
FINDING SECOND-ORDER CLUBS

By

YAJUN LU

Bachelor of Science in Industrial Engineering
Zhongyuan University of Technology

Zhengzhou, Henan, China
2008

Master of Science in Industrial Engineering
Huazhong University of Science and Technology

Wuhan, Hubei, China
2011

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
July, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/289095818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


COPYRIGHT c©

By

YAJUN LU

July, 2019



FINDING SECOND-ORDER CLUBS

Dissertation Approved:

Dr. Balabhaskar Balasundaram

Dissertation Advisor

Dr. Austin Buchanan

Dr. Chaoyue Zhao

Dr. Jay Schweig

iii



Dedicated to my

beloved parents, Kekuan Lu and Chunling Zhan,

beloved wife, Qian Gao,

beloved son, Jackie Lu,

and beloved daughter, Cathy Lu.

The dedication reflects the views of the author and are not endorsed by committee members or Oklahoma
State University.

iv



ACKNOWLEDGMENTS

First and foremost, it is my honor to be Dr. Balabhaskar Balasundaram’s Ph.D. student.

I would like to express my sincere gratitude to Dr. Balasundaram; he was one of the biggest

personal influences on my academic studies as well as my life. He used his own practical

actions to demonstrate what a great professor should do and how to work with students.

He has patience, motivation, and immense knowledge. My dissertation could not have been

completed without his guidance. His guidance helped me throughout my Ph.D. life. During

my studies, whenever I needed help, he not only helped me to find the answers but also

taught me how to solve the problem. I really appreciate that he always used consideration

and respect in telling me what I should do and gave me appropriate criticism and praise.

These greatly helped me develop confidence. I worked with Dr. Balasundaram for only a few

years, but his influence on me is permanent. I will bring his best qualities to my future work.

I am deeply indebted to my committee members, Dr. Austin Buchanan, Dr. Chaoyue Zhao

and Dr. Jay Schweig for their guidance, insightful comments and encouragement throughout

my doctoral research and coursework. Without their support and help, I could not have

completed my dissertation. Additionally, I thank Dr. Austin Buchanan and Dr. Sunderesh

Heragu for their generous help during my academic job search.

I am very grateful to the faculty and staff of Industrial Engineering and Management

(IEM) department, especially, Dr. Sunderesh Heragu, Dr. Tieming Liu, Dr. Manjunath Kamath,

Dr. Farzad Yousefian, Dr. Juan Borrero for their help throughout my Ph.D. study. In addition,

Acknowledgements reflect the views of the author and are not endorsed by committee members or
Oklahoma State University.

v



special thanks are due to Dr. Tieming Liu, Dr. Sunderesh Heragu and Dr. Manjunath Kamath

who provided kind and insightful advice when I was faced with difficult choices. I would also

like to thank Ms. Laura Brown for her endless support and help since I joined the department.

Stillwater Toastmasters Club left me with many wonderful memories. In this club, the

seasoned members, Dr. Deke Johnson, and Dr. Marley Beem were enthusiastic and patient in

helping me improve my public speaking and leadership skills. I express my warm and sincere

thanks to both of them and other members in the club. Financial support for my Ph.D. study

came from the IEM department, the National Science Foundation (Award Number: 1404971),

and industry collaborative project with Bay Valley Foods, LLC. I would like to thank them

for their generous support. The computational experiments reported in this dissertation were

conducted at the Oklahoma State University High-Performance Computing Center.

I would like to thank my friends, just to name a few, Hao Pan, Akash Gupta, Sadra

Babaei, Hosseinali Salemi, Hamidreza Validi, Ronny Pacheco, Devaraja Radha Krishnan,

Hang Zeng, Dr. Xiao Sun, Tengfei Sun, Mostafa Amini, Dr. Zhuqi Miao, Dr. Shuzhen Sun,

Dr. Juan Ma, Dr. Saeed Piri, Dr. Ali Bagheri, and Christina Anaya for making my life colorful

at Stillwater.

Last but not least, I thank my parents Kekuan Lu and Chunling Zhan, my wife Qian

Gao, two lovely kids, and two brothers. From my first day in school, my parents worked hard

and tried their best to provide me better education opportunities. Without their support,

encouragement and selfless dedication, I could not have become who I am. My wife did

everything she could to support my Ph.D. study and always encouraged me. My two lovely

kids gave me the passion and motivation to complete my graduate program. I am grateful to

my family for their constant support throughout my program.

Acknowledgements reflect the views of the author and are not endorsed by committee members or
Oklahoma State University.

vi



Name: YAJUN LU

Date of Degree: July, 2019

Title of Study: FINDING SECOND-ORDER CLUBS

Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT

Abstract: Modeling data entities and their pairwise relationships as a graph is a popular
technique to visualizing and mining information from datasets in a variety of fields such
as social networks, biological networks, web graphs, and document networks. A powerful
technique in this setting involves the detection of clusters. Clique, a subset of pairwise adjacent
vertices, is often viewed as an idealized representation of a cluster. However, in the presence
of errors in the data on which the graph is based, clique requirement may be too restrictive,
resulting in small clusters or clusters that miss key members. Consequently, graph-theoretic
clique generalizations based on the principle of relaxing elementary structural properties of a
clique have been proposed in diverse fields to describe clusters of interest. For example, an
s-club is a distance-based clique relaxation originally introduced in social network analysis to
model cohesive social subgroups. In this dissertation, we consider low-diameter clusters that
require another property like robustness, heredity, or connectedness (parameterized by r) to
hold, in addition to the diameter. Specifically, we study s-clubs with side-constraints to make
them less “fragile”, i.e., less susceptible to increase in the diameter if vertices (and edges)
are deleted. The overall goal of this dissertation is to develop effective exact algorithms
with an emphasis on s = 2, 3, 4 and low values of r to solve the maximum r-robust s-club
and r-hereditary s-club problems on moderately large instances (around 104 vertices and
less than 5% density). We analyze the complexity of the associated feasibility testing and
optimization problems. Cut-like formulations are proposed for the maximum r-robust s-club
problem with r ≥ 2 and s ∈ {2, 3, 4}. We explore preprocessing techniques and develop a
graph decomposition approach for solving such problems. The computational benefits of each
of the algorithmic ideas are empirically evaluated through our computational studies. Our
approach permits us to solve problems optimally on very large and sparse real-life networks.

vii



TABLE OF CONTENTS

Chapter Page

I Introduction 1

1.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Literature Review 10

2.1 The maximum s-club problem . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 IP formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Exact algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Second order s-clubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 IP formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Preprocessing techniques and heuristics . . . . . . . . . . . . . . . . . 19

2.3 Research statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 21

III Computational Complexity 23

3.1 NP-hardness of optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 NP-hardness of feasibility testing . . . . . . . . . . . . . . . . . . . . . . . . 26

IV Preprocessing and Graph Decomposition 34

4.1 Construction heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Vertex peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Vertex peeling for the r, s-MRCP . . . . . . . . . . . . . . . . . . . . 36

viii



Chapter Page

4.2.2 Vertex peeling for the r, s-MHCP . . . . . . . . . . . . . . . . . . . . 38

4.3 Edge peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Block decomposition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Block decomposition for the r, s-MRCP . . . . . . . . . . . . . . . . . 41

4.4.2 Block-by-block decomposition for the r, s-MHCP . . . . . . . . . . . 43

4.4.3 Block-by-block decomposition for the r, s-MCCP . . . . . . . . . . . . 44

V Second Order 2-Clubs 46

5.1 Strengthened IP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Extended IP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Branch-and-Cut algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Test-bed description . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.3 Results for the maximum r-robust 2-club problem . . . . . . . . . . . 54

5.4.4 Results for the maximum r-hereditary 2-club problem . . . . . . . . . 67

5.4.5 Results for the maximum biconnected 2-club problem . . . . . . . . . 68

5.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI Second Order s-Clubs 71

6.1 Maximum r-robust s-club problem . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Cut-like IP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.2 Branch-and-Cut algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.3 Hybrid B/B decomposition algorithm . . . . . . . . . . . . . . . . . . 76

6.2 Extension to r-hereditary s-club . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Branch-and-Cut algorithm . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



Chapter Page

6.2.2 Hybrid B/B decomposition algorithm . . . . . . . . . . . . . . . . . . 80

6.3 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 Results for the r, s-MRCP . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Results for the r, s-MHCP . . . . . . . . . . . . . . . . . . . . . . . . 84

VII Conclusion and Future Work 86

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A The algorithm for finding all blocks described in Section 4.4 96

B The r-core peeling described in Section 4.2 97

x



LIST OF TABLES

Table Page

2.1 Complexity results related to s-Club and 2-Club . . . . . . . . . . . . . . . 11

2.2 Complexity results related to second order s-clubs . . . . . . . . . . . . . . . 16

5.1 Number of vertices, edges, and edge density for the Tenth DIMACS benchmarks

used in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Number of vertices, edges, and edge density for the SNAP benchmarks used

in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Features of six solvers used in this computational study . . . . . . . . . . . . 54

5.4 Heuristic solution size (Heur), the number of new edges |E ′| and blocks, and

total time in seconds for the heuristic and preprocessing (time) on the DIMACS

instances for r = 2, . . . , 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 The root node optimality gap between the objective of LP relaxation and IP

optimal value is summarized for OF and SF . . . . . . . . . . . . . . . . . . 57

5.6 The 2-robust 2-club number and the running time in seconds for OF, SF,

BCSF, PPF, EXT and B/B on the DIMACS test-bed . . . . . . . . . . . . . 58

5.7 The 3-robust 2-club number and the running time in seconds for OF, SF,

BCSF, PPF, EXT and B/B on the DIMACS test-bed . . . . . . . . . . . . . 59

5.8 The 4-robust 2-club number and the running time in seconds for OF, SF,

BCSF, PPF, EXT and B/B on the DIMACS test-bed . . . . . . . . . . . . . 60

5.9 The 5-robust 2-club number and the running time in seconds for OF, SF,

BCSF, PPF, EXT and B/B on the DIMACS test-bed . . . . . . . . . . . . . 61

xi



Table Page

5.10 The 6-robust 2-club number and the running time in seconds for OF, SF,

BCSF, PPF, EXT and B/B on the DIMACS test-bed . . . . . . . . . . . . . 62

5.11 The 7-robust 2-club number and the running time in seconds for OF, SF,

BCSF, PPF, EXT and B/B on the DIMACS test-bed . . . . . . . . . . . . . 63

5.12 Heuristic (Heur), the number of new edges |E ′| and blocks, and total time in

seconds for the heuristic solution size and preprocessing (time) on the SNAP

instances for r = 2, 3, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.13 The best objective and running time in seconds for OF, SF, BCSF, PPF, EXT

and B/B on the SNAP test-bed . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.14 Average number of edges (|E|) of original graph G, new edges (|E ′|) and blocks

(#block) of resulting graph G′ on the URG instances is reported . . . . . . . 65

5.15 A comparison of running time (seconds) averaged over 10 samples on URG

instances; fastest(on average) running times are highlighted in bold font . . . 66

5.16 The largest r-hereditary 2-club number and running times in seconds for OF

and B/B on DIMACS test-bed; The fastest solver is highlighted in bold font 68

5.17 Comparison of running times in seconds and optimality gap between B/BYBC

and YBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Best objectives (Obj) and running times in seconds including preprocessing

(PP), Gurobi solve-time (grbSolve) and wall-clock time (Wall) are reported on

DIMACS instances for the r, s-MRCP with r ∈ {2, 3, 4} and s ∈ {3, 4} . . . . 83

6.2 Best objectives (Obj) and running times in seconds including preprocessing

(PP), Gurobi solve-time (grbSolve) and wall-clock time (Wall) are reported on

DIMACS instances for the r, s-MHCP with r ∈ {2, 3, 4} and s ∈ {3, 4} . . . . 84

xii



LIST OF FIGURES

Figure Page

1.1 Vertices {1, 5, 7} form a clique in the graph. . . . . . . . . . . . . . . . . . . 1

1.2 A graph that decomposes into two blocks . . . . . . . . . . . . . . . . . . . . 4

1.3 The subset {1, 2, 3, 4, 5, 7} is the maximum 2-club in the graph. . . . . . . . 5

1.4 A star graph (K1,5) whose vertex set is a 2-club. However, the subset

{1, 2, 3, 4, 5} is an independent set in the graph obtained by removing the

center of the star {0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Examples about 2-club (left) and 2-robust 2-club (right) . . . . . . . . . . . 7

1.6 The vertex set of graph C4 is a 2-hereditary 2-club, but it is not a 2-robust

2-club. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 The vertex set of C5 forms a 2-connected 2-club, but it is neither a 2-hereditary

2-club nor a 2-robust 2-club. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 An illustration of the reduction for odd s ≥ 5 . . . . . . . . . . . . . . . . . 29

3.2 An illustration of the reduction for even s ≥ 5 . . . . . . . . . . . . . . . . . 32

4.1 A graph without vertex peeling . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Vertices {6, 7, 8} and their incident edges are deleted after vertex peeling. . . 37

4.3 A graph G without edge peeling. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Edges {1, 2}, {2, 3}, {3, 5}, {3, 7}, {4, 5}, {4, 7} are deleted by edge peeling

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 A graph G decomposes into two blocks B1 and B2 . . . . . . . . . . . . . . . 42

xiii



Figure Page

5.1 An example for illustrating the strengthened formulation . . . . . . . . . . . 48

xiv



CHAPTER I

Introduction

Modeling data entities and their pairwise relationships as a graph is a popular approach to

visualizing and mining information from datasets in a variety of fields [Cook and Holder, 2006,

Porter and Howison, 2017]. Typically, the set of vertices represents individuals, organizations

or entities, and the set of edges corresponds to the ties among them. A powerful approach in

this setting involves the detection of clusters—either by finding those of the largest cardinality

(or weight), finding those that cover or partition the graph, or by enumerating all inclusionwise

maximal clusters. Before either of these combinatorial optimization problems could be solved,

we need to formally define a cluster.

4

23

6

5

1

7

Figure 1.1: Vertices {1, 5, 7} form a clique in the graph.

Cliques, a subset of pairwise adjacent vertices, are often viewed as an idealized repre-

sentation of a cluster. Taking the graph in Figure 1.1 for instance, vertices {1, 5, 7} form

a clique in the graph. However, in the presence of errors in the data on which the graph

is based, clique requirement may be too restrictive, resulting in small clusters or clusters

that miss key members. Consequently, graph-theoretic clique generalizations based on the

principle of relaxing elementary structural properties of a clique have been proposed in diverse

1



fields to describe clusters of interest [Pattillo et al., 2013b]. For instance, a clique can be

equivalently defined as a subset of vertices with pairwise distances at most one. Increasing the

pairwise distance bound leads to a distance-based “clique relaxation.” The more well-studied

relaxations of cliques can be typically grouped into three categories.

(i) Degree based relaxations such as k-core and k-plex [Balasundaram et al., 2011, McClosky

and Hicks, 2012, Guo et al., 2010];

(ii) Edge density based relaxations such as quasi-clique [Pattillo et al., 2013a, Pajouh et al.,

2014];

(iii) Distanced based relaxations e.g. k-clique and k-club [Shahinpour and Butenko, 2013b,

Bourjolly et al., 2002, Luce, 1950].

Such models are less sensitive than the clique model to edges that may be missing in the

graph due to erroneous or incomplete underlying data. Before reviewing these ideas, we

introduce the necessary notations next.

1.1 Notations and definitions

We list some of the notations used and recall some basic graph theory concepts (Refer [Diestel,

1997] or [Bondy and Murty, 2008] for additional details). We are given a graph G = (V,E) of

order n and size m with a vertex set V := [n] and the edge set E ⊆
(
V
2

)
, where [n] := {1, . . . , n}

for any positive integer n and
(
V
2

)
:= {{u, v} : u, v ∈ V, u 6= v}. When left unspecified, we use

V (G) and E(G) to denote the vertex and edge sets of G, respectively. The complete graph on

n vertices is denoted by Kn, the complete bipartite graph with partitions of size p and q by

Kp,q, the n-vertex path is denoted Pn, and the n-cycle is denoted Cn. Given two disjoint graphs

H and G, the graph join operation, denoted as H ∗G, produces the graph that “combines” G

and H by joining every vertex from G and every vertex from H using a new edge. Formally,

2



V (H ∗G) = V (H) ∪ V (G) and E(H ∗G) = E(H) ∪E(G) ∪ {{u, v} : u ∈ V (H), v ∈ V (G)} .

If two graphs G and H are isomorphs, we denote that by G ' H. We denote by G[S], the

subgraph induced by a subset of vertices S.

The distance between a pair of vertices i and j in G, which is denoted by dG(i, j), refers to

the length of the shortest path between vertices i and j. Let diam(G) denote the diameter of G

representing the maximum distance between any pair of vertices in a connected graph G. For

each vertex v ∈ V , we denote by NG(v), the open neighborhood of v, i.e., the set of all adjacent

vertices of v. The closed neighborhood of v includes itself, denoted by NG[v] = NG(v) ∪ {v}.

When the graph under consideration is readily apparent, we drop the subscript used to

identify the graph. Analogously, given a positive integer s, we denote by N s
G(v), the set of

distance-s open neighbors of v, and formally, N s
G(v) = {u ∈ V : 1 ≤ dG(u, v) ≤ s}. The set of

distance-s closed neighbors of v is denoted by N s
G[v] = {u ∈ V : dG(u, v) ≤ s}. Let degG(v)

denote the degree of v corresponding to the cardinality of NG(v).

In addition, we denote by δ(G) = min{degG(v) : v ∈ V }, the minimum vertex degree of

G. For convenience, we denote by G− v and G− e, the deletion of a vertex v ∈ V and an

edge e ∈ E from the graph, respectively. Note that when a vertex is deleted, all its incident

edges are also deleted. Similarly, we denote the deletion of a subset S of vertices (or edges) by

G− S. We also make use of the edge indicator function as follows: 1E(i, j) = 1 if {i, j} ∈ E

and 1E(i, j) = 0 otherwise.

A graph G of order at least k+ 1 is said to be k-connected for a positive integer k if G−S

is connected for every vertex-subset S containing at most k − 1 vertices. Every non-empty

graph is 0-connected and every non-trivial connected graph is 1-connected. The largest

integer k for which G is k-connected is called the connectivity of G, denoted as κ(G). Note

that for any non-trivial G, κ(G) is zero if and only if G is disconnected, and κ(G) = n− 1

if and only if G is Kn. A block is a maximal biconnected (i.e., 2-connected) subgraph of

a given graph G. Figure 1.2 shows a graph which decomposes into two blocks. A subset

3



D ⊆ V \ {u, v} is called a u, v-vertex separator for distinct non-adjacent vertices u and v if u

is disconnected from v in the subgraph G−D.

4

2

3

1

6
5

Figure 1.2: A graph that decomposes into two blocks

1.2 Motivation

Pattillo et al. [2013b] coined the term “elementary clique-defining property” for several graph

properties that can equivalently define a clique. For instance, given a graph G = (V,E), a

subset of vertices C forms a clique if it satisfies any one of the following properties.

a) The pairwise distances between vertices in C is at most one, i.e., for every u, v ∈ C, we

have dG(u, v) ≤ 1.

b) The diameter of the subgraph induced by C is at most one, i.e., diam(G[C]) ≤ 1.

c) The connectivity of the subgraph induced by C is at least |C|−1, i.e., κ(G[C]) ≥ |C|−1.

Systematically relaxing the bounds involving the elementary clique-defining properties

leads to various clique relaxations. Pattillo et al. [2013b] discussed the issues related to the

development of such clique relaxations at great length and present a taxonomic system to

classify them. One such approach is to classify them based on the order of the clique relaxation.

The parameterized models obtained by relaxing any one elementary clique-defining property

4



is called a first-order clique relaxation. Those that relax two such properties simultaneously

are called second-order clique relaxations. Consider the following definitions.

Definition 1 (Luce [1950]). Given a positive integer s, a subset of vertices S is called an

s-clique if dG(u, v) ≤ s for every pair of vertices u, v ∈ S.

Definition 2 (Luce [1950], Mokken [1979]). Given a positive integer s, a subset of vertices

S is called an s-club if diam(G[S]) ≤ s.

Both models are distance-based first-order clique relaxations. That is, they generalize a

clique by relaxing one elementary clique-defining property, and the clique is obtained as a

special case when s = 1. Clearly, the fundamental difference between an s-clique and s-club is

that the distance bound is applicable to the original graph in the former, and to the induced

subgraph in the latter. Hence, every s-club is an s-clique, but not vice versa. The s-clubs

are more cohesive because they guarantee that the bounded-length paths between pairs of

vertices are completely contained within the cluster.

6

4

23

5

1

7

Figure 1.3: The subset {1, 2, 3, 4, 5, 7} is the maximum 2-club in the graph.

Originally introduced to model cohesive subgroups in social networks [Luce, 1950, Mokken,

1979], s-clubs can be used to model low-diameter clusters in many different settings for

smaller values of s such as social network analysis [Wasserman and Faust, 1994] and bioinfor-

matics [Balasundaram et al., 2005]. Low value of parameter s implies that pairwise distances

inside the group are short, and consequently, passing messages takes few hops/members

in the s-club. In particular, the 2-club (see Figure 1.3) represents clusters in which every

5



pair of vertices are either adjacent, or have a common neighbor inside the cluster. Hence,

2-clubs formalize the notion of a friend-of-a-friend social subgroup in which members may be

directly acquainted or related through a mutual acquaintance inside the cluster. Another

example is the protein interaction network (PIN) which models the proteins in an organism

as vertices and their interactions as edges. Cluster detection in a PIN is used to identify

protein complexes that may have important cellular functions. We refer the reader to surveys

by Shahinpour and Butenko [2013a] and by Balasundaram and Pajouh [2013] for more

information on s-clubs.

0

1
2

3

4

5

1
2

3

4

50

(a) (b)

Figure 1.4: A star graph (K1,5) whose vertex set is a 2-club. However, the subset {1, 2, 3, 4, 5}
is an independent set in the graph obtained by removing the center of the star {0}.

Although s-clubs ensure low pairwise distances inside the cluster, they may not be robust

in the sense that deleting a single vertex could increase the distances, even disconnect the

graph. An extreme example is a 2-club that induces a star graph (K1,q), which results in an

independent set when the center of the star is deleted from the 2-club (see Figure 1.4). In

general, s-club property is not hereditary under vertex deletion for s ≥ 2, i.e., the diameter

bound may not be preserved even if the induced subgraph remains connected under vertex

deletion. These observations motivated various authors to consider the following second-order

clique relaxations.

Definition 3 (Veremyev and Boginski [2012]). Given a graph G and positive integers r

and s, a subset of vertices S is called an r-robust s-club if there are at least r (internally)

6



1

2

3

4

5

6

2

1

3

4

5

6

Figure 1.5: Examples about 2-club (left) and 2-robust 2-club (right)

vertex-disjoint paths of length at most s in G[S] between every distinct pair of vertices in S.

Figure 1.5 illustrates the difference between a 2-club and a 2-robust 2-club. The graph

on the left in Figure 1.5 is a 2-club but it is not a 2-robust 2-club, since there is only one

vertex-disjoint path of length at most two between the vertices 1 and 4. The graph on the

right in Figure 1.5 is a 2-robust 2-club, in which there are at least two vertex-disjoint paths

of length at most two between every pair of vertices.

By Definition 3, every r-robust s-club S must contain at least r + 1 vertices except when

the definition is trivially satisfied, i.e., |S| ≤ 1. Furthermore, the only r-robust s-clubs that

contain exactly r+1 vertices are (r+1)-vertex cliques. As long as the r-robust s-club contains

two vertices that are not adjacent, it must contain at least r + 2 vertices.

Definition 4 (Pattillo et al. [2013b]). Given a graph G and positive integers r and s, a

subset of vertices S is called an r-hereditary s-club if diam(G[S \ T ]) ≤ s for all T ⊆ S with

|T | < r.

In Definition 4, we say S admits deletion sets with fewer than r vertices. Note that

if r = 1, Definitions 3 and 4 coincide with Definition 2 for every positive integer s, i.e.,

every s-club is both 1-hereditary and 1-robust. We note that Definition 4 deviates slightly

from the original definition of Pattillo et al. [2013b], which allowed deletion sets up to size

r. Our redefinition is more convenient to use especially when working with both models

simultaneously. When r is at least two, Definitions 3 and 4 diverge as we discuss next.

7



Lemma 1. Consider a graph G = (V,E), and integers s ≥ 2 and r ≥ 2. If S ⊆ V is an

r-robust s-club then S is r-hereditary.

Proof. Suppose S is an r-robust s-club with |S| ≥ r + 2, as the claim is trivial otherwise.

Consider a pair of vertices u, v ∈ S, which by Definition 3 are connected by at least r internally

vertex-disjoint paths in G[S] of length at most s. Any deletion set T with less than r vertices

can disconnect at most r − 1 of those paths. Hence, dG[S\T ](u, v) = dG[S](u, v) ≤ s.

1

23

4

Figure 1.6: The vertex set of graph C4 is a 2-hereditary 2-club, but it is not a 2-robust 2-club.

It is natural to consider a converse of Lemma 1 that says an r-hereditary s-club S with

at least r + 1 vertices is also r-robust. However, that is not true. Consider a 4-cycle (see

Figure 1.6), the vertex set of which is a 2-hereditary 2-club that contains more than 3 vertices,

but it is not 2-robust. The distinction stems from the fact that adjacent pairs of vertices in

an r-hereditary s-club are not required to satisfy any additional requirements—their pairwise

distance remains the same under any number of vertex deletions, not including the end-points

themselves. However, in an r-robust s-club, adjacent vertex pairs still need to be connected

by at least r − 1 additional vertex-disjoint paths of length s or less.

Definition 5 (Yezerska et al. [2017]). Given a graph G and positive integers r and s, a

subset of vertices S is called an r-connected s-club if diam(G[S]) ≤ s and κ(G[S]) ≥ r.

By Menger’s Theorem [Menger, 1927], every non-trivial s-club is 1-connected, r-hereditary

and r-robust s-clubs are r-connected. By contrast, although the vertices of a 5-cycle form a

2-connected 2-club, it is neither a 2-hereditary 2-club nor a 2-robust 2-club (see Figure 1.7).

8



1

23

4 5

Figure 1.7: The vertex set of C5 forms a 2-connected 2-club, but it is neither a 2-hereditary
2-club nor a 2-robust 2-club.

Note that deleting any vertex in a C5 will increase the diameter, and every distinct pair of

vertices have exactly one path of length at most two. In this dissertation, we focus on the

r-robust s-club model and wherever possible extend our approaches to r-hereditary s-club

and r-connected s-club.

9



CHAPTER II

Literature Review

The focus of this dissertation is on combinatorial optimization problems seeking a maximum

cardinality s-club that also satisfies an additional property of robustness, heredity, or connec-

tivity following Definitions 3, 4, and 5 respectively, the so-called second-order s-clubs. In this

chapter we review relevant literature on computational complexity, integer programming (IP)

formulations, preprocessing techniques, and exact algorithms for closely related problems.

Based on the literature review, we identify some research gaps and thus develop our research

statement.

2.1 The maximum s-club problem

The maximum s-club problem is to seek an s-club of maximum cardinality. First, we present

the decision version of the maximum s-club problem.

Problem: s-Club (for integer constant s).

Input: Graph G and a positive integer c.

Question: Does G contain an s-club of size at least c?

Bourjolly et al. [2002] showed that s-Club is NP-complete for any constant positive integer;

they remain NP-complete even when restricted to graphs of diameter s+ 1 [Balasundaram

et al., 2005]. Testing inclusionwise maximality of s-clubs is also NP-hard [Pajouh and

Balasundaram, 2012]. The s-Club remains NP-hard on 4-chordal graphs for every positive

integer s [Golovach et al., 2014], bipartite graphs for every fixed s ≥ 3, and on chordal

graphs for every even fixed s ≥ 2 [Asahiro et al., 2010]. However, s-Club is polynomial-time

10



Table 2.1: Complexity results related to s-Club and 2-Club
Model Key results

s-Club

NP-complete for every positive integer s [Bourjolly et al., 2002], even when
restricted to graphs of diameter s+ 1 [Balasundaram et al., 2005]
NP-hard on 4-chordal graphs for every positive integer s [Golovach et al., 2014],
bipartite graphs for every fixed s ≥ 3, and on chordal graphs for every even fixed
s ≥ 2 [Asahiro et al., 2010]. Testing inclusionwise maximality of s-clubs is also
NP-hard [Pajouh and Balasundaram, 2012]
Polynomial-time solvable on trees, interval graphs, and graphs with bounded
tree- or cliquewidth for every fixed s ≥ 1 [Schäfer, 2009], chordal bipartite,
strongly chordal and distance hereditary graphs for every fixed s ≥ 1, AT-free
graphs for all positive fixed s ≥ 2, and weakly chordal graphs for every fixed odd
s [Golovach et al., 2014]

Inapproximable within a factor of n
1
2
−ε in general graphs for any ε > 0 and a

fixed s ≥ 2, and a factor of n
1
3
−ε for chordal and split graphs with even s [Asahiro

et al., 2010]
Fixed-parameter tractable when parameterized by both solution size k and
dual parameter d = |V | − k [Schäfer et al., 2012]

2-Club
NP-hard on split graphs [Asahiro et al., 2010], graphs with clique cover number
three and diameter three, graphs with domination number two and diameter
three, graphs with distance one to bipartite graphs, and connected graphs with
average degree at most α for any constant α > 2 [Hartung et al., 2015]
Polynomial-time solvable on bipartite graphs in O(n5) [Schäfer, 2009]
Fixed-parameter tractable when parameterized by distance to cographs [Har-
tung et al., 2015]

solvable on trees, interval graphs, and graphs with bounded tree- or cliquewidth for every

fixed s ≥ 1 [Schäfer, 2009], chordal bipartite, strongly chordal and distance hereditary graphs

for every fixed s ≥ 1, AT-free graphs for all positive fixed s ≥ 2, and weakly chordal graphs

for every fixed odd s [Golovach et al., 2014]. These and other complexity results related to

s-Club as well as the special case 2-Club are summarized in Table 2.1.

11



2.1.1 IP formulations

An IP formulation for the maximum s-club problem was first proposed by Bourjolly et al.

[2002] and this so-called “chain formulation” is presented next.

max
∑
i∈V

xi (2.1)

s.t. xi + xj ≤
∑

P t
ij∈Cs

ij

ytij + 1 ∀{i, j} ∈
(
V

2

)
\ E : Cs

ij 6= ∅ (2.2)

ytij ≤ xr ∀r ∈ V (P t
ij), P

t
ij ∈ C (2.3)

xi + xj ≤ 1 ∀{i, j} ∈
(
V

2

)
\ E : Cs

ij = ∅ (2.4)

xi ∈ {0, 1} ∀i ∈ V (2.5)

ytij ∈ {0, 1} ∀P t
ij ∈ C (2.6)

In formulation (2.1)–(2.6), Cs
ij is the collection of all paths of length at most s linking vertices

i and j in graph G and C := ∪i,j∈VCs
ij. Buchanan and Salemi [2017] developed a path-like

formulation which dominates this “chain formulation”.

Veremyev and Boginski [2012] proposed a compact IP formulation for the maximum s-club

problem with O(sn2) variables and constraints. Compared with the O(ns+1) worst-case size

of the chain formulation (2.1)–(2.6), this model represents a significant improvement in size

and is presented next.

max
∑
i∈V

xi (2.7)

s.t. xi + xj − 1 ≤ 1E(i, j) +
s∑
`=2

z`ij i, j ∈ V : i < j (2.8)

z2
ij ≤ xi, z2

ij ≤ xj, z2
ij ≤

∑
t∈N(i)∩N(j)

xt i, j ∈ V : i < j (2.9)

12



z2
ij ≥

1

n

( ∑
t∈N(i)∩N(j)

xt

)
+ (xi + xj − 2) i, j ∈ V : i < j (2.10)

z`ij ≤ xi z`ij ≤
∑
t∈N(i)

z`−1
tj i, j ∈ V : i < j, ` = 3, . . . , s (2.11)

z`ij ≥
1

n

( ∑
t∈N(i)

z`−1
tj

)
+ (xi − 1) i, j ∈ V : i < j, ` = 3, . . . , s (2.12)

z`ij ∈ {0, 1} ∀i, j ∈ V : i < j, ` = 2, . . . , s (2.13)

xi ∈ {0, 1} ∀i ∈ V (2.14)

In formulation (2.7)–(2.14), the z`ij = 1 if and only if the internal vertices on some path of

length exactly ` between i and j are all included in the solution containing i and j. Using

binary variables u`ij that take the value one if all the internal vertices on some path of length

at most ` between i and j are included in the solution, Veremyev et al. [2015] reformulated

the problem as follows.

max
∑
i∈V

xi (2.15)

s.t. xi + xj − 1 ≤ usij ∀{i, j} ∈
(
V

2

)
(2.16)

u1
ij = 0 ∀{i, j} ∈

(
V

2

)
\ E (2.17)

u1
ij = u`ij ∀{i, j} ∈ E, ` = 2, . . . , s (2.18)

u`ij ≤
∑
t∈N(i)

u`−1
tj ∀{i, j} ∈

(
V

2

)
\ E, ` = 2, . . . , s (2.19)

u`ij ≤ xi, u`ij ≤ xj ∀{i, j} ∈
(
V

2

)
, ` = 1, . . . , s (2.20)

u`ij = u`ji ∀{i, j} ∈
(
V

2

)
, ` = 1, . . . , s (2.21)

u`ij ∈ [0, 1] ∀{i, j} ∈
(
V

2

)
, ` = 1, . . . , s (2.22)

xi ∈ {0, 1} ∀i ∈ V (2.23)

13



Recently, a cut-like formulation for the maximum s-club problem based on length-bounded

vertex separators was presented by Buchanan and Salemi [2017], and the reported computa-

tional results showed that their algorithm using this formulation outperforms directly solving

other IP formulations in the literature. Before introducing this formulation, we need to define

a length-s u, v-separator (see for instance Lovász et al. [1978], Buchanan and Salemi [2017]).

Definition 6. A subset C ⊆ V \{u, v} of vertices is called a length-s u, v-separator in graph

G = (V,E) if dG−C(u, v) > s.

The cut-like formulation has |V | variables and is presented next. In constraints (2.25),

∀(u, v, C) is a shorthand for any pair of non-adjacent vertices u, v and all length-s u, v-

separators C in graph G.

max
∑
i∈V

xi (2.24)

xu + xv ≤ 1 +
∑
i∈C

xi ∀(u, v, C) (2.25)

xi ∈ {0, 1} ∀i ∈ V (2.26)

2.1.2 Exact algorithms

Bourjolly et al. [2002] developed a branch-and-bound (BB) algorithm for the maximum

s-club problem. This BB algorithm obtained the upper bounds based on the computation of

maximal stable sets in the power graph, and the results showed that the problem difficulty

directly depended on the graph density. Pajouh and Balasundaram [2012] and Chang et al.

[2013] also proposed BB algorithms for the maximum s-club problem. Recently, Moradi and

Balasundaram [2018] (see also [Lu et al., 2018]) developed a decomposition and branch-and-

cut (BC) algorithm by using the canonical hypercube cut (CHC) and graph decomposition

techniques. Buchanan and Salemi [2017] devised a BC algorithm by employing a delayed

14



generation of length-s u, v-separator constraints. A fixed-parameter tractable algorithm was

developed by Hartung et al. [2015] for finding 2-clubs.

2.2 Second order s-clubs

Like the maximum s-club problem, we formally define decision versions of the maximum

r-robust s-club problem (r, s-MRCP), maximum r-hereditary s-club problem (r, s-MHCP),

and maximum r-connected s-club problem (r, s-MCCP) as follows.

Problem: r-Robust s-Club/r-Hereditary s-Club/r-Connected s-Club (for integer

constants r, s ≥ 2).

Input: Graph G and positive integer c.

Question: Does G contain an r-robust s-club/r-hereditary s-club/r-connected s-club of size

at least c?

Komusiewicz et al. [2019] showed that r-Hereditary 2-Club and r-Robust 2-Club

are NP-complete for every fixed positive integer r ≥ 2. The hardness of both problems was

proved by reduction from 2-Club. Yezerska et al. [2017] proved that 2-Connected 2-Club

is NP-complete. Interestingly, Komusiewicz et al. [2019] also utilized a similar construction

and further strengthened the result by showing that r-Connected 2-Club is NP-complete,

even on split graphs, for any fixed positive integer r ≥ 1. Table 2.2 summarizes the known

complexity results related to second-order s-clubs.

2.2.1 IP formulations

Veremyev and Boginski [2012] first presented an IP formulation for a relaxation of the r, s-

MRCP, in which the r paths of length at most s are only required to be distinct, and not

necessarily vertex-disjoint. However, when s = 2, distinct paths must also be vertex disjoint,

15



Table 2.2: Complexity results related to second order s-clubs
Model Key results

r-Robust 2-Club
NP-complete for every fixed positive integer r ≥ 1, and it
remains NP-complete on graphs with both diameter two and
domination number one, graphs with degeneracy 6 + r, split
graphs, and connected graphs with average vertex degree at most
α, for all α > 2 [Komusiewicz et al., 2019]
Fixed-parameter tractable when parameterized by dual pa-
rameter ` = |V | − k where k is solution size [Komusiewicz et al.,
2019]
does not admit a (2 − ε)`.nO(1)-time algorithm for any ε >
0 [Komusiewicz et al., 2019]

r-Hereditary 2-Club
NP-complete for every fixed positive integer r ≥ 1, and it
remains NP-complete on graphs with both diameter two and
domination number one, graphs with degeneracy 6 + r, split
graphs, and connected graphs with average vertex degree at most
α, for all α > 2 [Komusiewicz et al., 2019]
Fixed-parameter tractable when parameterized by dual pa-
rameter ` = |V | − k where k is solution size [Komusiewicz et al.,
2019]
does not admit a (2 − ε)`.nO(1)-time algorithm for any ε >
0 [Komusiewicz et al., 2019]

r-Connected 2-Club
NP-complete for any fixed positive integer k ≥ 1, even on split
graphs [Komusiewicz et al., 2019]
Fixed-parameter tractable when parameterized by dual pa-
rameter ` = |V | − k where k is solution size [Komusiewicz et al.,
2019]
does not admit a (2 − ε)`.nO(1)-time algorithm for any ε >
0 [Komusiewicz et al., 2019]

and therefore their formulation, which correctly models the special case, is presented next.

max
∑
i∈V

xi (2.27)

s.t. r(xi + xj − 1) ≤ 1E(i, j) +
∑

k∈N(i)∩N(j)

xk ∀{i, j} ∈
(
V

2

)
(2.28)

xi ∈ {0, 1} ∀i ∈ V (2.29)

Constraints (2.28) ensure that there exist r vertex-disjoint paths of length at most two

16



between every pair of vertices.

For the special case s = 3, Almeida and Carvalho [2014] presented an IP formulation for

the r, 3-MRCP by enumerating all vertex-disjoint paths of length at most three, which is

presented next.

max
∑
i∈V

xi (2.30)

s.t. yijpq ≤ xi, yijpq ≤ xj ∀{i, j} ∈ N 3, {p, q} ∈ Eij (2.31)

xi + xj ≤ 1 ∀{i, j} ∈ P3 (2.32)∑
q:{p,q}∈Eij

yijpq ≤ xp ∀{i, j} ∈ N 3, p ∈ Fij (2.33)

∑
p:{p,q}∈Eij

yijpq ≤ xq ∀{i, j} ∈ N 3, q ∈ Bij (2.34)

∑
t∈N(i)∩N(j)

xt +
∑

(p,q)∈Eij

yijpq ≥ r(xi + xj − 1) ∀{i, j} ∈ N 3 (2.35)

∑
t∈N(i)∩N(j)

xt +
∑

{p,q}∈E1
ij

yijpq ≥ (r − 1)(xi + xj − 1) ∀{i, j} ∈ E (2.36)

yijpq ≤ xi, yijpq ≤ xj ∀{i, j} ∈ E, {p, q} ∈ E1
ij (2.37)∑

q:{p,q}∈E1
ij

yijpq ≤ xp ∀{i, j} ∈ E, p ∈ N(i)\(N(j) ∪ {j}) (2.38)

∑
p:{p,q}∈E1

ij

yijpq ≤ xq ∀{i, j} ∈ E, q ∈ N(j)\(N(i) ∪ {i}) (2.39)

xi ∈ {0, 1} ∀i ∈ V (2.40)

yijpq ∈ {0, 1} ∀{i, j} ∈ E, {p, q} ∈ E1
ij (2.41)

yijpq ∈ {0, 1} ∀{i, j} ∈ N 3, {p, q} ∈ Eij (2.42)

In formulation (2.30)–(2.42), N 3 denotes the set of all pairs of non-adjacent vertices whose

distance does not exceed three in graph G, P3 corresponds to the set of all pair of vertices

17



that cannot be simultaneously included in a 3-club, Eij = {{p, q} ∈ E : p ∈ N(i)\N(j), q ∈

N(j)\N(i)} represents the set of inner edges of three-edge chains that link vertices i and

j, and Vij denotes the set of their end vertices which can be partitioned into subsets

Fij = {v ∈ Vij : v ∈ N(i) \N(j)} and Bij = {v ∈ Vij : v ∈ N(j) \N(i)}. Let E1
ij = {{p, q} ∈

E : p ∈ N(i)\(N(j) ∪ {j}), q ∈ N(j)\(N(i) ∪ {i})} and each variable yijpq is associated with

one edge in E1
i,j for any pair of adjacent vertices i, j in G.

Buchanan and Salemi [2017] suggested that a cut-like s-club formulation can be slightly

modified for the r, s-MHCP presented next.

max
∑
i∈V

xi (2.43)

r(xu + xv − 1) ≤
∑
i∈C

xi ∀(u, v, C) (2.44)

xi ∈ {0, 1} ∀i ∈ V (2.45)

In formulation (2.43)–(2.45), ∀(u, v, C) is again a shorthand for any pair of non-adjacent

vertices u, v and all length-s u, v-separators C in graph G. Komusiewicz et al. [2019] studied

the special case r-hereditary 2-club and presented an IP formulation based on the maximum

2-club problem formulation [Bourjolly et al., 2002]. Recalling that the maximum r-hereditary

2-club problem only requires additional constraints for non-adjacent pairs of vertices, consider

the following formulation introduced by Komusiewicz et al. [2019].

max
∑
i∈V

xi (2.46)

s.t. r(xu + xv − 1) ≤
∑

t∈N(u)∩N(v)

xt ∀{u, v} ∈
(
V

2

)
\E (2.47)

xi ∈ {0, 1} ∀i ∈ V (2.48)

18



Constraints (2.46) enforce that at least r common neighbors must be selected if a non-

adjacent pair of vertices u, v ∈ V are included in the solution.

An IP formulation for the maximum biconnected 2-club problem was proposed by Yezerska

et al. [2017].

max
∑
i∈V

xi (2.49)

s.t. xu + xv −
∑

t∈N(u)∩N(v)

xt ≤ 1 ∀{u, v} ∈
(
V

2

)
\E (2.50)

2(xu + xv − 1) ≤
∑
t∈D

xt ∀(u, v,D) (2.51)

xi ∈ {0, 1} ∀i ∈ V (2.52)

In formulation (2.49)–(2.51), ∀(u, v,D) is a short hand for any pair of non-adjacent vertices

u, v such that dG(u, v) = 2 and all minimal (u, v)-vertex separators D in graph G. Con-

straints (2.50) ensure that the solution is a 2-club, and constraints (2.51) enforce that the

solution is biconnected [Yezerska et al., 2017].

2.2.2 Preprocessing techniques and heuristics

To speed up algorithms for solving special cases of these problems, some preprocessing

techniques and heuristic ideas have been considered in the literature, designed to reduce the

size of the instance. The main ideas are briefly reviewed next.

For the maximum r-robust 2-club problem, Veremyev and Boginski [2012] and Komusiewicz

et al. [2019] pointed out that we can ignore any vertex with degree less than r, as any vertex

in an r-robust 2-club must have degree at least r. Similarly, all vertices with degree less than

r can be removed for both maximum r-hereditary 2-club and maximum r-connected 2-club

problems [Komusiewicz et al., 2019].

Yezerska et al. [2017] employed lower bound heuristics called VDEGREE and DROP

19



for the maximum biconnected 2-club problem. For VDEGREE, the vertices were sorted in

non-increasing order of their degree and then the heuristic identified connected components

of the subgraphs induced by the open neighborhood of each vertex. The heuristic terminated

when its size was larger than the degree of next vertex to be explored. The largest connected

component along with its corresponding vertex formed a biconnected 2-club. The other

heuristic technique DROP, used in this work was originally introduced by Bourjolly et al.

[2000], which recursively deleted vertices with the smallest number of distance-2 neighbors

until a 2-club was detected. If such 2-club was not biconnected, they constructed a biconnected

2-club from the subgraph induced by the 2-club found by DROP.

2.3 Research statement

In this dissertation, we study s-clubs with side-constraints that make them less “fragile”, i.e.,

less susceptible to increase in the diameter if vertices (and edges) are deleted. Given a graph

G = (V,E), find a subset S of vertices of maximum cardinality such that:

i) diam(G[S]) ≤ s, and

ii) S satisfies a graph property Π that reduces the fragility of G[S] under vertex deletion.

In this sense, we focus on Π being r-robustness and wherever possible extend our results to

r-heredity and r-connectedness.

Based on the literature review, theoretical and algorithmic results addressing both r, s-

MRCP and r, s-MHCP are limited. Though Komusiewicz et al. [2019] established complexity

results for the r-Robust s-Club and r-Hereditary s-Club when s = 2, computational

complexities of both the robust and hereditary variants are still open for general positive

integers r ≥ 2 and s ≥ 3. Almeida and Carvalho [2014] developed an IP formulation for the

maximum r-robust 3-club problem by enumerating chains with one edge, two edges, and

three edges, but no numerical experiments were reported in that work. For r ≥ 2 and s ≥ 4,

20



there are no IP formulations and computational results for the r, s-MRCP. Furthermore,

no computational experiments are available for r, s-MHCP when r ≥ 2, and s ≥ 3 in the

literature.

These gaps motivate us to develop effective exact algorithms to solve r, s-MRCP and

r, s-MHCP with an emphasis on s = 2, 3, 4 and low values of r on moderately large instances

(around 104 vertices and less than 5% density). To achieve these goals, we address the

following research objectives in this dissertation.

(i) Establish the computational complexity of both r-Robust s-Club and r-Hereditary

s-Club on arbitrary and restricted graph classes for every pair of fixed positive integers

r ≥ 2 and s ≥ 3.

(ii) Investigate IP formulations that permit row-generation schemes for r, s-MRCP for

positive integers r ≥ 2 and s = 2, 3, and 4. Extend these formulations to r, s-MHCP if

possible.

(iii) Devise BC algorithms based on a delayed constraint generation scheme for both r, s-

MRCP and r, s-MHCP.

(iv) Exploit preprocessing techniques including vertex and edge peeling and develop block

based graph decomposition approaches for solving both r, s-MRCP and r, s-MHCP.

2.4 Organization of the dissertation

The remainder of this dissertation is organized as follows. In Chapter III, we establish

complexity results for both r-Robust s-Club and r-Hereditary s-Club on arbitrary and

restricted graph classes. Both problems are shown to be NP-complete, and we also prove the

NP-hardness of feasibility testing when r or s is part of the input. Preprocessing techniques

including vertex and edge peeling are discussed in Chapter IV. We also develop a block based

21



decomposition algorithm in this chapter. The special case r, 2-MRCP is considered and we

present a strengthened formulation in Chapter V. A computational study is conducted for

assessing the performance of these approaches. We also extend these ideas to r, 2-MHCP and

the maximum biconnected 2-club problem in this chapter. The focus of Chapter VI is on

extending approaches for solving the r, 2-MRCP to larger s values. A cut-like IP formulation

is presented for r, s-MRCP when s = 2, 3 and 4, which is the first IP formulation for the

maximum r-robust 4-club problem in the literature. Preprocessing techniques and a block

based graph decomposition algorithm are utilized for solving r, s-MRCP and r, s-MHCP.

Numerical results are also reported to demonstrate the performance of these approaches in this

chapter. Finally, we conclude our work in Chapter VII, which summarizes our contributions

and also identifies some future research directions.

22



CHAPTER III

Computational Complexity

From the literature review in Chapter II, we have known that the computational complexities

of both r-Robust s-Club and r-Hereditary s-Club are still open for every constant

integers r ≥ 2 and s ≥ 2. In this chapter, we will not only prove results pertaining to the NP-

hardness of optimization, but also the NP-hardness of feasibility testing. The computational

complexity on some special graph classes is also established.

3.1 NP-hardness of optimization

Recall that Bourjolly et al. [2002] showed that s-Club is NP-complete for every constant

integer s ≥ 2 and it is NP-complete even when restricted to graphs of diameter s+1 [Balasun-

daram et al., 2005]. Theorems 1 and 2 that follow establish that r-Hereditary s-Club and

r-Robust s-Club are NP-complete using reductions from s-Club. Note that the problems

are trivially NP-hard when parameters r and s are not fixed in the problem definition, and

are part of the input as they all include Clique as a special case when s = r = 1.

Theorem 1. r-Hereditary s-Club is NP-complete for every constant integer s ≥ 2 and

r ≥ 2.

Proof. We show a polynomial-time reduction from s-Club. Given an instance 〈G, c〉 of s-

Club, construct the instance 〈G′, c′〉 of r-Hereditary s-Club as follows: let G′ := G∗Kr−1

and c′ := c + r − 1. Suppose S ⊆ V (G) is an s-club in G of size at least c. We claim that

S ∪ V (Kr−1) is an r-Hereditary s-Club in G′ (of size at least c′). Consider a deletion set

23



T ⊆ S ∪ V (Kr−1) such that |T | ≤ r − 1 and a pair of vertices u, v ∈ S ∪ V (Kr−1) \ T . If

T = V (Kr−1), then G′[S∪V (Kr−1)\T ] ' G[S], an s-club. Otherwise, S∪V (Kr−1)\T , which

contains some vertex from Kr−1 that dominates G′[S ∪ V (Kr−1) \ T ], is a 2-club. Conversely,

suppose S ′ ⊆ V (G′) is an r-hereditary s-club in G′ of size at least c′. Then, S ′ \ V (Kr−1) of

size at least c is an s-club in G′ by Definition 4. Since G′[S ′ \ V (Kr−1)] ' G[S ′ \ V (Kr−1)],

it is an s-club in G as well. Since r is a fixed constant, verification can be completed in

polynomial time by enumerating all possible deletion sets of size at most r− 1 and computing

the diameter.

Corollary 1. r-Hereditary s-Club is NP-complete for every constant integer s ≥ 2 and

r ≥ 2, on graphs with diameter two, and on graphs with domination number one.

Proof. Follows from the fact that every vertex in V (Kr−1) 6= ∅ dominates G′.

Theorem 2. r-Robust s-Club is NP-complete for every constant integer s ≥ 2 and r ≥ 2.

Proof. We show a polynomial-time reduction from s-Club. Given an instance 〈G, c〉 of

s-Club, construct the instance 〈G′, c′〉 of r-Robust s-Club where G′ := G ∗ Kr−1 and

c′ := c + r − 1. Suppose S ⊆ V (G) is an s-club in G of size at least c. We claim that

S ∪ V (Kr−1) is an r-robust s-club of size at least c+ r− 1 in G′ for the nontrivial case when

c ≥ 2.

For any two vertices u, v ∈ S, there exists a u, v-path of length at most s between them in

G[S] and there exist r − 1 u, v-paths of length at most two through their common neighbors

in V (Kr−1); these constitute r internally vertex-disjoint paths of length at most s between u

and v in G′[S ∪ V (Kr−1)].

For any two vertices u, v ∈ V (Kr−1) (if r ≥ 3), given that c ≥ 2 there are at least two paths

of length two via their common neighbors in S, and r − 3 u, v-paths of length two via their

common neighbors in V (Kr−1). These paths, along with the edge {u, v} ∈ E(G′) constitute

r internally vertex-disjoint paths of length at most s between u and v in G′[S ∪ V (Kr−1)].

24



Finally, consider u ∈ S and v ∈ V (Kr−1). There are r − 2 u, v-paths of length two in G′

via vertices in V (Kr−1) \ {v}. Since S is an s-club containing at least two vertices, there

exists a vertex w ∈ S \ {u} that is a common neighbor of u and v. Since {u, v} ∈ E(G′),

there are r vertex disjoint paths between every pair of vertices in G′[S ∪ V (Kr−1)].

Conversely, suppose S ′ ⊆ V (G′) is an r-robust s-club of size at least c+ r− 1 in G′. Since

|S ∩ V (Kr−1)| ≤ r − 1, after deleting all vertices in S ∩ V (Kr−1), a path of length at most

s between any two vertices in subgraph G′[S \ V (Kr−1)] still exists. Hence, S \ V (Kr−1) is

an s-club of size at least c in G, since G′[S \ V (Kr−1)] ' G[S \ V (Kr−1)]. Hence, r-Robust

s-Club is NP-hard.

Golovach and Thilikos [2011] showed that verifying whether or not a graph of order n and

size m contains r vertex-disjoint (u, v)-paths of length at most s between distinct vertices

u and v can be answered in O(2O(rs)m log n) time. Using their algorithm we can verify if

S ′ ⊆ V ′ is an r-robust s-club in G′ in polynomial time for constant r and s. Hence, r-Robust

s-Club belongs to class NP.

Corollary 2. r-Robust s-Club is NP-complete for every constant integer s ≥ 2 and r ≥ 2,

on graphs with diameter two, and on graphs with domination number one.

Proof. Follows from the fact that every vertex in V (Kr−1) 6= ∅ dominates G′.

Chordal graphs, which contain no chordless cycles of length four or more, are a subclass of

perfect graphs with interesting and desirable properties for clique detection [Rose et al., 1976].

For every non-negative integer t, a t-chordal graph contains no chordless cycles of length

greater than t. So, 3-chordal graphs are precisely the classical chordal graphs. Golovach et al.

[2014] proved that s-Club is NP-complete on 4-chordal graphs for every constant integer

s ≥ 1. Asahiro et al. [2010] proved NP-completeness on chordal graphs for every constant

even integer s ≥ 2, .

Corollary 3. For every constant integer r ≥ 2, r-Hereditary s-Club and r-Robust

25



s-Club remain NP-complete,

1. on 4-chordal graphs for every constant integer s ≥ 1, and

2. on chordal graphs for every constant even integer s ≥ 2.

Proof. It suffices to show that H := G ∗K` is t-chordal if G is t-chordal for ` ≥ 1. Suppose

that G is t-chordal and C ⊆ V (H) is a cycle of length strictly greater than t ≥ 3. If C

contains no vertices from K`, then C contains a chord between two vertices in V (G) since G

is t-chordal by assumption. If it contains at least one vertex from K`, then that vertex is

adjacent to every other vertex in the C, and at least one such adjacent vertex in C creates a

chord in C.

Corollary 4. For every constant integer r ≥ 2, r-Hereditary 2-Club and r-Robust

2-Club problems remain NP-complete on graphs with clique cover number three.

Proof. Trivially follows from the result of Golovach et al. [2014] who proved that 2-Club is

NP-hard on graphs with clique cover number three, and our constructions.

3.2 NP-hardness of feasibility testing

Recall from the proof of Theorem 2 that verifying if S ⊆ V is an r-robust s-club can be

completed in polynomial time by a parameterized algorithm when r and s are constants fixed

in the problem definition. However, if one of these parameters is arbitrary, the feasibility

problem is itself NP-hard. We establish these complexity results in this section.

When considering the problem of verifying if S ⊆ V is an r-robust s-club, the following

result of Lovász et al. [1978] that relates the size of vertex separators of bounded-length

paths to the number of disjoint bounded-length paths is pertinent. For a pair of vertices u, v

in G, let ρs(G;u, v) denote the maximum number of internally vertex disjoint u, v-paths of

length at most s in G, and for a non-adjacent pair of vertices u, v, let κs(G;u, v) denote the

26



minimum number of vertices in V \ {u, v} whose deletion disconnects all u, v-paths of length

at most s in G. Clearly, ρs(G;u, v) ≤ κs(G;u, v).

Proposition 1 (Lovász et al. [1978]). Consider a graph G of order n, non-adjacent vertices

u, v, and a positive integer s. Then,

κs(G;u, v) ≤
⌊n

2

⌋
ρs(G;u, v).

Furthermore, for s ∈ {2, 3, 4}, ρs(G;u, v) = κs(G;u, v).

The problem of verifying if S is an r-robust 2-club for any r ≥ 2 amounts to checking if

every adjacent pair of vertices in S have at least r− 1 common neighbors inside S, and every

non-adjacent pair have at least r common neighbors inside S. In general, verifying if S is an

r-robust s-club for r ≥ 2 and s ≥ 3 is to verify if ρs(G[S];u, v) ≥ r for every pair of vertices

in S. By Proposition 1, for s ∈ {3, 4}, this amounts to verifying if κs(G[S];u, v) ≥ r for every

{u, v} ∈
(
S
2

)
\ E and κs(G[S] − e;u, v) ≥ r − 1 for every e = {u, v} ∈

(
S
2

)
∩ E. For a fixed

constant r, this can be completed in polynomial time by enumerating every pair of vertices

u, v ∈ S and every deletion set Tuv ⊆ S \ {u, v} of cardinality r − 2 or r − 1 depending on

whether u and v are adjacent or not, respectively; and then verifying if diam(G[S \ Tuv]) ≤ s.

If the diameter bound is not satisfied for any Tuv, then S is not an r-robust s-club, and

otherwise, it is.

Answering whether or not S ⊆ V is an r-robust 3-club or an r-robust 4-club, when r

is arbitrary and specified as part of the input, does not follow as a polynomially verifiable

question from any of the foregoing arguments. However, Itai et al. [1982] showed that for

s ∈ {3, 4}, we can compute ρs(G;u, v) in O(|E|
√
|V |) time, which can be used to answer the

verification question for r-robust 3-clubs and r-robust 4-clubs for arbitrary r. Itai et al. [1982]

also established the following hardness result that allows us to show that the verification

problem for r-robust s-clubs is NP-hard for arbitrary r and constant integer s ≥ 5.

27



Problem: Vertex-Disjoint s-Paths (for constant integer s ≥ 2).

Input: Graph G = (V,E), a pair of vertices a, b ∈ V , and a positive integer r.

Question: Does G contain at least r vertex disjoint a, b-paths of length at most s?

Proposition 2 (Itai et al. [1982]). Vertex-Disjoint s-Paths is NP-complete for every

constant integer s ≥ 5.

Now consider the following feasibility testing problem for every constant integer s ≥ 2,

specified in the problem, while r can be arbitrary, specified in the input.

Problem: Is-Robust s-Club (for constant positive integer s).

Input: Graph G = (V,E), S ⊆ V , and a positive integer r.

Question: Is S an r-robust s-club in G?

Theorem 3. Is-Robust s-Club is NP-hard for every constant integer s ≥ 5.

Proof. We show a polynomial-time reduction from an instance 〈G = (V,E); a, b, r〉 of Vertex-

Disjoint s-Paths to an instance 〈G′ = (V ′, E ′), S ′, r′〉 of Is-Robust s-Club next. The

reduction is based on a similar construction employed by Buchanan and Validi [2018].

Case (i) Suppose s is odd. We define the following sets.

T := {ti : i ∈ [r]}

A :=

{
aji : i ∈ [r], j ∈

[
s− 1

2

]}
B :=

{
bji : i ∈ [r], j ∈

[
s− 1

2

]}
W :=

{
vji : i ∈ [r], j ∈

[
s− 3

2

]
, v ∈ N s−1

G [a] ∪N s−1
G [b] \ {a, b}

}
V ′ :=V ∪ T ∪ A ∪B ∪W

In the definition the set W , recall from Chapter I that N s−1
G [u] denotes the closed

28



a b u v w

A1

A2

A
s−3
2

A
s−1
2

B1

B2

B
s−3
2

B
s−1
2

W 1
u

W 2
u

W
s−3
2

u

W 1
v

W 2
v

W
s−3
2

v

W 1
w

W 2
w

W
s−3
2

w

T

N s−1
G [a] ∪N s−1

G [b] \ {a, b}

G

Figure 3.1: An illustration of the reduction for odd s ≥ 5

distance-(s− 1) neighborhood of vertex u ∈ V . The edge set E ′ is constructed as

follows. Figure 3.1 illustrates this reduction.

First, the vertices in V ⊂ V ′ are joined by edges in exactly the same way as they

are in G so that G′[V ] ' G. Then we make the vertices in T pairwise adjacent, so

29



that G′[T ] is complete. Similarly, the following sets also induce complete graphs

in G′:

Aj :={aji ∈ A : i ∈ [r]} ∀j ∈
[
s− 1

2

]
Bj :={bji ∈ B : i ∈ [r]} ∀j ∈

[
s− 1

2

]
W j
v :={vji ∈ W : i ∈ [r]} ∀j ∈

[
s− 3

2

]
, v ∈ N s−1

G [a] ∪N s−1
G [b] \ {a, b}

Then, a is made adjacent to every vertex in A1, b is made adjacent to every

vertex in B1, and each v ∈ N s−1
G [a] ∪N s−1

G [b] \ {a, b} is made adjacent to every

vertex in W 1
v . Then, for every j ∈

[
s−3

2

]
, every vertex in Aj is joined by an edge

to every vertex in Aj+1, every vertex in Bj is joined by an edge to every vertex

in Bj+1. For every j ∈
[
s−5

2

]
and for each v ∈ N s−1

G [a] ∪N s−1
G [b] \ {a, b}, every

vertex in W j
v is joined by an edge to every vertex in W j+1

v . Finally, every vertex

of T is made adjacent to every vertex in:

A
s−1
2 ∪B

s−1
2 ∪

 ⋃
v∈Ns−1

G [a]∪Ns−1
G [b]\{a,b}

W
s−3
2

v

 .

Now, we let r′ := r and S ′ := N s−1
G [a] ∪N s−1

G [b] ∪ (V ′ \ V ). This completes the

construction of the instance G′; note that this can be completed in polynomial-

time.

It is easy to verify that there are at least r vertex-disjoint paths of length at most

s between every pair of vertices of G′[S ′] except the pair {a, b}. Furthermore,

a, b-paths of length at most s can only include vertices in V . Hence, 〈G =

(V,E); a, b, r〉 is a yes-instance for Vertex-Disjoint s-Paths if and only if

〈G′, S ′, r′〉 is a yes-instance for Is-Robust s-Club.

30



Case (ii) Suppose s is even. The main idea behind the reduction is very similar to the

previous case. Figure 3.2 illustrates the construction for even s ≥ 5. We define

the following sets.

T x := {txi : i ∈ [r]} for x ∈ {a, b}

W :=
{
vji : i ∈ [r], j ∈

[s
2
− 1
]
, v ∈ N s−1

G [a] ∪N s−1
G [b]

}
V ′ :=V ∪ T a ∪ T b ∪W

As before we add edges so that G′[V ] ' G, G′[T a ∪ T b] is complete, and for every

j ∈
[
s
2
− 1
]

and v ∈ N s−1
G [a] ∪ N s−1

G [b], G[W j
v ] is complete, where W j

v := {vji ∈

W : i ∈ [r]}. Then, each v ∈ N s−1
G [a] ∪N s−1

G [b] is made adjacent to every vertex

in W 1
v , and every vertex in W j

v is joined by an edge to every vertex in W j+1
v for

every j ∈
[
s
2
− 2
]
. Finally, for x ∈ {a, b}, every vertex of T x is made adjacent to

every vertex in: ⋃
v∈Ns−1

G [a]∪Ns−1
G [b]\{x}

W
s
2
−1

v .

Now, we let r′ := r and S ′ := N s−1
G [a] ∪N s−1

G [b] ∪ (V ′ \ V ). This completes the

polynomial-time construction of the instance G′.

As in the previous case, we can verify that there are at least r vertex-disjoint

paths of length at most s between every pair of vertices of G′[S ′] except the pair

{a, b}. Furthermore, a, b-paths of length at most s can only include vertices in V .

Hence, 〈G = (V,E); a, b, r〉 is a yes-instance for Vertex-Disjoint s-Paths if

and only if 〈G′, S ′, r′〉 is a yes-instance for Is-Robust s-Club.

We now consider the counterpart of the foregoing feasibility testing problem, Is-Robust

31



a u v w b

W 1
a

W 2
a

W
s
2
−1

a

W 1
b

W 2
b

W
s
2
−1

b

W 1
u

W 2
u

W
s
2
−1

u

W 1
v

W 2
v

W
s
2
−1

v

W 1
w

W 2
w

W
s
2
−1

w

T b T a

N s−1
G [a] ∪N s−1

G [b] \ {a, b}

G

Figure 3.2: An illustration of the reduction for even s ≥ 5

s-Club. In this version that is defined next, we treat the robustness parameter r as a

constant in the problem definition and s is arbitrary, specified in the input.

Problem: Is-r-Robust Club (for constant positive integer r).

Input: Graph G = (V,E), S ⊆ V , and a positive integer s.

Question: Is S an r-robust s-club in G?

We prove a quick result to serve as our source problem to show that Is-r-Robust Club

is NP-hard. Consider the following problem.

32



Problem: r-Robust Vertex-Disjoint Paths (for constant positive integer r)

Input: Graph G = (V,E), a pair of vertices a, b ∈ V , and a positive integer s.

Question: Does G contain r vertex-disjoint a, b-paths of length at most s?

The special case when r = 2 is known to be NP-complete based on the result [Li et al.,

1990] and we extend this result for every constant integer r ≥ 3 in Lemma 2.

Lemma 2. r-Robust Vertex-Disjoint Paths is NP-hard for every constant integer

r ≥ 3.

Proof. Given a non-trivial instance 〈G = (V,E); a, b, s〉 of 2-Robust Vertex-Disjoint

Paths with s ≥ 2, we construct the instance 〈G′ = (V ′, E ′); a, b, s〉 of r-Robust Vertex-

Disjoint Paths as follows. Define the sets,

P := {vji : i ∈ [s− 1], j ∈ [r − 2]},

V ′ := V ∪ P.

Join the vertices in V ⊂ V ′ by edges in exactly the same way as they are in G so that

G′[V ] ' G. Then, for every j ∈ [r − 2] make each P j := (vj1, . . . , v
j
s−1) a path. Finally, join

a to vj1 and vjs−1 to b for every j ∈ [r − 2] so that these are r − 2 vertex disjoint a, b-paths

of length at most s in G′. It is easy to verify that G contains two vertex-disjoint a, b-paths

of length at most s if and only if G′ contains r vertex-disjoint a, b−paths of length at most

s.

Theorem 4. Is-r-Robust Club is NP-hard for every constant integer r ≥ 2.

Proof. The same reduction as Theorem 3, using r-Robust Vertex-Disjoint Paths as

the source problem instead, establishes this claim.

33



CHAPTER IV

Preprocessing and Graph Decomposition

In Chapter III, we have shown that r-Robust s-Club and r-Hereditary s-Club are

NP-hard and thus are challenging to solve. Therefore, it is crucial to develop effective exact

algorithms for solving these problems in practice, even though they may be of worst-case

computational complexity. First, we introduce heuristics for finding an r-robust 2-club. Then,

we develop preprocessing techniques including vertex and edge peeling to reduce the size of

graph for the r, s-MRCP. Also, the subgraph induced by an r-robust s-club is contained in

some block of the graph when r ≥ 2. Based on this observation, we present an algorithm for

the r, s-MRCP that uses block decomposition. Interestingly, these ideas can also be extended

to the maximum r-hereditary s-club and r-connected s-club problems.

4.1 Construction heuristic

Every pair of adjacent vertices along with their common neighbors form a 2-robust 2-club.

This observation motivates a heuristic for finding a 2-robust 2-club that we refer to as H2R2C.

We check every pair of adjacent vertices and their common neighbors, and the one with

the largest cardinality is retained as the heuristic solution. The pseudocode of H2R2C is

presented in Algorithm 1. Note that the smallest non-trivial 2-robust 2-club is a triangle,

and thus we return a singleton set {1} if the heuristic solution is not larger than two vertices.

Analogously, for r ≥ 3, finding an r-robust 2-club will require us to first identify a maximal

clique C of size at least r + 1 if it exists, which can be implemented in O(|V |+ |E|) [Matula

and Beck, 1983]. The basic idea is to sort vertices in a degeneracy ordering, and then remove

34



Algorithm 1 Heuristic for 2-robust 2-club

1: procedure H2r2c(G)
2: Input: Graph G = (V,E)
3: Output: A heuristic solution of 2-robust 2-club S
4: Initialize: S ← ∅
5: for each edge uv ∈ E do
6: if |N(u) ∩N(v)|+ 2 > |S| then
7: S ← N [u] ∩N [v]
8: end if
9: end for

10: if |S| ≤ 2 then
11: return {1}
12: else
13: return S
14: end if
15: end procedure

Algorithm 2 Heuristic for r-robust 2-club

1: procedure Hrr2c(G, r)
2: Input: Graph G = (V,E) and a positive integer r ≥ 3
3: Output: An r-robust 2-club S
4: Initialize: S ← ∅, P ← ∅
5: Find a maximal clique C in G
6: if |C| ≤ r then
7: return {1}
8: else
9: for each edge uv ∈ E(G[C]) do

10: T ← (N(u) ∩N(v)) \ C
11: W ← arg max

F⊆T
{|F | : |N(i) ∩N(j) ∩ C| ≥ r,∀i, j ∈ F}

12: P ← arg max{|P |, |W |}
13: end for
14: S ← P ∪ C
15: return S
16: end if
17: end procedure

a vertex with the minimum degree. Repeat this process until the remaining vertex set is

a clique. In this dissertation, we make use of the algorithm of finding a maximal clique

implemented by Buchanan and Salemi [2017]. Then, we obtain a subset W such that every

35



pair of vertices in W share at least r common vertices in C. Hence, there exist at least r

vertex-disjoint paths of length no more than two among all pairs of vertices in the subgraph

G[C ∪W ]; i.e., the subset C ∪W forms an r-robust 2-club. The heuristic for finding an

r-robust 2-club (r ≥ 3) referred to as HRR2C is presented in Algorithm 2.

Since every r-robust 2-club is also an r-robust s-club when s ≥ 2, we can use the same

heuristic to obtain an r-robust s-club for s ≥ 3. Recall from Lemma 1 and Menger’s

Theorem [Menger, 1927] that every r-robust s-club is also r-hereditary and r-connected when

s ≥ 2 and r ≥ 2. Therefore, the aforementioned Algorithms 1 and 2 can also serve as

heuristics for finding r-hereditary and r-connected s-clubs.

4.2 Vertex peeling

In this section, we introduce a preprocessing technique called vertex peeling to remove vertices

which cannot be selected in an optimal solution based on a lower bound on the optimal

solution size. First, we discuss the vertex peeling technique for the r, s-MRCP, and then

extend this idea to the r, s-MHCP.

4.2.1 Vertex peeling for the r, s-MRCP

The degree of every vertex in an r-robust s-club must be greater than or equal to r, so we

can first employ r-Core peeling presented in Appendix B to remove some vertices, which

can be accomplished using an O(|V |+ |E|) algorithm [Batagelj and Zaversnik, 2003].

Based on a lower bound ` on the optimal value of the r, s-MRCP, we are able to remove

vertices that cannot be included in a solution larger than `. Specifically, when a vertex has

fewer than ` distance-s neighbors, it cannot be selected in a solution whose size is greater

than ` by the diameter requirement. Hence, we can remove such a vertex without affecting

the optimal solutions. This preprocessing technique is essentially the core peeling idea used

for the maximum clique problem [Abello et al., 1999, Verma et al., 2015]. For the maximum

36



r-robust s-club problem, we can strengthen this further. We may still be able to remove

vertex v such that |N s(v)| ≥ `. If there exist at most r − 1 vertex-disjoint paths of length no

greater than s between v and some distance-s neighbor u, then u and v cannot be included

simultaneously in an r-robust s-club. Hence, a vertex v ∈ V can be removed if |Tv| < ` where

Tv := {u ∈ N s(v) : ρs(G; v, u) ≥ r}.

12

3 4 5

78

6

Figure 4.1: A graph without vertex peeling

Consider the graph in Figure 4.1 for instance. Suppose r = s = 2, and we have a 2-robust

2-club of size ` = 3 (e.g., {1, 2, 3}). For vertex 1, its associated T1 = {2, 3, 4, 5} and thus

vertex 1 is not deleted by vertex peeling. Similarly, we can check that for each vertex v in

{2, 3, 4, 5}, the |Tv| ≥ 3 and therefore they cannot be removed by vertex peeling. However,

for vertices {6, 7, 8},size of sets T6, T7, and T8 is smaller than three. For instance, though the

distance-2 neighbors of the vertex 7, N2(7) = {5, 6, 8}, the set T7 = {5}. Therefore, vertices

{6, 7, 8} and their incident edges are removed by vertex peeling shown in Figure 4.2.

12

3 4 5

78

6

Figure 4.2: Vertices {6, 7, 8} and their incident edges are deleted after vertex peeling.

We can recursively implement this preprocessing technique, since each vertex v that

is removed may affect the size of the distance-s neighborhood of another vertex. The

preprocessing technique is described in Algorithm 3 in detail. When s = 2, step 9 in

37



Algorithm 3 requires O(|E| + |V |) time. When s ∈ {3, 4}, the worst case complexity to

compute ρs(G;u, v) is O(|E|
√
|V |) [Lovász et al., 1978]. Hence, the time complexity of

Algorithm 3 is O(|E||V |2) when s = 2, but it is O(|E||V |2.5) when s ∈ {3, 4}.

Algorithm 3 Vertex Peeling for the r, s-MRCP

1: procedure Vertex Peeling-MRC(G, r, s, `)
2: Input: Graph G = (V,E), positive integers r, s ≥ 2, and a solution of size `
3: Output: Modified graph G
4: flag← true
5: while flag do
6: r-Core(G)
7: flag← false
8: for each vertex v ∈ V do
9: T ← {u ∈ N s

G(v) : ρs(G; v, u) ≥ r}
10: if |T | < ` then
11: G← G− v
12: flag← true
13: end if
14: end for
15: end while
16: return G
17: end procedure

4.2.2 Vertex peeling for the r, s-MHCP

In this section, we will extend vertex peeling to r, s-MHCP. Again assume a lower bound `

for the r, s-MHCP. Since the subgraph induced by an r-hereditary s-club requires that its

diameter is at most s, any vertex v ∈ V with fewer than ` distance-s neighbors cannot be

chosen in a solution whose size is more than ` and thus can be removed. By Proposition 1,

verifying an r-hereditary s-club is equivalent to checking if ρs(G[S];u, v) ≥ r for every pair of

non-adjacent vertices u and v in subgraph G[S] when s = 2, 3 and 4. By an argument similar

to the one presented in Section 4.2.1, a vertex v might be removed although |N s(v)| ≥ `

because we may have ρs(G;u, v) ≤ r − 1 between vertex v and enough of its non-adjacent

distance-s neighbors u. Notice that there are no additional requirements placed on a pair

38



of adjacent vertices in r-hereditary s-clubs. Therefore, a vertex v ∈ V can be deleted if

|T |+ |N(v)| < ` where T := {u ∈ N s(v) \N(v) : ρs(G;u, v) ≥ r}. Also, we can recursively

apply this preprocessing technique since the graph structure changes after removing some

vertices. The pseudocode of vertex peeling for the r, s-MHCP is presented in Algorithm 4.

The time complexity of Algorithm 4 is the same as that of Algorithm 3.

Algorithm 4 Vertex Peeling for the r, s-MHCP

1: procedure Vertex Peeling-MHC(G, r, s, `)
2: Input: Graph G = (V,E), positive integers r ≥ 2, s ∈ {2, 3, 4}, and a solution of size `
3: Output: A modified graph G
4: flag← true
5: while flag do
6: r-Core(G)
7: flag← false
8: for each vertex v ∈ V do
9: T ← {u ∈ N s

G(v) \NG(v) : ρs(G;u, v) ≥ r}
10: if |T |+ |NG(v)| < ` then
11: G← G− v
12: flag← true
13: end if
14: end for
15: end while
16: return G
17: end procedure

4.3 Edge peeling

In this section, we introduce a preprocessing technique for the r, s-MRCP to delete edges

that cannot belong to an r-robust s-club based on a similar idea introduced by Verma et al.

[2015]. First, we present the following lemma to support the methodology.

Lemma 3. Consider a graph G = (V,E) and an r-robust s-club S ⊆ V . For r ≥ 2 and an

edge e = uv such that ρs(G;u, v) ≤ r − 1, S is also an r-robust s-club in subgraph G− e.

Proof. Since ρs(G;u, v) ≤ r − 1, at most one of the vertices u and v can be present in S by

39



Definition 3. This implies that the edge e = uv is not on any path in G[S].

Algorithm 5 Edge Peeling for the r, s-MRCP

1: procedure Edge Peeling-MRC(G, r, s)
2: Input: Graph G = (V,E) and positive integers r, s
3: Output: Modified graph G = (V,E)
4: while e = uv ∈ E such that ρs(G;u, v) ≤ r − 1 exists do
5: G← G− e
6: end while
7: return G
8: end procedure

In view of Lemma 3, feasible solutions remain unchanged after deleting any edge e = uv

such that ρs(G;u, v) ≤ r − 1. Hence, we can recursively delete all such edges without

affecting feasible solutions. We refer to this as edge peeling and its pseudocode is presented

in Algorithm 5. This edge peeling technique is capable of sparsifying the original graph,

which could help reduce the difficulty of solving the r, s-MRCP on some test-beds. Now we

take the graph in Figure 4.3 as an example to illustrate how edge peeling works. Consider

the case r = s = 2. For the edge e = {1, 2}, we have ρ2(G; 1, 2) = 1 ≤ 1 and thus the edge

e = {1, 2} can be deleted. Similarly, we can remove edges {2, 3}, {3, 5}, {3, 7}, {4, 5}, {4, 7},

and the resulting graph is shown in Figure 4.4.

When s = 2, ρs(G;u, v) = |N(u) ∩N(v)|+ 1 and thus Algorithm 5 essentially finds an

(r− 1)-community or r-triangle core studied by many researchers such as Cohen [2008, 2009],

Wang and Cheng [2012], Zhang and Parthasarathy [2012], Verma et al. [2015], Rossi [2014],

and it can be implemented to run in O(|E|1.5) [Rossi, 2014]. When s ∈ {3, 4}, the worst case

complexity to compute ρs(G;u, v) is O(|E|
√
|V |) [Lovász et al., 1978]. Therefore, the time

complexity of Algorithm 5 is O(|E|2
√
|V |) when s ∈ {3, 4}.

Note that unlike r-robust s-clubs, there are no additional requirements placed on a pair

of adjacent vertices in r-hereditary s-clubs. For this reason, we cannot utilize a similar edge

peeling technique for the r, s-MHCP.

40



4

7

3

1

6
5

2

Figure 4.3: A graph G without edge peel-
ing.

4

7

3

1

6
5

2

Figure 4.4: Edges {1, 2}, {2, 3}, {3, 5},
{3, 7}, {4, 5}, {4, 7} are deleted by edge
peeling technique.

4.4 Block decomposition algorithm

In this section, we will discuss a block decomposition approach to solve the r, s-MRCP. The

main idea is to decompose the original graph G into many smaller blocks so we can restrict

our solvers to look for our solution inside one block at a time. We can recursively apply such

a decomposition approach along with preprocessing techniques including vertex and edge

peeling introduced in Sections 4.2 and 4.3. Block decomposition idea can also be extended to

the maximum r-hereditary and r-connected s-club problems.

4.4.1 Block decomposition for the r, s-MRCP

Recall that a block is a maximal biconnected subgraph and thus every r-robust s-club

whenever r ≥ 2 must be contained in some block. This observation yields the following

lemma that we state without proof (trivial).

Lemma 4. Given a graph G = (V,E), r ≥ 2 and an r-robust (r-hereditary or r-connected)

s-club S ⊆ V , then there exists a block B in G containing S.

Finding all blocks in G takes O(|V | + |E|) time [Hopcroft and Tarjan, 1973]. The

pseudocode for finding all blocks in G is presented in Algorithm 14 in Appendix A. Note

that we can apply vertex and edge peeling preprocessing techniques on each block. As a

result, the preprocessed “blocks” may admit further decomposition into smaller blocks after

41



applying the preprocessing techniques. For example, the graph G in Figure 4.5 decomposes

into two blocks B1 and B2. Consider the case s = 2 and r = 3. If we apply edge peeling in

block B2, all edges in block B2 would be removed. As a result, B2 decomposes further into

three isolated vertices {1}, {5}, and {6}, i.e., three blocks (trivial graphs)1. Based on this

idea, we recursively apply Algorithm 14 along with aforementioned preprocessing techniques.

This motivates us to develop a Recursive Block algorithm presented in Algorithm 6.

4

2

3

1

6
5

B1

B2

Figure 4.5: A graph G decomposes into two blocks B1 and B2

Algorithm 6 Recursive Block Decomposition for the r, s-MRCP

1: procedure Recursive Block(G, r, s, `, C)
2: Input: Graph G, positive integers r, s ≥ 2, a solution of size `, and an empty set C
3: Output: The collection of candidate blocks C
4: G← Edge Peeling(G, r, s)
5: G← Vertex Peeling(G, r, s, `)
6: B ← Find Block(G)
7: if |B| = 1 then
8: C ← C ∪ B
9: else

10: for each block K ∈ B do
11: Recursive Block(K, r, s, `, C)
12: end for
13: end if
14: return C
15: end procedure

1Assuming an isolated vertex is biconnected.

42



Algorithm 7 Block-by-Block Decomposition Algorithm for the r, s-MRCP

1: procedure B/B-MRC(G, r, s, `)
2: Input: Graph G, positive integers r, s ≥ 2, and a solution S of size `
3: Output: A maximum r-robust s-club S
4: Initialize: C ← ∅, i← 1
5: B ← Recursive Block(G, r, s, `, C)
6: Let B = 〈B1, . . . , Bk〉 in non-increasing order of sizes
7: while |Bi| > |S| do
8: Ŝ ← A maximum r-robust s-club in the block Bi

9: S ← arg max{|S|, |Ŝ|}
10: i← i+ 1
11: end while
12: return S
13: end procedure

After identifying all candidate blocks (those that could contain an optimal solution) using

Algorithm 6, we face a few implementation questions. In which block should we first solve

the maximum r-robust s-club problem? Do we need to solve the problem in all the blocks?

We choose the “greedy” strategy of solving the problem on the largest block first, and update

the current best solution after each block is solved. When the block size is no greater than

the current best objective value, the algorithm is terminated. This approach is referred to as

block-by-block (B/B) decomposition algorithm and presented in Algorithm 7.

4.4.2 Block-by-block decomposition for the r, s-MHCP

Based on Lemma 4, every r-hereditary s-club S (r ≥ 2) must be contained in a block of

graph G. But we are unable to directly utilize Algorithm 6 to find all candidate blocks

for the r, s-MHCP since their preprocessing techniques are different from those used for

the r, s-MRCP. We can modify Algorithm 6 in order to find all candidate blocks for the

r, s-MHCP, which is presented in Algorithm 8.

After recursively obtaining all candidate blocks by Algorithm 8, we can also develop an

analogous B/B decomposition approach for the r, s-MHCP, which is presented in Algorithm 9.

43



Algorithm 8 Recursive Block Decomposition for the r, s-MHCP

1: procedure Recursive Block-MHC(G, r, s, `, C)
2: Input: Graph G, positive integers r, s ≥ 2, a solution of size `, and an empty set C
3: Output: The collection of candidate blocks C
4: G← Vertex Peeling-MHC(G, r, s, `)
5: B ← Find Block(G)
6: if |B| = 1 then
7: C ← C ∪ B
8: else
9: for each block K ∈ B do

10: Recursive Block-MHC(K, r, s, `, C)
11: end for
12: end if
13: return C
14: end procedure

Algorithm 9 Block-by-Block Decomposition Algorithm for the r, s-MHCP

1: procedure B/B-MHC(G, r, s, `)
2: Input: Graph G, positive integers r, s ≥ 2, and a solution S of size `
3: Output: A maximum r-hereditary s club S
4: Initialize: C ← ∅, i← 1
5: B ← Recursive Block-MHC(G, r, s, `, C)
6: Let B = 〈B1, . . . , Bk〉 in non-increasing order of sizes
7: while |Bi| > |S| do
8: Ŝ ← A maximum r-hereditary s club in the block Bi

9: S ← arg max{|S|, |Ŝ|}
10: i← i+ 1
11: end while
12: return S
13: end procedure

4.4.3 Block-by-block decomposition for the r, s-MCCP

Similar to the r, s-MHCP, the block-by-block decomposition algorithm for the r, s-MRCP can

also be extended to the r, s-MCCP when r ≥ 2. We can solve the r, s-MCCP on each block

Bi of graph G and the largest r-connected s-club among all “block-optimal” solutions will

become our global optimal solution. As before, we can sort blocks in non-increasing order of

44



Algorithm 10 Block-by-Block Decomposition Algorithm for the r, s-MCCP

1: procedure B/B-MCC(G, r, s)
2: Input: Graph G and postive integers r, s ≥ 2
3: Output: A maximum r-connected s-club S
4: Initialize: S ← ∅, i← 1
5: G← r-Core(G)
6: B ← Find Block(G)
7: Let B = 〈B1, . . . , Bk〉 in the non-increasing order of sizes
8: while |Bi| > |S| do
9: Ŝ ← A maximum r-connected 2-club in the block Bi

10: S ← arg max{|S|, |Ŝ|}
11: i← i+ 1
12: end while
13: return S
14: end procedure

sizes and use the “greedy” strategy of solving the problem on the largest block first. The

algorithm is terminated if the current best solution is equal to or greater than the block size

Bi. Notice that although we do not have vertex and edge peeling in Algorithms 3 and 5, we

can still utilize the classical r-Core peeling to remove vertices for the r, s-MCCP. It helps the

graph G decompose into smaller blocks. The detailed block-by-block decomposition approach

for solving the r, s-MCCP is presented in Algorithm 10.

In this chapter, we introduce vertex and edge peeling techniques to reduce the size of the

graph for the r, s-MRCP. A block-by-block decomposition approach is also proposed to speed

up algorithms for solving such problems. We extend these approaches to the r, s-MHCP

and r, s-MCCP. In chapters 5 and 6, we will design computational experiments to assess the

performance of these approaches, and also discuss IP related approaches for the r, s-MHCP

and r, s-MCCP.

45



CHAPTER V

Second Order 2-Clubs

In this chapter, we consider a special case, the maximum r-robust 2-club problem (r, 2-MRCP).

First, a strengthened IP formulation is presented for the r, 2-MRCP. We devise a branch-and-

cut algorithm based on a delayed constraint generation scheme. An extended formulation is

also developed for the r, 2-MRCP. To assess the performance of these approaches, as well

as the preprocessing techniques and decomposition discussed in Chapter IV, we conduct

a computational study on large-scale real-life instances from DIMACS [Bader et al., 2013]

and Stanford Network Analysis Platform [Leskovec and Krevl, 2014] as well as randomly

generated graphs.

5.1 Strengthened IP formulation

Recalling from Chapter II, an IP formulation for the maximum 2-robust s-club problem

proposed by Veremyev and Boginski [2012] is referred to as OF.

(OF) max
∑
i∈V

xi (5.1)

s.t. r(xi + xj − 1) ≤ 1E(i, j) +
∑

k∈N(i)∩N(j)

xk ∀{i, j} ∈
(
V

2

)
(5.2)

xi ∈ {0, 1} ∀i ∈ V (5.3)

Consider an r-robust 2-club S ⊆ V . Constraints (5.2) ensure that there exist r vertex-disjoint

paths of length at most two between any pair of vertices i, j ∈ S. Suppose an adjacent

46



pair of vertices i, j are selected in S, it implies there must be at least r − 1 vertices of

N(i) ∩N(j) selected in S, denoted by C := N(i) ∩N(j) ∩ S, and thus |C| ≥ r − 1. Now for

each k ∈ C, it follows {i, k} ∈ E and {j, k} ∈ E. Hence, we have |N(i) ∩N(k) ∩ S| ≥ r − 1

and |N(j) ∩N(k) ∩ S| ≥ r − 1. A similar argument also applies to any non-adjacent pair of

vertices i, j. This observation allows us to strengthen constraints (5.2) as follows:

r(xi + xj − 1) ≤ 1E(i, j) +
∑
k∈∆r

ij

xk ∀{i, j} ∈
(
V

2

)
,

where ∆r
ij := {k ∈ N(i) ∩N(j) : |N(i) ∩N(k)| ≥ r − 1, |N(j) ∩N(k)| ≥ r − 1}.

If 1E(i, j) + |∆r
ij| ≤ r − 1, it implies that 1E(i, j) +

∑
k∈∆r

ij
xk ≤ r − 1, and thus at most

one of i, j ∈ S can be selected. Therefore, this constraint can be further strengthened as

constraints (5.5) and (5.6).

Putting them together, we obtain a strengthened formulation, referred to as SF, which is

presented next.

(SF) max
∑
i∈V

xi (5.4)

r(xi + xj − 1) ≤ 1E(i, j) +
∑
k∈∆r

ij

xk ∀{i, j} ∈
(
V

2

)
: |∆r

ij| ≥ r − 1E(i, j) (5.5)

xi + xj ≤ 1 ∀{i, j} ∈
(
V

2

)
: |∆r

ij| ≤ r − 1− 1E(i, j) (5.6)

xi ∈ {0, 1} ∀i ∈ V (5.7)

Now let us use the example shown in Figure 5.1 to illustrate how we strengthen con-

straints (5.2). Consider the case r = 2 and a pair of non-adjacent vertices {2, 5}, and we have

1E(2, 5) = 0 and thus 2(x2 + x5 − 1) ≤ x1 + x3. Suppose both vertices {2, 5} are included in

the solution, i.e., x2 = x5 = 1, and it implies that x1 = x3 = 1. However, vertices 1 and 2

have no common neighbors and cannot be selected together in a solution. Hence, x2 + x5 ≤ 1

47



is valid, and stronger than the original constraint 2(x2 + x5 − 1) ≤ x1 + x3. In fact, ∆2
2,5 = ∅

and we have x2 + x5 ≤ 1 according to the strengthened formulation (5.5)–(5.6).

4

7

3

1

6
5

2

Figure 5.1: An example for illustrating the strengthened formulation

Clearly, SF is at least as strong as OF. The following lemma show that if the edges of the

graph have already been recursively edge peeled to the maximal extent, constraints (5.5) and

its counterpart in OF coincide.

Lemma 5. Consider a graph G = (V,E) such that |N(i)∩N(j)| ≥ r−1 for every {i, j} ∈ E.

Then ∆r
ij = N(i) ∩N(j).

Proof. Let {i, j} ∈
(
V
2

)
. By definition, ∆r

ij ⊆ N(i) ∩ N(j). Suppose there exists a vertex

k ∈ (N(i) ∩ N(j)) \ ∆r
ij, then one of these conditions must hold: |N(i) ∩ N(k)| ≤ r − 2,

|N(j) ∩N(k)| ≤ r − 2. However, this is not possible under the given condition as {i, k} ∈ E

and {j, k} ∈ E.

5.2 Extended IP formulation

Recall that in Section 4.4 few implementation questions were considered in terms of how

to take advantage of block decomposition. In this section, we will present an extended

formulation which circumvents these questions. The comparison of their computational

performances will be discussed in Section 5.4. First, we will present the following lemma used

in the extended formulation.

48



Lemma 6. Consider a block B of graph G = (V,E). If a pair of vertices i, j ∈ B, then

N(i) ∩N(j) must be contained in block B.

Proof. We prove this lemma by contradiction. Suppose there exists a vertex k ∈ (N(i) ∩

N(j)) \ V (B). Recall that B is a maximal biconnected subgraph, and therefore any two

vertices of V (B) are connected by at least two vertex-disjoint paths [Whitney, 1992]. It

implies that there is some vertex w ∈ V (B) such that there is only one vertex-disjoint path

between k and w in subgraph G[V (B) ∪ {k}]. Since there are two vertex-disjoint paths

between i and j in subgraph G[B], and k ∈ N(i)∩N(j), there must exist two vertex-disjoint

paths between i and k, j and k respectively in subgraph G[V (B) ∪ {k}]. Hence, w is distinct

from i and j.

It follows that there are two vertex-disjoint paths pwi, p
′
wi between i and w in subgraph

G[B]. Similarly, there also exist two vertex-disjoint paths pwj, p
′
wj between j and w in

subgraph G[B]. Without loss of generality, we can assume that pwi does not contain j and pwj

does not contain i. Then, there are two vertex-disjoint paths between k and w in subgraph

G[V (B) ∪ {k}]. This is a contradiction.

By Lemma 4, every r-robust 2-club must be contained in some block. So we can introduce

a binary variable associated with each candidate block in the output of Algorithm 6 to build

an extended formulation. Suppose C is the collection of candidate blocks that potentially

contain a maximum r-robust s-club in G. For each block B ∈ C, we associate a binary

variable yB. With the x variables defined as before, we obtain the following formulation.

(EXTSF) max
∑
i∈V

xi (5.8)

s.t.
∑
B∈C

yB ≤ 1 (5.9)

49



xi ≤
∑

B∈C:i∈V (B)

yB ∀i ∈ V (5.10)

r(xi + xj − 1) ≤ 1E(i, j) +
∑
p∈∆r

ij

xp ∀{i, j} ∈
(
V (B)

2

)
: |∆r

ij| ≥ r − 1E(i, j), B ∈ C (5.11)

xi + xj ≤ 1 ∀{i, j} ∈
(
V (B)

2

)
: |∆r

ij| ≤ r − 1− 1E(i, j), B ∈ C (5.12)

xi ∈ {0, 1} ∀i ∈ V (5.13)

yB ∈ {0, 1} ∀B ∈ C (5.14)

Constraints (5.9) enforce that at most one block can be chosen, and constraints (5.10)

ensure at least one block containing vertex i must be included if i is in a feasible solution.

Since every non-trivial feasible solution must be contained in one block, it is sufficient to

only consider pairs of vertices in the same block that have at least r vertex-disjoint paths of

length at most two between them, as imposed by constraints (5.11). It is also worth noting

that ∆r
ij ∩ V (B) = ∆r

ij by Lemma 6, and thus we only write ∆r
ij instead of ∆r

ij ∩ V (B) in

constraints (5.11)–(5.12).

5.3 Branch-and-Cut algorithm

Although OF and SF have O(|V |2) constraints, we propose a BC algorithm based on a delayed

constraint generation scheme. Since SF is at least as strong as OF in the original graph

without any preprocessing, we employ a subset of constraints of SF in a master relaxation

which is presented next.

(MRP) max
∑
i∈V

xi

xi + xj ≤ 1 ∀{i, j} ∈
(
V

2

)
: |∆r

ij| ≤ r − 1− 1E(i, j)

xi ∈ {0, 1} ∀i ∈ V

50



In the BC algorithm, we check if the subset S corresponding to the integral solution

obtained at a BC node is an r-robust 2-club. In other words, for each pair of vertices

i, j ∈ S, we verify if 1E(i, j) + |N(i) ∩ N(j) ∩ S| ≥ r. If not, we add the lazy constraint

r(xi + xj − 1) ≤ 1E(i, j) +
∑

k∈∆r
ij
xk to cut off this infeasible integral solution. Notice that

we may be able to add many lazy constraints for each integral solution. Buchanan and Salemi

[2017] pointed out that a similar approach also improved the running time for the maximum

2-club problem. In this dissertation, we compare performances between this BC algorithm

and directly solving strengthened formulation using a general purpose solver.

5.4 Computational experiments

The goal of the computational experiments is to study the effectiveness of strengthened formu-

lation, preprocessing techniques and B/B decomposition algorithm proposed in Chapter IV

for solving the maximum r-robust 2-club problem. Extensions of these approaches are also

assessed for the maximum r-hereditary 2-club and biconnected 2-club problems. In order to

test the performance of these approaches, we select large-scale real-life network instances from

the Tenth DIMACS Implementation Challenge [Bader et al., 2013] and Stanford Network

Analysis Platform (SNAP) [Leskovec and Krevl, 2014], and also generate uniform random

graphs (URG) by the procedure outlined in [Gendreau et al., 1993] as benchmarks in the

computational study. Experimental settings including software and hardware are detailed

next.

5.4.1 Test-bed description

We use 21 graph instances from the Tenth DIMACS Implementation Challenge [Bader et al.,

2013], out of which 14 are often used as benchmarks for graph clustering and community

detection. The remaining six graphs come from Walshaw’s Graph Partitioning Archive that

are used as benchmarks for graph partitioning algorithms [Khandekar et al., 2009, Meyerhenke

51



Table 5.1: Number of vertices, edges, and edge density for the Tenth DIMACS benchmarks
used in this study.

Graph |V | |E| ρ

karate 34 78 13.9%
dolphins 62 159 8.41%
lesmis 77 254 8.68 %
polbooks 105 441 8.08%
adjnoun 112 425 6.84%
football 115 613 9.35%
jazz 198 2742 14.06%
celegans metabolic 453 2025 1.98%
email 1133 5451 0.85%
polblogs 1490 16715 1.51%
netscience 1589 2742 0.22%
add20 2395 7462 0.26%
data 2851 15093 0.37%
uk 4824 6837 0.06%
power 4941 6594 0.05%
add32 4960 9462 0.08%
hep-th 8361 15751 0.05%
whitaker3 9800 28989 0.06%
crack 10240 30380 0.058%
PGPgiantcompo 10680 24316 0.04%
cs4 22499 43858 0.017%

et al., 2009, Rahimian et al., 2015]. The number of vertices (|V |) and edges (|E|), and edge

density (ρ) of each graph are summarized in Table 5.1. These graphs are typically sparse in

terms of their density and the number of vertices varies in the range of 34 to 22499. These

instances were also utilized by Yezerska et al. [2017] for the maximum biconnected 2-club

problem.

The second set of benchmarks containing 12 undirected graphs is chosen from SNAP

collection. These instances are relatively large where |V | varies from 3892 to 54573, and |E|

varies from 17262 to 819306. The detailed information of SNAP instances is summarized in

Table 5.2.

Our last set of benchmarks are synthetic instances generated by the procedure introduced

52



Table 5.2: Number of vertices, edges, and edge density for the SNAP benchmarks used in
this study.

Graph |V | |E| ρ

tvshow 3892 17262 0.228%
ego-Facebook 4039 88235 1.082%
politician 5908 41729 0.239%
government 7057 89455 0.359%
public figure 11565 67114 0.100%
athletes 13866 86858 0.090%
company 14113 52310 0.053%
new sites 27917 206259 0.053%
RO 41773 125826 0.014%
HU 47538 222887 0.020%
artist 50515 819306 0.064%
HR 54573 498202 0.033%

in [Gendreau et al., 1993]. In this generator, there are two parameters a and b controlling the

expected density (ρ) of the generated graph, which is equal to (a+ b)/2. The vertex degree

variance increases as a function of b− a. On this test-bed, we set a = b for all instances we

generate. Under such circumstances, ρ = a = b, and vertex degree variance is a minimum,

which discourages the vertex with the maximum degree and its associated neighbors from

becoming the optimal solution. We generate 30 instances with 200 vertices where edge density

is respectively set to 5%, 10% and 15% for every 10 samples. Similarly, we set ρ = 2%, 3%, 4%

for each 10 of 30 instances with 1000 vertices, and edge density of last 30 instances with 2000

vertices are 0.5%, 1%, 1.5% respectively.

5.4.2 Experimental settings

All approaches developed in this computational study are implemented in C++, and GurobiTM

Optimizer 8.1.0 [Gurobi Optimization, Inc., 2019] is employed to solve the IP formulations.

We impose a three-hour time limit on the solve-time parameter of Gurobi. But it is worth

noting that this only limits on the model solving time, that is, the time spent on each BC

call. All other Gurobi parameters are left at their default setting. We conduct all numerical

53



experiments on a 64-bit Linuxr compute node with dual Intelr Xeonr E5-2620 hex-core

2.0GHz processors and 32 GB RAM.

5.4.3 Results for the maximum r-robust 2-club problem

In this section, we will consider a computational study to test the performance of our

approaches for the maximum r-robust 2-club problem. Specifically, the aims of the numerical

experiment are as follows.

(i) Demonstrate the effectiveness of strengthened formulation presented in Section 5.1.

(ii) Assess the performance of preprocessing techniques introduced in Section 4.2.1.

(iii) Evaluate the BC algorithm introduced in Section 5.3.

(iv) Assess the performance of extended formulation presented in Section 5.2.

(v) Assess the performance of the B/B decomposition algorithm described in Section 4.4.

Accordingly, we consider six solvers in experiments.

Table 5.3: Features of six solvers used in this computational study
Solvers OF SF VP EP BC Recursive Block EXT B/B
Solver 1 OF F
Solver 2 SF F
Solver 3 BCSF F F
Solver 4 PPF F F F
Solver 5 EXT F F F F F F
Solver 6 B/B F F F F F F

In order to test the effectiveness of SF, we compare it against OF by directly solving for-

mulation (5.4)–(5.7) and formulation (5.1)–(5.3) introduced in Section 5.1. They respectively

serve as the first (OF) and second solvers (SF). The third solver called BCSF employs SF in

a delayed constraint generation scheme. We solve SF on the graph modified by preprocessing

including vertex and edge peeling and call this fourth solver as PPF. We employ the extended

54



formulation (5.8)–(5.13) along with Vertex Peeling, Edge Peeling, and Recursive

Block, which serves as the fifth solver, referred to as EXT. We employ the Algorithm 7

and SF which is the sixth solver called B/B. The differences between these six solvers are

summarized in Table 5.3.

Results for DIMACS instances

The graph obtained after applying Algorithms 3 and 5 is denoted by G′ = (V ′, E ′). Note

that we do not delete vertices by Algorithm 3, instead, all edges incident with such vertices

are removed. Hence, vertices of graph G′ remain unchanged and V = V ′. We report heuristic

solution size, the number of new edges |E ′| and blocks, and total time in seconds for the

heuristic and preprocessing on the DIMACS instances for r = 2, . . . , 7 in Table 5.4. Note

that as long as we identify a heuristic solution of size `, we delete vertices that cannot be

choose in a solution whose size is at least `. That is why for some instances the heuristic

solution size is a positive integer but |E ′| = 0. As expected, the number of edges in graph G′

significantly decreases as the parameter r increases. Especially, the number of edges for some

instances such as graph “whitaker3”, “crack” and “cs4” becomes zero when r = 3, in which

case the maximum r-robust 2 club size is one.

After these preprocessing techniques, the resulting graph G′ becomes more sparse and

thus it is more likely to decompose into smaller blocks. Additionally, as the parameter r

increases, G′ tends to decompose into more blocks. It turns out that heuristic for many

instances is an optimal solution especially for r = 2. Furthermore, the total time for heuristic

and preprocessing is under two seconds for every instance. In order to simplify the discussion,

we divide the instances into two groups. The first group consists of instances with fewer

than 1000 vertices and the second consists of the remaining instances. The two groups are

separated by a line in Tables 5.1, 5.4, and Tables 5.6 through 5.11. So our focus will be on

group two in this discussion.

55



Table 5.4: Heuristic solution size (Heur), the number of new edges |E ′| and blocks, and total
time in seconds for the heuristic and preprocessing (time) on the DIMACS instances for
r = 2, . . . , 7
Graph |E| Heur |E ′|† #blocks time Heur |E ′|† #blocks time Heur |E ′|† #blocks time

r = 2 r = 3 r = 4
karate 78 12 0 34 0.00 6 0 34 0.00 6 0 34 0.00
dolphins 159 9 0 62 0.00 6 35 49 0.00 6 0 62 0.00
lesmis 254 18 0 77 0.00 14 0 77 0.00 13 0 77 0.00
polbooks 441 16 284 44 0.01 10 232 56 0.01 9 139 75 0.01
adjnoun 425 23 176 72 0.01 12 0 112 0.00 6 0 112 0.00
football 613 10 512 2 0.01 7 408 21 0.01 9 180 74 0.00
jazz 2742 71 2147 62 0.15 58 2056 70 0.13 47 1955 79 0.14
celegans 2025 104 0 453 0.03 54 0 453 0.04 30 0 453 0.02
email 5451 23 2228 812 0.28 18 803 1008 0.10 16 323 1083 0.03
polblogs 16715 232 14230 819 1.68 137 14146 831 1.93 90 13319 883 1.28
netscience 2742 22 0 1589 0.03 21 0 1589 0.03 20 0 1589 0.02
add20 7462 91 0 2395 0.16 77 0 2395 0.17 71 1479 2320 0.12
data 15093 13 11636 901 1.53 6 11666 896 2.38 1 11663 897 0.14
uk 6837 3 0 4824 0.10 1 0 4824 0.07 1 0 4824 0.06
power 6594 9 0 4941 0.18 7 0 4941 0.10 6 0 4941 0.10
add32 9462 12 0 4960 0.21 5 0 4960 0.22 1 0 4960 0.06
hep-th 15751 33 0 8361 0.42 24 0 8361 0.41 24 0 8361 0.28
whitaker3 28989 4 28989 1 0.36 1 0 9800 0.21 1 0 9800 0.21
crack 30380 4 30380 1 0.38 1 0 10240 0.36 1 0 10240 0.23
PGP 24316 96 2125 10539 0.95 60 1496 10588 0.74 43 2555 10528 0.93
cs4 43858 3 0 22499 1.68 1 0 22499 0.93 1 0 22499 0.93

r = 5 r = 6 r = 7
karate 78 1 0 34 0.00 1 0 34 0.00 1 0 34 0.00
dolphins 159 1 0 62 0.00 1 0 62 0.00 1 0 62 0.00
lesmis 254 13 0 77 0.00 13 0 77 0.00 12 0 77 0.00
polbooks 441 7 37 96 0.00 1 0 105 0.00 1 0 105 0.00
adjnoun 425 1 0 112 0.00 1 0 112 0.00 1 0 112 0.00
football 613 9 180 74 0.00 9 84 96 0.00 1 168 76 0.00
jazz 2742 47 1867 86 0.14 47 1708 98 0.10 45 1611 103 0.12
celegans 2025 19 260 418 0.01 14 249 419 0.01 10 122 434 0.01
email 5451 14 94 1118 0.02 13 81 1120 0.01 13 0 1133 0.01
polblogs 16715 67 12335 949 1.38 59 11440 1001 1.28 47 10474 1053 0.74
netscience 2742 20 0 1589 0.02 20 0 1589 0.02 20 0 1589 0.02
add20 7462 68 1479 2320 0.10 68 1368 2327 0.11 68 1368 2327 0.10
data 15093 1 11663 897 0.14 1 0 2851 0.03 1 0 2851 0.03
uk 6837 1 0 4824 0.06 1 0 4824 0.06 1 0 4824 0.08
power 6594 6 0 4941 0.10 1 0 4941 0.06 1 0 4941 0.07
add32 9462 1 0 4960 0.06 1 0 4960 0.06 1 0 4960 0.08
hep-th 15751 24 0 8361 0.27 24 0 8361 0.26 24 0 8361 0.27
whitaker3 28989 1 0 9800 0.20 1 0 9800 0.20 1 0 9800 0.20
crack 30380 1 0 10240 0.22 1 0 10240 0.22 1 0 10240 0.22
PGP 24316 42 2379 10544 0.73 41 2226 10552 0.73 40 1921 10573 0.87
cs4 43858 1 0 22499 0.93 1 0 22499 0.93 1 0 22499 0.93
† Some values are zero because we remove vertices that cannot be choose in a solution whose size is equal to or greater

than heuristic solution size `.

56



We solve the maximum r-robust 2-club problem for r ∈ {2, . . . , 7}. As expected, OF

versus SF, SF versus BCSF, and EXT versus B/B are all comparable for all parameters

r ∈ {2, . . . , 7}. The best objective and wall-clock running times including reading graph,

preprocessing, model building and solving of each graph are reported in Tables 5.6 through 5.11

for sixth different solvers. The fastest running times are highlighted in bold font. For sub-

optimal terminnation, we report their optimality gaps calculated as 100∗(UB−LB)/LB%

where LB represents the current best objective and UB corresponds to the best upper bound.

Table 5.5: The root node optimality gap between the objective of LP relaxation and IP
optimal value is summarized for OF and SF

r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
Graph OF SF OF SF OF SF OF SF OF SF OF SF
karate 0% 0% 0% 0% 0% 0% * * * * * *
dolphins 2% 0% 0% 0% 0% 0% * * * * * *
lesmis 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
polbooks 4% 0% 7% 0% 8% 0% 0% 0% * * * *
adjnoun 0% 0% 0% 0% 0% 0% * * * * * *
football 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
jazz 0% 0% 0% 0% 0% 0% 1% 1% 6% 0% 3% 2%
celegans 0% 0% 38% 0% 109% 0% 123% 5% 59% 11% 85% 3%
email 109% 38% 94% 19% 116% 13% 111% 0% 117% 0% 75% 0%
polblogs 3% 0% 14% 2% 19% 3% 21% 1% 22% 1% 22% 1%
netscience 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
add20 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0%
data 121% 121% 149% 62% 266% 106% 263% 90% 2590% 100% 2590% 100%
uk 10% 0% 250% * 250% * 250% * 250% * 250% *
power 94% 11% 119% 0% 92% 0% 44% 0% 671% * 375% *
add32 208% 51% 564% 108% 3040% 305% 2800% * 2380% * 2230% *
hep-th 38% 0% 84% 0% 75% 0% 65% 0% − 0% − 0%
whitaker3 167% 83% 1450% 500% − * − * − * − *
crack 199% 78% 1600% 600% 1280% * 1280% * 1280% * 1280% *
PGP − − − − − 1% − 0% − 0% − 0%
cs4 − − − − − − − − − − − −
− indicates that root relaxation was not solved to optimality under the 3-hour time limit
* indicates that solving the LP relaxation directly solves the IP

We begin our discussion with the comparison of SF and OF. For all instances, SF

outperforms OF for each r ∈ {2, . . . , 7} in terms of running times. For some challenging

instances, both solvers fail to solve to optimality, but the optimality gap using SF is smaller

than OF. Furthermore, to compare the strength between OF and SF, we also retrieve their

57



Table 5.6: The 2-robust 2-club number and the running time in seconds for OF, SF, BCSF,
PPF, EXT and B/B on the DIMACS test-bed
Graph BObj OF SF BCSF PPF EXT B/B
karate 12 0.58 0.34 0.1 0.04 0.02 0.00
dolphins 9 0.17 0.07 0.08 0.21 0.07 0.00
lesmis 18 0.18 0.12 0.11 0.06 0.02 0.00
polbooks 20 0.39 0.20 0.16 0.24 0.05 0.54
adjnoun 23 0.34 0.27 0.19 0.24 0.07 0.09
football 14 0.33 0.28 0.17 0.26 0.21 0.33
jazz 79 1.19 1.16 0.60 1.15 0.79 0.49
celegans 104 4.53 3.87 2.21 0.81 0.09 0.03
email 27 584.94 192.99 109.09 52.22 6.78 5.09
polblogs 232 2488.86 151.61 51.44 99.25 18.79 13.86
netscience 22 57.62 52.38 40.23 17.68 0.16 0.04
add20 91 187.88 175.39 145.20 51.74 0.52 0.18
data 14 6667.93 4717.73 4431.41 2940.71 1230.59 1242.48
uk 3 839.88 496.96 460.09 346.33 0.44 0.18
power 9 6820.59 1095.39 868.80 370.20 0.64 0.27
add32 12 4917.89 3496.10 6020.98 374.18 0.58 0.30
hep-th 33 8965.72 3487.49 3439.43 1623.60 1.28 0.67
whitaker3 6 14517\100%† 14717\33%† 13368.10 14710\33%† 12000.40 12807.40
crack ≥ 6 15508\183%† 17186\50%† 15449\50%† 15783\50%† 16250\50%† 15331\67%†

PGP 96 15330†† 15519†† 10856.00 3889.03 7.22 1.69
cs4 3 − − − − 3.00 3.51
− The approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is reported
†† indicates that root relaxation was not solved to optimality under the 3-hour time limit

objectives of root relaxation and report the root node optimality gap in Table 5.5. We observe

that there are more instances solved to optimality at root relaxation using SF than OF.

Additionally, for the instances whose relaxations are not optimal, the gaps by SF are smaller

than the ones by OF. These results also demonstrate that SF is stronger than OF on this

test bed.

To assess the performance of BC algorithm presented in Section 5.3, we compare BCSF

against SF. Recall that we add constraints (5.6) on-the-fly only needed for the solver BCSF.

Though our strengthened formulation has O(|V |2) constraints, BCSF outperforms SF for

nearly all instances. Even challenging instances “PGPgiantcompo” and “whitaker3” when

r = 2 are solved to optimality by BCSF, where SF fails to do so within a three-hour limit.

There are only two exceptions, “add32” and “hep-th”, on which SF is slightly better than

58



Table 5.7: The 3-robust 2-club number and the running time in seconds for OF, SF, BCSF,
PPF, EXT and B/B on the DIMACS test-bed
Graph BObj OF SF BCSF PPF EXT B/B
karate 6 0.05 0.08 0.10 0.07 0.09 0.00
dolphins 7 0.10 0.05 0.07 0.04 0.05 0.12
lesmis 14 0.15 0.10 0.10 0.04 0.04 0.00
polbooks 15 0.53 0.17 0.16 0.19 0.07 0.07
adjnoun 12 0.30 0.20 0.22 0.06 0.07 0.00
football 13 0.39 0.21 0.16 0.21 0.08 0.11
jazz 73 1.27 1.31 0.65 1.09 0.69 0.50
celegans 54 25.92 3.14 2.26 0.80 0.10 0.04
email 23 163.09 38.80 51.68 17.81 0.39 0.35
polblogs 182 2835.27 285.25 69.17 199.82 31.09 26.42
netscience 21 60.29 42.40 38.67 17.68 0.14 0.04
add20 77 366.67 146.27 149.13 51.79 0.33 0.19
data 12 4949.46 1481.93 1060.05 1154.85 252.38 263.00
uk 1 836.46 484.73 453.30 347.00 0.66 0.18
power 7 2165.10 508.09 464.94 370.33 0.71 0.19
add32 5 4313.07 1183.88 2409.23 374.20 0.98 0.31
hep-th 24 9603.61 3280.69 5348.96 1625.68 1.28 0.66
whitaker3 1 14765\1100%† 15396\500%† 14489\300%† 2614.84 1.80 0.60
crack 1 15516\1600%† 17070\600%† − 2949.14 2.28 0.79
PGP 71 15341†† 15526†† 10149.80 4027.49 2.45 1.39
cs4 1 − − − − 8.14 2.86
− The approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is reported
†† indicates that root relaxation was not solved to optimality under the 3-hour time limit

BCSF for some values of parameter r.

Now we turn our attention to the performance of PPF. We observe that PPF outperforms

OF and SF on nearly all instances. Especially for the challenging instances with large vertices

such as “hep-th”, “whitaker3”, “crack” and “PGP”, in which it usually takes PPF around

one hour, but average running times are around three hours by OF/SF for most values of

parameter r. By far, computational results show that the solver SF is better than OF, BCSF

outperforms SF, and preprocessing techniques play a significant role to speed up algorithms.

Therefore, we employ BCSF and preprocessing techniques in the remaining two solvers EXT

and B/B.

59



Table 5.8: The 4-robust 2-club number and the running time in seconds for OF, SF, BCSF,
PPF, EXT and B/B on the DIMACS test-bed

Graph BObj OF SF BCSF PPF EXT B/B
karate 6 0.11 0.08 0.11 0.07 0.11 0.00
dolphins 6 0.09 0.04 0.08 0.03 0.05 0.00
lesmis 13 0.18 0.10 0.11 0.03 0.04 0.00
polbooks 12 0.44 0.24 0.20 0.18 0.05 0.12
adjnoun 6 0.22 0.08 0.15 0.06 0.06 0.00
football 12 0.32 0.20 0.22 0.19 0.15 0.04
jazz 65 1.45 1.18 0.66 1.07 0.64 0.46
celegans 30 13.88 3.22 2.54 0.78 0.08 0.02
email 19 145.17 38.11 26.04 17.92 0.15 0.11
polblogs 158 2565.27 332.73 86.75 331.24 27.74 20.41
netscience 20 63.96 38.86 35.60 18.85 0.11 0.03
add20 75 267.77 136.06 177.75 63.97 0.55 0.37
data 8 3195.96 966.54 995.27 999.69 472.20 330.49
uk 1 1005.82 481.45 455.83 350.24 0.63 0.18
power 6 1320.37 506.76 467.65 379.43 0.61 0.19
add32 1 3543.26 782.52 1168.93 377.12 0.65 0.23
hep-th 24 6169.38 3506.48 3238.74 1664.70 1.17 0.53
whitaker3 1 14499†† 4073.47 3787.91 2578.66 1.83 0.59
crack 1 15488\1100%† 5045.93 4787.60 2940.19 2.03 0.65
PGP 64 15331†† 15516\6300%† 9674.60 4340.26 2.86 1.67
cs4 1 − − − − 8.36 2.88
− The approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is reported
†† indicates that root relaxation was not solved to optimality under the 3-hour time limit

We finally move our discussion to EXT and B/B. The running times of EXT and B/B

are just a few seconds for most instances, even some of them that take thousands of seconds

using OF. Both EXT and B/B solve all instances to optimality except “crack” when r = 2.

Especially, for the most challenging instance “cs4”, it only takes B/B around three seconds.

However, all other four approaches struggle for “cs4” and they did not terminate gracefully

due to memory-related crash. There is another interesting observation that as the parameter

r increases, both EXT and B/B become more effective, i.e. their running times decrease.

This can be attributed to more edges being deleted by the preprocessing technique and the

modified graph decomposing into many smaller blocks when the parameter r increases. In

60



Table 5.9: The 5-robust 2-club number and the running time in seconds for OF, SF, BCSF,
PPF, EXT and B/B on the DIMACS test-bed

Graph BObj OF SF BCSF PPSF EXT B/B
karate 1 0.09 0.52 0.05 0.14 0.15 0.11
dolphins 1 0.07 0.06 0.06 0.06 0.06 0.03
lesmis 13 0.16 0.13 0.20 0.06 0.06 0.00
polbooks 10 0.37 0.16 0.17 0.10 0.04 0.07
adjnoun 1 0.15 0.10 0.11 0.15 0.07 0.10
football 12 0.33 0.47 0.16 0.21 0.04 0.04
jazz 60 1.56 1.17 0.73 1.06 0.67 0.50
celegans 20 9.21 3.82 2.70 1.30 0.09 0.07
email 16 55.78 28.19 23.88 8.80 0.10 0.08
polblogs 146 2621.69 91.41 76.35 148.19 16.54 12.54
netscience 20 66.35 40.58 37.67 17.66 0.12 0.03
add20 70 301.97 134.20 139.20 62.34 0.52 0.39
data 8 2875.27 372.77 571.39 367.45 456.20 131.78
uk 1 836.44 482.67 454.48 345.97 0.55 0.30
power 6 966.44 540.68 509.41 370.46 0.45 0.19
add32 1 2797.57 538.57 521.44 374.18 0.59 0.21
hep-th 24 5468.22 2479.65 2357.58 1655.71 1.15 0.52
whitaker3 1 14517.1†† 4072.19 3776.61 2612.31 1.79 0.58
crack 1 15512\1100%† 5045.29 4770.65 2966.23 1.95 0.65
PGP 57 15350.3†† 5329.66 5735.65 3965.14 2.52 1.50
cs4 1 − − − − 8.16 2.88
− means that the approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is

reported
†† indicates that root relaxation was not solved to optimality under the 3-hour time limit

the comparison between EXT and B/B, the latter is slightly better for most instances.

In comparison to PPF, both EXT and B/B have superior performance in terms of average

running times. To summarize, the B/B outperforms all other approaches, and the PPF

dominates the direct solution of formulations for the large scale real-life instances. These

comparisons directly or indirectly demonstrate that SF is stronger than OF, as we expected.

Results for SNAP instances

In this part, we will run our experiment on SNAP instances which are typically larger than

DIMACS instances. The purpose is to test if our approaches are still effective on larger

61



Table 5.10: The 6-robust 2-club number and the running time in seconds for OF, SF, BCSF,
PPF, EXT and B/B on the DIMACS test-bed

Graph BObj OF SF BCSF PPSF EXT B/B
karate 1 0.26 0.09 0.08 0.09 0.08 0.09
dolphins 1 0.06 0.04 0.07 0.07 0.06 0.06
lesmis 13 0.21 0.12 0.11 0.04 0.03 0.00
polbooks 1 0.20 0.09 0.11 0.08 0.03 0.06
adjnoun 1 0.14 0.07 0.12 0.07 0.07 0.05
football 11 0.37 0.22 0.20 0.18 0.05 0.04
jazz 51 5.35 1.25 0.83 0.95 0.55 0.39
celegans 16 5.63 2.08 1.84 1.29 0.10 0.09
email 14 54.61 23.65 20.31 8.61 0.10 0.09
polblogs 134 1934.23 80.65 52.71 65.63 12.38 9.12
netscience 20 67.15 48.39 46.25 17.52 0.18 0.03
add20 69 269.24 134.35 140.03 61.46 0.49 0.36
data 1 494.29 285.51 288.15 81.68 0.35 0.15
uk 1 839.03 480.44 456.31 345.20 0.53 0.16
power 1 1493.02 481.50 455.68 369.30 0.56 0.18
add32 1 2050.99 537.33 512.03 373.06 0.59 0.20
hep-th 24 13038.5†† 2438.72 2330.09 1655.92 1.12 0.52
whitaker3 1 14513.5†† 4060.14 3789.24 2576.38 1.81 0.59
crack 1 15505\1100%† 5039.55 4791.10 2968.82 1.96 0.64
PGP 53 15355.4†† 5260.05 4924.18 3918.13 2.51 1.41
cs4 1 − − − − 8.24 2.83
− means that the approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality

gap is reported
†† indicates that root relaxation was not solved to optimality under the 3-hour time limit

real-life instances. Based on the results of DIMACS instances, we observe that detected

maximum r-robust 2-club is very small when parameter r becomes big. It essentially turns

out to be a clique and there might not be meaningful insights as a result. Therefore, we only

consider r = 2, 3 and 4 for SNAP instances.

In order to assess the performance of preprocessing and decomposition approaches, we

report heuristic solution size, the number of new edges |E ′| and the number of blocks, and

total time in seconds for heuristic and preprocessing on the SNAP instances when r = 2, 3, 4

in Table 5.12. From the table, we can see that the number of edges decreases significantly

and it indicates that preprocessing techniques play a key role. Furthermore, as expected G′

62



Table 5.11: The 7-robust 2-club number and the running time in seconds for OF, SF, BCSF,
PPF, EXT and B/B on the DIMACS test-bed

Graph BObj OF SF BCSF PPSF EXT B/B
karate 1 0.13 0.11 0.03 0.08 0.03 0.07
dolphins 1 0.06 0.06 0.06 0.05 0.04 0.06
lesmis 12 0.21 0.12 0.10 0.06 0.02 0.00
polbooks 1 0.22 0.07 0.12 0.07 0.03 0.05
adjnoun 1 0.15 0.08 0.10 0.08 0.05 0.05
football 10 0.36 0.17 0.22 0.20 0.04 0.04
jazz 50 3.71 1.23 0.73 0.88 0.56 0.40
celegans 12 5.10 1.75 1.77 1.08 0.07 0.06
email 13 42.17 20.67 19.92 7.40 0.15 0.02
polblogs 124 1787.22 79.91 58.50 49.67 12.47 6.47
netscience 20 64.56 48.47 61.19 17.54 0.10 0.03
add20 69 245.62 131.23 163.99 61.49 0.49 0.31
data 1 475.07 295.67 331.64 81.60 0.29 0.14
uk 1 841.05 481.68 460.05 344.67 0.55 0.24
power 1 856.84 483.68 459.86 368.64 0.57 0.22
add32 1 2136.66 539.79 517.06 372.49 0.59 0.23
hep-th 24 13033†† 2476.56 2358.03 1620.52 1.13 0.52
whitaker3 1 14510.8†† 4071.40 3765.63 2613.10 1.79 0.57
crack 1 15499\1100%† 5041.78 4789.68 2966.55 1.96 0.63
PGP 47 15339.5†† 5275.72 4956.88 3815.81 2.58 1.41
cs4 1 − − − − 8.33 2.83
− means that the approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality

gap is reported
†† indicates that root relaxation was not solved to optimality under the 3-hour time limit

Table 5.12: Heuristic (Heur), the number of new edges |E ′| and blocks, and total time in
seconds for the heuristic solution size and preprocessing (time) on the SNAP instances for
r = 2, 3, 4

r = 2 r = 3 r = 4
Graph |E| Heur |E ′| #blocks time Heur |E ′| #blocks time Heur |E ′| #blocks time
tvshow 17262 96 2710 3791 0.23 95 2706 3792 0.27 93 2662 3795 0.26
ego-Facebook 88235 295 41086 3280 5.92 214 39339 3310 7.77 198 34391 3418 8.50
politician 41729 190 4524 5694 1.20 140 7038 5518 1.54 93 9487 5397 1.90
government 89455 352 32414 5656 10.14 155 38021 5444 14.75 101 42862 5250 14.51
public figure 67114 161 18486 10793 4.96 67 21462 10519 9.22 45 18919 10746 6.19
athletes 86858 172 0 13866 2.84 53 9628 13028 4.59 50 3239 13620 2.35
company 52310 77 0 14113 1.19 36 2576 13866 1.23 35 2792 13861 0.86
new sites 206259 164 30987 25703 39.55 50 40180 25007 40.76 43 20128 26457 14.77
RO 125826 41 0 41773 10.71 7 3925 40722 15.70 9 159 41734 8.05
HU 222887 30 1380 47360 22.31 21 1853 47290 18.19 24 711 47453 13.78
artist 819306 737 351641 40642 795.60 417 275983 43166 591.74 125 306691 41018 529.31
HR 498202 71 159433 42970 185.91 23 185074 38197 118.42 19 124853 43136 95.48

63



Table 5.13: The best objective and running time in seconds for OF, SF, BCSF, PPF, EXT
and B/B on the SNAP test-bed
Graph BObj OF SF BCSF PPF EXT B/B

r = 2
tvshow 100 658.21 430.02 450.37 280.07 1.45 0.78
ego-Facebook 300 11234\426%† 860.86 1079.42 477.71 90.38 50.53
politician 190 11797†† 1532.75 1715.61 958.06 3.87 2.61
government 670 3628.33 4659.97 5028.47 3547.13 96.21 65.84
public figure 258 − − − − 39.80 27.52
athletes 172 − − − − 4.96 3.54
company 77 − − − − 3.39 1.91
new sites 435 − − − − 263.32 241.75
RO 41 − − − − 28.31 17.02
HU 43 − − − − 43.91 31.23
artist ≥737 − − − − 21057\1240%† 18793\1240%†

HR ≥71 − − − − − 10800††

r = 3
tvshow 97 524.1 415.65 466.76 274.62 1.49 0.80
ego-Facebook 274 10800 \83300%† 959.49 1089.77 446.44 92.47 48.24
politician 159 10801†† 2400.15 1866.54 929.60 5.21 3.10
government 335 10802†† 6013.73 4075.72 2794.12 189.33 133.99
public figure 230 − − − − 96.46 65.32
athletes 115 − − − − 19.16 15.84
company 59 − − − − 3.81 2.16
new sites 77 − − − − 5341.81 5023.37
RO 16 − − − − 33.86 22.22
HU 34 − − − − 40.92 28.31
artist ≥417 − − − − 16029\1663%† 14620\1663%†

HR ≥23 − − − − − 24671.70††

r = 4
tvshow 97 975.81 388.96 466.74 272.60 1.56 0.79
ego-Facebook 259 11237\81900%† 995.60 986.05 418.07 73.67 43.85
politician 147 11807†† 1607.57 1725.45 951.84 10.18 5.38
government 245 12745†† 12846†† 12772†† 12150\148%† 2118.80 1955.89
public figure 228 − − − − 30.91 21.18
athletes 57 − − − − 6.57 3.93
company 53 − − − − 3.48 1.74
new sites 55 − − − − 377.15 390.74
RO 10 − − − − 25.85 14.42
HU 28 − − − − 36.64 22.58
artist ≥125 − − − − 19288\7498%† 17584\7498%†

HR ≥19 − − − − 18982\337%† 18867\59058%†

− The approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is reported
†† indicates that root relaxation was not solved to optimality under the 3-hour time limit

decomposes into a large number of blocks. These results are consistent with our discussions

with the DIMACS instances.

64



Now we turn our attention to the performance of different solvers. The best objectives,

the running times on each SNAP instance used in this computational study are reported in

Table 5.13. These instances are very challenging and thus all solvers except EXT and B/B

did not terminate gracefully due to memory-related issues for 9 out of 12 instances. The

solver OF can only solve instances “tvshow” (r = 2, 3 and 4) and “government” (r = 2) to

optimality. It is encouraging that our best solver B/B is capable of solving all instances

except “artist” and “HR”.

Results for URG instances

Results for DIMACS and SNAP instances show that our approaches are very effective for

solving large-scale real-life graphs. In this part, we will run our experiment on URG instances

described in Section 5.4.1 and evaluate the performance of proposed approaches.

Table 5.14: Average number of edges (|E|) of original graph G, new edges (|E ′|) and blocks
(#block) of resulting graph G′ on the URG instances is reported

r = 2 r = 3 r = 4
|V | ρ(%) |E| |E ′| #blocks BObj |E ′| #blocks BObj |E ′| #blocks BObj

200
5 1001 9 196 6 0 200 2 0 200 1
10 1983 1704 2 11 170 140 6 0 200 1
15 2970 2935 1 23 2742 1 11 16 194 6

1000
2 9973 0 1000 7 0 1000 4 0 1000 1
3 14958 8821 9 9 1 1000 5 0 1000 1
4 20070 16054 1 ≥11 378 849 6 0 1000 1

2000
0.5 10006 0 2000 4 0 2000 1 0 2000 1
1 20025 0 2000 6 0 2000 3 0 2000 1

1.5 29857 9154 328 7 0 2000 4 0 2000 1

To see the initial effect of preprocessing and decomposition, the average number of

new edges and blocks of resulting graph G′ and the average best objectives are reported in

Table 5.14; all averages over 10 samples. The running times results for URG instances reported

in Table 5.15 are consistent with those for DIMACS and SNAP we discussed previously, which

show that SF is stronger than OF, and B/B is superior to all the others. It is worth noting

65



Table 5.15: A comparison of running time (seconds) averaged over 10 samples on URG
instances; fastest(on average) running times are highlighted in bold font

|V | ρ(%) OF SF BCSF PPF EXT B/B
r = 2

200
5 1.99 0.83 0.67 0.24 0.08 0.03
10 36.60 28.81 56.05 28.29 50.90 54.87
15 1160.36 1364.85 10802.91† 1368.40 10802.39† 10803.00†

1000
2 424.54 66.08 56.08 5.56 0.16 0.07
3 7871.80 1174.21 476.61 1128.10 591.35 463.36
4 10810.32† 10787.84† 10811.07† 10781.75† 10812.52† 10810.60†

2000
0.5 205.87 97.47 91.42 32.37 0.19 0.04
1 606.87 219.88 204.43 32.37 0.17 0.07

1.5 10859.68† 901.30 789.48 668.85 426.50 428.22
r = 3

200
5 0.36 0.24 0.26 0.20 0.05 0.03
10 5.02 2.05 3.93 0.53 0.20 0.13
15 50.56 46.36 495.77 46.01 441.74 447.50

1000
2 21.87 9.82 9.77 5.40 0.08 0.02
3 376.10 22.03 29.26 5.47 0.08 0.02
4 4868.97 60.26 117.78 9.30 0.54 0.26

2000
0.5 78.70 52.39 48.74 32.00 0.17 0.06
1 91.74 62.28 58.76 32.00 0.14 0.06

1.5 1870.28 88.39 89.91 32.01 0.14 0.05
r = 4

200 5 0.34 0.22 0.22 0.22 0.04 0.04
10 1.11 0.34 0.87 0.20 0.03 0.03
15 6.86 6.70 62.69 0.24 0.04 0.03

1000 2 15.67 9.25 8.82 5.46 0.09 0.06
3 200.05 10.41 10.11 5.50 0.09 0.05
4 383.45 19.32 45.54 5.50 0.09 0.04

2000 0.5 78.80 51.95 48.89 32.24 0.19 0.06
1 89.20 60.31 57.84 32.23 0.19 0.07

1.5 1213.46 66.56 64.12 32.27 0.19 0.08
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality

gap is reported

that all approaches have similar performance for the instances with n = 1000, ρ = 4%, r = 2.

This is because just a few edges are deleted by preprocessing techniques and graph G′ only

includes one block. And for such instances preprocessing techniques and B/B decomposition

algorithm play a lesser role in improving the efficiency of solving the maximum r-robust

66



2-club problem. We also notice that for instances with |V | = 200 and ρ = 15%, the solver

BCSF did not solve to optimality, but OF and SF successfully solved them. This means

that BC algorithm may perform worse than directly implementing IP formulation for some

instances with higher edge density. Since EXT and B/B also employ the BC algorithm, both

of them struggled to solve these instances.

5.4.4 Results for the maximum r-hereditary 2-club problem

In this part, we will assess the performance of approaches extended to the maximum r-

hereditary 2-club problem. Specifically, preprocessing techniques and the B/B decomposition

algorithm presented in Chapter IV for the r, 2-MHCP are evaluated via a computational study.

To achieve this goal, we design two solvers and compare them. The first solver, referred to as

OF, directly solves original formulation (2.46)–(2.48) of the maximum r-hereditary 2-club

problem. Our second solver employs OF (2.46)–(2.48), Vertex Peeling-MHC presented in

Algorithm 4 and B/B-MHC in Algorithm 9, which is called B/B. From the previous section,

we already know that our approaches are effective to solve large-scale real-life instances and

synthetic graphs. In this section, we only utilize DIMACS instances as our test-bed and

choose parameter r ∈ {2, . . . , 7}.

The largest r-hereditary 2-club number and running times in seconds for OF and B/B on

DIMACS test-beds are reported in Table 5.16. Clearly, the second solver (B/B) outperforms

the first (OF) for nearly all instances. Especially for the challenging instances like “polblogs”,

“power” and “hep-th”, B/BOF significantly reduces running times comparing with OF. One

extreme case is the instance “PGP” in which OF fails to solve it to optimality but B/B

successfully solved it within two seconds for r = 2, . . . , 7. It is worth mentioning that both

solvers struggled for the challenging instance “cs4” and they did not terminate gracefully

under a three-hour limit. Note that running times of both OF and B/B are similar for

instance “data”. This is mainly because the graph itself is a block in which B/B reduces to

67



OF.

Table 5.16: The largest r-hereditary 2-club number and running times in seconds for OF and
B/B on DIMACS test-bed; The fastest solver is highlighted in bold font
Graph BObj OF B/B BObj OF B/B BObj OF B/B

r = 2 r = 3 r = 4
karate 12 0.10 0.00 6 0.09 0.00 6 0.14 0.00
dolphins 9 0.13 0.08 7 0.12 0.08 6 0.11 0.00
lesmis 18 0.12 0.00 14 0.14 0.00 13 0.14 0.00
polbooks 20 0.40 0.06 15 0.50 0.05 13 0.41 0.11
adjnoun 23 0.42 0.06 12 0.55 0.06 9 0.51 0.15
football 14 0.23 0.33 13 0.24 0.28 13 0.23 0.26
jazz 79 1.37 0.46 73 1.55 0.37 65 1.57 0.43
celegans 104 6.97 0.03 54 12.93 0.03 30 14.36 0.02
email 27 634.18 35.85 23 244.70 5.70 20 241.15 0.16
polblogs 232 530.04 297.51 182 2562.68 519.31 159 2155.25 575.71
netscience 22 55.82 0.03 21 66.11 0.03 20 57.63 0.03
add20 91 200.97 0.15 77 268.27 0.19 75 252.69 0.17
data 14 4123.41 2872.56 12 4838.10 3215.50 9 4213.76 4810.52
uk 4 2529.21 0.56 3 1350.92 1546.36 3 1266.59 1534.58
power 9 2291.90 0.30 7 2981.30 0.28 6 2790.08 0.28
add32 12 4050.80 0.28 5 4551.47 0.34 4 5267.46 63.87
hep-th 33 11483.70 0.75 24 8854.91 0.63 24 7797.32 0.71
whitaker3 ≥6 14749\83%† 14531\50%† ≥3 14752\200%† 14536\333%† ≥3 14751\100%† 14517\433%†

crack ≥6 15716\183%† 16020\183%† ≥5 15723\240%† 15576\240%† ≥3 15724\467%† 15535\467%†

PGP 96 15548\533900%† 1.53 71 15571\533900%† 1.18 64 15558\533900%† 1.79
cs4 − − − − − − − − −

r = 5 r = 6 r = 7
karate 5 0.08 0.08 5 0.09 0.08 5 0.08 0.08
dolphins 5 0.11 0.07 5 0.11 0.07 5 0.10 0.07
lesmis 13 0.14 0.00 13 0.15 0.00 12 0.15 0.00
polbooks 11 0.46 0.04 9 0.47 0.52 6 1.07 0.68
adjnoun 5 1.37 1.50 5 0.85 0.61 5 0.66 0.45
football 12 0.24 0.22 12 0.23 0.21 11 0.24 0.22
jazz 60 1.67 0.32 51 1.65 0.30 50 1.86 0.27
celegans 22 27.48 0.07 16 28.04 0.09 13 41.92 0.20
email 16 204.02 0.12 14 183.01 0.13 13 159.05 0.05
polblogs 147 1829.97 529.45 134 1782.67 432.24 124 1859.97 303.43
netscience 20 60.21 0.03 20 60.14 0.03 20 60.13 0.03
add20 70 220.20 0.17 69 225.20 0.14 69 228.51 0.12
data 8 3920.18 4165.90 8 4006.78 4426.83 6 3747.69 4224.22
uk 3 1254.94 1606.79 3 1262.18 1539.76 3 1268.41 1539.61
power 6 2901.97 0.23 6 2900.70 639.61 6 2895.95 638.27
add32 4 5175.02 62.52 4 5182.74 62.68 4 5488.32 62.24
hep-th 24 6836.70 0.61 24 7632.32 0.60 24 8627.61 0.60
whitaker3 ≥3 14752\100%† 14959\433%† ≥3 14755\100%† 15023\433%† ≥3 14752\100%† 14609\433%†

crack ≥3 15719\467%† 15542\467%† ≥3 15725\467%† 15555\467%† ≥3 15724\467%† 14609\467%†

PGP 57 15556\533900%† 1.69 53 15559\533900%† 1.45 47 15560\533900%† 1.49
cs4 − − − − − − − − −
− The approach did not terminate gracefully, typically due to a memory-related crash
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is reported

5.4.5 Results for the maximum biconnected 2-club problem

Yezerska et al. [2017] presented a BC algorithm for solving the maximum biconnected 2-club

68



problem, which is referred to as YBC. We apply the YBC along with B/B decomposition

Algorithm 10, and call it as B/BYBC. To assess the performance of the B/B decomposition

approach, we re-run the YBC algorithm in [Yezerska et al., 2017] under our experimental

setting described in Section 5.4.2. Here we impose a one-hour solve-time limit same as

in [Yezerska et al., 2017]. The comparison of the performance between B/BYBC and YBC

is reported in Table 5.17 including the known best objective, optimality gap and Gurobi

solve-time for the DIMACS instances.

Table 5.17: Comparison of running times in seconds and optimality gap between B/BYBC
and YBC

B/BYBC YBC
Graph |V | |E| grbSolTime Size Gap(%) grbSolTime Size Gap(%)
karate 34 78 0.03 17 0 0.02 17 0
dolphins 62 159 0.13 12 0 0.07 12 0
polbooks 105 441 0.13 28 0 0.12 28 0
adjnoun 112 425 0.11 48 0 0.19 48 0
football 115 613 2.79 16 0 2.73 16 0
jazz 198 2742 0.36 103 0 0.37 103 0
celegans 453 2025 2.84 222 0 8.49 222 0
email 1133 5451 22.73 69 0 31.75 69 0
polblogs 1490 16715 165.36 346 0 125.48 346 0
netscience 1589 2742 0.17 25 0 79.24 25 0
add20 2395 7462 46.36 124 0 69.15 124 0
data 2851 15093 3600.15 17 11.76 3600.12 17 11.76
uk 4824 6837 1486.55 5 0 2210.64 5 0
power 4941 6594 779.17 14 0 2120.16 14 0
add32 4960 9462 16.52 30 0 3600.42 12 250
hep-th 8361 15751 2078.77 45 0 3601.20 2 417950
whitaker3 9800 28989 3601.79 6 200 3601.79 6 163233
crack 10240 30380 3601.75 6 170567 3605.13 6 170567
PGP 10680 24316 264.36 196 0 3602.01 56 267.86
cs4 22499 43858 − − − − − −
− The approach did not terminate gracefully, typically due to a memory-related crash

Note that the times reported in this table only includes Gurobi solve-time in order to keep

consistent with the original results in [Yezerska et al., 2017]. It is observed that B/BYBC

outperforms YBC algorithm for nearly all instances except five instances whose running

times are under 130 seconds. Interestingly, B/BYBC is able to solve three instances “add32”,

69



“hep-th” and “PGP” to optimality that the YBC algorithm cannot solve under a one-hour

time limit. Both fail to solve three challenging instances “data”, “whitaker3” and “crack” to

optimality, although gaps by B/BYBC are better than YBC.

5.4.6 Summary

Our proposed strengthened formulation, preprocessing techniques and B/B decomposition

algorithm are very effective to solve the maximum r-robust 2 club problem on large-scale real-

life instances and randomly generated graphs. It is worth mentioning that block decomposition

of a graph might be itself when the graph is dense enough. In this case, B/B decomposition

algorithm degenerates and does not help reduce running times. Adding constraints on-the-fly

is typically faster than directly solving the formulation even though the maximum r-robust 2

club problem formulation has O(|V 2|) constraints. But we also notice that BCSF is worse

than SF for a few URG instances, in which case a lot of nodes were explored and a large

number of lazy cuts were added.

Our B/B decomposition algorithm can be extended to the maximum r-hereditary 2-club

and biconnected 2-club problems. We compare B/B decomposition algorithm against other

approaches, and the computational results show that B/B decomposition algorithm is very

effective to solve large-scale real-life instances. Our effective algorithms are based on IP

approaches, and we implement our approaches on a commercial optimization solver. Readers

who are interested in other solvers may refer to the paper by Komusiewicz et al. [2019] who

presented an effective combinatorial algorithm using data reduction rules for the maximum

r-robust 2-club, r-hereditary 2-club, and r-connected 2-club problems.

70



CHAPTER VI

Second Order s-Clubs

In this chapter, a cut-like IP formulation for the r, s-MRCP when s ∈ {2, 3, 4} is presented.

We devise a BC algorithm based on a delayed constraint generation scheme for the r, s-MRCP.

Moreover, a hybrid block-by-block decomposition approach is proposed for solving such

problems. This decomposition approach is also extended to solving the r, s-MHCP. The

benefits of the algorithmic ideas are empirically evaluated through our computational studies.

6.1 Maximum r-robust s-club problem

6.1.1 Cut-like IP formulation

Recall that ρs(G;u, v) denotes the maximum number of vertex-disjoint u, v-paths of length at

most s in G for a pair of vertices u, v ∈ V . For a pair of non-adjacent vertices u, v, κs(G;u, v)

denotes the minimum number of vertices in V \{u, v} whose deletion disconnects all u, v-paths

of length at most s in G. A length-s u, v-separator for every pair of non-adjacent vertices

u and v is described in Definition 6. However, vertex separators do not exist for adjacent

vertices u and v, and thus we extend the definition as follows.

Definition 7. Given a graph G = (V,E) and a positive integer s ≥ 1, a subset C ⊆ V \{u, v}

of vertices is called an extended length-s u, v-separator in graph G = (V,E) if dG−C−uv(u, v) >

s.

Note that in Definition 7, if the edge uv /∈ E, then ambiguous dG−C−uv = dG−C . By

Proposition 1, ρs(G;u, v) = κs(G;u, v) when s ∈ {2, 3, 4} for every pair of non-adjacent

71



vertices u and v. Based on this result and similar formulations by Buchanan and Salemi

[2017], we present a cut-like formulation for the r, s-MRCP when s ∈ {2, 3, 4} next.

max
∑
i∈V

xi (6.1)

r(xu + xv − 1) ≤ 1E(u, v) +
∑
i∈C

xi ∀(u, v, C) (6.2)

xi ∈ {0, 1} ∀i ∈ V (6.3)

In formulation (6.1)–(6.3), ∀(u, v, C) is a short-hand for every pair of vertices u, v and all

extended length-s u, v-separators C. We prove the correctness of this cut-like formulation in

the following theorem.

Theorem 5. The cut-like formulation (6.1)-(6.3) is correct for the r, s-MRCP when s ∈

{2, 3, 4}.

Proof. We shall show that S ⊆ V is an r-robust s-club if and only if its characteristic vector

xS ∈ {0, 1}n satisfies all constraints of (6.2). We prove the contrapositive for both directions.

(Sufficiency ⇐). Suppose S is not an r-robust s-club, it implies that there exist two

vertices u, v ∈ S such that ρs(G[S];u, v) ≤ r − 1. Let us consider two cases.

Case (i) Suppose {u, v} /∈ E. Then, it follows from Proposition 1 that κs(G[S];u, v) ≤ r− 1.

Hence, there exists a length-s u, v-separator C ′ ⊆ S in subgraph G[S] such that |C ′| ≤ r − 1.

Clearly, C := C ′ ∪ (V \ S) is an extended length-s u, v-separator in graph G. It follows that

xS violates the extended length-s u, v-separator C inequality, since r(xSu + xSv − 1) = r and

1E(u, v) +
∑

i∈C x
S
i = 0 + |S ∩ C| = |C ′| ≤ r − 1.

Case (ii) Suppose {u, v} ∈ E. Then, it follows that ρs(G[S] − uv;u, v) ≤ r − 2. By

Proposition 1, κs(G[S]−uv;u, v) ≤ r−2. Hence, there exists a length-s u, v-separator C ′ ⊆ S

in subgraph G[S]−uv such that |C ′| ≤ r−2. As before, C := C ′∪(V \S) is an extended length-

72



s u, v-separator in graph G. It follows that xS violates the extended length-s u, v-separator C

inequality, since r(xSu + xSv − 1) = r and 1E(u, v) +
∑

i∈C x
S
i = 1 + |S ∩C| = 1 + |C ′| ≤ r− 1.

(Necessity ⇒). Let S ⊆ V and suppose r(xSu + xSv − 1) > 1E(u, v) +
∑

i∈C x
S
i for some

extended length-s u, v-separator C in G. It implies that u, v ∈ S and thus 1E(u, v) +∑
i∈C x

S
i ≤ r − 1.

Case (i) Suppose {u, v} /∈ E, it follows that |S ∩C| ≤ r− 1. The set C ′ = S ∩C is a length-

s u, v-separator in G[S]. If not, G[S] \ C ′ will contain a u, v-path of length at most s, which

cannot be disconnected by deleting any vertex in C \ S; a contradiction to the assumption

that C is an extended length-s u, v-separator in G. Hence, κs(G[S];u, v) ≤ |C ′| ≤ r − 1. By

Proposition 1, ρs(G[S];u, v) ≤ r − 1, and S is not an r-robust s-club.

Case (ii) Suppose {u, v} ∈ E, it follows that |S ∩C| ≤ r− 2. By a similar argument, the set

C ′ = S∩C is a length-s u, v-separator in G[S]−uv. Hence, κs(G[S]−uv;u, v) ≤ |C ′| ≤ r−2.

By Proposition 1, ρs(G[S]− uv;u, v) ≤ r − 2, and S is not an r-robust s-club.

The proof of our cut-like formulation of r, s-MRCP only works when s = 2, 3, and 4.

This is because when s ≥ 5, the length-bounded counterpart of Menger’s theorem no longer

holds [Lovász et al., 1978]. Hence, the sufficient condition of Theorem 5 does not hold for

s ≥ 5. Interestingly, the necessary condition in Theorem 5 still holds, and therefore the

cut-like formulation (6.1)-(6.3) can serve as a relaxation of the r, s-MRCP formulation for

s ≥ 5.

6.1.2 Branch-and-Cut algorithm

In this section, we will present a BC algorithm to solve the r, s-MRCP for s = 2, 3 and

4. Notice that it is sufficient to only consider inclusion-wise minimal extended length-

s u, v-separator C for the cut-like formulation (6.1)-(6.3). When s = 2, minimal extended

length-s u, v-separator C coincides with common neighbors of u and v. Hence, when s = 2,

73



the cut-like formulation (6.1)-(6.3) is compact and reduces to the original formulation (2.27)–

(2.29) of the maximum r-robust 2-club problem presented by Veremyev and Boginski [2012].

However, for s = 3 and 4, the cut-like formulation has exponentially many constraints in the

worst case, and hence we devise a BC algorithm based on a delayed constraint generation

scheme. To serve as the master relaxation at the root node of the branch-and-cut tree, we

employ the following s-clique formulation.

max
∑
i∈V

xi (6.4)

s.t. xu + xv ≤ 1 ∀{u, v} ∈
(
V

2

)
: dG(u, v) ≥ s+ 1 (6.5)

xi ∈ {0, 1} ∀i ∈ V (6.6)

However, when we implemented this, we found out that the master relaxation problem is

too weak and the computational effort required by separation procedure is too expensive.

Therefore, we have to impose additional constraints to strengthen the master relaxation. For

each pair of vertices u, v ∈ V , at most one of them can be selected in an r-robust s-club if

ρs(G;u, v) ≤ r − 1. So, we introduce the following notion of an r-robust s-clique.

Definition 8. Given a graph G = (V,E) and positive integers r and s, a subset S ⊆ V is

called an r-robust s-clique if for every pair of vertices u, v ∈ S, ρs(G;u, v) ≥ r.

Therefore, instead of employing an s-clique formulation, we utilize an r-robust s-clique

formulation which yields a strengthened master relaxation (6.7)-(6.9).

max
∑
i∈V

xi (6.7)

s.t. xu + xv ≤ 1 ∀{u, v} ∈
(
V

2

)
: ρs(G;u, v) ≤ r − 1 (6.8)

xi ∈ {0, 1} ∀i ∈ V (6.9)

74



Based on this strengthened master relaxation, we develop a BC algorithm for solving

the r, s-MRCP when s ∈ {2, 3, 4}. The basic procedure is as follows. When we solve the

master relaxation (6.7)-(6.9) using a branch-and-bound (BB) approach and obtain an integral

optimal solution x∗ ∈ {0, 1}n at some node of the BB tree, we need to check if selected

vertices S := {i ∈ V : x∗i = 1} form an r-robust s-club. Specifically, for each pair of vertices

u, v ∈ S, we have to check if ρs(G[S];u, v) ≥ r. If not, we add a (lazy) cut—a violated

minimal extended length-s u, v-separator inequality.

When s = 2, verifying if ρs(G[S];u, v) ≥ r reduces to checking if there are at least

r common neighbors of u and v in subgraph G[S]. However, for s ∈ {3, 4}, it is not as

straightforward to check. Itai et al. [1982] showed that for s ∈ {3, 4}, ρs(G;u, v) can be

computed in O(|E|
√
|V |) time for every pair of vertices u and v by employing Dinic’s

algorithm for the maximum flow problem when vertices and edges have unit capacity in the

network [Dinic, 1970]. We make edges and vertices unit capacity in order to run Dinic’s

algorithm in O(|E|
√
|V |). The following is the textbook “vertex splitting” procedure for

transforming a given undirected graph G = (V,E) and a, b ∈ V into a maximum flow network

G′ = (V ′, E ′) to compute ρs(G; a, b).

a) Designate a as source vertex and b as sink vertex.

b) For each vertex v ∈ V \ {a, b}, add two vertices v′, v′′ to V ′, and directed edges (v′, v′′)

and (v′′, v′) to E ′; Assign the capacity of both edges (v′, v′′) and (v′′, v′) to 1.

c) For each edge (a, v) ∈ E, add directed edge (a, v′) to E ′; for edge (v, b) ∈ E, add

directed edge (v′′, b) to E ′; for each undirected edge {u, v} ∈ E, add (u′′, v′) and (v′′, u′)

to E ′. Assign each edge a capacity of 1.

Therefore, we can check if ρs(G;u, v) ≥ r in O(|E|
√
|V |) time for every pair of vertices

u and v using algorithms presented by Itai et al. [1982] when s = 3 and 4. The worst

case complexity to check if S is an r-robust s-club is O(|E||V | 52 ). In fact, it is not strictly

75



necessary to always compute ρs(G[S];u, v) to verify if S is an r-robust s-club. We can

terminate early when flow value meets or exceeds r. Our computational study shows that

this early termination significantly speeds up separation as we would expect.

Next, we will discuss how to identify a minimal extended length-s u, v-separator to

generate violated inequalities. The set C ′ := C̄∪(V \S) is an extended length-s u, v-separator

in G, where C̄ is the minimum cardinality extended length-s u, v-separator in subgraph G[S],

obtained as the minimum cut from Dinic’s algorithm when ρs(G[S];u, v) ≤ r − 1.

Suppose we are running a Dinic’s algorithm in a unit capacity directed graph G′ = (V ′, E ′)

with source a and sink b constructed from G[S]. To obtain a minimum cut, we modify the

final residual network without affecting the maximum flow by setting the capacity of any

edge (u, v) ∈ E ′ to ∞ except the edges (v′, v′′) ∈ E ′ for each v ∈ V \ {a, b}. Then, the set

of vertices that are reachable from the source in the residual network induces a minimum

source-sink cut in G′. We can convert these edges in the minimum cut, which can only be

the vertex split edges, into a minimum vertex separator C̄ of G[S].

Next, we modify the algorithm for obtaining a minimal length-s, u, v- separator in [Buchanan

and Salemi, 2017] to Algorithm 11 to make C ′ a minimal extended length-s u, v-separator

in G. Buchanan and Salemi [2017] also noted that Minimalize can be improved in prac-

tice as follows: (1) For each vertex c ∈ C ′ such that dG(u, c) + dG(v, c) ≥ s + 1, we can

first remove it before initialize; (2) Each vertex c ∈ N(u) ∩N(v) belongs to the extended

length-s u, v-separator C; i.e., skip steps 9-12 (for-loop) in Algorithm 11.

6.1.3 Hybrid B/B decomposition algorithm

Recall that by Lemma 4 every r-robust s-club (r ≥ 2) must be contained in a block. Ideally,

like the maximum r-robust 2-club problem, we can first apply Recursive Block algorithm

and then utilize B/B decomposition for the r, s-MRCP when r ≥ 2, s ∈ {3, 4}. However,

unlike the maximum r-robust 2-club problem, in practice, edge peeling is very expensive to

76



Algorithm 11 Minimal extended length-s u, v-separator

1: procedure Minimalize(G, u, v, C ′)
2: Input: Graph G = (V,E), u, v ∈ V , and an extended length-s u, v-separator C ′

3: Output: A minimal extended length-s u, v-separator C
4: Initialize: C ← C ′

5: if {u, v} ∈ E then
6: G← G− uv
7: end if
8: for each c ∈ C do
9: Gc ← G \ (C \ {c})

10: Compute dGc(u, c) and dGc(v, c)
11: if dGc(u, c) + dGc(v, c) ≥ s+ 1 then
12: C ← C \ {c}
13: end if
14: end for
15: return C
16: end procedure

employ for the maximum r-robust s-club problem when s = 3 and 4 because we have to

compute length-bounded vertex-disjoint paths using Dinic’s algorithm. Hence, we propose

the following compromise that permits two rounds of block decomposition at most.

First, we identify all candidate blocks of graph G, denoted by 〈B1, . . . , Bk〉. We can

continue to preprocess each Bi by vertex and edge peeling, as a result Bi may further

decompose into smaller blocks. Denote by Ci the collection of candidate blocks obtained in

this manner from Bi. We associate a binary variable yB for each block B ∈ Ci and develop

an extended formulation for the r, s-MRCP master relaxation (6.7)–(6.9) for block Bi.

max
∑

p∈V (Bi)

xp (6.10)

s.t.
∑
B∈Ci

yB ≤ 1 (6.11)

xp ≤
∑

B∈Ci:p∈V (B)

yB ∀p ∈ V (Bi) (6.12)

xu + xv ≤ 1 ∀{u, v} ∈
(
V (B)

2

)
: ρs(Bi;u, v) ≤ r − 1, B ∈ Ci (6.13)

77



xp ∈ {0, 1} ∀p ∈ V (Bi) (6.14)

yB ∈ {0, 1} ∀B ∈ Ci (6.15)

To find a maximum r-robust s club in block Bi, we can utilize the BC algorithm discussed

in Section 6.1.2 by employing this extended formulation (6.10)-(6.15) as master relaxation.

This so-called hybrid B/B decomposition approach is presented in Algorithm 12.

Algorithm 12 Hybrid B/B Decomposition Algorithm for the r, s-MRCP

1: procedure Hybrid B/B-MRC(G, r, s, `)
2: Input: Graph G = (V,E), lower bound `, and positive integers r ≥ 2, s ∈ {3, 4}
3: Output: A maximum r-robust s-club S
4: Initialize: S ← ∅, T ← ∅,B ← ∅, i← 1
5: G← r-Core(G)
6: B ← Find Block(G)
7: Let B = 〈B1, . . . , Bk〉 in non-increasing order of sizes
8: while |Bi| > |S| do
9: Bi ← Edge Peeling (Bi, r, s)

10: Bi ← Vertex Peeling(Bi, r, s, `)
11: Ci ← Find Block(Bi)
12: W ← Find a maximum r-robust s-club in Bi

13: S ← arg max{|S|, |W |}
14: i← i+ 1
15: end while
16: return S
17: end procedure

6.2 Extension to r-hereditary s-club

Recall that Buchanan and Salemi [2017] suggested a cut-like formulation (2.43)–(2.45) for

the r, s-MHCP, but no computational results were reported. In this section, we will extend

our computational approaches for the r, s-MRCP to r, s-MHCP including branch-and-cut

and B/B decomposition for s = 2, 3 and 4.

78



6.2.1 Branch-and-Cut algorithm

Like the r, s-MRCP, the cut-like r, s-MHCP formulation has exponentially many constraints.

Accordingly, we devise a BC algorithm based on a delayed constraint generation scheme.

Because length-bounded Menger’s theorem holds when s = 2, 3 and 4 [Lovász et al., 1978],

verifying an r-hereditary s-club is equivalent to checking if ρs(G[S];u, v) ≥ r for every pair

of non-adjacent vertices u and v in subgraph G[S] when s = 2, 3 and 4. Therefore, we can

slightly modify the strengthened master relaxation for the r, s-MRCP (6.7)-(6.9), and obtain

a strengthened master relaxation for the r, s-MHCP when s ∈ {2, 3, 4}, as presented below.

∑
i∈V

xi (6.16)

s.t. xu + xv ≤ 1 ∀{u, v} ∈
(
V

2

)
\ E : ρs(G;u, v) ≤ r − 1 (6.17)

xi ∈ {0, 1} ∀i ∈ V (6.18)

Based on this strengthened master relaxation, we devise a BC algorithm for solving

the r, s-MHCP. The basic procedure is as follows. When we solve the strengthened master

relaxation problem (6.16)-(6.18) and obtain an integral solution x∗ ∈ {0, 1}n at some node of

the BC tree, we need to check if selected vertices S := {i ∈ V : x∗i = 1} form an r-hereditary

s-club. Specifically, we have to check if ρs(G[S];u, v) ≥ r for every pair of non-adjacent

vertices u and v in subgraph G[S] when s = 2, 3 and 4. If ρs(G[S];u, v) ≤ r− 1 for some pair

of non-adjacent vertices u and v, we must add a (lazy) cut—a violated minimal length-s, u, v-

separator inequality r(xu + xv − 1) ≤
∑

i∈C xi that eliminates this solution without cutting

off any incidence vectors of r-hereditary s-clubs.

79



6.2.2 Hybrid B/B decomposition algorithm

As before, we can combine B/B decomposition algorithm and extended IP formulation for

the r, s-MHCP master relatxation. This approach is referred to as hybrid B/B decomposition

algorithm for the r, s-MHCP. First, we identify all candidate blocks of graph G, denoted

by 〈B1, . . . , Bk〉. We can continue to preprocess each Bi by vertex peeling. A block Bi may

further decompose into smaller blocks, and let Ci be the collection of them. Like the extended

formulation for the r, s-MRCP master relaxation, we associate a binary variable yB for each

block B ∈ Ci and develop the following formulation for the r, s-MHCP master relaxation.

max
∑

p∈V (Bi)

xp (6.19)

s.t.
∑
B∈Ci

yB ≤ 1 (6.20)

xp ≤
∑

B∈Ci:p∈V (Bi)

yB ∀p ∈ V (Bi) (6.21)

xu + xv ≤ 1 ∀{u, v} ∈
(
V (B)

2

)
\ E(B) : ρs(Bi;u, v) ≤ r − 1, B ∈ Ci (6.22)

xp ∈ {0, 1} ∀p ∈ V (Bi) (6.23)

yB ∈ {0, 1} ∀B ∈ Ci (6.24)

To find a maximum r-hereditary s-club in the block Bi when s ∈ {3, 4}, we can utilize

the BC algorithm discussed in Section 6.2.1 by employing master relaxation (6.19)-(6.24).

The detailed hybrid B/B decomposition approach is presented in Algorithm 13.

6.3 Computational experiments

The goal of the computational experiments is to study the effectiveness of the cut-like IP

formulation, BC algorithm, preprocessing techniques, and the hybrid B/B decomposition

80



Algorithm 13 Hybrid B/B Decomposition Algorithm for the r, s-MHCP

1: procedure Hybrid B/B-MHC(G, r, s, `)
2: Input: Graph G = (V,E), lower bound `, and positive integers r ≥ 2, s ∈ {3, 4}
3: Output: A maximum r-hereditary s-club S
4: Initialize: S ← ∅, T ← ∅,B ← ∅, i← 1
5: G← r-Core(G)
6: B ← Find Block(G)
7: Let B = 〈B1, . . . , Bk〉 in non-increasing order of sizes
8: while |Bi| > |S| do
9: Bi ← Vertex Peeling-MHC(Bi, r, s, `)

10: Ci ← Find Block(Bi)
11: W ← Find a maximum r-hereditary s-club in Bi

12: S ← arg max{|S|, |W |}
13: i← i+ 1
14: end while
15: return S
16: end procedure

algorithm proposed in Section 6.1 for solving the r, s-MRCP. We also extend these approaches

to the r, s-MHCP as in Chapter V. In order to test the performance of these approaches, we

select large-scale real-life networks from the Tenth DIMACS Implementation Challenge on

Clustering Instances [Bader et al., 2013] as benchmarks. Numerical results are reported and

discussed for the r, s-MRCP and r, s-MHCP. Experimental settings including software and

hardware are detailed next.

6.3.1 Experimental settings

All approaches conducted in this computational study are implemented in C++, and GurobiTM

Optimizer 8.1.0 [Gurobi Optimization, Inc., 2019] is employed to solve IP formulations. We

impose a three-hour time limit on solve-time parameter of Gurobi. However, on some

instances Gurobi did not strictly enforce the time-limit parameter resulting in significantly

longer running times; these must be interpreted as a failure to solve to optimality within the

three-hour limit. We use Gurobi’s barrier implementation to solve the root node relaxation

while choosing the dual simplex solver at all other nodes of the branch-and-bound tree. In

81



Gurobi, the parameter MIPFocus strikes a balance between finding new feasible solutions and

proving that the current solution is optimal. We focus more attention on proving optimality

by setting MIPFocus = 2. The parameter NodefileStart allows nodes to be compressed and

written to disk when memory is exhausted. We set the parameter NodefileStart to 0.1 since

we need to solve some large instances consuming large memory. All other Gurobi parameters

are left at their default setting. We conduct all numerical experiments on a 64-bit Linuxr

compute node with dual Intelr Xeonr E5-2620 hex-core 2.0GHz processors and 32 GB RAM.

When we implement the computation of length-bounded vertex-disjoint paths, we do parallel

programming by employing “OpenMP” library [Dagum and Menon, 1998].

6.3.2 Results for the r, s-MRCP

We solve the r, s-MRCP for r ∈ {2, 3, 4} and s ∈ {3, 4}. The best objectives and running times

in seconds including preprocessing, Gurobi solve-time and wall-clock time are reported in

Tables 6.1. We observe that our approaches are effective to solve the r, s-MRCP on DIMACS

instances. Optimal solutions are found for all instances except “email” (s = 3, r = 3) and

“hep-th” (s = 4, r = 2) within the three-hour Gurobi solve-time limit. Like the r, 2-MRCP, we

report their optimality gaps calculated by 100∗(UB−LB)/LB% for sub-optimal termination.

When we conduct this computational study, we exploit several approaches to speed up the

algorithm. Consider the case s = 3 and r = 3. Initially, we employ s-clique formulation (6.4)–

(6.6) as the master relaxation, in which case the solver did not terminate gracefully, typically

due to a memory-related crash. Then, we strengthen the master relaxation by utilizing

r-robust s-clique formulation (6.7)-(6.9). To reduce the time for verifying the feasibility of

the integral solution at each BC node, we terminate the computation of ρs(G;u, v) early,

when it is verified that ρs(G;u, v) ≥ r. These two measures led to a substantial improvement.

All instances but “email” are solved to optimality which takes a total of 31 hours 23 minutes

of wall-clock time across all instances. Furthermore, after we employ vertex and edge peeling

82



Table 6.1: Best objectives (Obj) and running times in seconds including preprocessing (PP),
Gurobi solve-time (grbSolve) and wall-clock time (Wall) are reported on DIMACS instances
for the r, s-MRCP with r ∈ {2, 3, 4} and s ∈ {3, 4}

r = 2 r = 3 r = 4
Graph PP grbSolve Wall Obj PP grbSolve Wall Obj PP grbSolve Wall Obj

s = 3
karate 0.02 0.07 0.16 21 0.01 0.06 0.12 11 0.00 0.30 0.35 9
dolphins 0.05 0.07 0.13 22 0.04 0.06 0.11 14 0.04 0.02 0.06 7
lesmis 0.07 0.05 0.14 35 0.06 0.02 0.08 25 0.05 0.04 0.10 21
polbooks 0.23 1.14 1.39 39 0.26 0.64 0.93 31 0.25 0.36 0.62 24
adjnoun 0.26 1.07 1.34 63 0.29 0.79 1.09 47 0.25 0.39 0.65 31
football 0.45 2.74 3.21 40 0.55 5.52 6.10 27 0.55 10.76 11.35 17
jazz 1.68 5.46 7.16 158 1.95 9.51 11.48 145 2.02 11.44 13.49 136
celegans 27.30 20.99 48.38 234 27.82 21.43 49.35 141 10.85 9.49 20.42 99
email 363.97 2936.89 3302.00 138 262.59 10800\14%† 11063.70 ≥88 183.98 7957.72 8142.34 66
polblogs 1007.76 1607.18 2615.73 672 834.81 3723.11 4558.78 605 678.40 2997.95 3677.16 557
netscience 0.20 0.02 0.23 24 0.15 0.00 0.17 21 0.06 0.00 0.08 20
power 1686.43 0.16 1686.78 17 0.14 0.02 0.27 12 0.10 0.01 0.22 12
hep-th 11444.30 502.21 11948.10 52 8951.85 95.09 9047.98 38 364.27 10.04 374.73 32
PGP 3571.64 227.89 3801.53 239 2108.34 105.78 2215.54 170 979.80 75.78 1056.54 124

s = 4
karate 0.03 0.22 0.52 26 0.02 0.18 0.36 13 0.01 0.03 0.47 6
dolphins 0.08 0.10 0.20 32 0.08 0.36 0.45 22 0.06 0.16 0.22 7
lesmis 0.12 0.31 0.44 44 0.10 0.08 0.18 33 0.09 0.03 0.12 21
polbooks 0.39 0.91 1.31 57 0.40 1.10 1.52 44 0.41 2.01 2.44 33
adjnoun 0.40 1.43 1.85 94 0.41 2.56 2.98 81 0.41 5.29 5.71 67
football 0.69 9.16 9.86 112 0.74 12.61 13.36 98 0.77 321.73 322.53 54
jazz 3.12 19.96 23.09 186 3.55 22.78 26.35 181 3.98 24.16 28.17 174
celegans 34.77 250.27 285.09 374 36.24 90.21 126.50 291 12.24 114.99 127.27 205
email 748.33 6653.78 7402.62 502 599.60 6437.03 7037.13 403 406.47 5123.80 5530.63 337
polblogs 1432.34 9948.22 11381.10 1000 1156.69 8777.53 9934.69 913 1001.99 8025.34 9027.78 852
netscience 0.36 0.12 0.50 27 0.31 0.00 0.33 21 0.09 0.00 0.11 20
power 4431.19 0.81 4432.32 28 0.18 0.21 0.50 11 0.12 0.00 0.22 6
hep-th 190645.00 10800\7%† 201453.00 ≥173 50353.00 6266.20 56622.30 108 1166.33 2198.09 3365.71 70
PGP 89015.10 3696.62 92718.60 446 9895.70 822.77 10721.90 306 10858.10 1324.64 12185.00 226
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is reported

introduced in Algorithm 3 and 5, and hybrid B/B decomposition Algorithm 12, the total

wall-clock time is reduced to 13 hours 40 minutes. More importantly, the Gurobi solve-times

for large instances “hep-th” and “PGP” significantly decrease to under 100 seconds. However,

preprocessing times are still large for some challenging instances. It is mainly because of

the time required to compute length-bounded vertex-disjoint paths by running the modified

Dinic’s algorithm. In practice, it is not always necessary to run Dinic’s algorithm to compute

ρs(G;u, v) for every pair of vertices u and v. When N(u)∩N(v) ≥ r, or u, v are in a heuristic

solution of an r-robust s-club, we know ρs(G;u, v) ≥ r. If dG(u, v) > s, then ρs(G;u, v) = 0.

In these cases, there is no need to run Dinic’s algorithm to compute ρs(G;u, v).

To take advantage of multicore processors, we utilize parallel programming to calculate

83



length-bounded vertex-disjoint paths. Finally, the total wall-clock time decreases to seven

hours twenty-nine minutes along using these approaches. Of course, preprocessing times are

still very large for “hep-th” and “PGP”, and there is room for improvement in the future.

6.3.3 Results for the r, s-MHCP

Table 6.2: Best objectives (Obj) and running times in seconds including preprocessing (PP),
Gurobi solve-time (grbSolve) and wall-clock time (Wall) are reported on DIMACS instances
for the r, s-MHCP with r ∈ {2, 3, 4} and s ∈ {3, 4}

r = 2 r = 3 r = 4
Graph PP grbSolve Wall Obj PP grbSolve Wall Obj PP grbSolve Wall Obj

s = 3
karate 0.02 0.07 0.13 21 0.01 0.10 0.15 11 0.00 0.01 0.02 9
dolphins 0.04 0.08 0.13 22 0.04 0.04 0.09 17 0.03 0.06 0.10 7
lesmis 0.07 0.05 0.13 35 0.05 0.02 0.08 25 0.04 0.03 0.08 21
polbooks 0.22 1.02 1.26 39 0.26 0.59 0.87 31 0.23 0.27 0.52 24
adjnoun 0.25 0.93 1.20 63 0.25 0.64 0.90 47 0.21 0.95 1.18 32
football 0.43 6.21 6.67 40 0.49 7.07 7.58 27 0.53 5.56 6.13 17
jazz 1.63 5.26 6.91 158 1.90 9.08 11.00 145 2.00 10.96 12.98 136
celegans 29.42 19.53 49.04 234 27.38 17.07 44.54 141 10.62 9.27 19.99 99
email 473.22 4468.92 4943.36 138 250.77 10800\31%† 11051.90 ≥81 174.77 10800\9%† 10975.50 ≥66
polblogs 1145.92 1567.20 2713.94 672 801.78 3548.41 4350.81 605 673.80 2068.68 2743.29 558
netscience 0.19 0.02 0.23 24 0.19 0.00 0.37 21 0.06 0.00 0.08 20
power 881.87 0.13 882.16 17 0.17 0.02 0.32 12 0.10 0.00 0.20 12
hep-th 12114.20 384.83 12500.50 52 8337.19 143.64 8481.77 38 382.53 16.99 399.98 32
PGP 3818.95 195.71 4016.60 239 2278.07 96.82 2376.10 170 967.73 75.15 1043.80 124

s = 4
karate 0.03 0.08 0.16 26 0.01 0.07 0.12 13 0.00 0.03 0.07 6
dolphins 0.08 0.10 0.20 32 0.07 0.44 0.51 22 0.05 0.18 0.25 7
lesmis 0.12 0.29 0.41 44 0.08 0.06 0.15 33 0.08 0.02 0.11 21
polbooks 0.36 0.90 1.27 57 0.40 1.65 2.08 44 0.94 1.85 2.80 33
adjnoun 0.37 1.32 1.70 94 0.37 2.21 2.59 81 0.35 3.64 3.99 67
football 0.64 2.60 3.25 114 0.72 7.79 8.52 98 9.81 419.67 429.51 54
jazz 3.03 18.18 21.23 186 3.44 20.61 24.07 181 21.46 21.46 42.95 174
celegans 33.05 225.19 258.28 374 34.14 216.47 250.65 291 54.59 133.81 188.45 205
email 1339.74 7374.71 8714.91 502 569.34 5279.27 5849.03 403 563.75 4489.41 5053.58 337
polblogs 1357.84 9402.12 10761.40 1000 1085.93 8144.51 9231.01 913 1523.64 7635.63 9159.72 852
netscience 0.48 0.12 0.95 27 0.33 0.01 0.72 21 0.11 0.00 0.39 20
power 10896.80 0.93 10898.10 28 0.23 0.25 0.59 11 0.16 0.01 0.28 6
hep-th 181498 11594\10%† 193099 173 45305.60 7499.71 52808.00 108 1777.28 3838.07 5616.58 70
PGP 81458.8 3935.85 85401.4 446 8677.39 745.13 9425.84 306 5490.71 884.21 6377.10 226
† indicates that the approach did not find an optimal solution under the 3-hour time limit and optimality gap is reported

Similar to the r, s-MRCP, we solve the r, s-MHCP for r ∈ {2, 3, 4} and s ∈ {3, 4}. The

r-hereditary s-club number and running times in seconds including preprocessing, Gurobi

solve-time and wall-clock time are reported in Tables 6.2. We observe that our approaches

are effective for solving these large-scale instances. Within the three-hour Gurobi solve-time

limit, all instances are solved to the optimality except instances “email” (s = 3, r = 3, 4),

84



and “hep-th” (s = 4, r = 2). Similar to results of r, s-MRCP, strengthened master relaxation,

preprocessing techniques including vertex and edge peeling, and hybrid B/B decomposition

approach significantly improve the algorithm to solve the r, s-MHCP.

However, we also observe that preprocessing times are very large in some cases. It is

mainly because of the time required to compute ρs(G;u, v) for non-adjacent vertices u and v

by running Dinic’s algorithm. This phenomenon is very similar to what was observed for

the r, s-MRCP. Note that we also avoid the computation of ρs(G;u, v) for some cases as we

did for the r, s-MRCP. Furthermore, the best objectives of r, s-MRCP and r, s-MHCP are

the same for most cases. When their optimal solutions are different, the r-hereditary s-club

found is larger than r-robust s-club found. In other words, r-hereditary s-clubs model is

more relaxed than r-robust s-clubs in practice. This result is consistent with Lemma 1.

85



CHAPTER VII

Conclusion and Future Work

Second-order s-clubs include fault-tolerant clusters that preserve low diameter when ver-

tices/edges fail. These models can be used in bioinformatics, social networks, and telecommu-

nications when the data underlying the graph is not reliable. In this chapter, we summarize

our contributions to develop theoretical and algorithmic results related to finding second-order

s-clubs in graphs. Future research directions are also briefly outlined.

7.1 Contributions

In this dissertation, we establish the first formal NP-hardness results for the r, s-MRCP and

r, s-MHCP on arbitrary and restricted graph classes for integer constants r ≥ 2 and s ≥ 2.

Interestingly, it is also NP-hard to test whether a subset is an r-robust s-club when r ≥ 2 is

fixed and s is a part of the input, and so is its counterpart, i.e., while fixing s ≥ 5 but r is a

part of the input. This provides us some insights on the challenge of solving the r, s-MRCP.

A strengthened IP formulation is presented for the maximum r-robust 2-club problem,

which significantly decreases the running-time requirements compared with the original

formulation by Veremyev and Boginski [2012] based on our computational study. Furthermore,

we develop a cut-like formulation for the r, s-MRCP when s ∈ {2, 3, 4}, based on length-

bounded vertex separators. This is the first IP formulation for the maximum r-robust 4-club

problem in the literature. A branch-and-cut algorithm is also devised based on a delayed

constraint generation scheme for the r, s-MRCP when s ∈ {2, 3, 4}.

86



Effective preprocessing techniques including vertex and edge peeling are developed for

the r, s-MRCP when s ∈ {2, 3, 4}, which enables us to recursively delete many vertices and

edges in a given graph without affecting the optimal solutions. Furthermore, we propose

a B/B decomposition approach for solving such problems. The computational benefits of

the algorithmic ideas are empirically evaluated through our computational studies. This is

the first reported numerical results for the maximum r-robust s-club problems when s = 3

and 4. Our approach permits us to solve problems optimally on very large, sparse real-life

networks from the tenth DIMACS Implementation Challenge on Graph Clustering [Bader

et al., 2013] and Stanford Network Analysis Platform [Leskovec and Krevl, 2014] test-beds for

the r, s-MRCP where s ∈ {2, 3, 4}. Interestingly, most of these preprocessing techniques and

B/B decomposition approach can be adapted for the maximum r-hereditary s-club and r-

connected s-club problems. Besides the algorithmic contributions to the field of combinatorial

optimization, the solvers developed may be beneficial to practitioners in bioinformatics and

social network analysis.

7.2 Future work

Investigation on the general value of s ≥ 5 for the r, s-MRCP would enrich the literature. Our

cut-like IP Formulation (6.1)–(6.3) can serve as a relaxation of the r, s-MRCP formulation

for r ≥ 5. Similar to [Moradi and Balasundaram, 2018] (see also [Lu et al., 2018]), it is

valuable to devise a BC algorithm for s ≥ 5 based on a delayed constraint generation scheme

by adding CHC, if effective approaches can be developed for feasibility testing when s ≥ 5.

Extending the block-by-block decomposition approach would be beneficial to speed up

solvers to find second-order s-clubs. Note that a subgraph is called an r-block if it is a

maximal r-connected subgraph [Matula, 1978], and the classical block is simply a 2-block.

In fact, we can extend the results of Lemma 4 to r-blocks. That is, there exists an r-block

Bi such that G[S] ⊆ Bi for any r-robust s-club and r-hereditary s-club S. Therefore, we

87



can decompose the original graph into smaller r-blocks instead of 2-blocks, and then solve

the r, s-MRCP and r, s-MHCP on each r-block. However, the effectiveness of this approach

highly depends on how quickly we are able to decompose the graph into candidate r-blocks.

Wen et al. [2017] and Li et al. [2017] have studied approaches for finding r-blocks in a graph.

Their methods were based on the block separation lemma proposed by Matula [1978]. It

would be beneficial to investigate how to find r-blocks quickly, and applying the r-block

decomposition algorithm in solving the r, s-MRCP and r, s-MHCP.

Another future direction is to investigate fault-tolerant s-clubs under edge deletion.

Developing strong IP formulations, computational complexity results and decomposition

algorithms would contribute to broadening the knowledge-base of second-order s-clubs.

88



BIBLIOGRAPHY

J. Abello, P. M. Pardalos, and M. G. C. Resende. On maximum clique problems in very

large graphs. In In External Memory Algorithms, pages 119–130. American Mathematical

Society, 1999.

M. T. Almeida and F. D. Carvalho. An analytical comparison of the LP relaxations of integer

models for the k-club problem. European Journal of Operational Research, 232(3):489–498,

2014.

Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum diameter-bounded sub-

graphs. In Latin American Symposium on Theoretical Informatics, pages 615–626. Springer,

2010.

D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Graph partitioning and

graph clustering: Tenth Dimacs Implementation Challenge Workshop, volume 588 of

DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American

Mathematical Soc., Providence, RI, 2013.

B. Balasundaram and F. M. Pajouh. Graph theoretic clique relaxations and applications. In

P. M. Pardalos, D.-Z. Du, and R. Graham, editors, Handbook of Combinatorial Optimization,

pages 1559–1598. Springer, New York, 2nd edition, 2013. ISBN 978-1-4419-7996-4.

B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing biological

networks. Journal of Combinatorial Optimization, 10(1):23–39, 2005.

B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in social network analysis:

The maximum k-plex problem. Operations Research, 59(1):133–142, 2011.

89



V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of networks.

arXiv preprint cs/0310049, 2003.

J. Bondy and U. Murty. Graph Theory. Springer Publishing Company, Incorporated, 1st

edition, 2008. ISBN 1846289696.

J.-M. Bourjolly, G. Laporte, and G. Pesant. Heuristics for finding k-clubs in an undirected

graph. Computers & Operations Research, 27:559–569, 2000.

J.-M. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maximum k-club

problem in an undirected graph. European Journal of Operational Research, 138(1):21–28,

2002.

A. Buchanan and H. Salemi. Parsimonious formulations for low-diameter clusters. Optimiza-

tion Online Eprints, September 2017.

A. Buchanan and H. Validi. The optimal design of low-latency virtual backbones. Optimization

Online Eprints, May 2018.

M.-S. Chang, L.-J. Hung, C.-R. Lin, and P.-C. Su. Finding large k-clubs in undirected graphs.

Computing, 95(9):739–758, 2013.

J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security Agency

technical report, 16:3–1, 2008.

J. Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering, 11

(4):29, 2009.

D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.

L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory Pro-

gramming. IEEE Comput. Sci. Eng., 5(1):46–55, Jan. 1998. ISSN 1070-9924.

90



R. Diestel. Graph Theory. Springer-Verlag, Berlin, 1997.

E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power

estimation. In Soviet Math. Doklady, volume 11, pages 1277–1280, 1970.

M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique problem using a tabu

search approach. Annals of Operations Research, 41(4):385–403, 1993.

P. A. Golovach and D. M. Thilikos. Paths of bounded length and their cuts: Parameterized

complexity and algorithms. Discrete Optimization, 8(1):72–86, 2011.

P. A. Golovach, P. Heggernes, D. Kratsch, and A. Rafiey. Finding clubs in graph classes.

Discrete Applied Mathematics, 174:57–65, 2014.

J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. A more relaxed model for graph-

based data clustering: s-plex cluster editing. SIAM Journal on Discrete Mathematics, 24

(4):1662–1683, 2010.

Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2019. URL http://www.

gurobi.com.

S. Hartung, C. Komusiewicz, and A. Nichterlein. Parameterized algorithmics and computa-

tional experiments for finding 2-clubs. Journal of Graph Algorithms and Applications, 19

(1):155–190, 2015.

S. Hartung, C. Komusiewicz, A. Nichterlein, and O. Suchý. On structural parameterizations

for the 2-club problem. Discrete Applied Mathematics, 185:79–92, 2015.

J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.

Communications of the ACM, 16(6):372–378, 1973.

91



A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum disjoint paths with

length constraints. Networks, 12(3):277–286, 1982.

R. Khandekar, S. Rao, and U. Vazirani. Graph partitioning using single commodity flows.

Journal of the ACM (JACM), 56(4):19, 2009.

C. Komusiewicz, A. Nichterlein, R. Niedermeier, and M. Picker. Exact algorithms for finding

well-connected 2-clubs in sparse real-world graphs: Theory and experiments. European

Journal of Operational Research, 275(3):846–864, 2019.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.

C.-L. Li, S. T. McCormick, and D. Simchi-Levi. The complexity of finding two disjoint paths

with min-max objective function. Discrete Applied Mathematics, 26(1):105–115, 1990.

Y. Li, Y. Zhao, G. Wang, F. Zhu, Y. Wu, and S. Shi. Effective k-vertex connected component

detection in large-scale networks. In International Conference on Database Systems for

Advanced Applications, pages 404–421. Springer, 2017.

L. Lovász, V. Neumann-Lara, and M. Plummer. Mengerian theorems for paths of bounded

length. Periodica Mathematica Hungarica, 9(4):269–276, 1978.

Y. Lu, E. Moradi, and B. Balasundaram. Correction to: Finding a maximum k-club using the

k-clique formulation and canonical hypercube cuts. Optimization Letters, 12(8):1959–1969,

2018.

R. D. Luce. Connectivity and generalized cliques in sociometric group structure. Psychome-

trika, 15(2):169–190, 1950.

D. W. Matula. k-Blocks and ultrablocks in graphs. Journal of Combinatorial Theory, Series

B, 24(1):1–13, 1978.

92



D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring

algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983.

B. McClosky and I. V. Hicks. Combinatorial algorithms for the maximum k-plex problem.

Journal of combinatorial optimization, 23(1):29–49, 2012.

K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:95–115, 1927.

H. Meyerhenke, B. Monien, and T. Sauerwald. A new diffusion-based multilevel algorithm for

computing graph partitions. Journal of Parallel and Distributed Computing, 69(9):750–761,

2009.

R. J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13(2):161–173, 1979.

E. Moradi and B. Balasundaram. Finding a maximum k-club using the k-clique formulation

and canonical hypercube cuts. Optimization Letters, 12(8):1947–1957, 2018.

F. M. Pajouh and B. Balasundaram. On inclusionwise maximal and maximum cardinality

k-clubs in graphs. Discrete Optimization, 9(2):84–97, May 2012.

F. M. Pajouh, Z. Miao, and B. Balasundaram. A branch-and-bound approach for maximum

quasi-cliques. Annals of Operations Research, 216(1):145–161, 2014.

J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maximum quasi-clique problem.

Discrete Applied Mathematics, 161(1-2):244–257, 2013a.

J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in network analysis.

European Journal of Operational Research, 226(1):9–18, 2013b.

M. A. Porter and S. D. Howison. The role of network analysis in industrial and applied math-

ematics: A physical-applied-mathematics perspective. arXiv preprint arXiv:1703.06843,

2017.

93



F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi. A distributed

algorithm for large-scale graph partitioning. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 10(2):12, 2015.

D. Rose, R. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs.

SIAM Journal on Computing, 5(2):266–283, 1976.

R. A. Rossi. Fast triangle core decomposition for mining large graphs. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pages 310–322. Springer, 2014.

A. Schäfer. Exact algorithms for s-club finding and related problems. Master’s thesis,

Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena, 2009.

A. Schäfer, C. Komusiewicz, H. Moser, and R. Niedermeier. Parameterized computational

complexity of finding small-diameter subgraphs. Optimization Letters, 6(5):883–891, 2012.

S. Shahinpour and S. Butenko. Distance-based clique relaxations in networks: s-clique

and s-club. In B. I. Goldengorin, V. A. Kalyagin, and P. M. Pardalos, editors, Models,

Algorithms, and Technologies for Network Analysis, volume 59, pages 149–174. Springer

New York, 2013a.

S. Shahinpour and S. Butenko. Algorithms for the maximum k-club problem in graphs.

Journal of Combinatorial Optimization, 26(3):520–554, 2013b.

A. Veremyev and V. Boginski. Identifying large robust network clusters via new compact

formulations of maximum k-club problems. European Journal of Operational Research, 218

(2):316–326, 2012.

A. Veremyev, O. A. Prokopyev, and E. L. Pasiliao. Critical nodes for distance-based

connectivity and related problems in graphs. Networks, 66(3):170–195, 2015.

94



A. Verma, A. Buchanan, and S. Butenko. Solving the maximum clique and vertex coloring

problems on very large sparse networks. INFORMS Journal on Computing, 27(1):164–177,

2015.

J. Wang and J. Cheng. Truss decomposition in massive networks. Proceedings of the VLDB

Endowment, 5(9):812–823, 2012.

S. Wasserman and K. Faust. Social network analysis: Methods and applications, volume 8.

Cambridge University Press, 1994.

D. Wen, L. Qin, X. Lin, Y. Zhang, and L. Chang. Enumerating k-vertex connected components

in large graphs. arXiv preprint arXiv:1703.08668, 2017.

H. Whitney. Congruent graphs and the connectivity of graphs. In Hassler Whitney Collected

Papers, pages 61–79. Springer, 1992.

O. Yezerska, F. M. Pajouh, and S. Butenko. On biconnected and fragile subgraphs of low

diameter. European Journal of Operational Research, 263(2):390–400, 2017.

Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs

within networks. In 2012 IEEE 28th International Conference on Data Engineering, pages

1049–1060. IEEE, 2012.

95



APPENDIX A

The algorithm for finding all blocks described in Section 4.4

Algorithm 14 Block Decomposition
1: procedure Find Block(G)
2: Input: Graph G = (V,E)
3: Output: All the blocks B
4: Initialize: depth← 0, block ← ∅, B ← ∅, stack ← ∅, disc← −1, low ← −1, parent← −1
5: for each v ∈ V do
6: if disc[v] == −1 then
7: BlockDFS(v, disc, low, parent, stack, depth)
8: while stack 6= ∅ do
9: push stack.top() to block

10: stack.pop()
11: end while
12: if block 6= ∅ then
13: B ← B ∪ block
14: block ← ∅
15: end if
16: end if
17: end for
18: return B
19: end procedure
20: procedure BlockDFS(v, disc, low, parent, stack, depth)
21: Initialize: children← 0, disc[v] = low[v]← depth + 1, depth← depth + 1
22: for each u ∈ N(v) do
23: if disc[u] == −1 then
24: children← children + 1
25: parent[u]← v
26: push edge (v, u) to stack
27: BlockDFS(u, disc, low, parent, stack, depth)
28: low[v]← min(low[v], low[u])
29: if (disc[v] == 1 and children >1) or (disc[v] > 1 and low[u] ≥ disc[v]) then
30: block ← ∅
31: while stack.top() 6= (u, v) do
32: push stack.top() to block
33: stack.pop()
34: end while
35: push stack.top() to block
36: stack.pop()
37: push block to B
38: block ← ∅
39: end if
40: else if parent[v] 6= u and disc[u] < low[v] then
41: low[v]← disc[u]
42: push edge (v, u) to stack
43: end if
44: end for
45: end procedure

96



APPENDIX B

The r-core peeling described in Section 4.2

Algorithm 15 Core Peeling

1: procedure r-Core(G)
2: Input: Graph G = (V,E) and positive integer r
3: Output: An r-core or null graph
4: while δ(G) < r and |V (G)| ≥ 1 do
5: v ← arg min

u∈V (G)

degG(u)

6: G← G− v
7: end while
8: return G
9: end procedure

97



VITA

Yajun Lu

Candidate for the Degree of

Doctor of Philosophy

Dissertation: FINDING SECOND-ORDER CLUBS

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Zhumadian, Henan, China.

Education:
Completed the requirements for Doctor of Philosophy in Industrial Engineering
and Management at Oklahoma State University, Stillwater, Oklahoma in July,
2019
Received the M.S. degree in Industrial Engineering at Huazhong University of
Science and Technology, Wuhan, China in March, 2011
Received the B.S. degree in Industrial Engineering at Zhongyuan University of
Technology, Zhengzhou, China in July, 2008

Experience:
Employed by Oklahoma State University in the position of Instructor in Stillwater,
Oklahoma during the Spring 2019 semester
Employed by Oklahoma State University in the position of Research/Teaching
Assistant in Stillwater, Oklahoma from August 2014 to January 2019
Employed by Huawei Technologies Co., Ltd., in the position of Industrial Engineer
in Shenzhen, China from March 2011 to July 2014

Professional Memberships:
Operations Research and the Management Sciences (INFORMS)
Institute of Industrial and Systems Engineers (IISE)
Toastmasters International
Alpha Pi Mu


