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Abstract

Dielectric elastomers (DEs) are capable of producing large deformation under electric

stimuli, which makes them desirable materials for a variety of applications including biomimet-

ics, dynamics, robotics, energy harvesting, and waveguide devices. In general, DEs possess

intrinsic hyperelasticity and viscosity. Such material properties may significantly affect the

dynamic performance of DE-based devices. The delicate interplay among electromechanical

coupling, large deformation, material viscosity and dynamics makes modeling of the perfor-

mance of DE-based devices more challenging. Therefore, in order to provide guidelines for

the optimal design of DE waveguide devices, it is essential to develop appropriate and reliable

models, and efficient numerical methods to examine their performance first.

In this thesis, by integrating the state-of-art finite-deformation viscoelasticity theory into

the framework of small-amplitude wave propagation superposed on a finitely deformed medium,

the Rayleigh-Lamb wave propagation in a viscoelastic DE medium is investigated. Simulation

results have demonstrated the effects of material viscosity, status of relaxation, external electric

load, and mechanical pre-stretch on the dispersion behavior of the wave. For both pure elastic

and viscoelastic DE media, waves with certain frequencies could be filtered by actively tuning

electric loads. Moreover, some interesting findings conclude that the material viscoelasticity

may cause some significant changes in the wave dispersion behavior. Therefore, incorporating

the material viscosity in modeling DE waveguide is expected to provide more accurate predic-

tion on their performance. This thesis will help to better understand the fundamentals of wave

propagation in DE media and trigger more innovative and optimal design for DE waveguide

applications.

Keywords: Rayleigh-Lamb wave; Electroelastic wave; Waveguide; Dielectric elastomers;

viscoelasticity; hyperelasticity.
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Summary for Lay Audience

Electroactive polymers (EAPs) are smart materials that exhibit unique mechanical response to

an external electric field, which enables engineering designs to have more innovative features

and functions. As one family of EAPs, dielectric elastomers (DEs) have received growing in-

terest in soft material-based transduction technologies recently due to their large deformation

capability, high energy density, softness and flexibility. In addition to the well-studied large-

actuation and high-power applications for artificial muscles, soft robotics, biomimetics and

energy harvesters, DE structures have also received attention for the dynamics applications as

waveguide in recent years. The electromechanical coupling property of the material enables

the DE waveguide to actively filter waves in the prescribed range of frequencies by adjusting

the applied voltage.

In the literature, dynamic analysis on finitely deformed DEs is still very limited, partic-

ularly when involving material’s intrinsic viscoelasticity. The lack of understanding the fun-

damentals underlying the electromechanical dynamics is certainly a major barrier for the full

potential applications of DE waveguide. In order to overcome this obstacle, this thesis aims

to establish a rigorous modeling and simulation framework to investigate the characteristics of

wave propagation in dielectric media by adopting the finite-deformation viscoelasticity model

for DEs. Simulation results will help to quantitatively understand the effects of material prop-

erties and electromechanical loads upon the wave propagation through DE media and how the

waveguide can be tuned by the applied electrical stimuli. Thus, the fulfilment of this thesis

is expected to provide better understanding of the fundamentals of wave propagation in DE

media and be helpful for optimal design of DE waveguide.
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Chapter 1

Introduction

Elastic wave refers to the oscillation of particles of matter while transferring energy through the

media. The subject of wave propagation in elastic media has been studied for many decades.

Unlike electromagnetic waves that may propagate in a vacuum as well as in a material medium,

elastic waves need a transmission medium to exist. In general, elastic waves are categorized

as longitudinal and transverse waves for which the energy is transferred, respectively, in the

direction (or the opposite direction) and perpendicular to the direction of the motion of parti-

cles. Longitudinal elastic waves are alternatively called compression waves or pressure waves,

while transverse elastic waves are also referred as shear waves. Depending on the amplitude of

elastic waves with respect to the depth of the transmission medium, they can also be classified

as body waves and surface waves. Body waves, which propagate through the interior of the

medium, are further classified as primary waves (P-waves) and secondary waves (S-waves).

P-waves, as a type of longitudinal waves, propagate faster than S-waves, a type of shear waves.

On the other hand, surface waves are those propagating along the surface of a medium. Ac-

cordingly, the amplitude of the wave decays as they get further from the surface. Seismic

waves in earthquakes consist of both body and surface waves. Although surface waves move

slower than body waves, the seismic surface waves are more destructive during earthquakes.

1



2 Chapter 1. Introduction

The damage and the strength of the surface waves reduce in deeper earthquakes. Based on

the motion of particles, surface waves are classified as Love waves and Rayleigh waves. Love

waves, named after a British mathematician A.E.H. Love, have only one horizontal shear com-

ponent motion of the particles. While Rayleigh waves have both longitudinal and transverse

motions with amplitude decreasing exponentially as distance from the surface. Therefore, the

motion of particles in Rayleigh waves is elliptical. Such surface waves are named after Lord

Rayleigh, who predicted their existence in 1885 (Rayleigh, 1885). Distinct from these two

types of surface waves, Lamb waves are a type of guided waves propagating through a layer

medium, first analyzed by Horace Lamb (1917). The particle motion in this type of waves lies

in the plane constructed by the wave propagation direction and the plane normal direction. In

the literature, the term Rayleigh–Lamb waves embraces the Rayleigh wave. The motion of

both Rayleigh and Lamb waves are constrained by the elastic properties of the surface(s) that

guide them. The propagation of Rayleigh waves is guided by a single surface, while the Lamb

wave is guided by two surfaces of the transmission medium.

Due to the capability of long distance propagation of Rayleigh and Lamb waves, they

have been broadly studied and exploited in a wide range of applications including geophysics

(Song et al., 1989; Beaty and Schmitt, 2003), seismology (Oliver, 1962), acoustics (Houm-

mady et al., 1997; Vellekoop, 1998), telecommunications (Campbell, 1998; Morgan, 2010),

and sensing and actuation (Lindner, 2008), among the others. Typically, the Lamb wave prop-

agating through an elastic layer is decomposed into symmetric and antisymmetric modes with

respect to the midplane of the plate medium (Lamb, 1917). Among different modes propa-

gating through the layer, the two lowest ones have continuously attracted attention from re-

searchers (Cho, 2000; Nicholson et al., 2002; Lee and Staszewski, 2003; Wan et al., 2016),

which are called fundamental modes. This lies in two facts. One is that all the other Lamb

wave modes have cut-off frequencies with the exception of these two lowest modes; while the

other one is that the lowest modes carry more energy during the wave propagation. The funda-
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mental symmetric mode (designated by S 0) is also called extensional mode, for which the plate

is stretched in the direction of the propagation direction. On the other hand, the fundamental

antisymmetric mode (designated by A0) is also referred as flexural mode, for which the plate is

bent as the two surfaces are disturbed to move in the same direction.

1.1 Rayleigh-Lamb wave propagation in elastic and viscoelas-

tic solids

Elastic surface wave was named as Rayleigh wave after Lord Rayleigh (1885), who mathemat-

ically predicted its existence in compressible isotropic solids more than a century ago. This

work was later extended to analyze and predict the characteristics of acoustic waves in elastic

plates by Lord Rayleigh himself and Lamb (1917), which are named as Rayleigh-Lamb waves.

In order to characterize the wave propagation in the elastic medium, the wave dispersion which

relates the propagation velocity to the wave frequency or wavenumber must be determined

(Barnett and Lothe, 1985; Pagneux and Maurel, 2001; Galán and Abascal, 2002; Gravenkamp

et al., 2012a,b). Generally, there are two types of velocity needs to be addressed. One is called

phase velocity, at which the phase of wave propagates through the medium. The other one

is group velocity, representing the rate at which the envelop shape of the waves combining

various wavenumbers travels through the medium. However, the existence of Rayleigh-Lamb

wave propagation was not observed in reality until Worlton (1961) provided experimental con-

firmation of Lamb waves at high frequencies. Since then Rayleigh-Lamb waves have been

extensively used in waveguide devices. A comprehensive and detailed review on applications

of surface elastic waves can be found in the work by Alleyne (1991). Among various applica-

tions of Rayleigh-Lamb wave propagation in elastic solids, non-destructive testing is a popular

and practical technique in many engineering fields. For nondestructive testing, Rayleigh-Lamb

waves are mainly used for two purposes. Firstly, the short distance wave propagation is used to
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characterize material property of the object being tested (Chimenti and Nayfeh, 1990) and to

detect existing defects close to interfaces (Xu and Bar-Cohen, 1990). For this case, the sensi-

tivity in response to wave propagation is the key important criterion. The second purpose refers

to large distance propagation used for inspection of large areas, including pipeline inspection

(Ditri, 1994; Alleyen, 1997; Lowe et al., 1998) and inspection of defects in composites (Datta

et al., 1990; Chimenti and Martin, 1991). For this application, noise to signal ratio and attenu-

ation are two important factors for choosing a suitable Lamb wave mode. Attenuation mainly

occurs due to the leakage of energy into surrounding fluid in any test structures containing fluid

or being in contact with fluid. Hence the appropriate Lamb wave modes for this application are

those having insignificant displacement at the contacting surface with the fluids. Usually the

fundamental symmetric mode S 0 of Lamb waves at low frequency is the best fit to satisfy such

criteria. Such a wave mode has low wave dispersion and the wave amplitude does not reduce

as wave propagates through the medium. Therefore, the signal to noise ratio is constant along

the way of propagation. Moreover, it has very low attenuation when the plate is in contact with

a fluid.

In recent decades, rubber-like elastomeric materials have found a broad range of engi-

neering applications, including medical devices (Leeper and Wright, 1983; Coury et al., 1988;

McMillin, 1994; Modjarrad and Ebnesajjad, 2013), structural bearings and vibration isolators

(Gueraud et al., 1985; Taylor et al., 1992; Kikuchi and Aiken, 1997; Kumar et al., 2014), sen-

sors and actuators (Caldwell et al., 2000; Nguyen et al., 2004; Wissler and Mazza, 2007; Jung

et al., 2008; Ohm et al., 2010; Ionov, 2014; Bilodeau et al., 2015) and so on. This is mainly

due to their distinguished properties, such as lightweight, fracture tolerance, flexibility, easy

manufacturability and low cost. Those elastomers exhibit hyperelasticity while are more or

less viscous. Based on the change of strain rate with respect to stress, they are classified as

linear and nonlinear viscoelastic materials. With the development of linear viscoelastic mod-

els, the problem of small-amplitude wave propagation in viscoelastic solids has attracted much
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attention from the research community (Achenbach and Reddy, 1967; Tsai and Kolsky, 1968;

Buchen, 1971; Sogabe and Tsuzuki, 1986; Carcione et al., 1988; Tal-Ezer et al., 1990). Partic-

ularly, the Rayleigh-Lamb wave propagation in linear viscoelastic solid has been well explored

in the literature (Coquin, 1964; Romeo, 2001; Sharma, 2005; Sharma and Othman, 2007). Fur-

ther progress in modeling the behavior of viscoelastic materials led to the incorporation of

material nonlinearity for characterizing the wave propagation through viscoelastic plates. In

this regard, some works were focused on analyzing small-amplitude wave propagation through

finitely deformed layers (Hayes and Rivlin, 1969, 1972; Saccomandi, 2005; Destrade et al.,

2009), while other studies were conducted to characterize finite-amplitude wave propagation

through viscoelastic media (Hayes and Saccomandi, 2000, 2002; Destrade and Saccomandi,

2004, 2005). However, there is very limited study on the Rayleigh-Lamb wave propagation in

nonlinear viscoelastic medium until a recent work (Mohabuth et al., 2019).

1.2 Dielectric elastomers, history, and applications

Recent advancements in the technology of polymeric materials have promoted their wide ap-

plications in industrial fields, such as automobiles, aerospace, household goods, electronics,

and to name a few. Among various types of polymers, electroactive polymers (EPAs) are poly-

mers that deform under electrical stimuli and convert electrical energy to mechanical energy in

the meantime. Compared to electroactive ceramics such as the commonly used piezoelectric

ceramics in traditional transduction technology with high load capacity, electroactive polymers

are soft and capable of undergoing large deformation. Based upon the activation procedures,

EAPs are classified as ionic EAPs and electronic EAPs. Ionic EAPs display their coupling

effects due to mobility or diffusion of ions and their conjugated substances, while electronic

EAPs deform subjected to electric field via the corresponding coulomb forces. Among a few

types of electronic EAPs, dielectric elastomers (DEs) demonstrate softness, flexibility, light
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weight, high energy density and large deformation capability. These distinguished properties

extend promising applications of DEs in soft robots, artificial muscles, waveguide devices,

adaptive optics, tactile sensors for Braille displays, and energy harvester scavenging energy

from human walking and ocean waves (Pelrine et al., 2001; Brochu and Pei, 2010; Carpi et al.,

2011; Kim et al., 2013; Park et al., 2014).

The electric field-induced deformation of a solid material was first observed by Alessan-

dro Volta from the rupture of highly charged Leyden jar capacitors in 1776 (Carpi et al., 2010).

One century later, the charge-induced deformation of a rubber band was reported by Rontgen

(Keplinger et al., 2010). Following this experiment, Sacerdote (1899) conducted a research

to capture the formulation of strain in response to an electric field activation. Eguchi (1925)

discovered a piezoelectric polymer called electret when solidifying carnauba wax, rosin, and

beeswax by cooling, which deformed when subjected to a DC bias electric field. Further mile-

stone progress traces back nearly 20 years to a screening study by Pelrine et al. (1998) in

which polyurethane, silicone, fluorsilicone, ethylene propylene, polybutadiene and isoprene

were identified as dielectric materials capable of undergoing large deformation exhibiting sur-

face strains up to 215%. This work marked the dawn of DEs, which has quickly attracted

worldwide attention for the potential applications of DEs. Most efforts have been devoted to

improving the actuation performance of DE actuators with different configurations (Pelrine and

Kornbluh, 2000a,b), design and analysis on the energy harvesters (Pelrine et al., 2001; Chiba

et al., 2008; Brochu et al., 2009; McKay et al., 2010; Kornbluh et al., 2012b; Huang et al.,

2013; Shian et al., 2014), and DE-based devices and soft robots development (Kornbluh et al.,

2002; Pei et al., 2004; Shian et al., 2015; Sun et al., 2016; Godaba et al., 2016; Duduta et al.,

2017).

More recently, the concept of manipulating electroelastic waves and controlling band-gaps
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by tuning an external electric field was initiated by Gei et al. (2010) through investigating small-

amplitude flexural wave propagation through periodically actuated DE plate. Later, Dorfmann

and Ogden (2010) adopted the quasi-electrostatic approximation to analyse small amplitude

wave propagation through finitely deformed nonlinear electroelastic materials. This paper has

been followed by a number of works on electroelastic wave propagation in finitely deformed

homogenous and composite DEs (Shmuel et al., 2012; Shmuel and deBotton, 2012; Shmuel,

2013; Shmuel et al., 2013; Galich and Rudykh, 2017).

1.3 Objectives

As discussed in the previous sections, dielectric elastomers have demonstrated potentials in

various engineering applications due to their unique features like flexibility, electromechanical

coupling, high energy density, and particularly capability of sustaining large deformation. In

contrast to the large body of research in the electroelastic statics of dielectric elastomers, the

study of electroelastic dynamics is still at its infancy. This is mainly due to the complexity of

the problems which involves the delicate interplay between electromechanical coupling, large

deformation, material nonlinearity, and mechanical and electrical integrity. Although a few

studies have been devoted to characterizing the wave propagation in elastomeric media, they

are limited to either mechanical waves in viscoelastic media or electroelastic waves in pure

hyperelastic media. To the best knowledge of the author, wave propagation through dielectric

elastomers possessing both electromechanical coupling and material viscoelasticity has not

been tackled yet in the literature. Therefore, the objective of this work is to develop a robust

model and establish a framework for predicting the wave propagation through a finitely de-

formed dielectric medium as well as provide guidelines for the optimal design of active DE

waveguides. In this regard, details are focused on:

(1) Formulating the Rayleigh-Lamb wave propagation in a finitely deformed DE layer under
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electromechanical loads with the incorporation of material viscoelasticity, and develop-

ing solution technique to derive wave dispersion relation;

(2) Examining the effects of material viscosity as well electromechanical loads on the wave

dispersion in a viscoelastic DE layer.

1.4 Thesis structure

Following the general introduction and objectives in Chapter 1, a detailed literature review

about the relevant studies is given in Chapter 2, including the applications of dielectric elas-

tomers, the hyperelasticity theories, the fully coupled field theory, and the finite-deformation

viscoelastic models, and wave propagation. In Chapter 3, the formulation for the small-

amplitude Rayleigh-Lamb wave propagation in a finitely deformed DE layer is derived based

on the finite-deformation viscoelasticity theory for dielectric elastomers. Numerical solutions

for case study are provided to investigate the effects of electromechanical loading as well as

material viscosity on the wave dispersion relation. Finally, Chapter 4 summarizes the thesis

and provides recommendations for future work.



Chapter 2

Literature Review

2.1 Dielectric elastomers in transduction technology appli-

cations

In recent years, dielectric elastomers (DEs) have been regarded as the most promising ma-

terials in soft-material-based electromechanical transduction technologies attributing to their

unique properties. For example, DEs are characterized by their softness, flexibility and large

deformation capability, ease of use, high coupling efficiency, light weight, cost effectiveness,

high energy densities, and chemical and biological compatibility. Due to these distinguished

properties for actuation, they have extensive potential applications, such as artificial muscles,

adaptive optical elements, soft robots, programmable haptic surfaces, energy harvesters, active

noise control devices, adaptive optical elements, and other biomimetic applications (Kornbluh

et al., 2002; Pelrine et al., 2002; Heydt et al., 2006; O’Halloran et al., 2008; McKay et al.,

2010; Carpi et al., 2011; Karsten et al., 2013; Huang et al., 2013).

9
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The basic element of a DE transducer is a DE membrane coated with two compliant

electrodes on its top and bottom surfaces as shown in Fig. 2.1. When the compliant electrodes

are subject to a voltage V , opposite charges ±Q accumulate on the compliant electrodes. Then

the attractive Maxwell force between the opposite charges makes the DE membrane reduce in

thickness and expand in area. The strain induced by the applied electric field is expressed as,

Compliant Electrode

Dielectric Elastomer

Compliant Electrode

+Q

−Q

V

H

h

Figure 2.1: Schematic of a typical element of a dielectric elastomer transducer.

S =
εrε0V2

Eh2 , (2.1)

where ε0 is the permittivity of vacuum. In general, the response of the DE membrane depends

on dielectric constant εr, mechanical stiffness E and electrical breakdown strength, i.e., the crit-

ical value of V/h with h being the thickness in the current state. Based on this basic element,

the DE transducers could be designed with different configurations. Fig. 2.2 summarizes some

typical configurations of transducers developed in the literature, ranging from simple beam

structure to more complex spider shape for specific actuation tasks (Kornbluh et al., 2002). For

example, the spider and bowtie, are designed to couple both planar directions into a single lin-

ear direction. Other configurations, such as the diaphragm, use both directions of deformation

for actuation. The rolled configuration can create a large cross-sectional area of film for rela-

tively high force applications. The framed actuator is designed for ease of manufacture, and it

can be incorporated into essentially two-dimensional processes including MEMS techniques.

These configurations of actuators have been implemented for the development of soft robots
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and artificial muscles.

Figure 2.2: Dielectric elastomers designed with different configurations (Kornbluh et al., 2002).

As actuators, larger actuation is preferred. In the literature, it was found that a circular

plate of DE can be strained up to 30% (Pelrine et al., 1998). In theory, it was predicted that gi-

ant deformation of actuation could be achievable if an elastomer follows a stress-stretch curve

of a desirable form: the elastomer is compliant at small stretches and then stiffens steeply at

modest stretches. Even 500% strain could be obtained theoretically (Kofod et al., 2003). How-

ever, the performance of DE actuators is mainly limited by electrical breakdown and saturation

of electric field. To tackle this issue, better actuation performance under electrical load can

be achieved by mechanical pre-stretching, adding interpenetrating networks in elastomers, or

swelling elastomer with a solvent (Pelrine and Kornbluh, 2000a,b; Ha et al., 2006; Shankar

et al., 2007; Zhu and Suo, 2010; Koh et al., 2011). Among various applications of DEs, they

are very commonly used as artificial muscle or soft robots with the ability to resemble mechan-

ical movements. Simple DE structures have been designed to provide gripper action or pick
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and place function (Kofod et al., 2007). To improve the practicality of the DE grippers, multi-

segment DE grippers consisting of repetitive DE segments with high aspect ratio was presented

in 2014 (Araromi and Gavrilovich, 2014a,b). This design enables the gripper to wrap objects

of various sizes. However, the grasping force of multi-segment DE grippers is not sufficient to

hold up an object. Thus, in order to achieve a higher grasping capability, Heng et al. (2017)

developed an arch-structured frame made of multi-segment DE grippers. Then, it was shown

that pre-stretched multi-segment DE grippers has a higher bending moment resistance (Lau

et al., 2017). More recently, novel strategies have been implemented to develop new design of

DE grippers. In this regard, Shian et al. (2015) suggested a fiber-embedded DE gripper to re-

strict DE actuation in one direction and to induce bending in the perpendicular direction of the

fibers. Furthermore, DE spring-roll bending actuators was introduced by Li and Liu (2019) to

enhance the functionality of DE grippers. Pei et al. (2004) prototyped a six-leg robot to mimic

the motion of cockroaches with six springs rolled by highly prestretched DE with patterned

electrodes, which was actuated to move by the voltage-induced Maxwell stresses to bend the

spring roll. A pivot roll bending DE actuator is designed to mimic the movement of a finger

by Rosenthal and Pei (2008). Inspired by flying insects whose wings are driven indirectly by

muscles, multi-staked actuators were used to develop flapping-wing vehicles (Lau et al., 2014).

A jelly fish robot was presented by Godaba et al. (2016) with a DE balloon covered with a pre-

stretched DE membrane. The voltage induced DE membrane expansion exerts a thrust force to

lift the robot. More recently, with the use of laminated silicone layers and two DE actuators, a

biomimetic robotic fish was designed to imitate the swimming of fish (Shintake et al., 2018).

Another promising application of DEs is the development of focus tunable lens technology for

the potential design of robotic systems, medical imaging devices, and optical detection tools.

The adaptive focus tunable lenses are capable of tuning the focal length through changing ei-

ther the refractive index of the optical medium or the shape of the lens surface profile. Recently,

DE actuators with fast and highly reversible dynamic responses, low power consumption, me-

chanical robustness, and optical transparency are considered as appropriate tools to enhance
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the functionality of adaptive focus tunable lenses. Inspired by human eyes, Carpi and Frediani

(2011) suggested the implementation of DE actuators made of a transparent fluid between two

DE membranes for the development of electrically tunable optical lenses and the model was

further developed by Shian et al. (2013). Generally, in terms of the actuation mechanism, the

DE adaptive focus tunable lenses are categorized into fluid-filled elastomeric lenses (Carpi and

Frediani, 2011; Shian et al., 2013; Wei et al., 2014; Keong et al., 2014; Rasti et al., 2015),

all-polymeric lenses (Yun et al., 2015, 2016; Nam et al., 2018; Park et al., 2017), and liquid

droplet lenses (Jin et al., 2016).

Recently, DEs have also been developed as resonators or oscillators which are expected

as a potential alternative to the traditional silicon-based devices in MEMS (Zhang et al., 2005;

Bonwit et al., 2006; Biggs and Hitchcock, 2010; O’Brien et al., 2012). The merit of a DE

oscillator is that its natural frequency can be actively tuned by changing the applied voltage.

Depending on specific applications, DE resonators are designed with different shapes, such as

membrane and tube, on which most existing analyses for DE resonators and oscillators focus

(Mockensturm and Goulbourne, 2006; Fox and Goulbourne, 2008, 2009; Zhu et al., 2010a,b;

Yong et al., 2011; Li et al., 2012; Zhou et al., 2014, 2016b; Li et al., 2019). These DE oscillator

modules can also be embedded in phones and tablets for haptic display as a facility to present

information for people with vision or hearing impairments (Carpi et al., 2009; Mößinger et al.,

2014; Knoop and Rossiter, 2014; Lee et al., 2014).

Due to their high energy density and conversion efficiency, DEs are also considered for en-

ergy harvesting or generating from a various resources including human motions, ocean waves,

and wind (Lai et al., 2011; Kornbluh et al., 2012a; Chiba et al., 2013). Usually DE generators

are suitable for low-frequency application, ranging from 0.1 to 100 Hz, and are more applicable

for large linear motion rather than rotary motion. A heel-strike generator with DE diaphragm



14 Chapter 2. Literature Review

located in normal shoes or boots was designed by using the compression of the heel during nor-

mal walking as the means of harvesting power from human movement (Kornbluh et al., 2012b).

DE power generators based on an articulated multibody system buoy at sea trial site have also

been designed to harvest energy from ocean waves by stretching DE films (Brochu et al., 2009;

Kornbluh et al., 2009). The energy harvesting mechanisms in those DE generators relies on

the change of the capacitance of a DE membrane capacitor, which functions to collect and

transfer electrical charges during an electromechanical loading process. Based on this harvest-

ing mechanism, DE generators with various configurations and harvesting schemes have been

developed in order to improve the energy harvesting performance (Pelrine et al., 2001; Chiba

et al., 2008; Koh et al., 2009; McKay et al., 2010; Liu et al., 2010; Huang et al., 2013; Shian

et al., 2014). Two exemplary energy harvesting schemes are the constant voltage one (Pel-

rine et al., 2001) and the triangular harvesting scheme (Shian et al., 2014). It should be noted

that the development of energy harvesting schemes is also contingent on feasible implementa-

tion with electric circuits. Based on the finite-deformation viscoelasticity theory (Hong, 2011)

and the nonlinear coupled field theory (Suo et al., 2008) for DEs, the energy harvesting per-

formance of DE generators with both constant voltage and triangular harvesting schemes has

been systematically investigated from the theoretical perspective by (Zhou et al., 2015, 2017).

Their theoretical simulation results have proposed avenues to optimize the energy harvesting

cycle of DE generators, which could significantly improve the energy harvesting performance

of viscoelastic DE generators.

In the recent decades, active waveguide control has drawn attention from research com-

munity to investigate wave propagation in dielectric media. The concept of manipulating

electroelastic waves and controlling band-gaps through tuning an external electric field was

first presented by Gei et al. (2010) by studying the problem of small-amplitude flexural wave

propagation in a periodically actuated DE plate. Later, Dorfmann and Ogden (2010) adopted

the quasi-electrostatic approximation to analyze small-amplitude wave propagation through
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finitely deformed electroelastic media. It was demonstrated in that work that the wave velocity

could be significantly altered by any change in the applied electromechanical loads. Moreover,

the effect of electromechanical coupling parameters on the wave velocity was also examined.

The outcomes of these papers have stimulated a surge of scientific interests in electroelastic dy-

namics and consequently a series of works have been conducted to investigate the wave propa-

gation in both homogeneous and inhomogeneous dielectric media. Based on the fully coupled

field theory (Suo et al., 2008) and Neo-Hookean strain energy density function, Shmuel et al.

(2012) investigated the Rayleigh-Lamb wave propagation through a finitely deformed elastic

DE layer. It was demonstrated that both the wave velocities and frequencies were strongly

affected by external electromechanical loads, which provides an avenue for actively filtering

certain waves through applying electric field. Shmuel and deBotton (2012) studied the band-

gap control through the small-amplitude wave propagation in a pre-stretched periodic laminate

consisting of two layers of DEs. In this regard, the Bloch-Floquet theorem besides the transfer

matrix method was implemented in order to obtain the corresponding dispersion relation. It

was concluded that the band-gaps and filtered wave frequencies could be controlled via the

phase properties and volume fraction, and most importantly the electric bias field. The results

inspired Shmuel to investigate the problems of electroelastic wave propagation through a fiber-

reinforced DE composites (Shmuel, 2013) and hollow DE cylinders (Shmuel et al., 2013) as

well. It has demonstrated that properly tuning of the applied electric bias field could achieve

the desirable properties of wave propagation in dielectric media. More recently, Galich and

Rudykh (2017) studied the problem of shear wave propagation through compressible DE lam-

inates, which reported that the applied electric bias field could have significant effect on both

the phase and group velocities of shear wave. However, it has also shown that for dielectric

medium governed by the Neo-Hookean model, the electric field has no influence on the shear

wave band-gap.

Despite the numerous efforts in modeling the electroelastic statics of DEs and the recent
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surge of interest in electroelastic dynamics, there is a knowledge gap in studying the wave

propagation in dielectric media with the consideration of both material viscoelasticity and

electromechanical coupling. It has thus motivated us to conduct a research regarding Rayleigh-

Lamb wave propagation in a DE layer with the consideration of the above mentioned factors.

In order to fulfill the full potential applications of DEs, we need to completely understand the

delicate electromechanical coupling mechanisms of DEs. The following section provides a re-

view on the relevant theories and models used to characterize the electromechanical coupling

behavior of viscoelastic DEs.

2.2 Hyperelastic constitutive models

As well-established in the literature, DEs are capable of undergoing exceptionally large defor-

mation with high nonlinearity. To capture the large deformation of DEs, hyperelastic constitu-

tive models are commonly adopted. For the hyperelastic constitutive models, the stress-strain

relationship of the material is obtained through a strain energy density function. Generally,

hyperelastic models are developed based on three treatments, namely, the statistical mechanics

treatments, the invariant-based continuum mechanics treatments and the stretch-based contin-

uum mechanics treatments (Boyce and Arruda, 2000).

A detailed review on the statistical mechanics treatments for hyperelastic models can be

found in the work by Treloar (Treloar, 1975), so that only the fundamental aspects will be

revisited here. For the statistical mechanics treatments, it is assumed that rubber-like materials

are formed by randomly-oriented long polymer chains. For the case that the elongation of

polymer chains is significantly less than their fully extended length, the strain energy density
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is captured by the Gaussian model as

WG =
1
2

Nkθ
(
λ2

1 + λ2
2 + λ2

3

)
, (2.2)

where N is the number of chains, k is Boltzmann’s constant, θ refers to the absolute temper-

ature, λ1, λ2, and λ3 are the principal stretch ratios. Nevertheless, when the elongation of the

polymer chain is close to their extensibility, the results predicted by Gaussian model are quite

different from the experimental results. Therefore, to consider the non-Gaussian nature of the

polymer chains, other material models such as the three-chain model (Wang and Guth, 1952),

the four-chain tetrahedral model (Flory and Rehner Jr, 1943), and the eight-chain model (Ar-

ruda and Boyce, 1993) have been developed. It is worth mentioning that for these models, the

polymer is considered to have a representative network structure. For example, the eight-chain

model assumes that the polymer chains rotate towards the principal axes of stretching and the

corresponding strain energy density function is obtained as

W8ch = Nkθ
√

n
[
βchainλchain +

√
n ln

(
βchain

sinh (βchain)

)]
, (2.3a)

λchain =

√
1
3

(
λ2

1 + λ2
2 + λ2

3 − 3
)
, (2.3b)

βchain = L−1
(

λchain

sinh (βchain)

)
, (2.3c)

where n designates the number of links in the chain and L−1 is the inverse Langevin func-

tion. It should be mentioned that although these non-Gaussian material models are capable

of describing large deformation of the material, particularly when approaching to the material

extensibility, they are inaccurate for small to moderate deformation.

On the other side, for the invariant-based continuum mechanics treatments, the strain



18 Chapter 2. Literature Review

energy density function is given in terms of three invariants I1, I2, and I3 defined as

I1 = λ2
1 + λ2

2 + λ2
3, (2.4a)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (2.4b)

I3 = λ2
1λ

2
2λ

2
3. (2.4c)

It should be noted that for an incompressible material, λ1λ2λ3 = 1, leading to I3 = 1. Rivlin

(1948a) suggested a general form of strain energy density function based on these three invari-

ants, i.e.,

WR =

∞∑
i, j=0

Ci j (I1 − 3)i (I2 − 3) j , (2.5)

where Ci j are material constants. For the case that only invariant I1 is preserved, this general

model is reduced to the New-Hookean model with the strain energy density function defined

as,

WNH = C10 (I1 − 3) . (2.6)

When only (i, j) = (0, 1) as well as (i, j) = (1, 0) are taken into account, the Mooney-Rivlin

model (Mooney, 1940) is recovered as

WMR = C10 (I1 − 3) + C01 (I2 − 3) . (2.7)

Furthermore, researchers have attempted to develop higher-order models in terms of the first

invariant I1 for describing moderate to large deformation. Yeoh model (Yeoh, 1993) can be

mentioned as an example of these higher-order methods, which gives

WY = C10 (I1 − 3) + C20 (I1 − 3)2 + C30 (I1 − 3)3 . (2.8)

However, none of invariant-based models mentioned above considers the extensibility of the

polymer chains until Gent (1996) suggested a higher-order hyperelastic model to address this

issue. According to the Gent model, the strain energy density function is given as

WG = −
GJlim

2
ln

[
1 − (I1 − 3)

Jlim

]
, (2.9)
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where G is the shear modulus of the material, and material parameter Jlim denotes the stretching

limit of the material. Due to the existence of logarithmic function in Eq. (2.9), the inequality[
1 − (I1 − 3)

Jlim

]
> 0, (2.10)

must be satisfied and consequently the maximum stretch ratios are restricted by the value of

Jlim.

On the other side, the stretch-based continuum mechanics treatment is another approach

to construct the energy density function of hyperelastic materials. For this approach, the strain

energy density function is expressed in terms of the principal stretch ratios, i.e., W (λi)i=1,2,3.

The Ogden model (Ogden, 1972) is one of the most common models in this class, which gives

WO =
∑

n

µn

αn

(
λαn

1 + λαn
2 + λαn

3

)
, (2.11)

where µn and αn are material constants. It should be noticed that the value of n in Eq. (2.11)

can be adjusted to fit the experimental data.

2.3 Fully coupled field theory

As DEs are usually subjected to both mechanical and the electrical loads, the electromechan-

ical coupling should be taken into account when describing their stress-strain relations. The

demand for a robust constitutive model of DEs to characterize their electromechanical behav-

ior has drawn continuous efforts. Inspired by the pioneering works of Toupin (1956), Eringen

(1963), and Tiersten (1971), researchers have been prompted to formulate a field theory to

capture the effect of the electrostatic force when analyzing the stresses of DEs (Pao, 1978;

Eringen and Maugin, 1989; Maugin, 1992; Pelrine et al., 2000). Based on the assumption that

the fields in the material can be separately calculated and added together to form the whole
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field, these approaches have successfully explained some experimental phenomena. However,

their physical origin still remains unclear and some of their predictions are inaccurate. Re-

cent development in modelling of DEs has led to the development of fully coupled field theory

(Dorfmann and Ogden, 2005; Suo et al., 2008), into which the hyperelastic models can be in-

corporated to capture the large deformation of DEs. This fully coupled field theory has been

extensively employed by researches to examine the electromechanical coupling behavior of

DEs (Zhao and Suo, 2007, 2008; Zhou et al., 2008; Huang and Suo, 2011; Koh et al., 2011; Lu

et al., 2012; Park et al., 2012). The fully coupled field theory developed by Suo et al. (2008) is

briefly reviewed here.

→
T

→
b

→
N

P0

s0

ω

Q

Ω0

Figure 2.3: Schematic of a dielectric body.

Fig. 2.3 depicts a DE body with free body charge Q(X, t) and free surface charge ω(X, t)

subjected to body force b(X, t), surface traction T(X, t) and electric potential φ (X, t). Also,

the initial configuration of the DE body has a volume of Ω0, surface area of s0, and mass
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density of ρ. Due to the electromechanical field applied on the DE body, a material particle P0

moves from the reference position X to the current position P with spatial coordinate x(X, t) at

time t. Hence the deformation gradient tensor F of the current cofiguration with respect to the

reference configuration is defined as

Fik =
∂xi(X, t)
∂Xk

. (2.12)

Satisfying the motion equations, the nominal stress (also called Piola Kirchhoff stress) S ik

satisfies the following equation,∫
Ω0

S ik
∂ξi

∂XK
dΩ0 =

∫
Ω0

(
bi − ρ

∂2xi

∂t2

)
ξidΩ0 +

∫
s0

ξiTids0 (2.13)

for any test function ξi(X). As a special case, when the test function ξi(X) takes the form of

δxi(X, t), the nominal stress S ik is the work conjugate to the deformation gradient Fik. Alter-

natively, for any small change of the deformation of the DE, the change in the strain energy

density of the dielectric body is obtained as

δW s =

∫
Ω0

S ikδFikdΩ0. (2.14)

Furthermore, the corresponding mechanical boundary condition yields,

(
S −ik − S +

ik
)

Nk = Ti, (2.15)

where Nk (X, t) is the unit vector normal to the surface with ”+” representing the direction

pointing outward of the medium.

On the other hand, the nominal electric displacement D satisfies the following equation∫
Ω0

−
∂µ

∂Xk
DkdΩ0 =

∫
Ω0

µQdΩ0 +

∫
s0

µωds0, (2.16)

for any given scalar test function µ(X) when the Gauss’s law is satisfied. It is worth mentioning

that electric displacement is a vector field with the unit of coulombs per square metre (C/m2),
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which is equivalent to flux density in free space. Furthermore, the nominal electric field (E) is

given as

Ek = −
∂φ

∂Xk
, (2.17)

where φ is the electric potential. When µ takes the form of φ, for any small change of the

volume charge δQ and the surface charges δω, the variation of the polarization energy WP of

the dielectric body can be expressed as

δW p =

∫
Ω0

EiδDi. (2.18)

Also, equation (
D+

k − D−k
)

Nk = ω, (2.19)

must be satisfied according to the electric boundary conditions at the surface of the dielectric

body.

Let W be the Helmholtz free energy density of the dielectric body and δW be its change as-

sociated with the displacement and charge redistribution. According to Eqs. (2.14) and (2.18),

the corresponding change in the total free energy of the system, G, takes the form of

δG =

∫
Ω0

(δW − S ikδFik − EkδDk) dΩ0. (2.20)

Complying with the second law of thermodynamics, the total free energy of the system never

increases, i.e., δG ≤ 0. Hence the inequality

δW − S ikδFik − EkδDk ≤ 0, (2.21)

must be satisfied for any considered volume of the dielectric body. The equal sign holds true

only for reversible processes. For pure elastic DEs,

δW =
∂W
∂Fik

δFik +
∂W
∂Dk

δDk. (2.22)
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Thus, the constitutive equations for a pure elastic DE medium according to the fully coupled

field theory are obtained as

S ik =
∂W (F,D)
∂Fik

, (2.23a)

Ek =
∂W (F,D)
∂Dk

. (2.23b)

Accordingly, the true stress σ, the true electric displacement d, and the true electric field e can

be determined in terms of the corresponding nominal quantities, i.e.,

σi j =
S ikF jk

det(F)
, (2.24a)

di =
DkFik

det(F)
, (2.24b)

ei = F−1
ik Ek. (2.24c)

In addition, experiments suggest

di = ε0εrei, (2.25)

where ε0 and εr are, respectively, the permittivity of the vacuum and the relative dielectric

constant of the DE medium.

2.4 Viscoelasticity

As well-established in the literature, most DEs are possess viscoelasticity. Material viscosity

allows DEs to dissipate energy during the deformation. A typical stress-strain curve for vis-

coelastic materials demonstrates a hysteresis loop with the area within the loop representing the

dissipated energy. Generally, rheological models such as the Maxwell model, the Kelvin-Voigt

model and the Burger’s model can be used to describe the viscoelastic nature of the material.

• Maxwell model
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As shown in Fig. 2.4 , the Maxwell model is formed by an elastic spring and a purely viscous

damper, which are connected in series. It can be noted that once the material is stretched, the

whole deformation is immediately sustained by the elastic spring while the viscous element

remains unchanged. Then the deformation in the viscous element increases with time while the

spring relaxes, leading to a decrease of the stress. Therefore, the total strain can be obtained by

adding the strain of elastic and viscous elements together, i.e.,

ε = εe + εv, (2.26a)

εe =
σ

E
, (2.26b)

εv =
σ̇

η
, (2.26c)

where ε, εe, and εv represent the total, the elastic, and the inelastic strain, respectively; σ is

the stress; E is the elastic modulus of the spring, η is the viscosity of the material, and the

over-dot quantity denotes the differentiation of the quantity with respect to time. According to

Eq. (2.26), the constitutive equation for the Maxwell model is derived as

σ +
η

E
σ̇ = ηε̇. (2.27)

With the constitutive equation (2.27), the Maxwell model is capable of capturing the stress

relaxation of materials, while cannot predict the creep of polymers.

SpringDamper

Eη

σ σ

Figure 2.4: Schematic of Maxwell model.

• Kelvin-Voigt model

The elastic and viscous elements in Kelvin-Voigt model are connected in parallel as shown in

Fig. 2.5. Therefore, the strain in the spring is always the same as that in the viscous element.
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Therefore, the constitutive equation according to the Kelvin-Voigt model is written as

σ = Eε + ηε̇, (2.28a)

ε = εe = εv. (2.28b)

In contrast to the Maxwell model, upon application of a constant stress the Voigt model predicts

that the strain rate decreases with time, making it appropriate to explain the creep characteris-

tics of polymers.

Spring

Damper

E

ησ σ

Figure 2.5: Schematic of Kelvin-Voigt model.

• Standard linear solid model

The standard linear solid model is formed by two springs and one dashpot. The elements can

be arranged as either a Maxwell element being in parallel with an elastic spring or an elastic

spring being in series with a Voigt element. Figs. 2.6a and 2.6b depict, respectively, the Kelvin

and Maxwell representation of the standard linear model. These are the simplest arrangements

of springs and dashpots that can work properly to predict both the relaxation and the creep

behaviors of polymers. The constitutive equation with regard to the Maxwell representation

takes the form of

σ +
η

E2
σ̇ = E1ε +

η (E1 + E2)
E2

ε̇, (2.29)

where E1 and E2 are the elastic moduli of the elastic spring and the Maxwell element, respec-

tively. On the other hand, the constitutive equation with the Kelvin representation is given



26 Chapter 2. Literature Review

as

σ +
η

E1 + E2
σ̇ =

E1E2

E1 + E2
ε +

E1η

E1 + E2
ε̇, (2.30)

where E1 and E2 are the elastic moduli of the elastic spring and the Voigt spring, respectively.

By considering the constitutive equations, it can be noted that under a constant stress, both

representations of the Standard linear solid model undergo some instantaneously deformation,

then the deformation gradually increases and asymptotically approaches to a steady-state strain.

Elastic Spring

Maxwell Element

E1

E2
ησ σ

(a)

Elastic Spring
Voigt Element

E2

E1

η

σ σ

(b)

Figure 2.6: Schematic of Standard linear model; a) Kelvin representation, b) Maxwell representation.

• Burgers model
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Fig. 2.7 demonstrates the schematic of the Burgers model, which is formed by a Maxwell

element and a Voigt element in series. Therefore, the corresponding constitutive equation is

σ +

(
η1

E1
+
η2

E1
+
η2

E2

)
σ̇ +

η1η2

E1E2
σ̈ = η2ε̇ +

η1η2

E1
ε̈, (2.31)

where E1 and E2 represents the elastic moduli of the spring in the Voigt and the Maxwell el-

ements, respectively; η1 and η2 are the viscosity of Voigt and Kelvin elements, respectively.

From the constitutive equation (2.31), it can be noted that, subjected to a constant load, the

strain continuously increases and asymptotically approaches to a steady-state strain.

Maxwell Spring
Maxwell Damper

Voigt Element

E1

E2

η1

η2

σ σ

Figure 2.7: Schematic of Burgers model.

• Finite-deformation viscoelasticity models

When considering finite deformation of the material, the deformation of the springs in the

above mentioned rheological models is nonlinear, which is often the case for rubber-like ma-

terials elastomers. Generally, there are two major approaches to model the finite-deformation

viscoelasticity of elastomers. One is the hereditary integral method that utilizes fading-memory

functions to reflect the strain history on the current stress-state (Simo, 1987; Drozdov, 1997;

Kaliske and Rothert, 1997). The other approach is based on the multiplicative decomposition

of the deformation gradient into an elastic and an inelastic part, i.e.,

F = FeFi, (2.32)
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where F, Fe, and Fi denotes the total, the elastic and the inelastic deformation gradient tensors,

respectively. The framework of this approach was initiated by Green and Tobolsky (1946) and

further exploited by other researchers with the incorporation of certain hyperelastic models

to represent the energy density of the springs (Sidoroff, 1982; Reese and Govindjee, 1998;

Bergström and Boyce, 2000; Reese, 2003).

In the literature, it has long been realized that the viscoelastic properties and the rate-

dependent deformation of elastomers can significantly affect the performance of DE-based

devices (Pelrine and Kornbluh, 2000a; Löwe et al., 2005; Plante and Dubowsky, 2006; Wissler

and Mazza, 2007). Therefore, modeling the finite-deformation viscoelasticity of DEs is es-

sential for predicting the electromechanical behavior of DE-based devices. In fact, substantial

efforts have been devoted to tackling this issue for DEs. The early study can be traced back

to a work done by Christensen (1980), which examined the creep of viscoelastic elastomers.

Following the same framework, Yang et al. (2005) developed a nonlinear viscoelastic model

for DEs. Wissler and Mazza (2005) presented a quasi-linear viscoelastic model to study the

time-dependent response of a circular DE membrane. Later, Plante and Dubowsky (2007)

proposed a modified hyperelasticity theory to address the finite-deformation viscoelasticity of

DEs and examine their dynamic performance. However, these works are either limited to rel-

atively small deformations or only successful to capture some finite-deformation experimental

phenomena. Recently, combining the finite-deformation viscoelasticity theory by Reese and

Govindjee (1998) and the fully coupled field theory by Suo et al. (2008), Hong (2011) pre-

sented a model that can account for viscoelastic effect on the electromechanical coupling of

DEs. The model by Hong is capable of adopting most hyperelastic constitutive models and

the evolution laws for viscoelastic solids. Adopting the Maxwell representation of the standard

solid rheological model, the strain energy of Hong’s model is split into two parts, i.e., the strain

energy density stored in elastic spring and the strain energy stored in the Maxwell element. The

more detailed information of this framework is elaborated in Chapter 3. The Hong’s model was
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further employed by Wang et al. (Wang, Lei and Cai, 2013) who examined the inhomogeneous

deformation of a viscoelastic DE membrane. Moreover, with the same modeling framework,

it is also found that the dynamic and the energy harvesting performance of the DEs can be

strongly affected by their material viscoelasticity (Foo et al., 2012; Sheng et al., 2013; Liu,

2014; Shian et al., 2014; Zhou et al., 2015, 2016a,b, 2017; Li et al., 2019).



Chapter 3

Rayleigh-Lamb wave propagation in a

finitely deformed DE layer

3.1 Introduction

Dielectric elastomers (DEs), capable of producing large strains under electric stimuli, exhibit

exceptional potentials for a variety of applications such as artificial muscles, soft robots, energy

harvesters, adaptive optics, tactile sensors for Braille displays, and tunable waveguide (Pelrine

et al., 2001; Brochu and Pei, 2010; Carpi et al., 2011; Kim et al., 2013; Park et al., 2014).

DE waveguide, which offers an alternative to manipulating elastic waves via the application

of an electric field to the DE medium, has attracted much interest in recent decades (Hensel

and Gillings, 1986; Shmuel et al., 2013; Galich and Rudykh, 2016; Ziser and Shmuel, 2017).

Although the potential applications of DE waveguide are very promising, predicting their per-

formance is still very challenging due to the complexity of the problem with the involvement of

large deformation, electromechanical coupling, and especially material viscoelasticity of DEs.

Therefore, this work aims to tackle this challenge by developing a comprehensive model to in-

30
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vestigate the characteristics of wave propagation in a DE layer with the consideration of these

factors.

For most DE applications, they are usually subjected to coupled electromechanical loads

and undergo large deformations. An appropriate constitutive model that accounts for both elec-

tromechanical coupling and finite deformation is thus required, which has drawn continuous

efforts in the research community. Inspired by the pioneering works (Toupin, 1956; Eringen,

1963; Tiersten, 1971), researchers have been prompted to formulate constitutive laws to capture

the effect of electrostatic loads when analyzing the deformation of DEs (Pao, 1978; Eringen

and Maugin, 1989; Maugin, 1992; Pelrine et al., 2000). By adding the effect of Maxwell force

on the mechanical deformation directly, these studies have successfully explained some exper-

imental phenomena. However, the physical origin of these experimental phenomena remains

unclear and some of their predictions are inaccurate particularly when DEs are subjected to

large deformation. Recently, with the development of fully coupled field theories (Dorfmann

and Ogden, 2005; Suo et al., 2008), various hyperelastic models (Rivlin, 1948a,b; Ogden, 1972;

Yeoh, 1993; Gent, 1996) have been incorporated to establish the constitutive relations for inves-

tigating the electromechanical coupling behavior of DEs with the consideration of their finite

deformations. For example, Zhao et al. (2007) studied the electromechanical instability and co-

existent states of DEs. Huang and Suo (2011) demonstrated that the electromechanical energy

conversion can be significantly improved by utilizing the phase transition of DEs with a par-

ticular combination of material properties. Koh et al. (2011) explored possible mechanisms to

achieve large actuation strain in DEs. Lu et al. (2012) investigated the electromechanical defor-

mation of fiber-reinforced DEs under different loading conditions. The coupled field theories

have also laid a foundation for finite element simulation of the electromechanical coupling of

DEs in later studies (Zhao and Suo, 2008; Zhou et al., 2008; Park et al., 2012).

Moreover, it has long been recognized that DEs are more or less viscous (Pelrine and Ko-
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rnbluh, 2000a; Löwe et al., 2005; Plante and Dubowsky, 2006), which strongly influences their

electromechanical coupling behavior. For example, it is found that the material viscosity has

significant effects on the frequency tuning and the dynamic performance of DE-based devices

(Zhang et al., 2004; Plante and Dubowsky, 2007; Bai et al., 2014; Kollosche et al., 2015). In

fact, predicting the time-dependent and viscoelastic behaviors of DEs has received much at-

tention since the last decade. Some early works focused on theories of linear viscoelasticity

to model relatively small deformations of DEs (Yang et al., 2005; Wissler and Mazza, 2005;

Plante and Dubowsky, 2007). These models either only considered the mechanical behavior of

DEs or formulated the electromechanical coupling by simply adding the Maxwell stress. Later,

Wissler and Mazza (2007) presented a quasi-linear viscoelastic model in which Prony series

were introduced into the strain energy function to capture the material’s time-dependent proper-

ties. Wang, Xue, Chen and Qiang (2013) developed a constitutive relation for DEs based on the

Kelvin-Voigt rheological model to characterize their energy dissipation under uniaxial stretch-

ing and loading-unloading cycles. Recently, Hong (2011) has developed a finite-deformation

viscoelasticity theory for DEs which is capable of capturing both the finite inelastic deforma-

tion and the electromechanical coupling of DEs. The merit of this model lies in the fact that

it provides a theoretical framework capable of adopting most finite-deformation constitutive

models and thermodynamics evolution laws for viscoelastic solids. Based on this rigorous

model, the frequency tuning of DE-based oscillators and energy harvesting performance of DE

generators have been well explored (Zhou et al., 2014, 2017; Zhang et al., 2015).

In contrast with the large body of theoretical and modeling works on the static behavior

of DEs, the study on wave propagation in a DE medium is relatively limited. The concept of

manipulating electroelastic waves and controlling band-gaps by electric bias field was first pro-

posed by Gei et al. (2010) via investigating small-amplitude flexural wave propagation through

a periodically actuated DE plate. Considering quasi-electrostatic finite deformation and small-

amplitude wave propagation, the pioneering work by Dorfmann and Ogden (2010) has laid
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a foundation and established a framework for later studies on DE waveguide. Adopting the

neo-Hookean model to describe the finite deformation, Shmuel et al. (2012) investigated the

Rayleigh-Lamb wave propagation through a finitely deformed DE layer. It was demonstrated

that the wave dispersion relations were strongly affected by the electrical load as well as the

pre-stretching of the DE layer, leading to a conclusion that waves with certain frequencies

could be filtered by applying a suitable electric field to the DE medium. Following this work,

Shmuel has conducted a series of studies on the wave propagation problems. For example,

Shmuel and deBotton (2012) investigated the thickness vibration of a finitely deformed peri-

odic DE laminate by using the Bloch-Floquet theorem and the transfer matrix method. Their

simulation results demonstrated how the band-gaps could be actively modified by the electric

bias field. The dependence of band structures of fiber-reinforced DE composites on the phase

properties and volume fraction, and most importantly the bias electric field has also been eval-

uated by Shmuel (2013). The results suggest the use of DE composites to control electroelastic

wave propagation by properly tuning the electric bias field. Later the axisymmetric wave prop-

agation through hollow DE cylinders was studied by Shmuel et al. (2013). The influences of

the tube geometry, the mechanical pre-stretch and the electric bias field on the wave dispersion

infer the use of DE in tubular configurations as tunable waveguide by electric stimuli. Galich

and Rudykh (2017) investigated the wave propagation through compressible DE laminates,

demonstrating the possible manipulation of wave band-gaps through the electric field.

It should be mentioned that in the current literature the intrinsic material viscosity pos-

sessed by most DEs has been ignored in studying the wave propagation in a DE medium,

which may result in substantial error when characterizing the wave dispersion relation. There-

fore, the material viscosity of DEs is a significant issue needs to be tackled for DE waveg-

uide. In this study, based on the theory of finite-deformation viscoelasticity (Hong, 2011), the

Rayleigh-Lamb wave propagation through a finitely deformed DE layer with the considera-

tion of material viscoelasticity is investigated. Following the work by Dorfmann and Ogden
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(2010), the equations of motion are obtained by considering an incremental time-dependent

motion field superimposed on the finitely deformed DE layer. Numerical results will illustrate

the effects of the mechanical pre-stretch, the applied electric field, and the material viscoelas-

ticity on the dispersion relation, which is expected to provide a better understanding on the

waveguide control through the use of viscoelastic DEs.

3.2 Problem Statement and Formulation

In this study, we will focus on the Rayleigh-Lamb wave propagation in a finitely deformed vis-

coelastic dielectric elastomer (DE) layer as described by a Cartesian coordinate system x1x2x3

in Fig. 3.1a. The layer is infinitely long along the x1-axis with an initial thickness 2H along

the x2-axis direction in the undeformed or the reference state. The DE layer is coated with

compliant electrodes on its top and bottom surfaces, which are traction free. The DE layer

is first pre-stretched along the x1-axis direction with a stretch ratio λ and then the stretch ra-

tio is fixed by clamping the DE layer. Subsequently, an electric displacement d is applied in

the thickness direction, which reduces the tension or induces compression in the x1-direction

in the DE layer. Fig. 3.1b shows the deformed state of the DE layer with thickness 2h, also

referred as the current state. Assuming the plane-strain condition for the current study, there

is no deformation along the x3-axis and consequently the fields are independent of x3. Under

the homogeneous deformation assumption, the deformation gradient of the current state with

respect to the undeformed state can be expressed as F =


λ 0 0

0 λh 0

0 0 1

 with λh = h/H.
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Figure 3.1: Schematics of an infinite DE layer (a) undeformed state, (b) deformed state
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Figure 3.2: Rheological model to illustrate the viscoelastic deformation of a DE layer
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3.2.1 Finite-deformation viscoelasticity

As well-established in the literature, DEs exhibit intrinsic viscoelastic properties. Following

the theory of finite-deformation viscoelasticity (Hong, 2011), a rheological model is commonly

used as shown by Fig. 3.2 to represent two typical types of polymer networks in the DE, i.e.,

the elastic one (spring 1) and the other relaxing with time and dissipating energy, i.e., the

Maxwell element. To describe the viscoelastic deformation, an intermediate (imaginary) state

is introduced by fully relaxing the elastomer in the current state as commonly treated in the

literature. Here we define the deformation gradient of the current state with respect to the

intermediate state as Fe, and the deformation gradient of the intermediate state as Fi. The

deformation gradient F of the viscoelastic DE is thus multiplicatively decomposed into an

elastic component and an inelastic component, which gives

F = FeFi. (3.1)

where Fe =


λe 0 0

0 λe
h 0

0 0 1

 and Fi =


λi 0 0

0 λi
h 0

0 0 1

. Hereinafter, the superscripts ”e” and ”i”

represent the elastic and inelastic components, respectively. Also, as commonly treated in the

other studies (Zhao and Suo, 2010; Koh et al., 2011; Shmuel et al., 2012; Zhou et al., 2017),

the material incompressibility ensures λh = 1/λ, λe
h = 1/λe, and λi

h = 1/λi.

Following (Dorfmann and Ogden, 2010), the Piola-Kirchhoff stress S i j and the nominal

electric field Ei can be expressed in terms of the Helmholtz energy density function W as

S i j =
∂W
∂Fi j

− pH ji, (3.2a)

Ei =
∂W
∂Di

, (3.2b)

where H = F−1, Di is the nominal electric displacement component, and p is the Lagrange

multiplier introduced for enforcing material incompressibility. Correspondingly, the true stress
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σi j, the true electric displacement di, and the true electric field ei can be determined from those

nominal quantities as,

σi j =
F jk

det(F)
S ik, (3.3a)

di =
Fik

det(F)
Dk, (3.3b)

ei = HikEk. (3.3c)

The true electric field e can be given in terms of the gradient of the electrostatic potential V ,

and experiments suggest di = ε0εei with ε0 and ε being the permittivity of the vacuum and the

relative dielectric constant of the DE medium, respectively.

According to the coupled field theory developed by Suo et al. (2008) and the finite-

deformation viscoelastisity model by Hong (2011), the Helmholtz free energy density of a

viscoelastic DE can be expressed as

W(F, Fe, D) = WEQ(F) + WNEQ(Fe) + WP(F, D), (3.4)

where WEQ(F) and WNEQ(Fe) are the strain energy densities stored in spring 1 and spring 2

as shown in Fig. 3.2, respectively, while the third term is the energy density related to the po-

larization of the DE. Various hyperelastic constitutive models have been developed to describe

the hyperelastic behavior of elastomers. As a case study in this work, the neo-Hookean model

is selected for both springs. Accordingly, Eq. (3.4) is reduced to,

W =
1
2

GEQ
(
FαβFαβ − 3

)
+

1
2

GNEQ
(
FαβFαθHi

βγHi
θγ − 3

)
+

1
2ε0ε

FαβFαγDβDγ,

(3.5)

where GEQ is the shear modulus of the spring 1, and GNEQ is the shear modulus of the Maxwell

element, pertinent to the time-dependent and rate-dependent behavior of the DE.

From (Reese and Govindjee, 1998) and (Hong, 2011), the inelastic deformation gradient

of the DE is determined by the following inequality which stems from the laws of thermody-
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namics, i.e., the free energy of a system never increases,

σNEQ
mn Qi

mn ≥ 0, (3.6)

where

σNEQ
mn =

S NEQ
m j Fe

n j

detFe with S NEQ
mi =

∂WNEQ(Fe)
∂Fe

mi
,

Qi
mn =

1
2

(
Li

mn + Li
nm

)
with Li

mn = Fe
m jḞ

i
jkHi

kpHe
pn,

and the over-dot represents the rate of changes of the quantities due to the rate-dependent

behaviors of viscoelastic materials. Mathematically, Eq. (3.6) is automatically satisfied when

the thermodynamics evolution law is held, i.e.,

Qi
mn = Mmn jkσ

NEQ
jk , (3.7)

where Mi jkl = (1/4η)
(
δikδ jl + δilδ jk −

2
3δi jδkl

)
, η is the shear viscosity, and δi j is the Kronecker

delta.

In the absence of free body force, free body charge, and free magnetic field, the motion

equations, the Faraday’s law, and the Gauss’s law in the Eulerian form are expressed as,

∂σ ji

∂x j
= ρ

∂2xi

∂t2 , (3.8a)

εk ji
∂ei

∂x j
= 0, (3.8b)

∂di

∂xi
= 0, (3.8c)

where ρ stands for the density of the DE medium. The corresponding boundary conditions are

given as

(
σi j − σ

∗
i j

)
n j = ti, (3.9a)

εi jk

(
e j − e∗j

)
nk = 0, (3.9b)(

di − d∗i
)

ni = −ω, (3.9c)
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in which ”*” represents the fields outside of the material. ω and ti are the surface charge density

and the mechanical traction, respectively. The outer fields are obtained through the following

relations

σ∗i j =
1
ε0

(
DiD j −

1
2

DmDmδi j

)
, (3.10a)

d∗i = ε0e∗i . (3.10b)

3.2.2 Small amplitude fields superimposed on a finitely deformed DE

Here we revisit the problem of Rayleigh-Lamb wave propagation in a DE layer subjected to

large deformation investigated by Shmuel et al. (2012) with the consideration of the mate-

rial viscosity. Upon the current finitely deformed configuration, a small (incremental) time-

dependent displacement ui = x̄i(X, t) and a small electric displacement d̄i(X, t) are superim-

posed, the associated incremental deformation gradient of the DE layer is thus given as,

F̄i j =
∂x̄i

∂X j
=
∂ui

∂X j
(3.11)

Herein and throughout the paper a quantity with over-bar represents an incremental quantity.

The corresponding motion equations and the Maxwell equations can be rewritten in terms of

the incremental quantities as,

∂σ̄ ji

∂x j
= ρ

∂2ui

∂t2 , (3.12a)

εk ji
∂ēi

∂x j
= 0, (3.12b)

∂d̄i

∂xi
= 0. (3.12c)

Considering the constitutive equations (3.2) and the relations between the true and nom-

inal electroelastic fields in Eq. (3.3), Eqs. (3-12a) and (3-12b) are expressed in terms of the
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Helmholtz free energy density function in general sense, i.e.,

∂

∂x j

(
∂2W

∂Fik∂Fmn
F jkFnαRmα +

∂2W
∂Fik∂F i

mn
F jkF̄ i

mn+

∂2W
∂Fik∂Dm

F jkHmαD̄α + pR ji − p̄δ ji

)
= ρui,tt,

(3.13a)

εk ji
∂

∂x j

(
Hik

∂2W
∂Fpq∂Dk

FAqRpA + Hik
∂2W

∂Dm∂Dk
HmAD̄A

)
= 0, (3.13b)

in which Ri j = F̄ikHk j and F̄ i
mn = FαnRi

mα. Specially for the viscoelastic DE with Neo-Hookean

model, these equations are further reduced to,

∂

∂x j

[ d jd̄i + did̄ j

εε0
−GNEQFAnRi

mA(
FiαF jkHi

αmHi
kβH

i
nβ + FiαF jkHi

αβH
i
kmHi

nβ

)
− p̄δ ji

]
+

∂

∂x j

[( dAd jRiA

εε0
+ GEQFAkF jkRiA + FAnF jkGNEQRiAHi

kαHi
nα

)
+

pR ji

]
= ρui,tt,

(3.14a)

εk ji
∂

∂x j

[
FBkHik

(
d̄B + dpRpB + dARBA

)]
= 0. (3.14b)

So far the general equations of motion for a neo-Hookean viscoelastic DE layer with the

consideration of small fields superimposed on finite deformations are obtained. For a case

study, we will focus on the plane-strain problem with d1 = d3 = 0, d2 6= 0, λ1 = λ, λ2 = λh,

λ3 = 1, u1 = u1 (x1, x2, t), u2 = u2 (x1, x2, t), u3 = 0, d̄1 = d̄1 (x1, x2, t), d̄2 = d̄2 (x1, x2, t),

and p̄ = p̄ (x1, x2, t). Correspondingly, the incremental non-equilibrium true stresses σ̄NEQ are

obtained as,

σ̄NEQ
11 = GNEQ

(
λ

λi

)2 (
R11 −

λRi
11

λi

)
, (3.15a)

σ̄NEQ
12 = GNEQ

[
R12

(
λi

λ

)
2 −

λiRi
12

λ

]
, (3.15b)

σ̄NEQ
21 = GNEQ

[
R21

(
λ

λi

)2

−
λRi

21

λi

]
, (3.15c)

σ̄NEQ
22 = GNEQ

(
λi

λ

)2 (
R22 −

λiRi
22

λ

)
, (3.15d)
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Substituting Eq. (3.15) into the thermodynamics evolution law, i.e., Eq. (3.7), the inelastic

stretch ratios are obtained as,

dλi

dt
=

GNEQ

6ηλ3λiRi
11

[
R22

(
λi
)5
− 2λ4

(
R11λ

i − λRi
11

)
−

(
λi
)

6Ri
22

λ

]
, (3.16a)

dλi
h

dt
=

GNEQ

6ηλ (λi)5 Ri
22

[ 2
(
λi
)6

Ri
22

λ
− 2R22

(
λi
)5

+ λ4
(
R11λ

i − λRi
11

) ]
. (3.16b)

Particularly when dλi/dt = dλi
h/dt = 0 and λi = λ, the response of the DE layer recovers that of

the purely elastic DE layer. When considering the material viscosity, we define time-dependent

functions K(t) and G(t) to relate λi to λ and Ri
mn to Rmn, respectively. For the limiting case when

K(t) = G(t) = 1, the medium is fully relaxed and the response of the DE layer recovers that for

a non-viscous DE layer. Therefore, λi and Ri
mn can be calculated as

λi = λK(t), (3.17a)

Ri
11 = R11G(t), (3.17b)

Ri
22 = R22G(t), (3.17c)

Ri
12 =

λ2 (R12 + R21) G(t)
λ2 + 1

, (3.17d)

Ri
21 =

(R12 + R21) G(t)
λ2 + 1

. (3.17e)

By substituting Eq. (3.17) into Eq. (3.16), it is obtained that

K̇(t) =
GNEQ

6ηG(t)K(t)

{
G(t)K(t)6 − 2 [K(t) −G(t)] − K(t)5

}
, (3.18a)

G(t) =
K(t)7 + 2K(t)5 + 2K(t)3 + K(t)

K(t)8 + 2K(t)6 + 2K(t)2 + 1
. (3.18b)

Consequently, by substituting Eq. (3.17) into equations of motion (3-14a) and (3-14b), we have



42 Chapter 3. Rayleigh-Lamb wave propagation in a finitely deformed DE layer

R11,12

(
λ2GEQ +

GNEQ

K (t)2 + p
)

+

(
GEQ

λ2 + K (t)2 GNEQ +
d2

2

εε0

)
R12,22+

pR21,22 +
d2d̄1,22

εε0
−G (t) GNEQ

{ 2
K (t)3 R11,12 +

1
1 + λ2[

1
K (t)

+ λ2K (t)
] (

R12,22 + R21,22
) }

+ p̄,12 = ρü1,2,

(3.19a)

R22,12

(
GEQ

λ2 + GNEQK (t)2 +
d2

2

εε0
+ p

)
+

(
GEQλ2 +

GNEQ

K (t)2

)
R21,11+

pR12,11 −G (t) GNEQ
{

2K (t)3 R22,12 +
1

1 + λ2

[
K (t) +

λ2

K (t)

]
(
R21,11 + R12,11

) }
+

d2

εε0

(
2d̄2,12 + d̄1,11

)
+ p̄,12 = ρü2,1,

(3.19b)

d̄2,1 + 2d2R22,1 = 0, (3.19c)

d̄1,2 + d2
(
R12,2 + R21,2

)
= 0. (3.19d)

3.2.3 Wave propagation in a DE layer

In this section, we focus on the electroelastic wave due to the harmonic excitation along x1

direction superimposed on the deformed DE configuration induced by both the pre-stretch and

the electric displacement. Stream functions φ(x1, x2, t) and ψ(x1, x2, t) are introduced so that

the material incompressibility u1,1 + u2,2 = 0 and the Gauss’s equation (3-12c) are satisfied

automatically, i.e.,

u1 = φ,2(x1, x2, t), u2 = −φ,1(x1, x2, t),

d̄1 = ψ,2(x1, x2, t), d̄2 = −ψ,1(x1, x2, t).
(3.20)

The solution of the wave propagation takes the time-dependency in the form of e−iωt and a

periodicity along the x1-axis in the form of eikx1 , as

φ = Aeik(ct−x1)eqkx2 , (3.21a)

ψ = Bkeik(ct−x1)eqkx2 , (3.21b)
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where A and B are constants to be determined, q is the attenuation factor, ω is the angular

frequency and k is the associated wavenumber such that the wave velocity is determined as

c = ω/k. By substituting Eq. (3.20) into Eq. (3.19) and rearranging the obtained governing

equations, we have [
λ2GEQ + GNEQ

(
G(t)
K(t)

+
1

K(t)2

)]
φ,1111 + φ,2222[

GEQ

λ2 + GNEQ
(
G(t)K(t) + K(t)2

)
+

d2
2

εrε0

]
+[(

λ2 +
1
λ2

)
GEQ +

d2
2

εε0

]
φ,1122+

GNEQ
[
G(t)K(t) − 2

(
G(t)K(t)3 +

G(t)
K(t)3

)
+

G(t)
K(t)

+ K(t)2 +
1

K(t)2

]
φ,1122 +

d2
(
ψ,11 + ψ,22

)
,2

εε0
=

ρ
(
φ̈,11 + φ̈,22

)

(3.22a)

d2
(
φ,112 − φ,222

)
− 2d2φ,112 = ψ,11 + ψ,22 (3.22b)

Substituting Eq. (3.21) into the governing equations (3.22), a system of two linear homo-

geneous equations with unknown coefficients A and B is obtained. In order to have non-trivial

solutions, the determinant of the coefficient matrix must equal to zero, which results in a bi-

cubic polynomial equation to determine q as(
q2 − 1

) (
a1q4 + a2q2 + a3

)
= 0, (3.23)

where the coefficients a1, a2, and a3 are defined as

a1 =
GEQ

λ2 + GNEQ

K(t)2 −
G(t)

(
λ2K(t) + 1

K(t)

)
λ2 + 1

 , (3.24a)

a2 = −GNEQ
{

2G(t)
[ λ2K(t) + 1

K(t)

λ2 + 1
−

(
K(t)3 +

1
K(t)3

) ]
+

K(t)2 +
1

K(t)2

}
+ ρc2 −

(
λ2 +

1
λ2

)
GEQ,

(3.24b)

a3 = λ2GEQ + GNEQ

 1
K(t)2 −

G(t)
(
λ2K(t) + 1

K(t)

)
λ2 + 1

 − ρc2. (3.24c)
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From Eq. (3.23), it can be seen that there are six possible roots for q, namely, q1 = −1,

q2 = 1, q3 = −q4, and q5 = −q6. It is important to mention that for q1 and q2, the unknown

coefficients An = 0 while the coefficients Bn are still not determined. However, for q3, q4, q5,

and q6, there exists dependency between the coefficients An and Bn such that Bn = −qnd2An(n =

3, 4, 5, 6). Therefore, the general solution for the stream functions φ(x1, x2, t) and ψ(x1, x2, t)

can be written as a linear combination of all the roots in the following format,

φ = eik(ct−x1)
6∑

n=3

Anekx2qn , (3.25a)

ψ = keik(ct−x1)
6∑

n=1

Bnekx2qn . (3.25b)

Moreover, to satisfy a decaying condition at x2 → ±∞ and the Laplace equation outside

the DE layer, the following stream functions are considered for the exterior fields,

µ∗ = iC1ke−kx2eik(ct−x1) (x2 ≥ h), (3.26a)

ν∗ = iC2kekx2eik(ct−x1) (x2 ≤ −h), (3.26b)

where the exterior electric field components are given by

ē∗1 =


−µ∗,1 x2 ≥ h

−ν∗,1 x2 ≤ −h
, (3.27a)

ē∗2 =


−µ∗,2 x2 ≥ h

−ν∗,2 x2 ≤ −h
. (3.27b)

In summary, there exists a set of eight constants to be determined, namely A3, A4, A5, A6,

B1, B2, C1, and C2, from the appropriate boundary conditions across the upper and the lower

surfaces of the DE layer at x2 = ±h , i.e.,

σ̄22 = 0, σ̄12 = 0, d̄*
2 − d̄2 = 0, ē*

1 − ē1 = 0. (3.28)
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where

σ̄22 = −p̄ +

6∑
n=1

{[ GEQ

λ2 +
d2

2

εε0
+ p+

GNEQK(t)2 (1 − 2G(t)K(t))
]
ik2Anqnekx2qn +

2id2k2Bnekx2qn

εε0

}
,

(3.29a)

σ̄12 =

6∑
n=1

k2Anq2
nekx2qn

( d2
2

εε0
+

GEQ

λ2 + GNEQK(t)2
)
−

k2Anekx2qn

[
− p +

GNEQG(t)
λ2 + 1

(
λ2K(t)2 + 1

K(t)

) (
q2

n + 1
) ]

+

ekx2qn
(
d2k2Bnqn

)
εε0

, (3.29b)

ē1 =

6∑
n=1

[
d2An

(
q2

n + 1
)

+ Bnqn

]
k2ekx2qn , (3.29c)

d̄2 =

6∑
n=1

ik2Bnekx2qn . (3.29d)

It is noted that the solution for the incremental pressure is given from

p̄ =
(
P1e−kx2 + P2ekx2

)
keik(ct−x1), (3.30)

where P1 and P2 are calculated via Eqs. (3-19a) and (3-19b).

The boundary conditions in Eq. (3.28) constitute a system of eight linear homogeneous

equations to determine the eight unknown coefficients. Non-trivial solutions exist only when

the determinant of the coefficient matrix vanishes, leading to an equation which can be re-

garded as the extension of Rayleigh-Lamb transcendental equation for a viscoelastic DE layer

with finite deformation. Utilizing the transcendental equation, the dispersion relation, i.e., the

relation between the wavenumber k or wavelength and the velocity c, is thus obtained. It is

worth mentioning that for a given wavenumber, there may exists various wave frequencies

satisfying the dispersion relation, which corresponds to different modes of wave propagation.

Here a numerical iterative root-finding method is applied to calculate the admissible c values

for a range of wavenumber k. Then the dependence of the dispersion relation of the wave prop-

agation in a viscoelastic DE layer on the electric field, the pre-stretch, the material viscosity,

and the relaxation status of the medium will be discussed in detail in the next section.



46 Chapter 3. Rayleigh-Lamb wave propagation in a finitely deformed DE layer

3.3 Numerical Results and Discussion

In this section, numerical simulation results will be demonstrated to show the factors that in-

fluence the wave dispersion in a viscoelastic DE layer, including the applied electromechanical

loads, the material viscoelasticity and the relaxation status of the material. Phase velocity

denoted by c is the rate at which the phase of the wave propagates through the layer. On

the other hand, the envelope shape of the wave propagates with another velocity called group

velocity (denoted by VG), which expresses the rate at which energies are transported. Here,

to present the results in a more convenient way, we introduce the dimensionless quantities

d̂ = d2/
√

GEQεε0, t̂ = GNEQt/η, k̂ = kh, ĉ = c/cB, and V̂G = V/cB with cB =
√

GEQ/ρ repre-

senting the bulk shear wave velocity in a purely elastic medium and ω̂ = ĉk̂. Also, a material

parameter χ = GEQ/(GEQ + GNEQ) indicating the fraction of the polymer networks that have

time-independent behavior is introduced to represent the viscoelasticity of the material. The

material becomes purely elastic when χ = 1, while it is a viscous fluid when χ = 0.

From Eqs. (3-29a) and (3-29b) it is found that the incremental stresses at boundaries (x2 =

±h) of the viscoelastic DE layer depend on the time-dependent functions K(t) and G(t), which

means that the dispersion relation is contingent on the relaxation status of the viscoelastic DE

medium. Therefore, to obtain the dispersion relation, the relaxation status of the DE medium

at the beginning of the wave propagation, i.e., K(0) and G(0),) must be prescribed first through

Eq. (3.18). From Eq. (3-17a), it is noted that the value of K(0) ranges from 1/λ to 1. Figs. 3.3a

and 3.3b depict the variation of K(t̂) and G(t̂) with the normalized time t̂ for different relaxation

status of the DE medium at the beginning of wave propagation (K(0)). It is found that for all

the cases, both of K(t̂) and G(t̂) increase with time. As the DE medium continues to relax with

time, both of K(t̂) and G(t̂) converge to 1, corresponding to the fully relaxed state of the DE

layer.

As mentioned previously, for any given value of excitation frequency ω̂, there exist dif-
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Figure 3.3: variation of (a) K(t̂) and (b) G(t̂) with normalized time t̂

ferent values of wavenumber k̂m which satisfy the dispersion relation and correspondingly rep-

resent different modes of the wave propagation with phase velocity of ĉm = ω̂/k̂m. It has been

shown that for both purely elastic medium (Rayleigh, 1885; Lamb, 1917) and hyperelastic

dielectric medium (Shmuel et al., 2012), the wave propagation can be decomposed into two

modes with respect to the mid-plane of the layer, i.e., symmetric (extensional) and antisym-

metric (flexural) modes. For the symmetric mode, the displacement u2 in the x2-axis direction

and the incremental normal stress σ̄22 distribute symmetrically while the incremental shear

stress σ̄21 and the incremental electric displacement d̄2 distribute asymmetrically with respect

to the mid-plane. As for the antisymmetric mode, the distribution of these quantities is in the

opposite way. For the current case with the wave propagation in a viscoelastic DE, the same

decomposition of wave modes still holds true. Hereinafter, we will focus on presenting the

results on the fundamental symmetric and antisymmetric modes, i.e., the lowest two modes. It

should be mentioned that these two modes have finite value of velocity for the limiting case of

long wave propagation when k̂m → 0. However, for other higher modes, the phase velocity ĉm

approaches to infinite when k̂m → 0. As the first step, the solution technique presented in this

work is validated by comparing with the results from the literature for a purely hyperelastic

case with χ = 1 (Shmuel et al., 2012). For such a special case, the dispersion relation is inde-

pendent of K(t) since there is no material relaxation for a purely elastic medium. The variation
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of the normalized phase velocity with the normalized wavenumber is plotted in Fig. 3.4 for an

unstretched DE (λ = 1) under different electrical loads (d̂ = 0 and d̂ = 1 for example). Excel-

lent agreement is observed for both the symmetric and antisymmetric modes. For the limiting

case of short waves (k̂ → ∞), the two modes coincide and reach the velocity of the surface

wave. Particularly, the wave speed ĉ = 0.955 for the Rayleigh surface wave without applying

electrical load (d̂ = 0). On the other hand, for the limiting case of long waves, the fundamental

symmetric mode reaches the well-known result of ĉ = 2 for the purely elastic wave (d̂ = 0).

d̂ = 0

d̂ = 1

Figure 3.4: Variation of normalized phase velocity with normalized wavenumber for an unstretched DE under

different electrical loads. The continuous and dashed curves correspond to the symmetric mode and the antisym-

metric mode, respectively. The scattered markers correspond to the results obtained by Shmuel et al. (2012) with

filled and empty markers representing symmetric and antisymmetric modes, respectively.

To investigate the characteristics of the wave propagation in the DE medium with the

consideration of both material viscoelasticity and electromechanical coupling, we focus on the

dispersion relations. Under different electromechanical loading conditions, Figs. 3.5 and 3.6

plot the variation of the normalized phase velocity and the normalized group velocity with the

normalized wavenumber at different relaxation state of the viscoelastic DE medium, for exam-

ple, K(t̂) varies from a partially relaxed state of 0.8 to a fully relaxed state of 1.0. It is observed

that for large values of k̂, in other words, in the range of short waves, the velocity of the sym-

metric and the antisymmetric modes converges to the same value which is corresponding to the

speed of the surface wave propagating through a DE half space as expected. It is also noted
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Figure 3.5: Variation of normalized phase velocity with respect to normalized wavenumber for different values

of K(t̂) when (a) d̂ = 0, λ = 1.5 and χ = 0.8, (b) d̂ = 0, λ = 1.25 and χ = 0.8, and (c) d̂ = 2, λ = 1.5 and χ = 0.8.

The continuous and dashed curves correspond to the symmetric mode and the antisymmetric mode, respectively.
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Figure 3.6: Variation of normalized group velocity with respect to normalized wavenumber for different values

of K(t̂) when (a) d̂ = 0, λ = 1.5 and χ = 0.8, (b) d̂ = 0, λ = 1.25 and χ = 0.8, and (c) d̂ = 2, λ = 1.5 and χ = 0.8.

The continuous and dashed curves correspond to the symmetric mode and the antisymmetric mode, respectively.
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(a)

λ d̂ k̂int
P k̂int

G ĉint V̂ int
G

1.5

0.0 1.58 0.75 1.64 1.67

0.5 1.61 0.79 1.61 1.56

1.0 1.71 0.84 1.49 1.24

1.5 1.8 0.89 1.26 0.79

2.0 1.93 0.97 0.78 0.12

2

0.0 1.58 0.75 2.06 2.07

0.5 1.61 0.79 2.03 1.99

1.0 1.71 0.84 1.94 1.74

1.5 1.8 0.89 1.76 1.42

2.0 1.93 0.97 1.43 1.03

(b)

d̂ λ k̂int
P k̂int

G ĉint V̂ int
G

0

1.25 1.58 0.75 1.48 1.53

1.50 1.58 0.75 1.64 1.67

1.75 1.58 0.75 1.84 1.85

2.00 1.58 0.75 2.06 2.07

2.25 1.58 0.75 2.29 2.3

1

1.25 1.71 0.84 1.30 1.07

1.50 1.71 0.84 1.49 1.24

1.75 1.71 0.84 1.71 1.48

2.00 1.71 0.84 1.94 1.74

2.25 1.71 0.84 2.19 2.01

Table 3.1: Effect of (a) electric displacement d̂ and (b) pre-stretch λ on the particular wavenumber at which wave

propagates independent of the relaxation status of the medium.
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that for a less relaxed DE medium with lower value of K(t̂), the convergence becomes faster,

which means that the relaxation status of the viscoelastic medium affects the surface wave

propagation. Another important point is that for the fundamental symmetric mode, the phase

velocity monotonically decreases with the wave number. While the curve of the group velocity

is non-monotonic as observed from Fig. 3.6. Moreover, for the symmetric mode waves, it is

seen that in the range of long waves, both phase and group velocities increase with the more

relaxation of the DE medium. However, a reversed trend is found in the range of short waves

propagating through the DE layer. It is interesting to note from Fig. 3.5 that for the symmet-

ric mode wave propagation, regardless of the values of K(t̂), all the dispersion curves have an

intersection point (k̂int
P ) under the same electromechanical loading condition. It means that the

material viscosity has no effect on such wave propagation with a particular wavenumber. Simi-

lar phenomenon is observed for the group velocity as well in Fig. 3.6. However, the intersection

point k̂int
G for the group velocity is different from that of the phase velocity. The variation of

this particular wavenumber with the applied mechanical and electrical loads is summarized in

Table 3.1. It is found that only the applied electrical load can alter this wavenumber. This

finding will offer avenue for controlling wave propagation in a viscous dielectric medium. For

example, if a wave with a certain wavenumber is considered for a specific application, one

can adjust the electrical load on the dielectric medium to make the wave speed independent of

the relaxation status of the medium or the material viscoelasticity. It thus provides an insight

in eliminating the material viscoelasticity effect on the wave propagation in a DE medium by

applying electrical loads.

With regard to the antisymmetric mode, the phase velocity of the waves decreases when

propagating in a more relaxed DE medium. It is interesting to note from Fig. 3.5c that when the

applied electric displacement increases to a certain value, for example d̂ = 2, the phase velocity

decays for the long waves until it reaches a vanishing value. The wavenumber corresponding

to the vanishing phase velocity can be perceived as a threshold of the wavenumber. For long

waves with wavenumber less than this threshold, the antisymmetric mode wave does not exhibit
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in the medium. This is due to the surface instability of the DE layer under the condition that

the pre-stretch ratio is fixed, which is also observed for the wave propagation in a purely elastic

medium (Shmuel et al., 2012). The reason behind this is that the applied electric displacement

induces tension reduction since the DE layer is clamped at its two ends without free elongation.

It is also found from Fig. 3.5c that for a more relaxed medium, the antisymmetric mode wave

spectrum becomes narrower due to the loss of the surface stability. As for the group velocity, it

is observed from Figs. 3.6a and 3.6b that it decreases with the more relaxation of the medium.

However, such a trend in the group velocity is reversed once the loss of the surface stability of

the medium occurs.

k̂ = 0.5

k̂ = 1.0

k̂ = k̂intP

k̂ = 2.0

k̂ = 3.0

(a)

k̂ = 0.5
k̂ = 1.0
k̂ = k̂int

P

k̂ = 2.0
k̂ = 3.0

(b)

Figure 3.7: Variation of normalized phase velocity of (a) symmetric and (b) antisymmetric modes with normal-

ized time when d̂ = 0, λ = 1.5, χ = 0.8, and K(0) = 0.7.

Since the DE layer is viscoelastic, the wave velocity varies with time due to the material

relaxation. Figs. 3.7a and 3.7b clearly show the variation of the normalized phase velocity ĉ

with the normalized time t̂ for both symmetric and antisymmetric modes. In this case study,

the applied electromechanical loads are fixed as d̂ = 0, λ = 1.5, the material viscoelasticity is

selected as χ = 0.8, and the wavenumber k̂ varies. As time passes, the phase velocity reaches

a constant value, which is corresponding to a steady state when the material is fully relaxed. It

is observed from Fig. 3.7a that for the symmetric mode, when the wavenumber is less than a

particular number, i.e., k̂ < k̂int
P , the phase velocity rises with the wavenumber. However, when
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Figure 3.8: Variation of (a) normalized phase velocity ĉ and (b) normalized group velocity V̂G with normalized

wavenumber k̂ for different material viscosity χ ( λ = 1.5, d̂ = 0, and K(t̂) = 0.9). The continuous and dashed

curves correspond to the symmetric mode and the antisymmetric mode, respectively.

(a)

λ d̂ K(t̂) χcr

1.5 0.5

0.70 0.504

0.75 0.441

0.08 0.373

0.85 0.302

0.90 0.231

(b)

λ K(t̂) d̂ χcr

1.5 0.7

0.0 0.638

0.5 0.504

1.0 0.359

1.5 0.357

2.0 0.356

(c)

K(t̂) d̂ λ χcr

0.9 0.0

1.25 0.308

1.50 0.328

1.75 0.395

2.00 0.462

2.25 0.526

Table 3.2: Effect of (a) material relaxation status K(t̂), (b) normalized electric displacement d̂, and (c) pre-stretch

λ, on the critical value of material viscosity χcr.
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k̂ > k̂int
P , the phase velocity descends with the wavenumber. Particularly when the wavenumber

k̂ = k̂int
P , the wave always propagates at a steady state with a constant phase velocity and the

material relaxation has no effect on the symmetric mode wave. As for the antisymmetric mode

demonstrated by Fig. 3.7b, all the velocity curves descend and reach a steady state when the

DE medium is fully relaxed. It is also found that the antisymmetric mode wave with larger

wave number, i.e., shorter wave, propagates faster.

In order to see the material viscosity effect on the wave propagation, Figs. 3.8a and 3.8b

illustrate the dispersion relation, i.e., the variation of the normalized phase and group veloci-

ties versus the normalized wavenumber at a particular relaxation state (K(t̂) = 0.9) for different

values of the material viscoelasticity χ when the electromechanical loads are fixed as λ = 1.5

and d̂ = 0. For the antisymmetric mode wave propagation, both the phase and group velocities

increase with the decreasing of χ. It means that the antisymmetric mode wave propagates faster

in a more viscous medium. However, for the symmetric mode wave, there is a transition point

for the wavenumber, i.e., the intersection points as observed in Figs. 3.5 and 3.6. The effect

of the material viscosity on the wave propagation varies depending on the wavenumber. It is

observed that the long waves propagate faster while the short waves propagate slower in the

more elastic medium (larger χ). For example, both the phase velocity and the group velocity

decrease with an increasing χ for the wave with the wavenumber greater than the transition

wave number, i.e., k̂ > k̂int
P and k̂ > k̂int

G , respectively. A reverse trend is observed for the

wave with the wavenumber less than this transition value. The existence of the transition point

for the wavenumber means that even for a viscoelastic medium, the wave with a particular

wavenumber is able to propagate through the medium without being influenced by the mate-

rial viscosity. It should be mentioned that the above mentioned conclusions on the viscosity

effect are only applicable when the material viscoelasticity indicator χ is greater than a certain

value. It is interesting to find when the DE is getting more viscous, i.e., when χ decreases to

reach a critical value χcr, both the symmetric mode and antisymmetric mode waves become

non-dispersive. Meanwhile, the velocity of the two modes reaches the same value. For the DE
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with material viscosity χ < χcr, relatively long waves (k̂ < k̂int
P ) propagate slower in the more

viscous medium. However, the material viscosity effect on the wave propagation of relatively

short waves (k̂ > k̂int
P ) becomes more complicated, while becomes negligible for the surface

waves as both the phase and group velocities converge to the same values for the case when

χ = χcr. It is thus concluded that the material viscosity has significant effect upon the wave

propagation in the medium. For certain viscoelastic medium, i.e., when the material viscosity

χ = χcr, the wave propagation even becomes non-dispersive. It is also found that this critical

material viscosity χcr depends on the relaxation status, the mechanical pre-stretch and the ap-

plied electric displacement as demonstrated in Table 3.2. Therefore, it is revealed that both the

mechanical and the electrical loads could modify the properties of DE medium, leading to the

alteration of the characteristics of Rayleigh-Lamb wave propagation.

Figs. 3.9a to 3.9c demonstrate the effect of electrical load on the dispersion relations

through the variation of the normalized phase velocity ĉ, the normalized wave frequency ω̂,

and the normalized group velocity V̂G with the wavenumber for a viscous DE layer when

K(t̂) = 0.9, χ = 0.8, and λ = 1.5. The solid and dashed curves represent the symmetric and

antisymmetric modes, respectively. With regard to the symmetric mode, the phase velocity in

the limit of long waves (k̂ → 0) increases monotonically with the applied electric displacement.

While a reverse trend is observed in the limit of short waves (k̂ → ∞), i.e., the surface wave ve-

locity decreases with the applied electrical load. This is caused by the reduction of the tension

induced by the applied electrical load since the DE layer is fixed at the ends to maintain the

pre-stretch. Interestingly, it is found that further increasing the electric displacement induces

further reduction of the tension in the DE layer until the surface waves decays to zero, which

is corresponding to the loss of surface stability. A similar phenomenon was also observed for

the wave propagation in a purely elastic medium (Shmuel et al., 2012). The value of the ap-

plied electric displacement associated with the vanishing phase velocity can be perceived as a

threshold d̂th at which the surface instability occurs. Such a threshold value depends on the pre-

stretch, the material viscoelasticity and the relaxation status of the medium. Numerical results
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Figure 3.9: Effect of electrical load on the wave dispersion (a) normalized phase velocity, (b) normalized wave

frequency, and (c) normalized group velocity for a pre-stretched viscous DE layer (K(t̂) = 0.9, χ = 0.8 and

λ = 1.5). The continuous and dashed curves correspond to the symmetric mode and the antisymmetric mode,

respectively.

Black: k̂ = 0.25

Red: k̂ = 2.00

(a)

Black: k̂ = 0.25

Red: k̂ = 2.00

(b)

Figure 3.10: Variation of (a) phase velocity and (b) group velocity with respect to pre-stretch ratio λ (d̂ = 0.5,

χ = 0.8, and K(t̂) = 0.9).



58 Chapter 3. Rayleigh-Lamb wave propagation in a finitely deformed DE layer

(a)

λ χ K(t̂) d̂th

1.25 0.6

0.7 2.091

0.8 2.033

0.9 1.985

1.0 1.947

1.5 0.8

0.7 2.216

0.8 2.196

0.9 2.185

1.0 2.181

(b)

λ K(t̂) χ d̂th

1.5 0.7

0.4 2.252

0.6 2.233

0.8 2.216

1.0 2.181

2.0 0.6

0.4 2.645

0.6 2.636

0.8 2.627

1.0 2.622

(c)

K(t̂) χ λ d̂th

0.9 0.6

1.25 1.985

1.50 2.188

1.75 2.377

2.00 2.583

0.8 0.8

1.25 1.972

1.50 2.196

1.75 2.399

2.00 2.605

Table 3.3: Effect of (a) material relaxation status K(t̂), (b) material viscosity χ, and (c) pre-stretch λ, on the

threshold of the electric displacement d̂th.
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Black: k̂ = 0.25

Red: k̂ = 2.00

(a)

Black: k̂ = 0.25

Red: k̂ = 2.00

(b)

Figure 3.11: Variation of (a) phase velocity and (b) group velocity with respect to electric displacement d̂ (λ = 2,

χ = 0.8, and K(t̂) = 0.9).

of this threshold value d̂th are listed in Table 3.3. A general trend is observed from Tables 3.3a

and 3.3b that d̂th decreases with the relaxation status K(t̂) while increases with the material vis-

coelasticity χ, which means that the material viscosity can hinder the loss of surface stability.

However, such an effect from the material viscosity attenuates with the increase of the pre-

stretch. Similar to the wave propagation in a purely elastic medium (Shmuel et al., 2012), it is

found from Table 3.3c that the threshold value d̂th increases monotonically with the pre-stretch

ratio λ, revealing a stabilizing effect of the pre-stretch. When the applied electric displacement

d̂ > d̂th, for example, d̂ = 2.5 in Fig. 3.9a, it is observed that the phase velocity vanishes at a

cut-off wavenumber denoted by k̂sym
cr , suggesting that there exists a critical wavelength, below

which no symmetric mode wave can propagate through the DE medium.

For the antisymmetric mode, the phase velocity decreases with the increasing of the

applied electric displacement d̂ as shown in Fig. 3.9a. It decays to zero at various cut-off

wavenumbers, below which there is no propagation of longer antisymmetric mode waves. Such

a wavenumber is denoted as k̂anti
cr , which increases with the applied electric displacement until it

reaches the threshold value d̂th, at which k̂anti
cr → ∞. It means when the applied electric displace-

ment d̂ > d̂th, there is no propagation of any antisymmetric mode waves in the DE medium. It

is the reason that there is only one symmetric mode for longer waves when the applied electric
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displacement d̂ = 2.5 as shown in Figs. 3.9a and 3.9b shows the dispersion relation through

the normalized wave frequencies versus the normalized wavenumber. For the antisymmetric

mode, the normalized frequency increases monotonically with the normalized wavenumber.

Considering the symmetric mode, one can find that when the applied electric field is low, a

monotonic rise in the frequency with the increase of the wave number k̂ is observed. However,

when the applied electric displacement d̂ is higher than a certain value, the normalized wave

frequency curve becomes non-monotonic. The non-monotonicity of the symmetric mode indi-

cates the possible existence of more than one wavenumber satisfying the dispersion relation. It

means that as the frequency rises up, it is possible to have a shorter and slower wave accom-

panying the propagation of the longer and faster wave. Considering antisymmetric mode of

group velocity in Fig. 3.9c, it is obvious that at k̂ = k̂anti
co , the group velocity becomes infinite,

i.e., V̂G → ∞.

Figs. 3.10 and 3.11, respectively, depict how the phase and group velocities are affected

by the applied electromechanical loads (by changing λ and d̂). As shown in Fig. 3.10, both

the phase and the group velocities increase monotonically with the pre-stretch ratio λ of the

DE layer for the waves with different wavenumber of k̂. On the other hand, the effect of the

electric displacement on the wave propagation speed is more complex as shown in Figs. 3.11a

and 3.11b. It may increase or decrease the propagation speed depending on the wavenumber

or the type of wave mode. The increase of the applied electric displacement induces more

tension reduction in the medium, leading to the loss of the surface stability as demonstrated by

the vanishing value of the phase velocity in Fig. 3.11a. Considering the antisymmetric mode,

the phase velocity decreases as the electric displacement d̂ increases as shown in Fig. 3.11a.

When the loss of surface stability of the DE layer occurs, only the antisymmetric mode wave

within certain wavelength can propagate. With regard to the group velocity in Fig. 3.11b, as

the electric displacement d̂ increases, it first decreases then rises up suddenly due to the loss

of surface stability. The value of this group velocity is physically meaningless since there is

no propagation of the wave with this particular wavenumber. On the other hand, regarding the



3.4. Conclusions 61

symmetric mode, for a long wave with small wave number (k̂ = 0.25 for example), both the

phase and the group velocities first increases with any increase in the applied electric displace-

ment d̂ and reaches a maximum value. Right after a certain electric displacement, the slope

of the curve becomes negative and the velocities gradually decrease by any rise of the electric

displacement d̂. However, for the short waves with large wave number (k̂ = 2 for example),

the applied electric displacement makes the wave propagate slower.

3.4 Conclusions

By studying the dispersion relations of a Rayleigh-Lamb wave propagating in a dielectric elas-

tomer (DE) layer, this work aims to provide an increased understanding of the electroelastic

dynamics subject, and uncover possible approaches to manipulate active waveguide applica-

tions of dielectric elastomers. Based on the finite-deformation viscoelasticity theory for di-

electric elastomers, the wave motion equations are formulated according to the framework of

small-amplitude wave propagation superposed on a finitely deformed DE layer. Simulation

results have demonstrated the effects of material viscoelasticity, mechanical pre-stretch and

applied electric load upon the wave dispersion relations for both the symmetric and antisym-

metric wave modes. It is revealed that waves with certain frequencies could be filtered by

the applied electrical load, suggesting that dielectric elastomers can be used as waveguides by

actively tuning the applied electrical load. It is interesting to notice that the material viscoelas-

ticity has no effect on the propagation of a symmetric mode wave with certain wavenumber,

which is contingent on the applied electrical load as well. This finding provides insights in

eliminating the material viscoelasticity effect on wave propagation by applying an electrical

load. To the best knowledge of the authors, it is the first time to find that the Rayleigh-Lamb

wave becomes non-dispersive in a DE medium with certain material viscoelasticity, and such

a material viscoelasticity depends on the applied electromechanical loads. It again concludes
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that both mechanical and electrical loads can change the wave propagation characteristics in

the DE medium. This work is expected to provide guidance for the DE waveguide applications,

particularly when the material viscoelasticity is involved.



Chapter 4

Contributions, Conclusions, and Future

Work

4.1 Thesis contributions and conclusions

As a family of smart materials, dielectric elastomers (DEs) have received growing interest

as alternatives to traditional piezoelectric ceramics in transduction technologies due to their

unique properties, particularly large deformation capability. Better exploitation of these novel

materials requires increased understanding on the fundamentals governing their delicate multi-

physics coupling mechanisms. Despite the development of theories for finite electroelasticity,

dynamic analysis on finitely deformed DEs is still very limited in the literature, mainly due to

the complexity of the problems coupling electromechanical dynamics and material viscoelas-

ticity. This thesis aims to tackle these challenges by developing rigorous modeling and simu-

lation approaches for characterizing the Rayleigh-Lamb wave propagation in DE media. We

expect that this research can contribute to provide a guideline for the design of active waveg-

uide applications of dielectric elastomers, and close such a knowledge gap to certain extend.

63



64 Chapter 4. Contributions, Conclusions, and FutureWork

The major contributions of the thesis include:

(1) It is the first time in the literature that the wave propagation in a dielectric medium is for-

mulated with the incorporation of material viscoelasticity, electromechanical coupling,

and finite deformation. Novel solution technique has been proposed to derive the disper-

sion relations for electroelastic waves.

(2) A comprehensive analysis has been conducted to identify what factors will affect the

wave propagation in the DE medium from theoretical perspective, suggesting possible

routes for actively manipulating DE waveguide. Some interesting findings are very use-

ful for waveguide applications of dielectric elastomers, which could provide increased

understanding on the electroelastic wave propagation in viscoelastic media.

Based on our modeling framework and simulation results, some concluding remarks of the

thesis are listed below:

(1) Based on the finite-deformation viscoelasticity model for dielectric elastomers, the small-

amplitude wave propagation in a finitely deformed DE medium is investigated through

the dispersion relations.

(2) It is revealed that waves with certain frequencies could be filtered by the applied electric

load, suggesting that dielectric elastomers can be used as waveguides by actively tuning

the applied electric load.

(3) It is found that the material viscosity has no effect on the propagation of symmetric

mode wave with certaub wavenumber, which could be adjusted by the applied electric

load. This finding provides an insight in eliminating the material viscoelasticity effect on

wave propagation by applying an electric load.

(4) To the best knowledge of the author, it is the first time to find that the Rayleigh-Lamb
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wave becomes non-dispersive in a DE medium with certain material viscoelasticity, and

such a material viscoelasticity depends on the applied electromechanical loads.

4.2 Suggestions for future work

The results of this work are expected to be helpful for predicting the performance of DE waveg-

uide devices and benefit their optimal design. However, this is a preliminary study to consider

the material viscosity of DEs for the problems of electroelastic wave propagation. The general

framework of this work can be adopted to study the problems of electroelastic wave propa-

gation through DE media with different configurations according to particular applications. It

should be noted that the challenge also comes from the complexity of the mathematical for-

mulation behind, which makes the problem very difficult to be solved. Thus, the following

suggestions are offered to be addressed in the future:

(1) For the current simple configuration of DE waveguide, the effects of electromechanical

loading routs should be further investigated. For example, the mechanical stretch could

vary during the wave propagation.

(2) In the current work it is assumed that the DE layer is a homogeneous medium. One

can also examine the problems of wave propagation through inhomogeneous DE media

or homogeneous DE media with different configurations, including periodic layered DE

medium, fiber-reinforced DE medium, and tubular DE for example. Further knowledge

from these studies will promote the development of DE-based metastructures for active

waveguide applications.

(3) The framework for wave propagation formulation in this thesis is limited to the small-

amplitude wave propagation. Hence the problems of finite-amplitude wave propagation

through viscous DE media are still remained unsolved, which could be a future direction.
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Mößinger, H., Haus, H., Kauer, M. and Schlaak, H. F. (2014), Tactile feedback to the palm

using arbitrarily shaped dea, in ‘Electroactive Polymer Actuators and Devices (EAPAD)

2014’, Vol. 9056, International Society for Optics and Photonics, p. 90563C.

Nam, S., Yun, S., Yoon, J. W., Park, S., Park, S. K., Mun, S., Park, B. and Kyung, K.-U. (2018),

‘A robust soft lens for tunable camera application using dielectric elastomer actuators’, Soft

robotics 5(6), 777–782.

Nguyen, N.-T., Ho, S.-S. and Low, C. L.-N. (2004), ‘A polymeric microgripper with integrated

thermal actuators’, Journal of Micromechanics and Microengineering 14(7), 969.



BIBLIOGRAPHY 79
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