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Abstract: A new generation of precipitation measurement products has emerged, and their
performances have gained much attention from the scientific community, such as the Multi-Radar
Multi-Sensor system (MRMS) from the National Severe Storm Laboratory (NSSL) and the Global
Precipitation Measurement Mission (GPM) from the National Aeronautics and Space Administration
(NASA). This study statistically evaluated the MRMS and GPM products and investigated their
cascading hydrological response in August of 2017, when Hurricane Harvey brought historical and
record-breaking precipitation to the Gulf Coast (>1500 mm), causing 107 fatalities along with about
USD 125 billion worth of damage. Rain-gauge observations from Harris County Flood Control
District (HCFCD) and stream-gauge measurements by the United States Geological Survey (USGS)
were used as ground truths to evaluate MRMS, GPM and National Centers for Environmental
Prediction (NCEP) gauge-only data by using statistical metrics and hydrological simulations using
the Ensemble Framework for Flash Flooding Forecast (EF5) model. The results indicate that remote
sensing technologies can accurately detect and estimate the unprecedented precipitation event with
their near-real-time products, and all precipitation products produced good hydrological simulations,
where the Nash–Sutcliff model efficiency coefficients (NSCE) were close to 0.9 for both the MRMS
and GPM products. With the timeliness and seamless coverage of MRMS and GPM, the study also
demonstrated the capability and efficiency of the EF5 framework for flash flood modeling over the
United States and potentially additional international domains.

Keywords: Hurricane Harvey; MRMS and IMERG; EF5 hydrological simulation

1. Introduction

Floods are believed to be among the most hazardous and frequent natural disasters to human
society [1–4]. Flooding can generally damage infrastructure, cost lives, and even cause further water
contamination as well as waterborne diseases [5]. In particular, floods over urbanized area are more
likely to cause fatalities and severe economic damage because of the population density and developed
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infrastructure, which leads to the intensification of the meteorological extremes [6,7] and increased
surface runoff peaks [5]. Globally, the Gulf Coast of North America is one of many places that is heavily
affected by tropical storms and their cascading floods in an urbanized area [8]. On August 25th, 2017,
Hurricane Harvey made its first landfall at the northern end of San Jose Island, TX. Since then, Harvey
stalled over the greater Houston area and produced over 1500 mm of rain in 4 days, which set the US
record of total precipitation since the 1880s, when the reliable rainfall records started [9]. During this
event, southeast Texas received 20 to 30 trillion tons of water with a return period exceeding 9000 years
at some locations [10], interconnected the Colorado River and San Bernard River overland, and caused
unprecedented flooding. Hurricane Harvey was estimated to cause about USD 125 billion worth of
damage and 107 fatalities, and 127 flash flood warnings were issued during the event [11]. As much as
technology has advanced, society is still searching for tools to improve prediction and mitigate the
damage from floods.

Over the past few decades, the scientific community has made great improvements in the
capacity of flood modeling by combining climate models, weather models, hydrological models,
river models, and hydrodynamic models [12]. The applications of flood modeling vary from flood
risk assessment and mapping [13] to flood damage assessment [14], real-time flood forecasting [15],
engineering for flood prevention [16], post-flood river system hydrology [17], soil and riverbank
erosion [18], catchment hydrology [19] and floodplain ecology [20]. Generally, such applications
require considering both the acceptable predictive accuracy and also high spatiotemporal resolution
while balancing the computational efficiency for real-time operations. For real-time simulations and
forecasts, faster run times, and data assimilation are required to provide reliable results [21]. Recent
advances in global and continental hydrological models have shown very promising results thus far,
which have provided critical information regarding surface runoff, streamflow, soil moisture, soil
infiltration and evapotranspiration [22–28]. One example is the application of the Coupled Routing
and Excess Storage model embedded within the Ensemble Framework for Flash Flood Forecasting
(CREST-EF5) framework [15,29,30]. The CREST-EF5 framework integrates the distributed hydrological
model, CREST, and 1D Kinematic Wave routing to simulate multiple excessive precipitation-triggered
flash-flooding events in Oklahoma City and Houston at a continental scale [15]. As errors originally
contained in the precipitation forcibly propagate through the hydrological model [31], the accuracy of
precipitation datasets is also vitally crucial for hydrological modeling performance.

There are three common precipitation observations in the modern world—rain gauges, weather
radars, and satellite-based remote sensing technologies [32]. Rain gauge measurement is traditionally
the most straightforward in situ method to estimation the surface precipitation, which, for decades,
has been regarded as the closest approximation to the true value at a point [33–36]. Many efforts have
been made to interpolate the rain gauge data into a distributed precipitation field, and many versions
of the optimal rainfall estimation procedures have been adapted by National Center for Environmental
Prediction (NCEP) and National Weather Service (NWS) [37]. However, the rain gauge network density
varies spatially and is low over many developing regions [38]. Rather than estimating rainfall at a
point in space, weather radar networks provide Quantitative Precipitation Estimates (QPE) covering
much larger spatial domains (ranges up to 230 km), at spatial resolutions of the order of 1 km2 for
each pixel. Since the 1990s, the Next Generation Weather Radar (NEXRAD) WSR-88D system has
been improved and utilized, such as the dual-polarization capabilities in 2010 [39], for more advanced
precipitation products including the MRMS system. The MRMS system integrates data from over 180
operational NEXRAD radars, over 7000 hourly rain gauges from the Hydrometeorology Automated
Data System (HADS), the hourly High Resolution Rapid Refresh model analysis data and precipitation
climatology [40]; it seamlessly covers the conterminous United States (CONUS) and Southern Canada
at 1 km spatial resolution and a two minute temporal resolution using sophisticated algorithms
and supplemental input data from ground gauges and environmental models [41]. However, the
MRMS radar network still potentially suffers from radar miscalibration, reduced low-level coverage in
mountainous areas and errors in the QPE algorithms. Earth observation satellites provide the potential
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to estimate precipitation on a global scale [42]. One such unprecedented effort, the NASA Global
Precipitation Measurement (GPM) mission was launched in 2014 by building upon the success of
previous Tropical Rainfall Measuring Mission (TRMM) from 1997 [43]. To date, the GPM mission has
used the Integrated Multisatellite Retrievals for GPM (IMERG) algorithm to generate the quasi-global
precipitation products at 0.1 by 0.1 arc-degree spatial resolution and 30 min temporal resolution [44,45].

Today, given the availability of the above mentioned three precipitation data sources, the scientific
community has exerted efforts on various precipitation product evaluations and intercomparisons,
with particular foci over complex terrains and extreme events including the 2017 Hurricane Harvey
event on the Mexico Gulf Coast [9,11,46–48]. Omaranian et al. [49] compared the GPM IMERG final
run precipitation estimates with NCEP Stage IV radar QPE and indicated that GPM IMERG could
capture the pattern and trace the storm, but significantly overestimated the precipitation amount.
Hayatbini et al. [50] investigated the improved method for Precipitation Estimation from Remotely
Sensed Information Using Artificial Neural Networks- Cloud Classification System (PERSIANN-CCS)
to match the cloud detection of GPM during Hurricane Harvey, which increases the possibility for
PERSIANN-CCS to accurately detect extreme precipitation amount. Kao et al. [51] again studied NCEP
Stage IV QPE data for Hurricane Harvey using Probable Maximum Precipitation (PMP) estimation
methods, and the study suggested a possible link between the extreme precipitation event and global
climate change. Recently, a NASA report presented a precipitation estimations comparison between
MRMS QPE and GPM IMERG products for Hurricane Harvey. The results indicate that GPM IMERG
had a coherent difference from MRMS QPE during Hurricane Harvey, where it underestimated
precipitation in the storm core but overestimated it in the outer rainbands [52]. All studies used
different precipitation data as the ground truth and yielded various conclusions. Thus, it is necessary to
evaluate the precipitation products based on high-density ground reference network and also further
investigate how well they perform in a hydrologic context during this extreme event.

The overarching goal of this study is to investigate which precipitation product can better represent
the true surface precipitation during the extreme event and further capture its cascading hydrological
responses using a very high-density ground gauge network and an operational hydrological modeling
framework. The specific objectives are to (a) statistically compare interpolated rain gauge, MRMS
QPE and GPM IMERG precipitation products with the local independently managed rain gauge
precipitation observation in Harris County, TX and (b) examine the corresponding hydrological
response between interpolated rain gauge data, MRMS QPE and GPM IMERG products as forcing
data for the hydrological simulation over the Spring Basin in the northern part of Harris County, TX.
The study aims to answer the following research questions: (1) Is this type of extreme event detectable
and quantifiable using remote sensing technology? (2) Can the hydrological model capture the extreme
responses? (3) Which precipitation product performs better during extreme events?

This paper is organized as follows. Section 2 describes the study area, data used in this study,
a short description of Ensemble Framework for Flash Flood Forecasting (EF5) hydrological model,
and methodology. Section 3 inter-compares the MRMS, GPM IMERG, NCEP gauge-only precipitation
products with Harris county rain gauge data and evaluates the above precipitation products using the
EF5 modeling framework. Section 4 concludes the study and proposes future directions.

2. Materials and Methods

2.1. Study Area

Figure 1 displays the impact area of Hurricane Harvey, Harris County, TX, and Spring Creek
Basin. Despite the 79,000 square kilometers of impacted area by Hurricane Harvey, Harris County,
TX was the most impacted, as almost half of the casualties from this event were from this area [53].
It is also the third most populated county in the USA, with 4.65 million people, and has an area of
4602 km2, where the dense population leads to the vulnerability to flood extremes and often relates
to fatalities and significant economic loss. There are 147 rain gauges managed by the Harris County
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Flood Control District (HCFCD) and Hydrometeorological Automated Data System (HADS) from
NWS in Harris County, which provided the 1-hour precipitation accumulation data for the study.Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 4 
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Figure 1. Study area showing Hurricane Harvey impact (a), Harris County (b), Spring Basin, rain and
stream gauges, and the landcover (c) as well as the topography (d) of Spring Basin.

To further study the hydrological responses, Spring Basin was selected as the study watershed.
Spring Basin is located at the northern end of Harris County, which contains four major rivers: Spring
Creek, Willow Creek, Little Cypress Creek, and Cypress Creek, covering over 1960 km2 before entering
Lake Houston. The elevation of Spring Basin ranges from 13 to 136 meters above sea level, with an
average of 61 m. The slope varies from 0◦ to 39◦, with an average of 1◦. Spring Basin has urban
structures concentrated at the southern and eastern part of the basin, agricultural ranches in the
southwest portion, and forest in the northwest and middle of the basin along Spring Creek.

2.2. Data

2.2.1. Precipitation Data

Five precipitation products (Table 1) were evaluated by the Harris County-managed HADS and
HCFCD rain gauge observation data from 0:00 Central State Time (CDT) August 25th, 2017 to 23:00
CDT August 31st, 2017, with a total of 168 hourly time-steps. For the precipitation product evaluation,
the ground rain-gauge should not overlap with those used by NSSL and NWS in developing or
correcting the QPE estimates. Therefore, the HADS rain gauges (green dots in Figure 1) were removed
from all analysis in this study. After quality control and HADS gauges removal, only 99 out of 147
rain gauge observations remained, where the gauges that had more than 60 out of 168 time-steps with
continuous stationary values or NA values were eliminated. We obtained the NCEP and Environmental
Modeling Center (EMC) national interpolated rain gauge-only hourly precipitation data from Earth
Observing Laboratory (EOL) data archive (https://data.eol.ucar.edu/dataset/21.004) from August 15th
to September 18th, 2017. This dataset utilizes measurements of about 3000 rain gauges across the
CONUS [54] and uses the optimal estimation of rainfall fields methods to interpolate into 4 by 4 km
gridded hourly precipitation data [37].

https://data.eol.ucar.edu/dataset/21.004
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Table 1. Summary of characteristics of the precipitation products in this study.

ID Products Spatial
Resolution

Temporal
Resolution

Median
(mm/hr)

Mean
(mm/hr)

Maximum
(mm/hr)

OBS HCFCD rain gauge observation Point data 1 h 2.03 7.33 171.70
NCEP NCEP hourly gauge only 4 km 1 h 1.00 4.66 65.90

MRMS QPE MRMS radar based QPE 0.01◦ 2 min 2.61 8.07 124.28

MRMS Corr MRMS 1-r gauge bias-corrected
precipitation accumulation 0.01◦ 1 h 1.90 6.70 105.60

V06AUncal GPM IMERG satellite-based
precipitation product 0.1◦ 30 min 3.82 6.55 66.80

V06ACal GPM IMERG gauge calibrated
precipitation product 0.1◦ 30 min 3.34 5.68 59.58

Two MRMS precipitation products from April 1st to September 30th, 2017, radar-based QPE
(PCP_RATE), and 1-hour gauge bias-corrected radar precipitation accumulations (Q3GC_SHSR_1H),
were obtained from the Iowa Environmental Mesonet NWS data archive (https://mesonet.agron.iastate.
edu/nws/). PCP_RATE is the radar-based MRMS product that uses multiple R-Z relationships and is
derived from MRMS Seamless Hybrid Scan Reflectivity (SGSR), which has a temporal resolution of 2
min and 0.01 by 0.01 arc-degree spatial resolution in real-time. Q3GC_SHSR_1H is the CoCoRaHS
rain-gauge-corrected 1-h radar QPE accumulation using a three steps method, which has the temporal
resolution of 1 h and 1 km2 spatial resolution with a 1.5-h latency [41].

Two GPM IMERG Version 6 (V6) final-run precipitation products [55] from August 15th to
September 15th, 2017, PrecipitationUncal (V06AUncal), and Precipitation Cal (V06ACal), were obtained
from the NASA GES DISC data archive (https://disc.gsfc.nasa.gov/). The GPM IMERG system runs
twice in near-real-time to produce early run and late run results, where the early run has the morphing
scheme only propagated forward, and the late run has the morphing scheme applied both forward
and backward [45]. The IMERG final run has a 3.5-month latency, where the uncalibrated precipitation
product (V06AUncal) is close to IMERG late run and then calibrated with the local rain gauge data
to generate the calibrated precipitation product (V06ACal) [56]. Both IMERG datasets have a 30-min
temporal resolution and 0.1 by 0.1 arc-degree spatial resolution.

Before any analysis, all precipitation products were aggregated or interpolated into 4 by 4 km spatial
resolution and hourly temporal resolution to make all data comparable. The MRMS product family has
a higher spatial and temporal resolution, so MRMS QPE and MRMS Corr data were aggregated using
an arithmetic mean and the 30-min data were summed to produce hourly precipitation accumulation.
The GPM IMERG product family has lower spatial resolution, so V06AUncal, and V06ACal data
were interpolated using the bilinear method and then aggregated into hourly time steps using an
arithmetic mean.

2.2.2. Stream Gauge and Geographic Data

Five U.S. Geological Survey (USGS) stream gauges, representing the upper, middle, and
downstream branches of Spring and Cypress Creek, were selected to validate and calibrate the
hydrological modeling process (Figure 1). The 15-min streamflow data of each gauge from
April 1st to September 30th, 2017 were obtained from USGS National Water Information System
(https://waterdata.usgs.gov/nwis). A high-resolution (15 arc second) hydrologically conditioned
Digital Elevation Model (DEM), Flow Direction (FDR), Flow Accumulation (FAA), and major river
network data were obtained from the HydroSHEDS (Lehner et al. 2008, https://www.hydrosheds.org/).
The potential evapotranspiration (PET) data used in this study were from USGS Famine Early Warning
Systems Network (FEWS NET, https://earlywarning.usgs.gov/fews). The daily 1 by 1 arc-degree PET
data were calculated from the Global Data Assimilation System (GDAS) using the Penman-Monteith
method [57]. The US landcover data were obtained from Multi-Resolution Land Characteristics
Consortium (MRLC, https://www.mrlc.gov/) and the 1 by 1 km EF5 parameters in CONUS were from
the previous study by Vergara et al. [58].

https://mesonet.agron.iastate.edu/nws/
https://mesonet.agron.iastate.edu/nws/
https://disc.gsfc.nasa.gov/
https://waterdata.usgs.gov/nwis
https://www.hydrosheds.org/
https://earlywarning.usgs.gov/fews
https://www.mrlc.gov/
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2.3. EF5 Modeling Framework and Hydrological Evaluation Method

EF5 is a framework built on multiple hydrological model cores including the Coupled Routing and
Excess Storage (CREST) model version 2.0, co-developed by the University of Oklahoma and NASA
Applied Science Team [29], and its grid-based water balance component is coupled with the kinematic
wave water routing model [59]. EF5 supports multiple water balance methods and comes with an
automatic calibration module [30]. EF5 was adapted as an operational tool across the NWS for flash
flood forecasting by local NWS Forecast Offices in the Flooded Locations and Simulated Hydrographs
Project (FLASH) [15]. The current modeling research was modified from the basic implementation
from FLASH and was used here to evaluate the hydrological responses of remotely sensed observations
and rain gauge interpolated precipitation products.

2.4. Statistical Metrics

Seven common statistical metrics were used to evaluate the performances of different precipitation
products and their performances in the hydrological model (Table 2). The correlation coefficient (CC)
represents the degree of agreement between the precipitation estimates and the rain/stream gauge
observation as the “ground truth.” Two metrics were selected to discover the error and bias between the
precipitation products and observations, which were the relative bias (RB) to describe the systematic
bias as a ratio, and the root-mean-square error (RMSE) to measure the average error magnitude. Four
additional metrics were calculated to evaluate the hydrological responses of different precipitation
products, which were the conventional Nash–Sutcliffe coefficient of efficiency (NSCE), peak flow error
(PE), peak time error (PTE), and runoff volume ratio (RR).

Table 2. List of statistical metrics used in this study.

Statistic Metrics Equation a Value Range Perfect Value

Correlation coefficient (CC) CC =

∑N
n=1

(
fn− f

)
(rn−r)√∑N

n=1

(
fn− f

)2
√∑N

n=1(rn−r)2
-∞, 1 1

Relative bias (RB) RB = 1
N

N∑
n=1

fn−rn
rn

-∞, +∞ 0

Root-mean-square error (RMSE) RMSE =

√
1
N

N∑
n=1

( fn − rn)
2 0, +∞ 0

Nash-Sutcliffe coefficient
efficiency (NSCE) NSCE = 1−

∑N
n=1( fn−rn)

2∑N
n=1(rn−r)2 -∞, 1 1

Peak flow error (PE) PE = fmax − rmax -∞, +∞ 0
Peak time error (PTE) PTE = t(rmax) − t( fmax) -∞, +∞ 0

Runoff volume ratio (RR) RR =
∑N

n=1 fn∑N
n=1 rn

0, +∞ 1

a Variables: n and N, sample index and a total number of samples, f represents the precipitation estimate products
from gauge interpolation, radar, and satellite, r represents the reference observation including the Harris County
Flood Control District (HCFCD) rain gauge and United States Geological Survey (USGS) stream gauge observations.

3. Results

3.1. Precipitation Evaluation

Two series of comparisons were performed to evaluate the precipitation products, county-averaged
analysis, and grid-based analysis, where the statistic results are listed in Table 3. The precipitation
accumulation of Hurricane Harvey from all precipitation products is shown in Figure 2. This figure
demonstrates that most precipitation products agreed that the southeastern part of Harris county
received the highest precipitation amount, and the post-real-time corrections reduced the amount
of precipitation for both MRMS and IMERG. In addition, V06ACal not only reduced the peak
precipitation accumulation but also increased the minimum precipitation accumulation from
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V06AUncal. Contradictory to the majority agreement, the NCEP gauge-only product shows the
lower accumulative rainfall amount closer to the inner core of Hurricane Harvey (Figure 2).

Table 3. Summary of the statistical evaluations of county-averaged and grid-based comparison of
precipitation products at 4 km and hourly resolutions.

Precipitation Product ID County-Averaged Statistics Grid-Based Statistics

CC RB (%) RMSE (mm/hr) CC RB (%) RMSE (mm/hr)

MRMS QPE 0.92 19.57 3.14 0.91 20.09 5.75
MRMS Corr 0.92 −7.18 3.04 0.93 −10.59 4.74
V06AUncal 0.79 55.97 5.02 0.45 80.45 11.98

V06ACal 0.79 32.80 5.47 0.45 57.61 11.87
NCEP 0.81 −28.88 5.57 0.61 3.48 10.84
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Figure 2. Accumulated precipitation from 25/08/2017 to 31/08/2017 during the Hurricane Harvey
event in Harris County, TX. Hourly data from (a) Multi-Radar Multi-Sensor (MRMS) quantitative
precipitation estimates (QPE), (b) MRMS Corr, (c) V06AUncal, (d) V06ACal, and (e) NCEP gauge-only.

The county-averaged comparisons were conducted by averaging the precipitation data from
different products over the whole Harris county and Spring Basin area. Then, we averaged all 99
valid local HCFCD rain gauge data as the reference of the truth and calculated the statistics. For the
grid-based comparisons and evaluations, we extracted all hourly precipitation rate data for the grids
in which the 99 rain gauges were located from all five precipitation products and then calculated
the statistics. Both local rain gauge corrections reduced the bias of MRMS Corr and V06ACal from
positive 20% to negative 7% (positive 20% to negative 11% for grid-based) and from 56% to 33%
(80% to 58% for grid-based), respectively, as shown in Table 3. However, the corrections only made
minimal reductions in the RMSE, which could be attributed to the positive/negative biases being offset.
The post-real-time correction of MRMS products has a slight overcorrection (Table 3 and Figure 3).
In addition, the correlation coefficient between V06AUncal and V06ACal is exactly 1, possibly because
GPM IMERG uses a fairly simple algorithm to calibrate data [56]. Based on the first level statistical
analysis, the MRMS product family has the highest correlation coefficient and the lowest RMSE
compared with the local rain gauge observation, then NCEP gauge-only precipitation stands the
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second closest, and the GPM IMERG product family is the least accurate. The NCEP precipitation
product has a small relative bias value in the grid-based analysis but much greater negative bias in the
county-averaged analysis, which is further investigated in this study.
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in black.

The county-averaged hourly rainfall rate and accumulated rainfall are shown in Figure 3.
The MRMS product family has a strong correlation with the OBS (CC = 0.92), which caught most of the
precipitation peaks, except for the highest one. IMERG V06 data overestimated at low precipitation
intensities but underestimated at high precipitation intensities, which is consistent with the findings
in the recent technical report [52]. NCEP has an obvious unresponsive condition after the midday
of 28th August 2017, which could be caused by the malfunctions of rain gauges that the algorithm
utilized. This could possibly be the cause of the low precipitation accumulation of NCEP (Figures 2
and 3). Generally speaking, the remotely sensed precipitation products (MRMS and IMERG) performed
better than rain gauge interpolated product during Hurricane Harvey, as NCEP had a greater RMSE
(Table 3). Before the peak rainfall arrived in Harris county on early 08/27/2017, the OBS (HCFCD rain
gauge observation) data had the best match with MRMS Corr, then NCEP, MRMS QPE, V06ACal, and
V06AUncal was the last. After the peak rainfall, the ranking changed to MRMS QPE, V06AUncal, MRMS
Corr, V06ACal, and NCEP. The uncalibrated precipitation products (MRMS QPE and V06AUncal)
performed better than calibrated products (MRMS Corr and V06ACal) after the rainfall intensity
picked up.

As shown in Figure 4, the grid-based scatter plot has a similar finding as to the county-averaged
analysis, where the MRMS product family performed the best during Hurricane Harvey. The NCEP
product performed slightly better than the GPM IMERG product family. This difference indicates that
rain gauge interpolation could potentially create large errors or patchiness that reduce the accuracy of
the precipitation estimates over large spatial extents. The mean relative bias mathematically tends to
generate a large positive value when the observation value is small during overestimations, as the
lowest possible value of relative bias is −1 for positive datasets such as precipitation. This mathematical
nature resulted in the large positive bias of GPM IMERG products due to their overestimation during
the low-intensity precipitation period (Figure 3).
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precipitation products and the rain gauge observations. Data from (a) MRMS QPE, (b) MRMS Corr, (c)
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If focusing on the statistical results within the 95% confidence interval of all 99 grid points
(Figure 5), one can find that the pattern differs where all precipitation products underestimated the
precipitation rate during Harvey except for MRMS QPE. The MRMS Corrected product had a slight
underestimation, but it was the closest to the perfect value. As shown in Figure 6, the GPM IMERG
products had little temporal agreement with OBS in almost all 99 sites, and most of their higher RMSE
values were concentrated close to the storm core, which indicates the accuracy of IMERG decreases as
the precipitation intensity increases. NCEP had the same high RMSE concentration close to the storm
core, possibly due to rain gauge malfunction. Even though the positive and negative bias offset gave
the NCEP gauge-only product the best the average bias value (Table 3), the data quality is spatially
inconsistent across the county. Among all the precipitation products, MRMS products shows the
lowest RMSE and highest CC; however, the error has minor increases near the storm core.
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In general, MRMS precipitation products show good agreement with HCFCD local rain-gauge
observations, while IMERG and NCEP gauge-only products are comparable in quality (Table 3). This can
be attributed to the following factors: first, Hurricane Harvey was an unprecedented precipitation
event that potentially caused failures in the ground instruments that could impact methods relying on
rain gauge interpolations and bias adjustments. Second, the GPM multi-satellite algorithm relies on
passive sensors from satellites in low-earth and geostationary orbits to obtain high temporal resolution,
while the radar QPE algorithm enjoys close proximity to the event and active sensors. Overall, MRMS
products can best represent the surface precipitation field according to HCFCD rain gauge comparison,
with high correlation coefficient (>0.9) and low RMSE (~3 and ~5 mm per hour) at the county and
grid-scale and all the post-real-time correction showed overcorrection for Hurricane Harvey.

3.2. Hydrological Evaluation

The evaluation of hydrological response using MRMS QPE, MRMS Corr, V06AUncal, V06ACal
and NCEP products was carried out in the northwestern basin of Harris county, where all products
had generally acceptable performances according to the previous section. Two rivers were studied
using the EF5 modeling framework in this section (Table 4).

Table 4. Summary of stream gauges selections and calibration results.

Stream
Name

Location USGS
ID

Drainage
Area
(km2)

Overbank
Flow in
Harvey?

Calibration Results

NSCE CC RB (%) RMSE
(m3/s)

Spring Mid-Stream 08068275 483 No 0.99 0.94 8.78 21.23

Spring Down-stream 08068500 1059 No 0.99 0.91 −8.34 19.99

Cypress Upper-stream 08068720 280 No 0.90 0.90 34.64 5.15

Cypress Mid - steam 08068800 540 Yes 0.91 0.87 7.36 4.93

Cypress Down-stream 08069000 738 Yes 0.95 0.97 −3.53 20.15

The first river, Spring Creek, has a larger channel network with a total of 179 km of open channels
and a large natural floodplain. The Spring Creek watershed remains mostly underdeveloped and
natural, except for downstream, where the Woodland Township and the city of Tomball are located.
Due to the lack of urban development, the flood risk of Spring Creek is comparatively less, and there
were no signs of overbank flow from two USGS stream gauges on this river during Harvey. This river
was studied to evaluate the performance of different hydrological responses of MRMS, GPM IMERG,
and NCEP precipitation products.

The second river, Cypress Creek, is a smaller river with 137 km of open water channel and a
well-developed drainage area. The middle and downstream portion of Cypress Creek has experienced
intensive urbanization in the past 20 to 30 years, hosting a population greater than 350,000 according
to the 2010 U.S. census, while only the upstream area remains as agricultural land (Figure 1). Perhaps
exacerbated by the impacts of urbanization, both the middle and downstream USGS gauges experienced
overbank flow during Harvey, despite the effort of a 200,000 m2 detention basin and multiple detention
ponds located around the upper stream of Cypress Creek. This river was studied to examine the early
warning capability of the coupled hydrological modeling system when the ground instruments were
damaged or malfunctioning during the extreme event.

3.2.1. Spring Creek

First, the EF5 model was forced by MRMS Corrected precipitation data, considered as the
most accurate data source during non-extreme events, to benchmark the model parameters from
1st April 2017 to 15th August 2017, with two 15-minute USGS streamflow observations (midstream
and downstream of Spring Creek) using the Differential Evolution Adaptive Metropolis (DREAM)
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algorithm [60]. The model then proceeded to warm up for the same period and the same forcing
precipitation data (MRMS Corr) was used during the benchmark generating process to create a uniform
initial condition for all precipitation product evaluations. Table 4 displays good agreement between
simulated streamflow and the observations during the calibration period, with very high NSCE (0.99)
and CC (~0.93), as well as a small RMSE (~20 m3/s), slight overestimation at midstream (8.78%)
and underestimation at downstream (−8.34%). The MRMS, GPM IMERG, and NCEP rain gauge
interpolated precipitation products were then set as the model forcing data to simulate the hydrological
responses from 15/08/2017 to 15/09/2017 separately for Hurricane Harvey. All products were read at
their original spatial and temporal resolution by the model, as listed in Table 1.

In the hydrological simulations, all precipitation products generally had acceptable performances
with a NSCE greater than 0.8, except for one, and a high CC (Table 5). All products overestimated
the streamflow at the midstream of Spring Creek, and MRMS QPE had a large spike of simulated
streamflow at the peak due to data sensitivity (Figure 7).

Table 5. Summary of hydrological simulation of Spring Creek.

Spring Creek 08068275 Spring Creek 08068500

MRMS
QPE V06AUncal MRMS

Corr V06ACal NCEP MRMS
QPE V06AUncal MRMS

Corr V06ACal NCEP

NSCE 0.62 0.9 0.81 0.83 0.84 0.98 0.88 0.97 0.91 0.93
RB (%) 50.64 23.69 33.4 42.03 7.93 2.9 −7.96 −1.64 8.25 −15

CC 0.96 0.96 0.97 0.96 0.94 0.99 0.96 0.99 0.96 0.98
RMSE (m3/s) 167 84 116 111 107 59 161 86 144 125

Peak Error (m3/s) 1066 97 736 326 392 −298 −787 −475 −581 −542
Peak Time Error

(min) 33 −28 31 −28 −52 13 40 12 40 27

RR 1.51 1.24 1.33 1.42 1.08 1.03 0.92 0.98 1.08 0.85
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Figure 7. Comparison of EF5 simulated streamflow with USGS stream gauge observation during
Hurricane Harvey at midstream (left) and downstream (right) of Spring Creek.

Moreover, the total runoff ratio (RR) of MRMS QPE at the midstream was large (Table 5), which
could be due to the error propagation from the MRMS QPE as its errors were mostly located at the
upstream of Spring Creek (Figure 6), which could partially cause the spike as well. All products
yielded reasonable simulation hydrographs that could capture the flow peak with high CCs (>0.94),
and MRMS products were able to simulate the peak with over 30 min of lead time, which is crucial
and beneficial for flood early warnings. At the downstream gauge, all products underestimated the
streamflow peak and MRMS Corrected, V06AUncal and NCEP products had negative bias compared
to the USGS stream gauge data. One observation of the simulation statistics is that the near-real-time
remote sensing precipitation products performed almost equally well as the post-real-time corrected
products, where the differences of NSCE (<0.1), bias (<0.2), and RMSE (<50 m3/s) between the two
groups were minimal (Table 5). We can conclude that MRMS QPE and IMERG V06AUncal (equivalent
to IMERG late run) are sufficient to drive the hydrological model to provide flood warning information.
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As the near-real-time products can provide timeliness, the remote sensing technologies can significantly
increase the accuracy and reliability of global flood early warning systems. As shown in Figure 7
and the statistic metrics in Table 5, the MRMS product family performed best if not considering the
sensitivity effect in the midstream, followed by NCEP gauge only and GPM IMERG, according to the
metrics of NSCE, RB, CC, and RMSE.

In Figure 8, the three relatively independent statistics are plotted in a 3-dimensional scatter plot,
where the lower-left corner is the perfect point with the correlation coefficient of 1 and no flow peak
nor peak time error. As shown in Figure 8, the MRMS products are closer to the perfect point overall,
followed by GPM IMERG and then NCEP gauge-only, indicating that the performance of GPM IMERG
and NCEP gauge-only are comparable for Hurricane Harvey in Spring Basin. Since products that
are not based on rain gauge corrections show hydrological performance superior to the gauge-forced
product within Spring Basin, we can infer that the gauge-interpolated precipitation product is reliable
only when the gauge network is well functioning. Downstream of Spring Creek, the NCEP gauge-only
product yielded a hydrograph which had significant deficit in total runoff (RR = 0.85), which shows
the disadvantage of using the NCEP product as the underestimation occurred near the storm core and
this error propagated to the hydrological simulation.
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In summary, MRMS performed the best in capturing the hydrological response in Spring Creek,
compared to USGS stream gauge observations during Hurricane Harvey, followed by GPM IMERG
and NCEP gauge-only precipitation products which had comparable hydrological responses. The
post-real-time corrected remote sensing precipitation products did not provide significant improvement
in hydrological responses, which justifies the global real-time operational flood warning system based
on the near-real-time products.

3.2.2. Cypress Creek

For Cypress Creek, the EF5 model was calibrated and warmed up using the same methodology as
with Spring Creek, enabling comparison with three USGS stream gauges located at upper, middle and
downstream reaches. Table 4 shows the statistic results during the warm-up period at Cypress Creek
stream gauges, which have high NSCE (>0.9) and CC (>0.87) values for all gauge locations during
non-extreme periods, which indicates that the EF5 simulation had good agreement with the stream
gauge observations. The CREST-EF5 simulation has a tendency towards slight overestimation at the
upstream and gradually changed to underestimation at the downstream, which matches the findings
of the previous study [61].

Figure 9 shows the hydrographs at three stream gauges along Cypress Creek and EF5 simulated
results using MRMS, IMERG, and NCEP products during Hurricane Harvey. At the upstream
location (USGS 08068720), the observed hydrograph has an obvious long and gentle receding limb,
which was caused by the 650,000 m2 Warren Reservoir located 6.4 km ahead of the upstream gauge.
The slow-release and regulation of the water caused the long receding limb and was not considered
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in this study. Since the Cypress Creek drainage area has been under rapid development during the
past three decades, HCFCD reported that overbank flow was the common problem of the region and
extensive water detention-related engineering jobs were completed. Additionally, as shown in Figure 9,
both the mid and downstream observed hydrographs also have longer receding limbs. However,
during this intense event, the engineered infrastructure did not prevent the overbank flow and flooding
in the middle and downstream of Cypress Creek, where both observed hydrographs (USGS 08,068,800
and 08069000) have an unnatural plateau. Furthermore, the linear appearance of the rising and falling
limbs at the midstream gauge was a result of no data being recorded from noon 27/08/2019 until
01/09/2019 due to gauge malfunction.
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Due to the lack of information on Warren Reservoir and its operational details during Hurricane
Harvey, EF5 simulation results could not capture the reduction in peak flow magnitude nor the long
receding limb from the slow release of detained stormwater. In Figure 9, all simulated hydrographs
have a very steep receding limb, which represents a more typical hydrological response in urban areas.
Therefore, it is inferred that EF5 simulated the urban hydrological conditions without the reservoir
interferences, which is sufficient for flood conditions in the related warning scenarios. For the upstream
gauge (USGS 08068720), MRMS QPE could closely capture the first peak almost at the same time as the
stream gauge observation, and the mismatch of the second peak could be caused by the structural flood
control. IMERG performed poorly for Cypress Creek, as its simulated hydrograph was rather “smooth”
when not considering structural flood control, unlike typical urban hydrographs. At this point, we can
conclude that MRMS products performed the best in the urban hydrological condition, and we can use
MRMS products to regenerate a well-approximated hydrograph when the stream gauge is damaged or
over bank flow occurs. The simulated streamflow could be utilized for many applications, including
but not limited to flood warning, flood risk analysis, flood inundation calculation, and flood control
performance assessment.

In summary, the EF5 modeling framework can simulate close-to-reality streamflow using MRMS
precipitation products during the extreme precipitation event, especially when the ground stream
gauges are damaged, or no gauge is implemented, or when overbank flow occurs. IMERG products
might not be suitable for simulating extreme events in small basins (e.g., <200 km2), but given its global
coverage, it is sufficient for major rivers and sub-basins, where most CREST and satellite precipitation
studies were found successful when applied to different basins globally [5,36,62]. Overall, the EF5
modeling framework combined with current remote sensing technologies (IMERG and MRMS) can
provide a robust flood-early-warning system for real-time operational uses at the regional, continental,
and even global scale.
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4. Discussion

Three results from the previous section require further explanation. First, the result in Figure 3
indicates that after the peak rainfall intensity occurred, the uncalibrated precipitation products (MRMS
QPE and V06AUncal) outperformed the calibrated precipitation products (MRMS Corr and V06ACal).
This might be caused by a combination of overcorrection of the underestimation of GPM IMERG
during the high-intensity precipitation period, possible rain gauge malfunctions, and post-real-time
calibration error. Due to the unprecedented nature of Hurricane Harvey, it could cause errors to the
post-real-time correction algorithms at such an intensity. Therefore, the current precipitation correction
algorithms for MRMS and GPM IMERG are less valid for unprecedented events like Hurricane Harvey.
We also suspect that the insensitive precipitation observation from the NCEP data is caused by the
damage to instruments by the flood or objects and the mechanical saturations caused by the intensive
rainfall. However, the true causes of the suspected rain gauge malfunction are unknown.

Second, the results from Figure 7 show a spike on the MRMS QPE simulated hydrograph.
This could be caused by the sensitivity to the high quality and high temporal resolution of MRMS QPE
product with the combination of smaller channels in the upstream. When simulated with MRMS Corr,
the resulting streamflow had a dramatically smoother spike as the temporal resolution is hourly.

Third, the Cypress Creek hydrological evaluation yields an untypical hydrograph at the upper
stream from IMERG produced simulation. However, as stated in the previous section, EF5 did not
consider the impact of flood control infrastructure. This result could be caused by the low spatial
resolution of IMERG combining with the smaller drainage area which undermined the precipitation
representativeness. It was a fact that there were less than 4 grid cells from IMERG products within
the drainage area of the upstream gauge. At the downstream location, the IMERG yielded a more
reasonable hydrograph, as there were 12 grid cells covering the drainage area.

5. Conclusions

The results of this study indicate that the remote sensing technologies and gauge interpolation
method could all detect the unprecedented extreme rainfall associated with Hurricane Harvey, as well
as capturing the cascading hydrological responses. This study first focused on statistically comparing
the MRMS QPE, MRMS Corr, IMERG final V06AUncal and V06ACal, as well as NCEP gauge-only
interpolated precipitation products with the very dense HCFCD local rain gauges. Then, hydrological
responses were evaluated using the EF5 modeling framework in Harris County and Spring Basin of
Texas, USA. The findings and results from this study can be potentially applicable to other subtropical
zones impacted by tropical cyclones or low-lying flood-prone areas that are similar to southeast Texas,
particularly in extreme events.

The main conclusions from the cross-evaluation of MRMS, IMERG, and NCEP gauge-only
precipitation products at county- and grid-based scales during Harvey, are summarized below:

1. MRMS precipitation products are the best remote sensing rainfall measurements that perform
most comparably to the local dense network rain gauge observations. IMERG and NCEP rain
gauge-interpolated precipitation products are comparable to each other statistically, but IMERG
has the advantage of global coverage, and is not limited to the national radar and local rain gauge
network coverage.

2. The post-real-time corrections for remote-sensing-based precipitation products were not
necessarily valid for the unprecedented precipitation event and caused overcorrections to
MRMS and IMERG, as overcorrection occurred for both product families.

3. IMERG products tended to overestimate the low–moderate precipitation intensity but
underestimate the highest precipitation intensities. The NCEP product showed significant
underestimation, especially near the storm core region, due to possible instrumental failure
during the record Harvey event, implying its high dependence on the functionality and reliability
of the ground instruments during extreme events.
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In terms of the hydrological evaluation, Spring Basin was selected because no precipitation
product had significant errors within the basin from the above analysis. Two rivers were analyzed
separately for their differences in urban and natural hydrological environments. The main conclusions
are as follows:

1. Consistent with statistical evaluations, MRMS performs the best, showing comparable simulations
with USGS stream gauge observation in Spring Basin during Hurricane Harvey, followed by
IMERG and NCEP with acceptable performances.

2. The current remote-sensing-based, near-real-time precipitation products are sufficient to capture
the extreme precipitation and its cascading hydrological responses. Providing the advantages
of timeliness and vast spatial coverage in national and global scale, the user community is
encouraged to integrate the latest remote sensing products into their operational flood disaster
warning systems for the public to be informed, and to reduce and mitigate the risk of extreme
precipitation events.

3. The EF5 modeling framework can capture the hydrological responses during such unprecedented
extreme precipitation events; and, more powerfully, such a system can be integrated with the latest
remote sensing forcing data (i.e., MRMS and IMERG) into national and even global modeling
frameworks to alternatively compliment the vast ungauged regions.

This study proved the value of MRMS precipitation products for extreme precipitation detectability
and accuracy, as well as their capability in hydrological prediction when combined with the EF5 model
framework, which further confirmed the success of the FLASH project run by the NOAA National
Severe Storm Laboratory (NSSL) and the University of Oklahoma (http://flash.ou.edu). Even though the
GPM IMERG’s performance during Hurricane Harvey is second to MRMS, its simulated hydrological
response is sufficient to provide flood magnitude and peak-timing warnings and to potentially
build an operational flood early warning system at the global scale given satellite products’ global
coverage. Furthermore, it is reasonable to expect the evolving IMERG products will keep improving for
hydrological and water resource applications. Concurrently, as the recent remote sensing technologies
have progressed to accurately capture an unprecedented rainfall event, the EF5 modeling framework
will need further improvement to provide not only the streamflow estimation but also the flood
inundation extents and even water-depth over inundated urbans. Ultimately, future interdisciplinary
building blocks are encouraged to connect extreme rainfall, hydrological responses and consequent
flood risk analysis, as well as loss quantifications, in order to maximize the socio-economic value of the
latest remote sensing observations for the general public, nationally and globally.
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