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Abstract

Storm tracking using radar observations of weather is a valuable tool both for the

study of weather conditions and for the issuance of advance warning when such

conditions are severe. Centroid-based storm tracking algorithms are a common tool

used to provide short-term forecasting of storms. In these algorithms, cells rep-

resenting intense areas of storms are identified. The cells are compared to cells

identified at regular intervals, and similar cells are assigned to tracks which indi-

cate the history of the underlying storm. These tracks may then be used to generate

forecasts. The Strong Point Analysis, Multiple Hypothesis Tracking (SPA-MHT)

technique is a centroid-based algorithm which draws on methods effective in storm

tracking and in the more general field of object tracking. Strong Point Analysis

identifies storm cells using the erosion and dilation operations from the field of

mathematical morphology. Multiple Hypothesis Tracking assigns these cells to

tracks, resolving ambiguities by incorporating data from multiple sequential sets

of observations.

In this thesis, the motivation for the design of SPA-MHT is presented in the con-

text of previous storm tracking algorithms. The suitability of Strong Point Analysis

for storm identification and Multiple Hypothesis Tracking for track association is

considered. An implementation of each technique is also presented. The com-

bined implementation is evaluated on radar data from the NEXRAD network of

Doppler weather radars. This constitutes the first evaluation of Multiple Hypoth-

xvii



esis Tracking on actual weather radar data. Both qualitative visual comparisons

and quantitative comparisons are considered. SPA-MHT is found to outperform

the current NEXRAD tracking algorithm when tracking storms that are isolated or

forming clusters, but performance between the two methods is more comparable in

challenging situations such as squall lines.

xviii



Chapter 1

Introduction

Nowcasting, or short-term forecasting of weather phenomena, is a valuable tool in

the study of weather and in issuing warnings of severe and hazardous events. Ac-

curate nowcasting can be combined with rainfall estimation to generate advance

warning for flooding [1]. The ability to identify the motion of storms is a prereq-

uisite to effective nowcasting, yet many challenges are still unaddressed by modern

storm tracking techniques. Variation in the shape and motion of tracked weather

limits the effectiveness of tracking techniques. By integrating advances in the im-

age processing and hard target tracking domains, the main goal of this work is to

improve the performance of existing storm trackers.

The basic unit of data required by storm tracking algorithms is a scan: a set of

observations from a radar. An algorithm may require scans in different formats,

such as the plan position indicator, which traverses range and azimuth dimensions,

or the volume scan, which collects data from sweeps of range, azimuth and eleva-

tion. Regardless of format, each scan is associated with a single time.

The specific definition of a storm varies between storm tracking techniques.

Considering the stated intent to provide useful nowcasting of weather patterns, this

thesis will refer to any cohesive area of moderate to high reflectivity as a storm;

the entities defined by different techniques will be referred to as storm cells. Gen-
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erally, the storm cells identified will provide different interpretations of the same

underlying storm.

1.1 Review of Existing Storm Tracking Algorithms

Approaches to the storm tracking problem may be grouped into two main cate-

gories [2]. The first category consists of storm trackers which cross-correlate data

from two scans to estimate the motion between the scans. This procedure estimates

the general motion of all regions of high reflectivity in an image rather than the mo-

tion of any individual cell [3]. Generally speaking, correlation-based methods are

vulnerable to storm growth and decay, especially at smaller scales, when changes

in storm intensity between scans reduce correlation. The Tracking Radar Echoes

by Correlation (TREC) algorithm illustrates this category of trackers. TREC gener-

ates motion vectors by searching for regions in a new reflectivity image which are

strongly correlated with a region in the previous image [4]. The search covers an

area based on known wind speeds, which provide an upper bound on the amount of

motion expected. A motion vector is obtained for each point in a grid. No attempt

is made to identify distinct cells. TREC was later applied to hurricanes, which fea-

ture well-defined structure, in order to provide continuous estimates of peak and

sustained wind speeds [5]. The movement of regions, as detected by correlation,

traced wind fields within the hurricane wall.

Algorithms in the second and more broad category, the centroid-based storm

trackers, operate on sets of point observations, or centroids. A feature extraction

process is required to translate the widely distributed reflectivity fields observed

by a weather radar into these centroids before they are assigned to tracks. Among

the centroid trackers, the average position (x̄, ȳ) of reflectivity values included in a

2



Figure 1.1: Flowchart illustrating three stages of centroid-based storm trackers.
Storm cells are identified from incoming data (1) and assigned to new or existing
tracks (2), which are then used to generate forecasts (3). Some techniques use
forecasts as feedback to improve the track association stage.

storm cell is a commonly used centroid. Alternatives such as the coordinates of the

reflectivity maximum within the cell have been used. A centroid-based algorithm

may be divided into three stages beginning with the arrival of a scan. First, storm

cells are identified from the input data. Each cell is then represented by a single

set of observations: the centroid. The second stage associates storm cells between

scans, forming tracks. Association is based on some combination of the properties

of the cell. In the third stage, each cell in a track is used to forecast positions at

which storm cells are expected in future scans. These forecasts may be used as a

feedback input into the track association stage. Figure 1.1 illustrates the three stages

of centroid trackers.
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In [3], centroids are extracted by identifying contours of consistent reflectivity

in radar images. To reduce the amount of memory used, contours are extracted

as each radial is recorded, and attributes such as area, average and peak reflectivity,

and centroid location are accumulated. A secondary, adaptive threshold extracts cell

contours from these outer contours set 3 dB below the peak value within the outer

contour. The resulting cells are compact, only including measurements that are

spatially very close to the maximum. Track assignment is managed by comparing

cells from the incoming scan with the extrapolated position of previous tracks. Cells

in suitable positions, but with significant differences in height, area, or intensity, are

rejected. The forecasting stage of this algorithm is limited to application of a wind

estimate to previous centroid positions as feedback to the track association stage;

nowcasting is not attempted.

A later technique applied pattern recognition to track a larger portion of the vol-

ume of convective cells [6]. Cells are defined as any region of nonzero reflectivity

with only a single maximum. The coordinates of this maximum are considered the

centroid of the cell. Two cells are separated by the minimum reflectivity values

between them, resulting in wide cells. By including reflectivity beyond only the

centroid, this technique supports secondary products of the cells such as total rain-

fall yield. Cells in the new scan are translated to estimate their historical position.

All cells are translated according to a mean motion estimate. Initially, this estimate

is based off of radiosonde estimates of wind at the steering level. A new cell is

assigned to a previous cell if the historical position estimate has significant overlap

with the previous cell. Merges and splits are considered if multiple cells overlap.

After each cell is matched or considered a new track, the average distance between

the centroids in the old scan and the estimated previous centroids of the new scan

is used to update the mean motion estimate. This technique was considered unsuit-
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able for stratiform precipitation, decaying convective systems, and rapidly changing

storm cell shapes; each of these cases violates the algorithm’s expectations of cells

with a clear central reflectivity peak. Computer memory limitations were also noted

as a weakness of this technique.

The Thunderstorm Identification, Tracking and Nowcasting (TITAN) algorithm

also tracks centroids derived from reflectivity images [7]. Any pixels with reflectiv-

ity values above 35 dBZ are considered to be members of some storm cell. Adjacent

storm pixels are grouped into storm cells, and for each distinct storm cell, the el-

lipse which best fits its member pixels, weighted by reflectivity, is calculated. Each

ellipse is considered to represent a new observation. The center coordinates of the

best fit ellipses are the centroids. A cost function measures the similarity of each

observation to the last observation in each existing track in terms of difference in

centroid position and difference in volume. The total cost of assigning each ob-

servation to one and only one existing track is minimized to determine the best

extension of each track. Forecasting is based on a linear regression of positions in a

track, with the most recent positions receiving the most weight. While not used as

feedback for the main track association process, track forecasts are an input to an

additional matching process which attempts to identify storm merges and splits.

The Storm Cell Identification and Tracking (SCIT) algorithm is a centroid-

based tracker designed to support tracking of storm lines and clusters [2]. Cells

are defined as regions of high reflectivity across several range bins, scan angles,

and scan elevations. SCIT identifies cells at multiple fixed thresholds of reflec-

tivity. When a cell is identified using a higher threshold within a cell found at a

lower threshold, only the cell at the higher threshold is retained. Track associa-

tion is based on agreement between new cells and extrapolated positions of previ-

ous tracks. A least-squares regression of previous locations in a track provides its
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motion estimate for extrapolation. SCIT is vulnerable to storm growth and decay

and is ineffective at tracking stratiform precipitation, a weakness common to the

cell-based trackers reviewed. However, the performance of SCIT on storm cell cen-

troids proved strong enough for adoption by the National Weather Service for the

Next-Generation Radar (NEXRAD) system. SCIT is currently used with the data

provided by the WSR-88D radar network to generate NEXRAD Product 58 - Storm

Tracking Information [8].

Related to the centroid trackers are expert systems which make use of storm

evolution models in order to assign tracks and generate forecasts. The Generating

Advanced Nowcasts for Deployment in Operational Land Surface Flood Forecast

(GANDOLF) system, developed to provide flood hazard warnings, maintains an

object-oriented model for each storm cell detected [9]. Like the centroid trackers,

GANDOLF is divided into cell detection and forecasting stages, but neglects to

associate cells to tracks. Forecasts are instead derived from the state of each storm

cell combined with an external source of wind estimates. While centroid trackers

like TITAN represent cells with little information other than a centroid, GANDOLF

uses a conceptual model of the cloud which evolves over time. Initiating such storm

models requires an extensive set of inputs including satellite imagery and mesoscale

weather modeling data. The added information enables nonlinear growth and decay

forecasting unavailable in algorithms such as SCIT or TITAN.

Another expert system, the Auto-Nowcast System (ANC), combines the ap-

proaches of correlation and centroid trackers with additional boundary layer iden-

tification [10]. ANC identifies and forecasts storm cells according to the TITAN

algorithm, but extracts a motion field by applying the TREC procedure to the data

rather than by associating cells. Boundaries between regions of the atmosphere are

identified, mainly using cloud information from satellite imagery. The identified
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boundaries modify the predicted behavior of cells: cells moving with a boundary

are considered likely to be sustained, while boundaries leaving storm cells behind

indicates that the cells are predicted to decay. These forecasts and further data

sources, such as radiosonde measurements and lightning data, are integrated into

likelihood fields, which indicate where storms are expected to be present, using

fuzzy logic. ANC was evaluated alongside GANDOLF, TITAN, and other tech-

niques on data from the Sydney, Australia region [1]. The study concluded that

forecasts based only on extrapolation could be outperformed with consideration of

boundary characteristics. The complexity and intensive data source requirements

of effective expert systems, however, are significant.

1.2 Addressing Challenges to Storm Tracking

In the general case of object tracking from a sequence of images, such as video,

factors which may challenge a tracking algorithm include the loss of depth informa-

tion when capturing images, noise, irregular motion, nonrigid objects, occlusion by

other objects, complex object shapes, and scene illumination changes [11]. Many of

these apply to storm tracking. Storm cells may move irregularly and change shape

as they grow, decay, and merge or split. Cells are nonrigid objects and, depending

on the definition used, may have complex shapes. The loss of depth information

is not implicit in storm tracking, as storm trackers may make use of the full three

dimensions of radar data, but height information is often discarded during the track-

ing process, as is the case in SCIT and TITAN. In video data, changes in external

illumination may correspond to changes in the recorded image even when the ob-

jects observed remain constant. A radar, which controls the source of illumination

by the same transmitted energy and scan strategies from scan to scan, has better
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Figure 1.2: Two illustrations of radar reflectivity scans representing a centroid mo-
tion artifact using an inconsistent storm identification technique. A region changes
from 34 to 35 dBZ between the scans. The simple threshold, drawn in black, ex-
pands greatly as a result. A small change in reflectivity values moves the centroid
along the grey arrow, even though the rest of the cell has not moved.

assurance that changes in the received data are due to changes in the targets.

Changes in the shape and intensity of storm cells are a substantial source of

artifacts interfering with effective storm tracking [12]. When shape and intensity

changes are interpreted as storm motion, the assumptions of centroid-based tracking

are violated. For example, the simple 35 dBZ threshold used in TITAN leaves the

cell identification stage vulnerable to variation in the reflectivity field. As shown in

Figure 1.2, a minimal growth in reflectivity can shift a storm centroid even when

most of the reflectivity included in the cell has not moved. The change in cell

shape, and thus the change in centroid, is disproportionate to the slight change in

reflectivity–the cell is inconsistent. Tracking based on storm centroids assumes that

centroid motion is representative of storm motion, not storm growth and decay.

Consistent cells, for which this assumption holds, are required.

Strong Point Analysis (SPA) is an image segmentation algorithm designed to

address this problem by identifying consistent cells for storms [13]. SPA utilizes

erosion and dilation techniques to extract clusters which represent the most intense
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and spatially dense regions within the image. By extracting areas of locally high

intensity, SPA confers resistance to artifacts caused by minor variation in reflectiv-

ity. Configuration options for the algorithm also support the splitting of complex,

irregular cell shapes into smaller, more round clusters better suited to representation

by a centroid. The consistency of SPA cells leads to consistent centroids which lead

in turn to tracks which capture the motion of the underlying storm rather than minor

variation in reflectivity.

The track assignment and forecasting stages of centroid trackers are also ripe for

improvement. Linear regression forecasting, as used by SCIT, may be outperformed

by forecasting based on Kalman filters [14]. In algorithms where the forecasting

stage provides feedback into the track association stage, improvement in forecasting

is further incentivized.

A candidate for implementing these improvements in storm tracking is Multiple

Hypothesis Tracking (MHT), a multiple target tracking technique dominant in the

defense and surveillance fields [15]. Tracks are assigned based on agreement with

a Kalman filter derived estimate of the track’s next position. The state estimate is

then updated according to the new position assigned to the track. Whenever the

track to which an incoming observation should be assigned is ambiguous, rather

than select one track, MHT records each plausible track assignment as a separate

hypothesis. The plausibility of each hypothesis is estimated and, as more data is

collected, the most plausible hypotheses are each considered as previous states for

child hypotheses. This allows uncertainties in track assignment to be resolved by

future data. MHT is presented in greater detail in Chapter 3.

In this thesis, SPA and MHT are combined to create a storm tracker which

mitigates the drawbacks of existing trackers. The performance of this tracker is

evaluated on archive data from the NEXRAD network of Doppler weather radars.
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This thesis begins with examination of the SPA storm identification algorithm in

Chapter 2 and the MHT algorithm for track assignment in Chapter 3. The struc-

ture and performance of the combined SPA-MHT tracker is evaluated in Chapter 4.

Finally, Chapter 5 presents conclusions drawn from the completed work as well as

recommendations for future work.
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Chapter 2

Strong Point Analysis

Storm identification is the first stage in tracking storm cells by their centroids. Start-

ing from a scan arriving from the radar, this process provides a set of observations

representative of the entities to be tracked. Strong Point Analysis (SPA) incorpo-

rates image processing techniques from mathematical morphology in order to more

consistently represent patterns in the radar reflectivity as storm cell observations.

This chapter addresses the operation of SPA in the context of other storm identifi-

cation stages.

2.1 Background of Storm Identification

A selection of historical approaches to centroid-based storm tracking were pre-

sented in Chapter 1. Further detail on the identification stages used by these ap-

proaches is collected in this section. Early algorithms emphasize the definition of

centroids as local reflectivity maxima rather than average positions. This is the ap-

proach taken in [3], which identifies contours at a fixed reflectivity thresholds below

each local maximum. Contours which would enclose an existing cell found from

a greater local maximum are rejected. With an average diameter of 3 km, such

narrowly defined cells are well represented by a coordinate pair, as most nonzero
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reflectivity in the margins of a storm is not included within any cell.

Such narrowly defined cells are insufficient, however, to describe the motion

and properties of the storms they represent [6]. An alternative identification stage

also begins with local reflectivity maxima, but divides all nonzero measurements

into the cells. Each cell contains one local maximum and all measurements which

are not separated from that maximum by any local minima. This wider inclusion

of reflectivity enables the tracking of additional statistics beyond centroid position,

including total rain rate of the cell, area of the cell’s cloud base, and parameters

describing the cell’s echo top. Rapidly changing storm cells, including those under-

going growth or decay, pose problems for this technique, as they are less likely to

maintain a single peak value. Stratiform precipitation, which is widely distributed

around inconsistent reflectivity maxima, also violates the assumptions of this iden-

tification algorithm.

The extended watershed algorithm is a more recent approach to this definition

of storm cells [16]. A cell identified by this method consists of a basin, pixels in

the immediate area around a reflectivity maximum. Each cell also is also assigned

foothills, pixels more distant from the maximum which are excluded from mem-

bership in other cells. The resulting cells are more inclusive than those identified

by the fixed threshold method, but are not required to include every nonzero reflec-

tivity value. Instead, basins are extended by adding pixels with progressively lower

reflectivity until a sufficient area is included in the cell. This algorithm also begins

with a smoothing step to increase cell consistency by reducing the sensitivity of the

algorithm to spurious peaks in reflectivity.

SCIT defines cells as regions of high reflectivity across several range bins, scan

angles, and scan elevations [2]. The reflectivity thresholds used by SCIT are not

adaptive, but seven are applied to identify storm components. The strongest com-
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ponents are combined into cells, and the average component positions, weighted by

reflectivity, are recorded as centroids. A single isolated component is insufficient

to form a cell, filtering out particularly weak regions. Peak reflectivity within each

cell is tracked, but does not restrict identification of the cell. Other parameters such

as vertically integrated liquid are recorded as well for use in forecasting. SCIT is

vulnerable to track growth and decay and is ineffective at tracking stratiform pre-

cipitation. When compared to previous algorithms used on the same radar system,

SCIT demonstrated improvement in storm cell identification, a result attributed to

the use of multiple thresholds.

GANDOLF is unique among the surveyed methods for identifying cells dif-

ferently according to their estimated stage of development [9]. For example, the

presence of a strong reflectivity maximum low in the cloud is likely to result in

an identified mature cumulonimbus cell, while a strong vertical reflectivity gradi-

ent within the lower half of the storm suggests a younger cell which is expected to

grow [17]. The other cell stages identified are towering cumulus clouds, weakening

cumulonimbus, and dissipating storms with downdrafts. This detailed identification

process requires extensive data inputs. Determination of the cloud base relies on an

external mesoscale weather model. Visible and infrared satellite data is also incor-

porated into the identification process, and to align with these images, the radar data

is interpolated to a Cartesian grid. Each pixel is labeled as a likely candidate for one

of the five stages of storm development based on the radar, satellite, and weather

model inputs. Square templates are then selected from the resulting image; if the

sum of pixel values within a template falls within the expected range for a develop-

ment stage, that template is considered an identified cell of that development stage.

Cells according to this definition are always square and may contain pixels with no

reflectivity.

13



TITAN is also applied to radar data, converted to a Cartesian grid. It also uses

one of the simplest identification stages considered: any reflectivity values above a

fixed threshold are considered part of some storm cell, with no secondary process-

ing to introduce relative or multiple thresholds [7]. Adjacent pixels are grouped

into separate storm cells. For each distinct cell, an ellipse of best fit is constructed.

The center points of the best fit ellipses are the centroids to be tracked. The same

technique used in TITAN identifies storm cells in the ANC system [10].

A key weakness of the TITAN algorithm is vulnerability to shape changes and

merges in the cells identified [12]. Figure 2.1 illustrates a ”false merger” resulting

from minor changes which raise pixel values above the constant 35 dBZ thresh-

old. Two distinct regions of high reflectivity are linked by a weak or narrow re-

gion which satisfies the conditions required to identify the two storms as one cell.

The identification of two distinct cells is suppressed by the single-threshold limi-

tation. This problem was addressed in the Enhanced TITAN (ETITAN) algorithm

by a modified identification stage utilizing the erosion and dilation operations from

mathematical morphology. Erosion is defined as the removal of pixels from a set

according to the values of neighboring pixels; dilation is the addition of pixels in

a similar manner [18]. In ETITAN, these operations change the number of pixels

included in an identified storm cell while preserving information about the shape

of the cell. The storms detected according to the normal identification of TITAN

are eroded to remove pixels bridging storms in false merger cases. After stronger

storms are identified within the eroded storms, dilation and a second application of

erosion further refine the storm cells [12]. The pixels which are included in these

final cells are considered more essential to the underlying storm and less likely to

be spurious.

Several of the surveyed techniques included an adaptive threshold, either explic-
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Figure 2.1: A false merger occurs between two scans from the KICT radar in Wi-
chita, KS. Top left: Reflectivity from the scan beginning at 2008/05/24 04:28 UTC.
Two large regions exceeding 35 dBZ are visible: an intense storm in the bottom
center and a weaker but more widespread storm in the top center. Top right: cells
identified by an implementation of TITAN’s 35 dBZ threshold. The two storms are
identified separately. Each centroid is within the bounds of its cell. Bottom left:
Reflectivity from the subsequent scan at 2008/05/24 04:33 UTC. Minimal change
is visible in either storm. Bottom right: cells identified by the same technique. A
few pixels now bridge the gap between the two storms, allowing TITAN to identify
one elongated cell. The resulting single centroid is over 30 km from either previous
centroid.
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itly or by use of erosion and dilation. The extended watershed algorithm identified

cells with consistent area by dilating basins. SCIT, using multiple fixed thresh-

olds and retaining the highest, incorporated erosion. TITAN does not, but ETI-

TAN added erosion and dilation to avoid errors. Adaptive techniques appear ad-

vantageous for cell identification due to improvement in cell consistency. This is

supported by the importance of consistent features in the general case of tracking

objects through video data [11].

In an attempt to provide consistent storm cell identification for storm tracking,

SPA was developed [13]. SPA, like TITAN, operates on a Cartesian coordinate

system and requires no input products other than reflectivity. The use of an adaptive

threshold through erosion and dilation operations addresses weaknesses of TITAN.

The structure of SPA incorporates both the strong, high-intensity pixels surrounding

a reflectivity maximum and the weaker pixels which provide consistency to the

resulting clusters.

2.2 Algorithm

SPA is a recursive application of erosion and dilation procedures. The inputs to SPA

are a set of pixels forming an image. Each pixel is defined by a pair of coordinates

(x, y) and the intensity value corresponding to that location in the image.

The behavior of SPA is controlled by five parameters. U , the upper sensitivity

parameter, and L, the lower sensitivity parameter, affect both procedures. Dilation

additionally depends on the pixel reach parameter r and, in some cases, the pixel

promotion parameter p. The maximum number of recursion levels at which the

procedures are applied is limited by n. The maximum number of recursion levels n

is used to limit applications of the recursive procedures.
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The erosion procedure is applied to a set S of image pixels as defined above.

First, the mean µ and standard deviation σ of pixel intensities in S are calculated.

Using these values, pixels are tested for inclusion into two categories. Those with

intensities greater than or equal to an upper threshold

Zupper = µ+ Uσ (2.1)

are flagged as strong points. If Zupper would exceed the intensity of every pixel in

the set, as may occur in an extremely smooth sample, Zupper is instead selected to

include the maximum intensity in the set as a strong point. At least one point is

always considered strong. Of the remaining points, those with intensities greater

than or equal to a lower threshold

Zlower = µ− Lσ (2.2)

are considered weak points. Points with intensities below Zlower are not assigned

either flag. A sample distribution of values divided into strong, weak and unflagged

points, is provided in Figure 2.2.

In the promotion step, unflagged points which are sufficiently surrounded by

many strong points are flagged as weak. Such a point is promoted if its enhanced

value Zen exceeds Zlower. For a point with actual intensity Zactual and k strong

points located dk < r pixels from the point,

Zen = Zactual + p
n∑

k=1

1

dk
. (2.3)

This process is related to dilation and allows the subsequent clustering step to fill

in very small gaps in the image. The enhanced value is only used for considering

17



(a) (b)

(c)

Figure 2.2: (a): Reflectivity observed within 300 km of the KTLX radar on May 4,
1999 at 01:36 UTC. (b): Nonzero points from the reflectivity image are colored ac-
cording to the flag assigned during the application of SPA. Selection of the intense,
high-reflectivity regions as strong points is visible. Strong regions are surrounded
by many more weak points. Weak returns, left unflagged, are eroded. (c): His-
togram showing the nonzero reflectivity values. Points are marked as unflagged,
weak, or strong according to their value relative to Zlower and Zupper. Thresholds
were determined with parameters U = 1.1 and L = 0.9.
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promotion and has no meaning in terms of the original image intensity, as it is based

on inverse distance. An unflagged point may be promoted to a weak point but never

a strong point.

Once points are flagged, clusters are formed by connected-components labeling.

Pixels are considered connected if the distance between their measurements in units

of pixels is less than r. Any strong point may be included in a cluster. The result-

ing clusters are eroded representations of storm cells, containing only the strongest

points in the set. Strong points then propagate their label to any connected weak

point. Weak points cannot further propagate the cluster; they may only be used

to fill out clusters seeded by at least one strong point. This step is analogous to a

dilation process and supports the formation of more regular clusters. Some amount

of resistance to noise is also conferred by this step. Even if a given pixel appears

weak instead of strong, as long as nearby pixels are still considered strong, it will

be included in the appropriate cluster.

Erosion and dilation are applied recursively to each cluster of sufficient size

found by the connected-components method. The pixels labeled in a single cluster

are considered the new set of pixels from which µ and σ, and thus Zlower and Zupper,

are calculated. Recursion is not applied to clusters which contain five or fewer

pixels or clusters which were found at a recursion depth equal to n. In either case,

the cluster found after dilation is reported in the final output of the algorithm. The

final product returned by SPA is a distinct label value assigned to each continuous

region identified within the input set of pixels after n+1 applications of the erosion

and dilation procedures. Pixels left unflagged at any recursion depth are labeled

with a zero to indicate that they belong to no storm cell.
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2.3 Implementation

The SPA technique was implemented from scratch in MATLAB. The initial set of

pixels considered is all non-zero reflectivity values in a single scan of radar reflec-

tivity data. Because pixel distances are important to the operation of the algorithm,

the radar data is first converted from spherical to Cartesian coordinates by inverse

distance weighting interpolation via a Python script. Interpolated values more than

300 km from the radar are not calculated. The selected resolution for the Carte-

sian coordinate grid is 1.0 km in both the horizontal and meridional directions. An

example of spherical and corresponding Cartesian data is shown in Figure 2.3.

The (x, y) coordinates of each nonzero reflectivity value in the image are used as

inputs to the algorithm. A list of the corresponding reflectivity values are provided

as the intensity input. The output is a label for each value or zero for values which

were determined to belong to no storm. Pixels with an reflectivity of zero are not

included in the input set in order to reduce the computational load of the algorithm;

these pixels are automatically removed from consideration as storm cells.

Values for the five SPA parameters were initially selected according to the con-

clusions of Root et al. [13]. Common weather reflectivity ranges are captured with

U = 1.1 and L = 0.9. A moderate level of smoothing of the clusters is provided

by r = 5.1 and p = 2.5. The number of recursion levels was increased from 1

to 2 based on a preference for more compact storm cells. Figure 2.4 illustrates the

decision. Several of the larger cells detected at n = 1 are divided into more regular

cells when n is increased.

Separately, alternate values of U were evaluated in order to improve compatibil-

ity with MHT. The initial value U = 1.1 in was unsatisfactory to visual inspection,

failing to split some large or irregular storms into multiple cells. The intense area
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Figure 2.3: Comparison of original spherical and interpolated Cartesian radar data.
Top: The 0.5 degree elevation scan from the KTLX radar in Oklahoma City, OK
at 20:02 UTC on 2013/05/19. Bottom: Interpolation of the same data to a plane 1
km above the radar. Rings are spaced every 50 km from the radar. The images are
very similar. The center clutter region is missing in the Cartesian data because it is
below the plane.
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(a)

(b)

Figure 2.4: Reflectivity observed within 300 km of the KTLX radar on May 4,
1999 at 01:36 UTC, with detected SPA storm cells outlined in white. Cells detected
using one level of recursion are shown in (a), while those detected after two levels
are shown in (b). Both sets cover similar areas, but the larger cells in (a) are split
into two or three cells in (b). For both cases, U = 1.1, L = 0.9, r = 5.1, and
p = 2.5.
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at the focus of Figure 2.5 is an example of this failure; in subfigure (a), SPA us-

ing U = 1.1 considers this a single wide storm. As U increases, multiple cells

are detected in the same region of reflectivity. Changing U does not change the

set of point which are not assigned a flag, but it does move some points from the

strong to weak set. If the points moved were the only strong points near other weak

points, the latter points will no longer be included in the cluster. This has the effect

of destroying weaker bridges between the strongest regions in the image. This is

conducive to avoidance of the false split problem as the centroids of these cells are

now more representative of the strongest reflectivity values rather than a weighted

average which falls over a weaker, bridging region.

Reducing the number of strong pixels and thus the number of pixels included in

any storm does reduce the sample size of points constituting each identified storm

cell. In subfigure (d) of Figure 2.5, many pixels with reflectivity above 40 dBZ are

excluded. This reduces the explanatory power of the tracked cells. After consider-

ation of performance on several sample images, an intermediate value of U = 1.7

was selected in a trade-off between identifying cohesive, representative cells and

including as many strong values as possible. Across all sample cases, this was

the most inclusive value that did not result in cells with obvious bridges. In the

case of a ridge of high reflectivity, however, it is possible that sufficient strong

points will be flagged along the ridge for SPA to identify an elongated storm cell.

Figure 2.6 shows a squall line forming a challenging case for SPA. When U is in-

creased enough to split the line, an excessive number of pixels with high reflectivity

are excluded from the resulting clusters.

The reach parameter r is provided in units of pixels. Because the input images

were generated at a resolution of 1.0 km per pixel, any pixels closer than 5.1 km are

considered connected. Connectivity is recorded internally in the form of a graph,
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(a) (b)

(c) (d)

Figure 2.5: Region of reflectivity observed by the KTLX radar on May 4, 1999,
with detected SPA storm cells using different values of U outlined. (a): U = 1.1.
(b): U = 1.4. (c): U = 1.7. (d): U = 2.0. As U increases, more distinct storm
cells are identified, but each cell includes fewer pixels. For all subfigures, L = 0.9,
r = 5.1, p = 2.5, and n = 2.
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(a) (b)

(c) (d)

Figure 2.6: Comparison of storm cells identified by SPA using different values of
U. For all four tests the displayed reflectivity is a scan from the KICT radar in
Wichita, KS at 04:42 UTC. (a): Most of the reflectivity above 40 dBZ is included
in three elongated cells. (b): Each cell is replaced with two to four smaller cells.
The total area included in cells has decreased. (c): The cells again shrink, but one
particularly long cell is still visible from 0 to 50 km south of the radar. Points with
reflectivity of 55 dBz are sometimes excluded. (d): Only small regions around the
very strongest points in the image are included in cells. Cells approach the shape of
circles with radius r around single strong point.
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where each pixel is assigned a list of all other pixels to which it is connected.

In the clustering step, connected-components labeling was implemented accord-

ing to the one-pass method [19]. This method begins by assigning the first label to a

single pixel. All pixels connected to that pixel are added to a stack. Pixels are then

removed from the stack one at a time. As pixels are removed from the stack, they

are assigned the same label. Any pixels which are connected to the newly removed

pixel but have neither been added to the stack nor assigned a label are then added

to the stack. In this manner, when the stack is empty, all pixels less than r km from

a pixel with the initial label have been assigned that label. A single connected com-

ponent has been identified. This process is repeated starting from the next unlabeled

pixel, assigning successive labels.

To satisfy the requirements of SPA, an additional constraint was added to the

connected-components method. When a pixel is removed from the stack, it is

checked for strong or weak flags. Strong points are assigned the current label and

their neighbors are added to the stack as in the original method. Weak points are

only labeled. This distinction implements the dilation step of SPA in which weak

points may fill out a cell if and only if they are connected to strong points.

After applying erosion and dilation n+ 1 times, an output image is constructed

of the same size as the Cartesian image. In this output, each pixel which was as-

sociated with a storm cell has the value of that cell’s label. Pixels associated with

no storm, whether excluded from the algorithm input or left unflagged within the

algorithm, have a value of zero. The storm cells reported by this implementation of

SPA are representations of the distinct areas of reflectivity in the initial radar image.

For each cell, the centroid (x̄, ȳ) is extracted from the k pairs of (x, y) coordinates
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of pixels corresponding to reflectivity Z:

x̄ =

∑n
i=1 xiZi∑n
i=1 Zi

, ȳ =

∑n
i=1 yiZi∑n
i=1 Zi

. (2.4)

Although the (x, y) values are weighted by reflectivity, the application of SPA has

already removed potential large regions of low reflectivity from consideration, and

there is little deviation from the centroids obtained without this weighting. Sam-

ple storm cells detected by SPA are shown in Figure 2.7 with the corresponding

centroids. Sample storm cells and centroids extracted by an implementation of the

TITAN single-threshold detector are also shown. The resulting centroids represent

features serving as inputs to the track association stage.
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(a)

(b) (c)

Figure 2.7: (a): Reflectivity observed northeast of the KDDC radar on July 8, 2004
at 00:10 UTC. (b): Output of simple reflectivity threshold storm detector consid-
ering all pixels above 35 dBZ to belong to storms. Each color signifies a separate
storm. Shapes are irregular and do not reflect internal structure. (c): Output of
SPA on the same data. The largest, most irregular storm is broken into several cells
better indicating its internal structure.
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Chapter 3

Multiple Hypothesis Tracking

In the centroid-based model of storm tracking, after storm cells have been observed

by an identification process, a track association stage is necessary to determine

which cells represent the same entity at two or more times. Multiple Hypothesis

Tracking (MHT) is a technique that incorporates data from multiple scans in order

to resolve uncertainties in track assignment [15]. This work explores the utilization

of MHT in the track association stage of storm tracking. This chapter presents

the advantages of MHT in the context of alternative track assignment techniques,

details the algorithm as it is generally applied, and finally addresses the changes

made in order to apply MHT to weather radar data for storm tracking.

3.1 Background of Track Association

Tracking algorithms designed specifically for weather targets include a variety of

approaches to the problem of associating storm cells across scans.

The storm tracking algorithm in [3] generates compact cells limited to the high-

est reflectivity values in the data, where each cell containing relatively few separate

radar measurements. As each cell contains a single local reflectivity maximum,

many cells may be extracted from a single region of generally high reflectivity.
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To improve robustness in tracking these small targets, vertical associations of cells

across multiple elevations, referred to as volume cells, are tracked. New single-

elevation cells are assigned to volume cells and tracks by comparison with position

forecasts of previous volume cells. The first volume cell forecast sufficiently close

to a new observation is associated with that observation.

Another approach relies on overlap between new cells and forecasts of previous

cells [6]. For each cell identified in a new scan, an estimate of historical position

is made based on an approximation of steering level winds. The amount of overlap

between cells in the previous scan and these estimates is determined. Rain rate is

calculated for the pixels within each cell. If the pixels containing most of the rain

rate within a new cell are located within the previous cell on an existing track, the

new cell is associated to that track. Multiple cells, each with limited overlap with

one track, may still be considered a split, and multiple tracks overlapping a single

cell may indicate a merge. After all associations are made, the difference between

each historical position estimate and the last centroid in the track with which it was

associated is determined. The average of these errors is used as feedback to update

the approximation of wind for future scans.

In TITAN, cells are assigned to tracks such that the total cost of assignments

is minimized [7]. A cost matrix C is constructed such that there is a row for each

existing track and a column for each new cell. Cij, the value in row i and column j,

is the cost of assigning new cell zj(t) to existing track Ti. This cost is a weighted

sum of the differences in centroid position and storm volume between zj(t) and the

last observed cell on a track zi(t − 1). Assignments are selected from this matrix

such that each row or column contains only one assignment and the sum of the

costs selected is minimized. The resulting solution is optimal in terms of the cost

function.
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When a cell is further from a track than appears possible, the cost of that assign-

ment is set to an extremely large value such that the minimized solution will prefer

any other assignment. The condition signaling impossible motion is centroid dis-

placement faster than 100 km hr-1. If such an assignment is selected in the optimal

solution, as when a storm is further away from all existing tracks than the motion

constraint allows, a new track is initiated. The counterpart to this case, when a track

is distant from all new observations, corresponds to track termination.

Centroid motion artifacts caused by the cell identification stage may interfere

with this approach. When two storms merge, the centroid is displaced, potentially

beyond the maximum allowed motion threshold. TITAN attempts to address this

by searching terminated tracks for merge participants, or initiated tracks for split

participants, when the motion constraint is violated. This category of error may

also occur in the absence of a merge or split. Representing a cell primarily by its

centroids limits the ability to distinguish between centroid motion from rapid shape

change and centroid motion due to the motion of the entire cell.

The Enhanced TITAN (ETITAN) algorithm first attempts to select obvious as-

signments by comparing new observations to storm position forecasts obtained by

the application of TREC [12]. New cells which have significant overlap with cell

forecasts from tracks are assigned to those tracks. The remaining storms are as-

signed to tracks according to a modification of the original TITAN method intended

to tolerate centroid motion artifacts. The maximum displacement constraint, above

which storms may not be assigned to tracks, increases with the size of the new ob-

servation and the last observation on the track. Otherwise, ETITAN associates cells

to tracks in the same manner as TITAN.

The SCIT algorithm also uses forecasts of storm positions to assign new ob-

servations to tracks [2]. If a new observation is within a threshold distance of
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the expected position of previous tracks, it is assigned to the track with the clos-

est expected position. Forecasts are extracted from a least-squares fit on previous,

equally-weighted positions. No specific procedure addresses merging or splitting

of tracks.

Comparison of new cells to forecasts is an essential approach to the track asso-

ciation methods reviewed. This is a natural technique for ensuring tracks reflect the

actual motion exhibited by storms. TITAN ignored this feature in favor of minimiz-

ing change in position between scans, but ETITAN added forecast comparison as

an initial check before minimizing costs [12]. An improvement in this integration

of forecasts, then, would improve the effectiveness of the track association stage.

MHT provides a natural opportunity to make such an improvement.

Storm tracking can be viewed as a specific case of a more general object tracking

problem referred to as multiple target tracking. In this context, MHT is a preferred

method for track association [15]. The key advantage of MHT is its deferment of

tracking decisions. MHT is structured to select the best track assignments possible

at a given time while also allowing alternate assignments as new later data arrives

through maintenance of multiple track assignment hypotheses.

The general structure of MHT was first proposed in order to track aircraft [20].

This approach generates a new hypothesis for each possible assignment of a newly

observed cell to tracks present in the previous scan. Hypotheses are scored accord-

ing to the agreement of the new observation with a Kalman filter estimating the state

of the track to which it is assigned. Observed cells may also be interpreted as the

initiation of new tracks or as false alarms assigned to no track. Either case forms

a new hypothesis as if the cell had been assigned to a track. Despite the extensive

memory requirements of the resulting expanding tree of hypotheses, only hypothe-

ses with extremely low probability are removed. Hypotheses which are sufficiently
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similar may also be combined.

Later implementations of the technique sought to improve the computational re-

quirements [15]. By generating only the k-best hypotheses as each new scan arrives,

rather than enumerating every possibility, combinatorial explosion is reduced [21].

To generate a limited number of hypotheses, a cost function is evaluated based on

the likelihood of each observation given the state estimate of each track. Minimiz-

ing this cost function gives an optimal solution to the assignment problem. The

second through k-best solutions are then found by application of Murty’s k-best

algorithm [22]. More details of this approach to MHT are included in section 3.2.

When compared to other object tracking techniques, advantages of MHT in-

clude support for track initiation and termination as well as the ability to model

occlusion or other causes of missed detections [11]. This feature is essential for

storm tracking considering the irregular and dynamic nature of storm cells. While

MHT does not support merges and splits, it may interpret a brief merge or split

as a missed detection and resume the track if the storms separate or rejoin at a

later scan. MHT also provides a mathematically optimal solution to the assignment

problem, assuming the assumptions about measurement noise are correct, due to

its integration of Kalman filters. Tracking methods based on Kalman filters have

demonstrated performance advantages over least-squares regression for prediction

of storm tracks [14]. These advantages support the suitability of MHT for the task

of storm tracking.

3.2 Algorithm

The approach to MHT used in this research is organized in a similar manner to

that in [20], generating new hypotheses whenever observations are assigned to
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Figure 3.1: Flowchart illustrating the MHT implementation used. As new obser-
vations of storm cells arrive, they are compared to state estimates from previous
hypotheses. This generates tracks and indicates where track association was am-
biguous. The k-best hypotheses are then generated from these ambiguous associ-
ations. Hypotheses are added to the hypothesis tree; low quality hypotheses are
pruned. The most likely hypothesis is selected as the tracking decision at this point.
When more data arrives, the most likely hypothesis may change. All hypotheses
in the tree, not just the most likely, are used to make track state estimates to which
new data will be compared.

tracks [21]. Figure 3.1 illustrates the steps of this implementation of the MHT

algorithm.

To create a hypothesis, MHT begins with a parent hypothesis, or set of tracks

ending at the previous scan. For each track in the parent, the position and velocity

of the tracked object are estimated using a Kalman filter. An ambiguity matrix

indicates observations which fall within the validation region of each track defined

by the uncertainty of the position estimate. The validation region is defined by the

Mahalanobis distance

γ =

√
(~z − ~µ)TS−1(~z − ~µ) (3.1)

where ~z is the observation vector, ~µ is the vector of mean values for the estimate,

and S is the covariance matrix for the estimate [23]. This matrix is used to derive
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cost matrices reflecting the likelihood of each assignment in its validation region. k

new hypotheses are then generated by Murty’s algorithm.

The probability that each new hypothesis is correct is derived from the joint

probability of two statements. First, the parent hypothesis must be correct. Unlikely

parent hypotheses result in children that are less likely. The likelihood of the parent

hypothesis was recorded when it was generated during the previous scan. Second,

the new assignment of the cell to the track must be correct. This is based on the

agreement of the new observation with a normal distribution estimating the state of

the assigned track. Cells which are distant from the expected position of the tracked

storm result in child hypotheses with low probabilities.

Hypotheses are stored in a track tree of configurable depth N , with different

hypotheses originating from the same parent represented by branches from a single

node. When a new scan arrives, leaving a node more than N scans in the past, the

single branch from that node with the highest likelihood is selected and the other

branches are pruned. The output of the algorithm is the hypothesis from the latest

scan with the highest likelihood.

3.3 Implementation

The implementation of MHT used in this thesis is based on that presented in the

previous section. As provided, it consists of a command line tool which operates on

text files defining the configuration parameters and the observations at each scan.

Descriptions of parameters and the values used for this work are enumerated in

subsection 3.3.2.

For every point, an (x, y) coordinate pair must be provided. An observation ID

defined here will appear in the output to identify which observations were ultimately
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assigned to which tracks, but will not affect the algorithm. A vector of 25 texture

values may also be provided; this supports a cross-correlation filtering process. If

the texture values are provided and this process is enabled, any track association for

which the new observation and previous observation are too dissimilar in texture

will be rejected.

Running the command line tool generates an output file enumerating all tracks

and false alarms found. Tracks are described as a list of observations where each

entry includes information about the state estimate of the track after the addition of

that observation. For false alarms, only the position and ID of the observation are

listed, as they were associated with no track or state estimate.

3.3.1 Assumptions for Storm Tracking

Tracking evolving, widely distributed storm cells requires modifications from the

initial implementation, which was tested on camera image sequences [21]. MHT,

as described, does not allow for the possibility of track merges and splits. This is

problematic; merging and splitting behavior commonly occurs among storms. This

conflicts with the one-to-one solutions which minimize assignment costs inherent

to the k-best algorithm. A full expansion of MHT to allow one-to-many and many-

to-one assignments is beyond the scope of this work. Instead, the use of SPA for the

storm identification stage is intended to mitigate the influence of merges and splits

on overall forecast quality. When complex storm shapes are represented as several

smaller, more dense storm cells, MHT is able to assign observations to tracks in

a one-to-one manner and, by aggregating tracks, track the apparent motion of the

complex structure.
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3.3.2 Configuration of MHT

Modification of the configuration parameters of MHT was required to optimize

the performance of MHT on storm centroids. For this work, the initial parameters

used were based on those from a previously unpublished survey, which evaluated

performance on various cases of simulated storm tracks [24]. The parameters used

and changes made are presented in this section.

When a new scan is completed, all observations within a certain Mahalanobis

distance of a track’s state estimate are considered for assignment to that track. The

squared Mahalanobis threshold γ2 limits the size of this validation region. In accor-

dance with the survey, γ2 = 10.0 is used.

Several MHT parameters control the performance of the Kalman filters estimat-

ing track states. The initial process, measurement, and state covariance estimates

are all configurable. No values in this set were changed from those found in the

survey. The initial state covariance matrix for a track, P(k), is given by

P(k) =



x 0 0 0

0 vx 0 0

0 0 y 0

0 0 0 vy


, (3.2)

where the position variances x and y are 2.0 km and velocity variances vx and vy

are 7.5 km scan-1. The measurement noise R(k) is also described by a covariance

matrix

R(k) =

Rx 0

0 Ry

 (3.3)

where Rx = Ry = 2.0 pixels2. The process noise is described by a scaling factor q
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rather than a full matrix; the value q = 1.0 was retained from the survey.

Hypothesis management is configured by a set of three parameters. When a

new scan is processed, up to k child hypotheses are generated according to Murty’s

k-best algorithm. The tree of hypotheses may defer decisions between hypotheses

until N additional scans have arrived. When another scan arrives and new child

hypotheses would add a level to the track tree, a final decision is made at the root

of the tree. The branch of child hypotheses with the highest total between its most

recent children is selected as the new root node and other branches are pruned.

The third hypothesis management parameter, the likelihood ratio Gmin, restricts

the generation of low-quality hypotheses. If the likelihood of a new hypothesis is

evaluated to be less than Gmin times that of the current most likely hypothesis, the

new hypothesis is not added to the track tree. None of the hypothesis management

parameters were addressed by the survey, so values of k = 300, N = 3, and

Gmin = 0.001 are used as suggested by Hingorani and Cox [21].

Another set of parameters affects the behavior of the tracker under special con-

ditions. The probability of detection parameter PD allows MHT to skip measure-

ments in tracks. Higher values of PD reduce the likelihood of hypotheses containing

a missed observation. PD = 0.9 is used to allow a moderate number of skips. Its

counterpart, the mean false alarm ratio λfa, corresponds to observations which are

assigned to no track. Hypotheses with such an assignment are less likely when Pfa

is low. Pfa is set to 2.0× 10−5.

The mean new tracks parameter λN controls the other possible assignment for

measurements which are unsuited to any track. Such observations may indicate the

formation of a new track with initial state covariance P(k) at the location of the new

observation. λN is set to 0.01. Tracks terminate and are removed from consideration

for child hypotheses when no observation in an incoming scan is considered a likely
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assignment. This occurs when the likelihood of any assignment, or of a missed

observation, is lower than the likelihood set by λx, the track termination ratio. The

value selected for λx is 0.2. This parameter is provided to the implementation as a

percentage whereas the other parameters are all provided as fractions.

The cross-correlation threshold Rmin controls an additional check on the qual-

ity of track assignments. If enabled, assignments with dissimilar textures will be

rejected. Similarity is too low when the best cross-correlation between sections of

the new texture vector and the vector of the last observation in the track falls below

this threshold. This check has been found unsuitable for use when observations are

occluded [21]. The irregularity of storms suggested that this check should not be

applied for storm tracking. Restricting association only to those storms which main-

tained similar texture vectors across scans would also worsen the effects of apparent

centroid motion from growth, decay, or false mergers. To confirm the ineffective-

ness of this check, MHT was applied to the same set of centroids with and without

restricting associations by cross-correlation and using a range of values for Rmin.

Figure 3.2 illustrates reduced track quality when associations are restricted. The

threshold shortens and separates tracks by removing associations which otherwise

would form consistent, isolated tracks.

In accordance with these results, the cross-correlation check is disabled for

storm tracking by supplying a uniform field of zeros as the texture data for each

corner. This ensures that the calculated cross-correlation is always perfect, prevent-

ing the removal of associations. To indicate that this step is disabled, the algorithm

is initialized with Rmin = −1.

Table 3.1 collects the final values selected for the configuration parameters.
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Figure 3.2: Tracks generated by MHT with (b) and without (a) the cross-correlation
check. The radar data, not shown, is from the KINX radar in Tulsa, OK, taken at
01:02 UTC on 2004/05/30. The long, consistent tracks found without the restriction
are split and shortened as parts of the tracks are removed by the threshold. Similar
behavior is visible with lower thresholds as well. This led to the disabling of cross-
correlation checks for this application.
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Parameter Description Value
γ2 Squared Mahalanobis threshold 10.0
x,y Initial x and y position variances for P(k) 2.0 px
vx, vy Initial combined velocity variance for P(k) 7.5 px scan-1

Rx, Ry Measurement noise covariance for R(k) 2.0 px2

q Process noise covariance matrix scaling factor 1.0
k Maximum hypotheses generated from one new scan 300
N Maximum track tree depth 3 scans
Gmin Minimum likelihood ratio for accepted hypotheses 0.001
PD Probability of detection 0.9
λfa Mean false alarm ratio 2.0× 10−5

λN Mean new tracks per scan 0.01
λx Track termination chance 20%
Rmin Unused minimum accepted cross-correlation -1

Table 3.1: Configuration parameters selected for MHT.
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Chapter 4

Evaluation

Chapter 2 presented the motivation for SPA as a storm cell identification algorithm

and Chapter 3 presented MHT as a solution to the track association problem. Us-

ing the implementations described in both chapters, this chapter describes a com-

bined SPA-MHT storm tracking procedure intended to leverage the strengths of

both methods. The effectiveness of the combined method is evaluated on radar ob-

servations of a variety of storm conditions. Metrics of track quality are used to

investigate the advantages and disadvantages of SPA-MHT.

The combined tracker operates on a set of scans. For each scan, radar data is

transformed from native spherical coordinates to a Cartesian grid by inverse dis-

tance weighting interpolation. Each scan is represented by a single image of the

reflectivity at 1 km above the elevation of the radar. SPA is applied to these images

to extract a set of storm cells at each scan. The centroids of each cell are extracted

and written to text files in a format appropriate for MHT. At this time, a parameter

text file is also written to allow configuration of MHT from within MATLAB. For

all tests in this chapter, the parameters in Table 3.1 were used.

After all input files are written, MATLAB invokes the MHT command-line tool

with the appropriate arguments to use the inputs. The tool writes its outputs to

another text file, which is then read by MATLAB. These outputs include a list of
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tracks and a list of centroids which were considered false alarms. Both lists are

loaded and converted to formats suitable for plotting or for evaluation of algorithm

performance.

4.1 Evaluation on Radar Data

Radar data collected by the Next-Generation Radar (NEXRAD) network was ob-

tained from the National Centers for Environmental Information (NCEI) [25]. The

enormous volume scans of these systems observed a variety of storm conditions to

test SPA-MHT. For each case, the downloaded reflectivity data from within 300 km

of the observing radar was interpolated to a Cartesian 1 km × 1 km grid at a con-

stant altitude of 1 km above the radar. The resulting image is provided to SPA-MHT

as input.

When observing severe weather, NEXRAD systems also track storm cells using

the SCIT algorithm [8]. Each storm cell identified by SCIT is recorded with a label,

position, and estimated motion vector. Collecting the labels present in sequential

volume scans allowed reconstruction of SCIT track associations. These SCIT tracks

provide natural points of comparison for the tracks generated by SPA-MHT. This

data was also retrieved from the NCEI [25]. The cases on which SPA-MHT was

evaluated are included in Table 4.1, arranged according to their origin.

Cases 1-3 were used in the original evaluation of SCIT [2]. These cases were

used in the development of SPA-MHT, but the NEXRAD observations of these

cases obtained from NCEI do not include the storm tracking information required

for a full comparison. Cases 4 and 5 were selected from the development of

SPA [13], and cases 6 and 7 were selected from data initially used to test the track

evaluation metrics presented in Section 4.2 [26]. The following cases, 8-14, repre-
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Radar Date Start End SCIT
Overview Detail

Figure Figures
1 KIWA 08/06/1993 03:04 03:59 N
2 KTLX 02/21/1993 17:06 18:33 N
3 KLWX 10/06/1995 01:00 02:31 N
4 KINX 05/30/2004 01:02 02:57 Y A.1 4.1, 4.4, 4.6
5 KDDC 07/08/2004 00:02 01:56 Y A.2 4.10, 4.11
6 KIWA 08/06/2003 18:00 19:59 N
7 KLWX 10/06/2005 18:04 19:57 Y A.3

8 KTLX 05/04/1999 00:02 01:36 Y A.4
4.2, 4.3,

4.7, 4.8, 4.9
9 KTLX 05/19/2013 20:02 23:57 Y A.5 4.5

10 KTLX 05/03/2018 00:06 01:54 Y A.6
11 KTLX 06/07/2018 16:02 17:54 Y A.7
12 KTLX 08/03/2018 05:07 06:58 N
13 KTLX 08/30/2018 13:00 14:56 N
14 KTLX 09/21/2019 01:05 02:54 Y A.8 4.12
15 KFDR 05/16/2003 03:00 04:59 N
16 KICT 05/24/2008 04:01 05:56 Y A.9
17 KTWX 03/23/2009 22:03 23:59 Y A.10 4.13
18 KVNX 04/18/2009 20:09 22:57 Y A.11 4.14

Table 4.1: Sources of radar data used for evaluation, numbered for reference. The
Radar column provides the four-letter identifier used for each WSR-88D system.
The Date, Start and End columns specify the UTC timestamps of the first and last
volume scan used. If SCIT tracks were available for the case, the SCIT column
contains a Y; otherwise it contains an N. The Overview Figure for each case is
located in Appendix A and illustrates the general layout of the test case. Any Detail
Figures are located in Chapter 4 and focus on a smaller region as it evolves over
multiple scans.
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sent a variety of severe weather conditions observed by the KTLX radar. To guar-

antee a set of challenging cases, cases 15-18 were drawn from a survey of mergers

between squall lines and isolated storms [27]. Cases 6, 12, 13, and 15, despite oc-

curring after the adoption of SCIT for the NEXRAD network, did not have usable

tracking data. These cases were only used during the development of SPA-MHT

and were not considered in the evaluation.

The following specific cases illustrate the performance of SPA-MHT on data

collected under various weather conditions. For each case, an image of the entire

radar volume at the beginning of the sample data is provided in Appendix A without

any tracks. Figures in this chapter, such as 4.1, show only detail areas from these

cases. The nine subfigures of a detail area figure are divided into three columns and

three rows. Each column of a detail area figure displays the state of the tracking

algorithm at a different scan; the scans are arranged chronologically from left to

right. The first row displays the tracks produced by SCIT overlaid on images of

the reflectivity observed by the radar at three sequential scans. Each arrow within

a track indicates a centroid identified at a different scan. Crosses on each track

indicate the centroid associated with that track during that scan. Looking left to

right along the row shows each SCIT centroid advancing along each SCIT track.

The second row is organized in the same manner as the first, but generally displays

the tracks produced by SPA-MHT instead of those resulting from SCIT.

Tracks which initiate after or are terminated before a scan are not included in the

column showing that scan. If a track appears in a scan, a centroid was associated

with that track either before and after or during that scan, even if the centroid is

outside of the detail area. While scans are always arranged chronologically from left

to right, they are not always immediately adjacent; some scans have been skipped

to better illustrate storm motion over time.
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In the first two rows of a detail figure, the reflectivity displayed has been faded

to improve the visibility of tracks. This is not the case for the third row, which

shows the same reflectivity images with colors accurate to the color scale at the

bottom of each figure. The time at which each scan was initiated is also shown in

the corner of each image in the third row, while the date is located at the top of the

figure. The axes along the third row and first column indicate the position of the

detail areas relative to the radar.

4.1.1 Isolated Storms

Strong, regularly shaped storms which remain consistent across multiple scans are

easily tracked. SPA-MHT competently tracks storm cells in such cases, yielding

tracks which agree with SCIT and with human interpretation. The tracks in Fig-

ures 4.1 and 4.2 agree with the visible motion of the underlying storms. The details

of these tracks, however, demonstrate weaknesses of SCIT which are addressed by

SPA-MHT.

Centroids identified by SPA were usually consistent between scans for isolated

storms, remaining in a similar position relative to the underlying storm. The irreg-

ularity of SPA-MHT tracks was reduced compared to SCIT. Figure 4.1 contains an

extreme example of an irregular SCIT track. The track found by SPA is smooth and

consistent by comparison to the SCIT track, which deviates to the left and right. In

the center of the detail area, the SCIT track reverses direction when it is assigned

a centroid west of its previous position. These deviations do not represent the ac-

tual west-to-east motion of the storm. Instead, they are artifacts of the identification

stage of SCIT, which moved the centroid in a manner disproportionate to the change

in reflectivity. The SPA-MHT track, based on SPA centroids, better represents this
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Figure 4.1: Detail area of three scans from the KINX radar in Tulsa, OK beginning
from 2014/05/30 01:42 UTC. Tracks from SCIT and SPA-MHT are shown. The
centroids identified by SCIT deviate widely from the linear motion visible to the
eye, even appearing to reverse direction, due to shape changes in the corresponding
cells. SPA-MHT yields more stable centroids for a more consistent track.
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Figure 4.2: Detail area of three scans from the KTLX radar in Oklahoma City,
OK beginning from 1999/05/04 00:57 UTC. Tracks from SCIT and SPA-MHT are
shown. SCIT identifies several distinct cells in the second and third scans shown,
resulting in an irregular track. SPA-MHT identifies a single cell for the storm,
capturing the trend of motion to the northeast.
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motion.

Similar behavior was identified in other test cases with isolated storms. In the

case shown in Figure 4.2, a storm moves to the northeast. At first, SCIT and SPA-

MHT each initialize a single track, identifying a single cell to represent this storm.

As the storm moves, SCIT splits the storm, identifying one additional cell in the

second scan and two additional cells in the third. This decision is defensible as the

storm shape grows more irregular, but SCIT is unable to assign the additional cells

to tracks. The additional cells are inconsistent, not identified in multiple consecutive

scans, so no additional tracks are initiated. While the first track remains reasonably

accurate, its predictive power is only applicable to the one of the three cells SCIT

uses to represent the storm. The track also jumps each time a split occurs, leading

to greater uncertainty in the track.

Likewise, in Figure 4.3, the long track produced by SPA-MHT is represented by

multiple disjoint tracks in SCIT. The storm is initially tracked by both algorithms at

the start of the test case 00:02 UTC, but the SCIT track jumps between a cell in the

main body of the storm and another cell containing the small area at the tail of the

storm. At 00:22 the tail cell is assigned to the original SCIT track and a new SCIT

track is initiated which agrees with SPA. This confusion adds little to the overall

model of the storm’s motion. The new SCIT track at 00:22 attempts to describe

the same feature which SPA-MHT has been tracking for almost twenty minutes.

SPA-MHT held an advantage because the cell identified by SPA persisted between

scans.

In general, SPA-MHT was much more likely to identify and track weak or short-

lived storms. This sensitivity increased the number of unimportant or low-impact

features tracked at any given time. Across several cases, many areas with low re-

flectivity were identified as storm cells by SPA. Tracking these cells potentially
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Figure 4.3: Detail area of three scans from the KTLX radar in Oklahoma City,
OK beginning from 1999/05/04 00:02 UTC. Tracks from SCIT and SPA-MHT are
shown. SCIT forms several disjoint tracks. The longest of these is initiated at 00:22
UTC, shown in the second column. By this time SPA-MHT has been tracking a
similar feature since at least 00:02, the beginning of the test case. This SPA-MHT
track is visible in all three scans.
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diverts attention and processing power away from more significant features. When

stronger precipitation is present, SPA does raise the threshold at which strong points

are identified, automatically reducing the detection of extremely weak cells. In-

creasing the false alarm rate parameter for MHT, which was set very low for these

cases, would result in higher likelihood scores for hypotheses which treated these

cells as false alarms. This would correspond to a reduction to the number of these

cells assigned to short tracks.

However, identification of small and weak storm cells is advantageous for early

detection of storms. Figure 4.4 illustrates the early stages of a storm intermittently

identified by SCIT. In the second scan at 02:02, SCIT begins to track this storm,

which grows more intense by the third scan. SPA-MHT identifies and tracks the

same cell consistently from 01:20, achieving 42 minutes of lead time. This allows

earlier prediction and warning of developing severe weather. The trade-off between

early detection of storms and the false alarm rate of tracking insignificant or non-

weather features is not unique to SPA-MHT. Additional processing, such as the

filtration of any tracks which contain no high-intensity storm cells, may mitigate

the effect of false alarms.

4.1.2 Multiple Closely Spaced Storms

Tracking becomes more challenging for both SCIT and SPA-MHT when the storms

observed are more tightly clustered. Both methods are capable of generating effec-

tive tracks under clustered conditions, as in Figure 4.5. In this case, the development

of several storms in parallel results in some termination and initiation of tracks, but

both methods generate several long, stable tracks identifying consistent features.

The storms 0 km and 50 km north of the radar in the first scan are recognizable vi-
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Figure 4.4: Detail area of three scans from the KINX radar in Tulsa, OK beginning
from 2004/05/30 01:42 UTC. Tracks from SCIT and SPA-MHT are shown. SPA-
MHT identifies a consistent track for the main storm as it initiates, while SCIT
intermittently identifies the cell but does not associate it with cells in later scans
until 02:02.
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sually by the third included scan nearly 90 minutes later, despite the initiation and

termination of short-lived nearby tracks in the interval. The southern storm in scan

2 results in another long-lived track from both methods before it splits at around

23:10.

Closer storms are more likely to engage in merges and splits. Both SPA-MHT

and SCIT frequently interpreted merges as a track termination combined with a

sharp jump in another track to the location of the merged centroid. This behavior

is visible in SPA-MHT in Figure 4.6. The two storms in the center of scan 1 merge

as they travel northeast, causing the southernmost SPA-MHT track to jump north to

the new centroid in the second scan. SCIT, surprisingly, avoids this error, maintain-

ing the two tracks in the center of the detail area throughout the observed interval.

The three dimensional, spherical-coordinate identification stage of SCIT consis-

tently identified two storm cells. SCIT effectively observed no merge. It is possible

that the reduction of radar data from three dimensions to a two dimensional image

concealed structure that better separated the two storms. Across several test cases,

SPA appeared less likely than SCIT to break up storms into multiple cells. This ten-

dency appeared advantageous in Figure 4.3, agreeing with visual inspection. Under

close storm conditions where merges and splits occurred more frequently, however,

SPA cells did not preempt these occurrences. This result was surprising given the

adaptive design of SPA.

SCIT is not immune to merge or split errors. Figure 4.7 contains an example of

two closely spaced storms moving in parallel. Both SCIT and SPA-MHT identify

the two storms as separate cells at 00:27, and SPA-MHT successfully tracks both

cells. In the next column, at 00:32, SCIT does not identify the northern storm and

splits the southern storm into two cells. Both SCIT cells are incorrectly assigned

to the two existing tracks. At 00:37, the identified cells are comparable to those
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Figure 4.5: Detail area of three scans from the KTLX radar in Oklahoma City,
OK beginning from 2013/05/19 21:02 UTC. Tracks from SCIT and SPA-MHT are
shown. Multiple similar storms are consistently tracked by both methods over a
period of hours.
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Figure 4.6: Detail area of three scans from the KINX radar in Tulsa, OK beginning
from 2004/05/30 02:37 UTC. Tracks from SCIT and SPA-MHT are shown. When
the two storms in the center of the area merge, SPA-MHT continues the track from
the southern cell, causing a jump. The track of the smaller cell is terminated. SCIT
interprets the two storms as separate cells throughout the scans, avoiding the merge
problem.

55



from the first scan, but the track jumps from the previous error lead to incorrect

assignments. This pattern, where the need to track a cell which was only briefly

identified caused later tracking errors in SCIT, was repeated in several other scans

and test cases.

The use of MHT for track association, however, was able to improve track-

ing performance in such situations. The track in Figure 4.8 includes a single scan

where the storm tracked by SPA-MHT splits into two cells. Neither centroid is

close enough to the single track state estimate to be considered likely. Rather than

terminate the track, losing five scans of previous track positions, MHT interprets

the lack of a centroid as a missed detection. When the next scan was processed,

this hypothesis was supported by the identification of a single cell near the position

predicted by the track. Track history preceding the brief split was preserved by

MHT.

To directly test this capability, MHT was applied to the centroids detected by

SCIT. The result, shown in the second row of Figure 4.9, demonstrates that MHT

avoids the error made by SCIT association and recognizes the missed detection

instead. In the second scan, the second cell identified in the southern storm is cor-

rectly assigned to no existing track, and when the original cells are again identified,

both tracks are correctly continued.

Interaction between storms adds an additional challenge to tracking. The storms

visible in Figure 4.10 are extremely close, merging shortly after scan 1. SCIT

assigns the resulting cell to the long southbound track. This track persists into

the second scan. A short southern track briefly coexists with the long track, but

continues to the southeast when the long track terminates. The short track has

effectively replaced the long-lived track, describing the same area of reflectivity.

While it is possible that this interpretation accurately represents motion above the
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Figure 4.7: Detail area of three consecutive scans from the KTLX radar in Ok-
lahoma City, OK beginning from 1999/05/04 00:27 UTC. Tracks from SCIT and
SPA-MHT are shown. SCIT incorrectly assigns storms to tracks following a change
in identified cells during the second scan. This results in a significant deviation of
the tracks. SPA-MHT avoids this error by identifying the same pair of a northern
and a southern cell across each scan.
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Figure 4.8: Detail area of three consecutive scans from the KTLX radar in Ok-
lahoma City, OK beginning from 1999/05/04 01:02 UTC. Tracks from SCIT and
SPA-MHT are shown. SCIT splits a storm into three to four cells, while SPA-MHT
attempts to track one cell. Support for missed detections from MHT allows the
track to survive a brief split visible in the second column. The southwestern and
northeastern tracks are recognized as one track by SPA-MHT.
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Figure 4.9: Detail area of three consecutive scans from the KTLX radar in Ok-
lahoma City, OK beginning from 1999/05/04 00:27 UTC. Tracks from SCIT and
from application of MHT to SCIT centroids are shown. MHT correctly identifies
that the western storm in the second scan does not belong to either existing track.
The northern track is correctly resumed in the third scan.
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interpolated image, the single track produced by SPA-MHT is a better match to

the visual. In the tracks identified by SPA-MHT, it is the western storm in scan

1 that dominates the collision and continues. This appears more accurate, as the

final motion vector identified by both methods is closer to the initial motion of the

western storm.

Figure 4.11 contains similar storms from the area slightly to the southeast of

Figure 4.10. Again the consistent SPA-MHT track explains the same motion as two

disjoint SCIT tracks. In the absence of storm structure not visible in these images,

the continuous track is preferable to disjoint tracks, as it maintains a more confident

estimate of storm state.

Extreme clustering results in the breakdown of both SCIT and SPA-MHT. The

multitude of growing, decaying, and colliding storms present in Figure 4.12 resists

tracking by both algorithms. SPA-MHT attempts many tracks which remain short

due to rapidly changing features. SCIT successfully tracks several cells, potentially

outperforming SPA-MHT, but fails to track the most intense region in the south

of the system. Neither method represents the overall west-to-east motion of the

system, which occurs in part due to growing storms on the leading edge. Instead,

most tracks in both methods run from south to north. The number of cells identified

changes radically from scan to scan due to merges, splits, and inconsistent identi-

fication. SPA, which identified consistent storms when there were few reflectivity

maxima, is less effective when maxima are more evenly distributed throughout the

storms.
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Figure 4.10: Detail area of three scans from the KDDC radar in Dodge City, KS be-
ginning from 2004/07/08 00:23 UTC. Tracks from SCIT and SPA-MHT are shown.
SCIT uses two irregular tracks to explain storm motion, while SPA-MHT uses one,
more smooth track. The SPA-MHT track persists for longer.
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Figure 4.11: Detail area of three scans from the KDDC radar in Dodge City, KS be-
ginning from 2004/07/08 00:48 UTC. Tracks from SCIT and SPA-MHT are shown.
The western track from SCIT is terminated after a southern track is identified in the
second scan, discarding information. SPA-MHT uses one long, continuous track to
explain the same storm motion.
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Figure 4.12: Detail area of three scans from the KTLX radar in Oklahoma City,
OK beginning from 2019/09/21 01:47 UTC. Tracks from SCIT and SPA-MHT
are shown, but poorly represent the west-to-east motion of the widespread storms.
SCIT generates sparse tracks with some tracking effectiveness while SPA-MHT at-
tempts many short tracks. Neither algorithm clearly identifies the motion of the
intense southern region.
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4.1.3 Squall Lines

A set of test cases observing the interaction of isolated storm cells and squall lines

provided additional challenging tracking environments. In Figure 4.13, the initial

narrow squall line is split into storm cells and tracked effectively by both algorithms.

As the squall line grows wider and more chaotic, features are more easily lost

to merges or splits. The number of cells identified also visibly changes even when

the area of storms does not change significantly. While some centroids are agreed

upon by both algorithms and align with local reflectivity maxima, others are not

repeated across methods. These spurious features are less consistent between scans

than the features identified across methods and result in short and irregular tracks.

The previously observed tendency of SPA-MHT to attempt tracking of weaker cells

than SCIT made SPA-MHT to be somewhat more vulnerable in this situation. The

average SCIT track in this region persisted for 7.08 scans on average compared to

6.29 scans for SPA-MHT tracks; the median duration for both sets of tracks was

5 scans. The apparent reduced density of SPA-MHT tracks visible in the figure is

exacerbated by skipped measurements, which are not drawn in the figure.

SPA appears more sensitive than the SCIT identification stage to local changes

of intensity. Only one strong point is required to identify a cell under SPA, and some

regions within the squall line have high intensity variance, leading to the detection

of additional spurious cells. The mechanism is similar to the increased detection

of cells, compared to SCIT, in stratiform or other regions of weak reflectivity. The

challenging squall line conditions do not affect successful tracking of more isolated

cells ahead of and at the ends of the squall line.

Specific conditions within the squall line cases further degraded the perfor-

mance of SPA-MHT. Figure 4.14 shows an isolated cell overtaken and absorbed
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Figure 4.13: Detail area of three scans from the KTWX radar in Topeka, KS be-
ginning from 2009/03/23 22:12 UTC. Tracks from SCIT and SPA-MHT are shown.
Both algorithms demonstrate successful tracking across early scans, but the length
of tracks decreases as the squall line grows wider and more intense. Many of the
tracks visible in the third column are shorter and more fragmented for both methods.
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into a squall line. In the second scan, the central merge between the cell and line has

clearly visible structure. SCIT identifies three centroids from this structure, termi-

nates tracks from the line, and continues the track from the isolated cell. SPA-MHT

fails to distinguish the structure with multiple centroids, resulting in termination of

nearly all tracks from before the merge. This feature extraction failure occurs when

a wide spatial spread of pixels are similar in strength, forming a ”bridge” of strong

points and causing the recursive process to erode only the edges of the storm. The

SCIT feature extraction stage exceeded expectations on this test case, preserving

longer tracks.

Challenging test cases, including the squall line mergers, stressed both algo-

rithms. Improvements in SPA-MHT track consistency apparent in the simpler cases

were less applicable to the challenge cases. The assumption that the recursive de-

sign of SPA would automatically break merged storms and squall lines into distinct,

consistently identified cells was not well supported. The presence of strong point

bridges in linear cases was able to prevent this breaking.

4.2 Quantifying Storm Tracking Performance

On visual inspection, SPA-MHT appears to generate intuitive tracks for isolated and

closely spaced cases. Tracks smoothly follow isolated storms with less deviation

than SCIT tracks. The missed detection support of MHT confers resistance to brief

merges and splits. Permissive identification of cells results in more tracks of minor

or irrelevant storms, but is advantageous for early detection of developing storms.

The chaos of challenging squall line cases appears to negate these advantages. To

validate these results, metrics to quantify storm tracking performance were evalu-

ated.
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Figure 4.14: Detail area of three scans from the KVNX radar in Vance Air Force
Base, OK beginning from 2009/04/18 21:18 UTC. Tracks from SCIT and SPA-
MHT are shown. A squall line overtakes and merges with an isolated cell. SPA-
MHT is challenged by the dense storm structure near the merger.
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Direct numeric comparison of storm tracking algorithms is challenging. Fore-

casts may be evaluated on the basis of probability of detection (POD) and false

alarm rate (FAR) if predictions are interpreted as binary decisions [7]. In such a

design, a binary forecast image is generated where pixels are nonzero wherever the

extent any storm cell is predicted to cover. This image is compared to the extents of

storm cells detected in the actual data. A detection occurs when the forecast image

and the data agree that a storm is present; a prediction in the forecast with no storm

in the data is a false alarm. POD, FAR and similar scores have frequently been

used to evaluate forecast accuracy despite drawbacks [10], [12], [17], [28]. The

binary decision required for these metrics does not support forecasts of intensity

such as growth and decay. Errors in predicted displacement are only represented

by the amount of overlap between storm cells and forecast cells, biasing these met-

rics against methods which identify smaller cells. Efforts to measure intensity bias,

growth and decay forecasts, or the displacement errors of forecasts rely on intensive

human analysis [1].

The previous metrics emphasize the forecast stage of storm tracking. For this

work, which evaluates the feature extraction and association stages, an alternative

is preferred. A variant of POD may be calculated for the feature extraction stage

alone if the binary image is generated with nonzero pixels wherever the algorithm

identifies a storm [2]. To score track association, the ”percent correct” metric

PC =
ncorrect

ntotal

× 100% (4.1)

relates the number of correct track associations to the total number of associations

possible.

Both of these approaches require a source of ground truth. For feature extraction
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POD, the intended storm cells must be provided, and for percent correct, every

intended association must be provided. The use of another algorithm to obtain this

ground truth precludes comparison; the maximum score possible for these metrics

is obtained by perfect agreement with the ground truth. Obtaining unbiased ground

truth for these metrics is achievable via human forecasters, but this approach is

labor-intensive.

A proposed alternative to better support comparison between methods are the

three metrics of median track duration, mismatch error in vertically integrated liquid

(VIL), and linearity error [26]. These track metrics represent trade-offs in tracking

algorithm design such that an algorithm optimized for one metric naturally will be

penalized on one or both of the others. This allows for side-by-side comparison of

algorithms applied to the same data without the need for ground truth data. The

relative scores on each metric illustrate strengths and weaknesses of algorithms

under consideration.

Track duration counts the number of scans in which each track is maintained.

Severe, long lived storms ideally yield long, consistent tracks. Breaking such a track

into several shorter tracks sacrifices the history of each track, reducing forecasting

accuracy. An algorithm may optimize for track length by permitting associations

even when the cells under consideration are distant or dissimilar, but such an al-

gorithm will generate tracks with high linearity or mismatch error. The length of

tracks over a test case is summarized by the median to reduce the impact of outliers.

The VIL mismatch of a track measures the standard deviation of VIL along that

track. VIL is a statistic representing the amount of precipitation across the footprint

of a storm cell [29]. For a storm which is not growing or decaying, VIL should

remain consistent across scans. If such a storm is tracked correctly, the standard

deviation of its VIL will be low. A high VIL mismatch indicates that the storm

69



represented by the track may not be the same entity which was initially tracked.

Linearity error measures the deviation of the centroid positions assigned to a

track from the line of best fit for that track. High linearity error may be caused

by centroid motion artifacts, merge and split behavior, or incorrect track associa-

tions leading to jumps. Algorithms which optimize only to minimize linearity error,

however, will improperly track some situations in which the actual storm motion is

nonlinear, causing poor scoring in the duration or VIL mismatch metrics.

Of these three metrics, median track duration T and linearity error ex,y were

calculated for each test case. The duration of an individual track included skipped

scans where the track was continued after the skip. Skips occurring at the end of a

track, which resulted from from MHT evaluating a missed detection as more likely

than a track termination, were not included in the track duration. The linearity error

was calculated from the mean of the root-mean-square errors (RMSE), denoted by

ex,y, for tracks longer than the median duration. For a track with line of best fit

ax+ by + c = 0 (4.2)

consisting of n storm cells with centroids (xn, yn),

ex,y =

√√√√ 1

n

n∑
i=1

(axn + byn + c)2

a2 + b2
(4.3)

based on the minimum distance from each centroid to the line of best fit [30].

VIL mismatch was not evaluated due to the difficulty of obtaining VIL measures

for storms identified by SCIT. While the footprint of storms reported by SPA-MHT

is available and allows calculation of VIL, the source of SCIT data used reports only

centroids. The VIL associated with SCIT cells is reported by a different NEXRAD
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Radar Date Scans
SCIT SPA-MHT

T ex,y T ex,y

4 KINX 05/30/2004 23 4 1.44 4 1.21
5 KDDC 07/08/2004 28 5 2.16 7 1.75
7 KLWX 10/06/2005 20 4 1.62 5 1.55
8 KTLX 05/04/1999 20 4 1.62 7 2.01
9 KTLX 05/19/2013 56 4 1.51 5 1.20

10 KTLX 05/03/2018 17 4 1.52 4 1.48
11 KTLX 06/07/2018 22 3 1.38 4 1.26
14 KTLX 09/21/2019 19 3 1.45 4 1.66
16 KICT 05/24/2008 26 3 1.50 3 1.41
17 KTWX 03/23/2009 26 4 1.33 5 1.45
18 KVNX 04/18/2009 42 5 1.58 5 1.43

Average 27 3.90 1.56 4.81 1.49

Table 4.2: Median track duration T and linearity error ex,y for tracks found by SCIT
and by SPA-MHT using test cases listed in Table 4.1. Cases with no or unusable
SCIT data are excluded.

product [8]. Evaluation of the VIL mismatch metric remains a potential area of

future work.

Table 4.2 contains the median track duration and linearity error calculated for

the tracks generated by SCIT and SPA-MHT applied to each test case. Trivial tracks

identified in only one scan were removed before calculating the metrics. Cases for

which SCIT was unavailable are not included.

Across the test cases, SPA-MHT achieved comparable or superior track dura-

tion to SCIT. The longest median duration occurred on case 5, which featured a

cluster of storms with slow, easily tracked movement, and case 8, which contained

more long-lived but isolated storms in addition to some clustered storms. Case 4,

which also featured long-lived storms, yielded tracks with a relatively low duration

because of the initiation of many new tracks approximately halfway through the

case. These initiations, such as those in Figure 4.4, were often identified later by

SCIT. The penalty SPA-MHT accepts for earlier detection is a higher number of
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tracks, including short tracks of weak cells.

The median duration was somewhat nonspecific; the range of results was only

between 3 and 7 despite the wide variance in weather conditions and number of

scans per case.

For most cases, SPA-MHT achieved lower linearity error than SCIT. More con-

sistent identification on isolated storms reduced linearity error compared to the de-

viating tracks of SCIT for cells which moved in straight lines. The resistance to

brief splits and merges also contributed, as jumps in the track increased RMSE. As

tracking complexity increased, the measured linearity error grew more similar be-

tween methods. SCIT achieved a lower linearity error on case 14, containing very

chaotic and widespread storms as shown in Figure 4.12, and case 17, a challenging

squall line merge pictured in Figure 4.13.

SPA-MHT also demonstrated unusually high linearity error on case 8 even as

it effectively identified long tracks. Out of the 24 tracks on which RMSE was

estimated in this case, two outliers accounted for the difference in linearity error

between SCIT and SPA-MHT. One of these outliers was among the longest tracks

identified in the case, accurately tracking the motion of a cell that split from the

central storm before changing direction. This track is shown, alongside a SCIT

track which eventually tracks the same underlying storm, in Figure 4.15. Its extreme

spatial extent allowed for a high RMSE.

Averages for the median duration and linearity error of each method are also

provided in Table 4.2. The cases surveyed are very diverse, trending from simpler

cases to more complex squall lines, and the sample size is limited. The mean of the

median durations suggests a commanding track length advantage for SPA-MHT.

Given the four to six minute update time of NEXRAD, the average SPA-MHT

length of 4.81 scans yields 3.6 to 5.5 minutes of tracking beyond that of SCIT.

72



Figure 4.15: Detail area of three consecutive scans from the KTLX radar in Ok-
lahoma City, OK beginning from 1999/05/04 00:12 UTC. One track from SCIT is
shown alongside one from SPA-MHT. Other tracks are suppressed. The SPA-MHT
track initially travels northwest, but the eventual trend of the track is to the north-
east. The transition results in a highly nonlinear track. SCIT begins its track further
west, avoiding the change in direction.
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This average improvement is driven by the simpler cases; the more comparable

performance on challenging squall line cases demonstrates that SPA-MHT has not

achieved superiority on such cases.

While SPA-MHT achieves lower linearity error than SCIT on eight of the eleven

evaluated cases, the average SPA-MHT error of 1.49 is similar to the SCIT average

of 1.56. Considering the apparent smoothness of SPA-MHT tracks noted in this

section, the closeness of this summary statistic was surprising. The same traits that

allowed SPA-MHT to maintain longer tracks allowed the formation of curved or

bent tracks in split or merge scenarios. In addition to increasing the sample size by

identifying more test cases, future work may include evaluation of a similar metric

using higher-order lines of best fit. This would provide a more realistic metric for

the tracking of storms which demonstrate curving motion, such as those in case 8.

In the absence of VIL data, it remains possible that the performance advantages

demonstrated by SPA-MHT on these metrics are due to decisions which would

penalize VIL mismatch. However, this is not supported by visual assessment. SPA-

MHT appears to identify cells which consistently track the same underlying storm

in isolated and closely spaced cases. The ability to resume tracks after a brief

merge or split should also benefit the VIL mismatch metric. It is on the more

complex cases, especially squall lines, that SPA-MHT tracks become more visually

confusing even as linearity error and median duration converge with SCIT. The

predicted result of assessing the VIL mismatch metric is superiority on simple cases

which converges to SCIT-comparable performance on squall lines, paralleling the

trends noted for track duration and linearity error.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Effective storm tracking algorithms improve understanding of weather and enable

advance warning of hazardous weather conditions. Centroid-based trackers imple-

ment an intuitive approach by tracking the most intense regions of storms, usually

based on sequential volume scans of reflectivity from weather radar. The accu-

racy of this category of tracking algorithm for short-term forecasting depends on

three stages: storm identification, track association, and forecasting. SPA-MHT ad-

dresses the first stage with SPA, a technique adapted from image processing which

uses the erosion and dilation operations from mathematical morphology to identify

storm cells consistently between scans. MHT is utilized for the track association

stage, allowing track assignments to incorporate information from multiple scans.

This research demonstrated the advantages of SPA-MHT on observations of

weather conditions of low to moderate complexity. When storms were isolated or

occurred in closely spaced clusters, SPA-MHT generated similar or superior tracks

to those generated by the SCIT algorithm. This improvement was suggested by the

visual appearance of SPA-MHT tracks, which were often more smooth and longer

than their counterparts, and was supported by numerical assessments of track du-
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ration and linearity. SPA identified cells which were more consistent from scan to

scan, reducing the effect of storm shape changes on the resulting tracks. MHT made

similar decisions to SCIT when there was little ambiguity, and its use of multiple

scans of information allowed more accurate decisions when the correct assignment

was briefly ambiguous. SPA-MHT also began tracking developing storms faster,

providing increased lead time in forecasting. When applied to more challenging

cases, such as squall lines, the performance of SPA-MHT degraded to be com-

parable to or marginally worse than SCIT. In the absence of separate reflectivity

maxima, SPA was often unable to divide squall lines into consistent cells, resulting

in different numbers of cells from scan to scan for short and irregular tracks.

5.2 Scientific Impact

The demonstrated tracking improvement on isolated storms and storm clusters sug-

gests that the techniques used in SPA-MHT are promising routes to improve storm

tracking. The evaluation of SPA provides further evidence for the utility of erosion-

and dilation-based cell identification of consistent storm cells. This research also

represents the first evaluation of MHT on actual weather data.

5.3 Future Work

Future research in this area falls into three main categories: further evaluation of

track quality, improvements to cell identification, and improvements to track asso-

ciation. The first category includes the collection of additional data to confirm the

trends identified in 4.2. More examples of each test case would provide more con-

fidence in the metrics used. The collection of longer data may also reveal trends in

the length of tracks, as for most test cases, only two hours of scans were used. An
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additional metric which was not evaluated in this research, VIL continuity, would

assist in quantifying track assignment performance [26]. This metric indicates the

tendency of an algorithm to assign similar cells to the same track.

To improve the cell identification stage, modifications to SPA may be explored.

While consistency on isolated cells was already improved over SCIT, the behavior

of SPA on large, intense ridges of reflectivity can be improved. Configuration of

SPA parameters was insufficient to improve this performance. The use of a line

observation, as opposed to the point observation of a centroid, is one potential av-

enue for this improvement; this would require significant alterations to the tracking

algorithm as a whole. Alternately, an additional limit to the clustering step of SPA

preventing the identification of extremely long cells might result in better represen-

tations of squall line observations as many adjacent cells.

Modifications to optimize the behavior of MHT on storm cell targets are also

likely to improve performance. The current implementation of MHT, intended for

the tracking of hard targets such as aircraft, relies on one-to-one assignment of cells

to tracks [21]. A split guarantees the loss of all tracking history for all but one of

the resulting storms; only one is allowed to continue the track. Likewise, a merge

may only incorporate the history of one of its participant storms. An expansion of

MHT which allows merge and split decisions, along with a principled evaluation of

their likelihoods, would prevent the loss of information for these situations. This

would, however, require substantial modifications to the hypothesis generation of

MHT, possibly preventing an efficient implementation.

A potential simpler expansion of MHT is the incorporation of size and intensity

information into the probabilities of track initiation and termination. The current

model uses constant values for these probabilities; any hypothesis in which a new

track begins incorporates the this constant into its total likelihood. In the case of
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true storm initiation, however, smaller storms are more likely candidates than large,

developed storms. Likewise, track termination is more likely after several scans of

storm decay than it is at the peak of development. Incorporation of this type of

information into the hypotheses generated by MHT provides an appraoch to better

adapt MHT for weather targets, improving the storm tracking algorithm as a whole.
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Appendix A

Radar Data

The following figures illustrate the start and end states of test cases used to evaluate

SPA-MHT in Chapter 4. For each case, the upper figure contains the constant-

altitude Cartesian interpolation of the radar reflectivity observed during the first

volume scan. The lower figure contains the corresponding reflectivity data for the

final scan. Range rings are overlaid on each figure, spaced every 50 km from the

radar out to the extent of the interpolated data at 300 km.
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Figure A.1: Overview of case 4, observations by the KINX radar in Tulsa, OK. The
first volume scan was initiated at 01:02 UTC on May 30th, 2004. The final volume
scan was initiated at 02:57 UTC.

80



Figure A.2: Overview of case 5, observations by the KDDC radar in Dodge City,
KS. The first volume scan was initiated at 00:02 UTC on July 8th, 2004. The final
volume scan was initiated at 01:56 UTC.
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Figure A.3: Overview of case 7, observations by the KLWX radar in Sterling, VA.
The first volume scan was initiated at 18:04 UTC on October 6th, 2005. The final
volume scan was initiated at 19:57 UTC.
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Figure A.4: Overview of case 8, observations by the KTLX radar in Oklahoma City,
OK. The first volume scan was initiated at 00:02 UTC on May 4th, 1999. The final
volume scan was initiated at 01:36 UTC.
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Figure A.5: Overview of case 9, observations by the KTLX radar in Oklahoma
City, OK. The first volume scan was initiated at 20:02 UTC on May 19th, 2013.
The final volume scan was initiated at 23:57 UTC.
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Figure A.6: Overview of case 10, observations by the KTLX radar in Oklahoma
City, OK. The first volume scan was initiated at 00:06 UTC on May 3rd, 2018. The
final volume scan was initiated at 01:54 UTC.
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Figure A.7: Overview of case 11, observations by KTLX radar in Oklahoma City,
OK. The first volume scan was initiated at 01:02 UTC on May 30th, 2004. The final
volume scan was initiated at 02:57 UTC.
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Figure A.8: Overview of case 14, observations by the KTLX radar in Oklahoma
City, OK. The first volume scan was initiated at 01:05 UTC on September 21st,
2019. The final volume scan was initiated at 02:54 UTC.
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Figure A.9: Overview of case 16, observations by the KICT radar in Wichita, KS.
The first volume scan was initiated at 04:01 UTC on May 24th, 2008. The final
volume scan was initiated at 05:56 UTC.
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Figure A.10: Overview of case 17, observations by the KTWX radar in Sterling,
VA. The first volume scan was initiated at 22:03 UTC on March 23rd, 2009. The
final volume scan was initiated at 23:59 UTC.
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Figure A.11: Overview of case 18, observations by the KVNX radar at Vance Air
Force Base, OK. The first volume scan was initiated at 20:09 UTC on April 18th,
2009. The final volume scan was initiated at 22:57 UTC.
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