47 1 60 75 1% 5% 7%

1,3-beta-glucanosyltransferase AN7657 49 9 48 34 4% 4% 3%
alpha-mannosidase 1B AN0787 56 1 18 9 1% 2% 1%

endoarabinanase AN8007 34 1 17 14 1% 1% 1%
beta-1,4-endoxylanase AN1818 34 1 12 18 1% 1% 2%

polysaccharide deacetylase AN9380 26 1 5 17 1% 0% 2%
4 123 78 2% 11% 7%

alkaline protease AN5558 42 1 60 29 1% 5% 2%
aminopeptidase AN8445 54 1 27 25 1% 2% 2%

dipeptidyl-peptidase AN2572 79 1 20 16 1% 2% 1%
gamma-glutamyltranspeptidase AN10444 65 1 16 8 1% 1% 1%

3 161 157 2% 14% 14%
catalase catB AN9339 79 1 103 99 1% 9% 9%

thioredoxin reductase AN8218 42 1 30 31 1% 3% 3%
superoxide dismutase AN0241 16 1 28 27 1% 2% 2%

6 143 170 3% 12% 15%
NADP-G dehydrogenase AN4376 50 1 41 56 1% 4% 5%

methionine synthase methH AN4443 87 1 28 24 1% 2% 2%
phenol oxidase IvoB AN0231 40 1 21 29 1% 2% 3%

exoinulinase AN5012 133 1 20 21 1% 2% 2%
FAD-oxidoreductase AN10296 52 1 18 20 1% 2% 2%

coproporphyrinogen III oxidase AN5130 52 1 16 19 1% 1% 2%
9 229 136 5% 20% 12%

unknown AN5942 17 1 40 33 1% 3% 3%
extracellular serine-rich protein AN2954 96 1 37 14 1% 3% 1%

unknown AN7912 42 1 28 9 1% 2% 1%
cell wall organization protein AN4390 41 1 27 13 1% 2% 1%

unknown AN7181 49 1 22 20 1% 2% 2%
unknown AN7269 51 1 21 14 1% 2% 1%
unknown AN8333 19 1 18 14 1% 2% 1%
unknown AN6535 23 1 18 7 1% 2% 1%
unknown AN8692 19 1 18 12 1% 2% 1%

PROTEIN CATABOLISM (4)

STRESS RESPONSE PROTEINS (3)

OTHER ENZYMES (6)

UNKNOWN (9)

# of normalized spectra
LOCUS

CARBON CATABOLISM (11)
STARCH RELATED (5)

OTHER (6)

Table B1.2. LC-MS/MS of A. nidulans  extracellular proteins: 33 most abundant

MW 
kDa

30% 38%9%

Protein Name
% of all peptides
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induced a different set of glucoamylases as compared to A773 and the empty pEXPYR vector 

control. Hence, these genes were not present in our silencing vector pSP+G which might account 

for the incomplete inactivation of glucoamylase activity in Table 3.2. 

Protein-metabolizing enzymes (proteases) were also analyzed and it was found that four 

different types of proteases were being expressed: alkaline protease, amino-peptidase, dipeptidyl-

peptidase, and gamma-glutamyl-transpeptidase. Using SWISSPROT as the reference data base 

for Mascot to map peptides, we found that Aspergillopepsin B and carboxypeptidase (cpdS) were 

also expressed in higher amounts during Cbh1 production. This may account for the incomplete 

inactivation of protease activity illustrated in Figure 3.2B. 

 

3.3.5 Discussion 

 Proteolysis of client proteins is a significant problem when the protein is recombinant in 

origin because these proteins often have proteolysis degradation motifs embedded into their 

amino acid sequence (which is not a problem if they are being expressed homologously). 

However, when introduced into a fungal hyper-secretion host they are efficiently degraded by 

resident proteases hampering the accumulation of the client protein in a typical industrial 

fermentation process. Because physiological conditions are variable and unpredictable in various 

fermentation procedures, a large variety of proteases maybe activated and secreted. Using our 

tool, future researchers could inactivate multiple proteases through a single step genetic 

intervention.  

 Further, a genetic network-rewiring tool effecting serial gene silencing is a simple but 

powerful design that has direct implications to all types of eukaryotic cell lines engaged in the 

production of a specific product. RNAi inactivation of a collection of genes eradicates the 

requirement of single-gene knockouts, which in most cell line systems becomes difficult after the 
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third round of knockouts. A genetic network-rewiring tool effecting serial gene silencing enables 

systems biology to manipulate and redesign gene networks with a single genetic intervention. 
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CHAPTER IV 
 

 

SILENCING THE AMYLOLYTIC PATHWAY IN ASPERGILLUS NIDULANS WITH A 

SINGLE-STEP GENETIC INTERVENTION 

 

4.1. Introduction 

The use of short interfering RNAs to silence gene expression of genes in fugus has 

proven to be a useful tool for functional genomics. The search for RNA interference (RNAi) 

components in fungal genomes has revealed that RNA silencing pathways are conserved across 

various fungal taxa including Aspergillus nidulans. (Hammond and Keller 2005, Barton and 

Prade 2008, Van Den Berg and Maruthachalam 2015). For functional genomics work in fungus, 

using RNA interference as an alternative to conventional knockouts.  

RNAi vectors producing hairpin RNA (hpRNA) and intron containing hairpin RNA 

(ihpRNA) usually require two steps of direction-oriented cloning of the target gene fragment 

which can be time consuming. The usefulness of these vectors has therefor been limited to small 

scale analysis. A less costly alternative is to use a dual promoter system in which sense and 

antisense transcripts are individually expressed under the control of two opposing RNA 

polymerase II promoters, thus expressing a double stranded RNA (dsRNA). (Barton and Prade 

2008, Van Den Berg and Maruthachalam 2015)
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However the main drawback to the of the dual promoter system is that there is a lower 

RNAi efficiency compared with hpRNA or ihpRNA expressing vectors. (Nguyen, Itoh et al. 

2011) In the dual promoter vectors the annealing of the two separately transcribed RNA 

molecules is required to form the dsRNA necessary for silencing. While in hpRNA and ihpRNA 

vectors a single strand of RNA is self-folding inverted repeats within a single molecule. 

(Nakayashiki 2005) The difference in formation of the dsRNA between the two systems is 

responsible for the change in efficiency. (Van Den Berg and Maruthachalam 2015) In 

Magnaporthe oryzae, the RNAi vector pSilent-dual 1 (pSD1), containing opposing A. nidulans 

trpC and gpdA promoters, was shown to induce GFP silencing at moderate levels. (Nguyen, 

Kadotani et al. 2008) In Histoplasma capsulatum, an RNAi vector with opposing promoters 

triggered only a moderate silencing of a GFP reporter gene with a 35% reduction on average. 

(Rappleye, Engle et al. 2004) 

 In our previous work we have established that a single gene can be silenced using an 

inducible RNA interference vector and that a metabolic network can be partially silenced with a 

single genetic intervention. An improvement in dual promoter systems is the inducible-RNAi 

technique, based on the use of inducible promoters, which act as a switch to control the 

expression of the RNAi construct.  The alcA promoter, inducible by threonine and repressed by 

glucose, successfully silenced the brlAb gene of a. nidulans when the fungus is grown on 

inducing medium. (Barton and Prade 2008)   

However, RNAi-induced silencing of fungal gene expression at the transcriptional level 

is found to be incomplete in many other cases. This leaves the space for improvements to be 

made to this problem. (Jiang, Zhu et al. 2013) For example, enhancing transcription of the 

dsRNA by the RNAi construct. This can be accomplished by either increasing the copy numbers 

of the vector or enhancing the expression of the RNAi vector. (Jiang, Zhu et al. 2013) Enhancing 
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the RNAi expression and using an hpRNA structure, the complete downregulation of alb1 in 

Aspergillus fumigatus was accomplished. (Khalaj, Eslami et al. 2007) Similarly the increased 

expression of RNA-dependent RNA polymerase enhanced the silencing effect of the wA via a 

vector initiated RNAi in Aspergillus oryzae. (Fernandez, Moyer et al. 2012)  Overall, RNAi 

shows incredible promise and high potential as a target dependent tool. 

The following experiments outline an attempt to optimize the RNAi silencing pathway in 

Aspergillus nidulans using different promoters to silence a model metabolic pathway. Firstly, 

promoter activity has been shown to play a role in the efficacy of the RNAi silencing pathway. 

(Khalaj, Eslami et al. 2007) The gpdA promoter in A. nidulans have been shown to be very 

powerful for protein expression so we intend to use it to increase our levels of transcription for 

our silencing construct. (Punt, Dingemanse et al. 1990) We have also shown previously that the 

inducible xynC promoter is also a powerful tool to regulate expression for our silencing construct. 

By increasing transcriptional levels of our dsRNA we hope to increase the efficacy of RNAi 

silencing of our target genes. 

Secondly, we have chosen to silence the amylolytic pathway as a model due to the ease 

of testing enzyme activity. Since previous experiments which targeted proteases did not target all 

proteases in the genome, an incomplete reduction of protease activity was observed. Conversely 

there are only 16 genes in the amylolytic pathway in A. nidulans, which makes targeting and 

silencing all of the genes feasible.  A. nidulans possesses: 7 a-glucosidases (agdA-F), 7 a-

amylases (amyA-F), and 2 glucoamylases (glaA and glaB). (Nakamura, Maeda et al. 2006) All 

sixteen genes in the amylolytic pathway have been targeted with 42 bp complementary double 

stranded RNA in our construct AmSil. 
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By increasing the expression of RNAi and by targeting a system that is better 

characterized, we hope to elucidate a more efficient method for silencing multiple genes through 

a single genetic intervention.  

 

4.2. Materials and Methods 

4.2.1. Strain construction 

Standard A. nidulans minimal medium (MM) and general cultivation techniques were 

used throughout this work and are based on the work by Guido Pontecorvo (Pontecorvo, Roper et 

al. 1953, Pontecorvo 1969) and John Clutterbuck (Clutterbuck 1992).  All strains constructed in 

this work are were derived from A. nidulans A773 (wA3, pyrG89, pyroA4) purchased from the 

Fungal Genetics Stock Center (FGSC, St. Louis, MO).  All gene models and promoters were 

from Aspergillus nidulans FGSC4 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000149205.2) 

and analyzed using the AspGD database (http://aspgd.org (Cerqueira, Arnaud et al. 2014))  

Primers and Gibson Assembly hybrid primers were designed using the NEB Builder Assembly 

Tool (http://nebuilder.neb.com). 

Silencing vectors were assembled into a pUC19 backbone flanked with 1kb homologous 

sequences to the upstream and downstream regions of the pabaA(AN6550) gene in A. nidulans. 

Homologous integration of the construct will result in strains that are unable to synthesize para-

aminobenzoic acid. A functional pyrG gene (AN6157) is included to complement the pyrG89 

mutation in A. nidulans A773. An inverted promoter system flanks a silencing construct (AmSil) 

constituted  of 42mers complementary to all 16 genes in the amylolytic pathway of A. nidulans. 

AmSil is synthesized by IDT’s gBlock synthetic gene construction service (IDT, US). All 

fragments are assembled into a circular vector using Gibson Assembly Technology, GAT 

(Gibson 2011, Gibson 2014) using hybrid primers, Gibson Assembly Master Mix (New England 
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Biolabs, US) and Phusion DNA Polymerase (New England Biolabs, US).  Resulting vectors are 

pUC19::PabaAUpstream::promoter_forward::AmSil::promoter_reverse::pyrG::pabaADownstre

am. Two silencing constructs were generated, differing only in their promoters. A silencing 

vector with dual gpdA promoters, gpdAp/gpdAp (Primer sequencing in Table 4.1), was 

successfully assembled, as well as a hybrid gpdAp/xynCp vector (Primer sequences in Table 4.2). 

DNA fragment size and DNA sequence verified hybrid DNA fragments were transformed into 

A773 protoplasts according to methods by Szewczyk et al. (Szewczyk, Nayak et al. 2006) 

Table 4.1- gpdAp/gpdAp silencing construct primer sequences 

gpdAp/gpdAp silencing construct primers 

paba_Up_fwd  ATGGCACCGCTCCTTGGTGATTGG   3'Tm=76.9 3'Ta(annealing temp)=72.0 

paba_Up_rev  agagtcaccggtcacTTGGCACAGAAATAATGCTGTATCTGCCATTC   3'Tm=74.4 3'Ta(annealing temp)=72.0 

gpdAp_fwd  ttatttctgtgccaaGTGACCGGTGACTCTTTCTGGCAT   3'Tm=71.3 3'Ta(annealing temp)=71.3 

gpdAp_rev  cggccgcaatgcaatGGGAAAAGAAAGAGAAAAGAAAAGAGCAG   3'Tm=68.3 3'Ta(annealing temp)=71.3 

AmSil_fwd  tctctttcttttcccATTGCATTGCGGCCGCCGACTGTAG   3'Tm=79.4 3'Ta(annealing temp)=72.0 

AmSil_rev  tctctttcttttcccAATGCAATGCGGCCGCACGGTGTT   3'Tm=80.9 3'Ta(annealing temp)=72.0 

gpdAp_RC_fwd  cggccgcattgcattGGGAAAAGAAAGAGAAAAGAAAAGAGCAG   3'Tm=68.3 3'Ta(annealing temp)=71.3 

gpdAp_RC_rev  gttgcgttcccaaaaGTGACCGGTGACTCTTTCTGGCAT   3'Tm=71.3 3'Ta(annealing temp)=71.3 

pyrG_fwd  agagtcaccggtcacTTTTGGGAACGCAACTTCCTCGAG   3'Tm=72.5 3'Ta(annealing temp)=71.7 

pyrG_rev  atgtccatacaacagCCCCTTTTAGTCAATACCGTTACACATTTC   3'Tm=68.7 3'Ta(annealing temp)=71.7 

paba_Down_fwd  attgactaaaaggggCTGTTGTATGGACATTCTGCCAAAACC   3'Tm=70.4 3'Ta(annealing temp)=72.0 

paba_Down_rev  TCATTTCGCGTGCGAAGGCATAAA   3'Tm=74.2 3'Ta(annealing temp)=72.0 
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Table 4.2- gpdAp/xynCp silencing construct primer sequences 

xynCp/xynCp silencing construct primers 

Puc_rev  aaggagcggtgccatCTAGAGTCGACCTGCAGGCATGCAAGCTTG   3'Tm=78.5 3'Ta(annealing temp)=72.0 

Paba_Up_fwd  gcaggtcgactctagATGGCACCGCTCCTTGGTGATTGG   3'Tm=76.9 3'Ta(annealing temp)=72.0 

Paba_Up_rev  tagtgtcacctaaatTTGGCACAGAAATAATGCTGTATCTGCCATTC   3'Tm=74.4 3'Ta(annealing temp)=72.0 

gpdA_Fwd atttctgtgccaaGTGACCGGTGACTCTTTCTGGCAT  3'Tm=69.1 3'Ta(annealing temp)=72.0 

gpdA_Rev gccgcaatgcaatGGGAAAAGAAAGAGAAAAGAAAAGAGCAG  3'Tm=80.3 3'Ta(annealing temp)=72.0 

AmSil_fwd  gcagacaccgcgctcATTGCATTGCGGCCGCCGACTGTAG   3'Tm=79.4 3'Ta(annealing temp)=72.0 

AmSil_rev  caactcttacccaaaAATGCAATGCGGCCGCACGGTGTT   3'Tm=80.9 3'Ta(annealing temp)=72.0 

XynCp_fwd  cggccgcattgcattTTTGGGTAAGAGTTGAACGATGGAAG   3'Tm=68.5 3'Ta(annealing temp)=71.5 

XynCp_rev  gttgcgttcccaaaaAGGTTCTTTGTTTTCACAGCATGAATG   3'Tm=68.5 3'Ta(annealing temp)=71.5 

pyrG_fwd  gaaaacaaagaacctTTTTGGGAACGCAACTTCCTCGAG   3'Tm=72.5 3'Ta(annealing temp)=71.7 

pyrG_rev  atgtccatacaacagCCCCTTTTAGTCAATACCGTTACACATTTC   3'Tm=68.7 3'Ta(annealing temp)=71.7 

Paba_Down_fwd  attgactaaaaggggCTGTTGTATGGACATTCTGCCAAAACC   3'Tm=70.4 3'Ta(annealing temp)=72.0 

Paba_Down_rev  gtacccggggatcctTCATTTCGCGTGCGAAGGCATAAA   3'Tm=74.2 3'Ta(annealing temp)=72.0 

Puc_fwd  tcgcacgcgaaatgaAGGATCCCCGGGTACCGAGCTCGA   3'Tm=78.1 3'Ta(annealing temp)=72.0 

 

 

4.2.2 DNA mediated transformation of A. nidulans 

 DNA mediated transformations were based on the methods of Szewczyk et al. 

(Szewczyk, Nayak et al. 2006) 1x108 spores of A773 were grown for 12-14 hours at 30 °C on a 

gyratory shaker at 120 r.p.m. in YG media (5 g L-1 yeast extract and 20 g L-1 D-glucose) with the 

necessary supplements. Young mycelia were filtered through sterile miracloth and washed and 

resuspended in new YG media. A filter sterilized 2x protoplasting solution (1.1M KCl, 0.1M 

citric acid, pH 5.8) with VinoFlow CE (Guzman Enterprises, US) is added to mycelia and mixed 

by swirling at 100 r.p.m. for 2 hours to form protoplasts. Undigested hyphal material is removed 
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by centrifuging for 10 minutes at 4 °C for 10 minutes with no brake. Protoplasts form a layer on 

top of the undigested hyphal material. Protoplasts are collected in a sterile centrifuge tube and 

washed thrice with sterile 0.6M KCl. Protoplasts are then washed and resuspended in 0.6M KCl, 

50 mM CaCl2 for transformation.  

 1 µg of linear or plasmid DNA in TE buffer is added to 100 µl of protoplast suspension 

and vortexed 6 times for 1 second. 50 µl of 25% PEG solution (25% PEG4000 w/v, 0.6M KCl, 

50 mM CaCl2) was added to protoplast and DNA suspension, vortexed 6 times for 1 second, and 

incubated on ice for 30 minutes. 1 ml of room temperature 25% PEG solution is mixed in by 

pipetting 5 times and protoplast solution is incubated at room temperature for 30 minutes. 

Transformation mixture is then plated on selective media plates (containing para-aminobenzoic 

acid, uracil, and uridine) with 1.2M sorbitol and incubated agar side down at 30 °C over night. 

Plates are then flipped and incubated at 37 °C for 48 hours. Carbon sources in the selective media 

were altered to allow for growth of mutants without amylolytic pathway. 

  Transformants were screened for uracil/uridine sufficiency as well as a pabaA 

deficiency. The DNA fragment was integrated into the pabaA locus by a double crossover event 

disrupting it.  Recombinants with a single gene replacement event were searched with diagnostic 

PCR. 

 

4.2.3 Preparation of total extracellular protein extracts. 

 Mycelia are grown on minimal media with varying carbon sources at a final 

concentration of 1% (w/v). xynC promoters are induced with various xylose containing substrates 

at 1% (w/v). Unless otherwise stated, 5 mL of extracellular fluid (medium) harvested from 

mycelia grown for 12, 24, and 36 h were treated with 3kDa cutoff Nanosep® ultrafiltration 
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OmegaTM membrane columns (PALL Corp. USA) and washed with 500 µL of 50 mM 

ammonium acetate (NH4CH3CO2) buffer pH 5 before 10X concentration to a final volume of 50 

µL.  Samples that were not concentrated 5 mL of extracellular fluid was treated as described 

above and resuspended to the original volume (5 mL) with 50 mM ammonium acetate buffer pH 

5. 

 

4.2.4 Protein quantification and SDS-polyacrylamide gel electrophoresis. 

Total protein content was measured in microtiter dishes using the Bio-Rad assay reagent 

(Bio-Rad Laboratories, USA), using a procedure based on the Bradford method (Bradford 1976, 

Marshall and Williams 1992) with bovine serum albumin as standard.  Absorption was measured 

using a UV-Vis 96-well plate reader (Tecan Infinite M200, Männedorf, Switzerland) at 595 nm.  

Quality of total extracellular protein extracts was validated for integrity by SDS polyacrylamide 

gel electrophoresis according to Shapiro (Shapiro, Vinuela et al. 1967). 

 

4.2.5 Free sugar (reducing end) determinations. 

Free sugar determinations were used in two types of experiments: 1) to determine the 

activity of enzymes that use a non-reducing substrate releasing reducing products (sugars) and 2) 

to quantitate the amount of reducing sugar accumulated by enzymes added to a starch degradation 

assay.  In both cases we used the DNS assay developed by Sumner and Graham (Summer and 

Graham 1921) for detection of reducing sugars.  The DNS reducing sugar assay was based on the 

method described by Miller (Miller 1959) and adapted to a microtiter dish scale.  The DNS 

reagent we used contained 0.75% di-nitrosalicylic acid, 0.5% phenol, 0.5% sodium metabisulfite, 

and 1.4% sodium hydroxide, 21% sodium and potassium tartarate. 
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4.2.6 Determination of enzyme activities. 

Amylase and alpha glucosidase activities were determined using soluble starch as a 

substrate, respectively and activity measured by the release of reducing sugars that react with 

DNS (Miller 1959).  Briefly to 300 µL of 1% soluble starch, 50 mM ammonium acetate buffer 

10-50 µL of total extracellular protein extract (treated as described in 2.3) was added and 

reactions incubated for 120 mins at 55 0C prior to the addition of 300 µL of DNS.  Control 

reactions (blanks that determine the presence of reducing sugars in the starting mixture) contained 

all the same reagents except that DNS was added prior to the addition of enzyme sample.  To 

determine the amount of reducing sugar produced during the enzyme catalyzed reaction the 

ABS540nm of the control was subtracted from the enzyme reaction and resulting net gain in 

ABS540nm converted into enzyme units µMOL/min/µg. protein. 

 

4.3. Results and Discussion 

 The overall objective was to optimize a parallel gene-silencing tool for systems biology, 

metabolic pathway, and cellular process engineering. Previously we have applied this method to 

the proteolytic pathway in A. nidulans with limited success, resulting in only partial silencing of 

the targeted genes. Issues with our previous construct were thought to be due to promoter strength 

limiting the amount of dsRNA being expressed, and from targeting a select few of the genes 

allowing the fungus to compensate for loss of activity with other analogous genes. We have 

addressed these concerns by attempting to use other, stronger, promoters. We have also attempted 

to silence the more feasible amylolytic pathway, which contains only 16 genes. 
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4.3.1 Construction of the amylolytic silencing vector pAmSil 

 In order to optimize the use of a dual promoter system to silence genes in A. nidulans we 

have targeted all 16 genes in the amylolytic pathway (Table 4.3) Within the silencing construct 

AmSil there are 16 42mers, each complementary to a gene in the amylolytic pathway. AmSil is 

then flanked by two promoters in order to induce the formation of double stranded RNA (dsRNA) 

which will be processed by the RNAi silencing mechanisms in A. nidulans. Two separate 

constructs were constructed with different pairs of promoters.  

First a gpdAp and xynCp were used to flank the AmSil construct. xynCp is an inducible 

promoter, allowing us to use xylose, xylan, and a pretreated biomass hydrolysate as inducers. 

(Tamayo, Villanueva et al. 2008) The second promoter set was dual gpdA promoters. gpdAp is a 

very strong promoter that has previously been used to express proteins and RNA at very high 

levels. (Punt, Zegers et al. 1991) AmSil and its two inverted promoters are flanked with a 

functional pyrG sequence and 1000bp of the regions upstream and downstream of pabaA. Due to 

the presence of these homologous sequences the pabaA gene will be replaced with our silencing 

construct upon successful integration into the host genome. (Szewczyk, Nayak et al. 2006) 

Transformants will be have uracil and uridine sufficiency, and deficient in para-aminobenzoic 

acid production. AmSil and the surrounding construct are displayed in Figure 4.1.  
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Table 4.3 – Genes targeted by AmSil 

Accession #   
Gene 
Name Mode GH Family 

XM_654529.1 AN2017.2 partial mRNA agdA a-glucosidase 31 

XM_677130.1 AN8953.2 partial mRNA agdB a-glucosidase 31 

XM_675522.1   AN7345.2 partial mRNA agdC a-glucosidase 31 

XM_675682.1 AN7505.2 partial mRNA agdD a-glucosidase 31 

XM_653453.1 AN0941.2 partial mRNA agdE a-glucosidase 31 

XM_656028.1 AN3516.2 partial mRNA agdF a-glucosidase 13 

XM_657355.1 AN4843.2 partial mRNA agdG a-glucosidase 13 

XM_654530.1 AN2018.2 partial mRNA amyA a-amylase 13 

XM_655914.1 AN3402.2 partial mRNA amyB a-amylase 13 

XM_657019.1 AN4507.2 partial mRNA amyC a-amylase 13 

XM_655820.1 AN3308.2 partial mRNA amyD a-amylase 13 

XM_658836.1 AN6324.2 partial mRNA amyE a-amylase 13 

XM_655900.1 AN3388.2 partial mRNA amyF a-amylase 13 

XM_655821.1 AN3309.2 partial mRNA amyG a-amylase 13 

XM_677081.1 AN8904.2 partial mRNA glaA Glucoamylase  15 

XM_675579.1 AN7402.2 partial mRNA glaB Glucoamylase  15 
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Figure 4.1 – Construction of pAmSil and BLASTn output of AmSil targets 

The lineup of DNA elements in pAmSil. The second promoter sequence is either gpdAp or 

xynCp. The AmSil synthetic gBlock sequence was submitted to NCBI BLASTn to ensure that 

each 42mer correctly targeted its complementary gene in the amylolytic pathway without any off-

target effects.  

 

4.3.2 Lethal effect of pAmSil gpdAp/gpdAp on A. nidulans 

 Viable transformants were never recovered with AmSil containing dual inverted gpdAp 

promoters. The gpdA promoter is a highly expressed constitutive promoter in A. nidulans. 

Multiple carbon sources were used in the selection media including 1% glucose, 1% glycerol, 1% 

yeast extract, 1% casamino acids, and 1% soy peptone. The use of these carbon sources alone or 
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in combination did not change the transformation efficiency of A. nidulans with pAmSil 

gpdAp/gpdAp. The inability to recover viable transformants 

 

4.3.3 Effect of pAmSil gpdAp/xynCp on the extracellular amylolytic profile 

 In order to titrate the amount of RNA being expressed, a construct using the constitutive 

gpdA promoter and the inducible xynC promoter was integrated into the A. nidulans pabaA locus. 

One transformant was confirmed via PCR with primers outside of the locus of homologous 

integration. The transformant and the reference strain were grown on various xylose sources to 

induce the expression of AmSil and the amylolytic activities of the extracellular space were 

measured at 12, 24 and 36 hours. Strains were grown on minimal media containing 1% maltose as 

a positive control as maltose is shown to induce the expression of various amylolytic enzymes 

under the control of the transcription activator amyR. (Tani, Katsuyama et al. 2001, Kato, 

Murakoshi et al. 2002) Strains were also grown on minimal media containing 1% maltose and 1% 

glucose as a negative control. The presence of glucose will repress amyR activity through the 

carbon catabolite repressor creA. (Tani, Katsuyama et al. 2001)  

 At 12 hours, the extracellular media was collected and an enzyme activities were 

measured with 1% soluble starch as a substrate (Figure 4.2). Upon the addition of any of the 

xylose sources to the media the amylolytic activity of the strain containing pAmSil drops, but this 

also occurs in the reference strain (A773). The addition of xylose or xylan does not cause a 

statistically significant change in the amylolytic activity in the silenced strain as compared to the 

reference strain. This indicates that xylose may be a preferred carbon source to maltose and 

induce a carbon catabolite repression effect similar to glucose. 
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Figure 4.2- The enzyme activities on 1% Soluble starch of silenced and non-silenced strains of A. 

nidulans at 12 hours 

The carbon sources and xynCp inducers are added to glucose-free minimal media. The addition of 

any xylose source causes a similar silencing effect in the reference strain (closed bars) as it does 

in the strains containing pAmSil (open bars). 

 

 At  24 and 36 hours (Figures 4.3 and 4.4), under xylose induction the amylolytic activity 

is not completely silenced in the strain containing pAmSil. Though there is a small decrease in 

the activity of pAmSil compared to the non-induced growth condition it is not statistically 

significant. The amylolytic activity is also higher than if it had been repressed by glucose. The 

strain containing pAmSil was a transformant that was recovered on glucose. Recovering on 

glucose may have allowed for a strain with less expression of AmSil to persist when it would be 

otherwise lethal. 
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Figure 4.3- The enzyme activities on 1% Soluble starch of silenced and non-silenced strains of A. 

nidulans at 24 hours 

The carbon sources and xynCp inducers are added to glucose-free minimal media. The addition of 

any xylose source causes a similar silencing effect in the reference strain (closed bars) as it does 

in the strains containing pAmSil (open bars). 
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Figure 4.4- The enzyme activities on 1% Soluble starch of silenced and non-silenced strains of A. 

nidulans at 36 hours 

The carbon sources and xynCp inducers are added to glucose-free minimal media. The addition of 

any xylose source causes a similar silencing effect in the reference strain (closed bars) as it does 

in the strains containing pAmSil (open bars). 

 

4.3.4 Discussion 

 Using a single-step genetic intervention to reengineer entire metabolic pathways would 

be an incredibly useful tool  for systems biology. Currently our attempts to optimize the dual 

promoter system to silence multiple genes by RNAi have not provided optimal results. We have 

been unable to recover viable transformants with our dual gpdA promoter system indicating that 

there may be a lethal consequence to knocking down all of the genes in the amylolytic pathway. 

Using the xynC promoter gives confounded results due to the apparent catabolite repression that 

occurs upon the addition of xylose sources to minimal media containing maltose. 
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 In order to elucidate the potential lethal effects of pAmSil, a series of vectors can be 

obtained which serially remove one 42mer from AmSil. In order to elucidate the effects of our 

silencing vectors on the transcriptome it would also be helpful to perform RNAseq on the pAmSil 

transformants. Sequencing the short RNA’s would also allow us to examine how efficiently our 

dsRNA is being incorporated into the RNAi pathway in A. nidulans.  
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