
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

PREDICTING WINE QUALITY AND/OR TASTE THROUGH THE USE
OF A LATENT ODE-RNN NEURAL NET

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

BY

ALEXANDRA K. BEATTIE
Norman, Oklahoma

2019

PREDICTING WINE QUALITY AND/OR TASTE THROUGH THE USE
OF A LATENT ODE-RNN NEURAL NET

A MASTER’S THESIS APPROVED FOR THE
GALLOGLY COLLEGE OF ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Dean Hougen

Dr. Sridhar Radhakrishnan

Dr. Charles Nicholson

© Copyright by ALEXANDRA K. BEATTIE 2019
All Rights Reserved.

Acknowledgements

I dedicate this thesis to the many people in my life who helped me while I pursued

this life goal of obtaining my Master’s in Data Science.

First, thank you, Dr. Dean Hougen, for providing your valuable input and keeping

me accountable while completing this work. I could not have gotten to this point

without you. You being my thesis advisor was the best way to conclude my

journey at the University of Oklahoma.

To my work family at Spotify: Thank you, Lynn Root and Fallon Chen, for

listening to me talk about my thesis every second of the day and for your patience

and understanding when I needed to juggle work and school. A special thank

you to my number one outdoor cat, Matt Oakley; thank you for always listening

and encouraging me when I was not sure if I could make it through.

To Ryan Waring: Thank you for your constant support, helping with the little

things, and the moose calls in the last weeks of completing my thesis. You kept

me sane at the finish line.

To my actual family, Dad, Mom, Mary-Pat, and Adam: Thank you for always

calling to check on me, for continually being my biggest supporters and helping

me through the best and worst of times during this three-year journey. You gave

me the push I needed to start this program, and from that, I discovered my

passion for Computer and Data Science. I will be forever grateful for your love

iv

and support.

To my Dad, for driving a six-hour round trip to get me to my thesis defense on

time. I know I can always count on you to support me in achieving my goals.

To my Mom, for coming to visit when I needed you, meal prepping for when I

was too busy to feed myself, and telling me that everything was going to turn

out ok.

Lastly, I want to thank my brother, Jack Beattie. Even though you won’t be able

to read this note, your passion for life will always inspire me to challenge myself

and appreciate the little things in life. I know that you were with me every step

of the way. This one’s for you, dude.

v

Abstract

It is common for recommendation systems to use clustering techniques for finding

similar products for the downstream user. These models do not always incorpo-

rate time as a variable when recommending an item. If our recommendation

models do not include time, it may be difficult to surface the correct product to

downstream users, given that seasonality tends to affect user behaviors.

Time is not frequently used in recommendation algorithms due to the difficulty

of obtaining continuous or consistent time series data of user interactions. Re-

cently, Ordinary Differential Equation Recurrent Neural Networks (ODE-RNNs)

has been flagged as a possible solution for predicting inconsistent time series

data. This algorithm can bypass the need for consistent time data via its Recur-

rent Neural Network (RNN) encoder, which transforms the data with inconsistent

time steps into hidden latent states that capture its temporal element. These en-

coded states are inputted into the Ordinary Differential Equation (ODE) block

of the computational graph to solve the initial value problem of the hidden latent

states. This solution results in a function that describes how the states change in

continuous time. This new development is a possible solution for creating specific

recommendations accounting for how tastes change over time.

To determine the feasibility of the above method for recommendations, a

high-dimensional time series dataset is reduced into a two-dimensional dataset

vi

with time as a feature. This dataset is used to train an ODE-RNN model to

predict how it changes over time. Reviews from the Wine Enthusiast are used to

create the original high-dimensional time series dataset. The wine reviewers will

represent the users to predict, and the high scoring wines will be used to predict

the taste trends of the reviewer.

vii

Contents

Acknowledgements iii

Abstract vi

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Process Overview . 3

1.1.1 Input Data . 5
1.1.2 Recommendation Algorithm 6

1.2 Data Availability and Creation 7

2 Related Work 12
2.1 Overview . 12
2.2 Methods used for Data Analysis 12

2.2.1 Doc2Vec . 12
2.2.2 LargeVis . 16

2.3 Autoencoders . 18
2.4 Neural Networks for Differential Equations 19

2.4.1 Basic Neural Networks . 19
2.4.2 Ordinary Differential Equation Neural Networks 20
2.4.3 ODENN-RNN for Latent State Prediction 23

3 Wine Enthusiast Wine Reviews 25
3.1 Exploratory Analysis . 25
3.2 Doc2Vec for Reviews . 29

3.2.1 Doc2Vec Development and Testing 30
3.2.2 Doc2Vec Validation and Results 32
3.2.3 LargeVis for Doc2Vec Visualization 36

viii

4 Autoencoder for Latent States 41
4.1 Overview . 41
4.2 Autoencoder: Development and Training 42
4.3 Autoencoder Validation and Performance 43
4.4 Analysis of Latent States . 44

5 ODE-RNN for Latent State Prediction 49
5.1 Overview . 49
5.2 Development and Training . 50
5.3 Performance and Validation . 53

6 Conclusions 60
6.1 Final Conclusion . 60
6.2 Future Work . 61

6.2.1 Proposed Process for Decoded Predictions 62

Bibliography 64

A Appendix 66
A.1 Code . 66

A.1.1 Wine Data Processing . 66
A.1.2 Doc2Vec Trainer . 78
A.1.3 LargeVis Trainer . 97
A.1.4 Autoencoder Trainer . 102
A.1.5 ODE-RNN Trainer . 120

ix

List of Figures

1.1 Process Used for Predictions . 4
1.2 Z-Scores of Points Calculated Based on All Users 9
1.3 Z-Scores of Points Calculated Based on Individual Users 10
1.4 Red Fruit Flavor Words [9] . 10

2.1 Word2Vec Example for Wine Reviews 13
2.2 Distributed Memory Concatenation Doc2Vec for Wine Review . . 14
2.3 Distributed Bag of Words Doc2Vec for Wine Review 16
2.4 T-Distributed Stochastic Neighbor Embedding (t-SNE) [13] 17
2.5 Example Autoencoder with Shared Weights for Wine Features . . 19
2.6 Residual Learning Block [6] . 21
2.7 Algorithm for Solving the ODE Initial Value Problem [3] 23
2.8 Computation graph of the latent ODE model.[3] 24

3.1 Wine Enthusiast Wine Ratings 26
3.2 Wine Enthusiast Review Date Distribution by Year 27
3.3 Success of Wines by Category . 27
3.4 Probability of Success by Month 28
3.5 Categorical Features Effects on Success for All Reviewers 28
3.6 Categorical Effects on Success for Kerin O’Keefe by Year 29
3.7 Doc2Vec Testing Validation . 31
3.8 Doc2Vec Final Validation . 33
3.9 Visualization of Doc2Vecs by Taster 37
3.10 Visualization of Doc2Vecs by Variety 38
3.11 Visualization of Doc2Vecs by Season for Successful Red Wines . . 39
3.12 Visualization of Doc2Vecs by Flavor Tags 40

4.1 Latent States for Top Three Users 46
4.2 Roger Voss Successful Latent States by Year 46
4.3 Latent States by Month for Roger Voss 47
4.4 Red versus White Wine Latent States for Roger Voss 48

5.1 Three Potential Trajectories for Roger Voss 51
5.2 Difference in Latent Trajectories 53

x

5.3 Predicted and Actual Taste Trajectories 56
5.4 Random and Actual Taste Trajectories 57
5.5 Predicted Trajectories from Universal Model 59

xi

List of Tables

1.1 Wine Dataset Description . 11

4.1 Shared Autoencoder Training Results 43
4.2 Average and Standard Deviation of Latent State Dimensions . . . 45

5.1 Average Percent Difference in Slope Trajectories between Reviewers 52
5.2 ODE-RNN Training Results by ODEBlock Layer and Neurons . . 55
5.3 ODE-RNN Training Results by RNN and Decoder Neurons 55
5.4 ODE-RNN Training Results by Latent Dimension 55
5.5 ODE-RNN Training Results for Universal Model 59

6.1 Two Sample Mean T-Test Results from ODE-RNN Model Versus
Results from Randomly Generated Trajectories 61

xii

Chapter 1

Introduction

Predicting tastes and preferences is an essential and lucrative area of data science.

Companies differentiate themselves by their ability to recommend products or

experiences to their target markets. To create these types of predictions, many

data scientists focus on clustering techniques to determine product similarities

and recommend products that are within a certain distance of the target user’s

data. This method works on static data but needs to be re-evaluated regularly

to account for new data and changes in the user’s taste.

Another standard option is to use logistic regression or types of deep neural

networks to predict the likelihood of a user enjoying the recommended product.

It is crucial to have consistent time series data when using these typical methods

of time series prediction. For example, when using data entered into a long short-

term memory (LSTM) model for time-series predictions must be consistent [11].

This type of data is challenging to find and is frequently forced into existence,

given how unlikely it is for users to create date on a regular cadence.

In both of these options, it is essential for the creator of the model to account

for changing data structures, data similarities, and user preferences over time.

1

Recently, the data science community has been exploring the ability of neural

networks to predict ordinary differential equations of latent state changes in latent

space to work with inconsistent time series data. These types of models use latent

states at inconsistent time points to predict how they would move through a

latent space with respect to continuous time[3]. Testing a latent space Ordinary

Differential Equation Recurrent Neural Network (ODE-RNN) for predicting how

tastes in wine change over time can demonstrate the feasibility of these models

for prediction purposes.

Choosing wine is a difficult feat for most. It can be intimidating with the

never-ending choices, thousands of varieties, and changes in the wine from vin-

tage to vintage. To combat this, people rely on wine review sites to help guide

their taste. However, like regular wine drinkers, these reviewers also have their

own biases and trends in reviews, such as favorite wineries or a disdain for spe-

cific varieties. Many websites, like the Wine Enthusiast1 or Wine Spectator2,

capture this type of data. These reviews can be regarded as engagement data for

predicting review trends in the future.

This thesis demonstrates that it is possible to take raw review data and cre-

ate a prediction model graph to predict how a reviewer’s taste profile changes

over time. First, the dataset is transformed into two main sets consisting of

Doc2Vec vectors and review metadata. These two datasets are reduced into a

two-dimensional space by a type of neural net called an autoencoder. The subse-

quent two-dimensional data creates the latent state trajectories that are used to

train a model for wine preference prediction over time. An ODE-RNN is used to

predict these trajectories by solving the initial value problem for the latent state

1https://www.winemag.com
2https://www.winespectator.com

2

at time zero. The solution to the initial value problem determines the differential

equation, which provides the derivative of a variable as a function of time, thus

providing the ability to predict the variable for continuous time.

The following contributions are made in this thesis:

• Demonstrate that wine reviewers have taste profiles with biases and time

series patterns.

• Demonstrate these patterns can be captured and predicted via an ODE-

RNN for latent state predictions over time.

1.1 Process Overview

For prediction, a computational graph is created to predict time series patterns for

future successful wines reviews. This type of recommendation algorithm differs

from standard recommendation systems since it predicts the feature set, not a

binary success metric. The data informing this recommendation system is the

wine reviews from the Wine Enthusiast. This site was chosen due to its publicly

available wine review data.

3

Figure 1.1: Process Used for Predictions

4

Figure 1.1 shows the workflow for the proposed recommendation system.

First, the two-dimensional feature set is created by reducing the dimensionality of

the original feature set from the Wine Enthusiast raw data. The two-dimensional

data points are referred to as latent states. The derivatives of these latent states

are created by solving their differential equations via a black box, Ordinary Dif-

ferential Equation Solver (ODESolver)[3]. This ODESolver trains a neural net

to represent the function of how the states change with respect to time[3]. The

derivatives enable prediction for the latent states in continuous time.

1.1.1 Input Data

The data informing this recommendation system will be the wine reviews from

the Wine Enthusiast. This data will be represented by two different datasets

(Figure 1.1.1).

Metadata Dataset

The metadata dataset is a categorical feature set that represents the basic facts

about the wine. These are one-hot encoded and binary encoded categorical vari-

ables created from the original Wine Enthusiast data. Original features that are

less complex (<100 subcategories) are one-hot encoded; this means that if a wine

is from Germany, it is marked as one in the column country Germany. Features

that have many unique values (such as variety) are binary encoded. Based on the

number of categories, columns are created to enable the binary representation of

the feature. The combination of those columns represents the binary ID of the

feature.

5

Doc2Vec Vectors

Doc2Vec vectors are created from the descriptions in the wine reviews. These

vectors represent the overall wording of the description in vector form. The

vectors capture the intricate details of the wine in a numeric form that can be

used for predictions.

1.1.2 Recommendation Algorithm

Latent States

The term latent state is used to describe the data when its dimensionality has been

reduced or altered from its original space. After the data has been reduced, each

original multi-feature vector becomes an n-dimensional vector (in this case, two-

dimensional); this vector is the latent state of the data. The latent space is the

area that encompasses the latent states, defined by the minimum and maximum

of each dimension. When there are multiple latent states, their relationship to

one another with regards to time is referred to as the latent trajectory. This

trajectory represents how the latent states move in the latent space over time.

Prediction Computational Graph

These two datasets are joined to form a master dataset with 274 features. A

dataset with this many features is computationally challenging to process within

the ODE-RNN. The dimensionality of the universal dataset is reduced into two

dimensions to simplify training. A dimension of two is chosen for ease of use

and visualization. This reduction is conducted by a type of neural net called

an autoencoder (Figure 1.1, box labeled 2), which consists of two functions, an

encoder and a decoder[2]. The encoder reduces the dimensionality of the data to

6

a final state represented by the innermost hidden layer in the neural net[2]. The

decoder reconstructs the data from the innermost hidden layer into the original

feature set[2].

The two-dimensional dataset and their time steps are used to train the ODE-

RNN. This model can take the inconsistent time series and predict how the

two-dimensional dataset changes against time by solving for the derivative of the

latent states against time. It does this by using the Recurrent Neural Network

(RNN) to create a predicted initial state of the data at time zero (Figure 1.1,

box labeled 3). Then it uses the Ordinary Differential Equation (ODE) Solver

to solve for the differential equation for that initial state (Figure 1.1, box labeled

4). The differential equation enables prediction of the latent state at any point

in continuous time.

Once the future states are predicted, the two-dimensional dataset is decoded

into the original dimensions of the feature set by the autoencoder (Figure 1.1, box

labeled 5). The decoded state is the categorical metadata features and Doc2Vec

vector of the corresponding review for the wine that would perform well for that

predicted time. Analysis of the decoded recommendations are outside of the

scope of this thesis, and a proposed method for forming them can be found in

the future work section.

1.2 Data Availability and Creation

Data from the Wine Enthusiast was chosen for the creation of the predictions in

this thesis. The site hosts over 200 thousand reviews gathered from 1999 to 2019.

The years 2016 through 2019 are chosen for data creation due to inconsistencies

in the data before 2016. These dates result in approximately 82 thousand data

7

points.

A simple asynchronous scraping program gathers these data points by creating

an event loop to collect the data for all reviews based on year, starting page, and

stopping page. After gathering the data, the resulting JSON files are condensed

into a JSON file specific to the review year. The yearly datasets are merged

into one master dataset after each year is collected. The index of this dataset

functioned as the unique ids for each wine review.

The first step in processing takes the raw data and updates the variables to

a trainable state. The data processing includes stripping strings of non-ASCII

values, converting strings consisting of numerical values into either integers or

floats and ridding the dataset of duplicate values. Impossible values and null

numeric values are zeroed out. Null values are changed to zero to create specific

values for when variables are not captured. One hot-encodings are assigned for

categorical variables with less than 50 categories, which included the columns

category, country, and region 2.

Categories with high cardinality are captured through binary encoding. This

encoding is done with the BinaryEncoder function found in the Category En-

coders python package. Binary encoding allows the representation of categorical

variables without creating a data-intensive feature set. The algorithm first assigns

a random integer to each category within the variable to create fewer features

to represent these variables. Next, it creates the binary representation of that

integer. Lastly, depending on the most extended bit encoding, it creates columns

to represent each bit for the binary representation. To properly fit this encod-

ing, the algorithm requires an independent and dependent variable. The encoded

variables are the dependent variables. The z-score of wine score with respect to

the reviewer is the independent variable.

8

Success is defined based on the distribution of points with respect to the re-

viewer. The success metric is reviewer specific given the differing distributions

of the points. This choice in metric safeguards the measurement of success from

skew created by reviewers who may give lower or higher scores than average.

This success metric is based on the z-score of the reviewer’s score in relation to

other scores given by the reviewer. Any score over two standard deviations from

the mean is considered a successful wine. Figure 1.2 displays that the means and

distributions vary when calculating the z-score across all reviewers. For exam-

ple, Michael Schachner’s z-score mean hovers around negative one while Virginie

Boone’s z-score mean is closer to positive one. If we compare success based off of

the universal z-score, we may be unable to capture what a truly successful review

is for a reviewer like Michael Schachner since he reviews wines with a lower point

scale. The means of the z-scores are normalized to zero by calculating the z-score

Figure 1.2: Z-Scores of Points Calculated Based on All Users

of the points for each reviewer. This reviewer based success metric allows the

metric to accurately reflect what success means for each reviewer.

9

Figure 1.3: Z-Scores of Points Calculated Based on Individual Users

Lastly, tags are created to track the type of wording used in wine reviews. These

tags are created based on standard vocabulary used to describe the taste and

smell of the wine. The Wine Folly has defined these descriptors (Figure 1.3)[9].

If a word occurs within the review, the review is one hot encoded to a one in the

corresponding descriptor group to represent that characteristic.

Figure 1.4: Red Fruit Flavor Words [9]

10

Name Description Raw Data Type

wine id Unique identifier of review INT
alcohol Alcohol percentage FLOAT

category Wine category(i.e. Red, White, RosÃ©) STRING
importer Importer of reviewed wine STRING
country Origin country STRING

description Wine description written by reviewer STRING
designation Wine designation STRING

points Points given to wine by reviewer (80-100) INT
price Price in USD FLOAT

province Province or main region of wine STRING
region 1 Region within province STRING
region 2 Area within region of province (US only) STRING

taster name Wine description written by reviewer STRING
variety Wine variety (i.e. Red Blend, Verdejo, etc.) STRING
vintage Wine vintage INT
winery Creator of wine STRING

Table 1.1: Wine Dataset Description

11

Chapter 2

Related Work

2.1 Overview

This section reviews the various methods leveraged to create the final computa-

tional graph to predict the wine preference of the different reviewers. This section

is split into three sections to reflect the three main products of my thesis, data

analysis, autoencoders, and neural networks with a focus on ODE-RNNs.

2.2 Methods used for Data Analysis

2.2.1 Doc2Vec

Reviews represented in the numerical form are necessary for training the predic-

tion model. This transformation is achieved by using the technique Doc2Vec,

which is closely related to the Word2Vec algorithm.

Word2Vec was developed to create a distributed vector representation of

words[12]. These vectors are trained to predict words given their context[12].

In this algorithm, the entire vocabulary is represented by one matrix, W, with

12

columns consisting of unique word vectors[12]. The columns are indexed by the

position of the word within the word grouping. The word vectors are concate-

nated or averaged to create a final vector which represents the predicted word[12].

Stochastic gradient descent is used to maximize the average log probability of the

word being predicted given the word vectors in the word matrix[12]. These prob-

abilities are obtained by using a multiclass classifier, such as softmax, as seen in

equation 2.1[12].

p (wt|wt−k, ..., wt+k) =
eywt∑
eyi

[12] (2.1)

Figure 2.1: Word2Vec Example for Wine Reviews

This type of training creates a mapping of word vectors that cause similar

words to occupy comparable positions in space as defined by their vector. For

example, the word “berry” and “blackberry” are expected to be close to one

13

another concerning their vector space. The algorithm for Doc2Vec builds off of

Word2Vec to complete this type of task for groupings of words[8]. This algorithm

has two main implementations, distributed memory model of paragraph vectors

(PV-DM) and distributed bag of words (DBOW)[8].

Figure 2.2: Distributed Memory Concatenation Doc2Vec for Wine Review

In PV-DM, the algorithm is tweaked to include a paragraph matrix, D, which

consists of one column of a unique paragraph vector[8]. This matrix is used with

the word vector matrix to predict a word within a particular context by averaging

or concatenating the paragraph vector and word vectors[8]. The method for

averaging is represented as Distributed Memory Mean (DMM), and the method

for concatenation is represented as Distributed Memory Concatenation (DMC)[8].

Contexts are created with a fixed length and sampled from a sliding window

within the paragraph to train the PV-DMM/C model[8]. The paragraph vector

14

is shared across every context from the related paragraph, while the word vector

matrix is shared across all contexts independent of the paragraph[8]. The model

is trained similarly to Word2Vec and results in a paragraph vector that represents

each paragraph. The algorithm consists of two main steps:

1. Training to get word vectors W, softmax weights U, b and paragraph vectors

D on already seen paragraphs[8].

2. The inference stage to get paragraph vectors D for new paragraphs (never

seen before) by adding more columns in D and gradient descending on D

while holding W, U, b fixed[8].

The equation trained by stochastic gradient descent is as follows:

y = b+ Uhp (wt−k, ..., wt+k, d1, ..., dz;WD) [8] (2.2)

In equation 2.2, w represents the words to one another with y being the

un-normalized log probability for each word calculated via a linear equation con-

sisting of the two softmax parameters, b and U and a dependent variable repre-

senting the concatenation or average of the word vectors from the word matrix

W [12].

The Distributed Bag of Words (DBOW) algorithm ignores the context of the

words themselves and only uses the softmax weights and paragraph vectors to

predict the words within the paragraphs[8]. This is done by sampling the text

from each paragraph and using the paragraph vector to classify a random word

from the said text[8].

15

Figure 2.3: Distributed Bag of Words Doc2Vec for Wine Review

2.2.2 LargeVis

The LargeVis algorithm is used to visualize the data created by the Doc2Vec

vectors. This method reduces high dimensional vectors into two and three-

dimensional forms. It is crafted to build upon the t-distributed stochastic neigh-

bor embedding (t-SNE) technique, which takes high dimensional data, creates a

K-Nearest Neighbor (KNN) graph, and then visualizes the graph in a two or three

dimensional space via tree-based algorithms. Unlike t-SNE, LargeVis improves

upon the idea of random projection trees and constructs an approximate KNN

graph by using neighbor exploring techniques.

LargeVis uses the Euclidean distance between each vector data point to create

an approximate KNN graph via random projection trees[13]. Random projection

trees are created by partitioning space to build the tree[13]. As it iterates, the

algorithm visits every non-leaf node in the tree and creates a random hyperplane

16

Figure 2.4: T-Distributed Stochastic Neighbor Embedding (t-SNE) [13]

to split the non-leaf nodes space into two[13]. These two spaces become the

children of that node. This hyperplane is created by taking two random points

within the original non-leaf node space and finding the dividing plane that is

equidistant of the two points[13]. This recursive process continues until a node

threshold is reached. This creates a tree that appoints every data point to some

leaf node. The data points that are contained within that space are considered

potential nearest neighbors for the data point that is traversing the tree[13].

After each point is appointed to its’ nearest neighbors, the final KNN graph can

be created[13]. This process typically requires multiple creations of the random

tree graphs and is extremely computationally expensive[13].

Instead of building multiple iterations of the random projection trees, the

LargeVis algorithm creates a small number of trees to create the first iteration

of a KNN graph[13]. It then visits each node within the graph and searches for

the neighbors of its neighbors, or in a way, creating a KNN of the original KNN

graph[13]. This process is repeated over multiple iterations to create an extremely

accurate final KNN graph[13].

After the graph is created, the algorithm projects the graph into a two dimen-

sional or three-dimensional space. The algorithm must preserve similar vertices

being close to one another and dissimilar points being far away. LargeVis does

17

this by maximizing the probability of observed edges in the KNN graph being

seen when a probabilistic function is put on the two new low dimensional vertices

of the original points[13]. The algorithm samples the various edges for training

and utilizes an asynchronous stochastic gradient descent to maximize the prob-

abilistic function, thus allowing for optimization of vertices across threads[13].

The LargeVis algorithm is best used for visualizations and quickly reducing the

dimensionality of the dataset. It cannot be used for predicting the latent states

since it cannot be used to reconstruct data back into its original state.

2.3 Autoencoders

An autoencoder is a type of unsupervised neural network learning technique that

results in a reduced representation of the original input[2]. The autoencoder con-

sists of two parts, the encoder, and the decoder[2]. The goal of the encoder is

to reduce the dimensionality of the input[2]. The goal of the decoder is to re-

construct the reduced representation into the original input[2]. The autoencoder

is trained via gradient descent to minimize the reconstruction error between the

actual and predicted values[2].

This Autoencoder is trained to learn the latent states of the input data. The

latent states are created by the innermost hidden layer of the autoencoder. These

states represent encodings that can be easily decoded into the full attribute set

of the input. The latent states can better represent the input data due to the

autoencoder’s ability to learn the nonlinear patterns. The innermost hidden layer

of the autoencoder represents the latent states. Left of the this layer represents

the encoder and right of the this layer represents the decoder:

18

Figure 2.5: Example Autoencoder with Shared Weights for Wine Features

2.4 Neural Networks for Differential Equations

Neural Networks are becoming the backbone of modern machine learning. These

networks represent computational graphs consisting of layers and neurons. Each

layer of this graph can be represented as a layer of a basic machine learning

model, such as linear or logistic regression. The neurons of each layer can be

represented as the features of the model. Weights and an activation function

are applied to the input of each layer. The entirety of the graph is trained by

stochastic gradient descent to minimize a loss function.

2.4.1 Basic Neural Networks

The workings of a single layer neural network are the building block for the more

complicated methods used in this thesis. For this descriptive purpose, one can

represent logistic regression as a single layer neural network. When creating a

logistic regression model, one uses formula 2.3.

19

P =
ea+bX

1 + ea+bX
[1] (2.3)

P =
ex

1 + ex
[1] (2.4)

x = b+WX[1] (2.5)

The sigmoid activation function is applied to the return value of the base func-

tion of the variables multiplied by the weights plus bias[1]. The model is trained

by minimizing the Binary Cross-Entropy loss function[1]. The partial derivatives

of the weights versus the loss function are determined via backpropagation[1].

These weights are updated by gradient descent to minimize the said loss func-

tion. This process is repeated continuously in epochs over batches of data [1].

The more complicated multi-layer neural networks use the same method but

stack the models on top of one another to create a computational graph[1]. Since

the models are interrelated via inputs and outputs, one can train and update the

weights for all layers via backpropagation and gradient descent[1].

θ = − (ylogp+ (1− y) log (1− p)) [1] (2.6)

2.4.2 Ordinary Differential Equation Neural Networks

An Ordinary Differential Equation Neural Network (ODENN) framework builds

off of the Residual Network (ResNet) algorithm that leverages residual learning[3].

It is a type of neural network method that allows users to leverage increasingly

deep networks. The basis of the method is to create a model with layers that

are formulated for learning the residual functions of the inputs. The residual

functions are learned by adding skip connections to add the input into the residual

20

blocks continuously[6].

These residual blocks create connections that function in a similar way to

the multigrid method for solving partial differential equations[6]. The multigrid

method changes the system of equations into sub-problems that are responsible

for a residual solution to the entire solution[6]. These methods, that account for

the residual nature of an equation, can converge more quickly than methods that

solve unrelated problems[6]. Thus, the ResNet removes the added complexity of

training unreferenced functions with each added layer. This creates the ability

to have a stable deep network that is less affected by exploding or diminishing

gradients.

Figure 2.6: Residual Learning Block [6]

F (x) = b+WX (2.7)

H (x) = F (x) + x (2.8)

Equations 2.7 and 2.8 represent the equation of the residual block. Each skip

connection adds the input to the output of the neural network layer represented

by 2.7. By creating the requirement of adding the block input, the residual block

21

must have the same input and output size[6]. To account for changes between

the input and output size, one can have layers to transform the data shape that

input into or output from the internal ResNet of the Neural Network[6].

f (ht, θ) =
dh (t)

dt
[3] (2.9)

ht+1 = ht + f (ht, θ) [3] (2.10)

The creators of the ODENN algorithm recognized that the formal equation of

a ResNet (eq. 2.8) can be seen as a representation of Euler’s method[3]. This

method is formally used to provide approximate solutions to Ordinary Differen-

tial Equations by solving the system of equations with the differential equation

and time (modeled as a series of uniform steps). The ODENN is trained by

parameterizing the differential equation used by Euler’s method[3]:

dh (t)

dt
= f (h (t) , t, θ) [3] (2.11)

The ODENN leverages an ODE block that defines the input layer as h(0) and

the output layer of the network as h(T), which is the final solution to the ODE

initial value problem for any time T [3]. This solution is solved via a black-box

differential equation solver. By solving the initial value problem, one can create

a system that can predict any value for any given time, T [3].

The derivative, solved by the adjoint method, of the network models how

the loss function changes against the hidden state h(T)[3]. The algorithm of the

ODENN is defined by Figure 2.7.

This type of model allows the prediction of irregular time series data by mod-

eling the time series as a latent trajectory. The trajectory is “determined from

22

Figure 2.7: Algorithm for Solving the ODE Initial Value Problem [3]

a local initial state, and a global set of latent dynamics shared across all-time

series.”[3] This ability is leveraged in this thesis to allow modeling of the incon-

sistent time-series data from the Wine Enthusiast due to unpredictable publish

dates of the reviews[3].

The python package torchdiffeq provides the black box ODE solvers for solving

the initial state equation. The function passed to the solver is a torch neural net

module, which can be defined as a basic neural network with the latent spaces as

the inputs and outputs.

2.4.3 ODENN-RNN for Latent State Prediction

The latent state trajectories of the reviewer’s taste in wine are predicted by lever-

aging a technique that uses recurrent neural networks with ordinary differential

equation networks to predict time series data of latent states[3]. This modeling

technique follows a standard variational autoencoder algorithm, where the en-

coders and decoders are used to create hidden representations for predictions[3].

Recurrent neural networks are used to create the hidden latent state z due to its’

inherent ability to leverage historical information during computations[3]. This

allows us to capture the time series element of the data before solving the initial

23

value problem with the ODE Solver[3].

Figure 2.8: Computation graph of the latent ODE model.[3]

The sample of latent states represented by zt0 are created by feeding the origi-

nal state data into an RNN to create the parameters of distribution q (zt0 | {xt0 , ti}i , φ)

which is used to create a sample of initial latent states[3]. These are then solved by

an ODE Solver, where the function representing the gradient of dz/dt is a multi-

layer neural network[3]. The ODESolve function solves the initial value problem

via a user-defined black box ODE Solver method[3]. The default method used

is the Dopri5 method. The solution to the initial value problem provides the

derivative of the latent state z in relation to t. This is then integrated over the

time points provided to predict all states of z in time. Lastly, these predictions

are fed into a decoder to obtain the original state of the time series data. The

negative Gaussian log-likelihood is minimized with a fixed variance of 0.01 to

train the ODE-RNN model[10].

24

Chapter 3

Wine Enthusiast Wine Reviews

3.1 Exploratory Analysis

The base data is created from the wine reviews from the Wine Enthusiast for

the years 2016 through 2019 to produce 82,782 unique values with 19 different

reviewers. These dates are used due to the decline in data quality before 2016.

The Wine Enthusiast was founded in 1979 to help inform wine consumers on the

world of wine[5]. Each wine reviewed is tasted blind by a taster employed by

the Wine Enthusiast[5]. Tastings are typically performed in peer-group flights

with up to eight samples of different wines[5]. Reviewers are not informed of the

producer or the price of the wines in the flights before tasting[5].

The wines are given a rating from zero to 100, with only wines rating above

80 allowed on the site[5]. The breakdown of the ratings, as defined by the Wine

Enthusiast, is shown in Figure 3.1. The Wine Enthusiast currently employs 23

editors with 17 charged with reviewing wine. Each reviewer focuses on reviewing

wines from specific parts of the world. For example, Roger Voss primarily reviews

France and Portugal. This inherent bias is essential to note due to the correlation

25

Figure 3.1: Wine Enthusiast Wine Ratings
[5]

between wine types and their production location. From this, it is more likely

for individual reviewers to stay within a particular cluster of wine types. In the

past, the site updated reviews, on average, 33.25 days a year. This average is

skewed by the recent jump in activity dates in 2019 when the site posted reviews

on 78 different days. In Figure 3.2, the distribution of the reviews is relatively

uniform across the months. Within the months, the review site tends to post on

one to two days per month. This pattern changes in 2019 with certain months

showing up to 31 different posting dates. The reviewers demonstrate inconsistent

distributions of review dates and have individual levels of posting rates. This

type of behavior creates a challenging dataset to predict via traditional time

series prediction methods. Luckily, the methods tested in this thesis show great

promise in predicting inconsistent time series data.

When reviewing the data, one notices trends between the rate of success for

types of wines and the reviewers. For all of the reviews, it is more likely for a

red wine to gain a favorable review than white wine. One can see that there are

more failing white wines than successful white wines in Figure 3.3.

In Figure 3.4, one can see the different scale of the probability of success

between a white and red wine. red wines tend to fair better in the fall, while white

wines perform primarily well in April. This distinct relationship of categorical

26

Figure 3.2: Wine Enthusiast Review Date Distribution by Year

Figure 3.3: Success of Wines by Category

27

success with the time of review is seen from year to year.

Figure 3.4: Probability of Success by Month

The relationships between the features and the rate of success of wine are mea-

sured to understand the categorical features. The top five categorical predictors

across all tasters are designation, winery, price, region, and variety, as detailed in

Figure 3.5. These categorical variables tend to be highly correlated amongst one

another due to the tendency for wineries to have a specific designation within a

particular price range. One can view this as evidence of the reviewers’ preference

for particular producers of wine.

Figure 3.5: Categorical Features Effects on Success for All Reviewers

Individual users tend to favor unique flavor profiles. In Figure 3.6, one can see

that the variable flavor has one of the highest values signaling a relationship with

the success variable. In this case, the variable flavor represents the combination

of taste note tags found in the free text reviews of the wine. This high value

gives insight that Kerin O’Keefe has a tendency to base her scores off of the taste

28

Figure 3.6: Categorical Effects on Success for Kerin O’Keefe by Year

profile of the wine and may have a bias towards specific flavor notes. The variable

posting date shows a slight relationship with success that grows year over year.

For Kerin O’Keefe, posting date becomes one of the highest variables correlated

with success. This behavior is indicative of a time series pattern to successful

reviews.

From the exploratory analysis, the wine reviewers show preferences and ex-

hibit trends in how they rate reviews over time. By exhibiting these types of

trends, the wine review dataset shows that it can be used to create latent trajec-

tories of the reviewers’ taste over time.

3.2 Doc2Vec for Reviews

One of the most productive features of the dataset is the free text review descrip-

tions. Each review describes the flavor, taste, smell, and other features of the

wine. This feature differs from the rest of the dataset due to it being a string of

free text. To turn the free text into a feature capable of being used for prediction,

the reviews are transformed into Doc2Vec vectors.

29

3.2.1 Doc2Vec Development and Testing

The creation of the Doc2Vec representations is conducted in phases of experiment-

ing with different Doc2Vec architectures. First, the baseline model for DBOW

and DMM is run. For these models, the same parameters are implemented to

determine which method is more productive. In the first round of experimenta-

tion, a vector with a size of ten, the window size of five, and no alpha value is

used. The vector size parameter represents the size of the paragraph and word

vectors. The window size is representative of the sliding window used for the

word context. For the second round, the same vector is implemented and win-

dow size but uses an alpha value of 0.05. The alpha value is the learning rate of

the model; by raising the alpha value the model is forced to be more aggressive

while updating weights and vectors during the stochastic gradient descent. Each

model is trained for 50 epochs.

The data entered into the model consisted of TaggedDocuments, as defined

by the genism python package. Each review became a TaggedDocument with

a unique tag associated with the wine review‘s wine ID. The amount of vectors

trained is dependent on the given tags. For example, if two wine categories are

used as the tags, the model would train for one red wine vector and one white

wine vector. For this purpose, the wine ID tag is used as a unique identifier to

train a unique vector to each review.

The review vectors are used to predict a specific tag via logistic regression to

validate the two methods. The target variable used is the wine category of the

review. The error rate of the logistic classifier is used to measure the accuracy

of the Doc2Vec model. The wine category is used as the first target variable

due to the inherent differences in the different categories. If the Doc2Vec model

30

is accurate, it should be able to classify the wine category of a review easily.

Lastly, the success metric is used as the target variable for the wine review. A

review is considered “successful” if the points given are two standard deviations

away from the mean for points given by that specific reviewer. During this

first experimentation phase, the model is validated for all seven categories of

wine for DBOW and DMM. There is a noticeable difference between the DBOW

Figure 3.7: Doc2Vec Testing Validation

and DMM models for the two main categories red and white. The other wine

categories, such as sparkling or fortified, tend to have similar error rates. This

can be attributed to the fact that the majority of the reviews are split between

those two categories, with the majority of wine reviews being red wine reviews

versus white wine reviews. From these results, one can observe that the DBOW

method is more accurate than the DMM method, even with the increase in the

alpha value. The increase in alpha value is more useful for the DMM model and

resulted in only slightly better accuracy in the DBOW model.

Given the inherent differences in the methods, the next phase in experimen-

tation includes testing the DMC model with the same parameters as the best

DBOW model. The validation is continued only for the tags red and white. The

metric performance is cross-validated with the performance of the vector in fore-

casting the varieties Pinot Noir and Chardonnay. The vectors produced similar

31

results with DBOW being the most accurate with a variety average error rate of

0.0311, while the DMM models produce an average error rate of 0.102.

Lastly, the merged model is created containing the DBOW model and the

DMC model. This model concatenates the trained paragraph vectors from each

model to create a new set of vectors for classification. After validating this

concatenated model, this model performed the best with an error of 0.032833 for

red wines and 0.078398 for white wines. The results from the DBOW model is

chosen due to the creation of 100 features from merging the models. The DBOW

model produces 50 features with a similar accuracy to the merged model. This

allows us to keep accuracy and decrease complexity of the feature set.

3.2.2 Doc2Vec Validation and Results

After experimenting with the different Doc2Vec methods, a program is created to

test, validate, and produce the vectors from the best model based on the average

classification error of the model. The average error can be calculated for any tag

within a column of the wine dataset.

The program runs in similar steps as my experimentation to create the best

model. It first runs ten different parameter sets formed from the cross product

of alpha (0.1 and 0.05), window size (2, 5, and 10), and vector size (10 and 50).

Each parameter grouping within the set is trained for 20 epochs. This parameter

set runs for all three methods, DBOW, DMM, and DMC. Once trained and

evaluated, the program provides the user with the best parameters and average

error for each Doc2Vec method. Next, it creates a merged model between the

best DBOW model and the DMM/C model. It then finds the error rate of the

merged model. For data tracking purposes, the program saves the vectors created

32

for the best model from the four different methods. These vectors can be used

as features for predicting wine preferences. The program tests the paragraph

features for both categorizing the wine and evaluating the success of the review.

Figure 3.8: Doc2Vec Final Validation

The models reflected in Figure 3.8 are represented by their name, alpha rate,

vector size and window size, respectively. All models were found to run more

accurately with fewer iterations of training, the gains of training for longer tapers

off at 20 and begins to get worse after hitting 50 epochs for our best performing

models. This could be a reflection of over-training or an aggressive learning

rate. From the results of the models, the lower learning rate demonstrates more

accurate models.

In both of the validation metrics, one can observe that the DBOW feature

vectors create more accurate results when used in a logistic regression model. The

error rate decreases by 36% when predicting wines versus the success of the re-

view. This decrease could be attributed to both the methodology and the content

within the reviews. A DBOW model is trained to predict a grouping of words

instead of the next word within the context like DMM/C. That results in the

reflection of the entire review itself instead of the function of the upcoming word.

Categories of wines have distinct flavor notes and distinguishing characteristics

33

that can cause reviews to over-index on certain types of words.

“This begins with aromas of overripe plum, nail polish remover, fig,

raisin, nutmeg, vanilla, resin and sweet oak. The dense, warm palate

delivers chocolate, coffee, vanilla, plum and sweet oak alongside sear-

ing alcohol. It’s already tired and evolved, and almost past its prime”

“Delicate mineral inflections lend elegance to flavors of pink grape-

fruit and peach on this sprightly semi-dry Riesling. Sunny with soft,

Meyer-lemon acidity, it’s a bit dainty on the palate but has enough

power to drive a moderately long finish.”

The red wine review paints a picture of a rich, warm, and intense wine, while

the white wine review reflects an acidic, light, and citrus Riesling. To adequately

assess this type of behavior, a list of common words is used to describe specific

flavor notes. If a wine review uses one of these words, each flavor note is a one-

hot encoded categorical variable. For example, the white wine review is marked

in the citrus, melon, and mineral category, and the red wine is marked in the

general aged category (to reflect the vanilla, coffee, and chocolate notes). When

viewing these categories, the top three categories of flavor notes for white wine

were citrus, melon, and minerality. The top three categories for red were red

fruit, black fruit, and general aged. This type of particular behavior amongst

reviews may result in paragraph vectors for the same categories to be closer to

one another in space. These categories also capture many sentiments at once,

which would make DBOW the better choice given its predicted variable to be a

group of words.

The DBOW model is more accurate for the success metric. This type of accu-

racy could be reflective of the fact that a successful review can vary significantly

34

from reviewer to reviewer. Unlike the standard flavor notes, one can see in the

categorization of wines, predicting a successful review is predicting the general

sentiment of the reviewer. This difference may make it more difficult to predict

the grouping of words, thus putting DBOW on the same playing field as DMM/C.

The Wine Enthusiast reviews may not have distinct sentiment disparities as

positive or negative movie reviews since they purposefully do not post reviews

with scores lower than 80. From the two reviews above, the successful review

demonstrates positive sentiments (enticing, “certainly does that”) while the “un-

successful” review carries no distinct negative sentiments. This type of behavior

makes it difficult to categorize the reviews as successful since the review vectors

may inhabit the same dimensional space. Given the similar error rates between

the methodologies, it may be reflective of successful reviews spanning a less de-

risive area in space.

All tested methodologies require a larger vector size of 50 to describe the

reviews adequately. The DMM methodology also requires a larger window size

while the DMC drops in window size and widens the vector. In both parameter

changes, the methodologies require a higher dimensionality to describe the less

divisive wording within the reviews.

The validation of the Doc2Vec methods demonstrates that the wine review

descriptions are able to capture the sentiments and the types of wine being re-

viewed. This behaviour is seen through the use of the Doc2Vec features for

predicting various categorical features via logistic regression. This ability to use

the Doc2Vec features can be valuable in comparing the wine reviews to show the

reviewers’ trends in taste.

35

3.2.3 LargeVis for Doc2Vec Visualization

The Doc2Vec vectors are visualized using the LargeVis algorithm. These visu-

alizations quickly convey the clustering of the reviews within a two-dimensional

space. The two dimensional space is represented as the two variables x and y.

As seen in Figure 3.9, the Doc2Vec vectors occupy specific space based on the

reviewer. The clusters reflect the variety of reviewed wine. The review structures

demonstrate stronger monthly patterns year over year. Lastly, in Figure 3.11, the

Doc2Vec vectors showcase that reviews of wines with similar flavor notes clus-

ter together. These visualizations demonstrate that the reviewers have trends

in writing styles, evaluation of success, preference for certain varieties of wine,

and time series patterns in their descriptions. When comparing Figure 3.10 and

3.11, the visualizations demonstrate the seasonality of successful wine reviews

correlates with the clustering of the wine varieties. For example, the cluster of

successful wines posted in the spring overlaps the cluster of wines labeled as Pinot

Noir. This relationship makes sense when comparing the flavor notes and body

of the two different varieties. Pinot Noir tends to be a lighter-bodied red .

This visualized behavior is to be expected given how Doc2Vec captures the

similarity between the reviews. It should capture a clustering effect of how the

reviews are tagged to surface flavor combinations of the wines. It is crucial to use

the Doc2Vec vectors in predictions given their ability to represent certain aspects

of the wine that may not be captured by the metadata such as taste profiles,

flavor notes, scents, and mouthfeel. Two wines can be differentiated by using the

information on these wine characteristics. This differentiation demonstrates the

unique qualities between varieties that occupy similar latent spaces.

36

Figure 3.9: Visualization of Doc2Vecs by Taster

37

Figure 3.10: Visualization of Doc2Vecs by Variety

38

Figure 3.11: Visualization of Doc2Vecs by Season for Successful Red Wines

39

Figure 3.12: Visualization of Doc2Vecs by Flavor Tags

40

Chapter 4

Autoencoder for Latent States

4.1 Overview

The dataset is reduced into two dimensions with an autoencoder before using the

ODE-RNN for predicting the users’ wines. The two different types of data sets for

tracking the wine reviews are created by processing the raw data from the Wine

Enthusiast. One is the one-hot encoded data set used to track the metadata of

the wine, and the other is the Doc2Vec vector, which consists of 50 of float values

from negative three to three (this scale is determined during Doc2Vec training).

The data transformations are conducted to reduce the complexity and differ-

ences between the two datasets before training the autoencoders. The Doc2Vec

vectors are scaled from zero to one. The created autoencoder uses shared weights

between encoding and decoding layers. This architecture enables the use of the

same weight matrices trained in the encoding process for decoding.

By transposing those weights, the encoding layers are reversed into being de-

coding layers. Sharing weights amongst the layers allows the model to be trained

quickly and increases stability. This architecture requires less initializations of

41

new weights from layer to layer, which reduces the unpredictability of training

new unrelated weight matrices.

4.2 Autoencoder: Development and Training

The basic autoencoder is used to create latent states of the wine reviews. Build-

ing the autoencoder involves inputting the data and testing various parameters

to determine the correct architecture to minimize reconstruction loss after en-

coding and decoding the latent states. The unique architectures are created with

differing network depths, network widths, and weight decays to find the most

accurate architecture.

The same activation function pattern is maintained from layer to layer in

the encoder and decoder. Maintaining a static activation function is necessary

due to the behavior of sharing weights for encoding and decoding layers. If one

changes the activation function pattern, the shared weight autoencoder is not able

to change the decoding layer weights to account for the difference in activation

function. To correctly leverage a shared weight autoencoder, the activation func-

tions of the decoder layers must mimic the encoder layers. Nonuniform activation

patterns result in differing outputs between layers and increased reconstruction

loss. The sigmoid equation is used as the activation function for the middle layers

of the encoder and decoder since the data scales from zero to one. To allow for

more movement for the latent spaces, a linear layer is used for the final encoding

into a two-dimensional space.

The autoencoders are tested with one, two, three, and five hidden layers before

the final encoding layer with two neurons. These depth sizes are based on the Fi-

bonacci sequence. Neuron counts are tested with equal dimensionality reduction

42

in relation per layer. Each layer and neuron mix is tested with three arbitrary

weight decays of 0.01, 0.02, and 0.03. These testing variables create 12 different

autoencoders for comparison. Each autoencoder is trained for ten epochs. Differ-

ent optimizers are also trained for the best architecture for 20 epochs: Adaptive

Moment Estimation (ADAM), Root Mean Square Propagation (RMSPROP),

Stochastic Gradient Descent (SGD), and Nesterov-accelerated Adaptive Moment

Estimation (NADAM). ADAM is demonstrated as the best optimizer for training

the autoencoder.

4.3 Autoencoder Validation and Performance

The results from the training can be found in the table below:

Neurons Weight Decay Test RMSE

229, 184, 139, 94, 49 0.01 0.06804
229, 184, 139, 94, 49 0.02 0.06810
229, 184, 139, 94, 49 0.03 0.06808

206, 138, 70 0.01 0.06073
206, 138, 70 0.02 0.06126
206, 138, 70 0.03 0.06010

184, 94 0.01 0.04351
184, 94 0.02 0.04256
184, 94 0.03 0.04316

138 0.01 0.01669
138 0.02 0.01673
138 0.03 0.01682

Table 4.1: Shared Autoencoder Training Results

As one can see, the best autoencoder has only one layer and reduces the

dimensionality of the dataset in half before encoding into the latent states. One

43

can observe that the RMSE is drastically smaller than the other deeper models.

This increase in RMSE could be attributed to the added complexity from layer

to layer. When using one layer, there are only two sets of weights that need to

be transposed to reconstruct the data. By creating a simpler autoencoder, we

decrease the amount of loss that can be accumulated throughout the model.

The architecture is validated by comparing the basic autoencoder to a com-

bined multi-input and multi-output autoencoder (C-MIMO) and a robust au-

toencoder. The C-MIMO autoencoder is tested to account for the difference in

data types between the vector and metadata datasets. A C-MIMO encodes and

decodes the two datasets separately and concatenates the data for creating the

final encoded layer. This type of autoencoder is designed for the purpose of test-

ing this thesis and produced favorable results but did not overcome the simplified

shared weights model. The robust autoencoder protects the model from outliers

in the data by leveraging a correntropy loss function during training[2]. These

two types of autoencoders are not as successful as the basic autoencoder with

shared weights and produced reconstruction loss RMSEs averaging around 0.09

(C-MIMO) and 0.33 (robust). The wine review data is best reflected by a simple

architecture using shared weights and one layer to reduce the dimensionality of

the dataset.

4.4 Analysis of Latent States

The latent state data is explored to determine how the latent states and space

change between and essential variables, such as year and types of wine. The latent

space changes slightly from year to year for all reviews. However, the general

standard deviation of the latent state dimensions tends to be the same. This

44

behavior changes when filtering based on scores and categories is introduced. For

example, the space occupied for failing scores hovers around (0.47, -0.51), while

successful scores tend to be around (-0.11, -0.16). The standard deviations of

each variable hover around 0.75.

The failing wines tend to have a lower standard deviation of their latent state

dimensions year over year. Successful reviews occupy a broader range of space

during the same observed time period. This lack of range for failing reviews

could be reflective of the reviewer’s picky taste profile and their general dislike

for certain wines. It can also be a signal of newer wines entering the market that

may review favorably.

Score Type σ of Yearly µx σ of Yearly µy

Successful 0.056 0.136

Failing 0.015 0.0564

Table 4.2: Average and Standard Deviation of Latent State Dimensions

The latent states reflect the differences in taste between reviewers. When com-

paring the different latent states, one can observe that each reviewer occupies

different spaces and shows differing patterns in reviewing. These spaces show

changes based on the year and month the reviews occur. For example, successful

reviews for Roger Voss start to decrease in both x and y values year over year

(as shown in Figure 4.2).

This pattern quickly changes once the latent spaces are segmented by year

and month. Figure 4.3 shows that the latent states cluster by months. When

comparing with Figure 4.4, the latent space patterns demonstrate a specific pat-

tern for that year. This unique yearly pattern is visible in the data from 2016 to

45

Figure 4.1: Latent States for Top Three Users

Figure 4.2: Roger Voss Successful Latent States by Year

46

2019. This behavior could be a reflection of the change in the types of wines that

are reviewed each year. It also could reflect new types and producers of wines

being introduced to the market.

Figure 4.3: Latent States by Month for Roger Voss

Specific categories of wine tend to have successful reviews during certain

points of the year. This behavior is also shown in Figure 4.4, which demon-

strates that Roger Voss tends to review red wines highly at the beginning of the

year and non-red wines later in the year. It is visible that the seasonality between

red and white wines is opposite even though it inhabits a similar latent space.

47

Figure 4.4: Red versus White Wine Latent States for Roger Voss

These types of visible seasonal patterns prove useful for using an ODE-RNN

to predict the change in latent states of Roger’s taste profile. Unfortunately, not

all reviewers share these types of visible patterns. For example, the reviewer

Kerin O’Keefe maintains a similarly broad and varied latent space from month

to month and year over year, as shown in Figure 4.7. Predicting a user with less

seasonal patterns may prove to be difficult when implementing the ODE-RNN

model.

48

Chapter 5

ODE-RNN for Latent State

Prediction

5.1 Overview

The model created for the latent state prediction followed the variational au-

toencoder algorithm method described by Chen et. Al[3] and Rubanova[10]. The

two-dimensional dataset is entered into an RNN to encode into hidden latent

states with a specific latent dimensionality. The resulting hidden latent states

are used as inputs into a torchdiffeq ODESolver[3] with a neural network to rep-

resent the function used to solve the initial value problem. Lastly, the latent state

trajectory is predicted using the differential equation solution.

Both RMSE and Euclidean distance are used to validate predicted latent

state trajectories. The primary validation metric used for determining statistical

significance is the average RMSE of the entire trajectory. Each latent state is

compared to its’ predicted state with respect to its’ unique timestamp.

Finally, the future latent states are predicted to show possible wine preferences

49

for the wine reviewers in the future. These values are produced by running

the ODE-RNN for unobserved points in time. For future work, these predicted

states are decoded to create the final wine recommendations. From this decoded

state, the metadata of wines demonstrates the type of wine that may satisfy

the reviewers in the future. Possible reviews of said wines can be created via

the recreated Doc2Vec vectors. Insight into the recreated reviews highlights the

details (such as flavor notes and smells) of the wine that would review favorably.

5.2 Development and Training

Various parameters are tested for tuning the ODE-RNN model. These parameters

are the following: number of latent dimensions, number of neurons within the

ODE block, number of layers within the ODE block, number of neurons within

the RNN hidden layer, number of neurons within the decoder layer, and model

activation functions.

The latent trajectories are created from the reviews by their posting date for

training. The Wine Enthusiast posts wine reviews in batches, which creates a

time series data set with multiple wine reviews per posting date. This type of

data behavior causes issues when creating a single trajectory for a given user due

to the multiple states per day without hourly data.

A method of sampling the reviews is created by taking data from each post-

ing day to create a latent trajectory with one review per day per user. Each

review is chosen by random from the potential reviews gathered on that day.

The trajectories are created based on specific filters within the dataset to avoid

a noisy latent trajectory. The trajectories are created for wine reviews with a

point z-score above two and below negative two. These trajectories are filtered

50

for the category of wine being scored: red, white, and all. Figure 5.1, represents

three trajectories created by this sampling method for Roger Voss.

Figure 5.1: Three Potential Trajectories for Roger Voss

By using these randomly sampled trajectories, the goal is for the ODE-RNN

to capture the general movement of the latent spaces over time. The RNN portion

of the model takes said trajectories and turns each one into a hidden latent state

z0 at t0 for solving the initial value problem via the ODE Solver.

The model is initially trained on the trajectory created by Roger Voss for

tasting red wine resulting in a z-score above two. These trajectories are used to

test the various possible architectures of the ODE-RNN. The best architecture,

chosen via the lowest RMSE score between predicted and actual points in the

latent trajectory, is trained on the other possible categories of trajectories. It is

also trained and tested on the other four top reviewers.

Given the inherent differences in the trajectories between categories and users,

one model is trained for each possible taste trajectory. This contrast in trajecto-

ries is displayed in Figure 5.2 between the two latent trajectories for Roger Voss

and Sean P. Sullivan in 2016. One can note that the two trajectories occupy en-

tirely different spaces. Successful reviews for the next posting date have differing

slopes between review points when comparing their latent spaces.

51

One can measure the difference in slopes within the trajectories between users

to illustrate the magnitude of dissimilarity. The slope is calculated between each

subsequent point in the latent trajectory for each trajectory in the sampled group.

Next, the percent difference is measured between each slope at each point in time.

Lastly, the average of the average percent differences in slopes is calculated. When

comparing a sample of a 1000 trajectories for three of the top tasters, the following

is demonstrated:

Taster 1 Taster 2 Average Percent Difference

Roger Voss Kerin O’Keefe 303%
Roger Voss Sean P. Sullivan 5345%

Sean P. Sullivan Kerin O’Keefe 40%

Table 5.1: Average Percent Difference in Slope Trajectories between Reviewers

Roger Voss’ trajectories vary significantly in comparison to Kerin O’Keefe

and Sean P. Sullivan, while Kerin and Sean tend to have similar slopes between

trajectory points. When two users have similar trajectories, they can be used

to train and test the same ODE-RNN model. It can be inferred that the users

have similar time series patterns if an ODE-RNN is able accurately predict both

reviewers. These differences in slopes further illustrate my decision to test both

a universal model and a reviewer specific model for taste trajectory prediction.

An ODE-RNN is trained on all top five users to determine if it is possible

to capture the taste latent trajectories for all reviewers within one model. A

training and test set is created with sampled trajectories for each user for the

universal model. The trajectories are created by sampling from only the posting

dates that the five users had in common.

52

Figure 5.2: Difference in Latent Trajectories

Sampling from multiple reviewers reduces the potential number of reviews in

each trajectory. This decrease is due to the constraint of using the same time

steps for the taste trajectories to train the ODE Block. There is a potential for

adding extra complexity into the ODE Block if different time steps are used to

train the model. For this experiment, each trajectory contains six points. After

training, the model is validated against each reviewers’ potential full trajectory.

This validation technique means predicting days the model had not seen during

training for each user.

5.3 Performance and Validation

A t-test for two independent populations is used to compare the RMSE of the

predicted values and the RMSE of a set of random latent trajectories. This

test for statistical significance evaluates the statistical significance of the per-

53

formance of an ODE-RNN framework for predicting the latent trajectories of a

wine reviewer’s successful reviews. The random latent trajectories are created

by randomly choosing a point within the possible latent trajectory space. This

latent space is confined between the maximum and minimum x, and maximum

and minimum y values of the latent states found for data used to create the initial

training latent trajectories.

The various architectures of the ODE-RNN computational graph are tested

on the trajectories for successful red wine reviews for Roger Voss. The number

of layers and the number of neurons in each layer are used for experimentation.

For this, 25 neurons in both the RNN encoder and decoder, a latent dimension

of 16, and trained the model for 200 epochs are used for training. Two shallow

and wide and two deep and narrow architectures are tested. The table below

demonstrates that the model with one layer and 500 neurons in the ODE Block

produces the best RMSE of 0.1264 for the test data. The standard deviation of the

RMSE between test trajectories is 0.1907. There are 10000 random trajectories

created to compare with 10000 possible taste trajectories for this data split. The

average and standard deviation for these random trajectories were 0.8619 and

0.7701, respectively. The difference in these two samples resulted in a p-value of

under 0.001, demonstrating that the lower and more accurate RMSE produced

by the ODE-RNN model is significant and can be used for predicting the latent

trajectories of this data.

Next, the number of neurons used in the hidden layers of the RNN encoder and

the decoder of the predicted states are tested. The best number of neurons to

use is 25 for both parts of the model. The models are trained for 200 epochs, a

54

ODE Layers ODE Neurons Test RMSE P-Value

1 500 0.1264 <0.001
3 500 0.2088 <0.001
5 100 0.1768 <0.001
7 100 0.2104 <0.001

Table 5.2: ODE-RNN Training Results by ODEBlock Layer and Neurons

latent dimension of 16, and used one layer and 500 neurons in the ODE block.

The number of latent dimensions is tested to determine the best dimension for

creating the hidden state z. Out of 4, 16, and 32 latent dimensions, the best

latent dimension remained 16. Similarly to the first experiment, the prediction

results for these two architecture experiments remained statistically significant

against using random trajectories for prediction.

RNN Neurons Decoder Neurons Test RMSE P-Value

25 25 0.1264 <0.001
50 200 0.1618 <0.001
50 25 0.1651 <0.001
200 50 0.1654 <0.001

50 50 0.1789 <0.001

200 200 0.2046 <0.001

Table 5.3: ODE-RNN Training Results by RNN and Decoder Neurons

Latent Dimensions Test RMSE P-Value

16 0.1264 <0.001
4 0.1881 <0.001
32 0.2075 <0.001

Table 5.4: ODE-RNN Training Results by Latent Dimension

55

As shown in the tables 5.2 through 5.4, the trained models produce results that

are more accurate than using random trajectories to a statistically significant

degree. The prediction and actual trajectories are plotted for four different test

trajectories for Roger Voss to visualize the predictions. Figure 5.3 demonstrates

that the predicted trajectories find the problem space of the actual trajectories

and tend to mimic the clustering of the latent states. When comparing each

state by time, the average Euclidean distance of the test trajectories is 0.39. This

is 66.9% less than the random trajectory average euclidean distance of 1.1792.

When comparing the predicted values in Figure 5.3 and the random values in

Figure 5.4, one can see how closely the predicted trajectories mimic the actual

trajectories.

Figure 5.3: Predicted and Actual Taste Trajectories

The best model architecture of Roger Voss is trained on the data for the

56

Figure 5.4: Random and Actual Taste Trajectories

reviewer Sean P. Sullivan to confirm that it is possible to predict latent taste

trajectories via this method. Like Roger Voss, the trained ODE-RNN model

produces statistically significant results in predicting Sean P. Sullivan’s latent

taste trajectories. The test RMSE for tracking the trajectory of favorable red

Wines for Sean P. Sullivan is 0.1432, with a standard deviation of 0.1837. The

random trajectory predictions resulted in an RMSE of 0.5270 and a standard

deviation of 0.5137. By comparing these two samples, the ODE-RNN predictions

demonstrate statistically significant results, with a p-value under 0.001.

The ODE-RNN method is trained on a dataset with trajectories for the top

five reviewers. This model is created to determine the feasibility of capturing mul-

tiple reviewer’s taste trajectories via one universal model. The trained universal

model is tested with the top three reviewers, Roger Voss, Sean P. Sullivan, and

Kerin O’Keefe, to determine if an ODE-RNN is capable of producing results that

are more accurate than random trajectories. This model had the same architec-

ture of the best user-specific model with one ODE Block layer with 500 neurons,

25 neurons in the RNN Encoder, 25 neurons in the decoder, and a hidden latent

57

dimension of 16. The model is trained for 1000 epochs. The RMSE values are

used to validate the predicted trajectories.

The model is able to find the problem space of the latent trajectories but

is unable to produce the same level of accuracy as the trained reviewer-specific

model. Unlike the reviewer-specific model, the universal model does not capture

the full range of space for the latent trajectory. The predicted trajectories of

the universal model are clustered in the common latent space of the trajectories

instead of capturing the unique movement in time. The RMSE scores, shown

in Table 5.5, of the test results are worse than the reviewer specific models but

proved to be statistically significant for improving accuracy in comparison with

using random trajectories. Given the fact that the model creates more accurate

predictions for Sean P. Sullivan and Kerin O’Keefe, the universal model may

be better at predicting users that show similarities in their taste trajectories.

This behavior is demonstrated based on the comparison of the slopes in the

latent trajectories between Roger Voss, Sean P. Sullivan, and Kerin O’Keefe in

Figure 5.1. The model captures this similarity, given it producing more accurate

predictions for both of those users.

Training the model for 1000 epochs resulted in worse reconstruction loss.

The model had the lowest RMSE around epoch 500 with an RMSE of 0.05 for

reconstructing the latent trajectories for the six standard timestamps across the

top five reviewers. Given this result, the model is retrained with 500 epochs as

well.

58

Reviewer Test RMSE P-Value

Roger Voss 0.3629 <0.001
Sean P. Sullivan 0.2732 <0.001
Kerin O’Keefe 0.3017 <0.001

Table 5.5: ODE-RNN Training Results for Universal Model

Figure 5.5: Predicted Trajectories from Universal Model

59

Chapter 6

Conclusions

6.1 Final Conclusion

The accuracy results from comparing the predicted and random trajectories of the

reviewers demonstrates that the algorithm of latent state ODE-RNN is a feasible

solution for predicting how taste profiles change over time. The ODE-RNN model

demonstrates more accurate results than using a randomly created trajectory for

predicting reviewer taste over time to a statistically significant degree as shown in

Table 6.1. The latent taste trajectories demonstrate specific behaviors according

to the reviewer being observed. This behavior is observed when comparing the re-

sults for the individual and the universal model. This finding can be inferred from

the reviewer specific models producing lower RMSE scores between actual and

predicted trajectories. From the experiments conducted and their corresponding

t-test performances, the universal and reviewer-specific models produce results

with over 99% confidence that the Wine Enthusiast wine reviewers demonstrate

reviewer specific patterns within their latent trajectories.

60

Model ODE-RNN Random Trajectory P-Value

Individual: Roger Voss 0.1264 0.8619 <0.001
Individual:Sean P. Sullivan 0.1432 0.5270 <0.001

Universal: Roger Voss 0.3629 0.8619 <0.001

Universal: Sean P. Sullivan 0.2732 0.5270 <0.001

Table 6.1: Two Sample Mean T-Test Results from ODE-RNN Model Versus
Results from Randomly Generated Trajectories

From the results in Table 6.1, I can say with confidence that I completed the

two contributions as detailed in the introduction of this thesis:

• Demonstrate that Wine Reviewers have taste profiles with biases and time

series patterns.

• Demonstrate these patterns can be captured and predicted via an ODE-

RNN for latent state predictions over time.

6.2 Future Work

In the future, one can experiment with newer algorithms for using an ODE-RNN

for latent state trajectories. These include leveraging an augmented layer to

create an Augmented ODE (AODE) [4] and stochastic jumps within a basic ODE-

RNN[7]. The AODE allows the model to use a more substantial problem space

for training by adding dimensions to the latent space observed. This functionality

could be useful in capturing parts of the latent trajectory that a normal ODE-

RNN is unable to. For example, the standard ODE-RNN has difficulty predicting

latent states that have a more significant Euclidean distance from the majority of

latent states within their trajectory. It is also possible to add stochastic jumps to

capture the behavior that does not follow standard patterns within a time series

61

data set. This ability is useful and could help predict the noisy movements of the

latent states over time.

6.2.1 Proposed Process for Decoded Predictions

For future work, one can analyze the final results of the decoded predictions of

the wine. Due to the complex nature of this thesis, the focus of this work is on

the discovery of the process of this type of prediction instead of the creation of

final predicted wines for the reviewers. To analyze those predictions, one can

create a process for final recommendations. As an example for future next steps,

the following process can demonstrate predictions for the reviewers:

1. Decode predicted latent states with trained autoencoder.

2. Filter original dataset by decoded metadata.

3. Filter results by maximum cosine similarity of original Doc2Vec vectors

against predicted Doc2Vec vectors.

4. Label final wine from filtered results for recommendation

Example Wine Recommendation

The above process is demonstrated by predicting a wine for Roger Voss for the

month of December. After performing the above process, the algorithm recom-

mended a sparkling Riesling. This recommendation is inline with Roger Voss’

scoring sparkling wines higher in December (likely due to the holiday season).

The description of this wine is as follows:

”This wine has come up a few quality notches and a great vintage

helps. It’s still young and therefore a little austere, but offers delicate

62

notes of red-apple skins, lime, lavender talc, herbs and white spices.

It’s bone dry and chalky textured with crunchy, laser sharp acidity,

a strong mineral streak and fresh limey fruit right to the close. Acid

hounds will dig this now but most will find another year or two in

bottle will make this wine really come out of its shell. ”

The above description portrays a complex wine with acid overtones as well

as herbal notes. It also shows words that display a positive sentiment within

the review as mirrored by an above-average z-score of the wine. It would be

necessary to compare what types of wines are highly or lowly indexed for the

various reviewers at various periods to determine the validity of final recommen-

dations. This type of future work would also help inform what types of updates

the algorithm could need to capture the reviewer’s taste trajectories better.

63

Bibliography

[1] Charu C. Aggarwal. Neural Networks and Deep Learning. Springer, Cham,
2018.

[2] David Charte, Francisco Charte, Salvador Garćıa, Maŕıa José del Jesús, and
Francisco Herrera. A practical tutorial on autoencoders for nonlinear feature
fusion: Taxonomy, models, software and guidelines. CoRR, abs/1801.01586,
2018.

[3] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud.
Neural Ordinary Differential Equations. arXiv:1806.07366 [cs, stat], June
2018.

[4] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural
ODEs. arXiv:1904.01681 [cs, stat], April 2019.

[5] Dylan Garret. Wine Enthusiast: About Us, 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs], December 2015.

[7] Junteng Jia and Austin R. Benson. Neural Jump Stochastic Differential
Equations. arXiv:1905.10403 [cs, stat], October 2019. arXiv: 1905.10403.

[8] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences
and documents. CoRR, abs/1405.4053, 2014.

[9] M. Puckette and J. Hammack. Wine Folly: The Essential Guide to Wine.
Penguin Random House.

[10] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent ODEs
for Irregularly-Sampled Time Series. arXiv:1907.03907 [cs, stat], July 2019.
arXiv: 1907.03907.

[11] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network. CoRR, abs/1808.03314, 2018.

64

[12] G. Corrado T. Mikolov, K. Chen and J. Dean. Efficient estimation of word
representations in vector space. 2013.

[13] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing Large-
scale and High-dimensional Data. Proceedings of the 25th International Con-
ference on World Wide Web - WWW ’16, pages 287–297, 2016. arXiv:
1602.00370.

65

Appendix A

Appendix

A.1 Code

A.1.1 Wine Data Processing

import pandas as pd

from math import ceil, floor

import category_encoders as ce

import numpy as np

class ProcessedWineData(object):

renamed_col = [

"alcohol",

"bottle_size",

"category",

66

"date_published",

"importer",

"user_avg_rating",

"country",

"description",

"designation",

"points",

"price",

"province",

"region_1",

"region_2",

"taster_name",

"title",

"updated_date",

"variety",

"vintage",

"winery",

"tags",

"tropical_fruit",

"melon",

"lactic",

"general_aged",

"dried_fruit",

"oak_aged",

"earth",

"spice",

67

"minerality",

"citrus",

"black_fruit",

"flower",

"red_fruit",

"vegetable",

"smoke",

]

def __init__(self, year, json_name):

self.tags = pd.read_csv("wine_data/wine_aromas.csv", sep=";")

self.year = year

self.success = lambda x: 1 if (x >= 2) else 0

self.fail = lambda x: 1 if (x <= -2) else 0

self.result = pd.read_json(json_name)

@property

def tag(self):

return list(set(self.tags["Tag"]))

@property

def tag_words(self):

return set(list(set(self.tags["Words"])))

@property

def wine_df(self):

68

return self.result

def concat_years(self):

self.result = pd.concat(

[

self.w_2014,

self.w_2015,

self.w_2016,

self.w_2017,

self.w_2018_2019,

],

axis=0,

).reset_index(drop=True)

def round_zscore(self, i):

if i < 1 and i >= 0:

return ceil(i)

elif i > -1 and i <= 0:

return floor(i)

return round(i)

def create_tag_count(self, desc):

tag_dict = {t: 0 for t in self.tag}

list1 = set(desc.split()) & self.tag_words

set1 = list(set(self.tags[self.tags.Words.isin(list1)]["Tag"]))

tag_d = dict.fromkeys(set1, 1)

69

for k, v in tag_d.items():

tag_dict[k] = v

return tag_dict

def create_tags(self):

self.result["tags"] = self.result["description"].map(

self.create_tag_count

)

w_tags = self.result["tags"].apply(pd.Series)

self.result = self.result.join(w_tags)

self.result.columns = self.renamed_col

self.result = self.result.drop(

columns=["bottle_size", "tags", "date_published"]

)

@staticmethod

def standardize_row(r):

return (r - np.mean(r)) / np.std(r)

@staticmethod

def alcohol_cat(i):

if i <= 7.5:

return "low"

elif i > 7.5 and i <= 10.5:

return "low_medium"

elif i > 10.5 and i <= 12.5:

70

return "medium"

elif i > 12.5 and i <= 15:

return "medium_high"

return "high"

def update_alcohol(self):

self.result.loc[self.result["alcohol"] == "N/A", "alcohol"] = "0"

self.result["alcohol"] = self.result["alcohol"].apply(

lambda x: float(x.rstrip("%"))

)

self.result["alcohol"] = (

self.result["alcohol"].map(float).apply(self.alcohol_cat)

)

def update_publish_dates(self):

self.result["updated_date"] = pd.to_datetime(

self.result["updated_date"], format="%Y/%m/%d"

)

def update_user_rating(self):

self.result.loc[

self.result["user_avg_rating"] == "Not rated yet",

"user_avg_rating",

] = "0"

self.result["user_avg_rating"] = self.result["user_avg_rating"].map(

int

71

)

def update_vintage(self):

self.result.loc[self.result["vintage"].isnull(), ["vintage"]] = 0

self.result.loc[self.result["vintage"] < 1927, ["vintage"]] = 0

self.result.loc[self.result["vintage"] > 2019, ["vintage"]] = 0

self.result = self.result[self.result["vintage"] != 0]

def update_price(self):

self.result["price"] = np.round(

self.standardize_row(self.result["price"])

)

self.result.loc[self.result.price > 4, "price"] = 5

self.result["price"] = self.result["price"].fillna("no_price")

self.result["price"] = self.result["price"].astype(str)

def set_category_columns(self):

self.result["country_v2"] = self.result["country"]

self.result["region_2_v2"] = self.result["region_2"]

self.result["category_v2"] = self.result["category"]

self.result["price_v2"] = self.result["price"]

self.result["alcohol_v2"] = self.result["alcohol"]

self.result["vintage_v2"] = self.result["vintage"]

cat_columns = [

"country_v2",

"region_2_v2",

72

"category_v2",

"alcohol_v2",

"price_v2",

"vintage_v2",

]

self.result = pd.get_dummies(

self.result, prefix_sep="__", columns=cat_columns

)

def calculate_z_scores(self):

r_copy = self.result.copy()

tasters = list(r_copy["taster_name"].unique())

z_scored_data = pd.DataFrame()

for taster in tasters:

subset = r_copy[r_copy["taster_name"] == taster]

subset["z_score"] = (

subset["points"] - subset["points"].mean()

) / subset["points"].std()

z_scored_data = z_scored_data.append(subset)

self.result = z_scored_data.sort_index()

self.result["zscores_all"] = (

self.result["points"] - self.result["points"].mean()

) / self.result["points"].std()

73

def rate_success(self):

self.result["success"] = self.result["z_score"].apply(

lambda x: self.success(self.round_zscore(x))

)

def rate_fail(self):

self.result["fail"] = self.result["z_score"].apply(

lambda x: self.fail(self.round_zscore(x))

)

def binary_encode_row(self, y_name):

x_name = "success"

test_enc = self.result[[x_name, y_name]]

X = test_enc.drop(x_name, axis=1)

y = test_enc.drop(y_name, axis=1)

ce_binary = ce.BinaryEncoder(cols=[y_name])

return ce_binary.fit_transform(X, y)

def set_encoded_columns(self):

cols = [

"designation",

"variety",

"province",

"region_1",

"winery",

"importer",

74

]

for col in cols:

encoded_column_df = self.binary_encode_row(col)

self.result = self.result.join(encoded_column_df)

def process(self):

print("Joining reviews from 2014 to 2019", end="\r")

self.concat_years()

print("Tagging review descriptions ", end="\r")

self.create_tags()

print("Updating string alcohol percentage to float.", end="\r")

self.update_alcohol()

print("Setting publish dates. ", end="\r")

self.update_publish_dates()

print("Cleaning user ratings. ", end="\r")

self.update_user_rating()

print("Cleaning wine vintage. ", end="\r")

self.update_vintage()

print("Cleaning up wine prices. ", end="\r")

75

self.update_price()

print(

"Setting category columns then calculating z_scores by taster. ",

end="\r",

)

self.set_category_columns()

self.calculate_z_scores()

print(

"Setting binary values for successful and failing scores.",

end="\r",

)

self.rate_success()

self.rate_fail()

print(

"Binary encoding high dimensional columns. ",

end="\r",

)

self.set_encoded_columns()

print(

"Dropping unnecessary columns. ",

end="\r",

)

76

self.result = self.result.drop(columns=["title"])

print(

"Deduplicating rows. ",

end="\r",

)

self.result = self.result.drop_duplicates(

subset="description", keep="first"

)

print("Saving file. ")

self.result.to_csv(

"wine_data/process_wine_data_{}_{}.csv".format(

self.year,

str(pd.Timestamp.now()).replace(" ", "_")

)

)

print("Done. ")

if __name__ == "__main__":

data = ProcessedWineData()

print("Processing wine data...")

data.process()

77

A.1.2 Doc2Vec Trainer

from gensim.test.test_doc2vec import ConcatenatedDoc2Vec

import itertools

import pandas as pd

import numpy as np

np.random.seed(12345678)

import statsmodels.api as sm

from random import sample

from gensim.models import Doc2Vec

import gensim.models.doc2vec

import multiprocessing

from gensim.parsing.preprocessing import (

strip_punctuation,

strip_multiple_whitespaces,

strip_short,

)

from gensim.parsing.preprocessing import preprocess_string

cores = multiprocessing.cpu_count()

assert gensim.models.doc2vec.FAST_VERSION > -1

EPOCHS = 1

78

tags = [1]

tag_column = "fail"

def predict_tag(incoming_tag, expected_tag):

if str(incoming_tag) == str(expected_tag):

return 1

return 0

def logistic_predictor_from_data(train_targets, train_regressors):

logit = sm.Logit(train_targets, train_regressors)

predictor = logit.fit(disp=0)

return predictor

def set_model(model_type):

if model_type == "DMM":

return False, True, False

elif model_type == "DMC":

return False, False, True

return True, False, False

class BaseDoc2Vec(object):

def __init__(self, csv, model_type, epochs=None, *args, **kwargs):

79

self.df = pd.read_csv(csv)

col_list = list(self.df.columns)

col_list.remove("Unnamed: 0")

col_list.insert(0, "wine_id")

self.df.columns = col_list

self.df = self.df.drop_duplicates(subset="description", keep="first")

self.wine_desc = self.df[["description", "wine_id"]]

self.filters = [

lambda x: x.lower(),

strip_punctuation,

strip_multiple_whitespaces,

lambda x: strip_short(x, 2),

]

self._tagged_docs = None

self._train_docs = None

self._test_docs = None

self._model = None

self._error_rates = None

self._avg_error = None

self.dbow, self.dmm, self.dmc = set_model(model_type)

self.model_type = model_type

80

if not epochs:

self.epochs = EPOCHS

else:

self.epochs = epochs

self.train_len = round(len(self.tagged_docs) * 0.75)

def create_tagged_docs(self):

doc_list = []

for i, row in self.wine_desc.iterrows():

processed_desc = preprocess_string(

row["description"], self.filters

)

wine_id = row["wine_id"]

tagged_doc = gensim.models.doc2vec.TaggedDocument(

processed_desc, [wine_id]

)

doc_list.append(tagged_doc)

return doc_list

@property

def tagged_docs(self):

if not self._tagged_docs:

self._tagged_docs = self.create_tagged_docs()

return self._tagged_docs

81

@property

def train_docs(self):

if not self._train_docs:

self._train_docs = self.tagged_docs[: self.train_len]

return self._train_docs

@property

def test_docs(self):

if not self._test_docs:

self._test_docs = self.tagged_docs[self.train_len :]

return self._test_docs

def train_model(self, m):

m.build_vocab(self.tagged_docs)

print("%s vocabulary scanned & state initialized" % m)

print("Training %s" % m)

m.train(

self.tagged_docs,

total_examples=len(self.tagged_docs),

epochs=m.epochs,

)

print("Done training %s model." % m)

def error_rate_for_model(

self,

82

test_model,

train_set,

test_set,

tag_column,

tag,

reinfer_train=False,

reinfer_test=False,

infer_steps=None,

infer_alpha=None,

infer_subsample=0.2,

):

train_data = train_set

train_targets = [

predict_tag(

self.df[self.df["wine_id"] == doc.tags[0]][tag_column].item(),

tag,

)

for doc in train_data

]

if reinfer_train:

train_regressors = [

test_model.infer_vector(

doc.words, steps=infer_steps, alpha=infer_alpha

)

for doc in train_data

83

]

else:

train_regressors = [

test_model.docvecs[doc.tags[0]] for doc in train_data

]

train_regressors = sm.add_constant(train_regressors)

predictor = logistic_predictor_from_data(

train_targets, train_regressors

)

test_data = test_set

if reinfer_test:

if infer_subsample < 1.0:

test_data = sample(

test_data, int(infer_subsample * len(test_data))

)

test_regressors = [

test_model.infer_vector(

doc.words, steps=infer_steps, alpha=infer_alpha

)

for doc in test_data

]

else:

test_regressors = [

test_model.docvecs[doc.tags[0]] for doc in test_data

]

84

test_regressors = sm.add_constant(test_regressors)

test_predictions = predictor.predict(test_regressors)

corrects = sum(

np.rint(test_predictions)

== [

predict_tag(

self.df[self.df["wine_id"] == doc.tags[0]][

tag_column

].item(),

tag,

)

for doc in test_data

]

)

errors = len(test_predictions) - corrects

error_rate = float(errors) / len(test_predictions)

return error_rate, errors, len(test_predictions), predictor

def evaluate_model(self, etags, tag_column):

print("Evaluating model.")

error_rates = {}

print(etags)

for tag in etags:

print("\nEvaluating %s for tag %s" % (self.model, tag))

85

err_rate, err_count, test_count, predictor = self.error_rate_for_model(

self.model, self.train_docs, self.test_docs, tag_column, tag

)

error_rates[tag] = err_rate

print("\n%f %s\n" % (err_rate, self.model))

self._error_rates = error_rates

self._avg_error = np.average(list(error_rates.values()))

def create_models(self, v_size, window_size, alpha):

if self.dmm:

m = Doc2Vec(

dm=1,

vector_size=v_size,

window=window_size,

negative=5,

hs=0,

min_count=2,

sample=0,

epochs=self.epochs,

workers=cores,

alpha=alpha,

seed=12,

comment="alpha=%s" % str(alpha),

)

elif self.dmc:

m = Doc2Vec(

86

dm=1,

dm_concat=1,

vector_size=v_size,

window=window_size,

negative=5,

hs=0,

min_count=2,

sample=0,

epochs=self.epochs,

workers=cores,

alpha=alpha,

seed=12,

comment="alpha=%s" % str(alpha),

)

else:

m = Doc2Vec(

dm=0,

vector_size=v_size,

window=window_size,

negative=5,

hs=0,

min_count=2,

sample=0,

epochs=self.epochs,

workers=cores,

alpha=alpha,

87

seed=12,

comment="alpha=%s" % str(alpha),

)

return m

def write_file(self, name):

print("Writing {} features to file.".format(str(name)))

##Last row is the wine_id

vecs = np.array(

[

np.append(self.model.docvecs[doc.tags[0]], int(doc.tags[0]))

for doc in self.tagged_docs

]

)

with open(

"{}_features_{}.txt".format(

self.model_type, str(pd.Timestamp.now()).replace(" ", "_")

),

"w",

newline="",

) as out:

out.write("{}\t{}\n".format(*vecs.shape))

for row in vecs:

out.write("\t".join(row.astype(str)) + "\n")

def run(self, v_size, window_size, alpha):

88

self._model = self.create_models(v_size, window_size, alpha)

self.train_model(self.model)

self.evaluate_model(tags, tag_column)

print("Results for {}:".format(str(self.model)))

print("Error Rates: {}".format(str(self.error_rates)))

print("Avg Error: {}".format(str(self.avg_error)))

features_dmm = self.model.docvecs.doctag_syn0

self.write_file(str(self.model))

@property

def model(self):

return self._model

@property

def error_rates(self):

if not self._error_rates:

self._error_rates = self.evaluate_model(tags, tag_column)

return self._error_rates

@property

def avg_error(self):

if not self._avg_error:

self._avg_error = np.average(list(self.error_rates.values()))

return self._avg_error

89

class TrainValidateMultipleDoc2Vec(BaseDoc2Vec):

def __init__(

self,

model_type,

vector_list,

window_size_list,

alpha_list,

*args,

**kwargs

):

BaseDoc2Vec.__init__(self, model_type, *args, **kwargs)

self.params = list(

itertools.product(vector_list, window_size_list, alpha_list)

)

self._multi_models = None

self.is_trained = False

self.multi_validation_results = {}

self._best_multi_params = {}

self.best_model = None

def create_multi_models(self):

print("Creating %s Models" % self.model_type)

model_param_dict = {}

for p in self.params:

90

v_size = p[0]

window_size = p[1]

alpha = p[2]

m = self.create_models(v_size, window_size, alpha)

model_param_dict[m] = p

return model_param_dict

def train_multi_models(self):

print("Training %s Models" % self.model_type)

for m in self.multi_models.keys():

self.train_model(m)

print("Done training %s models." % self.model_type)

self.is_trained = True

def evaluate_multi_models(self, tags, tag_column):

print("Evaluating %s Models" % self.model_type)

for m in self.trained_models.keys():

error_rates = {}

for tag in tags:

print("\nEvaluating %s for tag %s" % (m, tag))

err_rate, err_count, test_count, predictor = self.error_rate_for_model(

m, self.train_docs, self.test_docs, tag_column, tag

)

error_rates[tag] = err_rate

print("\n%f %s\n" % (err_rate, m))

self.multi_validation_results[m] = error_rates

91

print("Done evaluating %s models." % self.model_type)

curr_best_model = None

best_error = 100

for k in self.multi_validation_results.keys():

avg_result = np.average(

list(self.multi_validation_results[k].values())

)

if avg_result < best_error:

curr_best_model = k

best_error = avg_result

self._model = curr_best_model

self._best_multi_params = self.trained_models[curr_best_model]

self._avg_error = best_error

@property

def multi_models(self):

if not self._multi_models:

self._multi_models = self.create_multi_models()

return self._multi_models

@property

def trained_models(self):

if not self.is_trained:

self.train_multi_models()

return self.multi_models

92

@property

def best_multi_params(self):

if not self._best_multi_params:

self.evaluate_multi_models(tags, tag_column)

return self._best_multi_params

def clear_memory(self):

for m in self.multi_models.keys():

m.delete_temporary_training_data()

def run(self):

self.train_multi_models()

print("All results: {}".format(str(self.multi_validation_results)))

print(

"Best %s error and params: %s, %s"

% (str(self.model_type), self.avg_error, self.best_multi_params)

)

self.write_file(str(self.model))

class ConcatModels(TrainValidateMultipleDoc2Vec):

def __init__(self, dbow_m, dmm_m, dmc_m):

BaseDoc2Vec.__init__(self, "Concat")

self.dbow_m = dbow_m

self.dmm_m = dmm_m

self.dmc_m = dmc_m

93

self._multi_models = []

self._error_rates = None

def create_concat_model(self):

print("Creating merged models.")

self._multi_models.append(

ConcatenatedDoc2Vec([self.dbow_m, self.dmm_m])

)

self._multi_models.append(

ConcatenatedDoc2Vec([self.dbow_m, self.dmc_m])

)

return

def return_concat_vectors(self, model):

vector_list = np.array(

[

np.append(model.docvecs[doc.tags[0]], int(doc.tags[0]))

for doc in self.tagged_docs

]

)

return vector_list

def run_models(self):

self.evaluate_multi_models(tags, tag_column)

print(

"Concat models results: {}".format(

94

str(self.multi_validation_results)

)

)

for m in self.multi_models:

vecs = m.return_vectors()

##Last row is the wine_id

with open(

"merged_features_cat_{}.csv".format(

str(pd.Timestamp.now()).replace(" ", "_")

),

"w",

newline="",

) as out:

out.write("{}\t{}\n".format(*vecs.shape))

for row in vecs:

out.write("\t".join(row.astype(str)) + "\n")

if __name__ == "__main__":

import sys

is_multi = sys.argv[1]

print("Processing wine data...")

if is_multi == "true":

vector_list = [2, 5, 10]

window_list = [2, 5, 10]

95

alpha_list = [0.1, 0.05, 0.01]

dmm_models = TrainValidateMultipleDoc2Vec(

"DMM", vector_list, window_list, alpha_list

)

dmm_models.run_models()

dmc_models = TrainValidateMultipleDoc2Vec(

"DMC", vector_list, window_list, alpha_list

)

dmc_models.run_models()

dbow_models = TrainValidateMultipleDoc2Vec(

"DBOW", vector_list, window_list, alpha_list

)

dbow_models.run_models()

concat_models = ConcatModels(

dbow_models.model, dmm_models.model, dmc_models.model

)

else:

train_epochs = sys.argv[2]

model_type = sys.argv[3]

v_size = sys.argv[4]

window_size = sys.argv[5]

alpha = sys.argv[6]

96

if train_epochs == "true":

for e in [10, 20, 50, 75]:

model = BaseDoc2Vec(model_type, epochs=e)

model.run(int(v_size), int(window_size), float(alpha))

else:

print("RUNNING ONE MODEL")

model = BaseDoc2Vec(model_type)

model.run(int(v_size), int(window_size), float(alpha))

A.1.3 LargeVis Trainer

import LargeVis

import numpy as np

import pandas as pd

import tempfile

import os

np.random.seed(12345678)

outdim = 2

threads = 24

samples = -1

prop = -1

alpha = -1

trees = -1

neg = -1

97

neigh = -1

gamma = -1

perp = -1

class TrainWineLargeVis(object):

def __init__(self, input_file, output_file, lv_ready=True, dim=2):

self.dim = dim

self.lv_ready = lv_ready

if not self.lv_ready:

input_df = pd.read_csv(self.input_file)

input_vector_df = input_df.drop(input_df.columns[-1], axis=1)

self.input_wine_id = input_df[input_df.columns[-1]]

_, self.input_file = tempfile.mkstemp()

feat = np.array(input_vector_df)

with open(self.input_file, "w") as out:

out.write("{}\t{}\n".format(*feat.shape))

for row in feat:

out.write("\t".join(row.astype(str)) + "\n")

else:

self.input_file = input_file

98

self.output_file = output_file

self.columns = ["x", "y"]

self.y = None

self.df = pd.read_csv("wine_data_v2_20191116.csv")

col_list = list(self.df.columns)

col_list.remove("Unnamed: 0")

col_list.insert(0, "wine_id")

self.df.columns = col_list

def load_large_vis(self):

LargeVis.loadfile(self.input_file)

if not self.lv_ready:

os.remove(self.temp_path)

def save_large_vis(self):

self.final_df.to_csv(self.output_file)

def run_large_vis(self):

self.y = LargeVis.run(

outdim,

threads,

samples,

prop,

alpha,

trees,

99

neg,

neigh,

gamma,

perp,

)

def run(self):

self.load_large_vis()

self.run_large_vis()

if self.dim == 3:

self.columns = ["x", "y", "z"]

self.final_df = pd.DataFrame(self.y, columns=self.columns)

if not self.lv_ready:

self.final_df["wine_id"] = self.input_wine_id

else:

self.final_df["wine_id"] = self.final_df.index

self.final_df = self.df.set_index("wine_id").join(

self.final_df.set_index("wine_id"), how="inner"

)

self.final_df.to_csv(

self.output_filetest.replace(".txt", "_{}.csv".format("joined"))

100

)

self.save_large_vis()

if __name__ == "__main__":

import sys

try:

input_file = sys.argv[1]

output_file = sys.argv[2]

try:

dim = int(sys.argv[3])

except:

dim = None

if dim:

lv = TrainWineLargeVis(input_file, output_file, True, dim)

else:

lv = TrainWineLargeVis(input_file, output_file)

print("Running basic LargeVis")

lv.run()

except:

basic_run_list = [

input run list here

]

for run in basic_run_list:

101

lv = TrainWineLargeVis(run[0], run[1], dim=run[2])

lv.run()

A.1.4 Autoencoder Trainer

import pandas as pd

import numpy as np

np.random.seed(12345678)

import tensorflow as tf

import keras

from keras import regularizers, callbacks, activations

from keras import backend as K

from keras.engine import InputSpec

from keras.layers import Dense, Dropout, Input, InputLayer

from keras.models import Sequential, Model

from sparsely_connected_keras import Sparse

from keras.engine.topology import Layer

from sklearn.preprocessing import MinMaxScaler

class SharedWeightsDenseLayerAutoencoder(Dense):

def __init__(

self, layer_sizes, l2_normalize=False, dropout=0.0, *args, **kwargs

102

):

self.layer_sizes = layer_sizes

self.l2_normalize = l2_normalize

self.dropout = dropout

self.kernels = []

self.biases = []

self.biases2 = []

self.uses_learning_phase = True

super().__init__(units=1, *args, **kwargs)

def compute_output_shape(self, input_shape):

return input_shape

def build(self, input_shape):

assert len(input_shape) >= 2

input_dim = input_shape[-1]

self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})

for i in range(len(self.layer_sizes)):

self.kernels.append(

self.add_weight(

shape=(input_dim, self.layer_sizes[i]),

initializer=self.kernel_initializer,

name="ae_kernel_{}".format(i),

regularizer=self.kernel_regularizer,

103

constraint=self.kernel_constraint,

)

)

if self.use_bias:

self.biases.append(

self.add_weight(

shape=(self.layer_sizes[i],),

initializer=self.bias_initializer,

name="ae_bias_{}".format(i),

regularizer=self.bias_regularizer,

constraint=self.bias_constraint,

)

)

input_dim = self.layer_sizes[i]

if self.use_bias:

for n, i in enumerate(range(len(self.layer_sizes) - 2, -1, -1)):

self.biases2.append(

self.add_weight(

shape=(self.layer_sizes[i],),

initializer=self.bias_initializer,

name="ae_bias2_{}".format(n),

regularizer=self.bias_regularizer,

constraint=self.bias_constraint,

)

104

)

self.biases2.append(

self.add_weight(

shape=(input_shape[-1],),

initializer=self.bias_initializer,

name="ae_bias2_{}".format(len(self.layer_sizes)),

regularizer=self.bias_regularizer,

constraint=self.bias_constraint,

)

)

self.built = True

def call(self, inputs):

return self.decode(self.encode(inputs))

def _apply_dropout(self, inputs):

dropped = K.dropout(inputs, self.dropout)

return K.in_train_phase(dropped, inputs)

def encode(self, inputs):

latent = inputs

for i in range(len(self.layer_sizes)):

if self.dropout > 0:

latent = self._apply_dropout(latent)

latent = K.dot(latent, self.kernels[i])

105

if self.use_bias:

latent = K.bias_add(latent, self.biases[i])

if self.activation is not None:

activation = (

"linear"

if i == len(self.layer_sizes) - 1

else self.activation

)

activation = activations.get(activation)

latent = activation(latent)

if self.l2_normalize:

latent = latent / K.l2_normalize(latent, axis=-1)

return latent

def decode(self, latent):

recon = latent

for i in range(len(self.layer_sizes)):

if self.dropout > 0:

recon = self._apply_dropout(recon)

recon = K.dot(

recon, K.transpose(self.kernels[len(self.layer_sizes) - i - 1])

)

if self.use_bias:

recon = K.bias_add(recon, self.biases2[i])

if self.activation is not None:

activation = "linear" if i == 0 else self.activation

106

activation = activations.get(activation)

recon = activation(recon)

return recon

def get_config(self):

config = {"layer_sizes": self.layer_sizes}

base_config = super().get_config()

base_config.pop("units", None)

return dict(list(base_config.items()) + list(config.items()))

@classmethod

def from_config(cls, config):

return cls(**config)

class AEReadyData(object):

def __init__(self):

dbow_features = pd.read_table(

"/Users/lex/wine-enthusiast/wine_review_data_processing/DBOW_features_2019-11-16_18:20:31.050268.txt",

skiprows=1,

)

self.col_list = []

for x in range(len(dbow_features.columns) - 1):

self.col_list.append("doc2vec_{}".format(x))

self.col_list.append("wine_id")

107

dbow_features.columns = self.col_list

dbow_features = dbow_features.set_index("wine_id")

scaler = MinMaxScaler(feature_range=(0, 1))

scaler = scaler.fit(dbow_features)

t = scaler.transform(dbow_features)

t = pd.DataFrame(t, columns=dbow_features.columns)

t.index = dbow_features.index

self.dbow_features = t

base = pd.read_csv(

"/Users/lex/wine-enthusiast/wine_review_data_processing/wine_data_v2_20191116.csv"

)

col_list = list(base.columns)

col_list.remove("Unnamed: 0")

col_list.insert(0, "wine_id")

base.columns = col_list

self.descriptive_df = base[

[

"wine_id",

"updated_date",

"taster_name",

"points",

"success",

"fail",

108

"z_score",

]

]

base = base.drop(

[

"alcohol",

"category",

"country",

"description",

"designation",

"fail",

"importer",

"month",

"points",

"price",

"province",

"region_1",

"region_2",

"success",

"taster_name",

"updated_date",

"user_avg_rating",

"variety",

"vintage",

"winery",

109

"z_score",

"zscores_all",

"year",

],

axis=1,

)

base = base.fillna(0)

base = base.set_index("wine_id")

self.base = base

joined = self.base.join(self.dbow_features)

joined = joined.dropna()

joined = self.base.join(self.dbow_features)

joined = joined.dropna()

self.ae_dataset = joined

def correntropy_loss(sigma=0.2):

from math import sqrt

110

def robust_kernel(alpha):

return (

1.0

/ (sqrt(2 * np.pi) * sigma)

* K.exp(-K.square(alpha) / (2 * sigma * sigma))

)

def loss(y_pred, y_true):

return -K.sum(robust_kernel(y_pred - y_true))

return loss

class WineAutoEncoder(object):

def __init__(

self,

input_dim=229,

encoding_dim=8,

kernel_reg_val=0.02,

neuron_list=[220, 120, 75, 32],

):

self.activation = "sigmoid"

self.share_weights = True

self.input_dim = input_dim

self.encoding_dim = encoding_dim

111

self.kernel_reg_val = regularizers.l2(kernel_reg_val)

self.neuron_list = neuron_list

attrs = [str(len(self.neuron_list)), str(kernel_reg_val)]

self.name = "{}-{}-{}".format(

"-".join(attrs), self.encoding_dim, self.activation

)

self.build()

def create_autoencoder_layers(self):

input_layer = InputLayer(((self.input_dim,)))

model = Sequential()

model.add(input_layer)

self.neuron_list.sort(reverse=True)

for i in range(len(self.neuron_list)):

model.add(

Dense(

self.neuron_list[i],

activation=self.activation,

kernel_regularizer=self.kernel_reg_val,

name="encoded_lvl_{}".format(i),

)

112

)

model.add(

Dense(

self.encoding_dim,

activation=self.activation,

kernel_regularizer=self.kernel_reg_val,

name="encoded",

)

)

self.neuron_list.sort()

for i in range(len(self.neuron_list)):

model.add(

Dense(

self.neuron_list[i],

activation=self.activation,

name="decoded_lvl_{}".format(i),

)

)

model.add(Dense(self.input_dim, activation="sigmoid", name="decoded"))

self.autoencoder = model

def build(self):

113

if not self.share_weights:

self.create_autoencoder_layers()

self.encoder = Sequential()

encoded_input = InputLayer(((self.input_dim,)))

self.encoder.add(encoded_input)

self.decoder = Sequential()

decoded_input = InputLayer(((self.encoding_dim,)))

self.decoder.add(decoded_input)

for l in self.autoencoder.layers:

if "encoded" in l.get_config()["name"]:

self.encoder.add(l)

elif "decoded" in l.get_config()["name"]:

self.decoder.add(l)

else:

inputs = Input(shape=(self.input_dim,))

x = SharedWeightsDenseLayerAutoencoder(

self.neuron_list,

use_bias=True,

activation="sigmoid",

dropout=0.10,

)(inputs)

self.autoencoder = Model(inputs=inputs, outputs=x)

114

class LossHistory(callbacks.Callback):

def on_train_begin(self, logs={}):

self.losses = []

def on_epoch_end(self, batch, logs={}):

self.losses.append(logs.get("loss"))

class TrainWineAutoEncoder(object):

def __init__(self, autoencoder, dataset, loss):

self.autoencoder = autoencoder

self.loss = correntropy_loss() if loss == "correntropy" else loss

self.loss_name = loss

train = round(len(dataset) * 0.75)

test = len(dataset) - round(len(dataset) * 0.25)

self.x_train = dataset[0:train].values

self.x_test = dataset[test:].values

self.name = ""

def train(self, optimizer="adam", epochs=10):

self.autoencoder.autoencoder.compile(

optimizer=optimizer, loss=self.loss

115

)

train

self.history = LossHistory()

self.autoencoder.autoencoder.fit(

self.x_train,

self.x_train,

epochs=epochs,

batch_size=125,

shuffle=True,

callbacks=[self.history],

validation_data=(self.x_test, self.x_test),

)

self.name = "{}-{}".format(optimizer, self.loss_name)

with open(

"{}-{}.csv".format(self.autoencoder.name, self.name), "w"

) as out_file:

out_file.write(

",".join(("{}".format(x) for x in self.history.losses))

)

return self

def predict_test(self):

116

if self.autoencoder.share_weights == False:

encoded_imgs = self.autoencoder.encoder.predict(self.x_test)

decoded_imgs = self.autoencoder.decoder.predict(encoded_imgs)

else:

model = self.autoencoder.autoencoder

encoded_imgs = K.eval(

model.layers[1].encode(self.x_test.astype("float32"))

)

decoded_imgs = K.eval(model.layers[1].decode(encoded_imgs))

test_mse = np.mean((self.x_test - decoded_imgs) ** 2)

print("The neurons are {}".format(self.autoencoder.neuron_list))

print(

"The test MSE for %s is %s"

% (self.autoencoder.name, str(test_mse))

)

return (encoded_imgs, decoded_imgs)

def save_model(self, type, encoder):

encoder_json = encoder.to_json()

with open("{}_model.json".format(type), "w") as json_file:

json_file.write(encoder_json)

encoder.save_weights("{}_model.h5".format(type))

print("Saved {} model to disk".format(type))

117

def save_autoencoders(self):

name = self.autoencoder.name

shared = self.autoencoder.share_weights

self.save_model("autoencoder_%s" % name, self.autoencoder.autoencoder)

training_list = [[0.03, [138, 2]]]

def find_best_model(l, dataset, opt, opt_name):

ae_dict = {}

print("Training with %s" % opt_name)

epochs_df = pd.DataFrame()

for t in training_list:

autoencoder = WineAutoEncoder(

input_dim=274,

encoding_dim=2,

kernel_reg_val=t[0],

neuron_list=t[1],

)

trainer = TrainWineAutoEncoder(autoencoder, dataset.ae_dataset, "mse")

trainer.train(optimizer=opt, epochs=10)

trainer.predict_test()

ae_dict[autoencoder.name] = [

118

trainer.history.losses[-1],

autoencoder,

autoencoder.autoencoder,

trainer,

]

epochs = [i for i in range(1, len(trainer.history.losses) + 1)]

epochs_dict = {

"name": autoencoder.name,

"epochs": epochs,

"losses": trainer.history.losses,

}

d = pd.DataFrame(epochs_dict)

epochs_df = epochs_df.append(d).reset_index(drop=True)

epochs_df.to_csv("%s_epoch_loss.csv" % opt_name)

lowest_loss = 1.00

best_model = None

for key in ae_dict:

loss = ae_dict[key][0]

if loss < lowest_loss:

lowest_loss = loss

best_model = key

model_list = ae_dict[best_model]

print("Neuron List: {}".format(model_list[1].neuron_list))

print("Best loss is %s for %s" % (str(lowest_loss), model_list[1].name))

keras.models.save_model(model_list[2], "autoencoder_%s" % best_model)

119

if __name__ == "__main__":

dataset = AEReadyData()

optimizers = {

"adam": "adam",

"sgd": keras.optimizers.SGD(lr=0.01, momentum=0.0, nesterov=False),

"nadam": keras.optimizers.Nadam(lr=0.002, beta_1=0.9, beta_2=0.999),

"rms": keras.optimizers.RMSprop(lr=0.001, rho=0.9),

}

for o in {"adam": "adam"}:

find_best_model(training_list, dataset, optimizers[o], o)

A.1.5 ODE-RNN Trainer

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import os

import argparse

import logging

import time

120

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

import deepxde as dde

import pandas as pd

import random

import torch

from torch.utils.data import Dataset, DataLoader

from torch.distributions import Normal

from torchvision import datasets, transforms

from torch.distributions import kl_divergence, Independent

import torch.nn as nn

import torch.optim as optim

import torch.nn.functional as F

from torchdiffeq import odeint

device = torch.device("cuda:" + str() if torch.cuda.is_available() else "cpu")

class LatentODEfunc(nn.Module):

def __init__(self, latent_dim=4, nhidden=20, activation="elu"):

super(LatentODEfunc, self).__init__()

if activation == "elu":

self.act = nn.ELU(inplace=True)

121

elif activation == "selu":

self.act = nn.SELU(inplace=True)

elif activation == "tanh":

self.act == nn.Tanh(inplace=True)

self.fc1 = nn.Linear(latent_dim, nhidden)

self.fc2 = nn.Linear(nhidden, nhidden)

self.fc3 = nn.Linear(nhidden, latent_dim)

self.nfe = 0

def forward(self, t, x):

self.nfe += 1

out = self.fc1(x)

out = self.act(out)

out = self.fc2(out)

out = self.act(out)

out = self.fc3(out)

return out

class LatentODEfuncFive(LatentODEfunc):

def __init__(self, latent_dim=4, nhidden=20, activation="elu"):

super().__init__(latent_dim, nhidden, activation)

self.fc3 = nn.Linear(nhidden, nhidden)

self.fc4 = nn.Linear(nhidden, nhidden)

self.fc5 = nn.Linear(nhidden, latent_dim)

122

def forward(self, t, x):

self.nfe += 1

out = self.fc1(x)

out = self.act(out)

out = self.fc2(out)

out = self.act(out)

out = self.fc3(out)

out = self.act(out)

out = self.fc4(out)

out = self.act(out)

out = self.fc5(out)

return out

class LatentODEfuncSeven(LatentODEfuncFive):

def __init__(self, latent_dim=4, nhidden=20, activation="elu"):

super().__init__(latent_dim, nhidden, activation)

self.fc5 = nn.Linear(nhidden, nhidden)

self.fc6 = nn.Linear(nhidden, nhidden)

self.fc7 = nn.Linear(nhidden, latent_dim)

def forward(self, t, x):

self.nfe += 1

out = self.fc1(x)

out = self.act(out)

out = self.fc2(out)

123

out = self.act(out)

out = self.fc3(out)

out = self.act(out)

out = self.fc4(out)

out = self.act(out)

out = self.fc5(out)

out = self.act(out)

out = self.fc6(out)

out = self.act(out)

out = self.fc7(out)

return out

class RecognitionRNN(nn.Module):

def __init__(self, latent_dim=4, obs_dim=2, nhidden=25, nbatch=1):

super(RecognitionRNN, self).__init__()

self.nhidden = nhidden

self.nbatch = nbatch

self.i2h = nn.Linear(obs_dim + nhidden, nhidden)

self.h2o = nn.Linear(nhidden, latent_dim * 2)

def forward(self, x, h):

combined = torch.cat((x, h), dim=1)

h = torch.tanh(self.i2h(combined))

out = self.h2o(h)

return out, h

124

def initHidden(self):

return torch.zeros(self.nbatch, self.nhidden)

class Decoder(nn.Module):

def __init__(self, latent_dim=4, obs_dim=2, nhidden=20):

super(Decoder, self).__init__()

self.relu = nn.ReLU(inplace=True)

self.fc1 = nn.Linear(latent_dim, nhidden)

self.fc2 = nn.Linear(nhidden, obs_dim)

def forward(self, z):

out = self.fc1(z)

out = self.relu(out)

out = self.fc2(out)

return out

class RunningAverageMeter(object):

def __init__(self, momentum=0.99):

self.momentum = momentum

self.reset()

def reset(self):

125

self.val = None

self.avg = 0

def update(self, val):

if self.val is None:

self.avg = val

else:

self.avg = self.avg * self.momentum + val * (1 - self.momentum)

self.val = val

def gaussian_log_likelihood(mu_2d, data_2d, obsrv_std=0.01, indices=None):

n_data_points = mu_2d.size()[-1]

obsrv_std = torch.Tensor([obsrv_std]).to(device)

if n_data_points > 0:

gaussian = Independent(

Normal(loc=mu_2d, scale=obsrv_std.repeat(n_data_points)), 1

)

log_prob = gaussian.log_prob(data_2d)

log_prob = log_prob / n_data_points

else:

log_prob = torch.zeros([1]).to(get_device(data_2d)).squeeze()

return log_prob

126

class PrepareData(Dataset):

def __init__(self, taster, iters, all_d=False, top=True, cat=None):

print("Reading in dataset for training.")

df = pd.read_csv("final_latent_space_20191129.csv")

if top:

d = df[df["z_score"] >= 2]

else:

d = df[df["z_score"] <= -2]

if cat:

if cat == "Red":

d = d[d.category_v2__Red == 1]

elif cat == "White":

d = d[d.category_v2__White == 1]

n_traj = iters * 3

train_traj = iters * 2

print("Creating for training.")

self.all_traj, self.train_ts, self.pred_ts = self.create_trajectories(

d, taster, n_traj, all_d

)

self.model_traj = torch.from_numpy(self.all_traj[:train_traj]).float()

self.test_traj = torch.from_numpy(self.all_traj[train_traj:]).float()

self.train_ts = torch.from_numpy(self.train_ts).float()

self.pred_ts = torch.from_numpy(self.pred_ts)

if all_d:

self.roger_test_traj, self.roger_test_ts, self.roger_pred_ts = self.create_trajectories(

127

d, taster, n_traj

)

self.roger_test_traj = torch.from_numpy(

self.roger_test_traj

).float()

self.roger_test_ts = torch.from_numpy(self.roger_test_ts).float()

self.rog_pred_ts = torch.from_numpy(self.roger_pred_ts).float()

self.sean_test_traj, self.sean_test_ts, self.sean_pred_ts = self.create_trajectories(

d, "Sean P. Sullivan", n_traj

)

self.sean_test_traj = torch.from_numpy(self.sean_test_traj).float()

self.sean_test_ts = torch.from_numpy(self.sean_test_ts).float()

self.sean_pred_ts = torch.from_numpy(self.sean_pred_ts).float()

self.kerin_test_traj, self.kerin_test_ts, self.kerin_pred_ts = self.create_trajectories(

d, "Kerin OâKeefe", n_traj

)

self.kerin_test_traj = torch.from_numpy(

self.kerin_test_traj

).float()

self.kerin_test_ts = torch.from_numpy(self.kerin_test_ts).float()

self.kerin_pred_ts = torch.from_numpy(self.kerin_pred_ts).float()

def __len__(self):

return len(self.model_traj)

def create_ts_array(self, ts_arr):

128

max_t = max(ts_arr)

ts_arr = ts_arr / max_t

ts_arr[0] = 0

return ts_arr

def create_pred_array(self, ts_arr):

max_t = max(ts_arr)

max_t_1 = max_t + 30

max_t_2 = max_t_1 + 30

max_t_3 = max_t_2 + 30

ts_arr = np.concatenate(

(ts_arr, np.array([max_t_1, max_t_2, max_t_3])), axis=0

)

ts_arr = ts_arr / max_t

ts_arr[0] = 0

return ts_arr

def create_latent_trajectory(self, d, rt_arr):

l = []

for i in rt_arr:

df = d[d["t"] == i].sample(n=1)

l.append([df.x.values[0], df.y.values[0]])

return l

def create_all_trajectories(self, d, iters):

top_users = [

129

"Roger Voss",

"Kerin OâKeefe",

"Sean P. Sullivan",

"Anna Lee C. Iijima",

"Michael Schachner",

]

ts = lambda x: np.sort(d[d["taster_name"] == x].t.unique())

t_list = list(map(ts, top_users))

rt_arr = np.sort(

list(

set(t_list[0]).intersection(

t_list[1], t_list[2], t_list[3], t_list[4]

)

)

)

print(rt_arr)

ts_arr = self.create_ts_array(rt_arr)

pred_arr = self.create_pred_array(rt_arr)

print(pred_arr)

final = []

for i in range(0, iters):

user = random.choice(top_users)

user_df = d[(d["taster_name"] == user)]

l = self.create_latent_trajectory(user_df, rt_arr)

final.append(l)

130

final = np.stack(final, axis=0)

return final, ts_arr, pred_arr

def create_trajectories(self, d, taster, iters, all_d=False):

if not all_d:

t_f = d[(d["taster_name"] == taster)]

rt_arr = np.sort(t_f["t"].unique())

ts_arr = self.create_ts_array(rt_arr)

pred_arr = self.create_pred_array(rt_arr)

final = []

for r in range(0, iters):

l = self.create_latent_trajectory(t_f, rt_arr)

final.append(l)

final = np.stack(final, axis=0)

else:

final, ts_arr, pred_arr = self.create_all_trajectories(d, iters)

return final, ts_arr, pred_arr

def __getitem__(self, idx):

return self.model_traj[idx]

def create_latent_ode_func(layers, latent_dim, nhidden):

if layers == 7:

return LatentODEfuncSeven(latent_dim, nhidden)

elif layers == 5:

131

return LatentODEfuncFive(latent_dim, nhidden)

return LatentODEfunc(latent_dim, nhidden)

def create_paths(

ode_layers,

ode_nhidden,

latent_dim,

dec_nhidden,

rnn_nhidden,

top,

user,

cat,

):

base_path = "{}_{}_{}_{}_{}_{}_{}_{}.pt".format(

ode_layers,

ode_nhidden,

latent_dim,

dec_nhidden,

rnn_nhidden,

top,

user,

cat,

)

ode_path = "ode_" + base_path

rnn_path = "rnn_" + base_path

132

dec_path = "dec_" + base_path

return ode_path, rnn_path, dec_path

class ODERunner(object):

def __init__(

self,

cat,

user,

all_d,

top,

epochs,

ode_layers,

ode_nhidden,

rnn_nhidden,

latent_dim,

dec_nhidden,

):

self.epochs = epochs

self.ode_layers = ode_layers

self.ode_nhidden = ode_nhidden

self.latent_dim = latent_dim

self.dec_nhidden = dec_nhidden

self.rnn_nhidden = rnn_nhidden

self.obs_dim = 2

self.batch_size = 100

133

self.top = top

self.user = user

self.cat = cat

self.device = torch.device(

"cuda:" + str() if torch.cuda.is_available() else "cpu"

)

self.ode_path, self.rnn_path, self.dec_path = create_paths(

self.ode_layers,

self.ode_nhidden,

self.latent_dim,

self.dec_nhidden,

self.rnn_nhidden,

self.top,

self.user,

self.cat,

)

self.ds = PrepareData(

self.user, 200, all_d=all_d, cat=self.cat, top=self.top

)

self.ds = DataLoader(self.ds, batch_size=100)

self.ode_fun = create_latent_ode_func(

self.ode_layers, self.latent_dim, self.ode_nhidden

)

134

self.func = self.ode_fun.to(self.device)

self.rec = RecognitionRNN(

self.latent_dim, self.obs_dim, self.rnn_nhidden, self.batch_size

).to(self.device)

self.dec = Decoder(self.latent_dim, self.obs_dim, self.dec_nhidden).to(

self.device

)

self.params = (

list(self.func.parameters())

+ list(self.dec.parameters())

+ list(self.rec.parameters())

)

self.optimizer = optim.Adamax(self.params, lr=0.01)

self.loss_meter = RunningAverageMeter()

self.train_ts = self.ds.dataset.train_ts

self.criterion = nn.MSELoss()

def train_odernn(self):

for itr in range(0, self.epochs):

for i, traj_data in enumerate(self.ds):

self.optimizer.zero_grad()

h = self.rec.initHidden().to(self.device)

for t in reversed(range(traj_data.size(1))):

obs = traj_data[:, t, :]

out, h = self.rec.forward(obs, h)

135

qz0_mean, qz0_logvar = (

out[:, : self.latent_dim],

out[:, self.latent_dim :],

)

epsilon = torch.randn(qz0_mean.size()).to(self.device)

z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean

pred_z = odeint(

self.func, z0, self.ds.dataset.train_ts

).permute(1, 0, 2)

pred_x = self.dec(pred_z)

loss = (

torch.mean(

torch.mean(

gaussian_log_likelihood(pred_x, traj_data), 0

)

)

* -1

)

mse = self.criterion(pred_x, traj_data)

loss.backward()

self.optimizer.step()

self.loss_meter.update(loss.item())

print("Current MSE: %s" % mse)

print("Iter: {}, running avg elbo: {:.4f}".format(itr, loss))

136

def test_odernn(self, test_traj, train_ts):

with torch.no_grad():

test = self.ds.dataset.test_traj[: self.batch_size, :, :]

test_traj = test

h = self.rec.initHidden().to(self.device)

for t in reversed(range(test_traj.size(1))):

obs = test_traj[:, t, :]

out, h = self.rec.forward(obs, h)

qz0_mean, qz0_logvar = (

out[:, : self.latent_dim],

out[:, self.latent_dim :],

)

epsilon = torch.randn(qz0_mean.size()).to(self.device)

z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean

pred_z = odeint(self.func, z0, train_ts).permute(1, 0, 2)

pred_x = self.dec(pred_z)

def test_mse(pred_x, test_traj, criterion):

li = []

for i in range(0, len(test_traj)):

for z in range(0, len(test_traj[0])):

di = self.criterion(pred_x[i][z], test_traj[i][z])

li.append(di)

print("Average MSE: %s" % torch.mean(torch.tensor(li)))

print("Std MSE: %s" % torch.std(torch.tensor(li)))

137

test_mse(pred_x, test_traj, self.criterion)

li = []

for i in range(0, len(test_traj[0])):

for z in range(0, len(test_traj[0])):

di = torch.dist(test_traj[i][z], pred_x[i][z], 2)

li.append(di)

print("Test Euc Dist: %s" % torch.mean(torch.tensor(li)))

print("Showing State Predictions")

for i in range(0, 5):

act = pd.DataFrame(np.array(test_traj[i]), columns=["x", "y"])

pred = pd.DataFrame(

pred_x[i].detach().numpy(), columns=["x", "y"]

)

plt.figure()

plt.scatter(act.x, act.y, label="actual")

plt.scatter(pred.x, pred.y, label="predicted")

plt.ylim(-2, 2)

plt.xlim(-2, 2)

plt.title("State Prediction for Test Trajectory %s" % i)

plt.legend()

plt.show()

return pred_x, train_ts

def run(

138

cat,

user,

all_d,

top,

epochs,

ode_layers,

ode_nhidden,

rnn_nhidden,

latent_dim,

dec_nhidden,

):

epochs = epochs

ode_layers = ode_layers

ode_nhidden = ode_nhidden

latent_dim = latent_dim

dec_nhidden = dec_nhidden

rnn_nhidden = rnn_nhidden

obs_dim = 2

batch_size = 100

top = top

user = user

cat = cat

device = torch.device(

"cuda:" + str() if torch.cuda.is_available() else "cpu"

)

139

ode_path, rnn_path, dec_path = create_paths(

ode_layers,

ode_nhidden,

latent_dim,

dec_nhidden,

rnn_nhidden,

top,

user,

cat,

)

ds = PrepareData(user, 200, all_d=all_d, cat=cat, top=top)

ds = DataLoader(ds, batch_size=100)

ode_fun = create_latent_ode_func(ode_layers, latent_dim, ode_nhidden)

func = ode_fun.to(device)

rec = RecognitionRNN(latent_dim, obs_dim, rnn_nhidden, batch_size).to(

device

)

dec = Decoder(latent_dim, obs_dim, dec_nhidden).to(device)

params = (

list(func.parameters())

+ list(dec.parameters())

140

+ list(rec.parameters())

)

optimizer = optim.Adamax(params, lr=0.01)

loss_meter = RunningAverageMeter()

train_ts = ds.dataset.train_ts

for itr in range(0, epochs):

for i, traj_data in enumerate(ds):

optimizer.zero_grad()

h = rec.initHidden().to(device)

for t in reversed(range(traj_data.size(1))):

obs = traj_data[:, t, :]

out, h = rec.forward(obs, h)

qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]

epsilon = torch.randn(qz0_mean.size()).to(device)

z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean

pred_z = odeint(func, z0, train_ts).permute(1, 0, 2)

pred_x = dec(pred_z)

loss = (

torch.mean(

torch.mean(gaussian_log_likelihood(pred_x, traj_data), 0)

)

* -1

)

criterion = nn.MSELoss()

141

mse = criterion(pred_x, traj_data)

loss.backward()

optimizer.step()

loss_meter.update(loss.item())

print("Current MSE: %s" % mse)

print("Iter: {}, running avg elbo: {:.4f}".format(itr, loss))

with torch.no_grad():

test = ds.dataset.test_traj[:batch_size, :, :]

test_traj = test

if all_d:

print("Testing model trained on top 5 against %s..." % user)

test_traj = ds.dataset.roger_test_traj[:batch_size, :, :]

train_ts = ds.dataset.roger_test_ts

h = rec.initHidden().to(device)

for t in reversed(range(test_traj.size(1))):

obs = test_traj[:, t, :]

out, h = rec.forward(obs, h)

qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]

epsilon = torch.randn(qz0_mean.size()).to(device)

z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean

pred_z = odeint(func, z0, train_ts).permute(1, 0, 2)

pred_x = dec(pred_z)

def test_mse(pred_x, test_traj, criterion):

li = []

142

for i in range(0, len(test_traj)):

for z in range(0, len(test_traj[0])):

di = criterion(pred_x[i][z], test_traj[i][z])

li.append(di)

print("Average MSE: %s" % torch.mean(torch.tensor(li)))

print("Std MSE: %s" % torch.std(torch.tensor(li)))

test_mse(pred_x, test_traj, criterion)

li = []

for i in range(0, len(test_traj[0])):

for z in range(0, len(test_traj[0])):

di = torch.dist(test_traj[i][z], pred_x[i][z], 2)

li.append(di)

print("Test Euc Dist: %s" % torch.mean(torch.tensor(li)))

print("Showing State Predictions")

for i in range(0, 5):

act = pd.DataFrame(np.array(test_traj[i]), columns=["x", "y"])

pred = pd.DataFrame(pred_x[i].detach().numpy(), columns=["x", "y"])

plt.figure()

plt.scatter(act.x, act.y, label="actual")

plt.scatter(pred.x, pred.y, label="predicted")

plt.ylim(-2, 2)

plt.xlim(-2, 2)

plt.title("State Prediction for Test Trajectory %s" % i)

plt.legend()

143

plt.show()

if all_d:

print(

"Testing model trained on top 5 against %s..."

% "Sean P. Sullivan"

)

test_traj = ds.dataset.sean_test_traj[:batch_size, :, :]

train_ts = ds.dataset.sean_test_ts

h = rec.initHidden().to(device)

for t in reversed(range(test_traj.size(1))):

obs = test_traj[:, t, :]

out, h = rec.forward(obs, h)

qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]

epsilon = torch.randn(qz0_mean.size()).to(device)

z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean

pred_z = odeint(func, z0, train_ts).permute(1, 0, 2)

pred_x = dec(pred_z)

def test_mse(pred_x, test_traj, criterion):

li = []

for i in range(0, len(test_traj)):

for z in range(0, len(test_traj[0])):

di = criterion(pred_x[i][z], test_traj[i][z])

li.append(di)

print("Average MSE: %s" % torch.mean(torch.tensor(li)))

144

print("Std MSE: %s" % torch.std(torch.tensor(li)))

test_mse(pred_x, test_traj, criterion)

li = []

for i in range(0, len(test_traj[0])):

for z in range(0, len(test_traj[0])):

di = torch.dist(test_traj[i][z], pred_x[i][z], 2)

li.append(di)

print("Test Euc Dist: %s" % torch.mean(torch.tensor(li)))

print("Showing State Predictions")

for i in range(0, 5):

act = pd.DataFrame(np.array(test_traj[i]), columns=["x", "y"])

pred = pd.DataFrame(

pred_x[i].detach().numpy(), columns=["x", "y"]

)

plt.figure()

plt.scatter(act.x, act.y, label="actual")

plt.scatter(pred.x, pred.y, label="predicted")

plt.ylim(-2, 2)

plt.xlim(-2, 2)

plt.title("State Prediction for Test Trajectory %s" % i)

plt.legend()

plt.show()

print(

"Testing model trained on top 5 against %s..." % "Kerin Okeefe"

145

)

test_traj = ds.dataset.kerin_test_traj[:batch_size, :, :]

train_ts = ds.dataset.kerin_test_ts

h = rec.initHidden().to(device)

for t in reversed(range(test_traj.size(1))):

obs = test_traj[:, t, :]

out, h = rec.forward(obs, h)

qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]

epsilon = torch.randn(qz0_mean.size()).to(device)

z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean

pred_z = odeint(func, z0, train_ts).permute(1, 0, 2)

pred_x = dec(pred_z)

def test_mse(pred_x, test_traj, criterion):

li = []

for i in range(0, len(test_traj)):

for z in range(0, len(test_traj[0])):

di = criterion(pred_x[i][z], test_traj[i][z])

li.append(di)

print("Average MSE: %s" % torch.mean(torch.tensor(li)))

print("Std MSE: %s" % torch.std(torch.tensor(li)))

test_mse(pred_x, test_traj, criterion)

li = []

for i in range(0, len(test_traj[0])):

for z in range(0, len(test_traj[0])):

146

di = torch.dist(test_traj[i][z], pred_x[i][z], 2)

li.append(di)

print("Test Euc Dist: %s" % torch.mean(torch.tensor(li)))

print("Showing State Predictions")

for i in range(0, 5):

act = pd.DataFrame(np.array(test_traj[i]), columns=["x", "y"])

pred = pd.DataFrame(

pred_x[i].detach().numpy(), columns=["x", "y"]

)

plt.figure()

plt.scatter(act.x, act.y, label="actual")

plt.scatter(pred.x, pred.y, label="predicted")

plt.ylim(-2, 2)

plt.xlim(-2, 2)

plt.title("State Prediction for Test Trajectory %s" % i)

plt.legend()

plt.show()

torch.save(func.state_dict(), ode_path)

torch.save(rec.state_dict(), rnn_path)

torch.save(dec.state_dict(), dec_path)

147

