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Abstract 

Seasonal algal blooms in drinking water sources have increased significantly over the 

recent past as a result of increased temperature and nutrient loading in surface water due to 

agricultural and surface runoff. More than 95% of algal cells can be removed by 

coagulation and flocculation processes. However, algal organic matter (AOM) is not 

removed well during coagulation, thus causes several operational challenges in drinking 

water treatment. This research was conducted to investigate the effectiveness of 

coagulation, granular activated carbon adsorption, and filtration processes on AOM 

removal and to evaluate disinfection by-products formation potential with/without UV 

irradiation.  

Initially, coagulation performance for the treatment of algae-laden raw water was 

investigated systematically by central composite design using response surface 

methodology. The main mechanism of algae and AOM removal was charge neutralization 

at an optimum pH of around 6.0. Thereafter, the optimum coagulation conditions using 

alum for AOM of six different algal and cyanobacterial species were determined. The AOM 

removal by coagulation correlated well with the hydrophobicity of the AOM solution. The 

disinfection by-product formation potential of the AOM due to chlorination was determined 

after coagulation. 

The efficiency and mechanism of AOM removal by granular activated carbon (GAC) 

adsorption were determined by batch adsorption experiments. The adsorption equilibrium 

data followed both Langmuir and Freundlich models. The adsorption process followed a 

pseudo-second-order kinetic model, and the calculated thermodynamic parameters 

indicated that GAC adsorption for AOM removal was spontaneous and endothermic in 

nature. 

The fouling behavior of the microfiltration membranes after GAC adsorption pre-treatment 

was investigated and the filtration resistance and AOM removal efficiency were determined. 

The GAC adsorption increased the removal of AOM, decreased membrane fouling, and 

identified intermediate blocking as the major fouling mechanism of the membrane. 
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The effects of combined low-pressure ultraviolet (LPUV) irradiation and chlorination on 

the disinfection byproducts (DBPs) formation from AOM was investigated for common 

algae existed in surface water, AOM degradation was likely promoted by photodegradation 

of aromatics, and chlorine oxidation/substitution. Insights obtained of this work will help in 

properly designing and operating the AOM removal and reducing DBPs formation during water 

treatment of algae-laden source water. 

Keywords: algae, algal organic matter, coagulation-flocculation, granular activated carbon, 

filtration, membrane fouling, chlorination, UV irradiation, disinfection by-products.    
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Summary for lay audience 

Algal blooms frequently occur in surface water, such as rivers, lakes, reservoirs as a result 

of climate change and frequent eutrophication, causing deterioration of water quality in 

drinking water supplies. There are multiple barriers, including coagulation, clarification, 

filtration and disinfection processes applied in drinking water treatment plants to remove 

pathogens, viruses, and other contaminants and make the treated water safe enough for 

potable use. Although algal cells are removed well (> 95%) during conventional processes 

of drinking water treatment, algal organic matter (AOM), as the metabolites of algae cells, 

is not removed well during coagulation. AOM causes several challenges in drinking water 

treatment such as increased coagulant demand, blocking the activated carbon adsorption 

sites, growth of biofilm causing membrane fouling, and increased formation of disinfection 

by-products (DBP) during chlorination.  

This research was conducted to investigate the effects of treatment including coagulation, 

granular activated carbon (GAC) adsorption, filtration processes for AOM removal and 

evaluation of disinfection by-products formation potential with/without UV irradiation for 

six different species of algae and cyanobacteria. The results indicated that an average of 

47.4% of AOM in terms of dissolved organic carbon (DOC) can be removed at the optimum 

coagulation-flocculation condition. The specific ultraviolet absorbance (SUVA) and 

hydrophobicity of AOM can be used as surrogate parameters to predict coagulation-

flocculation efficiency. GAC could remove AOM, mitigating the irreversible fouling of a 

microfiltration membrane. Commonly applied UV irradiation dose of 40 mJ/cm2 

insignificantly affects DBP formation, more attention should be given to evaluate the 

feasibility of enhanced UV irradiation dosage on the degradation of AOM from some algal 

species. The experimental results obtained in this research are useful for determining the 

optimal coagulation, GAC adsorption and microfiltration conditions to be adopted and to 

minimize the DBP formation in treated drinking water. 
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Chapter 1 

1 Introduction 

1.1 Background and motivations 

At present, about 1.1 billion people worldwide lack access to improved water supply, and 

about 2.4 billion people are under the risk of exposures to waterborne diseases such as 

typhoid fever, cholera, diarrhea etc. because of the inadequate sanitation facilities [1]. Over 

1.8 billion people will experience absolute water scarcity, and 2/3 of the world will be 

living under water-stressed conditions by 2025 [2]. The dire situation requires effective 

management of water resources, source water protection and development of cost-effective 

treatment technologies.  

1.2 Algal bloom and related water issues 

Surface water such as lakes, reservoirs, rivers, etc., are important drinking water sources 

worldwide that have experienced varying degrees of eutrophication in recent years [3-5]. 

Large-scale outbreaks of algal blooms due to eutrophication have caused severe 

deterioration of water quality in many places [6]. Algal blooms generally occur in the 

presence of high concentrations of nutrients, especially with warm, sunny, and calm 

hydraulic conditions. Harmful algal blooms (HABs) are proliferations of microscopic algae 

that potentially create health hazards to environment by producing toxins (i.e., microcystin) 

or bioactive compounds that accumulate in shellfish or fish, or through the accumulation 

of biomass of microcystis aeruginosa that subsequently affects the co-existing organisms 

and alters food chains in negative ways [7]. The outbreak of algal bloom leads to the death 

of aquatic organism and livestock as well as serious water quality deterioration.  

The presence of algae in water affects various water treatment processes such as 

coagulation, sedimentation, and filtration in drinking water treatment plants. Moreover, 

toxins produced by some cyanobacteria and decomposed algal matter cause odor problem 

[8], leading to serious deterioration of water quality. In addition, the outbreak of algal 
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bloom, or death of algae releases algal organic matter (AOM) in water, which are potential 

precursors of the disinfection by-products (DBPs) formed due to chlorination and 

chloramination. Occasionally, chemical pre-oxidation and enhanced coagulation are 

applied to remove algae. High dosage of pre-oxidants may lead to cell damage causing the 

release of intracellular substances including odors and toxins. Algal matter in water causes 

several problems such as: 1) the increase of coagulant dose, 2) filter clogging and 

shortening of the filter operation cycle, and increasing the difficulty of backwash, 3) 

increase the chlorine demand and formation of disinfection by-products, 4) produce 

odorous substances, toxicity and degrade water taste, 5) increase the risk of waterborne 

organism reproduction in the distribution system [9]. 

Algal blooms in recent past had caused several serious water supply crises in China. A 

water quality survey of 26 major lakes and reservoirs of China in 2011 indicated that the 

percentage of investigated water source with class I – III, IV – V and worse than class V 

(water quality decreases with increasing class) were 42.3%, 50% and 7.7%, respectively 

[10]. There are many species of algae present in surface water in China. Based on the 

analysis of water quality of 11 reservoirs in Fujian Province, it was reported that the 

dominant algal species were Chlorophyta (40.58%), Cyanophyta (22.91%), Bacillariophyta 

(21.61%), and Chrysophyta (6.91%) [11]. Lake Taihu, the third largest freshwater lake in 

China, a large shallow eutrophic lake, is dominated by Microcystis spp. In 2007, a severe 

cyanobacterial bloom took place in the Lake Taihu, the only drinking water supply in the 

city of Wuxi, China, leaving approximately two million residents without drinking water 

for over a week [12]. In 2013 and 2014, Wu et al. [13] investigated 51 main rivers in China 

to determine the effect of nutrient on algae biomass during summer and winter in inflows 

of Taihu basin, China. 

There has been growing concern over the cyanobacterial growth in North America and 

internationally, for the huge impact that excessive bloom and the carcinogenic algal toxins 

bring about. Massive algal blooms have been observed via satellite in the lower Great Lakes 

area since the mid-1990s [12]. In 2011, the western basin of Lake Erie had experienced the 

largest blooms since 2002 [14]. The bloom, extending over 5,000 km2, comprised 

essentially with toxic Microcystis led to closure of beaches and drinking water advisories 
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in both Canada and the US [15]. The 2013 bloom was reported as one of the worst on record 

as it was the first time a water treatment plant in Ohio was taken off-line because of the 

concentration of cyanotoxins exceeding the treatment capacity and limit [16]. In 2014, there 

was a closure of drinking water supplies in the city of Toledo due to cyanobacterial bloom, 

resulted over 400,000 residents with no access to water for several days. As a consequence, 

in late 2015, a new Drinking Water Protection act had been brought up which requires the 

USEPA to develop and submit a plan for evaluating and managing risks related to algal 

toxins in drinking water provided by public water facilities [17].  

1.3 South to north water diversion in China 

The City of Beijing and many smaller cities across northern China suffer from persistent 

water scarcity and deteriorated source water quality. In order to resolve the urgent water 

shortage, The Chinese central government developed the “South to North Water Diversion 

(SNWD)” project. The middle route of the SNWD project originates at the Danjiangkou 

reservoir and aims to deliver 30 million m3 of water to northern China every day. A portion 

of the diverted water will be stored in Miyun reservoir and used as a new water source for 

the City of Beijing. The total length of the main canal, which crosses the North China Plain, 

is approximately 1277 km, with an annual diversion capacity of 9.5 ×109 m3 water; about 

1.0 ×109 m3 of diversion alone is allocated to Beijing as the source water for water treatment 

plants (WTPs) [18]. With the SNWD project completed by 2014, two new water treatment 

plants have been built by Beijing Waterworks Group with additional water capacity of 

1,000 million liters per day. In addition, the existing water treatment plants must be 

upgraded in order to accommodate the change of water sources. 

Realizing the different characteristics of new water sources and the lack of engineering 

experiences in constructing and operating such large water infrastructure, concerns have 

been raised in terms of the uncertainty of water quality, as well as impact of the ecological 

conditions in the storage reservoirs and effectiveness of current water treatment practices. 

The methods for monitoring and forecasting were intensely studied to ensure water 

diversion capability [19]. It is noticed that due to runoff and rain water infiltration, water 

quality is negatively affected in many parts of the channel. In the water body of the SNWD 
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project, 31 types of phytoplanktons were detected in the winter; 15 detected species were 

diatom (48.39%), seven were blue algae, six were green algae, and one each of cryptophyta, 

dinoflagellate, and  chrysophyceae was present. Based on extensive monitoring data 

collected by the researchers and governmental agencies in China, various chemical and 

microbiological contaminants have been identified in some lakes and reservoirs. Among 

the most important are pathogenic protozoans (Giardia and Cryptosporidium), algal toxins, 

organic micropollutants and disinfection by-products resulting from chlorination. Multi-

barrier treatment approaches including physicochemical pre-treatment, activated carbon 

adsorption, membrane filtration and disinfection (e.g., UV + chlorine) are required to 

ensure a safe supply of drinking water [20-22]. These technologies are established for 

removal of natural organic matter derived from detritus plant and animal materials, limited 

knowledge and engineering experiences exist for algal matter treatment, requiring control 

laboratory studies to develop optimum treatment options. Generated results can be used for 

systematic integration and process optimization resulting in great savings in capital, 

operation, and maintenance costs due to the scale of water treatment infrastructure.  

1.4 Research objectives 

Based on the aforementioned summary of the technical challenges and as a part of Ontario 

China Research Initiative Fund (OCRIF) the main objectives of this research are to:  

(i) Evaluate and optimize the coagulation-flocculation process for algae and algal organic 

matter removal from algae-laden water; (ii) investigate the DBP formation potential during 

chlorination from different algae-laden water to determine the relationship between 

released AOM and DBP formation; (iii) assess the influence of granular activated carbon 

(GAC) adsorption for the AOM removal; (iv) investigate the feasibility of GAC adsorption 

to mitigate microfiltration (MF) membrane fouling due to various dissolved organic matter 

(DOM) derived from different algae; and (v) assess the influence of chlorine combined 

with UV dosage on DBP formation from algal matter. The different algae species chosen 

in this work are based on the water quality found in the SNWD project. 
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1.5 Thesis structure 

This thesis includes 8 chapters and follows the “Integrated-Article Format” as outlined in 

the UWO thesis regulations. Chapter 1 presents a general introduction of the research 

problem and specific research objectives. Chapter 2 gives a broad literature review of algae 

and algal organic matter related issues in the water environment and drinking water 

treatment plants. Following the literature review, Chapter 3 to Chapter 7 present five 

projects towards the evaluation of coagulation-flocculation, adsorption, filtration and 

disinfection processes to remove six species of algae and the derived AOM. The projects 

details are as follows. 

Chapter 3 describes the optimization and modeling of coagulation-flocculation to remove 

algae and organic matter from surface water by response surface methodology.  

Chapter 4 includes work aimed at the investigation of the AOM removal performance by 

coagulation and disinfection by-product formation potential of AOM derived from four 

different algal and two cyanobacterial species.  

Chapter 5 presents the isotherms, kinetics, and mechanism for the adsorption of dissolved 

organic matter onto GAC. The influences of GAC dosage, contact time, solution pH and 

temperature on the removal of DOM were investigated systematically  

Chapter 6 evaluates the feasibility of granular activated carbon adsorption of dissolved 

organic matter in mitigating microfiltration membrane fouling.  

Chapter 7 describes the impact of UV irradiation on disinfection by-product formation by 

post chlorination. The comparison of DBP formation was made between with and without 

UV irradiation of each DOM.  

Finally, a general discussion with conclusions outlining the significance, limitations and 

possible future directions of this research is presented in Chapter 8.  



6 

 

 

References 

[1]  M.W. Rosegrant, X. Cai, S.A. Cline, World water and food to 2025: dealing with 

scarcity, Intl Food Policy Res Inst2002. 

[2]  S.T. Magwaza, L.S. Magwaza, A.O. Odindo, A. Mditshwa, Hydroponic technology 

as decentralised system for domestic wastewater treatment and vegetable 

production in urban agriculture: A review, Science of the Total Environment 698 

(2020) 134154. 

[3]  X. Jin, Q. Xu, C. Huang, Current status and future tendency of lake eutrophication 

in China, Science in China Series C: Life Sciences 48 (2005) 948-954. 

[4]  Y. Xu, Q. Cai, L. Ye, S. Zhou, X. Han, Spring diatom blooming phases in a 

representative eutrophic bay of the Three-Gorges Reservoir, China, Journal of 

Freshwater Ecology 24 (2009) 191-198. 

[5]  X. Liu, X. Lu, Y. Chen, The effects of temperature and nutrient ratios on 

Microcystis blooms in Lake Taihu, China: an 11-year investigation, Harmful Algae 

10 (2011) 337-343. 

[6]  D.M. Anderson, P.M. Glibert, J.M. Burkholder, Harmful algal blooms and 

eutrophication: nutrient sources, composition, and consequences, Estuaries 25 

(2002) 704-726. 

[7]  J. Ramsdell, D. Anderson, P. Glibert, HARRNESS: harmful algal research and 

response: a national environmental science strategy 2005-2015, Ecological Society 

of America, Washington, DC (2005). 

[8]  D.R.U. Knappe, R.C. Belk, D.S. Birley, S.R. Gandy, N. Rastogi, A.H. Rike, Algae 

detection and removal strategies for drinking water treatment plants, (2004). 

[9]  J. Yang, X. Yu, L. Liu, W. Zhang, P. Guo, Algae community and trophic state of 

subtropical reservoirs in southeast Fujian, China, Environmental Science and 

Pollution Research 19 (2012) 1432-1442. 

[10]  China Environment Bulletin, Ministry of Environmental Protection of the People's 

Republic of China (2011). 

[11]  J. Yang, X.Q. Yu, L.M. Liu, W.J. Zhang, P.Y. Guo, Algae community and trophic 

state of subtropical reservoirs in southeast Fujian, China, Environmental Science 

and Pollution Research 19 (2012) 1432-1442. 



7 

 

 

[12]  R.H. Becker, M.I. Sultan, G.L. Boyer, M.R. Twiss, E. Konopko, Mapping 

cyanobacterial blooms in the Great Lakes using MODIS, Journal of Great Lakes 

Research 35 (2009) 447-453. 

[13]  P. Wu, B. Qin, G. Yu, J. Deng, J. Zhou, Effects of nutrient on algae biomass during 

summer and winter in inflow rivers of Taihu basin, China, Water Environment 

Research 88 (2016) 665-672. 

[14]  T.B. Bridgeman, J.D. Chaffin, J.E. Filbrun, A novel method for tracking western 

Lake Erie Microcystis blooms, 2002-2011, Journal of Great Lakes Research 39 

(2013) 83-89. 

[15]  A.M. Michalak, E.J. Anderson, D. Beletsky, S. Boland, N.S. Bosch, T.B. 

Bridgeman, J.D. Chaffin, K. Cho, R. Confesor, I. Daloglu, J.V. Depinto, M.A. 

Evans, G.L. Fahnenstiel, L. He, J.C. Ho, L. Jenkins, T.H. Johengen, K.C. Kuo, E. 

Laporte, X. Liu, M.R. McWilliams, M.R. Moore, D.J. Posselt, R.P. Richards, D. 

Scavia, A.L. Steiner, E. Verhamme, D.M. Wright, M.a. Zagorski, Record-setting 

algal bloom in Lake Erie caused by agricultural and meteorological trends 

consistent with expected future conditions., Proceedings of the National Academy 

of Sciences of the United States of America 110 (2013) 6448-6452. 

[16]  F.R. Pick, Blooming algae: a Canadian perspective on the rise of toxic 

cyanobacteria, Canadian Journal of Fisheries and Aquatic Sciences 73 (2016) 1-10. 

[17]  U.S. EPA, "Algal Toxin Risk Assessment and Management Strategic Plan for 

Drinking Water", Office of Water, Cincinnati., 2015. 

[18]  C. Liu, H. Zheng, South-to-north water transfer schemes for China, International 

Journal of Water Resources Development 18 (2002) 453-471. 

[19]  Z. Wang, D. Shao, H. Yang, S. Yang, Prediction of water quality in south to north 

water transfer project of China based on GA-optimized general regression neural 

network, Water Science & Technology: Water Supply 15 (2015) 150. 

[20]  Y.R. Hu, T.Y. Zhang, L. Jiang, Y. Luo, S.J. Yao, D. Zhang, K.F. Lin, C.Z. Cui, 

Occurrence and reduction of antibiotic resistance genes in conventional and 

advanced drinking water treatment processes, Science of the Total Environment 

669 (2019) 777-784. 

[21]  S.S. Marais, E.J. Ncube, T.A.M. Msagati, B.B. Mamba, T.T.I. Nkambule, 

Comparison of natural organic matter removal by ultrafiltration, granular activated 

carbon filtration and full scale conventional water treatment, Journal of 

environmental chemical engineering 6 (2018) 6282-6289. 



8 

 

 

[22]  S.Y. Zhang, S. Gitungo, L. Axe, J.E. Dyksen, R.F. Raczko, A pilot plant study using 

conventional and advanced water treatment processes: Evaluating removal 

efficiency of indicator compounds representative of pharmaceuticals and personal 

care products, Water Research 105 (2016) 85-96. 



9 

 

 

Chapter 2  

2 Literature Review 

2.1 Introduction 

Algae are a group of eukaryotic oxygenic photosynthetic microorganisms with organelles 

such as chloroplast and nucleus, existing in various habitats including freshwater, marine 

water, moist rocks and wet soils. Sunlight, carbon dioxide, water and nutrients like nitrogen 

and phosphorus are required for their sustenance and growth[1]. Algae are classified based 

on cell wall chemistry, morphology, chlorophyll and accessory pigments. Commonly found 

algal groups in aqueous systems include green algae, dinoflagellates, diatoms, euglenoids, 

brown algae, golden-brown algae and red algae [2]. While as the primary producers, algae 

play the most significant positive role in the aquatic food web, their presence in potable 

water sources causes many challenges. Of particular interest in this research project are the 

issues related to the presence of dissolved organic matter originated from algae, which are 

reviewed in this section.  

2.2 Algae and algal organic matter 

2.2.1 Algal species in drinking water source 

Water quality of lakes and reservoirs varies considerablely in the world; however, algal 

species present in an aquatic system vary in a small range. For example, diatoms thrive in 

cold water, whereas green and blue-green algae are dominant in warm, shallow and 

nutrition-rich water bodies [3]. 

Commonly found algae and cyanobacteria in drinking water sources (Table 2.1) include 

blue-green algae (Cyanophyceae), green algae (Chlorophyceae), euglenoids 

(Euglenophyceae), dinoflagellates (Dinophyceae), cryptomonads (Cryptophyceae), 

yellow-green algae (Xanthophyceae), golden algae (Chrysophyceae) and diatoms 

(Bacillariophy) [4].  
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Table 2.1 List of common algae observed in drinking water sources [3, 4] 

Algae species Characteristics Growth Condition Typical genera 

Blue-green algae 

(Cyanobacteria) 

Contains phycocyanin, allophycocyanin and 

chlorophyll a, gives blue, blue-green color. Produce 

cyanotoxins, perform oxygenic photosynthesis 

Warm, eutrophic 

water, above 25 ◦C 

Anabaena, Aphanizomenon, 

Microcystis and Oscillatoria 

Green algae Contains chlorophyll a and b, green color. Some 

genera are associated with unpleasant taste and odor 

and filter clogging problems  

Summer Ankistrodesmus, 

Chlamydomonas, Chlorella, 

Scenedesmus 

Euglenoids Contains chlorophyll a and b, green color, capable of 

photosynthesis 

Summer  

Dinoflagellates Capable of photosynthesis and feeding on bacteria, 

small planktonic algae. Brownish color, some genera 

are associated with unpleasant taste and odor 

problems, 90% of them live in ocean. 

Summer and fall Ceratium, Peridinium 

Cryptomonads Contains chlorophyll a and c2, and pigments masking 

the color of chlorophyll. May appear blue, blue-green, 

reddish, yellow-brown, olive-green. Light sensitive 

and prefer nutrient-enriched water. 

Temperate climate 

throughout winter 

Cryptomonas, Chroomonas, 

Rhodomonas 



11 

 

 

Yellow green Algae Rarely present in large quantities. Contains 

chlorophyll a β-carotene, and many pigments, appears 

yellow-green, bright green 

Low temperature Tribonema 

Golden algae Commonly associated with unpleasant taste and odor. Summer  Synura, Dinobryon 

Diatom Commonly associated with unpleasant taste, odor and 

filter clogging. Appear in brown color. Siliceous cell 

wall consists of polymerized silicic acid. Perform 

oxygenic photosynthesis at water temperature of 5◦C 

Spring 

Oligotrophic waters, 

optimum temperature 

at 10-20 ◦C 

Asterionella, Cyclotella, 

Tabellaria, Fragilaria 

Melosira 
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2.2.2 AOM concentration with cultivation time 

Algal organic matter (AOM) is released into water duo to metabolic excretion and autolysis 

of algal cells [5]. AOM is categorized as extracellular organic matter (EOM) [6], excreted 

to surrounding environment by living algae cells [7] and intracellular organic matter (IOM), 

released due to natural rupture of cells in the declining growth phase. IOM can be 

deliberately released during pre-oxidation [8, 9] (in treatment plants), grinding [10, 11] or 

a freezing-thawing sequence [6, 12, 13].  

Generally, the growth of algae and bacteria is a complex process with numerous catabolic 

and anabolic reactions resulting in cell division [14]. Therefore, the both extracellular and 

intracellular organic matter  vary significantly with the algal species and can range from a 

few mg/L to around 100 mg/L [15]. AOM production increased with cultivation time for 

all the algae investigated [15-17]. 

A typical microbial growth curve is divided into four main phases, namely lag, exponential, 

stationary, and decline phase. Since most algal cells present good integrity in the early stage 

when the cells are young and medium is fresh, AOM in the medium is mainly due to EOM, 

with only little IOM released at that time [16]. The EOM release rate is much higher in the 

exponential phase than that in the stationary phase [17, 18]. Dissolved organic matter 

contents produced from AOM extraction, nevertheless, is much higher in the stationary 

stage than that in exponential stage [16, 17, 19-21]. The occurrence of cell autolysis and 

rupture under poor nutrient conditions lead to IOM releasing into culture media with a 

marked increase in AOM during the decline phase [15, 19]. The IOM content seems to be 

much higher than that of EOM in many cases, e.g., the dissolved organic carbon (DOC) of 

IOM from M. aeruginosa in the exponential phase is three to six times [22]] higher than 

the DOC from EOM. Therefore, it is vital to avoid the algal cells breaking and subsequent 

release of AOM [23], which affects the effectiveness of water treatment processes [20, 24, 

25]. With increasing eutrophication of aquatic environments, organic matter (OM) 

originating from algal cells is a significant fraction (up to 50%) of natural organic matter 

(NOM) in surface waters [26, 27].  
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2.2.3 Characterization of algal organic matter 

The AOM is comprised of various compounds such as polysaccharides, oligosaccharides, 

proteins, peptides, amino acids, traceable organic acid;  exact composition varies with algae 

species [15]. There are many investigations presenting approximate chemical compositions 

of different algae. Becker et al. presented a general overview of major constituents of 

different algae species [28]. Composition of some commonly found species is provided in 

Table 2.2. 

Table 2.2 Composition of different algal matter (% of dry matter). 

Alga Carbohydrates Protein Lipids References 

Anabaena cylindrical 25 – 30 43 - 56 4 - 7 [29] 

Aphanizomenon flos-aquae 23 62 3 [28] 

Arthrospira maxima 13 – 16 60 - 71 6 - 7 [28] 

Aulacoseira granulata f. 

curvata 
36.3 47.9 15.8 

[30] 

Chlamydomonas rheinhardii 17 48 21 [28] 

Chlorella pyrenoidosa 24-28 54-60 11-12 [30, 31] 

Chlorella vulgaris 12 – 17 51 - 58 14-24 [28, 32] 

Euglena gracilis 14 – 18 39 - 61 14 - 20 [29] 

Merismopedia sp. 35-57 29 - 45 NA [33] 

Microcystis aeruginosa 4.0 - 10.1 37 - 52 NA [34] 

Oscillatoria sp. 42 – 52 41 - 48 5 - 8 [29] 

Phaedactylum. Tricornutum 11.2-26.1 36.4-53.2 18.0-32.6 [35, 36] 

Porphyridium cruentum 40 – 57 28 - 39 9 - 14 [28] 

Scenedesmus obliquus 10 – 27 50 - 65 7 - 14 [28, 30] 

Scenedesmus quadricauda 3.7-24.8 4.4-9.5 6.9-10.6 [37] 

Spirogyra sp. 33 – 64 6 - 20 11 - 21 [28] 

Spirulina platensis 8 – 14 46 - 63 4 - 9 [28] 

Syenchocaccus sp. 15 63 11 [28] 
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When comparing to NOM, AOM appears to contain more organic nitrogen and hydrophilic 

content, less aromatic carbon content and much lower specific ultraviolet absorbance 

(SUVA < 2 L/mg/m) [26]. It was reported that both EOM and IOM are hydrophilic with 

low SUVA. Compared to EOM, IOM is richer in proteins or peptides, more hydrophilic 

with lower SUVA value. Molecular weight  fractionation showed that both EOM and IOM 

of cyanobacteria, green algae and diatom contain large portions of low-MW (below 1 k Da) 

compounds and some high-MW (over 100 k Da) polysaccharides [20]. IOM has a higher 

portion of total organic nitrogen, it also contains higher fraction of amino acids but lower 

fraction of aliphatic amines than EOM [6]. 

To further characterize the composition of algal organic matter, several methods have been 

reported in the literature, including UV-visible absorbance, fluorescence/HPLC [6], 

excitation emission matrix (EEM) [38], Fourier transform infrared spectrophotometry 

(FTIR) [39], H-NMR spectroscopy [40]. Currently, the most commonly used methods for 

the physiochemical characterization of AOM are: (1) DOC and dissolved organic nitrogen 

(DON) analysis, (2) spectrophotometry such as ultraviolet (UV) absorbance and 

fluorescence-excitation emission matrix (EEM), (3) hydrophobicity analysis by resin 

fractionation, (4) molecular weight distribution by high performance size exclusion 

chromatography (HPSEC). The summary of physicochemical properties of AOM is shown 

in Table 2.3. 
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Table 2.3 Physicochemical properties of AOM for various algal species at stationary growth phase. 

Algal species AOM DOC  

(mg/L) 

SUVA 

(L/mg m) 

HPI  

(%) 

EEM* 

(%) 

MW References 

Green algae        

Scenedesmus 

subspicatus 

EOM  1.18 54   [41] 

 EOM 14.3      

 IOM 19.7      

Chlorella vulgarus EOM 27 ± 9.7 0.54 60 SMP, AP, HA, and FA < 1 kDa:30% 

>30 kDa: 62% 

[16] 

        

Chlorella sp. EOM  1.34  HA, and FA  [10] 

 IOM  0.78  Aromatic, aliphatic protein-like  

Chlorella sp. IOM    AP:65, SMP:23, 

HA:3, FA:9 

< 1 kDa: 19% 

>30 kDa: 44% 

[42] 

Chlamydomonas 

geitleri 

EOM 21 0.6 ± 0.2 73   [20] 

 IOM 33 0.3 ± 0.1 89    

Blue-green algae        
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Microcystis 

aeruginosa 

EOM  1.22  HA and SMP  [43] 

 IOM  0.83  HA and SMP  

 EOM 18.0±2.3 0.48 57 SMP, AP < 1 kDa:38% 

>30 kDa: 55% 

[16] 

 EOM 70 0.7 ± 0.3 69   [20] 

 IOM 63 0.4 ± 0.2 87   

 EOM 18.4±0.4 1.01±0.03 51 HA, protein-like < 1 kDa: 24% 

>30 kDa: 53% 

[44] 

 EOM 67.1     [15] 

 IOM 32.1     

 EOM 11 0.11 61   [19] 

 EOM 11 2.66    [45] 

 IOM  1.09    

 IOM    AP:33, SMP:14.5, 

HA:22.5, FA:30 

< 1 kDa: 24% 

>30 kDa: 35% 

[42] 

 EOM 27.6 0.88 41 SMP, AP < 1 kDa:25% 

>30 kDa: 6% 

[46] 

 IOM 16.7 1.79 26.8 HA-like, FA-like substances a < 1 kDa:25% 

>30 kDa: 61% 
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Diatom        

Aulacoseira 

granulata f. curvata 

EOM 3.6±1 0.58 64 SMP, AP < 1 kDa:30% 

>30 kDa: 53% 

[16] 

Fragilaria 

crotonensis 

EOM 48 0.7 ± 0.3 74   [20] 

 IOM 53 0.4 ± 0.1 90    

Note: * DOC: dissolved organic matter; SUVA: specific ultraviolet absorbance; HPI: hydrophilic; EEM: Excitation-emission matrix 

fluorescence, AP: aromatic protein-like; SMP: soluble microbial product-like materials; HA: humic-like; FA: fulvic-like. 
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2.2.3.1 Total organic carbon (TOC) / dissolved organic carbon (DOC) 

Water quality parameters such as TOC and DOC are commonly applied in water treatment 

processes. The TOC is the sum of the dissolved and particulate organic carbon, of which 

the inorganic carbon is removed via acidification. The organic carbon in water after filtered 

through a 0.45 μm membrane filter is defined as DOC [47]. The produced CO2 is measured 

by non-dispersive infrared absorption (NDIR) after passing through a scrubber tube to 

remove interferences [48]. 

2.2.3.2 UV absorbance 

UV-Vis spectroscopy plays an important role in analysing water chemistry [49]. The 

wavelengths between 220 to 280 nm are used as the most appropriate for NOM analysis, 

the absorbance at 254 nm is due to the aromatic groups of DOM [47]. SUVA is defined as 

the UV absorbance of a water sample at 254 nm normalized with the DOC concentration. 

It is calculated by dividing the UV absorbance (in cm-1) at 254 nm by the DOC of the 

sample (in mg/L) and then expressed in unit of L/mg-m [50]. It has been widely used to 

evaluate the aromaticity or hydrophobic/hydrophilicity (HPO/HPI) properties of aqueous 

solution [47]. Absorbance of aromatic and humic substances at 254 nm is higher than 

aliphatic and non-humic substances[51]. Therefore, it represents the quantitative fraction 

of aromatic and humic content of aqueous system [52]. It can be seen in Table 2.3 that both 

EOM and IOM exhibit lower SUVA values (less than 2 mg/L-m) than that typically 

obtained for NOM [53], which may be due to more hydrophilic fraction compared to 

aromatic contents in AOM as compared to NOM [9, 26, 52]. 

2.2.3.3 Fluorescence spectroscopy 

Fluorescence spectroscopy has been gaining attention in the water industry due to its highly 

sensitive and selective on-line water quality monitoring [54]. The specific excitation and 

emission wavelengths are the characteristics of molecular conformation, known as 

fluorophore. These fluorophores can be used to describe the structural compositions of the 

humic substances [47]. There are two major fluorescence peaks in a typical raw water 

including humic-like and protein-like fluorescence [55, 56] or three peaks described as 

humic-like, fulvic-like and tryptophan-like fluorophores [57, 58]. An online fluorescence 
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probe was applied to detect cyanobacterial and algal cell by 3D-fluorescent excitation–

emission matrix (3D-EEMs) spectroscopy. The fluorescence of amino acid-like substance 

at λex/em = 290/345 nm dominated the AOM derived from C. vulgaris, λex/em = 355/475 

nm dominated the spectra for M. aeruginosa, which has been associated with NOM 

previously. Significant correlations were also observed between the fluorescence signatures 

and DOC. This pigment fluorescence method presented an opportunity to obtain detail 

information on the AOM property and its treatability [59]. A summary of fluorescence 

property of selected AOM is given in Table 2.3..  

2.2.3.4 Resin fractionation 

The most common approach for isolation of hydrophobic and hydrophilic organic matter 

from aqueous solution is using selective adsorption processes by polymeric resins. Non-

ionic macroporous sorbents composed of acrylic esters (XAD-8 or DAX-8) or styrene 

divinylbenzene (XAD-4) are commonly used. DAX-8 and XAD-4 resin were used to 

adsorb the hydrophobic (HPO) and transphilic (TPI) portion fractions of NOM, 

respectively, the compounds that remained in the solution were collected as the hydrophilic 

(HPI) portion [60]. 

2.2.3.5 High performance size exclusion chromatography (HPSEC) 

HPSEC is a powerful technique which has been widely used to characterize both 

quantitative and qualitative properties and MW variation of DOM in various water sources 

[61-63]. All types of organic carbon in water sample, including aliphatic and aromatic 

components can be measured by HPSEC coupled organic carbon (OCD) and/or UV 

detector (UVD) systems [61, 62, 64]. The measurement of molecular size and molecular 

weight profile derived from HPSEC combined with peak-fitting prediction can be used to 

model and predict the treatment unit performance for both NOM and AOM removal after 

coagulation and filtration [20, 62, 63, 65]. 

2.3 Drinking water treatment processes 

In surface water, colloids and suspended particles, including organic content (humic and 

fulvic acids) and inorganic minerals, bacteria, virus, and algae, can contribute to turbidity, 
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color, odors and tastes in the surface waters. As shown in Figure 2.1, the size of particulates 

that can be removed by coagulation ranges from 0.001 μm to 10 μm. Humic acid, viruses, , 

bacteria and some species of algae and a portion of their metabolites have particle size 

within this range [66], and can be removed with colloids. 

 

Figure 2.1 Particle size distribution in aqueous system. (Redrawn from [66, 67]). 

Modern water treatment processes provide multiple barriers to produce potable water, 

including pre-oxidation, coagulation/flocculation, sedimentation and disinfection as shown 

in Figure 2.2.  

Coagulation
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Sand filtration
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Figure 2.2 Overview of drinking water treatment. (Redrawn from [68]) 
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Raw water is passed through a coarse filter, which removes large floating objects or 

suspended solids, such as plastic bags, leaves, etc., without removing dissolved organics, 

algae/cyanobacteria and their metabolites [68]. 

An optional pre-oxidation by chlorine, ozone or permanganate and ferrate aims to promote 

the efficiency of downstream treatment, such as coagulation; however, pre-oxidation 

processes damage the membrane of algae and cyanobacteria causing cell lysis and the 

release of algal toxins or IOM [69]. The effect of pre-oxidation by permanganate and ozone 

on coagulation by aluminum sulphate to remove Microcystis aeruginosa in aqueous 

solution was previously investigated by Xie et al., in which the results indicted that pre-

oxidation improved cell removal during coagulation; however, more nitrogenous and 

lower-MW substance were produced because of the destroyed cell walls and membrane 

after pre-oxidation. The organic matter adsorbed on the cells’ surface can be released after 

pre-oxidation with permanganate even without causing cell lysis [70]. Another study 

reported that permanganate pre-oxidation resulted with the release of EOM from cells of 

Chlorella sp.. [71]. However, pre-oxidation is becoming necessary in many drinking water 

facilities that are affected by invasive species such as zebra-mussel and zooplanktons, 

which affect the downstream equipment like membranes [68]. 

2.3.1 Coagulation & flocculation 

Coagulation and flocculation shown in Figure 2.2 are the essential and most commonly 

used processes for both particulates and organic matter removal in treatment plants [72]. 

Full or partial removal of suspended particles and colloids, dissolved organic and/or 

inorganic matter, microorganisms such as bacteria, algae or viruses, can occur due to 

coagulation. Coagulants that are used in water treatment include inorganic salts (e.g., iron 

and aluminum), inorganic polymers (e.g., ploymeric aluminum chloride) and organic 

polymers with high MW and long chains. The addition of iron or aluminum salts as 

coagulants is to neutralize negatively charged colloids and suspended particles to prevent 

electrostatic repulsion between them and facilitating microflocs formation. Thereafter, the 

formed microflocs tend to agglomerate and form bigger particles, which are removed by 

sedimentation. In the flocculation process, various types of polyelectrolyte may also be 

added as coagulant aids or flocculants, which might be beneficial in turbidity removal in 
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conjunction with metal coagulants, but may have less significance in disinfection by-

products (DBP) precursor removal because of the ineffectiveness in removal of dissolved 

organic matter (DOC) [73]. 

2.3.1.1 Factors affecting coagulation and flocculation 

There are various parameters that affect the coagulation performance, including coagulant 

type, dose, water properties and coagulation condition, a summary of these influences are 

tabulated in Table 2.4. 

Table 2.4 Factors affecting coagulation and flocculation [74, 75]. 

Coagulant applications Raw water properties Coagulation condition 

Coagulants type (metallic 

salts and polymers) 

Coagulants dosage 

Coagulants aids 

pH, alkalinity 

Turbidity, 

Ionic intensity 

Total dissolved carbon 

Organic matter composition 

Temperature 

Rapid Mixing speed and time 

Slow Mixing speed and time 

Settling time 

The two widely used coagulants are metal salts and polymers, and the most common 

metallic coagulants in drinking water treatment are aluminum sulfate and ferric chloride 

[76]. The selection of a specific coagulant depends on various factors including the required 

removal, cost, availability, storage, application and safety. The most important factor 

influencing the effectiveness of metal-based coagulants is pH [77]. Theoretically, at a 

optimum pH, the solubility of hydrolysed alum product is minimal and major faction of 

coagulant is converted to solid floc particles [78]. Negatively charged aluminum species 

are generated when pH is increased above the optimal value, and the positively-charged 

dissolved aluminum species are formed at a lower pH [79]. For the pH value of less than 3 

or higher than 11, the destabilization potential is significantly decreased, the formed micro-

flocs will not be able to aggregate into large flocs resulting in poor coagulation efficiency 

[80].  

Generally, the dosage of coagulant applied depends on the content of suspended solids or 

content of water. However, the maximum treatment efficiency exists at an optimum dosage, 
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and decreases once coagulant is overdosed [81]. The reversely charged colloidal particles 

caused by the coagulant overdose results in colloids re-stabilization, consequently, 

decreasing the coagulation efficiency [82]. 

To meet the requirements of Disinfectants and Disinfection By-products Rule (DBPR), an 

enhanced coagulation was proposed by United States Environment Protection Agency 

(USEPA) [83] to minimize DBP formation by greater removal of NOM by changing 

coagulant type, dosage and pH to improve the total organic matter removal. The commonly 

applied alum dosage ranges from 5-150 mg/L for enhanced coagulation [84, 85]. Due to 

the health concern about aluminum, ferric chloride is used as an alternative coagulant, 

especially for water bodies with low turbidity, high dissolved matter and a moderate pH 

[86]. Polyelectrolytes can be used as an effective coagulation aids with relatively low 

dosage ranging from 1.5-10 mg/L for better coagulation.  

2.3.1.2 Theory of coagulation 

Coagulants are used to destabilize the charged colloids and suspended particles in aqueous 

solution. Based on the classical theory, four mechanisms of coagulation include the double 

layer compression, charge neutralization, adsorption and inter-particle bridging and 

enmeshment in precipitate, as shown in Figure 2.3 [86, 87]. 
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Figure 2.3 Mechanisms of coagulation-flocculation: (a) Double layer compression, 

(b) Charge neutralization, (c) Interparticle bridging, (d) Sweep coagulation. 

(Redrawn from [26, 88]) 
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The negatively charged colloid particles attract ions of opposite charge to form a dense 

layer adjacent to the particle and is known as stern layer. The diffuse layer is formed as the 

result of dynamic equilibrium between excess positive ion attracted by the negatively 

charged core colloids and repulsion force from stern layer. These two layers in the 

interfacial region of colloid particles are known as the double layer[88]. Once a coagulant 

(positively charged) is added into a colloidal system, the double layer will be compressed 

because of electrostatic attraction between the ions and colloids. Even though double layer 

compression does not dominate the colloid destabilization process in water treatment, it is 

a critical destabilization mechanism in natural aquatic systems, such as the formation of 

delta in estuaries [86]. 

In the charge neutralization mechanism, the destabilization of colloidal particles occurs by 

neutralization through electrostatic interaction of the coagulant with counter-ions. Inter-

particle bridging destabilization occurs when polyelectrolytes with highly active surface 

and linear or branched structure are used as the coagulation aid to facilitate the aggregation 

of micro-floc during flocculation process. The polymer adsorbs on colloidal particle and 

then extends the linear or branched chain to attach other particles, consequently, forming 

an inter-particle bridge. The formation of hydroxide precipitate occurs at higher 

coagulation dosages. The insoluble, amorphous precipitates entrap or enmesh colloids and 

the method is known as sweep coagulation or enmeshment[88]. 

2.3.1.3 AOM removal by coagulation 

Aluminum salts, especially alum, are the most widespread used coagulants to remove 

turbidity, colour caused by NOM in all surface water and many groundwater [89]. With the 

negatively charged surface, algal cells are well removed (> 95%) during coagulation and 

flocculation processes in drinking water treatment [90-92]. The AOM, including both EOM 

and IOM originated from algal cell, is a significant fraction of NOM in algae-laden water 

body. AOM is not removed well by coagulation [5] and cause serious impacts on water 

treatment performance, including higher coagulant demand, fouling of the membrane, 

clogging of the adsorption sites of activated carbon, and formation of DBPs [5, 26, 43, 67, 

93]. In contrast with algal cell removal, the investigation on AOM removal by coagulation 

is limited; literature available on AOM removal is summarized in Table 2.5. 
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The performance of aluminum and ferric coagulants for AOM-laden water was found to be 

comparable, although optimum pH range of coagulation by aluminum was higher than that 

of ferric coagulant [94]. The removal performance for both algal cell and AOM was mainly 

dependent on the pH and coagulant dosage, because of the presence of excessive negative 

charge on AOM [26]. The electrostatic interactions on coagulation are determined by the 

ratio of positive and negative charge in aqueous solution. A strong stoichiometric 

relationship between algal cell surface area and alum dosage was indicated and higher alum 

dosage was required as a result of coexistence of EOM and cells [95]. The removal of 

dissolved organic matter (DOM) in algae-laden surface water was investigated using poly-

aluminum chloride as the coagulant. The aromatic-like substances with small portion of 

NOM was removed with algae due to coagulation based on the analysis of DOC, SUVA, 

and fluorescence excitation-emission (EEM) matrix spectroscopy, while the fulvic-like and 

tryptophon-like substances were not removed [96]. 

Guo et al. [57] reported a removal of 38.7% and 51.4% in terms of DOC and UV254, 

respectively from the IOM of Microcystic aeruginosa obtained by enhanced coagulation at 

an alum dose of 5 mg/L as Al. The maximum removal of 42.3% and 61.5% was achieved 

at pH 6.5 for DOC and UV254, respectively. A comparison with DOC, the higher UV254 

removal indicated the superiority of alum to remove the aromatic substances present in 

IOM of Microcystic aeruginosa. Another research was carried out to investigate the 

coagulation performance to remove IOM derived from Microcystis aeruginosa spiked in 

raw water  [97]. The results indicated that the removal efficiency was dependent on pH, 

type of coagulant and its dosage. The IOM removal efficiency was 46% for ferric sulphate 

and 41% for aluminum sulphate. The polysaccharides and proteins in IOM were mainly 

removed with a higher efficiency than other components.  

EOM can form complexes with coagulants significantly increases the coagulants demand 

and reduces the coagulation efficiency [98-100], however, it was also reported that algal 

EOM can improve the treatment efficiency acting as a flocculation aid [101]. Another 

contradictory results was also reported that hydrophobic (HPO) fractions of IOM derived 

from Microcystis aeruginosa were more than that of EOM [34], while algal IOM was also 

reported to be mostly hydrophilic resultant with low removal performance during 
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coagulation [23]. Those contradictory results indicate that the effects of AOM on 

coagulation are algae species dependence [102] and also vary with algal growth stage and 

the distribution of HPI and HPO fraction of AOM [103].  
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Table 2.5 Studies on the removal of AOM by coagulation. 

Water source and 

characteristics 

 Main reaction condition Key results References 

Synthetic solutions 

including bovine serum 

albumin, 

peptides/proteins of 

M. aeruginosa and peat 

humic substance 

DOC: 8-13 mg/L 

Al2(SO4)3 dosage of 0.2-10 

mg/L,  

Reaction time: around 15 min 

mixing shear 

rates: 50-200 s-1. 

▪ Up to 83% and 65% removals of DOC and HS was 

achieved under the optimum coagulant dose of 1.6 

mg Al /L, and pH 5.5-6.2. 

▪ The algal peptides/proteins positively impacted the 

overall removal efficiency of humic substance 

reducing the coagulant for Al-based coagulation 

process. 

[104] 

Algal turbid water with 

the turbidity of 20 NTU, 

pH: 8.7 

Zeta potential: -19.7 mV  

FeCl3 dosage of 0.03-0.2 

mmol/L, pH: 5-9 

Stirring rate: 40-200 rpm, 40 

min; 

▪ Around 97% of turbidity removal efficiency was 

obtained under the optimal FeCl3 dosage of 15 

mg/L. 

[105] 

IOM solution of M. 

aeruginosa prepared with 

suspended Kaolin with 

DOC of 8.4 mg/L, UV254 

of 0.09 cm-1, pH with 

Al2(SO4)3 dosage of 0.2-10 

mg/L,  

200 rpm for 2 min then by 40 

rpm for 15 min followed by 30 

min sedimentation 

▪ The removal efficiency of IOM increased with 

higher alum doses, the maximum removal was 

99.7%, 51.4%, and 38.7% for OD680, UV254, DOC, 

respectively, by alum at 5 mg/L. The maximum 

removal of 61.5% for UV254, 42.3% for DOC was 

achieved at pH 6.5.  

[57] 
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7.0 and turbidity of 30 

NTU. 

▪ The higher UV254 removal than that of DOC implied 

the superiority of alum to remove the aromatic IOM 

species.  

▪ The complexes formed by Al ions and proteins 

improved the removal efficiency. High MW fraction 

of IOM presented higher removal in terms of DOC 

and UV254, and the sweep flocculation was the major 

mechanism 

EOM solution of M. 

aeruginosa harvested at 

the stationary growth 

phase, DOC = 3.2 mg/L 

Polymeric aluminum with 

dosage of 0.4 mg Al / mg 

DOC, with / without MnO2-

aided 

▪ high-MW fraction, and hydrophobic fraction of 

EOM was preferentially removed. 

▪ Addition of permanganate improved EOM removal 

due to bridging of small flocs formed by metal 

bonding functional groups of EOM 

[106] 

AOM-surface water 

mixed solution (DOC 

ratio of 1:1) with DOC of 

3 mg/L  

Titanium sulfate with dosage 

5-35 mg/L 

▪ Maximum UV254 removal (60 %) was obtained for 

IOM of M. aeruginosa, which is higher than that of 

EOM (30%) at dosage of 15 mg/L 

▪ The high-MW portion of IOM improved the 

coagulation by bridging flocculants 

[72] 
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2.3.2 Granular activated carbon adsorption  

Adsorption is a commonly used treatment process that can remove trace impurities, such 

as pesticide, cyanotoxins, etc. from water. Owing to the high porosity and large specific 

surface area (Table 2.6), activated carbon provides abundant adsorption sites for removing 

impurities [107]. Granular activated carbon (GAC) adsorption is one of the most widely 

employed technologies for the removal of DOM, turbidity, micropollutants, and DBP [108-

110]. With proper design and maintenance, a GAC adsorption unit can be operated cost-

effectively for several years to remove trace organic pollutants and NOM from industrial 

and municipal waters [111, 112]. Adsorption of DOM onto activated carbon is influenced 

by a number of physicochemical properties of both adsorbent and adsorbate, as well as 

solution properties such as initial DOM concentration, ionic strength, pH, molecular size 

distribution of DOM, and water temperature [113, 114]. A summary of influencing factors 

is presented below.   

2.3.2.1 Effect of types of GAC 

The characteristics of GAC such as particle size, surface area, pore volume and pore 

distribution depends on the material used and manufacturing process. A comparison of the 

properties of active carbon derived from different raw materials is presented in (Table 2.6). 

An investigation was performed to evaluate the adsorption performance to remove β-

ionone by four types of commercial GAC, including cocoanut activated carbon (YK), 

nutshell activated carbon (GK) and two kinds of coal-based activated carbon (MZ-A and 

MZ-B)[111]. The equilibrium adsorption capacity of 19.43 mg/g by YK carbon, followed 

by GK carbon, MZ-A carbon and MZ-B carbon with the minimal capacity of 16.58 mg/g 

was obtained. 
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Table 2.6 Characteristics of activated carbon from various material source. 

Raw materials Density 

kg/L 

Surface area 

m2/g 

Application References 

Coconut shells 1.4 700-2500 Vapor phase adsorption [115-117] 

Anthracite 1.5-1.8 500-2300 water purification, 

chemical recovery 

[118, 119] 

Macadamia 

nutshell 

 1718  [120] 

Bitumen 1.25-1.50 400-1300 Wastewater treatment [121] 

Apricot stones  1190 Water purification [122] 

Almond shells  1005-1315 Water purification [123] 

Corn cob  400-1600 Wastewater treatment [124, 125] 

Wood 0.4-0.8 240-500 Aqueous phase 

adsorption 

[117, 126] 

Lignite 1.00-1.35 280-400 Wastewater treatment, 

gas vapor adsorption 

[127] 

The GAC is categorized based on pore size: micropores (< 2 nm), mesopores (2-50 nm) 

and macropores (>50 nm), according to the International Institute of Pure and Applied 

Chemistry (IUPAC) [128]. A study indicated that the presence of micropores is crucial for 

the removal of geosmin and 2-mentylisoborneol (MIB), which had size in the range of 0.55-

6.3 nm [129]. Because of the predominant irregular-shaped micropores and some closed 

pore structures of commercial activated carbon, the adsorption of many antibiotics, such as 

tylosin and tetracycline and bulky molecules (i.e., alkylphenolic surfactants) involve size-

exclusion effect [130]. A high adsorption potential is expected when the size of target 

molecules is in the range of pores of GAC [111]. 

2.3.2.2 Effect of AOM  

The physiochemical properties of a DOM mixture can significantly alter the effectiveness 

of GAC adsorption. The characteristics of solute include aromaticity, hydrophobicity, 

polarizability, water solubility, size and charge [131-134]. Most investigations to date have 
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evaluated the removal of NOM [135-137] or specific micropollutants in the presence of 

NOM by activated carbon adsorption [110, 138, 139]. Only a few studies have emphasized 

on the adsorption of AOM as a major component of NOM in source water instead of pure 

AOM only [26, 140, 141]. A previous study of GAC adsorption for the removal of two 

algal odorants in water demonstrated that pH had a different impact on GAC adsorption. 

An Ideal Solution Adsorption model was developed to predict adsorption behavior. The 

low MW fraction in NOM could significantly inhibit algal odorants removal by GAC 

adsorption [142]. The comparison experiments were carried out to evaluate the competitive 

adsorption of two herbicides in the presence of peptides fraction derived from Microcystis 

aeruginosa onto two type of GAC. The study presented that low MW (700 -1700 Da) of 

AOM peptides played an essential role of adsorption competition between herbicides and 

peptides [143].The equilibrium and kinetic adsorption experiments were performed to 

investigate the effects of solution pH and ionic strengths on the removal efficiency of 

peptides derived from Microcystis aeruginosa by two types of GAC. The investigation 

demonstrated that the removal performance can be improved by the increase of ionic 

strength and the decrease of solution pH; the hydrogen bonds and electrostatic interaction 

between the peptides and GAC were the predominant adsorption mechanisms [144]. 

Another previous study investigated the GAC adsorption of three low-MW amino acids 

derived from cyanobacteria with the variation of initial concentration of amino acid, ionic 

strength and solution pH. The results indicated that removal efficiencies decreased with the 

increase of solution ion strength. Electrostatic interaction, hydrogen bonds and 

hydrophobic interaction dominated the GAC adsorption process for the removal of 

individual amino acid under specific solution pH and type of GAC applied [140]. The initial 

concentration of absorbate is regarded as an important driving force to facilitate the 

adsorption process by overcoming the mass transfer resistance between the solid and 

aqueous phases [145]. The adsorption of β-ionone onto GAC increased with the increase 

of initial concentration from 0.3 to 2.0 mg/L, which demonstrated that, with more contact 

chance between active adsorption sites of GAC and adsorbate of higher concentration, the 

adsorption sites occupied by β-ionone increased with the increase of initial concentration 

and accounted for the increase in adsorption [111]. 
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2.3.2.3 Effect of solution properties 

Generally, with a decrease in solution pH, the negatively charged functional groups on both 

GAC and adsorbate become protonated, decreasing the electrostatic repulsion force 

between GAC and adsorbate, consequently resulting in an increase of the adsorption 

efficiency [146]. A significant effect of pH on adsorption of peptides from IOM of M. 

aeruginosa onto GAC was observed in these studies [143, 144]. The formation of hydrogen 

bonds between protonated surface of GAC and protonated functional groups of peptides 

may result in high adsorption capacity at pH 5. The adsorption kinetics of clofibric acid 

onto activated carbon indicated that pH was a crucial parameter which strongly influenced 

the adsorption efficiency; highest adsorption efficiency was achieved at pH 2.0 and 

decreased with increase of pH [147]. A sigmoidal adsorption isotherm was fitted to the 

Dubinin-Astakhov equation and the solvation energy of the dissociated and undissociated 

forms of clofibric acid could explain the dependence of solution pH and isotherm 

adsorption shape. The adsorption of triclosan on activated carbon with variation of solution 

pH and ionic strength was conducted [148]. Solution pH had significant impact on the 

solute ionization degree and surface charge of sorbent, and resulted in high triclosan 

sorption in the acidic pH range. The increased adsorption capacity was also found with an 

increase in the ionic strength of the solution. Batch and column adsorption experiments 

with GAC were employed to remove dissolved organic matter (DOM) with variation of 

water temperature (5, 20, and 35oC) [149]. A positive effect of temperature on DOM 

adsorption was observed with batch and column experiments for various surface and 

synthesized water. The enhanced adsorption of DOM with increasing temperature is due to 

the entropic effect. The mean size of DOM molecules decreased with the increase of 

temperature [149] leading to an increased accessible GAC surface area, molecular self-

association also was changed with temperature [150]. Inhibition of adsorption of water 

molecules onto carbon surface at high temperature also occurred due to increase in 

hydrophobic adsorption sites. 

Previous studies on AOM adsorption on activated carbon had focused primarily on the 

removal of cyanotoxins, taste and odor compounds. However, GAC adsorption could also 

be an effective option for the removal of the low-MW AOM fraction, which is poorly 
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removed by coagulation. Therefore, systematic investigation of adsorption effectiveness of 

AOM from various types of algae is still high required. 

2.3.3 Membrane filtration 

Membrane filtration processes can efficiently remove cyanobacteria and their toxins [68]. 

Membranes are commonly applied in filtration processes and made of polymeric, ceramic, 

organo-mineral, or metals with a variety of pore sizes that physically strain particles, 

pathogens etc., from the influent water [151]. Porous membranes are categorized according 

to the nominal pore size and working pressure. Low-pressure membranes (microfiltration 

(0.1-10 μm) and ultrafiltration(0.01-0.1 μm)) have larger pore sizes and are applied for 

filtration, while high-pressure membranes (nanofiltration (around 1 nm) and reverse 

osmosis (0.1 nm)) have much smaller pore sizes and are employed to modify the chemical 

characteristics of water. The characteristics of common membrane filtration processes are 

summarized in Table 2.7. 
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Table 2.7 Characteristics of common membrane filtration processes [3, 151, 152].   

Filtration Type Pore size  

(μm) 

Transmembrane 

pressure, TMP (MPa) 

Mechanism Target  

Contaminants 

Microfiltration (MF) 0.1-1.0 0.03-0.3 Sieving Particulate substance such as algae, Giardia, 

Crypto, bacteria, and clays 

Ultrafiltration (UF) 0.005-0.1 0.05-0.5 Sieving All substances removed by MF with humic acids 

and some viruses 

Nanofiltration (NF) 0.001-0.005 0.5-1.5 Diffusion + 

exclusion 

All substances removed by MF and UF plus 

dissolved metals and salts 

Reverse osmosis (RO) < 0.001 5-8 Diffusion + 

exclusion 

All substances removed by MF, UF and NF plus 

smaller dissolved metals and salts 
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The nominal pore size determines what contaminants can be removed from the low-

pressure membranes process. Microfiltration is commonly applied as a purification process 

to remove particulate material due to increasing water recycle demand and stringent 

discharge standards [153]. Ultrafiltration membranes can detain a fraction of the smaller 

particles that could pass microfiltration membranes. These membranes can replace the 

conventional treatment processes or can be used as an advanced treatment downstream of 

any combination of conventional treatment processes. 

However, fouling of membranes due to the presence of organic matter in source water is a 

major challenge significantly affecting the efficiency of membrane filtration in water 

treatment. A previous study indicated that AOM can cause greater flux decline for both 

polymeric and ceramic membranes than that from humic acid and fulvic acid [154]. To 

mitigate membrane fouling, a number of factors influencing membrane filtration and 

fouling mitigation have been investigated, including membrane characteristics, solution 

properties and operating conditions were shown in Table 2.8. 

Table 2.8 Factors affecting membrane fouling and fouling mitigation strategies [155]. 

Membrane 

characteristics 

Solution 

properties 

Operating 

conditions 
Mitigation strategies 

Membrane material, 

pore size and 

distribution, 

hydrophilicity, 

affinity, surface 

charge, zeta potential, 

surface roughness, 

membrane integrity. 

Concentration, 

particle size, 

components and 

properties, pH, 

ion intensity 

Configuration 

temperature, 

transmembrane 

pressure, cross-

flow velocity 

Feed pretreatment, 

mechanical scouring, 

chemical 

backwashing/cleaning, 

ultrasonic cleaning, 

membrane surface 

modification 

2.3.3.1 Process parameters for membrane filtration and fouling mechanism 

To elucidate fouling process, the classic membrane fouling models were developed based 

on blocking mechanism, including complete blocking, standard blocking, intermediate 
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blocking and cake filtration [156-160]. A schematic representation of blocking fouling is 

shown in Figure 2.4.  

 

(a) Complete block 

 

(b) Standard blocking 

 

(c) Intermediate blocking 

 

(d) Cake filtration 

Figure 2.4 Schematic representation of the different fouling mechanisms of 

membrane filtration. (Redrawn from [159]) 

The instantaneous flux of filtration was obtained by numerically differentiating the 

cumulative volume filtered (V) per unit membrane area after exponential smoothing and 

analyzing it using block laws listed in Table 2.9. 

Table 2.9 Classic membrane fouling models [156, 157]. 

Model Equation Description 

Cake filtration 1

𝐽
=
1

𝐽0
+ 𝑘𝑐𝑉 

Particles deposit on the membrane 

surface and cake layer forms, which 

helps in filtering. 

Intermediate blocking 𝐽 = 𝐽0exp(−𝑘𝑖𝑉) Particles settle on each other and 

may block some membrane pores. 

Standard blocking 
𝐽 = 𝐽0 (1 −

𝑘𝑠
2
𝑉)

2

 
Particles deposit on the internal pore 

walls decreasing the pore diameter. 

Complete blocking 𝐽 = 𝐽0 − 𝑘𝑏𝑉 Particles block pores when reaching 

the membrane surfaces without 

superposition of particles. 
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where 𝐽0 is the initial permeate flux, V is the accumulative volume and 𝑘𝑐,𝑘𝑖,𝑘𝑠, 𝑘𝑏 are 

fitting parameters describing cake filtration, intermediate blocking, standard blocking, and 

complete blocking, respectively. To determine the dominant fouling mechanisms for each 

DOM on MF membrane, the experimental data are fitted to the model equations with R-

squared (R2) values demonstrating the goodness of modeling fit [106].  

2.3.3.2 Impact of AOM on membrane filtration 

Earlier, studies have identified AOM, instead of algal cells and debris, as the main 

membranes foulants for the treatment of algae-laden water [161-164]. In a comparison 

study of flux decline caused by algae cells (S. quadricauda) in deionized water, algal 

suspension and the derived AOM; although around 15% flux decline was observed from 

AOM less than the 70% decline caused by algae cells, the AOM which contained 

polysaccharides, proteins and lipids caused more irreversible fouling during UF filtration 

[165]. Membrane fouling involving AOM includes both irreversible fouling (i.e., 

adsorption of foulants inside membrane pore) and reversible fouling (e.g., membrane 

surface deposition), strongly influenced by the AOM characteristics such as charge, 

hydrophobicity and molecular weight distribution [161, 166]. Compared to algal cells, 

AOM caused a less total decline of flux in the initial stage, but a much more rapid flux 

decline during ultrafiltration of an AOM solution [161, 167]. It was indicated that 

irreversible plugging and pore narrowing was formed by low-MW AOM, and cake 

filtration occurred when a majority of biopolymers deposited on surface of membrane 

through size exclusion. Thereafter, the formed cake layer can serve as a dynamic barrier to 

adsorb/screen more low-MW substances and biopolymers for AOM [168, 169]. It was 

verified that the formed cake layer by AOM cannot be compacted because of a relatively 

low compressibility [167]. The cake formation caused by algal AOM has been considered 

to be more responsible than pore narrowing and plugging for UF fouling process [167, 170]. 

The hydrophilicity of AOM affects the fouling reversibility of ultrafiltration membrane for 

algae harvesting [161]. It was reported that the hydrophilic non-acid (HPI-NA) fraction of 

AOM derived from C. zofingiensis presented higher irreversible and total resistance than 

that from hydrophilic acid (HPI-A) and hydrophobic acid (HPO-A). The formation of 
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hydrogen bonding between hydrophilic polyvinyl chloride (PVC) membrane and 

carbohydrates in HPI-NA fraction can account for the compact cake layer formation. 

Similarly, much greater irreversible and total fouling were caused by IOM with more 

hydrophilic and large molecules than that by EOM extracted from M. aeruginosa. The 

adhesion energy of EOM-membrane and EOM-foulants were lower than the IOM-IOM 

cohesion energy and IOM-membrane adhesion energy. Cake formation was the major 

fouling mechanism for UF of IOM; however, both pore plugging and cake formation were 

responsible for EOM UF fouling [170].   

The impact of the hydrophilic fraction on AOM fouling can be mitigated by selection of a 

hydrophobic membrane [23]. The polysaccharides in AOM are the major foulants for 

hydrophilic membrane, but account for only a fraction of irreversible fouling for 

hydrophobic polyethersulfone (PES) membrane. On the contrary, the hydrophobic fraction 

of AOM was considered as the primary contributor for irreversible fouling because of high 

protein content and strong interaction with hydrophobic PES membrane. The membrane 

pores were blocked by small MW factions, even though they dominated the total fouling 

by cake formation because of the strong affinity to water [171]. It was also confirmed that 

hydrophobic fraction of EOM derived from M. aeruginosa was mainly the tryptophan-like 

substance, which had a strong tendency to attach onto hydrophobic PES membrane based 

on the excitation–emission matrix coupled with parallel factor analysis (EEM-PARAFAC) 

[172]. A similar trend was also observed for MF fouling [161, 167]. Due to pore clogging 

and cake formation, the permeate flux can be reduced to 20% after 90 min on a commercial 

tubular ceramic MF membrane. The large MW (>20 kDa) of AOM released from M. 

aeruginosa was detained and formed cake layer as a dynamic barrier to remove smaller 

MW (< 500 Da) substances. The relatively high MW (~1000 Da) with 32% of total DOC 

presented the main irreversible fouling by being trapped in membrane pores, thus the 

cake/gel filtration dominated the AOM fouling in MF process. Meanwhile, hydrophobic 

substances in the outer layer can be removed easily by hydraulic backwashing due to the 

weak affinity between the foulants and hydrophilic membrane [166]. 

The electrostatic interaction between membrane surface and AOM can also affect 

membrane fouling and AOM removal [23]. An investigation concluded that AOM of 
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Chlorella sp. with lower negative charge demonstrated a more tendency to be attached to 

negatively charged MF membrane resulted a higher rejection of small to medium-MW 

organics and higher irreversible fouling resistance than that due to AOM of M. aeruginosa 

[173]. The interaction energy between membrane and AOM from different algal species 

was investigated earlier [174]. The results indicated that the adhesion energy between 

hydrophilic MF membrane and neutral hydrophilic (N-HPI) fraction of AOM was higher 

than other AOM fractions based on the extended Derjaguin-Landau-Verwey-Overbeek 

(XDLVO) theory.  

As the dominant fraction of AOM matrix on a membrane surface, carbohydrates have a 

high diversity of structures and components, with complex biochemical properties [175, 

176]. In addition, the properties of carbohydrates can alter dramatically with cultivation 

time, medium and environmental conditions [168, 177-179]. As a special faction of AOM, 

transparent exopolymer particles (TEP), which are released by algal cells via metabolic 

activity, cell lysis or breakage [180], have attracted increasing concern in the studies on 

membrane fouling [23]. TEP in carbohydrates can facilitate carbohydrates aggregation via 

intermolecular adhesion and subsequently alter the cake layer structure [168, 179]. In 

addition, the growth of biofilms on membrane surface can also be promoted by TEP [181-

184] and then change the foulant matrix [168]. It is noted that special attention still is 

needed to pay on the characteristic of AOM and the structural properties of AOM fouling 

matrix. Although a much stronger correlation was suggested between fouling potential of 

organic matter and their characteristics than that with the organic concentration [185, 186], 

the AOM concentration in feed solution should be of concern due to its direct correlation 

with the flux decline of AOM fouling in MF/UF membrane processes [162, 169, 183, 187]. 

2.3.3.3 Mitigation strategies for membrane fouling  

The impact of membrane fouling by AOM solution can be mitigated by several strategies, 

mainly including pretreatment of the feedwater, optimization of filtration conditions and 

modification of membrane cleaning procedures [23, 26]. Pretreatments of AOM solution 

prior to membrane filtration include coagulation-flocculation [106, 188-190], adsorption 

[168, 191-194], advanced oxidation [195] or their combination [196]. For instance, when 

coagulation was applied at optimal coagulation dose (5 mg Al3+/L and 10 mg Fe3+/L) as the 
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pretreatment to remove AOM released from M. aeruginosa, over 90% reversible and 65 % 

irreversible fouling reduction can be achieved, significantly ameliorating the fouling of a 

ceramic MF membrane. The effective removal of high MW biopolymer (> 20 kDa) by 

coagulation was primarily responsible for the reduction of AOM fouling during subsequent 

filtration [189]. A significant alleviation of flux decline caused by EOM of M. aeruginosa  

was achieved after polymeric aluminum (0.4 mg Al mg-1 DOC) coagulation removed up to 

18% of organic substance, mainly high MW (>100 kDa) components of EOM. Due to 

oxidation and adsorption by manganese oxide, the potassium permanganate-aided Al 

coagulation presented greater EOM removal than Al coagulation alone, and resulted in 

better membrane permeability and fouling reversibility [106]. It was presented that 

compressibility of the AOM cake/gel layer and fouling potential can be significantly 

decreased using coagulant doses > 1 mg Fe/L. Precipitated iron hydroxide can effectively 

adsorb, aggregate biopolymer of AOM, mitigating UF membrane fouling [190] . 

To avoid the potential damage to algal cells by chemical pretreatment, physical 

pretreatments such as activated carbon adsorption or adsorption combined with other 

processes were investigated to remove AOM prior to filtration [168, 191-193]. A previous 

investigation of fouling behavior by various AOMs found that membrane fouling was 

heavily affected by algal species and characteristics of AOM [197]. Two powdered 

activated carbon (PAC) dosing approaches including addition of PAC into the bulk feed 

solution and pre-depositing PAC onto the surface of membrane were applied to evaluate 

the reduction of membrane fouling by EOM of M. aeruginosa [198]. The pre-mixed PAC 

adsorption mitigated membrane fouling attributed to the formation of a porous fouling layer 

favoring the rejection of EOM and subsequent physical cleaning. Another investigation 

demonstrated that the addition of PAC significantly alleviated the transmembrane pressure 

and improved the AOM removal in terms of DOC (10.9±1.7%), UV254 (27.1±1.7%) and 

microcystins (40.8 ± 4.2%). Only minor influence was observed on the rejection of 

hydrophilic high MW components such as carbohydrates and proteins in AOM [168, 199]. 

GAC adsorption has been regarded as one of cost-effective and environmentally-friendly 

technology for drinking water treatment processes for removal of lower MW and 

hydrophilic fraction of NOM, it has also been applied as a pre-treatment process for 

membrane filtration to mitigate membrane fouling and improve the permeate quality in 
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membrane-based treatment systems [199-201]. A hybrid membrane-activated carbon 

process was applied for the pre-treatment of produced water from oil/gas field, the results 

presented that GAC not only improved conductivity and COD removal efficiencies, but 

also reduced cake formation on the membrane surface [202]. It was presented that a GAC 

adsorption can remove DOC (especially the low-MW compounds) [199] and assimilable 

organic compounds (AOC) [203]. Another study [204] mentioned that coupling GAC to 

downstream MF process can reduce membrane fouling significantly with improved product 

water quality. It was also reported that PAC reduced the irreversible UF membrane fouling 

and decreased the chemical cleaning frequency, although it was ineffective for the 

mitigation of reversible membrane fouling and permeate flux [194]. 

An alternative strategy for fouling control is the careful selection and operation of 

membrane processes. Special attention should be paid to the morphology (i.e., pore size 

and distribution, surface roughness), surface charge and hydrophobicity/hydrophilicity [23, 

205-208]. It was mentioned that AOM is more susceptible to form fouling on HPO 

membranes with more adsorptive and irreversible fouling and faster flux decline than HPI 

membranes [206, 209]. A minor difference in flux decline was also observed between HPI 

and HPO membranes; however, the irreversible fouling on HPO membrane was found to 

be slightly greater than that HPI counterpart, due to the stronger attractive interaction 

induced by adhesion [207]. The opposite results were also observed that the hydrophilic 

PVDF MF membrane presented lower AOM permeability due to the high attraction of 

hydrophilic membrane (up to 20 mW of zeta potential) for the AOM foulants.  

The control of flux and crossflow velocity can also impact the membrane fouling formation 

when a cross-flow membrane system was applied [210, 211]. For instance, a remarkable 

reduction of algae deposition was obtained when higher air bubbling and flow rate were 

used during cross-flow microfiltration of Chlorella sorokiniana suspension [211]. It was 

demonstrated that the total filtration resistance can be reduced by increasing cross-flow 

velocity of MF; however, the pore blocking resistance was enhanced because of deep 

entrapment of AOM inside of membrane pores under high cross-flow velocity induced by 

higher TMP [212].   
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Membrane fouling by AOM can be controlled via selection of HPI membranes, feed 

solution pretreatment and optimization of hydraulic conditions. The exact balance of each 

fouling mechanism heavily depends on AOM property and concentration, and further 

research is required to improve elucidation of the fouling propensity by AOM. Interactions 

between AOM and NOM could induce a more aggressive fouling, this still requires further 

research. 

2.3.4 Disinfection by-products formation from algal organic matter 

2.3.4.1 Chlorination and DBP formation 

Chlorination is a widely used disinfection process in drinking water plants for inactivation 

of pathogenic organisms (bacteria, protozoa, viruses etc.) due to higher inactivation 

efficiency and residual chlorine in water preventing microbial revival throughout the 

distribution system [213]. However, the reaction between chlorine and organic matter, 

anthropogenic contaminants and halides existing in the source water can produce 

undesirable DBPs, some of which are cytotoxic, carcinogenic or genotoxic compounds and 

have been associated with specific forms of cancer and birth defects [9, 214-217]. Over the 

last 40 years, more than 600 DBPs have been identified in drinking waters, including from 

initially the trihalomethanes (THMs), to now a great number of halogenated and non-

halogenated organic and inorganic compounds [218, 219]. Trihalomethanes (THM) and 

haloacetic acids (HAA) are of two most prevalent groups of DBPs produced during 

disinfection, representing about 25% of the halogenated DBPs formed on weight basis [52, 

220]. DBP formation is strongly impacted by the hydrophobic fraction of the dissolved 

organic matter [221]. The major classes of DBPs produced during chlorination, WHO 

guideline for maximum concentration and the potential health effects [222, 223], are 

summarized in Table 2.10.
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Table 2.10 Important groups of DBPs produced during chlorination [218, 222-225]. 

Class of DBPs Common compounds WHO guideline (μg/L) Health effects 

Trihalomethanes (THM)  Chloroform 300 Cancer, liver, kidney and reproductive effects 

 Bromodichloromethane 60 Cancer, liver, kidney and reproductive effects 

 Dibromochloromethane 100 Nervous system, liver, kidney and 

reproductive effects 

 Bromoform 100 Cancer, liver, kidney and reproductive effects 

Haloacetic acids (HAA) Dichloroacetic acid 50 Cancer and reproductive and developmental 

effects 

 Trichloroacetic acid 200 Liver, kidney, spleen and developmental 

effects 

 Monochloroacetic acid 20  

Haloacetonitrile (HAN) Trichloroacetonitrile Not establishing Cancer, mutagenic and clastogenic effects 

 Dichloroacetonitrile 20  

 Dibromoacetonitrile 70  

Other halonitrile Cyanogen chloride 70  

Halogenated aldehydes and 

ketones 

Formaldehyde Not establishing Mutagenic 

Haloaldehyde Chloral hydrate 10  

Halophenols 2-Chlorophenol Not establishing Cancer and tumor promoter 
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Halonitromethane Chloropicrin Not establishing  

Inorganic Compounds Bromate 10  

 Chlorate 700  

 Chlorite 700  
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It should be noted that the potential health effects summarized in Table 2.10 were based on 

the observations of mammalian cell transformation in vitro induced by the DBPs 

concentrated or extracted from drinking water. Without consideration of exposure via 

inhalation or dermal routes, no evidence has shown the carcinogenic effects in rodents in 

vito studies with exposure via the drinking water. People are exposed to water of a mixture 

of more than 600 identified DBPs and numberless unidentified compounds as well via 

ingestion, inhalation and dermal route, although most of DBPs present a relatively weak 

carcinogenic potency [218]. To better elucidate the toxicological effects of DBPs in 

drinking water, full epidemiological investigations are still needed with considerations of 

various exposure routes to concentrates or extracts from drinking water treated by different 

disinfection methods for various water sources [226]. 

2.3.4.2 Factors affecting DBP formation 

The DBP formation is affected by several factors, including chlorine dose, contact time, 

water quality variable, such as type and abundance of organic matter present, DOC, UV254, 

pH and temperature [227]. Thus, understanding the effects of these parameters is crucial 

before any conclusion can be drawn [73]. As the major halogenated DBPs, THMs and 

HAAs can accumulate in disinfected water since most of them are chemically stable. 

However, there are still many chemically unstable DBPs which are subject to further 

oxidation or hydrolysis, so that chlorine dose and contact time have great impacts on the 

type and amount of DBPs [222]. The World Health Organization (WHO) recommended a 

chlorine concentration at the delivery point of 0.5 mg/L should be applied [228]. 

Insufficient chlorine can result in the waterborne pathogen revival, thus exposing an 

increasing health risk from waterborne pathogens, but chlorine overdose can not only affect 

the taste of treated water, but also increase the health risk by escalated total DBP formation 

[213]. For instance, with the chlorine dose increase from 5 to 20 mg/L, the total THM 

formation increased from 70 to 85 μg/L during the chlorination of Nile River water [229]. 

Contact time with chlorine plays an important role on all DBP formation. It was reported 

that total THM formation increased by 150% after four days chlorination compared to that 

observed with 1 day. In addition, the different trends among THM species were also 

observed the formation of DBCM, BDCM, and TCM at four days was increased by 115%, 
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130% and 170% than that formed in one day, respectively, which indicated that longer 

contact time elevates THM formation potential [230]. 

Generally, the DBP formation rate increases with increasing temperature; however, it is a 

kinetically controlled process since higher temperature also accelerates the degradation of 

DBPs and promotes the depletion of chlorine residual [222]. It was observed that chlorine 

depletion accelerated as temperature increased from 3 to 34oC, meanwhile the DBP 

formation increased correspondingly with temperature escalating from 3 to 20oC, with a 

shift of DBP speciation as the results of further temperature increase from 20 to 34oC [231]. 

This implicated that DBP formation potential will be maximized under higher ambient 

temperature during summer [232]. 

The impact of pH on DBP formation is more complicated due to chemical alteration of 

reaction rate of the rate-control step of chlorination [233]. It was proposed that the majority 

of DBP formation decreased with increase in pH, while THMs compounds are of important 

exception because of significant influence of base-catalyzed hydrolysis mechanism (shown 

in Figure 2.5 [227]) promoting the THMs formation in alkaline pH [222, 234]. The previous 

investigation indicated that the yield of dihaloacetic acid (DHAA) and THM increased with 

the pH increasing from 5 to 10, but the opposite results were observed for trihaloacetic acid 

(THAA) and unknown total organic halide (UTOX), which may be attributed to the 

dehalogenation and hydrolysis at higher pH [227].  
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(free chlorine only)
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Figure 2.5 Formation and degradation pathway of THM and HAA from NOM. 

(Redrawn from [227]) 

The effect of inorganic constituents, such as bromide and iodide, has been investigated in 

details in terms of speciation and amount of DBP formation. Because of high oxidation 

potential, chlorine can rapidly oxidize bromide and iodide to hypobromous acid (HOBr) 

and hypoiodous acid (HOI), which are known to be more effective in substitution reaction 

than chlorine upon exposure to NOM [235]. It has been observed that brominated THMs 

are dominant species over the major chlorinated THMs [73] in natural water, bromine 

incorporation level into THM formation was higher at around 50% than that chlorine at 5-

10%. A similar trend was also observed in HAA formation [234]. It was reported that the 

total yields of THMs and HAA were increased by 18-74% and 2-35%, respectively, when 

2-30 μM of bromide was added into raw water [236]. The brominated DBPs (Br-DBPs) 

and iodinated DBPs (I-DBPs) with greater cytotoxicity and genotoxicity[237, 238] upon 

chlorination have attracted increasing concerns.Thus, water treatment plants need to 

monitor the bromide levels and evaluate the suitability of their chlorination procedure. 

The amount of organic matter presented in water, measured as DOC and UV254, have been 

observed to correlate well with THM formation [52]. A strong correlation (R2 = 0.93) 

between SUVA at a wavelength 280 nm and dichloracetic acid (DCAA) formation has been 

found upon chlorination of natural water sample [239]. This correlation might be attributed 
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to the aromatic structure as the primary active sites attacked by oxidant such as chlorine 

[240]. The functional groups of organic matter, such as phenolic functional groups has been 

observed to play an important role with good correlation with THM formation. It might be 

accounted for its electron-donating property with more tendency to incorporate chlorine 

than electron-withdrawing groups such as carboxylic[73]. 

2.3.4.3 DBP formation from AOM during chlorination 

AOM are commonly dominated by hydrophilic polysaccharides and hydrophobic proteins 

in algae-contaminated water [241], which has been widely regarded as an important 

precursor of DBP in drinking water [10]. DBP formation by chlorination during 

disinfection of algae-laden water is of a great concern due to frequent occurrence of algal 

bloom in surface source water body. Previous investigations on the impact of AOM on 

disinfection have focused on the formation of carbonaceous DBP, especially, haloacetic 

acids (HAAs) and trihalomethanes (THMs) during chlorination of AOM (including EOM 

and IOM) originated from various algae species. The characteristics of AOM vary with the 

algal species, cultivation condition, such as nutrient content, pH, temperature and hydraulic 

mixing [242, 243]. Consequently, the DBP formation may vary considerably with the algal 

genus, algal growth, biochemical composition and the applied conditions of chlorination 

treatment (dose, pH and contact time) [244-247]. For better comparison, the DBP formation 

potential in terms of HAAs and THMs formation from AOM of several most abundant 

algal species under stationary growth phase are summarized in Table 2.11 [26, 243]. 
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Table 2.11 Carbonaceous DBP formation potential from AOM of various algae under stationary growth phase. 

Algal species Chlorination condition 
HAAFP (μg/mg-C) THMFP (μg/mg-C) 

Reference 
EOM IOM EOM IOM 

Green algae       

Chlorella vulgaris pH=7.2, RCa > 0.5 mg/L, 22oC, 3 days   13  [248] 

Chlorella sp. pH=7,Cl2:DOC= 5, 25oC, 7 days 24 28 6 10 [11] 

 pH=7, Cl2:DOC= 5, 25oC, 7 days 20 26 10 12 [10] 

Scenedesmus 

quadricauda 
pH=7, RC=0.5-1.2 mg/L, 20oC,7 days 36d  20c  [41] 

Cyanobacteria       

Microcystis 

aeruginosa 
pH=7,Cl2:DOC= 5, 25oC, 3 days   8 15 [43] 

 pH=7.2, RC > 0.5 mg/L, 22oC, 3 days   12  [248] 

 pH=7, RC>0.5mg/L, 21oC, 7 days 11  17  [249] 

 pH=7, RC=0.5-1.2 mg/L, 20oC, 7 days 29  43  [41] 

 pH=7, Cl2:DOC= 5, 25oC, 7 days 55b 68b 32c 21c [250] 

 pH=8.5, Cl2:DOC= 3, 25oC, 3 days 36 41 27 28 [13] 

 pH=7, RC>0.5mg/L, 21oC, 7 days 66d  28  [251] 

 
pH=7, Cl2:DOC = 5(EOM),3 (IOM), 

22oC, 3 days 
11b 14b 17c 28c [6] 
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Aphanizomenon 

flos-aquae 
pH=7, RC=0.5-1.2 mg/L, 20oC, 7 days 25  57  [41] 

Anabaena 

flos-aquae 
pH=7, RC=0.5-1.2 mg/L, 20oC, 7 days 19  27c  [41] 

 pH=7, RC>0.5mg/L, 21oC, 7 days 48d  26  [251] 

Diatom       

Asterionella 

formosa 
pH=7, RC=0.5-1.2 mg/L, 20oC, 7 days 24d  19c  [41] 

Aulacoseira granulata f. 

curvata 
pH=7, RC=0.5-1.2 mg/L, 20oC, 7 days 13d  20c  [41] 

Chaetoceros muelleri pH=7, Cl2:DOC= 5, 20oC, 7 days   29  [252] 

Cyclotella 

meneghiniana 

pH=7, chlorine dose = 12.8 mg/L, DOC 

= 1.2 mg/L, 25oC, 3 days 
  10c 12c [253] 

Note: a: RC refers the residual chlorine, b: HAA yield as DCAA, c: THM yield as TCM, d: HAA yield as DCAA and TCAA. 
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It can be seen from Table 2.11, the formation potential of THMs and HAA derived from 

EOM and IOM vary widely with algal species and experimental conditions. For the tested 

algal species, HAAFP is higher than THMFP for both EOM and IOM under similar 

experimental condition. For example, specific HAA reactivity (HAAFP) from EOM of 

green algae, cyanobacteria, diatoms, is 24 μg/mg-C, 55 μg/mg-C and 24 μg/mg-C, 

respectively, whereas specific THM reactivity (THMFP) from three algal species is 6 

μg/mg-C, 32 μg/mg-C, 19 μg/mg-C, respectively, for a 7-days disinfection time. The 

opposite result of DBPFP of EOM was also observed that the HAAFP was less than 

THMFP under identical experimental conditions, which might be attributed to the specific 

growth condition affecting the properties of AOM. It was also observed that IOM forms 

higher HAAs and THMs than EOM, even though the available data for IOM is insufficient. 

The difference of DBPFP between EOM and IOM within various algae is unclear and more 

investigations are needed.  

2.3.4.4 The impact of ultraviolet (UV) irradiation for DBP formation 

Ultraviolet light (UV) treatment as a cost-effective and easily operation disinfection system 

has attracted increasing interests in water treatment industry. There are four spectrums 

range UV based on the wavelength, i.e., UV-A (315-400 nm), UV-B (280-315 nm), UV-C 

(200-280 nm), and Vacuum UV (100-200 nm) for inactivation. Because of the strong 

absorbance by nucleic acids. UV-C range is considered as the most germicidally active UV 

range [254]. Several types of UV lamps are commercially available, but the most 

commonly used include low pressure (LP) UV lamps, which emit monochromatically at 

254 nm, and medium pressure (MP) lamps emitting higher intensity polychromatic 

germicidal UV light in the range 200 to 400 nm. Many factors, such as, UV wavelength, 

dosage and source water quality, may affect the UV irradiation performance.  

There is no significant impact of UV radiation on water quality parameters, such as TOC, 

turbidity and pH for a dosage up to  4-5 times of usual UV disinfection dose of 40 mJ/cm2 

[255]. Thus, it does not produce regulated DBPs (THMs or HAAs) nor increase DBP 

formation upon subsequent chlorination [256, 257], and about 25% UV disinfection utilities 

in United States are applied as an alternative to chlorination to meet the stringent limits on 



53 

 

 

THMs and HAAs [258]. However, previous studies indicated that UV irradiation can 

fragment dissolved organic matter to lower MW products and enhance biodegradable 

substance formation [259-262], but no or low impact was observed on THMs and HAAs 

formation [263, 264]. However, the opposite results have also been presented [265]. A 

statistically significant change has been observed in the DBP formation from chlorination 

after UV irradiation for 4 different water sources. The results indicated that the increase of 

chloroform formation was the most significant ( 112%) with the UV exposure of 60 

mJ/cm2 [266]. Previous studies majorly focused on the UV irradiation using relatively 

higher UV dosage (14-1,000 J/cm2) on the NOM with DOC level from 5-17.4 mg/L, which 

is relatively higher than drinking water source in practice [265]. Only a few studies are 

reported that evaluated UV irradiation on DBP formation from AOM with subsequent 

chlorination. UV irradiation at dosage of 100 mJ/cm2 and 1,000 mJ/cm2, can effectively 

reduce the THMs and DHAA formation from EOM and IOM of M. aeruginosa. In addition, 

an increase in THMs and DHAA formation was also observed after 100 mJ/cm2 dosage of 

UV irradiation in the presence of bromide (50 μg/L) [56]. The reduction in HAA formation 

from AOM of Chlorella sp. was observed after UV irradiation with dosage up to 396 

mJ/cm2, while nitrogenous DBPs (N-DBP) increased during subsequent chlorination [267]. 

Considering the limited research and inconsistent results, further investigation is needed to 

evaluate the impact of UV irradiation on DBP formation from algae-laden water source.  

2.4 Knowledge gaps and research directions  

The undesirable occurrence of AOM in source water heavily impacts the treatability and 

safety of drinking water.  To minimize the risk of the breakout of waterborne diseases and 

mitigate the potential toxic DBP formation, multiple barriers, including coagulation, 

adsorption and filtration processes are applied prior to disinfection in drinking water 

treatment plants. The NOM, including fulvic and humic acids as major precursors of DBPs 

have attracted wide attention. However, the AOM comprised of both EOM and IOM as the 

DBPs precursors had not been investigated extensively within the entire drinking water 

treatment processes. The summary of existing research indicates the following:  
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• As the primary treatment process, AOM removal by coagulation-flocculation has 

been reported in previous research, but most of the work focused on removal 

efficiency for one or two algal species. Chemical characteristics such as AOM 

composition, molecular weight distribution during various growth phases were 

determined and coagulation performance was related to these properties. However, 

these properties depend heavily on species and growth phase, requiring dedicated 

studies specific to a target algae. Comprehensive studies relating coagulation 

performance of various algal matter to the fundamental properties such as the 

hydrophobicity, hydrophilicity and SUVA are required.  

• Previous studies on AOM adsorption on activated carbon had focused primarily on 

cyanotoxins, taste and odor compounds. GAC adsorption could also be an effective 

option for the removal of the low-MW AOM fraction, which is poorly removed by 

coagulation. Systematic studies on adsorption effectiveness of AOM by GAC and 

its combination with microfiltration to mitigate the membrane fouling are required.  

• The specific DBPFP of AOM varies with algae species and growth phase, thus it is 

difficult to predict the potentiality of DBP formation in water sample contaminated 

by the mixture of different algal species in raw water. Further investigations 

performed under identical conditions are needed to compare the performance of 

treatment technologies on DBP formation. In addition, the impact of UV irradiation 

on DBP formation from AOM still requires more research considering the limited 

studies and inconsistent results presented in literature. 

Based on the gaps identified in the literature, the overall objective of this PhD research is 

to characterize the performance of commonly used processes in drinking water treatment 

plants namely coagulation-flocculation, GAC adsorption, membrane filtration and UV-

chlorination using several commonly found algae from different groups. The 

comprehensive research will help to develop a treatment framework for the treatment plants.   
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Chapter 3 

3 Optimization and Modeling for Coagulation-Flocculation to 

Remove Algae and Organic Matter from Surface Water by 

Response Surface Methodology1 

3.1 Introduction 

A persistent worldwide concern in drinking water treatment is the proliferation of algae and 

the resultant metabolites in source water. Rivers, lakes and reservoirs as important 

freshwater reserves in China are facing increasing threat of eutrophication [1]. According 

to the "China's Ecological Environment Statements Bulletin of 2017", about 30% of 

China’s lakes and reservoirs suffer from mild to moderate level of eutrophication [2]. Lake 

Taihu is one of the largest freshwater lakes in eastern China affected by algal blooms 

periodically due to non-point nutrient run-off sources, while Lake Dianchi, a heavily 

polluted lake in Yunnan province shows both algal and fungi pollution. Algae bloom not 

only affects the ecology and aesthetic value of the aquatic system [3], it also derives 

multiple problems and pose many challenges to drinking water treatment, such as 

increasing coagulant demand, clogging filters [4, 5], taste and odor issues [6] and 

disinfection byproduct formation [7-9]. Blooms involving toxin-producing algal species 

even can pose serious threats to human health [10, 11]. The increasingly water 

eutrophication caused by cyanobacteria outbreak, resulted in several serious threats to local 

residential, commercial, industrial and agricultural production.  

Many countries and the World Health Organization (WHO) have established a guideline 

(1-1.5 μg/L) for microcystin-LR (MC-LR), which is one of the most toxic cyanotoxin 

 

1 A version of this chapter has been published in a manuscript entitled “Z. Zhao, W. Sun, M.B. Ray, 

A.K. Ray, T. Huang, J. Chen, Optimization and modeling of coagulation-flocculation to remove 

algae and organic matter from surface water by response surface methodology, Frontiers of 

Environmental Science & Engineering 13 (2019) 75.” 
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produced by Microcystis aeruginosa [12]. In 2007, the large-scale cyanobacteria outbreak 

in Lake Taihu from May to June caused a serious safety threat to drinking water and led to 

the disruption of water supplies to millions of people in Wuxi and its surrounding areas 

[13]. Lake Yangcheng is the third largest freshwater lake on the Taihu Plain. It is also the 

main drinking water source for Suzhou and Kunshan urban areas. As the second drinking 

water source for the city of Wuxi, Lake Yangcheng has been affected by severe 

eutrophication [14], which has resulted in the cyanobacteria blooms. Therefore, it is of vital 

importance to enhance the removal of algae and dissolved organic matter in the water 

treatment process.  

Among the conventional water treatment processes, coagulation-flocculation is one of the 

economical methods to deal with "algal blooms" caused by the outbreak of microalgae [15]. 

As the primary barrier for algal removal in conventional drinking water treatment, several 

studies have focused on investigations of coagulation with/without pre-treatment for algae 

cells and the metabolites removal from raw water. It has been found that the removal of 

algal cells is easier than the removal of dissolved algal organic matter (AOM) [16]. More 

than 98% of algal cells could be removed by aluminum chloride dosage of 13 mg/L when 

the initial cell density was less than 1.0×106 cell/L [7]. However, for the combined 

coagulation and peroxidation processes, a poor removal of Microcystis aeruginosa cells 

and larger amount of trihalomethane (THM) formation occurred due to the release of AOM 

after peroxidation [17].  

Considering the maximal algae removal with avoiding the lysis of algal cells to release 

AOM, it is necessary to enhance the coagulation conditions for maximum removal of algal 

cells and AOM without causing cell lysis. The success of this process implementation 

depends on how precisely pH and coagulant dosage are chosen with respect to the specific 

initial water quality. 

Response surface methodology (RSM), as a combination of mathematical and statistical 

methods, has been widely applied for solving multivariable problems to optimize the 

process parameters with less number of experimental runs and analyzing the interaction 

between the parameters. The objectives of RSM are: (1) to develop approximating 

functions for predicting responses, and (2) to optimize the responses based on the factors 
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of interests [18]. The advantages of the RSM include a low number of tests, high precision 

of regression equations, and continuous analysis of various levels of test factors. It has been 

widely applied in engineering fields, such as biology, medicine and environment [19-24]. 

The most commonly used RSM method is the central composite design (CCD), which 

includes center points, factorial points, and axial points. From the CCD design, a quadratic 

approximation can be employed to develop a second-order response surface model for 

predicting the optimal point for a certain set of variables as follows: 

𝑌̂ = 𝛽0 +∑ 𝛽𝑖
3
𝑖=1 𝑥𝑖 + ∑ 𝛽𝑖𝑖

3
𝑖=1 𝑥𝑖

2 + ∑ 𝛽𝑖𝑗
3
𝑖<𝑗 𝑥𝑖𝑥𝑗 + 𝜖                   (Eq. 3.1) 

Where 𝑌̂is the predicted response; β0, βi, βii and βij are the coefficients for the intercept, 

linear, square, and interaction term of regression, respectively, which can be derived from 

ordinary least squares (OLS) or multiple linear regression (MLR), xi and xj represent the 

coded values of independent variables, 𝜖 indicates the statistical error. 

Artificial Neural Networks (ANN) are computing systems with learning algorithms and 

architectures inspired by the working and structure of the human brain. Although there is a 

considerable amount of investigations on various scenarios using both RSM and ANN 

techniques in the literatures [25, 26], only a few studies on the coagulation-flocculation 

process were presented with the methods of both RSM and ANN techniques. Gadekar 

developed an artificial neural network to predict color removal using aluminum-based 

coagulant to remove color from a disperse dye solution; the performance of the model had 

correlation coefficient (R2) values greater than 0.90 [27]. To minimize settled water 

turbidity, It was reported that ANN can be applied to predict both the optimum carbon 

dioxide and coagulation dosages with R2 values of 0.68 and 0.90, respectively [28]. 

Hence, the key motivation behind this study was to develop an approach to evaluate and 

predict coagulation process efficiency for the removal of turbidity, cells, DOC and UV254 

absorbance of algae and organic matter using both RSM and ANN techniques. A two-level, 

three-factors CCD design was applied to investigate the correlation between experimental 

variables and responses as the removals of microalgae, turbidity and dissolved organic 

carbon (DOC) in a real surface water body to provide solutions for the treatment of algae 

and algal matter-rich raw water. 
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3.2 Materials and methods 

3.2.1 Study site and sample collection 

Lake Yangchen (31°25′N, 120°48′E ), located between Lake Tai and the Yangtze River, 

has a surface area of about 20 km2 and a mean depth of 1.9 m with an annual average 

temperature of 16-18 ℃. As the third-largest freshwater lake on the Taihu Plain, Lake 

Yangcheng is the major drinking water source in Suzhou and Kunshan urban areas, and the 

second drinking water source of Wuxi City. The water samples from the Lake Yangcheng 

were collected twice per month in a 25 L plastic container from July 15 to August 31, 2017. 

All samples were preserved in the fridge (≈ 5 oC) before use within two weeks. The 

characteristics of raw water during the test period are shown in Table 3.1. 

3.2.2 Coagulation-flocculation  

Coagulant aluminum sulfate hydrate (Al2(SO4)3·18H2O), sodium hydroxide and 

hydrochloric acid for pH adjustment, were all of analytical grade and commercially 

available from Shanghai Lujie Chemical Reagent Co., Ltd., China. Coagulation tests were 

conducted using model ZR4-6 joint coagulation experiment mixer (Shenzhen Zhongshui 

Co., Ltd, China). Hemocytometer (Dark Line (0650010), Paul Marienfeld GmbH & Co., 

Germany) and microscope (CX-23, Olympus Co., Japan) were used for counting the algal 

cells before and after coagulation. The turbidity was measured using a Turbidity meter, 

(Hach 2100Q, Hach Company, USA). The DOC and UV254 absorbance of water samples 

were measured using a Shimadzu TOC-L analyzer (CPH TOC, Shimadzu Scientific 

Instruments Ltd., Japan) and UV-Vis spectrophotometer (Model V-1200, Shanghai 

Meipuda Instrument Ltd., China), respectively. 

Coagulation-flocculation experiments of 2 L algae-laden water were performed at room 

temperature, various pH, alum doses (mg Al/L) and initial cell densities. The pH of the test 

solution was adjusted by adding pre-determined amount of 0.1 M hydrochloric acid or 0.1 

M sodium hydroxide solution prior to the coagulation. The algal suspension was mixed at 

the agitation speed (150 rpm) for 2 min followed by a low mix/flocculation of 25 rpm for 

20 min, and finally a 30 min settling. The supernatant was taken from 2 cm below the water 
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surface for analysis of remaining cell density and turbidity. The DOC and UV254 

absorbance were measured after filtering the supernatant through 0.45 µm membrane filter 

(Tianjin JINTENG Co., Ltd., China). The effects of alum dose, pH and initial cell density 

on coagulation performance experiments were conducted in duplicated and reported with 

average values, which were calculated from the supplementary data in Appendix A. 

Table 3.1 Water quality characteristics of Lake Yangcheng. 

Parameters Range Mean 

pH 7.08 - 8.45 7.48 

Temperature (℃) 25 – 28 27 

Cell density (106 cell/ml) 4.2 - 5.8 4.6 

Turbidity (NTU) 198 – 252 223 

DOC (mg/L) 10.2 – 13.5 12.41 

UV254 absorbance (m-1) 0.083 – 0.094 0.089 

Quantitative characterization of algae species in water was carried out using alga counter (Algae C 

model from Wansheng Ltd., China ) and an automatic identification software.  

3.2.3 Response surface methodology with central composite design 

Preliminary experiments indicated that three major variables affected coagulation-

flocculation performance: coagulant dosage, pH and initial algal cell density, and 

experiments with single factor investigations narrowed the range of variables prior to 

experimental design. Based on those results, a complete set of the three-factor central CCD 

design shown in Table 3.2 was applied to investigate the effects of individual variables and 

their interactions on the removal of algal cell, turbidity, DOC and UV254 absorbance to 

determine the response pattern and optimum combination of variables. Fourteen 

experimental runs were augmented with six replications at the center values (zero level) to 

evaluate the experimental error. The significance of each variable’s effect on responses can 

only be compared with a coded pattern because of their different units and limits of 

variation. For statistical calculations, the variable Xi was coded as xi according to the 

following Equation 3.2:  

xi = (Xi-X0) / δX                          (Eq. 3.2) 
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where Xi is the uncoded value of the ith independent variable, X0 is the value of ith variable 

at the center point of the experimental range and δX is the step change [29]. 

Table 3.2 Analytical factors and levels for RSM experimental design. 

 Variables 
Coded and actual levels 

- α/-1.682 -1 0 1 +α/1.682 

X1 Alum dose（mg Al/L ） 4.57 5.67 7.29 8.91 10.02 

X2 pH 4.66 5.00 5.50 6.00 6.34 

X3 Initial Cell Density（106 cell/ml） 2.32 3.00 4.00 5.00 5.68 

Analysis of variance (ANOVA) was applied for data analyses to determine the interactions 

between the variables and the responses. The fit quality of polynomial regression models 

were demonstrated by the coefficient of determination R2, and F-test and p-value 

(probability) evaluation were applied to check statistical significances with 95% confidence 

level.  

3.2.4 Artificial neural network model 

A feed-forward backpropagation neural network algorithm (BPNN) with three layers was 

developed by a neural network tool box of MATLAB software version 9.2.0 (R 2017a). 

Mathematically, the structure of a 3-layer ANN with n, m, and p the number of input, 

hidden and output nodes, respectively, is shown in Figure 3.1: 
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Figure 3.1 Architecture of the three layers backpropagation artificial neural 

network (BPNN). 

where Yk are the output values (responses) and Xi are the input values (variables) of the 

network; Wij are the connection weights between the input layer and the hidden layer; Wjk 

are the connection weights between the hidden layer and the output layer; S is the transfer 

function. At each node, the weighted input signals are summed with a bias value (Wj). The 

combined input (Hi) then passes through the transfer function (S) to produce the output 

node (Yk) as demonstrated in Figure 3.1 [30]. The Levenberg - Marquardt back propagation 

algorithm was used for ANN model training. The proposed neural networks had two 

transfer functions, of which the first transfer function was tansig and the second one was 

linear transfer function (purelin) [27].  

A total of 44 data points, including the data from CCD experiments, single variable (alum 

dose, pH and initial cell density) and validation investigations, were used in ANN 

modelling. These data points were split randomly into training (70%), validation (15%), 

and test (15%) subsets. All variables values were normalized in the limits from -1 to +1 

using the following Equation 3.3:  
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Normalized data = [
2𝑋𝐴𝐶−(𝑋𝑚𝑖𝑛+𝑋𝑚𝑎𝑥)

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
] [31, 32]                       (Eq. 3.3) 

To match the tangent sigmoid function applied in ANN modeling, where XAC, Xmin and Xmax 

were the actual, minimum, and maximum data, respectively. A minimum mean squared 

error (MSE) shown as the following Equation 3.4, where 𝑌𝑖 and 𝑌�̂� were the ith experimental 

and predicted values were computed. The ANN model and the variation of experimental 

parameters were evaluated based on the minimum value of the MSE of the training and 

prediction set.  

MSE = 
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1                             (Eq. 3.4) 

The training parameters were used with three input nodes, 8 to 10 hidden neurons and one 

output node with respect to one response each time, learning rule: Levenberg–Marquardt, 

number of epochs: 1000, error goal: 0.0001 in this study. 

3.3 Results and discussion 

3.3.1 Algae species distribution 

As shown in Figure 3.2, more than 98% of the microalgae in the investigated water body 

were cyanobacteria (mainly Microcystis), only 0.1% and 0.34% of algae belonged to 

Oscillatoria in the two samples, while the concentration of Nitzschia palea, a diatom, was 

1.55% and 1.67%, respectively, in the two samples. The amount of Protosiphon, a 

Chlorophyta detected in sample 2 shown in Figure 3.2(b), was only 0.03%. Considering 

the average cell density of 4.6 × 106 cell/ml, water sample was seriously contaminated by 

cyanobacterial bloom, which may be due to the surrounding municipal and industrial 

wastewater discharge containing high total phosphorus and total nitrogen into water under 

mild hydrological and weather condition [33]. Therefore, as shown in Figure 3.2, 

Microcystis dominated the phytoplankton community. The average specific UV absorbance 

(SUVA) of 0.7 L/(m·mg C) indicated that the dissolved organic matter in algae-laden water 

was predominately hydrophilic, with low SUVA value (0.3-1.7 L/(m·mg C)) [34]. 
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Figure 3.2 Algal species distribution in raw water. 

3.3.2 Effect of alum dose on the coagulation performance 

Aluminum sulfate (alum) is one of the most commonly applied coagulants in water 

treatment plants, due to its cost-effectivity and widespread availability [35]. The dosage of 

coagulant is the most vital parameter for algae and dissolved organic matter removal. The 

effects of alum dose on the coagulation performance for the removal of algal cells, turbidity, 

DOC and UV254 absorbance with initial cell density of (4.9 ± 0.3) × 106 cell/ml at the 

coagulant dosage range of 3.2 – 8.1 mg Al/L (40-100 mg/L alum calculated using the mass 

of Al2 (SO4)3 18 H2O) are presented in Figure 3.3.  

 

Figure 3.3 Effect of alum dosage on coagulation performance for the water samples 

with cell density of 4.55 × 106 cell/ml without pH adjustment.  
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The coagulation performance increased with the increasing of the coagulant dose for the 

removals of turbidity, DOC and UV254 absorbance, consistent with previous results of 

increased DOM removal with the increasing alum dose to a certain point [36]. However, 

higher alum dosage will contribute to relatively high aluminum residuals causing a possible 

health hazard, although this can be remediated, even be avoided, by pH control in the 

finished water [37]. It can be noted that the cell removal efficiency reached a plateau at 

dosage ≥ 4.86 mg Al/L with the maximum algal cell removal of 81.6 ± 5.8%. With the 

increase of alum dose, the removals efficiency of turbidity, DOC and UV254 absorbance 

increased up to 97.0 ± 1.4%, 56.3 ± 3.1% and 43.0 ± 0.1%, respectively, which can be 

explained by the higher charge neutralization ability with the increase of alum dose [38]. 

However, at a higher dose, charge reversal may occur and result in a reduction of the 

removal efficiency.  Considering the potential health risk of high alum dosage, 7.3 mg Al/L 

was chosen as the appropriate alum dose for further experiments. 

3.3.3 Effect of pH on the coagulation performance 

The effect of pH on the coagulation performance was tested at variable pH between 4.5 and 

7.0 with the same initial algal cell density and coagulant dosage of 7.3 mg Al/L (Figure 

3.4). It can be noted that higher removals of all four responses occurred at lower pH of 4.5-

6.0. The maximum algal cell removal of 94.2 ± 1.6% occurred at pH 6.0; however, for 

turbidity, DOC and UV254 absorbance removals, the maximum coagulation performance of 

97.4 ± 0.2%, 53.2 ± 1.8%, and 47.7 ± 1.2% occurred at pH 5.5, 5.0 and 5.5, respectively. 

At pH lower than 5.5, positive hydrolyzates, such as Al(OH)2+, Al2(OH)2
4+ were formed by 

alum, which neutralize the exterior negative charges of cell and colloids to promote the floc 

growth by physical or chemical adsorption of destabilized cell and DOM colloids [39]. At 

pH ≥ 6.0, Al(OH)4
- formed, which was not beneficial for negative charge neutralization of 

the cells [40]. 
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Figure 3.4 Effect of pH on coagulation performance for the water samples with cell 

density of 4.5 × 106 cell/ml under the coagulation dosage 7.30 mg Al/L. 

It also indicated that the cationic [H]+ to neutralize the surface charge of algal cell required 

was less than DOM in water, so that algal cell reached the maximum removal efficiency at 

a relatively higher pH of 6 compared to DOM (represented by DOC). The pH value of 5.5 

was chosen as the most feasible pH for the removals of algal cells, turbidity, DOC, and 

UV254 absorbance. 

3.3.4 Effect of initial cell density on the coagulation performance 

It was noticed that the removal performance at various initial cell densities and the constant 

coagulant dosage resulted in different removal efficiencies. Thus, the relationship between 

initial cell density and required coagulant dosages on removal efficiency was further 

investigated at different cell density with fixed coagulation dosage and initial pH. It 

indicated that the four responses of coagulation performance increased initially then 

decreased with the increase of cell density as shown in Figure 3.5.  
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Figure 3.5 Effect of initial cell density on coagulation performance under the 

coagulation dosage 7.30 mg Al/L and pH of 5.5. 

For the water sample with low cell density (less than 2 × 106 cell/L) and concentration of 

DOM, the dosage of 7.3 mg Al/L coagulant may be considered as overdose, as the re-

stabilization of cell and organic matter occurred resulting in lower removal efficiency of 

algal cells, turbidity, DOC and UV254 absorbance. Once the cell density increased further 

with the increase of the concentration of DOM in water, the dosage of 7.3 mg Al/L 

coagulant demonstrated the maximum removal efficiency of the cell density of 3.3×106 

cell/ml. The removal percentage decreased with the increase of cell density due to relatively 

insufficient coagulant dosage.  

3.3.5 Response surface model and analysis of variance (ANOVA)  

Due to the aforementioned factors, a set of central composite design (CCD) experiments 

for optimization of parameters, such as alum dose, coagulation pH, and initial cell density 

were performed to locate the maximum removal efficiency of algal cells, turbidity, DOC 

and UV254 absorbance by Design Expert 7.0 (trial version) from the experimental data 

shown in Table 3.3.
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Table 3.3 CCD experimental design and experimental results. 

Run 
Experimental variables Removal percentage (%) 

Alum dosage/X1 (mg Al/L) pH/ X2 Initial cell density/ X3 (E+06 cell/mL) Algal cells Turbidity DOC UV254 

1 5.7 5.0 3.0 93.9 81.3 48.6 28.3 

2 8.9 5.0 3.0 92.8 92.1 46.4 20.6 

3 5.7 6.0 3.0 89.5 78.7 41.6 19.2 

4 8.9 6.0 3.0 91.5 91.3 40.9 28.9 

5 5.7 5.0 5.0 86.1 85.1 38.9 27.2 

6 8.9 5.0 5.0 96.9 91.5 44.0 15.0 

7 5.7 6.0 5.0 83.2 87.1 40.2 24.4 

8 8.9 6.0 5.0 94.7 92.8 47.1 20.1 

9 4.6 5.5 4.0 91.7 76.7 37.7 25.9 

10 10.0 5.5 4.0 92.2 89.4 47.6 24.0 

11 7.3 4.7 4.0 93.7 97.4 45.9 28.1 

12 7.3 6.3 4.0 90.1 87.7 45.3 25.4 

13 7.3 5.5 2.3 93.1 97.3 48.2 26.0 

14 7.3 5.5 5.7 92.7 93.7 43.4 24.0 

15 7.3 5.5 4.0 96.9 95.9 50.8 30.4 

16 7.3 5.5 4.0 97.5 95.9 51.6 30.0 

17 7.3 5.5 4.0 97.4 96.2 51.2 30.1 

18 7.3 5.5 4.0 97.8 96.0 51.4 30.4 

19 7.3 5.5 4.0 97.0 96.0 51.0 30.6 

20 7.3 5.5 4.0 97.1 95.9 51.0 30.0 
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Based on the experimental and ANOVA results, the quadratic regression equations were 

developed on the basis of CCD experimental sets and input variables, where X1, X2, X3, are 

the alum dosage (mg/L), coagulation pH and initial cell density (106 cell/ml), respectively, 

only significant items were presented in the regression equation presented in the Equation 

3.5-3.8.  

Cell removal/% = −168.3 + 6.1 X1 + 89.1 X2 + 1.3 X3 + 1.6 X1X3 – 0.8 X1
2 

– 8.3 X2
2 – 1.7 X3

2,                    (Eq. 3.5) 

Turbidity removal /% = −217.0 + 30.7 X1 + 72.0 X2 –1.9 X1
2 – 6.8 X2

2,              (Eq. 3.6) 

DOC removal /% = −176.0 + 14.2 X1 + 76.3 X2 – 16.3 X3 + 1.2 X1X3 + 4.2 X2X3 – 1.2 

X1
2 – 8.6 X2

2 – 2.1 X3
2,                    (Eq. 3.7) 

UV254 absorbance removal /% = −137.9 – 3.4 X1 + 47.3 X2 + 28.2 X3 + 3.9 X1X2 – 1.4 

X1X3 – 0.9 X1
2 – 6.9 X2

2 – 2.4 X3
2,                    (Eq. 3.8) 

To validate the response surface model from a statistical standpoint, the significance of the 

regression model and the lack-of-fit need to be addressed [26]. Generally, F-value or p 

value (also called the Prob>F value) are commonly used to evaluate the significance of the 

models. The larger F-value and correspondingly smaller p value, indicate the significance 

of the established regression model. A p value less than 0.05 represents that the design 

model is statistically significant. The p value for each regression model was less than 0.05 

with the lowest values of 0.0006, which indicated that each of the regression model 

obtained above was significant. The precision of the model can be demonstrated by the 

coefficient determination (R2) to quantify the strength of the correlation between the 

observed and predicted values and calculated as the following Equation 3.9 [41]: 

𝑅 = 
∑ (𝑌𝑖−𝑌�̅�)(𝑌�̂�−𝑌�̂�

̅)𝑛
𝑖=1

√∑ (𝑌𝑖−𝑌�̅�)
2𝑛

𝑖=1 √∑ (𝑌�̂�−𝑌�̂�
̅)2𝑛

𝑖=1

                            (Eq. 3.9) 

where i is the data number, 𝑌𝑖  is observed value, 𝑌�̂� is predicted value, 𝑌�̅� and 𝑌�̂�
̅  are the 

means of 𝑌𝑖 and 𝑌�̂�, respectively. 
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The R2 values for turbidity, DOC, UV254 absorbance, and cell removal efficiencies were 

determined as 0.901, 0.950, 0.893 and 0.890, respectively. The values of the coefficient of 

determination (R2 ≥ 0.89) indicated that more than 89% of the variability in the responses 

could be explained by the models. The obtained adequate precision (AP) of the models 

compares the range of the predicted values at the design points to the average prediction 

error, which indicates the signal-to-noise ratio and a ratio, greater than 4 is desirable [42]. 

In the present study, the obtained values with the minimum of 10.99 as shown in Table 3.4 

indicated an adequate signal and suggested that the models can describle the relationship 

of variables and responses successfully. 

Table 3.4 ANOVA Results for Regression Models. 

ANOVA 
Response 

Turbidity DOC UV254 Algal cells 

R2 0.909 0.952 0.893 0.890 

p 0.0006 <0.0001 0.0002 <0.0001 

Std. Dev. 2.7 1.4 1.9 1.7 

Mean 90.9 46.1 25.9 93.3 

C.V.% 3.0 2.8 7.3 1.8 

PRESS 564.5 104.2 216.7 157.1 

AP 11.1 15.8 11.0 11.6 

The coefficient of variation (C.V.%) represents the ratio of the standard deviation to the 

average response value in the model. The smaller the value is, the smaller the dispersion in 

data. In this study, the maximum C.V.% value of 7.3% was less than 15% removal 

efficiency of UV254 absorbance, which indicated that the reliability of the data was very 

high, and the experiment had high reproducibility. These findings revealed that the 

accuracy and ability of the polynomial models obtained for observed responses were 

appropriate and satisfactory.  
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Response surfaces for removal efficiency of the coagulation process for algae-laden lake 

water were created by Design-Expert 8.0 and shown in Figure 3.6. Based on ANOVA 

results, there was no interaction effect of the variables for turbidity removal. It indicated 

that alum dose and pH had the dominant effects on turbidity removal, initial cell density 

had insignificant effects even though turbidity increased with the increase of initial cell 

density in the experimental range. Figure 3.6(a) and (b) showed the response surface and 

contour plots for cell density and turbidity removal efficiency as a function of alum dose 

and pH at an initial cell density of 4.0×106 cell/ml. The highest removal efficiency (97.8%, 

97.4% for algal cells and turbidity, respectively) occurred at the alum dosage of 7.3 mg 

Al/L and pH of 5.5. The lowest removal occurred at the higher pH of 6.0 and a low 

coagulant dose of 5.7 mg Al/L. It was found that the algal cells and turbidity removal 

efficiency presented the same pattern, which decreased with increasing pH up to 6.0 at the 

low coagulant dose of 5.7 mg Al/L.  
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Figure 3.6 Surface plots of removal efficiency with the interaction of coagulant 

dosage and pH with initial cell density of 4.0 × 106 cell/ml, (a)Algal cells; 

(b)Turbidity; (c)DOC; (d)UV254. 

The interaction surface of DOC removal percentage (Figure 3.6(c)) showed a mound shape; 

axial steepness and surface curvature increase, which indicated that the interaction effect 

of coagulant dose and pH had a significant response to DOC removal efficiency. The 

response surface of UV254 absorbance removal efficiency was shown in Figure 3.6(d); the 

UV254 absorbance removal efficiency decreased significantly with the increase of initial 

cell density even at a high coagulation dose of 8.9 mg Al/L and pH of 5.5, which indicated 

that the alum applied could not remove aromatic compounds of water efficiently, and 

higher cell density competed with aromatics of water for coagulant dosage.   

Using the optimization module by Design-Expert software, the optimum parameters of 

coagulation process were obtained for the removal of algal cells, turbidity, DOC and UV254 
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absorbance. With these multiple responses, the overlaid contour plot (Figure 3.7) was used 

to visually demonstrate the optimal conditions range which the required responses can be 

simultaneously reached.  

 

Figure 3.7 Overlaid contour plot for algal cells, turbidity, DOC and UV254 removal 

percentage by alum coagulation. Data fitted by three-factor central composite 

design. 

The optimum parameters of coagulation process were determined as follows: the dosage of 

coagulation 7.6 mg Al/L, pH of 5.4 and the initial algae concentration 3.8×106 cell/ml. The 

predicated removal percentage for algal cells, turbidity, DOC and UV254 absorbance was 

97.3 ± 1.7%, 95.5 ± 2.7%, 51.2 ± 1.3% and 30.3 ± 2.7%, respectively.  

The validation tests was conducted under the optimized conditions with the coagulant 

dosage of 7.5 mg Al/L, pH of 5.5 and the initial algae concentration of 4 × 106 cell/ml. The 

actual removal performances for algal cells, turbidity, DOC, and UV254 absorbance were 

97.3%, 95.4%, 48.7%, and 28.3%, respectively. Although the equivalent alum dosage of 

1.97 × 10-9 mg Al/cell is less than that of 4.3 × 10-9mg Al/cell presented by Gonzalez [43] 

who used a higher pH of 7.0 in their study, the optimized condition in the current study for 
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algae-laden water treatment obtained a relatively higher alum dose than usual 2.5-4.0 mg 

Al/L for drinking water treatment [22]. This indicated that polymer coagulant or 

coagulation aid may be needed to reduce the alum dosage or a combination with other 

treatment, for instance, air flotation may be used. 

3.3.6 Artificial neural network 

The ANN model has been applied extensively to predict nonlinear systems due to cost and 

time effectivity and high precision [44]. Table 3.5 demonstrates ANN topology, correlation 

coefficient (R2) at training, validation, testing, and overall test and standard deviation.  

Table 3.5 Performance of ANN network models. 

Dependent 

responses 
Topology 

Correlation coefficient (R2)* 
Std. Dev. 

Training Validation Testing All 

Algal cells 3 : 8 : 1 0.907 0.919 0.865 0.886 1.3 

Turbidity 3 : 10 : 1 0.974 0.958 0.965 0.971 1.6 

DOC 3 : 10 : 1 0.979 0.901 0.994 0.973 1.2 

UV254 3 : 10 : 1 0.947 0.943 0.813 0.898 1.4 

Total 3 : 10 : 4 0.990 0.971 0.974 0.981 1.8 

Note: The associated p value of each R2 is less than 0.001. 

The topology selected was based on the performance of networks, which gave minimum 

MSE and R2 close to one. The training R2 in all cases of models propose the highest value 

because the majority of the dataset (70%) were used for training repeatedly several times 

for adjusting the weights of the network. ANN-predicted values of removal efficiencies for 

algal cells, turbidity, DOC and UV254 absorbance versus experimental data were presented 

in Figure 3.8. The linear regression analysis between ANN-predicted and observed values 

showed the minimum linear regression coefficient (R2) of 0.886 for cell removal. The 

overall R2 of the models is larger than 0.8 represents that the developed models are robust 

[45]. 
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(a) (b) 

 (c)  (d) 

Figure 3.8 The plots of predicted vs. actual values of removal efficiency by BPNN, 

(a) algal cells; (b) turbidity; (c) DOC; (d) UV254. 

Linear regression analysis was carried out between the variables (coagulation dose, pH and 

initial cell density) and removal performance (algal cells, turbidity, DOC and UV254 

absorbance) values predicted by ANN and RSM models with their corresponding observed 

values. The largest standard deviation of these four responses from RSM and ANN were 

2.7 (Table 3.4) and 1.6 (Table 3.5), respectively, which indicated that RSM model 

prediction presented a greater deviation than ANN predication. Both models presented 

stable responses, but the ANN models were better in data fitting and estimation capabilities. 

In comparison with RSM, ANN presented relatively higher average regression coefficient 

of 0.93 than 0.91 from RSM. The modeling results indicated that ANN was slightly more 

accurate for estimating the values of dependent variables as compared to the RSM models. 
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However, the RSM can be applied to analyze the factor effects (main and interactional) and 

propose regression equations for responses. Also, RSM can identify the significant main 

and interaction factors or insignificant terms in the model and thereby can reduce the 

complexity of the problem with assumption of quadratic non-linear correlation. However, 

ANN can easily overcome the limitations of RSM, inherently capture almost any form of 

non-linearity without the requirement of a standard experimental design to build the model 

[25].  

3.3.7 Mechanism of algae and DOM removal by alum 

It is well-known that four mechanisms of charge neutralization, adsorption, bridging, and 

sweep flocculation might be involved in coagulation process of natural colloids [46]. Alum 

undergoes hydrolysis to form variable mononuclear and polynuclear species depending on 

pH as shown by Equation 3.10. 

𝐴𝑙(𝐻2𝑂)6
3+ ↔ 𝐴𝑙(𝑂𝐻)(𝐻2𝑂)5

2+ →𝐴𝑙13𝑂4(𝑂𝐻)24
7+ →𝐴𝑙(𝑂𝐻)3(𝑆) ↔ 𝐴𝑙(𝑂𝐻)4

−(Eq. 3.10) 

Based on the applied dosage of 4.6-10.0 mg Al/L, the concentration of alum (as Al2 

(SO4)3.14.3 H2O) was about 50.7-111.2 mg/L in the experiments. From the results 

presented in Table 3.3, it can be seen that the maximum cell removal of 97.8% occurred at 

pH 5.5. According to the coagulation domain diagram for alum dosage at various pH 

presented by [47], the region which corresponds to the dosage of 50.7-111.2 mg/L at pH 

5.5 is in the sweep coagulation zone. In the pH range of 6.0-8.0, algal surfaces are 

negatively charged [48]. On the other hand, for alum coagulant, the dominant species of 

aluminum possibly are 𝐴𝑙13𝑂4(𝑂𝐻)24
7+  and 𝐴𝑙(𝑂𝐻)3(𝑆) at this pH range. The optimal 

coagulation for algae-laden natural water occurred around pH 5-6, which both algal cell 

and DOM are negatively charged, so that electrostatic interaction occurred between 

cationic aluminum species and cell/DOM. Therefore, both charge neutralization and sweep 

flocculation were possible mechanisms for the removal of algae and organic matter in 

present investigation. It was also indicated that charge neutralization and sweep 

flocculation to be the dominant mechanisms for DOM removal[46]. The reduced 

electrostatic repulsion between DOM colloidal particles/cells may facilitate initial 

aggregation of colloidal and fine suspended particulate to form microflocs [49], in addition, 
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the attached polyanions of DOM onto negative cell surface may also favor the 

agglomeration formation [50].   

3.4 Conclusions 

In the present study, the coagulation performance was investigated and optimized for the 

removal of algal cells and DOM from the eutrophic water sample of Lake Yangcheng. 

Based on the response surface analysis designed by CCD, the regression models for the 

coagulation performance were developed. A dosage of 7.57 mg Al/L and pH 5.42 was 

determined as optimal condition of coagulation for initial algal concentration of 3.83×106 

cell/ml and an average initial DOC of 12.41 mg/L. Charge neutralization and sweep 

coagulation were the dominate mechanisms for the treatment of algae-laden natural water. 

The variance analysis of regression models and verification tests showed that the regression 

models were effective in fitting the experimental data. The ANN model was relatively more 

accurate in estimating the values of the coagulation performance. The models developed in 

this study may provide useful treatment options for the drinking water treatment plants 

drawing surface water affected by algal blooms. 
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Chapter 4 

4 Coagulation and Disinfection By-Products Formation 

Potential of Extracellular and Intracellular Matter of Algae 

and Cyanobacteria2 

4.1 Introduction 

Due to climate change and abundance of nutrients, frequent eutrophication and outbreak of 

algal blooms and phytoplankton growth in surface water are of global concern [1-4]. While 

particulate algal cells are removed well (> 95%) during coagulation and flocculation 

processes in drinking water treatment [5-7], dissolved algal organic matter (AOM), which 

includes both extracellular organic matter (EOM) and intracellular organic matter (IOM), 

are not removed well during coagulation [8]. AOM causes a series of problems in drinking 

water treatment such as increased coagulant demand, growth of biofilm causing fouling of 

the membrane, blocking the activated carbon adsorption sites, and increased formation of 

precursors for disinfection by-product (DBP) during chlorination [8-12]. The majority of 

available literature focuses on the DBP formation from allochthonous natural organic 

matter (NOM) from detritus materials and vegetation, limited studies dealt with DBP 

formation from autochthonous NOM due to phytoplankton growth. Algal (or algogenic) 

organic matter (AOM) is composed of polysaccharide, proteins and humic-like substance, 

which has been classified as the autochthonous natural compounds in water [13]. The AOM 

is believed to comprise a substantial proportion of natural organic matter [12], and a 

dominant contributor to DBP precursors in surface water [14], and playing an important 

role in aquatic ecosystem [15], which emphasizes the importance of the investigation of 

AOM on water treatment processes. 

While EOM is present at all stages of growth of the phytoplankton, chemical coagulants 

such as alum and pre-oxidation using chlorine (to facilitate better removal by coagulation) 

 
2 A version of this chapter has been published in Chemosphere with the title of “Z. M., Zhao, et al. 

"Coagulation and disinfection by-products formation potential of extracellular and intracellular matter of 

algae and cyanobacteria." Chemosphere 245 (2020): 125669.” 
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may cause damage to algal cell integrity leading to the release of IOM, which cause taste, 

odor and toxicity in water [16]. Higher amount of trihalomethane (THM) formation 

occurred due to the release of IOM during pre-oxidation before coagulation [17]. IOM can 

also be released to treated water if coagulated species remain in the bottom of a 

sedimentation basin. However, the role of IOM vs EOM on the coagulation and disinfection 

by-production formation potential (DBPFP) is not well established due to lack of 

comprehensive control studies.  

Contradictory results are reported in literature on the nature of EOM and IOM and their 

performance in water treatment processes. It was reported that algal IOM was mostly 

hydrophilic (HPI) [13] indicating low removal potential during coagulation, while IOM of 

Microcystis aeruginosa was reported to be more hydrophobic (HPO) than EOM [18]. 

Conversely, algal EOM can act as a flocculation aid improving the coagulation efficiency 

[19]. EOM also can form chelate complexes with metal coagulants, significantly increasing 

the required dosage and reducing the treatment efficiency [20-22]. Therefore, the effect of 

AOM on coagulation in water treatment is still contradictory and specific to algal species 

[23] as the distribution of HPO and HPI fractions of AOM varies depending on the type of 

algae and stage of growth [24].  

To the best of my knowledge, there has been no systematic comparison of DBP formation   

followed by coagulation under identical treatment conditions for different species of algae 

and cyanobacteria. An earlier research investigated DBP formation from only EOM of three 

cyanobacteria, one diatom and one green algae [25]. However, they did not study the effect 

of coagulation on the removal of EOM. Comprehensive control studies are needed to 

determine the roles of specific AOM originating from commonly found, abundant algal 

species in surface water, their removal using coagulant dosages relevant to drinking water 

treatment, and subsequent DBPFP evaluation. The objectives of this study were to: (i) 

optimize the coagulation conditions to remove AOM originated from four species of algae 

Chlorella vulgaris (CV), Scenedesmus quadricauda (SQ), Phaeodactylum tricornutum 

(PT), and Aulacoseira granulata f. curvata. (AG), and two cyanobacteria Microcystis 

aeruginosa (MA), Merismopedia sp. (Msp), (ii) determine the IOM and EOM fractions of 

AOM for a known concentration of algal/cyanobacterial cells, (iii) determine HPO, HPI 
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and TPI fractions of the AOM, and their effect on the coagulation performance, and (iv) 

determine DBPFP after coagulation of the AOM of individual species. An attempt was 

undertaken to determine whether the common water quality parameter, SUVA, can be used 

as an indicator for both coagulation performance and DBPFP of algal matter.   

Cyanobacteria (Microcystis aeruginosa, Merismopedia sp.) and green algae (Chlorella 

vulgaris, Scenedesmus quadricauda) are the most abundant freshwater photosynthetic 

species in surface water during a bloom [26-28]. Diatoms such as Phaeodactylum 

tricornutum and Aulacoseira granulata f. curvata contributing to high concentration (> 10 

mg/L) of DOC, are the useful indicators of surface water eutrophication[29], causing 

significant problems in water treatment plants [30]. While nitrogenous DBPs are potentially 

more genotoxic than carbonaceous DBP, they are formed at a much lower concentration 

(Table 4.1). For example, Microcystis aeruginosa formed only 0.95 g/mg-C 

haloacetonitriles (HANs) and 0.017 g/mg-C NDMA compared to 18 g/mg-C and 13.65 

g/mg-C of HAA and THM, respectively [31], and therefore was not determined in this 

work. For brevity, hereafter, the test species will be designated by the abbreviated names 

only.  
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Table 4.1 DBP formation potential from algal organic matter. 

Algal species 

Carbonaceous DBPs  

(C-DBP) (μg/mg C) 

Nitrogenous DBPs 

 (N-DBP) (μg/mg C) Formation conditions References 

HAAs THMs HANs NDMA 

M. aeruginosa. EOM 18 13.65 0.95 0.017 under 25oC for 3 days for AOM extracted 

at late exponential phase 

[31] 

IOM 14.25 21.3 3.73 0.017 

M. aeruginosa. IOM a 117 64 1.2 0.01-0.052 under 23oC for 7 days with free chlorine 

residual of 7.6-11.1 mg/L 

[32] 

S. subspicatus EOM 37.5 20 1.1 NA under 20oC for 7 days with 5 mg Cl2/mg 

C and chlorine residual 05-1.2 mg/L, then 

quenched by ammonium chloride 

[25] 

M. aeruginosa EOM 30 45 1.35 NA 

A. granulata EOM 13.5 20 0.9 NA 

Note: a: The method of freeze−thaw sequences (−77 °C freezer, 35 °C water bath) and sonication (1 hour in an ice bath) to release the IOM. The cell debris 

was separated from the dissolved IOM through filtration (0.7 μm). 
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4.2 Materials and methods 

4.2.1 Cultivation of algae and cyanobacteria 

The four algal species and two cyanobacteria were purchased from the Canadian 

Phycological Culture Centre (CPCC) at Waterloo University (Waterloo, ON, Canada). 

They were cultivated in 2 L conical flasks in specific medium (shown in Table 4.2) for each 

species at 23 ± 2 oC using humidified air flow of 2 L/minute. All solutions were prepared 

from reagent-grade chemicals and Milli-Q water. Intermittent illumination (3000 lx) at a 

light/dark cycle (16/8 hours shift) was provided to simulate natural light condition [33]. 

The growth of each species was monitored by cell counting using hemocytometer under 

microscopy. Algae and cyanobacterial cultures were harvested at the stationary growth 

phase (25-30 days, depending on the species) [34] when the final cell concentrations were 

approximately 0.24-6.5 × 107 cells/ml.  

4.2.2 AOM extraction 

EOM of algae was separated from the harvested cell suspension using a centrifuge (Thermo 

Scientific Sorvall, Legend T Plus) at 3700 rpm and 30 minutes centrifugation time. 

Subsequently, a 0.45 µm filter (hydrophilic acrylic copolymer, Pall Corporation) was used 

to separate the supernatant containing EOM. The deposited algae on the filter was washed 

three times using Milli-Q water. Four different methods were attempted for lysis of the 

algal cells to obtain IOM as: (i) using a bead-beater at a frequency of 3500 rpm for 2 

minutes mixing with silica beads [35]; (ii) applying ultrasonication at a frequency of 50 Hz 

for 10 minutes [36]; (iii) autoclaving at 120 oC [37] for 15-30 minutes [38]; (iv) 3 cycles of 

freeze (-18 oC) and thaw (40 oC) [39]. The resultant solution was then filtered using 0.45 

µm membrane disc filters to obtain the IOM. The EOM and IOM stock solutions were 

stored at 4 oC for no more than 48 hours before characterization or preparing the feed water 

with a DOC concentration of approximately 10 mg/L for coagulation. This concentration 

was chosen to make the water quality comparable to NOM concentration in drinking water 

plants, which is around 2-10 mg/L [40]. 
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4.2.3 Characterization of AOM  

DOC of EOM and IOM was measured using a Shimadzu TOC–VCPN analyzer. Glucose 

solution was used as the standard to obtain the calibration curve with the detection limit of 

0.1 mg/L. Temperature and pH were measured using a pH meter (Orion Model STAR 

A111). A UV/Vis spectrophotometer (Shimadzu Model 3600) was used to scan a range of 

absorbance values from 200 to 300 nm with a 1 cm quartz cell to obtain the UV absorbance 

at 254 nm (UV254). The specific UV absorbance (SUVA = UV absorbance at 254 nm/DOC 

mg/L) (L·mg-1·cm), the widely used parameter for characterizing aromaticity of organics, 

was determined for all AOM samples. 

4.2.4 Determination of HPI and HPO fractions 

The resin fractionation method had been used to separate organic matter of the source water 

into HPO, TPI, and HPI fractions by adsorption using DAX-8 (Supelite, USA) and XAD-

4 (Amberlite, USA) resins in a column successively [41-43]. The process is based on 

surface adsorption equilibrium between the resin and the organic matter in water. The 

column capacity factor 𝑘′shown in the Equation 4.1 [44] is the ratio of the amount of 

organic matter retained by resin (𝐶𝑎𝑑𝑠
′ ) to the concentration of initial organic matter 

influent(𝐶𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡),  

𝐶𝑎𝑑𝑠
′ =𝑘′ ×𝐶𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡             (Eq. 4.1) 

The volume of influent passed through the column can be calculated using Equation 4.2 

[44], where the void volume 𝑉0 = 𝑉𝑏 × 𝑃, 𝑉𝑏 is the bed volume of resin and P is the resin 

porosity (0.65). Several resin fractionation procedures and quantification methods were 

developed to partition organic matter in water samples [25, 42, 45]. A value of 50 for  𝑘′ 

was generally accepted to be the column capacity for humic substances separation in 

previous investigations [46-51]. It was demonstrated that increasing the column capacity 

factor 𝑘′ would cause lower retention of the hydrophobic fraction on the column due to 

higher flow rate causing decreased yield of hydrophobic fraction [44, 52, 53]. Therefore, a 

lower column capacity of 30 was applied in this study in order to adsorb most of the HPO 

fraction in AOM solutions by DAX-8 resin as: 
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𝑉 = 2𝑉0(1 +𝑘
′)                         (Eq. 4.2) 

where V is the volume of AOM solution passed through the column, 𝑉0 is void volume and 

𝑘′ represents the column capacity.  

About 310 mL EOM or IOM solution with initial DOC of 10.43 ± 0.80 mg/L, and pH 2 

(adjusted by 10 M HCl) was passed through two 20 cm length glass columns connected in 

series and filled with 8 mL of DAX-8 and XAD-4 resin, respectively, using a constant 

flowrate of 3 mL/minute. While HPI fraction passes through both DAX-8 and XAD-4 

columns, the HPO fraction is absorbed onto DAX-8 resin and transphilic fraction is 

absorbed onto the XAD-4 resin. Thereafter, the same volume (310 mL) of 0.1 M NaOH as 

the initial water sample, was applied to elute the HPO and TPI fractions from DAX-8 and 

XAD-4 column, respectively, using the same flowrate (3 mL/minute).  DOC of each 

fraction was measured using the TOC analyzer described earlier. Before fractionation, the 

resins were rinsed with methanol, 0.1 M NaOH, 0.1 M HCl and Milli-Q water until the 

DOC of the effluent was same as that of Milli-Q water. Recovery of each fractionation 

determined from the DOC values was within 95-108 %. 

4.2.5 Coagulation of AOM 

Coagulation experiments were conducted using a Phipps & Bird programmable apparatus 

(Model PB900) with six stainless steel paddles at room temperature (~24 oC) in 500 mL 

beakers. A commonly used coagulant (Al2(SO4)3·18H2O) was added with a dosage varying 

from 30 to 60 mg/L (2.4-4.8 mg/L of Al3+) at a pH between 5.0-8.0 (adjusted by adding 

either 1N HCl or 1N NaOH); a relatively higher dosage than usual 30 mg/L in drinking 

water treatment plant was tried as enhanced coagulation. Coagulation experiments included 

rapid mixing at 150 rpm for 2 minutes, followed by a slow stirring at a speed of 25 rpm for 

20 minutes for floc growth. Thereafter, a settling time of 30 minutes was applied to 

precipitate the formed flocs, and the supernatant was analyzed to determine the residual 

DOC and UV254 values after coagulation. All experiments were performed in triplicated 

and reported with average values and standard deviation (n = 3). 
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4.2.6 Chlorination and DBPs analysis 

Chlorination of the coagulated water was conducted according to the uniform formation 

conditions (UFC) at pH 8.0 ± 0.2 with a borate buffer solution [54]. Subsequently, a 

combined hypochlorite-buffer dosing solution was added to the water samples with the free 

chlorine dosage of 1.8 times of initial DOC of the water sample [55] and stored in 

headspace-free amber glass bottles in the dark at ambient temperature (20 ± 1 oC) for 24 

hours and kept the residual free chlorine within 1.0 ± 0.4 mg/L. After 24 hours of incubation, 

the stoichiometric amount of ammonium chloride was added to quench the free residual 

chlorine in water to obtain the THMFP and HAAFP. The formation potentials of four major 

THM4, trichloromethane (TCM), bromodichloromethane (BDCM), 

dibromochloromethane (DBCM) and tribromomethane (TBM), were extracted with methyl 

tert butyl ether (MTBE) by liquid-liquid extraction following the method of USEPA 

551.1[56]. Six HAA6, monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), 

dichloroacetic acid (DCAA), dibromoacetic acid (DBAA), bromochloroacetic acid 

(BCAA), and trichloroacetic acid (TCAA) were extracted from water samples following 

the modified USEPA method 552.3 [57]. The DBPs were determined using a GC-ECD 

(Shimadzu GC-2014) with a BPX5 capillary column (30 m× 0.25 mm ID, 0.25 m film 

thickness). DBP (μg/mg C) yields were normalized by dividing the concentration of DBP 

(in μg/L) by the DOC (in mg/L).  

4.3 Results and discussion 

4.3.1 Cell growth and EOM, IOM separation 

All the algae and cyanobacteria (axenic cultures) were harvested at their stationary growth 

stage after 25-30 days of cultivation using conditions mentioned earlier. The maximum 

specific growth rates (μmax, d
-1) of CV, SQ, MA, Msp, PT and AG were 0.514 day-1, 0.362 

day-1, 0.553 day-1, 0.602 day-1, 0.869 day-1 and 0.585 day-1, respectively, which are 

comparable with earlier studies at similar conditions [18, 58-60]. In the stationary phase, 

the algal population reached the maximum cell concentration of about 21.75 × 106 cell/mL 

for PT, 9.26 × 106 cell/mL for SQ, 9.30 × 106 cell/mL for Msp, 65.38 × 106 cell/mL for CV, 

36.69 × 106 cell/mL for MA, and 2.35 × 106 cell/mL for AG. Of the two diatoms, PT and 
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AG, PT grew much faster than AG, followed by the two cyanobacteria. It should be noted 

that other than the prescribed growth medium for a particular species shown in Table 4.2, 

growth conditions such as temperature, oxygen flow and light exposure were kept 

consistent for all algae and were not optimized for any individual species.   

In order to obtain the intracellular organic matter, several cell disintegration methods 

mentioned earlier were applied to a ubiquitous green algae, CV, and the results are shown 

in Figure 4.1. Of the various methods applied for extraction of IOM, autoclaving produced 

the maximum DOC and SUVA, followed by 3 cycles of freeze and thaw. However, 

autoclaving was not used in further experiments as some alteration (hydrolysis) and 

degradation of organics structure may occur during autoclaving [61].  

 

Figure 4.1 DOC and SUVA of IOM from C. vulgaris with initial cell density of 6.5 × 

107 cell / ml obtained by different extraction methods. 

For these experiments, the DOC and SUVA values of EOM from CV were kept consistent 

at 34.09 ± 2.04 mg/L, and 0.26 ± 0.03, since all the algal suspensions were taken from the 

same stock solution. The EOM was separated using centrifugation and filtration as 

mentioned earlier. After each treatment, the released IOM is measured in terms of DOC 

and SUVA as shown in Figure 4.1 The maximum IOM production was achieved by 

autoclaving for 30 min with the DOC value of 31.37 mg/L, whereas commonly applied 

bead-beater with 2 min shaking could produce only 11.51 mg/L of DOC. Ultrasonic 
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treatment can facilitate the cell lysis due to the explosion of cavitation bubbles; however, 

the produced DOC of 19.27 mg L was lower than that of three cycles of freeze / thaw, and 

autoclave treatment for 15 min, which produced a similar IOM production with DOC value 

of 26.7 mg/L and 26.9 mg/L, respectively. Therefore, autoclaving produced the maximum 

DOC from the IOM, however, it was not used in further experiments as some alteration 

(hydrolysis) and degradation of organics structure may occur during autoclaving [1].  

It should be noted that the chemical composition and microstructure can be affected by the 

rate of freezing and thawing. The structures of aromatics like gingerol and monocyclic like 

zingibevene were affected by the freezing and thawing time [37]. For consistency, freezing 

and thawing time kept constant at 12 hours at -18 C and 4 hours at 25 C, respectively [39]. 

Production of both EOM and IOM increased with cultivation time until the stationary phase 

was reached for all six species. DOC of EOM and IOM extracted from each species with 

cultivation days are shown in Figure 4.2.   
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Figure 4.2 Organic matter produced from the algal species and cyanobacteria with 

cultivation time. 

The constituents of cellular matter such as protein, carbohydrate and lipid vary significantly 

based on the species and their growth phase. Therefore, harvesting of the algae and 

cyanobacteria was conducted once they all reached stationary stage for consistency and the 

final values are summarized in Table 4.2.   
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Table 4.2 DOC of cellular material from the six species at the stationary stage. 

Algae 
Cell Density 

(cells/mL) 

DOC (mg/L) SUVA (L/m·mg) Growth medium 

EOM* IOM EOM IOM DOC (mg/L) 

CV 6.5 × 107 28.61 ± 2.71 25.83 ±1.90 0.25 0.65  High salt 10.26 

SQ 9.3 × 106 46.24 ± 0.08 24.84 ± 2.90 0.26 0.57 High salt 10.26 

MA 3.7 × 107 68.45 ± 2.02 53.50 ± 1.86 0.55 0.67 3N-BBM 4.24 

Msp 9.3 × 106 78.10± 3.15 46.97 ± 1.29 0.55 0.56 BG-11 4.25 

PT 2.2 × 107 79.12 ± 4.99 56.13 ± 4.82 0.74 0.56 F / 2 8.76 

AG 2.4 × 106 9.28 ± 0.23 7.21 ± 0.03 0.30 0.86 CHU 10 2.38 

*the DOC value of the growth media was subtracted from the EOM DOC values, ∫ after 30 days 

cultivation at 23 ± 2oC, 16/8 hours light/dark cycle and 2 L/minute aeration.  

The diatom PT had the highest EOM excretion followed by the two species of 

cyanobacteria MA and Msp, and DOC of EOM from each species was higher than that of 

IOM at the stationary phase, which compares with the results from [62]. SUVA varied 

between 0.263 and 0.861 L/mg-m, as shown in Table 4.2 , showing relatively lower 

aromaticity compared to NOM in which can range from 1.8 to 4.4 L/m-mg [63]. SUVA 

values for the IOM were slightly higher than that of the EOM, except for PT which showed 

slightly higher SUVA for EOM than IOM. The IOM of diatom, AG showed the highest 

SUVA value. The SUVA followed the similar trend as the DOC, and compared well with 

the literature [64]. A low SUVA also suggests that IOM from CV is of more hydrophilic in 

nature [65] and mainly comprised of protein-like substances, instead of humic-like matters 

[39].  

4.3.2 Removal of EOM and IOM by coagulation 

A relatively wide range of alum dose (30-60 mg/L) was tested for the removal of DOC and 

UV254 of EOM and IOM (initial DOC of 8.5 ± 1.5 mg/L) of each species. Although the 

dosage of alum depends on initial DOC concentration, a typical dosage of 30 mg/L is quite 

common in a water treatment plant. The higher dosage was used to test whether enhanced 
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coagulation could be achieved using 40-60 mg/L (Figure 4.3). The results indicated that 

DOC removal efficiency generally increased with increasing alum dosage, but it reached a 

plateau around 40 mg/L for most cases with the exception of IOM of CV, EOM of SQ and 

EOM of Msp. Hence, there was no benefit in increasing alum dosage beyond this 

concentration for most of the cases. DOC removal efficiency of EOM followed the order 

of PT (82.69 ± 3.43%) > AG (69.90 ± 4.48%) > MA (65.29 ± 0.76%) > Msp (59.99 ± 

4.42%) > CV (24.95 ± 0.83%) > SQ (21.55 ± 0.77%).   
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Figure 4.3 The effect of alum dosage on the removal of DOC and UV254 of EOM (a, 

b) and IOM (c, d). 

Comparing the results with EOM, removal of IOM was slightly lower than EOM and varied 

between 19.31 ± 3.84% and 59.09 ± 2.41 with highest removal occurred for MA and the 

lowest removal occurred for SQ. The removal efficiency of IOM at optimum condition of 

alum dosage of 40 mg /L and pH 5 followed the order of MA (58.93 ± 0.29%) > Msp (49.28 

± 0.32%) > AG (47.50 ± 1.24%) ≈ PT (47.27 ± 0.32%) > CV (37.67 ± 2.11%) > SQ (20.54 

± 2.01%). Thus, removal of AOM of CV and SQ by coagulation was not very effective.  

The UV254 removal followed a very similar trend as that of DOC removal.  In most cases, 

DOC removal was correlated to the SUVA value of the species with some exceptions. In 
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general, aromatic compounds were better removed during coagulation. It was reported that 

for SUVA <3, DOC is hydrophilic, low in molecular weight and in charge density, and 

only slightly affected by coagulation [66]. This could explain the deviation in coagulation 

performance for both EOM and IOM with respect to SUVA as the SUVA of all cellular 

materials of AOM varied only from 0.24 to 0.861 L/m-mg. The results of coagulation of 

DOC and UV254 at dose of 30 mg/L and pH are presented in Table 4.3.  

Table 4.3 The AOM removal by coagulation with an alum dosage of 30 mg/L and at 

pH 5 and 23oC. 

Algae  
EOM IOM 

DOC UV254 DOC UV254 

CV 36.07 ± 1.30  43.75 ± 2.42 35.12 ± 0.32 43.41 ± 1.17 

SQ 16.96 ± 0.84 19.35 ± 1.52 20.75 ± 0.31 19.83 ± 1.49 

MA 76.40 ± 0.91 56.71 ± 1.49 61.81 ± 0.26 47.83 ± 2.05 

Msp 59.62 ± 1.15 29.55 ± 3.21 41.42 ± 0.29 26.36 ± 1.29 

PT 61.56 ± 7.29 32.60 ± 1.89 52.82 ± 7.17 82.00 ± 2.83 

AG 70.51 ± 2.13 40.00 ± 4.95 36.07 ± 1.30 43.75 ± 2.42 

The effect of pH on coagulation in the range of 5-8 was tested, and the results presented in 

Figure 4.4 indicated that the DOC removal for AOM decreased with increasing pH, which 

is consistent with an earlier study [67]. Maximum DOC removal for EOM occurred at pH 

5-6; at pH 5 and at a coagulant dose of 30 mg/L, monomeric Al (OH)2+and polynuclear 

Al8((OH)20
4+)  are the dominant species involved in charge neutralization of negative 

(especially carboxyl-) groups of AOM [68]. Once pH increases over 6.0, the formation of 

Al (OH)4
- species becomes dominant causing decreased DOC removal efficiency [69]. At 

pH 6 and a higher coagulant dose, restabilization may occur decreasing the removal of both 

DOC and UV254. Since most of the dose-response curves remained flat at higher Al-dosage, 

charge reversal did not occur during AOM coagulation.  

The effect of pH is more significant for the DOC removal than UV254 as can be seen in 

Figure 4.4. Aromaticity of algal matter is primarily due to proteins and amino acids, and 

pKa1 of many aromatic acids is in the range of 1.82-2.83 with isoelectric points around 
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5.07-7.59 [70]. Therefore, in the test pH range, compounds contributing to aromaticity 

probably remained neutral and their removal was not affected significantly by pH. 

Interaction of EOM with soluble aluminum ions may cause EOM-metal complexes that 

will remain in solution until either the binding capacity of the EOM is satisfied, or the 

solubility of the metal-AOM complex is exceeded [71]. However, the complex formation 

potentially decreases the coagulation efficiency. The increase in DOC removal was 

incremental for an increase in pH from 5.0 to 6.0, with a maximum of 20% increase in 

EOM removal for Msp. For other algae, the increase in DOC removal was less than 8% 

when pH was decreased from 6.0 to 5.0. Conversely, low pH will require pH adjustment 

before final distribution of water. Considering the possibility of corrosion at lower pH and 

higher chemical consumption, although pH 5.0 and 40 mg/L may be considered as the 

enhanced coagulation condition for removal of both EOM and IOM, pH 6.0 was chosen for 

further experiments. During NOM coagulation, better performance was observed for 

hydrophobic fraction of the DOC [22]. Therefore, an effort was made in this work to 

fractionate the cellular materials of all six species and determine the effect of 

hydrophobicity on coagulation.   
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Figure 4.4 Effect of pH on DOC and UV254 removal of EOM (a, b), of IOM (c, d) 

with initial DOC 8.5 ± 1.5 mg/L from individual algae and cyanobacteria.  

4.3.3 Hydrophobicity of AOM and correlation with coagulation  

The HPO, HPI and TPI contents of EOM and IOM are shown in Figure 4.5. The HPI 

fraction was the dominant fraction for all species and varied between 50 and 70%, 

consistent with earlier published results [26, 39, 72, 73]. Green algae has more HPI fraction 

than cyanobacteria, which is in accordance with Zhang et al. [73], where only 11% AOM 

of CV was HPO compared to 30% of MA [74]. In this work, the relatively higher HPO 

fraction in AOM of MA and MSP, 35.17±3.01% and 46.16 ±1.41%, respectively, compared 

to 30% HPO in MA-EOM [26, 75] is probably due to lower column capacity value of 30 
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used as explained earlier. The distribution of various fractions did not vary significantly 

between EOM and IOM, although PT (both EOM and IOM) and Msp (IOM) showed higher 

HPO fractions, causing the highest removal of AOM of PT by coagulation. The TPI of 

EOM/IOM from each species varies between 8.71 ± 0.95 % and 14.98 ± 0.66 %. TPI is of 

intermediate polarity isolated from the XAD-4 resin, and although the exact chemical 

identity of TPI is not known, they are more hydrophilic with a high proportion of carboxylic 

acid functionality [76] and may not be removed well due to coagulation. Except for PT, all 

the other species investigated in this work had higher HPO fraction in IOM than that in 

EOM, which is in agreement with the results from [77], where IOM from MA contained 

more HPO fraction with higher MW than EOM. 

 

Figure 4.5 Resin fractionation results of EOM and IOM for the six species. (DOC 

recovery varied from 95-108%).  

The cellular composition of each algal species collected from literatures was presented in 

Table 4.4. The HPI fraction including carbohydrates and proteins are dominant constituents 

of each species. All AOM investigated was predominately hydrophilic with low SUVA 

except PT. It has the highest amount of protein and lipid percentage than other algae, which 

may account for its relatively higher HPO ratio [78]. 
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Table 4.4 Chemical composition of algal cell based on dry-weight*. 

Algal species Proteins (%) Carbohydrates (%) Lipids (%) References 

CV 54.65 ± 0.07 12.09 ± 3.17 12 ± 0.2 [5, 6] 

SQ 7.15 50.4 35.7 [7] 

MA 30-45 5-10 18.48-30.32 [8, 9] 

Msp 29-45 35-57 10 ± 0.7 [6, 10] 

PT 53.2 11.2 35.6 [11] 

AG 47.9 36.3 15.8 [11] 

* Organic solvent extraction was applied to isolate lipid after cell mechanical disruption   

It was reported that the ratio of HPO and HPI organic matter can be used as an indicative 

parameter to quantify the treatability of NOM, especially DOC [22, 79]. During the 

coagulation-flocculation process, AOM can also act as a ligand to bind hydrous aluminum 

in-situ forming gelatinous precipitate, which can act as adsorption sites for further AOM 

[80]. Since the TPI fraction with carboxylic acid are more hydrophilic than hydrophobic, 

the DOC removal of AOM for all six species was plotted with the ratio of HPO to (HPI 

+TPI) (Figure 4.6).   
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Figure 4.6 Correlation of HPO/(HPI+TPI) with DOC removal at different alum 

dosages.  

The DOC removal increased with the increase of HPO/(HPI+TPI) ratio until the value 

reached 0.8 showing a non-linear behavior (fitted using Origin Pro 9.0 LangmuirEXT1 with 

the parameters shown in Table 4.5) [81]. Equation 4.3 shown below fitted the experimental 

data well with correlation co-efficient R2 ≥85% for alum dosage of 30 and 40 mg/: 

  𝑦 = 
𝑎∙𝑏𝑥(1−𝑐)

1+𝑏𝑥(1−𝑐)
                           (Eq. 4.3) 

where, y represented the DOC removal percentage, which is equivalent to fractional 

coverage, θ, in the most used Langmuir adsorption isotherm 𝜃 =
𝐾𝑐

1+𝐾𝑐
 [82]. The x is the 

ratio of HPO/(HPI+TPI), which indicates the hydrophobicity of AOM solution, and b is 

equal to the equilibrium constant K (K = ka/kd), where ka and kd are the rate constants for 

adsorption and desorption, respectively. The value of b in Equation (3) illustrates how the 

coagulant flocs or particulates surface sites become saturated as the hydrophobicity of the 
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solution rises. The magnitude of b quantifies the affinity of the AOM for surface adsorption. 

The a and c are fitting parameters without much physical significance.  

The removal of AOM varies from 53.36% to 64.89% with the increase of alum dosage from 

30 to 50 mg/L (Figure 4.6), more scatter in data can be seen at alum dosage of 50 mg/L. 

Such high alum dosage is also not advised due to adverse effect of Al3+ in treated water. 

The higher value of constant “b” (Table 4.5) at 30 mg/L indicates higher dependence of 

coagulation performance on dosage at lower HPO/(HPI+TPI) ratios. 

It is interesting to see that higher than 65% AOM removal was not possible even at 

HPO/(HPI+TPI) ≥1.0 and at a higher alum dosage, and overdosing was not achieved, 

indicating charge reversal or restabilization of polymeric species were not factors, and no 

precipitation also can be observed. 

Table 4.5 DOC removal parameters of AOM using alum at pH 6. 

Alum dosage 

mg/L 

Parameters Regression 

coefficient 

p value 

a b c  

30 55.51 1322.67 -7.28 0.904 < 0.0001 

40 57.38 248.89 -4.95 0.857 < 0.0001 

50 65.25 259.27 -4.89 0.799 < 0.0001 

4.3.4 DBP formation potential of various fractions of AOM   

After chlorination using the UFC method, the specific DBPs produced by EOM and IOM 

from six species are shown in Figure 4.7. In agreement with the coagulation results 

presented earlier, specific THM and HAA formation potential remained constant for 

different doses of alum for all species. This is expected as the DBPFP was normalized with 

the corresponding DOC values; constant values indicate good reproducibility of 

coagulation and DBPFP experiments. A small increase/decrease in formation potential is 

mostly due to analytical error. Despite higher removal of DOC for PT, it showed the highest 

amount of DBP formation potential with 146.0 ± 16.64 μg/mg C of HAAs and 124.01 ± 

11.07 μg/mg C of THM from the EOM, and 91.80 ± 1.02 μg/mg C HAAs and 75.91 ± 2.50 

μg/mg C THM from the IOM, respectively, shown in Table 4.6. PT produced large amount 
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of AOM, especially relatively higher percentage of lipids causing higher amount of 

polyunsaturated fatty acids released by autolysis of the cells. Except PT and MA, IOM from 

four other species (CV, SQ, Msp and AG) presented higher specific HAAFP and THMFP 

than the corresponding EOM probably due to the higher aromatic and aliphatic 

proteinaceous substances in IOM with higher activity for chlorine substitution. Amino 

acids as the important constituents of algal organic matter have been reported for HAA 

formation [83], whereas carboxylic moieties in EOM likely to be unfavorable for 

substitution reaction with chlorine [84]. 

 

Figure 4.7 The specific DBP formation potential from different algal and 

cyanobacterial species after coagulation. 

The DBPFP values produced in this work are in the range of limited values found in 

literature for different algae. A relatively higher proportion of HPO fraction in IOM than 
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EOM from MA was also reported by [62]. Higher THM formation for the MA-IOM with 

20 μg/mg C as compared to 10 μg/mg C for the MA-EOM was reported [85]. Another study 

reported specific yields of chloroform, chloroacetic acid to be 32.44, 54.58 μg/mg C, 

respectively for MA-EOM, and 21.46, 68.29 μg/mg C for MA-IOM [62]. The two 

cyanobacteria (MA and Msp), with higher nitrogen fixation capability and releasing up to 

45% of organic nitrogen [86], caused substantial amount of THM and HAA formation. 

Both MA and Msp contain significant amount of proteins in their AOM (Table 4.4); organic 

nitrogen also contributes to a large amount of active sites to derive THM and HAA [87, 

88]. Amino acids can produce an unstable intermediate dichloroacetonitrile to react with 

chlorine and form THMs an HAAs [89].  

Table 4.6 Average specific DBPFP for various species after coagulation. 

Algae 
Specific HAAFP (μg/mg C) Specific THMFP (μg/mg C) 

EOM IOM EOM IOM 

CV 14.83 ± 0.56 22.20 ± 2.86 12.66 ± 1.74 17.68 ± 0.77 

SQ 23.36 ± 0.29 25.77 ± 0.41 14.17 ± 0.42 22.67 ± 2.83 

MA 28.46 ± 3.74 30.52 ± 3.13 21.34 ± 2.98 24.44 ± 0.83 

Msp 62.98 ± 4.82 65.30 ± 4.99 54.66 ± 4.78 62.61 ± 10.37 

PT 146.26 ± 16.64 91.80 ± 1.02 124.01 ± 11.07 75.91 ± 2.50 

AG 56.80 ± 14.83 66.30 ± 3.36 72.91 ± 2.50 56.92 ± 5.58 

The correlation between SUVA and specific DBP formation potential (HAAPF and 

THMPF) from AOM is presented in Figure 4.8 with the correlation coefficients of 0.718 

and 0.662 for specific HAAFP and specific THMFP, respectively.  
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Figure 4.8 Correlation between SUVA of AOM and formation of  

HAAPF (a), THMFP (b). 

Higher correlation coefficients 0.83 and 0.81 for HAAFP and THMFP, respectively with 

SUVA were presented in previous study [90], for NOM in algal-rich water with a DOC 

solution of much higher SUVA of 2-5 L/m·mg. Generally, DBPFP prediction capability of 

SUVA is weak in water with low SUVA values [91]. An attempt was made to evaluate the 

DBP formation potential of each fraction (HPI, TPI and HPO) from AOM, following the 

UFC method and the results are shown in Figure 4.9. It can be seen that the HPO fractions 

are the dominant DBP precursors; only exception of EOM of SQ, which had one of the 

lowest SUVA values. The results are consistent with an earlier study which more reactive 

HPO materials in water resulted higher DBPFP [92]. These results suggest that HPO/HPI 

ratio is a good indicator for THMFP for DOM irrespective of the nature and source of DOM.  
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Figure 4.9 HAAFP and THMFP percentage of hydrophilic (HPI), transphilic (TPI) 

and hydrophobic (HPO) fractions of different species. 

4.4 Conclusions 

Coagulation performance and DBPFP for both extra- and intra-cellular materials of four 

algae and two cyanobacteria were determined. The work conclusively has shown that at 

optimum coagulation condition of pH 6 and alum dosage of 40 mg/L, an average of 47.43% 

and 40.43% AOM removal in terms of DOC and UV254 can be achieved, and removal 

correlated well with the HPO/(HPI +TPI) ratio and SUVA. The DBPFP was determined 

using uniform formation condition and the specific DBP value varied from 14.83 ± 0.56 

μg/mg-C to 146.26 ± 16.64 μg/mg-C. The diatom, PT, produced the highest amount of DBP 

followed by the cyanobacterium Msp. The HPO fractions of cellular material contributed a 

majority of DBPFP, which are moderately correlated to SUVA (R2  0.662-0.718), due to 

low SUVA values of the cellular materials. Although HPO fraction of the cellular material 

was removed better during coagulation, higher specific DBPFP also occurred for this 

fraction for most species. Similar to NOM, SUVA and hydrophobicity of AOM can be used 

as a surrogate parameter to predict the coagulation performance and DBPFP from algal 

matter. Although IOM produces higher amount of DBP, their concentration in natural water 

is low except for massive algal bloom collapse or during pre-oxidation before coagulation. 
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Chapter 5 

5 Adsorption of algal organic matter onto granular activated 

carbon 

5.1 Introduction 

Algae bloom in surface water is an increasing worldwide concern due to significant 

secretion of intracellular and extracellular material increasing the color and odor of the 

water. The released algal organic matter (AOM) is primarily composed of polysaccharides, 

proteins and lipids, and is the major component of the dissolved organic matter (DOM) in 

surface water sources [1]. DOM of water increases coagulation demand, causes clogging 

of the filter and membrane, and increases disinfection by-product (DBP) formation [2]. The 

conventional drinking water treatment processes, such as coagulation and flocculation, can 

effectively remove the particulate algae cells in drinking water plants. However, these 

processes are ineffective in removing the dissolved organic matter (DOM) derived from 

algae, only partial removal occurs at extended coagulation conditions [3, 4]. Our earlier 

research showed that a maximum of 50-60% removal of AOM from six different algae 

occurred by enhanced coagulation at a higher alum dose of 50 mg/L at pH 5.0-6.0 [5].  

Activated carbon adsorption is regarded as one of most effective technologies employed 

widely to remove DOM, turbidity, and DBP precursors [6-8]. Using mostly once-through 

operation, powdered activated carbon (PAC) is commonly applied in water treatment plants 

for micropollutant removal [9] and odor and/or taste control [10]. Although, PAC is 

removed in a downstream filter in the treatment plant requiring no further treatment, there 

is potential for some leakage of carbon into treated water.  Conversely, granular activated 

carbon (GAC) with proper bed design and routine maintenance can be used more 

effectively at low cost for several years to remove trace organics and natural organic matter 

from surface water [11, 12].  
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The removal of DOM by activated carbon adsorption is affected by a number of parameters 

including initial DOM concentration, ionic strength, pH, molecular size distribution of 

DOM, and temperature [13]. To date, most studies on the adsorption of AOM on activated 

carbon concentrated on the removal of natural organic matter (NOM) [14-16] or a specific 

micropollutant in presence of NOM [8, 17, 18], while algal matter is an integral part of 

NOM in a eutrophic water. Only a few studies have dealt with the adsorption of AOM [19, 

20]; in most cases, water collected from surface water sources was treated using activated 

carbon, where the DOM is composed of both algal matter and humic acid. The equilibrium 

and kinetics of adsorption of two algal odorants, dimethyl trisulfide and β-cyclocitral on 

GAC were investigated in presence of NOM; NOM inhibited the adsorption rate for the 

two odorants [21]. No study was found on the adsorption of algal matter on activated carbon 

separated from the growth of algae in control conditions. For large-scale applications, 

leading to the objectives of the present work.  In this work, adsorption of extracellular 

organic matter (EOM) from C. vulgaris (green algae), Merismopedia sp. (cyanobacterium), 

and P. tricornutum (diatom) was characterized and the adsorption behavior was compared 

with that of humic acid. Only EOM was tested in this work as intracellular organic matter 

(IOM) is only present in water when lysis of algal cells occurs under some stress conditions 

such as pre-oxidation due to chlorination and ozonation or in case of excess algal bloom 

[22, 23].  

5.2 Materials and methods 

5.2.1 Algal cultivation and algal organic matter preparation 

Three algae strains were originally purchased from Canadian Phycological Culture Centre 

(P. tricornutum (PT), strain no. CPCC 162 cultivated in F/2 medium in artificial seawater, 

Merismopedia sp. (Msp)strain no. CPCC 711 cultured in BG-11 medium in deionized water) 

and University of Texas at Austin and Chlamydomonas Resource Center (C. vulgaris (CV), 

strain no. UTEX 2714 cultured in High Salt medium in deionized water). For the rest of the 

discussion in this paper, the algae species are referred by their abbreviated names shown in 

the parentheses. The algae strains were inoculated in sterilized media with illumination 

(3000 lx) of a 16/8 hours light / dark cycle at 25°C for 30 days when the algal species reach 
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stationary growth phase. EOM of algae was separated from the harvested cell suspension 

using a centrifuge (Thermo Scientific, Legend T Plus) at 3700 rpm for 30 min. 

Subsequently, the obtained supernatant was filtered by a 0.45 µm hydrophilic acrylic 

copolymer filters (Pall Corp.) to obtain EOM. Measured as DOM, algal extracellular 

materials are complex organics comprised of polysaccharides, proteins, lipids, etc. 

However, instead of individual constituents of algal matter, it is more practical to determine 

the adsorption capacity of activated carbon for the removal of AOM as DOM. 

Concentration of DOM in the samples before and after adsorption was quantified as 

dissolved organic carbon (DOC) using a Shimadzu TOC–VCPN analyzer which was 

calibrated by a standard glucose solution to obtain the calibration curve with the detection 

limit of 0.1 mg/L. Commercial humic acid (HA) with an average molecular weight of 

39.098 kDa was purchased from Alfa Aesar (Thermo Fisher Scientific, CA). A stock 

solution of HA was stored in amber glass bottle and protected from the sunlight. HA 

working solution with approximately 7.5 mg/L of DOC was prepared from the stock 

solution and then filtered through 0.45 μm membrane filter mentioned above before being 

used in the experiments. The pH and temperature were measured using a pH meter (Orion 

Model STAR A111). The UV/Vis spectrophotometer (Shimadzu Model 3600) was used to 

scan a range of absorbance values from 200 to 300 nm with a 1 cm quartz cell to obtain the 

ultraviolet absorbance at 254 nm (UV254) for the AOM. 

The commercial granular activated carbon (GAC) was an extruded activated charcoal (CAS 

Number: 7440-44-0, Norit ROW 0.8 SUPRA) purchased from Sigma-Aldrich (Canada Co). 

The GAC surface properties were analyzed in an earlier work [23] at our lab: surface area 

≈1400 m2/g; microporous area ≈ 766 m2/g; mesoporous area ≈ 634 m2/g; pore size ≈ 2 nm; 

total pore volume ≈ 0.7 cm3/g. The GAC was washed by Milli-Q water to remove the fines 

and then dried in an oven at 105 °C overnight, and subsequently stored in a desiccator prior 

to the experiments. 

5.2.2. Batch adsorption experiments 

The adsorption experiments were carried out in 500 mL Erlenmeyer flasks containing 400 

mL of DOM (either AOM or humic acid) solution using a Max Q 400 Bench-top Orbital 
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Shaker (Thermo Scientific, Canada) operated at four temperatures (296, 303, 308 and 313K) 

using 200 rpm of agitation. Since surface- and ground-water contain DOC in the range of 

2-10 mg/L [24], initial DOC concentration of both AOM and humic acid was kept in this 

range. The required amount of GAC was added into the DOM solution with an initial DOC 

of 7.4 ± 0.5 mg/L. The pH of solution was adjusted using 1M HCl or 1M NaOH to reach 

the initial pH values between 5-8 prior to adsorption. About 10 mL of samples were 

collected from each flask at certain time intervals and filtered through 0.45 μm membrane 

filter, followed by the DOC and UV254 measurement. Triplicate experiments were 

performed at each adsorption condition. 

through 0.45 μm membrane filter followed by the DOC and UV254 measurement.  

5.3 Results and discussion 

The adsorption of AOM onto the GAC is affected by various factors such as contact time, 

the adsorbent dosage/adsorbate concentration, pH of the solution and temperature [25].  

5.3.1. Influence of contact time 

To determine the equilibrium time for maximum uptake, the adsorption experiments were 

performed with GAC dosage of 1.2 g/L for DOM solution with initial DOC of 7.50 ± 0.48 

mg/L at 296 K for different contact time up to 12 h. It is indicated in Figure 5.1 that the 

removal of DOM by adsorption reached a plateau after 10 h, so that a contact time of 12 h 

was taken to be the equilibrium time, which is comparable to the adsorption of other 

organics on activated carbon such as humic acid [26]. It was also demonstrated in Figure 

5.1 that the adsorption was relatively rapid within first 4 h and gradually slowed until it 

reached equilibrium after 10 h. This is typical of any adsorption process when initial rapid 

adsorption occurs due to the availability of a large amount of vacant surface sites. However, 

comparing adsorption of many organics on GAC [8, 20, 21, 27, 28], where most adsorption 

occurs within first few minutes, the adsorption of AOM is somewhat low. The rate of 

adsorption declined approximately after 10 h, as the remaining vacant sites on adsorbent 

are difficult to occupy probably because of the repulsive forces between DOM [27, 28]. It 

can be seen from Figure 5.1a, that the highest removal efficiency of 62.58 ± 0.23 % 
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occurred for CV-EOM followed by PT-EOM, HA and Msp-EOM, with 41.69 ± 0.62 %, 

26.92 ± 0.23 % and 23.95 ± 0.07 %, respectively.  

  

Figure 5.1 Effect of contact time on GAC adsorption for AOM removal as DOC 

(a) and UV254 (b) (initial DOC = 7.50 ± 0.48 mg/L, agitation speed = 200 rpm, 

GAC dosage = 1.2 g/L, pH =7 and Temperature = 296 K). 

It was noted that UV254 removal for three EOM (Figure 5.1b) was higher than that of DOC 

removal, and HA showed a comparable removal percentage for both DOC and UV254, 

which indicated that the aromatic and compounds containing unsaturated bonds or humic 

substances in DOM solution are the major substances to be adsorbed onto GAC. The 

hydrophobicity of the EOM of the tested in an earlier work in our group [5]. Although, the 

EOM of CV had the lowest amount of hydrophobic compounds compared to Msp and PT, 

highest adsorption occurred for the EOM of CV. The AOM of CV also had higher amounts 

of protein compared to PT and Msp [5]. This may be also due to the higher percentage of 

low molecular weight (< 1 kDa) fraction in in CV-EOM [29, 30]. In general, adsorption of 

EOM on GAC increased with the increased hydrophobicity; however, HA (MW > 39 kDa) 

and Msp-EOM comprised with higher portion of high molecular weight ( 1 < MW < 10 

kDa ) fraction [31] which resulted in the relatively low adsorption onto GAC [32].  

5.3.2. Influence of GAC dosage  

The influence of GAC dosage on the removal of DOM was determined in the range of 0.2 

to 1.4 g/L, as shown in Figure 5.2. As expected, the percentage of DOM removal in terms 
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of DOC and UV254 increased with the increase of GAC dosage, as the number of available 

adsorption sites increased by increasing the adsorbent dose. However, at a larger dosage, 

agglomeration of GAC occurs reducing the adsorption sites. The removal of UV254 is 

typically higher than that of DOC, as aromatic compounds are better adsorbed on GAC.  

  

Figure 5.2 Effect of GAC dosage on AOM removal in term of DOC (a) and UV254 

(b) (initial AOM concentration (DOC) = 7.4 ± 0.5 mg/L, agitation speed = 200 

rpm, contact time = 12 hours, pH =7 and temperature = 296 K). 

5.3.3. Influence of initial pH 

The pH affects not only the surface charge of the adsorbent and the dissociation of 

functional groups on the active sites of the GAC, but also the degree of ionization of the 

DOM present in the solution [25, 33]. In this study, DOM adsorption by GAC was carried 

out in the pH range of 5.0-8.0. Figure 5.3 shows the effects of pH on the removal of DOM 

as DOC and UV254. The extent of adsorption decreased significantly with pH increasing 

from 5.0-8.0, with the maximum adsorption efficiency for each species was attained at pH 

5 with the DOC removal of 73.23 ± 2.96%, 53.02 ± 0.49%, 47.69 ± 3.71%, 22.65 ± 1.09%, 

for CV-EOM, PT-EOM, Msp-EOM and humic acid, respectively. UV254 removal also 

followed the same trend with highest removal occurring at the lowest pH of 5.0.  
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Figure 5.3 Effect of initial pH on GAC adsorption for AOM removal in term of 

DOC (a) and UV254 (b) (initial DOC = 7.4 ± 0.5 mg/L, agitation speed = 200 rpm, 

contact time = 12 hours, GAC dosage = 1.2 g/L and temperature = 296 K). 

Generally, DOM derived from algal cells or HA comprises of various polymeric 

components such as polysaccharide, lipid, proteins [34] and humic substances [35] with 

major functional groups such as carboxylic and phenolic, which are deprotonated at higher 

pH. The point of zero charge for the commercial GAC was determined to be 9.5 [36] 

Therefore, the GAC surface remained mostly positively charged at pH 5.0, and the higher 

adsorption at low pH is probably due to the electrostatic attraction between the positively 

charged GAC surface and partially deprotonated carboxylic and phenolic groups of AOM 

and HA, and also due to hydrophobic interactions between the carbon surface and the 

neutral compounds [37].  

5.3.4. Effect of solution temperature 

The influence of temperature from 296 K to 313 K on adsorption equilibrium is presented 

in Figure 5.4. It was observed that the removal of DOM from different algae increased with 

increase in temperature, which was in accordance with earlier results of increased 

adsorption of natural organic matter (NOM) [13, 38]. As shown in Figure 5.4a, CV-EOM 

presented the highest increase (18.46 %) with increasing temperature from 296 K to 313 K, 

followed by 9.54 %, 8.96 % and 5.54 % for Msp-EOM, PT-EOM and HA, respectively. 
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The UV254 removal (Figure 5.4b) of each DOM was higher than the corresponding DOC; 

the highest increase (10.85%) in removal was observed from PT-EOM, followed by Msp-

EOM, HA and CV-EOM with increased removal percentage of 9.29%, 8.15% and 0.87%, 

respectively.  

  

Figure 5.4 Effect of temperature on GAC adsorption for DOM removal in term of 

DOC (a) and UV254 (b) (initial DOM concentration (DOC) = 7.42 ± 0.31 mg/L, 

agitation speed = 200 rpm, contact time = 12 hours, GAC dosage = 1.2 g/L and pH 

= 7.0). 

This endothermic nature of the adsorption process indicates chemisorption of DOM on 

GAC surface. Similar increase in adsorption due to increase in temperature was seen by 

several researchers for the adsorption of NOM on GAC.[39] It was indicated that NOM 

forms larger aggregates at lower temperatures, but disintegrates into smaller molecules at 

higher temperatures, which can diffuse with relative ease into micropores of activated 

carbon, increasing adsorption at higher temperature.  

5.3.5. Adsorption equilibrium 

Both Langmuir and Freundlich models were applied to evaluate the most suitable 

adsorption isotherm for the DOM adsorption onto GAC. The Langmuir model was derived 

from the assumptions that adsorption occurs on a homogenous surface of an adsorbent and 
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forms a monolayer on the surface of the adsorbent, with uniform adsorption energies [40]. 

The linear form of the models can be expressed as the following Equations 5.1 and 5.2.  

1

𝑞𝑒
=

1

𝑞𝑚𝐾𝐿

1

𝐶𝑒
+

1

𝑞𝑚
                                            (Eq. 5.1) 

where Ce is the DOM concentration in solution (mg/L) at equilibrium, q
e
 denotes the 

amount adsorbed at equilibrium (mg/g), q
m

 is the maximum adsorption capacity of GAC 

(mg/g), KL is the adsorption constant at equilibrium. 

𝑅𝐿 =
1

1+𝐾𝐿𝐶0
                                                  (Eq. 5.2) 

The RL is the separation factor, which demonstrates the feature of the isotherms to be either 

irreversible (RL = 0), favorable (0 < RL <1), linear (RL = 1) or unfavorable (RL >1) [41]. 

The Freundlich model describes a multilayer adsorption with non-uniform affinity over a 

heterogeneous surface with non-uniform heat of adsorption [42]. The linear form of the 

Freundlich model can be expressed as the following Equation 5.3.  

log𝑞𝑒 = log𝐾𝐹 +
1

𝑛
log 𝐶𝑒                                      (Eq. 5.3) 

where KF is a constant associated with the adsorption capacity and 1/n is an empirical 

parameter relating the surface affinity, which varies with the heterogeneity of surface site 

energy distribution [20]. The calculated model parameters are summarized in Table 5.1 and 

the fitted models are shown in Figure 5.1.  

To elucidate the adsorption capacity of GAC for each type of AOM, the equilibrium 

adsorption data for each AOM were analyzed using Langmuir, Freundlich Equation 5.1-

5.3. The calculated parameters are summarized in Table 5.1.and shown in Figure 5.5. 
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Table 5.1 Analysis of Langmuir and Freundlich adsorption isotherm parameters by linear regression method. 

Isotherm parameters CV-EOM Msp-EOM PT-EOM HA 

Langmuir adsorption DOC UV254 DOC UV254 DOC UV254 DOC UV254 

qm (mg/g) 31.45 1.02 4.24 0.17 22.88 0.27 7.90 0.16 

𝐾𝐿 0.09 3.10 0.16 7.04 0.03 10.33 0.04 5.05 

𝑅𝐿 0.63 0.77 0.45 0.84 0.80 0.68 0.77 0.24 

R2 0.98 0.94 0.93 0.98 0.98 0.98 0.93 0.94 

Freundlich adsorption  

𝐾𝐹 (L/g) 6.89 1.38 0.83 0.723 0.83 1.42 0.38 0.14 

n 1.19 1.27 1.973 1.11 1.18 1.15 1.26 3.66 

R2 0.98 0.95 0.943 0.98 0.98 0.98 0.93 0.95 
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The R2 values of the Langmuir (average R2 = 0.957) and Freundlich (average R2 = 0.962) 

isotherms for all DOM (for both DOC and UV254) were all above 0.95 and indicated that 

the adsorption data were fitted well by both models. The maximum adsorption capacities 

of GAC for DOC removal calculated by the Langmuir model were 31.45 mg/g, 4.235 mg/g, 

22.88 mg/g, and 7.899 mg/g for the DOC of CV-EOM, Msp-EOM, PT-EOM and HA, 

respectively. A comparable adsorption capacity (5 - 9 mg DOC/g GAC) for HA adsorption 

was also reported in previous study indicated that GAC presented a poor adsorption for 

high MW of HA. [32]. The adsorption capacity of Msp-EOM was the lowest, and 

comparing with the earlier work on the adsorption of naphthenic acids on the same GAC, 

the capacity for DOM is much lower compared to the naphthenic acids [36, 43]. The value 

of 𝑅𝐿 from the Langmuir model varies from 0.241 to 0.880; in addition, the obtained values 

of n (within the range of 1.108 and 3.660) from the Freundlich model inferred that DOM 

removal by GAC was a favorable adsorption process [41],  the values of n were more close 

to 1, which demonstrated that the surface heterogeneity of GAC is a less significant factor 

for adsorption [11].  
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Figure 5.5 Adsorption isotherms of DOM onto GAC by Langmuir modeling for 

DOC (a) and UV254 (b) removal, Freundlich modeling for DOC (c) and UV254 (d) 

using C0 = 7.373 ± 0.286 mg/L, T= 296 K, pH = 7, t =12h. 

5.3.6. Adsorption kinetics  

Adsorption kinetics quantitatively describes the rate of adsorption. The kinetics of DOM 

removal by GAC were analyzed using pseudo-first-order and pseudo-second-order models 

to fit the experimental data, the intraparticle diffusion model was also further applied to 

analyze the kinetic data [40].  
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The pseudo first-order model can be expressed by following linear Equation 5.4 and 5.5: 

log(𝑞𝑒 − 𝑞𝑡) = log 𝑞𝑒 −
𝑘1

2.303
𝑡                                  (Eq. 5.4) 

𝑞𝑡 =
(𝐶0−𝐶𝑡)𝑉

𝑚
                                               (Eq. 5.5) 

Where k
1 
(h

-1
) is the pseudo-first-order adsorption kinetic constant; q

t 
is the amount of DOM 

adsorbed at time t (h); and q
e 
refers to the amount adsorbed at equilibrium, both in mg/g. 

Co is the initial DOM concentration in solution (mg/L), and Ct is the DOM concentration 

in solution at time t (h). The k
1 
and q

e 
values are obtained by plotting log (q

e
-q

t
) as a function 

of t. 

The pseudo-second-order model derived from the adsorption capacity at equilibrium can 

be described by the following Equation 5.6: 

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

𝑡

𝑞𝑒
                                            (Eq. 5.6) 

where k
2
 (g/mg min) is the rate constant at equilibrium for pseudo second-order adsorption. 

q
t
 and q

e
 (mg.g-1) are the amounts of DOM adsorbed at time t and at equilibrium, 

respectively. 

The calculated kinetic parameters including the first-order rate constant k
1
, the second-

order rate constant k
2
, experimental equilibrium adsorption amount qe, exp and theoretical 

equilibrium adsorption amount qe, cal for each DOM, and regression coefficients (R2), are 

presented in Table 5.2 and Figure 5.6. 

The precision of model fitting was evaluated by the value of regression coefficients (R2) 

and comparing the value of qe, exp and qe,cal. The theoretical equilibrium adsorption 

capacities calculated from the pseudo-second-order model for each DOM compared well 

with the experimental data, with higher R2 value demonstrating the validity and superiority 

of the second order model than pseudo-first-order model. Based on the findings, it can be 
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concluded that the pseudo-second-order model better describes DOM removal by GAC 

adsorption. 

 
 

  

Figure 5.6 Kinetic modeling for AOM adsorption; Pseudo-first-order kinetic model 

DOC (a)  and UV254 (b); pseudo-second-order kinetic model DOC (c)  and UV254 

(d), under adsorption condition of C0 = 7.573 ± 0.359 mg/L, T= 296 K, pH = 7. 
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Table 5.2 Parameters of the pseudo-first and pseudo-second order kinetic models. 

Kinetic parameters CV-EOM Msp-EOM PT-EOM HA 

Pseudo-first-order DOC UV254 DOC UV254 DOC UV254 DOC UV254 

k1 (h
-1) 0.21 0.39 0.23 0.26 0.25 0.25 0.23 0.36 

qe,cal (mg/g) 3.21 0.09 1.43 0.01 1.72 0.03 1.66 0.57 

∆q(%) -26.8 24.4 -10.2 -22.6 -37.4 -18.9 -19.1 29.9 

R2 0.95 0.98 0.98 0.95 0.91 0.96 0.86 0.98 

Pseudo-second-order  

k2 (g/(mg·h) 0.18 5.91 0.43 52.1 0.17 3.41 0.24 2.65 

qe,cal (mg/g) 4.67 0.09 1.52 0.01 3.357 0.07 2.02 0.16 

∆q(%) 6.69 19.42 -4.82 11.13 21.77 4.57 -1.66 13.56 

R2 0.99 0.99 0.99 0.99 0.94 0.97 0.99 0.99 

Intraparticle diffusion         

kd1 (mg/(g·h0.5) 1.33 0.03 0.55 0.01 0.62 0.01 0.77 0.04 

C1 0.95 0.001 0.12 0.001 1.03 0.003 0.18 0.02 

R2 0.97 0.98 0.99 0.96 0.89 0.94 0.94 0.99 

kd2 (mg/(g·h0.5) 0.25 0.002 0.22 0.002 0.07 0.005 0.23 0.01 

C2 3.48 0.07 0.79 0.01 0.20 0.02 0.94 0.10 

R2 0.98 0.68 0.92 0.97 0.75 0.94 0.57 0.99 
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Figure 5.7 Intraparticle diffusion plot for GAC adsorption of DOM removal in 

term of DOC (a) and UV254 (b) at C0 = 7.573 ± 0.359 mg/L, T= 296 K, pH = 7. 

The adsorption data were further analyzed to evaluate the role of diffusion (as a rate-

controlling step) in the adsorption process by intraparticle diffusion model as shown in 

Equation 5.7.  

𝑞𝑡 = 𝑘𝑑√𝑡 + C                                               (Eq. 5.7) 

where kd is the intraparticle diffusion rate constant (mg·g−1 h−1/2) and C is the intercept of 

linear plot of qt vs. √𝑡, which is proportional to the thickness of boundary layer.  

According to the intraparticle diffusion model, adsorbate uptake is proportional to the 

square root of contact time during the process of adsorption. The regression plot of qt vs. 

√𝑡 should be linear if intraparticle diffusion process is involved and if the regression line 

passes through the origin, film diffusion is insignificant as C = 0 [44]. However, it is not 

always the case and both film diffusion and intraparticle diffusion may affect adsorption 

kinetics simultaneously [45]. For DOM adsorption on GAC, intraparticle diffusion was 

involved but was not the rate limiting step, since the regression lines did not pass through 

the origin as shown in Figure 5.7. The adsorption process of each DOM onto GAC includes 

two phases. For the first period, a linear phase with a steep slope was seen, which was 

followed by another linear phase with a shallow slope after 8 hours. Similar results were 

also reported by Qian et al [46] on haloform removal by GAC adsorption, indicating that 



154 

 

 

both film diffusion and intraparticle diffusion contributed to the adsorption process. The 

first phase is proposed to be the surface adsorption process in which DOM is quickly 

diffused to GAC surface through the boundary layer causing fast increase of qt vs.√𝑡. The 

intraparticle diffusion is the controlling process in the second phase in which the DOM 

diffuses into the intraparticle of the GAC and adsorbs onto the interior sites with a moderate 

increase of qt vs.√𝑡 till the adsorption equilibrium was reached [41, 47]. 

5.3.7. Thermodynamic properties 

The standard Gibbs free-energy change (ΔGo), enthalpy change (ΔHo) and entropy change 

(ΔSo) of the adsorption processes can be determined by the following Equation 5.8, 5.9 [21]. 

ΔGo = -RT ln KD                                            (Eq. 5.8) 

ln𝐾𝐷 =
𝛥𝑆0

𝑅
−

𝛥𝐻0

𝑅𝑇
                                            (Eq.5.9) 

Where T is the absolute temperature (K), R is the universal gas constant (8.314×J/(mol K)), 

and KD = qe/Ce is the distribution coefficient (ml / g) of the solute between GAC and the 

solution in equilibrium [48]. The 𝛥𝐻0 and 𝛥𝑆0 can be calculated from the slope and 

intercept of the Van’t Hoff plot of ln𝐾𝐷 as a function of 1/T as shown in Figure 5.8. 

  



155 

 

 

 

  

Figure 5.8 Plots of ln KD vs 1/T for the estimation of thermodynamic parameter 

for adsorption of DOM onto GAC in terms of DOC (a) andUV254 (b). 

The negative value of ∆G0 (Table 5.3) indicates that the process is thermodynamically 

feasible and the adsorption is spontaneous. The decrease of ∆G0 value with increase of 

temperature implied an increase in feasibility of adsorption at higher temperature. It was 

noted that ∆G0 for UV254 removal by adsorption was less than that of DOC removal, which 

indicated that aromatic substance represented by UV254 in DOM was favorably removed 

than DOC. It has been reported that ∆G0 for a physisorption process, where van der Waals 

force is the major interaction force, was usually less than 20 kJ/mol [11]. Values presented 

in Table 5.3 indicate both physi- and chemi-sorption are important for AOM adsorption on 

GAC. The values of ∆H0 for all DOM were positive, verifying the adsorption of DOM 

under experimental condition were endothermic. Moreover, the positive values of ∆S0 

indicate a nonreversible process with increasing freedom of the adsorbate during adsorption. 

Although the adsorption of DOM from bulk solution onto GAC is an entropy decreasing 

process, due to the simultaneous desorption of water molecules with DOM adsorption, the 

total entropy increased with a net positive ∆S0 [11]. The adsorption of DOM with larger 

volume of molecules cause desorption of higher number of water molecules.  
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Table 5.3 Thermodynamic parameters for adsorption of DOM by GAC at different temperatures. 

Temperature 

(K) 

∆G0(kJ/mol) for DOC removal ∆G0(kJ/mol) for UV254 removal 

CV-EOM Msp-EOM PT-EOM HA CV-EOM Msp-EOM PT-EOM HA 

296 -16.95 -13.24 -13.87 -13.28 -18.94 -17.24 -19.76 -13.49 

303 -18.43 -13.63 -14.09 -13.68 -19.39 -17.62 -20.13 -14.20 

308 -18.82 -13.94 -14.58 -14.16 -19.83 -18.26 -20.58 -15.01 

313 -20.14 -14.46 -15.00 -14.56 -20.15 -18.26 -21.51 -15.30 

∆H0 (kJ/mol) 35.80 21.82 21.33 9.27 2.19 18.97 30.98 18.15 

∆S0(J/mol·K) 178.30 118.25 118.57 76.03 71.40 122.28 170.86 106.86 

R2 0.94 0.97 0.94 0.93 0.99 0.99 0.91 0.99 
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5.4. Conclusion 

In this study, the adsorption equilibrium, kinetics and thermodynamics of the removal of 

extracellular algal matter of three different algae were compared with that of a commercial 

humic acid. The adsorptive removal of DOC was significantly affected by pH, while a 

marginal effect can be seen for UV254. The isotherm adsorption data fitted well with both 

Langmuir and Freundlich models, though the Freundlich model presented relatively higher 

R2 than the Langmuir model. The monolayer maximum adsorption capacity for each DOM 

was 31.45 mg/g and 4.235 mg/g, 22.88 mg/g and 15.69 mg/g for DOC of CV-EOM, Msp-

EOM, PT-EOM and HA, respectively. Due to the predominantly hydrophilic nature of algal 

matter, the removal by GAC adsorption is moderate with a range from 23.29 % to 57.85 % 

in terms of DOC. Thermodynamic analysis demonstrates that the DOM adsorption onto 

GAC is spontaneous and endothermic process in nature. The pseudo-second-order rate 

model well described the adsorption of DOM by granular activated carbon. The second 

order kinetics also indicates the existence chemisorption mechanism, which is possible due 

to ionization of the surface carbon and ionized DOM of algae; however, needs to be 

confirmed by surface analysis.  
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Chapter 6 

6 Granular Activated Carbon Adsorption of Algal Organic 

Matter in Mitigating Microfiltration Membrane Fouling 

6.1. Introduction 

Climate change, population growth and increased urbanization have contributed to the 

increasing frequencies of eutrophication worldwide [1]. The occurrence of harmful algal 

blooms in surface water has increased markedly over the last decade [2]. The metabolites 

of algae and other planktonic species are the major constituents of natural organic matter 

(NOM) in many surface water bodies, which are the sources of potable water in many areas. 

These substances cannot be removed well by the traditional drinking water treatment 

processes such as coagulation-flocculation and sedimentation, creating problems for 

downstream units such as clogging of filters, increase biofouling, reduce the efficiency of 

adsorption beds for the removal of trace contaminants, and increased disinfection by-

products formation [3].  

The extensive application of membrane process, including microfiltration (MF) and 

ultrafiltration (UF), for drinking water treatment has significantly increased since the last 

two decades for their effective removal of pathogens such as Cryptosporidium oocysts. and 

Giardia cysts and reduction of water turbidity with a comparable cost to conventional sand-

charcoal filtration systems [4, 5]. Microfiltration (MF, 0.1-10 μm) is widely applied in 

water treatment plants to remove particulate materials [6]. However, membrane fouling 

caused by DOM significantly affects the filtration efficiency in water treatment. Membrane 

fouling due to the surrogate NOM such as commercial humic acid (HA) and Suwannee 

River NOM (SRNOM) is well-researched [7-10]; however, fouling due to real cellular 

materials of algae or cyanobacteria (most common eutrophic species) needs further 

attention due to ubiquitous nature of the issue and absence of comprehensive research in 

this area.  
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A previous investigation of membrane fouling by algal organic matters (AOM) indicated 

that algal species and the derived AOM compositions significantly affected membrane 

fouling behavior [11]. An extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) 

theory was applied to investigate the fouling behavior of AOM fractions from 

Aphanizomenon flos-aquae and Anabaena flos-aquae. The results indicated that the 

interface between membrane and neutral hydrophilic fraction presented highest attractive 

energy, and controlled the membrane fouling in AOM microfiltration process [12]. 

Granular activated carbon (GAC) adsorption, as one of the cost-effective and 

environmentally-friendly process for water treatment plants to remove organic matter, has 

been extensively applied as a pre-treatment process for membrane filtration to mitigate 

membrane fouling [13, 14]. It is generally acknowledged that the performance of MF is 

influenced by the membrane type, feedwater characteristics, and operational conditions [6]. 

A hybrid membrane-activated carbon process was applied for the treatment of oil field 

produced water and the results presented that GAC pre-treatment enhanced the removal 

efficiency of COD and conductivity, also reduced cake layer formation on membrane 

surface[15]. A previous study presented that biopolymers, such as proteins and 

polysaccharides, could be effectively removed by GAC pre-treatment prior UF filtration to 

mitigate the membrane fouling [16]. Another study [17] further found that coupling GAC 

to downstream MF process provided a significant reduction in membrane fouling with 

improved product water quality and lower carbon usage rate than powder activated carbon 

(PAC). Zhang et.al. [18] investigated the effect of PAC on fouling by algal solution during 

ultrafiltration using two modes, i.e., addition of PAC to the bulk feed and pre-depositing 

PAC onto the membrane surfaces. Both modes improved the removal of EOM from the 

algal solution; however, the influence of PAC addition on the EOM fouling was weak.  

As mentioned above, most of the previous studies on GAC/PAC adsorption-microfiltration 

process focused on NOM, and artificial organic micropollutants removal from drinking 

water treatment, only a few of the investigations reported an integrated system for the 

treatment of algae-laden water. A comprehensive investigation on the combination of GAC 

and microfiltration membranes is not available. Further experimental data are necessary for 

process optimization and for designing of such units. The objective of the current study is 



165 

 

 

to investigate the effect of GAC dosage and solution pH on fouling potential and the flux 

of microfiltration due to several species of algae and cyanobacteria.  

6.2. Materials and methods 

6.2.1. Algae cultivation and AOM extraction 

The three species, Chlorella vulgaris (CV), Microcystis aeruginosa (MA), and 

Phaeodactylum tricornutum (PT), were obtained from the Canadian Phycological Culture 

Centre (CPCC) at Waterloo University (Waterloo, ON, Canada). The algal cell were 

cultivated in 2 L flasks in High Salt, 3N-BBM and F/2, respectively, at 23 ± 2oC under a 

fluorescent lamp (3000 lx) with a 16/8 hours of light/dark cycle [19]. Algae and the 

cyanobacteria were harvested at the stationary growth phase monitored by cell counting 

following the previous study [20].  

AOM solution was extracted by following steps: 1) centrifugation of the harvested algal 

cultures at 3700 rpm and 23oC for 30 min (Thermo Scientific Sorvall, Legend T Plus); and 

2) subsequent filtration of the supernatant by a 1.2 µm filter (hydrophilic acrylic copolymer, 

Pall Corporation) to obtain EOM. 3) The deposited algae on the filter were washed three 

times using Milli-Q water, then subjected to three freeze/thaw cycles (-18 °C for 12 h/40 °C 

for 2.0 h) to destroy the cells [21], then followed by centrifugation and filtration process as 

described above to obtain IOM. The obtained AOM stock solutions were stored at 4oC in a 

fridge for no more than 48 hours before characterization or preparing the feed solution with 

DOC of 8 ± 0.5 mg/L for GAC adsorption and microfiltration after pH adjustment by 1 

mol/L NaOH and 1.0 mol/L HCl solution. For comparison with the fouling behavior of 

AOM, humic acid (98% grade, Thermo Fisher Scientific Chemicals, Inc. USA) solution 

was used to prepare working solution as the surrogate of natural organic matter for GAC-

MF experiment. 

6.2.2. GAC adsorption 

The commercial GAC (Norit ROW 0.8 SUPRA, CAS Number: 7440-44-0) used in this 

study was purchased from Sigma-Aldrich Canada Co. The properties of GAC were 
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investigated in a previous study in our group [22] showed as following: surface area ≈1400 

m2/g, pore size ≈2 nm, total pore volume ≈0.7 cm3/g, mesoporous area ≈ 634 m2/g, and 

microporous area ≈ 766 m2/g The GAC was screened by mesh sieves in order to collect the 

GAC with size range of 0.42-0.60 mm, followed by washing to remove the fines, then dried 

in an oven at 105 °C, and stored in a desiccator before adsorption experiments. 

The adsorption experiments were carried out in 500 mL Erlenmeyer flasks containing 400 

mL of AOM solution using a Bench-top Orbital Shaker (Max Q 400, Thermo Scientific, 

ON, Canada) operated at temperatures of 23 ±1.5oC under 200 rpm of shaking speed. Since 

surface and groundwater contains DOC in the range of 2-10 mg/L [23], 1.0 g/L GAC was 

added into the DOM solution with an initial DOC of 8.0 ± 0.5 mg/L. The pH of solution 

was adjusted using 1.0 mole/L HCl or 1.0 mol/L NaOH to reach the pH values of 5-8 before 

adsorption. After GAC adsorption with the retention time of 1.0 hour, the solution was 

filtered using a 1.2 µm filter (hydrophilic acrylic copolymer, Pall Corporation) to remove 

GAC particles.  

6.2.2. Membrane and filtration unit 

6.2.2.1. Fouling experiment assessment  

The MF membrane used was a 0.45 μm nominal pore size hydrophilic PVDF membrane 

(Millipore Corporation, US) with the effective filtration area of 1.59 × 10−3 m2 in a dead-

end stainless steel filter holder at a constant transmembrane pressure (TMP) of 50 ± 0.5 

kPa by compressed air and operation temperature of 25 ±0.5 °C. Prior to filtration, all fresh 

membranes were soaked in Milli-Q water for at least 24 h to remove possible organic 

contaminants. The filtrate weight was measured constantly by a digital balance (Denver SI-

4002, Denver Instrument Co. USA) and data were automatically logged to a connected 

computer equipped with a data acquisition system shown in Figure 6.1. 
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Figure 6.1 Schematic diagram of the apparatus for the MF system. (Redraw from 

[11]) 

All DOM solutions were diluted using Milli-Q water to DOC of 8.0 ± 0.5 mg/L from stock 

solution. Every filtration experiment was conducted for three continuous filtration cycles. 

Each cycle is comprised of 3 steps: (1) filtration with 100 mL Milli-Q water; (2) filtration 

of 100 mL feed solution (3) backwashing of membrane by placing the reverse side of 

membrane upwards and filtration of 100 mL Milli-Q water. The flux of feed solution is 

named Js,n, with the number n (1-3) representing the cycle number. Jn represented the 

average flux in the filtration of Milli-Q water. The total fouling (TF), the reversible fouling 

(RF), and the accumulative irreversible fouling (IF) of each filtration cycle can be 

calculated as following Equation 6.1-6.3 [24]. 

𝑇𝐹𝑛 =
𝐽0−𝐽𝑠,𝑛

𝐽0
                                         (Eq. 6.1) 

𝐼𝐹𝑛 =
𝐽0−𝐽𝑛

𝐽0
                                          (Eq. 6.2) 

  𝑅𝐹𝑛 =𝑇𝐹𝑛 − 𝐼𝐹𝑛                                     (Eq. 6.3) 

2.2.2. Membrane fouling resistance and mechanism 

To elucidate fouling mechanisms, the classic filtration models, including complete 

blocking, standard blocking, intermediate blocking and cake filtration, were applied to 

understand the flux decline during the MF of the DOM solution under a constant pressure. 
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The instantaneous flux was calculated by numerically differentiating the cumulative 

volume filtered (V) per unit membrane area and analyzing it using blocking laws listed in 

Table 6.1. 

Table 6.1 Equations of four classic filtration models [25, 26]. 

Models Equations Description 

Complete blocking 𝐽 = 𝐽0 − 𝑘𝑏𝑉 Particles block pores when reaching 

the membrane surfaces. 

Standard blocking 
𝐽 = 𝐽0 (1 −

𝑘𝑠
2
𝑉)

2

 
Particles deposit on the internal pore 

walls, decreasing the pore diameter. 

Intermediate blocking 𝐽 = 𝐽0exp(−𝑘𝑖𝑉) Particles settle on each other and 

may seal some membrane pores. 

Cake filtration 1

𝐽
=
1

𝐽0
+ 𝑘𝑐𝑉 

Particles deposit on the membrane 

surface and cake layer forms. 

where 𝐽0 is the initial permeate flux (m∙s-1), V is the accumulative volume (m3) and 𝑘𝑏, 𝑘𝑠 

(m-1), 𝑘𝑖  (m-1) and 𝑘𝑐  (s∙m-2) are parameters describing complete blocking, standard 

blocking, intermediate block and cake filtration, respectively.  

6.2.3. Analytical methods 

DOC of AOM solution was measured using a TOC–VCPN analyzer (TOC–VCPN, Shimadzu, 

Japan) with a detection limit of 0.1 mg/L calibrated by a standard glucose solution. 

Temperature and pH were measured using a pH meter (Orion Model STAR A111, USA). 

The UV absorbance at 254 nm (UV254) was measured by a UV/Vis spectrophotometer (UV-

3600, Shimadzu, Japan) and the specific UV absorbance (SUVA, L·mg-1·cm) was 

calculated from UV254 value divided by DOC concentration.  

6.3. Results and discussion 

6.3.1. Effect of GAC dosage on organic removal efficiency 

The effect of GAC dosage on the removal of DOM was determined using dosage of 0- 1.5 

g/L for different feed solution, and the results are shown in Figure 6.2. The percentage of 
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DOM removal (in terms of DOC (Figure 6.2 a) and UV254 (Figure 6.2 b) increased with the 

increase of GAC dosage, which may be attributed to an increasing number of available 

adsorption sites with the increasing adsorbent dosage. The removal of UV254 from each 

feed solution was higher than the removal of DOC. In terms of DOC for algal organic 

matter, the IOM for each algae presented higher removal efficiency than that of EOM. With 

a dosage of 1.5 g/L GAC, IOM of PT showed 40.03% of DOC removal, higher than that 

from EOM, followed by 37.68% from CV and 22.34% from MA. With respect to UV254, 

there was 38.99% of UV254 removal from IOM, more than removed from EOM of CV, 

followed by 30.72%, 13.14% from MA and PT, respectively, which could be due to the 

higher aromatic or unsaturated components in IOM than EOM of the investigated algae 

[27-30]. Up to 23.21% of DOC and 24.06% of UV254 from PT-IOM was removed by the 

GAC-MF system with GAC addition of 1.5 g/L, more than DOC and UV254 was removed 

by the MF membrane without GAC addition. 

It was found that GAC adsorption was effective for DOM removal, and similar results were 

found for DOC of lower molecular weight substances, when adsorbed onto GAC, and DOC 

of higher molecular weight can be removed by the cake formed on the surface of the MF 

membrane [31]. Comparison with DOM from algal organic matter, humic acid presented 

relatively lower removal efficiency. It was also noted that addition of GAC (1.5 g/L) 

showed (Figure 6.2) approximately 16.49 % and 16.67% greater DOC and UV254 removal 

than without GAC adsorption. 
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Figure 6.2 Effect of GAC dosage on DOM removal of DOC (a) and UV254 (b) after 

microfiltration with GAC adsorption pretreatment at pH 7.0 and contact time of 

1.0 hour. 

6.3.2. Effect of GAC dosage on the flux and reversibility by DOM fouling 

The normalized flux of each DOM for the MF with and without GAC addition is shown in 

Figure 6.3. The flux profiles demonstrated an initial sharp decrease (< 40 mL) followed by 

gradual decrease and a plateau during the later filtration phase. This phenomenon can be 

explained by the co-existence of irreversible pore blocking by low- MW fractions of the 

AOM and reversible cake layer formation resulting from the deposition of high-MW 

organics during the filtration period [32]. 
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Figure 6.3 Flux profile for first filtration cycle of the DOM solution with and 

without GAC adsorption pretreatment. 

Specifically, the feed solution from AOM presented a significant flux decline compared to 

humic acid, with more than 80% of flux decline occurred at the end of the single cycle 

filtration (Figure 6.3 a). A similar trend was also observed for the filtration of humic acid 

and AOM by Zhang et.al [33]. With 1.5 g/L GAC adsorption, the filtration flux for each 

DOM was improved, with a maximum 15 % improvement in flux occurred for HA, 

followed by PT-EOM, CV-IOM, CV-EOM, MA-EOM, and PT-IOM. It was noted that, 

even though filtration flux was increased for all AOM after GAC adsorption, about 80% 

decline in flux occurred for AOM. In comparison, flux for humic acid solution declined by 

60%.  
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Figure 6.4 Effect of GAC dosage on the reversibility of DOM fouling (TF, RF and 

IF represented the total fouling, reversible fouling and irreversible fouling, 

respectively, No.1 to No.3 denoted the filtration cycle of each DOM). 

Figure 6.4 shows the reversibility of fouling in terms of specific fouling contribution after 

each filtration cycle with different GAC addition. The results show that the irreversible 

fouling gradually increased at the cost of the reversible fouling decrease during the filtration 

cycles for each DOM. The decrease of irreversible fouling with the increase of GAC dosage 

indicated that GAC adsorption pretreatment improved the membrane reversibility 

considerably. Some protein-like compounds, hydrophobic in nature, and aromatic 

substances can be preferentially adsorbed by GAC, which was also validated by the UV254 

removal in this study.  An earlier study used biologically active carbon for the removal of 

hydrophilic compound for membrane filtration [34]. In this work, humic acid was observed 

to contribute lower irreversible fouling than the AOM investigated, probably due to higher 

hydrophilicity of the algal matter as shown earlier in Chapter 4. The EOM and IOM from 
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three algal species presented a comparable total fouling at identical experimental conditions; 

however, the irreversible fouling from IOM was higher than that of EOM due to higher 

percentage of hydrophilic protein-like substances with lower molecular weight (58.4%) 

than that in EOM (18.5%) [35]; probably by blocking of micropores of membrane or 

settling on already deposited substance resulting in the irreversible fouling.  

6.3.3. Effect of pH on organic removal efficiency  

The pH of the DOM solution not only alters the surface charge of the adsorbent, the 

dissociation of functional groups on the active sites of the adsorbent, but also affects 

ionization degree of the DOM in the solution [36, 37]. In this study, the pH dependence of 

DOM removal by microfiltration with GAC adsorption was performed in the pH range of 

5.0-8.0.  

As shown in Figure 6.5, the removal of DOM by GAC-MF combined system decreased 

with pH increasing from 5.0-8.0. Similar trend and relatively higher removal percentage of 

UV254 at lower pH for each DOM occurred, which indicated that aromatic and unsaturated 

compounds are favorably removed. The removal efficiency of each DOM decreased at 

neutral and alkaline pH. At alkaline condition, the anionic species from DOM, such as the 

carboxyl, hydroxyl, and amide groups of DOM, are deprotonated, resulting in the increase 

of negative charge of DOM, causing the decrease of DOM removal by GAC. The EOM 

solution showed higher removal efficiency than humic acid and IOM from each algal 

species. 
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Figure 6.5 Effect of pH on DOM removal as DOC (a) and UV254 (b) after 

microfiltration with GAC adsorption pretreatment (GAC dosage of 1.0 g/L and 

contact time of 1.0 hour). 

6.3.4. Effect of pH on the flux decline and reversibility of DOM fouling 

To probe the effect of feed solution pH on membrane permeate and degree of fouling after 

GAC adsorption for each DOM, experiments were performed at pH 5.0 and 8.0 for GAC 

adsorption with conditions mentioned above followed by three cycles of MF filtration 

without any additional pH control. As pH can alter the degree of ionization of the DOM 

presented in the solution, the electrostatic interaction between DOM and membrane would 

play a significant role. At higher pH, the repulsive force between negatively charged 

membrane and anionic species of DOM caused lower flux decline. On the contrary, at lower 

pH, the negatively charged membrane would attract protonated and positively charged 

DOM species, thus leading to the increased fouling and decrease of permeate flux [38]. In 

the present study, as seen from Figure 6.6, the flux decline increased at higher initial pH 8, 

which indicated that higher fouling occurred at higher pH. More than 30% of DOM of CV 
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was removed by GAC adsorption (with about 50% total removal by combining GAC-MF 

treatment). These results implied that the effectiveness of GAC adsorption at lower pH can 

reduce the permeate flux decline and mitigate membrane fouling. This was also seen in a 

previous study where decrease in the irreversible fouling of ultrafiltration occurred at lower 

pH for filtration of NOM [39]. This finding implied that the electrostatic attraction between 

DOM and membrane was not the dominant fouling mechanism in present experiments. 

 

Figure 6.6 Flux profile for first filtration cycle of the DOM solution with GAC 

adsorption pretreatment at different solution pH. 

The reversibility of membrane fouling with pH variation is shown in Figure 6.7. The results 

indicated that the irreversible fouling increased while the reversible fouling slightly 

decreased during the filtration cycles for each DOM. The decrease of irreversible fouling 

with the decrease of solution pH indicated that GAC adsorption pretreatment at lower pH 

can improve the membrane reversibility, due to higher removal of DOM by GAC at pH 5.  
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Figure 6.7 Effect of pH on the reversibility of DOM fouling (TF, RF and IF 

represented the total fouling, reversible fouling and irreversible fouling, 

respectively, No.1 to No.3 denoted the filtration cycle of each DOM). 

To obtain a better understanding of the fouling of each DOM, the fouling reversibility with 

pH variation was analyzed and the results are shown in Figure 6.7. The decrease of 

irreversible fouling with the decrease of solution pH indicated that GAC adsorption 

pretreatment at lower pH in the experimental range can cause membrane reversibility, due 

to the considerable removal of DOM by GAC adsorption at lower pH. In addition, the 

effective radius of DOM may decrease due to reduced inter-chain electrostatic repulsion at 

low pH, which can make the molecules smaller and easier to be adsorbed onto the 

membrane and flow through the micropores of membrane matrix [40]. Comparing with 

humic acid, AOM presented higher irreversible fouling. In a comparative study on 

membrane fouling potentials showed that higher irreversible fouling was caused by AOM 

derived from MA than that from humic acid [41].  
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6.3.5. Fouling mechanisms of the AOM  

To investigate the fouling mechanisms, instantaneous flux of the first cycle of MF after 

GAC adsorption was fitted with the classic filtration models (shown in Table 6.1). The 

regression results are presented in Figure 6.8 and Table 6.2. As shown in Table 6.2, among 

the four fouling models for each DOM solution, for CV-EOM and MA-IOM, membrane 

fouling was controlled by standard blocking with R2 values of 0.997 for CV-EOM and 

0.982 for MA-IOM. For the other DOM solutions, including humic acid, CV-IOM, MA-

EOM, PT-EOM and PT-IOM with the maximum R2 values 0.977, 0.973, 0.958, 0.995, and 

0.977, respectively, the fouling mechanisms are predominated by intermediate blocking.  

It can be seen that the comparable R2 values of the fouling models implied that the fouling 

process was controlled by multiple mechanisms. This is attributed to the broad MW 

distribution of AOM [8, 29]. The low-MW substance may be trapped inside of membrane 

pores resulting standard blocking, and the high-MW components may be deposited on 

membrane surface and to form a cake layer. A previous study on the UF membrane fouling 

potential of EOM also demonstrated that multiple mechanisms, including cake filtration 

and standard blocking, dominated the fouling formation [41, 42].  

In a comparative study on membrane fouling potentials of algal extracellular and 

intracellular organic matter, the cake filtration has been identified as an important 

mechanism for flux decline  
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Table 6.2 R2 values of fouling models for each DOM during the first cycle of MF 

after GAC adsorption (GAC dosage of 1.0 g/L, pH 7.0 and 1.0 hour contact time) 

Feed solution 
Complete 

Blocking 

Standard 

Blocking 

Intermediate 

blocking 

Cake 

filtration 

HA 0.856 0.931 0.977 0.940 

CV-EOM 0.990 0.997 0.993 0.953 

CV-IOM 0.901 0.942 0.973 0.969 

MA-EOM 0.622  0.937 0.958 0.938 

MA-IOM 0.957 0.982 0.972 0.840 

PT-EOM 0.983 0.992 0.995 0.980 

PT-IOM 0.911 0.962 0.977 0.849 

Note: The associated p value of each model is less than 0.0001.  
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Figure 6.8 Regression analysis of membrane fouling behavior using classical fouling 

models for the first filtration cycle of individual DOM at pH 7 with 1.0 g/L GAC 

adsorption pretreatment. 

It should be noted that multiple mechanisms might also take effect during filtration 

considering the relatively higher R2 value, for instance, intermediate blocking and cake 

filtration dominated the fouling formation for humic acid, and standard blocking and 

intermediate blocking controlled the membrane fouling for most AOM, except for CV-

IOM and humic acid for which intermediate blocking and cake filtration mechanisms 

governed the fouling formation. An earlier study demonstrated that cake filtration 
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dominated the fouling during ultrafiltration of AOM from MA; however, the difference is 

mainly due to the type of filtration [32].   

6.4. Conclusions 

The influence of GAC dosage and initial pH on microfiltration to remove DOM derived 

from three different algae, as well as humic acid, was investigated using a dead-end down-

flow MF unit in batch scale. The combination of GAC adsorption and MF can significantly 

enhance DOM removal up to 72.23% and 85.95% for DOC and UV254 for CV-IOM. The 

addition of GAC can not only promote the DOM removal, but also mitigate the flux decline 

and reduce irreversible fouling. A Lower initial pH value within the experimental range (5-

8) showed positive effects for DOM removal and the membrane reversibility. The total 

removal efficiency of AOM was higher than humic acid; however, a greater flux decline 

and higher irreversible fouling were observed from AOM than that humic acid. The AOM 

derived from CV showed better removal efficiency with less flux decline and irreversible 

fouling, followed by the cyanobacteria, MA and the diatom, PT. The analyses of fouling 

models indicate that intermediate blocking and standard blocking were the dominant 

membrane fouling mechanisms for most DOM except for the CV-IOM and humic acid 

where intermediate blocking and cake filtration controlled the fouling process. Although, 

IOM from each algal species showed relatively higher removal performance than EOM, 

considering the greater flux decline and irreversible fouling compared to EOM, to maintain 

the algal cell integrity and avoiding lysis to release IOM are important considerations for 

membrane treatment of algae-laden water.  
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Chapter 7 

7 Impact of UV Irradiation on Disinfection By-Product 

Formation by Post Chlorination  

7.1. Introduction 

Ultraviolet (UV) irradiation has been increasingly applied in water treatment plants to 

inactivate a wide range of waterborne pathogens, such as Cryptosporidum [1] and Giardia 

lamblia [2], which are resistant to chlorination [3]. It has also been an alternative treatment 

for the removal of small concentrations of organics including the taste and odor compounds 

[4]. However, the main disadvantage of UV disinfection is that there is no residual 

inactivation capacity of UV radiation left once the treated water is in the distribution system 

[5]. Many treatment plants use post-chlorination or chloramination to address this for 

maintaining water quality. However, depending on the dissolved organic carbon (DOC) 

content in the UV-treated water, formation of disinfection by-products (DBP) is a concern 

post-chlorination. Algal organic matter is an important source of dissolved organic matter 

(DOM) in surface water, which can be the precursor of many harmful disinfection by-

products [6], and is not removed effectively during coagulation. 

UV radiation at 254 nm is known to degrade organics by the process of photolysis. Being 

a complex mixture of carbohydrate, sugar, lipid, and protein, AOM is susceptible to be 

degraded during UV disinfection. The complex mixture of intermediates subsequent to 

photolysis may cause the formation of harmful products after chlorination. However, the 

literature on UV photolysis of AOM followed by chlorination under control conditions is 

rather limited. It was reported that UV pretreatment enhanced the formation of nitrogenous 

DBP (N-DBP) during the subsequent chlor(am)ination of AOM, especially 

dichloroacetonitrile [7]. A few studies were conducted on UV irradiation followed by 

chlorination of humic acid solutions [3, 7-9]. It was found that UV irradiation did not alter 

the specific disinfection by-product formation potential (DBPFP) significantly based on the 

DOM characteristics, which indicated that most of the DBP precursors could not be 

removed by photodegradation [7, 9]. With the increasing events of harmful algal blooms 
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all over the world, a control study on the photolysis of AOM followed by chlorination is 

required to determine the effect of algal matter on drinking water treatment processes, 

which is the objective of this study.  

In the previous study, disinfection by-products formation of both extracellular and 

intracellular materials of four algae and two cyanobacteria were determined [10]. However, 

intracellular materials are only released under stress conditions and certain treatment 

conditions such as pre-chlorination and pre-oxidation, hence was not covered in this study. 

In addition, only carbonaceous DBP was determined as the concentration of nitrogenous 

DBP is much lower than that small amount of intracellular materials may be released during 

the growth stage, hence, instead of denoting the algal organic matter as EOM, AOM will 

be used all through this chapter. 

7.2 Materials and Methods 

7.2.1. Algal cultivation  

The three freshwater species, Scenedesmus quadricauda (SQ), Merismopedia sp. (Msp) 

and Phaedactylum tricornutum (PT) were purchased from the Canadian Phycological 

Culture Centre (CPCC) at Waterloo University (Waterloo, ON, Canada). Algal strains were 

cultivated in 2 L conical flasks with a culture medium (High Salt medium for SQ, BG-11 

for Msp and F/2 for PT) at 23 ± 2oC with a light/dark cycle of 16/8 hours intermittent 

illumination (3000 lx). All solutions were prepared from reagent-grade chemicals and 

Milli-Q water, except the medium F/2, which was diluted by synthetic seawater prepared 

by Instant Ocean sea-salt (Instant Ocean Company, USA). The growth of algae were 

monitored by cell counting using a hemocytometer (LW Scientific, USA) under a 

microscope (ZEISS, Germany). Algae and cyanobacterial cultures were harvested during 

the stationary growth phase based on the previous study [11].  

7.2.2. AOM extraction and characterization 

AOM of the species was extracted by centrifuging algal cell suspension at 3700 rpm for 15 

min. The supernatant was filtered with 0.45 μm hydrophilic acrylic copolymer filter (Pall 

Corp.) to obtain AOM. DOC of AOMs were determined by a Shimadzu TOC–VCPN 
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analyzer (Shimadzu, Japan) with an ASI-L auto-sampler, and the detection limit was 

0.1 mg-C/L on filtered samples. Glucose was used as the standard of dissolved organic 

carbon at a concentration of 2-20 mg/L to obtain the DOC standard calibration curve. Three 

replicates were measured and an average was reported with the coefficient of variance less 

than 2%. 

Ultraviolet absorbance at 254 nm (UV254) was obtained using a UV/Vis spectrophotometer 

(Model 3600, Shimadzu, Japan) in the range of 200 to 300 nm with a 1 cm quartz cuvette. 

The specific UV absorbance (SUVA) is widely used for characterizing aromaticity of NOM 

and predicting its DBPFP in water treatment. SUVA is defined as the UV absorbance at 

254 nm (m-1) normalized by the overall organic loading in terms of DOC (mg/L), which 

represents the average absorptivity at 254 nm from all the dissolved organics compounds 

[12]. The initial DOC of the AOM was kept below 5 mg/L, as this is the typical DOC that 

many treatment plants experience [13-17].  

7.2.3. UV irradiation  

The UV irradiation was performed in a bench-scale collimated beam enclosing a low 

pressure (LP) UV lamp and a collimated tube with a non-reflective inner surface (Trojan 

Technologies)[18]. UV intensity was monitored and calibrated by ILT1400 radiometer 

(International Technologies) and SED 240SEL detector at 254 nm. The UV intensity of 

0.156 mW/cm2 and UV dosages of 0-300 mJ/cm2 were applied to 50 mL water samples 

containing algal matter in a Petri dish and placed under the UV lamp using constant stirring 

at room temperature. UV doses were calculated by multiplying the measured intensity and 

exposure time [4]. The initial pH of 8 was adjusted with 0.01 M H2SO4 or 0.1 M NaOH 

and borate buffer. 

7.2.4. Post chlorination and DBPs quantification 

Chlorination of water samples after UV irradiation treatment was conducted immediately 

in headspace-free amber glass bottles containing a calculated amount of hypochlorite-

buffer solution and incubated under dark at ambient temperature (23 ± 1oC) for specific 

time. After (2 hours for DBP formation, 24 hours for DBPFP followed by UFC method 
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[19]) incubation, ammonium chloride was added to quench the residual chlorine [20] in 

water to obtain the trihalomethane formation potential (THMFP) and haloacetic acid 

formation potential (HAAFP) following the method of USEPA551.1 [21] and EPA552.3 

[22] The free and total chlorine residual were measured following DPD method 8167 using 

a HACH DR5000 and a UV-Vis spectrophotometer (HACH Company, USA). The 

formation of four major THM4, including trichloromethane (TCM), tribromomethane 

(TBM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) were 

extracted) via liquid-liquid extraction following the method of USEPA 551.1 [21]. The six 

HAA6, bromochloroacetic acid (BCAA), dichloroacetic acid (DCAA), monochloroacetic 

acid (MCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA), and 

dibromoacetic acid (DBAA) were extracted with MTBE, methylated with acid methanol 

following the modified USEPA method 552.3 [22]. The chlorinated DBP were determined 

by gas chromatography coupled with an electron capture detector GC/ECD (Shimadzu GC-

2014) with a BPX5 capillary column (30 m× 0.25 mm ID, 0.25 m film thickness) 

following the previous study from same lab [10]. DBPFP (μg·mg C-1) were obtained by 

dividing the concentration of DBP (in μg·L-1) by the DOC (in mg L-1). For better 

clarification, sequence of entire experimental scheme is shown in Figure 7.1.   
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Figure 7.1 Experimental sequence showing UV irradiation and chlorination of 

AOM.  

7.3. Results and discussion 

7.3.1. Chlorine residual with variation of chlorine dosage  

From preliminary chlorine demand, water sample spiked with each DOM stock solution 

was dosed with different free chlorine concentrations to establish the chlorine demand 

curve for each specific water matrix. The total chlorine residual with variation of dosage 

under identical incubation and measurement conditions were shown in Figure 7.2. It can be 

seen that the AOM and humic acid solution demonstrated different total chlorine residual 

profile with chlorine dose. A linear equation with the highest correlation coefficient of 

0.9985 can well fit the total chlorine of SQ in the experimental range. However, unlike the 

SQ, a longer lag phase occurred for Msp before total chlorine residual increased gradually 

following an exponential pattern. The PT and humic acid showed a similar increase pattern, 

thus a quadratic polynomial equation can fit the data with the correlation coefficient of 

0.993 and 0.984 for PT and humic acid, respectively. 
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Figure 7.2 Total chlorine residual with variation of chlorine dosage after 2 hours 

incubation in dark at room temperature for AOM solution with initial DOC of 3.0 ± 

0.2 mg/L. 

It is interesting to see that although all DOM solution were dosed at similar initial DOC of 

3 mg/L, different DOM showed different chlorine demand, with Merismopedia sp. showing 

the highest chlorine demand followed by PT and humic acid. Unfortunately, without detail 

characterization of all the different organics present in various species, reasons for the 

results shown in Figure 7.2 will be purely speculative. Since many water treatment plants 

keep a total chlorine residual of around 1-1.5 mg/L [23], different chlorine dosage will be 

required for different algal matter.  

7.3.2. Effect of total chlorine residual on DBP formation  

From the results of the chorine demand test presented above, the calculated amount of free 

chlorine was added into water samples of each DOM for the following DBP formation tests. 

DBP formation was evaluated for the water samples before and after UV irradiation to 

evaluate the influence of UV disinfection on the DBP formation under different total 
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chlorine residual after incubation in dark for 2 hours at room temperature as the post-

chlorination process.  

Under the chlorination conditions adopted, total DBP formation increased with the 

increasing total chlorine residual as shown in Figure 7.3. HAA formation was higher than 

THMs formation, and the diatom PT produced the highest amount of both types of DBP 

followed by the others in the order: PT>HA>MSP>SQ.  

  

  

Figure 7.3 DBP formation with variation of chlorine residual (a) and (b), 40 

mJ/cm2 UV irradiation followed by chlorine dose (c) and (d) after 2 hour 

incubation in dark for DOM spiked water sample with initial DOC of 3.09 ± 0.19 

mg/L. 

Since PT can also be a marine algae, its medium was diluted by synthetic seawater prepared 

by commercial Instant Ocean sea salt, which contains 94.12 μg/L bromide in the final DOM 

solution. Thus, significant amounts of brominated DBP was formed after chlorination. This 
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is in agreement with an earlier work [10], where both IOM and EOM of PT showed the 

highest DBP formation. Since bromide is frequently observed in natural and marine water, 

it was found to be more active with DOM during chlorination [4]. It can alter the DBP 

speciation composition and promote brominated DBP formation which might be attributed 

to the reaction between bromide ion and hydroxyl radical. A previous study also 

demonstrated the increased brominated total organic halogen after UV 

irradiation/chlorination process [24]. 

For the other DOM, DCAA and TCAA were the dominant HAA species for SQ, Msp and 

HA with total HAA formation of 38.23 ± 1.25 μg/L, 313.56 ± 6.05 μg/L and 340.82 ± 9.29 

μg/L, respectively, when the total chorine residual was around 1.0 mg/L. It should be noted 

that trichloromethane (TCM) was the only THM species formed from SQ, Msp and HA. 

Tribromomethane (TBM) (Figure 7.3b) was the most abundant species of THM for 

bromide-containing in PT. It was interesting to find that even Msp showed the highest 

chlorine demand (Figure 7.2), the DBP formation was much lower than PT and humic acid. 

Overall, except SQ, the DBP formation by other three DOM (i.e., Msp, PT and HA) always 

exceeded the DBP limit of 80 g/L for HAA and 100 g/L for THM as regulated by the 

guidelines for Canadian drinking water quality[25].  

The effect of UV radiation at 40 mJ/cm2, a typical dosage used for disinfection caused a 

slight decrease in DBP formation after chlorination, although the effect was insignificant 

(Figure 7.3). The comparison of the DBP formation between with and without UV 

irradiation is shown in Figure 7.4 and the regression coefficients are presented in Table 7.1. 

As can be seen from Figure 7.4, there was no increase in DBP formation after UV radiation 

for SQ and HA. This is reasonable as much higher dosage is required for effective 

photolysis of trace concentration of organics (micropollutants) [26]. However, there is still 

a small amount of DBP formation changes for PT and Msp, which both HAA and THM 

formation decreased for PT, but with a small increase in the same for Msp. 
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Figure 7.4 The comparison of DBP formation and the correlation with total 

chlorine residual of DOM spiked water sample between chlorination and UV 

irradiation of 40 mJ/cm2 followed by chlorination after 2 hour incubation in dark. 

Table 7.1shows the Pearson correlation coefficients between each of the HAAs/THMs and 

total residual chlorine. The strong correlations (0.936-0.999) found between HAAs/THMs 
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and total residual chlorine indicated that experimental conditions were well controlled and 

total chlorine residual as a variable showed robust correlations with DBP formation from 

each DOM. Similar results were found in a previous study [27]. 

Table 7.1 Regression parameters of total chlorine residual and DBP formation.  

 
SQ Msp PT HA 

TC TC+UV TC TC+UV TC TC+UV TC TC+UV 

HAA Intercept 3.06 -2.06 -15.41 5.20 316.17 259.16 165.65 131.94 

 Slope 34.82 56.00 321.18 222.82 253.56 275.32 158.68 204.30 

 R2 0.999 0.984 0.995 0.975 0.984 0.936 0.940 0.976 

THM Intercept 4.46 10.69 52.24 53.80 301.49 230.91 204.08 168.28 

 Slope 27.53 22.18 71.98 122.21 65.21 115.12 103.92 42.58 

 R2 0.993 0.996 0.984 0.953 0.958 0.971 0.943 0.990 

7.3.3. Effect of UV irradiation on DBP formation  

To further investigate the DBP formation potential of each DOM with variation of UV 

dosage, a comparison was made under identical experimental conditions (UFC method) 

and results were shown in Figure 7.5. The AOM from PT presents the highest specific 

DBPFP up to 232 g/mg C for HAAFP and 138.79 g/mg C for THMFP. TBM species 

dominated more than an average of 56.28% of THM at each UV dosage, compared with 

around 24% brominated acetic acid formed, which indicated that TBM is subject be formed 

in the presence of bromide ions. It is clear to see that with the increase of UV dosage, both 

HAAFP and THMFP decreased, with the maximum reduction of 42.25 % and 13.75 % for 

HAAFP and THMFP at UV irradiation dosage of 300 mJ/cm2, respectively. In a different 

study, about 16.4 % of THM reduction was found at a UV dosage of 100 mJ/cm2 [4]. This 

is probably due to the photolysis of DOM to alter the SUVA by UV irradiation [18], thus, 

decreasing the final formation of DBP. A similar trend was also observed from THMFP of 

SQ, even though the effect was not significant. Except PT, the brominated species did not 

feature among HAAs and THMs assayed for SQ, Msp and HA during chlorination. It was 

noted that DBPFP of Msp increased slightly with the UV dosage increase, with the 
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maximum formation of 160.95 ± 3.30 g/mg C, 80.44 ± 4.14 g/mg C for HAAFP and 

THMFP, respectively, at UV irradiation dosage of 300 mJ/cm2.  

 

 

Figure 7.5 Specific DBP formation potential, (a) HAAFP, (b) THMFP of DOM 

spiked water sample. 
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Even though UV irradiation can eliminate aromatic, methyl, guaiacyl lignin group in HA 

and prevent the formation of TCM during subsequent chlorination, UV irradiation can also 

activate the phenolic hydroxyl group and promote DCAA and TCAA formation [28], and 

thus the final DBPFP of HA may not be changed significantly under moderate UV 

irradiation dosage. 

7.4. Conclusions 

The investigation of DBPFP of selected DOM with variation of total chlorine residual and 

UV irradiation was performed in this study. The positive correlation with high coefficients 

between total chlorine residual and DBP formation were established. Results showed that 

DBPs formation increased with total chlorine residual; AOM from PT presented the highest 

formation potential followed by HA, Msp, and SQ. The comparison of DBP formation 

between with and without UV irradiation for of each type of DOM indicates that 40 mJ/cm2 

UV irradiation may be insignificant to change the DBP formation from HA and SQ. 

However, it can decrease the DBP formation from bromide-containing AOM of PT, and 

can promote the DBP formation from AOM of Msp at various total chlorine residual. The 

maximum DBP formation potential (DBPFP) reduction of 42.25 % and 13.75 % for 

HAAFP and THMFP was obtained at UV irradiation dosage of 300 mJ/cm2 for AOM of 

PT. However, for the AOM derived from Msp, a maximum increase of 58.1% and 51.1% 

of HAAFP and THMFP was observed. The results implied that further attention should be 

given to determine the effectiveness of UV irradiation on the degradation of algal matter.  
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Chapter 8 

8 Conclusions and Recommendations 

8.1 Major conclusions 

Presence of algal organic matter in source water is a critical issue for the sustainability of 

drinking water supply all across the world. Among the myriads of problems due to the 

presence of AOM in water, mentioned in this thesis earlier, the most detrimental factor for 

human consumption of water is the possibility of higher disinfection byproducts formation 

potential due to chlorination. Conventional drinking water treatment process includes 

multiple steps; each treatment step faces challenge during algal bloom conditions. Using 

both raw water and synthesized water, this research was performed to characterize the 

impact of algae and algal organic matter on drinking water treatment processes including 

coagulation-flocculation, GAC adsorption, microfiltration and chlorination / UV irradiation. 

Although bench scale study was performed, the parameters were selected based on actual 

operating conditions. 

Earlier research in this area had shown that coagulation was not effective for the removal 

of dissolved AOM and the performance was specific to algae. Similarly, unit processes 

such as granular activated carbon adsorption, membrane filtration and UV disinfection 

were conducted with some selected AOM. Often contradictory results were found, which 

indicated the need of comprehensive control study with several species of algae with 

diverse characteristics and following their behavior through the entire treatment train 

adopted in most drinking water treatment plants. The comprehensive research conducted 

in this thesis has produced the following results that are useful for formulating an optimal 

treatment scheme for the water treatment plants for minimizing disinfection by-products 

formation from algal matter. Following conclusions can be drawn.  

• Combination of coagulation-flocculation is the primary and most cost-effective 

treatment process in a multiple barrier system of a conventional drinking water 

treatment plant. At optimum coagulation condition of pH 6 and alum dosage of 40 
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mg/L, an average of 47.4 and 40.4% AOM removal in terms of DOC and UV254 can 

be achieved.  

• The hydrophobicity of AOM can be determined using a resin fractionation method. 

The coagulation efficiency correlated well with the hydrophobicity/(hydrophilicity 

and transphilicty) ratio and specific UV absorbance (SUVA). It was concluded that 

SUVA and hydrophobicity of AOM can be used as surrogate parameters to predict 

the coagulation performance and subsequent DBPFP. 

• Although, hydrophobic fraction of the AOM was removed better by coagulation-

flocculation, higher DBPFP also occurred for this fraction for most algal species 

due to the presence of aromatic compounds. 

• GAC adsorption can remove low MW fraction of AOM, however, with only 

moderate equilibrium capacity.  However, GAC adsorption as a pre-treatment can 

mitigate the fouling of microfiltration membrane to some extent. The irreversible 

fouling caused by DOM can be reduced by a dosage of 1.5 g/L of activated carbon. 

• The total removal efficiencies of AOM by microfiltration were higher than humic 

acid, however, a greater flux decline and higher irreversible fouling were observed 

from AOM than humic acid.  

• DBP formation increased linearly with total chlorine residual from 0.28 to 1.02 

mg/L, and at a DOC concentration of 3.0 mg/L, both , both haloacetic acids (HAA) 

and trihalomethane (THM) concentration were much higher than the maximum 

acceptable concentrations of THM and HAA.  

• UV irradiation of each AOM indicted that 40 mJ/cm2 did not significantly alter the 

DBP formation; however, more attention should be given to determine the 

effectiveness of enhanced dosage of UV irradiation on the degradation of algal 

matter as some algae (Phaeodactylum tricornutum and Merismopedia sp.) showed 

contrasting results in UV + chlorination.  

 

8.2 Recommendations for future study 

As the algal or cyanobacterial bloom are an on-going global challenge for water treatment 

plants, and the research indicated that at a concentration of 3.0 mg/L, DBP formation can 
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exceed the maximum acceptable concentrations, future research should explore further 

removal of AOM followed by coagulation. Enhanced coagulation can be achieved using 

polymers. 

• More advanced characterization of AOM, such as FTIR, 3D-EEM, NMR, XPS 

might be required to probe detail information for DBP formation mechanism.  

• N-DBP derived from AOM as the emerging group of DBP is of great concern due 

to the higher carcinogenicity and toxicity than regulated C-DBP needs further 

investigation. 

• The future research can be directed towards surface modification of GAC and 

operating conditions for better removal of hydrophilic and transphilic AOM. Other 

low cost adsorbent and membranes can be explored for better removal of AOM.  

• High intensity and energy-efficient UV irradiation with capability to mineralize or 

degrade dissolve organic matter prior to chlorination can be employed to reduce 

chlorine dosage and DBP formation.  

Although, above are the end of pipe solutions for algal bloom, greater effort should be 

directed towards reducing nutrient overload in the wastewater effluent. More holistic 

approach is needed so that the surface water sources are managed better. 
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Appendices 

Appendix A: Supplementary material of chapter 3 

 

Figure S1 Removal efficiency with variation of alum dose by coagulation for the 

water samples with cell density of 4.55 × 106 cell/ml without pH adjustment, (a) - (d) 

represent the removal efficiency of algal cell, turbidity, DOC and UV254, 

respectively. 
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Figure S2 Effect of pH on coagulation performance for the water samples with cell 

density of 4.5 × 106 cell/ml under the alum dosage 7.30 mg Al/L, (a) - (d) represent 

the removal efficiency of algal cell, turbidity, DOC and UV254, respectively. 
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Figure S3 Effect of initial cell density on coagulation performance under the alum 

dosage 7.30 mg Al/L and pH of 5.5, (a) - (d) represent the removal efficiency of algal 

cell, turbidity, DOC and UV254, respectively. 
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Appendix B: Permission to reuse copyrighted material of published 

chapter 3 and chapter 4  
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