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In Brief

In complex environments, the brain must

focus attention on behaviorally relevant

objects on a moment-by-moment basis.

In this study, Tremblay et al. show that

ensembles of neurons in the primate

prefrontal cortex efficiently support this

important function.
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SUMMARY

The activity of neurons in the primate lateral prefron-
tal cortex (LPFC) is strongly modulated by visual
attention. Such a modulation has mostly been docu-
mented by averaging the activity of independently
recorded neurons over repeated experimental trials.
However, in realistic settings, ensembles of simulta-
neously active LPFC neurons must generate atten-
tional signals on a single-trial basis, despite the
individual and correlated variability of neuronal re-
sponses. Whether, under these circumstances, the
LPFC can reliably generate attentional signals is
unclear. Here, we show that the simultaneous activity
of neuronal ensembles in the primate LPFC can be
reliably decoded to predict the allocation of attention
on a single-trial basis. Decoding was sensitive to the
noise correlation structure of the ensembles. Addi-
tionally, it was resilient to distractors, predictive
of behavior, and stable over weeks. Thus, LPFC
neuronal ensemble activity can reliably encode
attention within behavioral timeframes, despite the
noisy and correlated nature of neuronal activity.

INTRODUCTION

The primate brain has a limited capacity to process the immense

amount of visual information entering the visual system at any

given moment (Marois and Ivanoff, 2005). Visual attention pro-

vides a solution to this problem by selecting behaviorally relevant

information for detailed processing while filtering out distracting

information (Petersen and Posner, 2012; Posner, 1980). In

macaque monkeys, attention enhances the responses of visual

neurons representing the sensory attributes of behaviorally rele-

vant stimuli while suppressing the responses of neurons repre-

senting the attributes of irrelevant distractors (Desimone and

Duncan, 1995; Moran and Desimone, 1985; Noudoost et al.,

2010). During the voluntary allocation of attention, this response

modulation is stronger and occurs earlier in the lateral prefrontal

cortex relative to upstream striate and extrastriate visual areas

(Buschman and Miller, 2007; Suzuki and Gottlieb, 2013; but

see Katsuki and Constantinidis, 2012). Furthermore, activation

(Moore and Fallah, 2004; Schafer and Moore, 2011) or inactiva-

tion (Monosov and Thompson, 2009; Noudoost and Moore,

2011) of prefrontal neurons increases or decreases, respectively,

the modulation of single-neuron activity in visual cortices. This

suggests that the primate LPFC contains a saliency map influ-

encing neuronal activity in visual cortical areas, thus playing an

instrumental role in visual selective attention (Miller and Cohen,

2001; Squire et al., 2013; Thompson and Bichot, 2005).

Evidence for such a saliency map is mainly provided by

studies that average the activity of single neurons over multiple

repetitions of the same trial condition (Armstrong et al., 2009;

Bichot et al., 2001; Everling et al., 2002; Gregoriou et al., 2009;

Lebedev et al., 2004; Lennert and Martinez-Trujillo, 2011; Moore

and Armstrong, 2003; Rainer et al., 1998; Thompson et al.,

2005a). This across-trial averaging is performed in order to

overcome the substantial amount of trial-to-trial variability in

the responses of single neurons (Faisal et al., 2008; Tolhurst

et al., 1983; Tomko and Crapper, 1974). This method, however,

may not entirely reveal the ability of the prefrontal cortex to

encode attentional signals in realistic environments where the

brain must direct attention on a single-trial basis despite the

variability of single-neuron responses.

It is currently thought that the brain averages the activity of

many neurons to overcome the variability of neuronal responses

(Nienborg and Cumming, 2010; Shadlen and Newsome, 1998;

Shadlen et al., 1996). To account for this, previous studies

have pooled single neurons’ activities recorded independently

over different recording sessions into a neuronal group, some-

times referred to as a ‘‘neuronal population’’ (Astrand et al.,

2014; Kadohisa et al., 2013; Stokes et al., 2013). This procedure

assumes that single neurons fire independently from one another

and that the pooled activity of individual neurons recorded during

different trials approximates the activity of the neuronal popula-

tion on a single trial. This assumption, however, is probably un-

realistic. Single neurons in many brain areas exhibit correlated
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firing (i.e., noise correlations) that can limit the efficacy of aver-

aging and therefore affect the information content of the popula-

tion (Averbeck et al., 2006a; Shadlen and Newsome, 1994).

Although the precise effects of these correlations on population

coding are still unclear (Ecker et al., 2011; Nienborg et al., 2012),

they seem to play an important role in visual attention (Cohen and

Maunsell, 2009;Mitchell et al., 2009). It has been proposed that a

realistic estimate of population responses can be obtained by

simultaneously recording from a group of neurons, referred to

as a neuronal ensemble (Buzsáki, 2004; Hebb, 1949). In the pri-

mate prefrontal cortex, however, few studies have recorded from

neuronal ensembles in order to understand the population dy-

namics underlying visual attention (Buschman and Miller, 2009;

Cohen et al., 2010, 2007). Currently, whether prefrontal neuronal

ensembles can encode the allocation of visual attention on a

single-trial basis despite response variability and correlated

firing is unclear.

To investigate this issue, we chronically implanted multielec-

trode arrays in area 8A of two macaque monkeys. Area 8A is a

cytoarchitectonically defined granular region of the LPFC

located on the prearcuate convexity, anterior to the frontal eye

fields (FEF) and posterior to area 9/46 (Petrides, 2005). Neurons

in this area have particularly strong attentional signals that are in-

dependent of eye movements, have attentional fields spanning

both visual hemifields, and lead to specific attentional deficits

when lesioned (Johnston et al., 2009; Lennert and Martinez-

Trujillo, 2013; Lennert et al., 2011; Petrides, 2005). We recorded

the activity of neuronal ensembles in area 8A while the animals

performed a standard attentional task. From the ensemble activ-

ity, we could accurately decode the focus of attention on a

single-trial basis. Additionally, we found that correlated firing

between similarly tuned neurons was detrimental to the decod-

ing of attention. Moreover, the decoding was resilient to transient

distractors, predictive of behavioral outcomes, and stable

across weeks of chronic recordings.

RESULTS

Neuronal Ensemble Decoding Performance
Two monkeys (Macaca fascicularis) performed a visual attention

task while we recorded from neuronal ensembles in their left

LPFC area 8A (Figure 1). The animals were instructed to covertly

attend to one out of four identical Gabor stimuli, to detect a sub-

tle change in its orientation, and to saccade to it within 400 ms of

the change to obtain a juice reward (Figure 1A). The target Gabor

was cued by appearing 363 ms before the other three distrac-

tors. After a variable delay period, orientation changes could

happen in either the target (‘‘Target’’ trials) or in the opposite dis-

tractor (‘‘Distractor’’ trials). In the latter case, the monkey had to

ignore the transiently changing distractor and maintain fixation

A B

C D

E F

Figure 1. Behavioral Task and Electrophysi-

ological Recordings

(A) Animals were required to saccade to the

stimulus changing orientation only if that stimulus

position was previously cued. Red circle: focus

of attention. Blue circle: location of orientation

change. Red dot: gaze position. Green arrows:

saccade. Colored elements were not displayed.

(B) Behavioral performance of monkey ‘‘JL’’

and ‘‘F’’ on the three trial types. Error bars repre-

sent SEM.

(C) Reaction time distributions for saccades

directed at the cued location (blue bars) compared

to the uncued location (red bars). Blue and

magenta lines represent themean reaction time for

saccades to the cued and uncued location,

respectively (cued < uncued, p < 0.001, unpaired

t test).

(D) Anatomical location of chronic implant. Red

square represents position of multielectrode array

in left hemisphere. Purple area represents roughly

macaque area 8A. P: principal sulcus, AS: superior

arcuate sulcus, AI: inferior arcuate sulcus.

(E) Precise location of implants in monkey ‘‘F’’ and

‘‘JL’’ according to intraoperative photography.

Colors code for the spatial attention tuning of the

multiunit cluster recorded at each electrode site.

(F) Normalized responses of single visually tuned

neurons to a stimuli being presented inside the

receptive field while attention is allocated inside

(blue trace) or outside (red trace) the receptive

field. Color shaded regions represent SEM.
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on the center dot until the end of the trial. In a third trial type,

orientation changes happened simultaneously both in the target

and in the opposite distractor, in which case the monkey had to

saccade to the target and ignore the transient distractor

(‘‘Target + Distractor’’ trials). Within a given session, all three trial

types were randomly interleaved, so that it was impossible for

the animals to (1) predict the location of the target, (2) know

whether or not a saccade would be required, and (3) know

whether the change would happen in the target or in a distractor

stimuli or in both.

Both monkeys performed above chance in all trial types:

‘‘Target,’’ ‘‘Target + Distractor’’ (both �80% hit rate, including

fixation breaks), and ‘‘Distractor’’ (�60%; Figure 1B). The perfor-

mance in the latter condition was lower because in some trials

the monkeys made a saccade to the distractor change. Impor-

tantly, this was not due to the animals ignoring the cue and

saccading to any stimulus change. In the latter scenario, the per-

formance in the ‘‘Target + Distractor’’ trials would have been

50% and the performance in the ‘‘Distractor’’ trials would have

been 0%. Further supporting that the animals allocated attention

to the cued location, saccades to the distractor change had

longer latencies than saccades to the target change (Figure 1C).

We recorded the activity of neuronal ensembles in area 8A of

each monkey’s left LPFC using a chronically implanted 96-chan-

nel multielectrode array (Figures 1D, 1E, and S1). We isolated

action potentials from single neurons andmultiunit clusters using

standard thresholding and spike-sorting techniques (see Sup-

plemental Experimental Procedures available online). We refer

to both single units andmultiunit clusters when using the general

term ‘‘unit.’’ We found units tuned for the spatial position of each

one of the four possible targets, although a larger proportion of

units preferred targets in the hemifield contralateral to the

implant (70% contralateral versus 30% ipsilateral; Figure 1E

and Supplemental Information). In agreement with previous

studies (Lebedev et al., 2004; Lennert and Martinez-Trujillo,

2011, 2013), many units within the recorded ensembles showed

a sustained increase in firing rate that was selective for the

spatial allocation of attention to the target stimulus (Figures 1F

and S2). This sustained increase in responses is a signature of

visual attention at the single-cell level (Moran and Desimone,

1985; Treue and Martı́nez Trujillo, 1999) and corroborates that

the animals attended to the target during the delay period.

The activity of each neuronal ensemble (mean [M] = 52 simul-

taneously recorded units, standard deviation [SD] = 7, 23

recording sessions) was inputted to a decoding algorithm

capable of making single-trial predictions about both external

(e.g., stimulus location) and internal (e.g., attention allocation)

variables. Figure 2A depicts four example single-trial ensemble

activities from the same recording session, one for each

attended location. Although the exact nature of the neuronal

code used by these prefrontal neuronal ensembles remains

unknown, it has recently been suggested that state-of-the-art

decoders such as support vector machine (SVM) (Cortes and

Vapnik, 1995) might be best suited to extract the multidimen-

sional information coded by ensembles of simultaneously re-

corded LPFC neurons (Astrand et al., 2014; Rigotti et al.,

2013). As such, we used a SVM decoder to predict the target

location during the various epochs of a trial (LIBSVM v.3.14)

(Chang and Lin, 2011). Throughout the article, we refer to the

cue (1), attention (2), or saccade (3) epochs and extract

the corresponding single-trial average decoding accuracies.

The decoder’s accuracy was assessed using a standard

cross-validation procedure by iteratively training the decoder

on 4/5 of trials and testing its predictions in the remaining 1/5

of trials (K-fold = 5). Confusion matrices of the decoder’s mis-

classifications were obtained to identify potential error patterns.

Chance performance was determined by a permutation test that

shuffles trial labels of the training set (see Supplemental Informa-

tion for more details on the decoding procedure).

In order tomake single-trial predictions about the cue position,

the allocation of attention, and the saccade endpoint, we trained

and tested the decoder at different time points during correct

‘‘Target’’ trials. We used different time windows to integrate

the firing rate of units in the ensembles, from 20 to 800 ms.

The decoder gave classification performances significantly

above chance in all epochs using windows equal to or longer

than 80ms (see Figure S3). Figure 2B shows the classifier perfor-

mance using two time windows, 100 (dashed red line) and

400 ms (full red line). In both scenarios the performance was

significantly higher than chance (25%). For further analyses,

we used the larger 400 ms window because it provided a

good compromise between decoding speed and accuracy

(see Figure S3).

Across all recording sessions, we found that the decoder

achieved higher than chance accuracy in predicting: (1) the

cue position (M = 82%, 95% confidence interval of the mean

[CI] = 72%–92%, paired t test, p < 0.001), (2) the allocation of

attention (M = 74%, CI = 65%–83%, paired t test, p < 0.001),

and (3) the saccade endpoint (M = 98%, CI = 97%–99%, paired

t test, p < 0.001) (Figure 2B, red line). Following cue offset,

decoding accuracy reached a constant level throughout the

attention epoch (�1–2 s long), a result likely attributable to the

sustained activity of units encoding the attended target location

(Figures 1F, 2A, and S2). These results indicate that LPFC

neuronal ensembles can select a visual target among distractors

within timeframes of a few hundred milliseconds.

Noise Correlations’ Impact on Decoding Performance
Attention is known to have various modulatory effects on the

signal-to-noise ratio of neuronal activity, including increases in

firing rate (Everling et al., 2002), decreases in Fano factor (Mitch-

ell et al., 2007), and increases in the coherence and power of

local field potentials (Gregoriou et al., 2009; Womelsdorf et al.,

2006). These effects have been documented using single-elec-

trode recording methods. More recently, some studies have re-

corded from neuronal ensembles in the extrastriate visual area

V4 and reported that attention improves performance primarily

by reducing noise correlations between neurons (Cohen and

Maunsell, 2009; Mitchell et al., 2009). However, whether noise

correlations are always detrimental to neuronal ensemble en-

coding is still being debated theoretically (Ecker et al., 2011;

Nienborg et al., 2012). It has recently been suggested that

combining simultaneous recordings with decoding methods

can reveal whether noise correlations truly limit the information

coding capabilities of a neuronal population (Moreno-Bote

et al., 2014).
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To investigate this issue, we quantified noise correlations be-

tween neurons in the recorded neuronal ensembles. Figure 2C

illustrates correlations between simultaneously recorded units

in two example sessions. Lines represent statistically significant

correlations between pairs of units corresponding to different

electrodes (p < 0.05). Most correlations were positive and small

(Figure 2C; white lines). We also quantified changes in noise cor-

relations during attentional selection of each possible target

compared to a passive fixation (Figure 2D). The distribution of

noise correlations between all possible pairs of units within a

A

B

C

D

Figure 2. Neuronal Ensemble Activity and Correlated Variability

(A) Examples of four single trials of the ‘‘Target’’ trial type, one for each cued position. Firing rates (color scale) are normalized tomaximum firing of individual units.

(B) Mean decoding accuracy pooled across sessions andmonkeys for all task epochs (Cue, Attention, and Saccade). Abscissa represents the center of a 400ms

window used to train and test the decoder and the ordinate represents the decoder’s performance. Target: ‘‘Target’’ trial type. Target 100: ‘‘Target’’ trial type

using a 100 ms integration window. Target NC free: ‘‘Target’’ trial type using noise correlation free data. Diff. Tuning NC free: ‘‘Target’’ trials where correlations

between dissimilarly tuned neurons have been selectively destroyed. Tuned NC free: ‘‘Target’’ trials where correlations between both similarly and dissimilarly

tuned neurons have been selectively destroyed. Control: ‘‘Target’’ trial type using shuffled trial labels. Pink bar at the top indicates statistically significant

differences between ‘‘Target’’ and ‘‘Target NC free’’ lines, and the cyan line indicates significant differences between the ‘‘Target NC free’’ and ‘‘Diff. Tuning NC

free’’ lines, p < 0.001. There is no difference between the ‘‘Target NC free’’ and ‘‘Tuned NC free’’ lines. Error bars indicate SEM.

(C) Example noise correlation networks between units on each electrode of the array. Squares’ color represents blocks of 32 electrodes.

(D) Noise correlation distributions for each attended location. Curved line plot indicate cumulative distribution functions for attention or fixation epochs. Bar

graphs indicate proportion of statistically significant correlations (p < 0.01), positive and negative correlations kept separate. Yellow lines indicate median of

positive or negative noise correlation distributions.
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neuronal ensemble was different during attention compared to

fixation (p < 0.05, two-sample Kolmogorov-Smirnoff test) and

depended on which target attention was allocated to (Monkey

‘‘F’’: p < 1 3 10�10, Monkey ‘‘JL’’: p < 1 3 10�43, Kruskal-Wallis

test).

Next, we tested the overall effects of noise correlations on

neuronal ensemble coding by removing them and rerunning

the previous decoding analysis. We eliminated correlations by

shuffling the trials’ order within each stimulus conditions sepa-

rately for each unit (see Supplemental Information). This proce-

dure destroys the temporal structure of a recording sessionwhile

preserving the units’ tuning and average firing rate per condition

(Leavitt et al., 2013). We found that destroying all noise correla-

tions in the recorded neuronal ensembles led to statistically sig-

nificant increases in cue location (1%, CI = 0.5%–2%, paired

t test, p < 0.001) as well as attention (6%, CI = 5%–7% = paired

t test, p < 0.001) decoding accuracies, but we failed to find such

a benefit for saccade endpoint, probably due to a ceiling effect

(0.4%, CI = 0.04%–0.07%, paired t test, p > 0.01) (Figure 2B,

pink line versus red line). These improvements were statistically

greater during the attentional epoch compared to the cue epoch

(6% > 1%, CI of the mean difference = 4%–6%, paired t test, p <

0.001), suggesting that correlations could play a different role

during these two task epochs.

We further applied a shuffling procedure to selectively destroy

noise correlations between dissimilarly tuned units while preser-

ving those between similarly tuned ones (see Supplemental In-

formation). This did not yield any change in decoding accuracy

(Figure 2B, cyan line). Next, we destroyed correlations between

all tuned units, which affects both correlations between dissim-

ilarly (which have no effect) and similarly tuned units. The latter

improved decoding accuracy to the same level as destroying

all the correlations within the recorded population (Figure 2B,

dark blue line). These results demonstrate that noise correlations

have an overall modest but significant detrimental impact on the

ensembles’ coding of attention mainly because of correlations

between similarly tuned units.

Ensemble versus Single-Neuron Decoding
Because of the neuronal heterogeneity of LPFC, some units

within an ensemble may encode more information about the

task than others. This leads to the question of howmany neurons

are required to reliably encode the different aspects of the task.

Some studies have suggested that very few neurons are neces-

sary to generate a reliable signal (Newsome et al., 1989), while

other studies posit that many neurons are required (Shadlen

et al., 1996). To address this issue, we first contrasted the coding

performance of single units to the performance of the entire

ensemble by performing a separate decoding analysis on each

one of the recorded units (�1,200 data sets). As in the previous

decoding analyses, the responses of each unit were inputted into

the decoder and predictions were obtained and tested for all trial

epochs. Figure 3A shows the decoding accuracy across all

epochs for each recorded unit. While some units reached decod-

ing accuracies up to 60% (Figure 3A; color map), none reached

the average performance of the neuronal ensembles (Figure 3A;

green dotted line). This analysis was replicated using a shorter

time window of 100 ms; the results were similar (see Figure S4).

Next, we investigated the relationship between the perfor-

mance of the ensemble and the individual performance of its

single-neuron members. We addressed this question by looking

at the relationship between the specific errors made when

decoding from complete ensembles versus the errors made

when decoding from individual units.We extracted the confusion

matrices detailing the type of misclassification errors of single

units and ensembles for each task epoch, and compared the

two (Figures 3B and S5A, quadrants’ color versus quadrants’

histogram). We found that per-target ensemble decoding accu-

racy was strongly correlated with the average individual unit’s

performance within the same ensemble for the same target

(r = 0.97, p < 0.001) (Figure 3C). This indicates that the ensemble

performance is intrinsically tied to the properties of its individual

unit members.

Finally, we asked how many units are required to reach the

ensemble performance level for each individual epoch of

‘‘Target’’ trials (14 time points). To address this issue, we pro-

gressively added units to the decoder using two different

procedures based on the units’ independent classification per-

formance: (1) from the best to the worst unit (Figure 3D, blue

lines), or (2) from the worst to the best unit (Figure 3D, red lines).

In the former case, a surprisingly low number of units (M = 12,

SD = 7.2) was required to attain a decoding accuracy equivalent

to the ensemble’s performance. On the other hand, when input-

ting the worst units first, it generally required almost the entire

population to reach the ensemble performance level (Figure 3D,

pink lines). However, many more than the best units made a

Figure 3. Ensemble and Units Performance
(A) Color histogram of individual units’ decoding accuracy during ‘‘Target’’ trials. Dotted green line and dark gray line respectively represent the neuronal

ensembles average performance and the chance performance, as illustrated in Figure 2B. Abscissa represents the center of a 400 ms window used to train and

test the decoder and the ordinate represents the decoder’s performance.

(B) Each 2 3 2 box represents the average decoding accuracy per quadrant across ensembles in ‘‘Target’’ trials at different time points (monkey ‘‘F’’). The

histograms in each cell-quadrant represent the distribution of decoding accuracies (correct – false positives) across units for that specific quadrant. Small 23 2

insets within each cell represent the percentage of time that a quadrant was classified as another quadrant, as in a standard confusion matrix.

(C) Correlation between per-quadrant unit accuracy and per-quadrant ensemble accuracy for Monkey ‘‘F.’’ Correlation coefficient for Monkey ‘‘JL’’ was also

statistically significant (r = 0.90, p < 0.001).

(D) Each plot depicts the decoding accuracy for each task epoch (i.e., 14 time points) as units are progressively added to the ensemble for monkey ‘‘JL.’’ The

abscissa represents the number of units and the ordinate the decoding accuracy. The blue line represents accuracy when the best units are entered first in the

decoder, ranked according to their individual decoding accuracy. The red line represents the opposite scenario where the worst units are entered first. The green

dotted line represents the ensemble performance for the corresponding 400 ms time epoch. The yellow dotted line represents chance performance (25%). The

cyan dotted line indicates the minimum number of units required to reach the average ensemble performance. The purple dotted line marks the intersection

between the red line and the green dotted line.
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significant contribution to the ensemble performance (Figure 3D,

red lines departing from yellow ‘‘chance’’ lines). This suggests

that although decoding performance is most influenced by the

best-tuned units in the ensemble, most units can contribute to

the ensemble code.

Overall, these results indicate that the information contained in

the firing of an ensemble of simultaneously recorded LPFC units

is significantly higher than the one contained in the firing of the

best-tuned single unit. Importantly, the information contained

in the firing of a dozen of well-tuned neurons matches the one

of a population of approximately 50 units.

Distractor Interference of Ensemble Activity
Relative to other brain areas, the firing of single neurons in LPFC

is robust to distractor interference occurring outside of the focus

of attention (Noudoost et al., 2010; Suzuki and Gottlieb, 2013).

How ensembles of correlated neurons react to distractors, how-

ever, remains poorly documented. To assess the robustness of

the neuronal ensemble code to salient distractors, we included

in our task two types of trials involving distractor changes (see

Figure 1A; ‘‘Distractor’’ and ‘‘Target + Distractor’’ trials).

In ‘‘Distractor’’ trials, the monkeys had to inhibit saccading to

the orientation change in the distractor and had to maintain gaze

on the fixation point in order to receive a reward. Because of the

high saliency of the change, the animals saccaded to the distrac-

tor in a proportion of trials, which decreased behavioral perfor-

mance by �30% compared to ‘‘Target’’ trials (Figure 1B). We

examined the neuronal ensembles’ coding during the attention

epoch for correlates of this interference. Since in these trials

the distractor change always occurred opposite to the target, vi-

sual responses to the distractor could inform the decoder about

the allocation of attention, precluding using the previous analysis

strategy to quantify the interference (see Figure S6 for an

example of the bias). Thus, in order to control for this bias, we

trained the decoder during the attentional epoch before the dis-

tractor change onset to obtain a baseline attentional code and

predicted the target location during and after the distractor

change using this code. Because the decoding accuracy decays

as a function of the time difference between training and testing

time point (�2% per 100 ms; Figure S7), we adjusted the results

to take this effect into account (see Supplemental Information).

We found that the distractor change elicited a drop in decod-

ing accuracy of approximately 25% compared to maximum ac-

curacy (Figure 4A). Importantly, this interference was observed

during correct trials—i.e., trials where the monkeys were able

to withhold saccading to the distractor change. Coherently

with behavioral outcome, the interference was only transient

and the decoding accuracy rapidly increased back to predistrac-

tor baseline levels (Figure 4A). These results indicate that the

activity of LPFC neuronal ensembles was initially perturbed by

a salient distractor change and that when the animals success-

fully inhibited saccading to the distractor, ensemble activity

promptly recovered to predistractor levels.

Next, we contrasted the neuronal ensemble’s activity in suc-

cessful ‘‘Distractor’’ trials with the ensemble’s activity in error tri-

als where the animals saccaded to the distractor change. To do

so, we used the decoder to discriminate correct trials from errors

using the ensemble’s activity before, during, and after the dis-

tractor change, as in a traditional ‘‘choice probability’’ analysis

(Britten et al., 1996). We found that postdistractor change

ensemble activity was highly predictive of errors (�88%, paired

t test, p < 0.001, Figure 4B). Importantly, predistractor neuronal

ensemble activity was predictive of the animals’ ability to inhibit

saccading to the upcoming distractor change. (Decoder perfor-

mance =�60%, chance performance =�50%, paired t test, p <

0.001, Figure 4B.) These results suggest that the susceptibility of

the animal to distraction can be predicted from LPFC neuronal

ensemble activity even before the onset of the distracting event.

Finally, we analyzed trials where the distractor change

occurred simultaneously with a change in the target (Figure 1A;

A B C

Figure 4. Distractors and Decoding Accuracy

(A) Resilience of attentional decoding during and after a salient distractor change in ‘‘Distractor’’ trials. Decoders were trained and tested on all possible pairs of

time points. Results are expressed as percentage of maximal decoding accuracy during the attentional epoch. The focus is on decoders that were trained during

the attentional epochs (black dashed rectangle). The adjusted mean from the plot on the right was computed by averaging each row inside the black rectangle.

Mean is adjusted to account for the normal decay due to the time interval between training and testing epochs (see Figure S7).

(B) Population ‘‘choice probability’’ type analysis using the decoder to classify correct (inhibited saccade) from incorrect (saccade) trials in ‘‘Distractor’’ trial type.

The ‘‘Control’’ line is obtained by shuffling trial labels. Blue line on top indicates statistically higher than chance decoding, p < 0.001. Of interest, error prediction is

possible even before the onset of the distractor event.

(C) Effect of a salient distractor change when synchronous with a change in the attended target. *: statistically significant differences, p < 0.001. Errors bars

represent SEM in (B) and (C).
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‘‘Target + Distractor’’). At a behavioral level, this simultaneous

distractor change had almost no effect on the monkeys perfor-

mance relative to when the target change occurred alone

(mean difference between ‘‘Target’’ and ‘‘Target + Distractor’’

trial types = 0.9%, CI = �0.8%–2.6%, paired t test, p = 0.3,

see Figure 1B).We contrasted the neuronal ensemble’s activities

during both of these trial types by training the decoder during

‘‘Target’’ trials and predicting the target position during ‘‘Target +

Distractor’’ trials. Correspondingly, we found that the neuronal

ensemble’s activity was only slightly affected by the presence

of the distractor change (mean difference between ‘‘Target’’

and ‘‘Target + Distractor’’ decoding = 4.5%, CI = 2.6–6.3, p <

0.001, paired t test, Figure 4C). Thus, both the encoding of the

allocation of attention by LPFC neuronal ensembles and the

behavioral performance of the animals were relatively robust to

distractor changes concurring with target changes. This is very

different from the effects of isolated distractor changes, sug-

gesting that a highly salient event occurring at the attended loca-

tion overrides or masks (physiologically and behaviorally) the

saliency of distractor events occurring at unattended locations.

EnsembleCodes for Attentional Selection andSaccades
It has been suggested that oculomotor mechanisms play a crit-

ical role in the deployment of visual attention (Rizzolatti et al.,

1987). Some microstimulation and pharmacological studies

have supported this idea by showing that these two processes

aremediated by the same neuronal populations in prefrontal cor-

tex (Moore and Armstrong, 2003; Müller et al., 2005; Wardak

et al., 2006). However, other studies have argued that different

neuronal types within these populations make different contribu-

tions to attentional selection and eye movements (Gregoriou

et al., 2012; Thompson et al., 2005b). Assessing the similarity

of the neuronal ensemble codes for attention and saccade might

provide some insight on this controversy.

We reasoned that if the ensemble code for attention and

saccade is the same, then a decoder trained during the atten-

tional epoch should make accurate predictions about the

saccade endpoint, and vice versa. Thus, we trained the decoder

during ‘‘Target’’ trials at several time points and tested its decod-

ing performance across all other time points, generating a

training epoch by testing epoch matrix of decoding accuracies

(Figure 5A). Patterns of good generalizability across task epochs

appear in Figure 5A as rectangular areas of high decoding accu-

racy. We found that (1) training the decoder during the cue or the

attention epoch yields high classification accuracy when testing

during either of these two epochs, but low accuracywhen testing

during the saccade epoch, and (2) that training the decoder dur-

ing the saccade epoch yields high decoding accuracy when

testing during the same epoch, but low accuracy when testing

during either the cue or the attention epoch. We quantified these

observations in Figure 5B by contrasting the performance of

three decoders, one trained on each epoch. Clearly, the perfor-

mance of the decoders trained during the visual and attention

epoch was very similar, but both failed to make accurate predic-

tions during the saccade epoch. These results confirm the

prediction that the neuronal ensemble’s activity patterns corre-

sponding to visual/attentional and saccadic signals differ sub-

stantially. This can either suggest that different neurons within

the ensembles underlie attentional selection and saccades or

that the same neurons encode both throughout the trial,

although in a different format. In favor of the former interpreta-

tion, we found that a high proportion of attentional neurons share

similar visual tuning properties (349/524; 65%, Figure 5C), while

few of these neurons carry any information about the saccade

(72/524; 14%).

Decoding Accuracy of Sorted versus Thresholded
Activity
The field of neural prosthetics seeks to bridge the brain to the

world by using brain signals to control objects in the environment

(e.g., artificial limbs, computers, etc.) (Andersen et al., 2010;

Donoghue, 2008). These brain-machine interfaces require the

real-time processing of neuronal ensemble signals to feed con-

trol signals to the prosthetics within a timeframe compatible

with behavior. Sorting spikes is a time-consuming and computa-

tionally demanding operation that can hinder real-time process-

ing. Therefore, alternative methods must be considered to avoid

this operation. It has been proposed that voltage-thresholded

A B C

Figure 5. Decoding of Attention and Saccades
(A) Generalizability of the neuronal ensemble activity across all epochs of ‘‘Target’’ trials. The decoder is trained and tested on all possible pairs of time points.

Color of each square represents the decoding accuracy of a decoder trained and tested on the corresponding time points.

(B) Quantitative representation of across-epochs generalizability of the decoder. Cue, Attention, and Saccade lines represent column Cue+200, 800, and

Saccade +200 in Figure 5A. Control line corresponds to column Cue-400. Error bars indicate SEM.

(C) Venn diagram representing the absolute number of units belonging to each of three tuning categories (visual, attentional, and saccadic). Intersections

represent neurons that belong to more than one category.
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unsorted activity in motor or premotor areas carries sufficient in-

formation to reliably guide a brain-machine interface, removing

the need to sort spikes (Chestek et al., 2011; Fraser et al.,

2009). Thus, we tested whether in our experiment decoding

from fully spike-sorted neuronal ensembles yields similar perfor-

mance as decoding from neuronal activity extracted using a fast

and simple voltage thresholding operation.

We extracted the thresholded activity by applying a voltage

threshold to the raw high-frequency voltage traces (see Supple-

mental Information). This operation puts together all single- and

multiunit activity recorded at a given electrode site, yielding a

single multiunit cluster per electrode. We then compared the de-

coding accuracy using thresholded signals to the accuracy using

spike-sorted signals. We found that decoding the cue, attended

location, and saccade endpoint using the thresholded data

yielded slightly lower but comparable performance to the original

sorted signal (Figure 6, red line versus blue line, cue = �2%,

attention = �2%, saccade, = �0.4%, paired t test, p < 0.001).

This indicates that the pooled activity of units surrounding a

recording electrode in LPFC carries a similar amount of informa-

tion as the sorted activity of single units. Remarkably, eliminating

noise correlations between electrode clusters in the thresholded

data yielded an increase in decoding accuracy, as observed with

the spike-sorted data set (Figure 6, cyan line versus blue line,

paired t test, p < 0.001).

To further examine the contribution of well-isolated single

units and multiunit clusters to the decoding accuracy of the

thresholded data, we re-sorted our data set to exclude all single

units from the recordings. We found that decoding from multi-

units only yielded above-chance decoding accuracy, although

not to the level obtained by including single units to the data

set (Figure 6, green line versus blue line, paired t test, p <

0.001). This indicates that multiunit clusters contain an important

amount of information about the task; however, single units

significantly add to that information.

Stability of Neuronal Ensemble Coding over Time
Microcircuits within the LPFC are known to be very plastic,

dynamically adapting as a function of the task at hand (Busch-

man et al., 2012; Mante et al., 2013; Miller and Cohen, 2001).

However, some applications such as chronic neural prosthetics

require a stable neuronal code in order to accurately decode the

subject’s intentions for a prolonged period of time. We asked

whether the neuronal ensemble code underlying attentional

selection of visual targets could be stable over long time periods.

We had the opportunity to investigate this issue because our re-

cordings extended over multiple weeks using the same chronic

multielectrode implants in the same animals. To address this

question, we trained a decoder on the attentional epoch of a spe-

cific session and used it to predict attention allocation in other

recording sessions. We replicated this procedure for every

possible pairs of recording sessions, from training and testing

on the same session to training and testing on sessions that

occurred more than a month apart. Importantly, as in the previ-

ous analysis, we used only unsorted thresholded data (i.e., one

multiunit cluster per electrode) and the same electrodes across

all sessions (see Supplemental Information).

We generated amatrix of training by testing session illustrating

the generalizability of the attentional code as a function of time.

The matrix shows that a decoder trained on day 1 can make

accurate predictions even a month later, suggesting a high

generalizability of the attentional code across sessions recorded

on different days (Figure 7A). We have replicated this analysis for

the visual and saccade epoch and found a comparable general-

izability (Figures 7B and 7C). For control purposes, we tested the

decoder on a different set of adjacent electrodes within the same

brain area (Figures 7A–7C; con 1 & con 2). In this case, decoding

accuracy dropped to chance, indicating that although the

neuronal code is stable over time within a given ensemble, it

does not generalize to nearby neuronal ensembles.

One likely explanation for the stability of the decoder over time

is that the neuronal activity recorded from each electrode pre-

serves its tuning despite possible changes in the units’ isolation

across sessions (e.g., loss of units and emergence of new units

due to the slight movement of the electrodes inside the cortex).

To test this hypothesis we examined the tuning of multiunit activ-

ity corresponding to each one of the different electrodes across

sessions. Figure 7D depicts four example multiunit clusters

tuned for each of the four attended locations. Despite modest

changes in absolute firing rates over time, the tuning of each

unit seemed very stable over a time span of more than a month.

We further quantified this observation by computing the stan-

dard deviation of the spatial tuning of the example units in a

two-dimensional space. We found that despite small variations

in absolute firing rate (mean SD of Euclidian distances = 8.6),

Figure 6. Spike-Sorted versus Thresholded Ensemble Activity

Neuronal ensemble decoding accuracy for all epochs of ‘‘Target’’ trials, using

either spike-sorted (‘‘Sorted’’ line) or thresholded data (‘‘Tresholded’’ line).

Blue bar on top of plot indicates time points of significant differences between

‘‘Sorted’’ and ‘‘Thresholded’’ data (p < 0.001, paired t test). The cyan line in-

dicates the decoding performance of thresholded data with intrinsic noise

correlations destroyed (ThresholdedNC free). Cyan bar on top indicates points

of significant differences between ‘‘Thresholded’’ and ‘‘Thresholded NC free’’

data (p < 0.001, paired t test). ‘‘Multiunit only’’ corresponds to a data set which

includes multiunit clusters but excludes all isolated single units. Green bar on

top indicates the epochs for which ‘‘Multiunit only’’ decoding is statistically

inferior to ‘‘Sorted’’ decoding accuracy (p < 0.001, paired t test). Error bars

indicate SEM.
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relative tuning was mainly preserved across sessions (mean r of

clusters distribution = 0.46) (Figure 7E). Thus, although different

single units might have contributed to the spikes recorded on a

given electrode fromday to day (Dickey et al., 2009), themultiunit

activity remained relatively stable over time. This could explain

why the neuronal ensemble codes underlying visual, attentional,

and saccadic signals were found to be stable over multiple

weeks.

DISCUSSION

Coding of Attention by LPFC Ensembles
The orienting of attention is a dynamic process unfolding over a

subsecond timescale (Posner, 1980). However, most neural cor-

relates of visual attention in the prefrontal cortex of nonhuman

primates have been obtained by pooling the activity of single

neurons over a series of trials (Armstrong et al., 2009; Bichot

et al., 2001; Everling et al., 2002; Gregoriou et al., 2009; Lebedev

et al., 2004; Lennert andMartinez-Trujillo, 2011; Moore and Arm-

strong, 2003; Rainer et al., 1998; Thompson et al., 2005a).

Although these studies have helped establish a link between

attention and single-neuron responses, to be ecologically valid,

neural correlates of attention should be derived from single-trial

measurements.

Our results show that a machine-learning algorithm using the

activity of neuronal ensembles in area 8A can decode the alloca-

tion of attention on a single-trial basis and over time windows as

low as 100 ms. This result supports the role of LPFC in top-down

visual attention by showing that attentional signals originating

from this region could modulate visual activity on a timescale

coherent with behavior, despite the variability in single-neuron

responses (Desimone and Duncan, 1995; Squire et al., 2013).

This result agrees with a study showing that the focus of spatial

attention can be tracked from the activity of single neurons in the

LPFC of macaques (Buschman and Miller, 2009).

Another constraint on neuronal ensemble computations is due

to correlated trial-to-trial variability between single neurons

(Cohen and Maunsell, 2009; Mitchell et al., 2009). It has been

proposed that noise correlations can limit the amount of in-

formation carried by a neuronal ensemble (Shadlen et al.,

1996). However, others have argued that, under certain circum-

stances, noise correlations may be beneficial to ensemble

A B C

D E

Figure 7. Coding Stability of Neuronal Ensemble across Recording Sessions

(A) Generalizability of decoders trained during the attention epoch across recording sessions (days). The decoder was trained and tested on every pair of sessions

within the attention epoch. Squares’ color represents decoding accuracy, pooled across monkeys. ‘‘con 1’’ and ‘‘con 2’’ are control sessions recorded from

adjacent blocks of electrodes within the same cortical region.

(B) Same as in (A), but for the Cue epoch.

(C) Same as in (A), but for the Saccade epoch.

(D) Average firing rates during the attentional epoch are depicted for four example multiunit clusters, each with a different attentional field, over the course of five

weeks of recording.

(E) Each dot represents the sum of vectors defined by the firing rate of a unit to the four possible attended locations over the course of one session. Each color

represents a different unit, as in (D). Each dot represents a different session for that unit. The ‘‘x’’ marks represent the centroid of mass of each unit cluster. The

standard deviation of Euclidian distances between each dot and its associated centroid was computed to quantify the tuning similarity over time independently

for each unit.
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coding, particularly when they occur between neurons with

different tuning properties (Averbeck et al., 2006a). We showed

that removing the entire intrinsic noise correlation structure of

the neuronal ensembles increases decoding accuracy of atten-

tion by a small but significant amount. This effect was mainly

due to removing correlations between similarly tuned neurons,

which is in agreement with theoretical models (Averbeck et al.,

2006b; Moreno-Bote et al., 2014). Destroying correlations be-

tween dissimilarly tuned neurons did not lead to significant

changes in decoding accuracy. This may be explained by the

fact that, in our data set, these correlations were usually small

in number and amplitude. Overall, these observations agree

with studies demonstrating that visual attention improves behav-

ioral performance by decreasing noise correlations in visual

cortical neurons (Cohen and Maunsell, 2009; Mitchell et al.,

2009).

An implication of the previous results pertains to the inferences

made from pooling nonsimultaneously recorded single neurons

into a ‘‘neuronal population.’’ Since this method cannot capture

correlated variability between units, it assumes that neurons

make independent contribution to the information content of

the population activity. Our results indicate that such a method

leads to a modest yet significant overestimation of the encoding

efficiency. Thus, measurements of neuronal ensembles activity

yield more realistic estimates of the computational power of

neuronal populations.

One issue that has been matter of debate is whether the per-

formance of single neurons is comparable to the one of neuronal

populations (Newsome et al., 1989; Rochel and Cohen, 2007;

Sanger, 2003).We found that although the best single units could

inform about the allocation of attention, neuronal ensembles

always performed significantly better. Surprisingly, a small

ensemble composed of the best 12 units could reproduce the

decoding accuracy of an entire ensemble of�50 units. This sug-

gests that a downstream neuron may only ‘‘read out’’ from a

small group of informative units to encode the allocation of atten-

tion, minimizing metabolic and wiring costs (Laughlin and Sej-

nowski, 2003; Niven and Laughlin, 2008). Interestingly, when

inputting the worst units first into the iterative decoder of Fig-

ure 3D, we found that most units carried information about the

allocation of attention. One possible explanation for these obser-

vations is that less informative neurons contribute differently to

the network computation (e.g., normalization, noise reduction,

etc.). It may be that the most informative neurons reflect the

output of the computation rather than its intermediate steps.

Layer-specific recordings would help answer this question

(Hampson et al., 2012).

Responses of LPFC Ensembles to Distractors
Single neurons encoding the allocation of attention in prefrontal

cortex are less sensitive to distracting stimuli relative to other

brain areas (Noudoost et al., 2010; Suzuki and Gottlieb, 2013).

However, how ensembles of LPFC neurons react to distractors

on a single-trial basis has not been explored. In the current study,

we showed that the behavioral suppression of a distractor was

associated with a mild, temporary interference of neuronal

ensemble coding. For a few milliseconds after the distractor

change, decoding accuracy decreased by �25%. This interfer-

ence was likely caused by a transient burst of activity from units

with the distractor change inside their receptive field (Fig-

ure S6A). In correct trials, this transient activity could also result

from a rapid switch of the focus of attention toward the salient

distractor followed by a quick switch back to the target (Busse

et al., 2008).

This interpretation can be related to the lack of interference in

trials where distractor and target changes concurred (‘‘Target +

Distractor’’). Here, exogenous attention was likely not allocated

to the distractor but remained on the endogenously attended

target. This result agrees with a previous report of endogenous

dominating over exogenous attention at high stages of visual

processing (Hopfinger and West, 2006). Importantly, the extent

of changes in the ensemble coding accuracy was linked to the

animals’ behavioral performance. When analyzing this neural-

behavioral relationship on a single-trial basis, we found that

trial-to-trial variations in the neuronal ensemble activity pattern

could predict behavioral susceptibility to the distractor change

(Cohen and Maunsell, 2010). This prediction could be done

even a few hundredmilliseconds before the onset of the distract-

ing event, suggesting that the quality of attentional filtering is

reflected in the neuronal ensemble activity.

Coding of Attention and Saccades by LPFC Ensembles
Eye movements orient the retinas toward events that are behav-

iorally relevant in the environment, reflecting a close relationship

between attention and saccades (Deubel and Schneider, 1996;

Moore et al., 2003; Rizzolatti et al., 1987). However, during covert

(Posner et al., 1982) and divided attention (Niebergall et al., 2011)

tasks, the allocation of attention can be dissociated from sac-

cades, suggesting that these two processesmight be subserved

by distinct, but related, neuronal subpopulations (Gregoriou

et al., 2012; Pouget et al., 2009; Thompson et al., 2005b). Here

we showed that distinct ensemble activity patterns signal the

allocation of attention and saccade endpoint, providing evidence

that these two processes are dissociable at the level of ensem-

bles. Our results agree with previous studies in area 8A that

dissociate the allocation of spatial attention from saccade goal

(Everling et al., 2002; Lebedev et al., 2004; Lennert and

Martinez-Trujillo, 2011, 2013). Visual-attentional and saccade

neurons may make different contributions to one or the other

process, implementing a transformation from a visual saliency

map to an oculomotor map within the LPFC (Takeda and Funa-

hashi, 2002). It is also possible that the same neurons carry

different information throughout a trial, dynamically changing

from attentional to saccade coding. This dynamic coding has

been well documented in populations of prefrontal neurons

(Stokes et al., 2013). This interpretation would entail that the

same neurons carry information about both attention and

saccade. However, when examining the tuning of attentional

neurons during the saccade epoch, 76% of them do not carry in-

formation about the saccade endpoint. In contrast, 65% of

attentional neurons carried information about the cue position.

Interestingly, only 26% of all task-tuned neurons contained any

information about saccade endpoint. This is in contrast with

the FEF, where �60% of tuned neurons exhibit movement

activity (Bruce and Goldberg, 1985). This observation could be

explained by a rostral-caudal model of frontal hierarchical
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organization, whereby caudal areas are relatively more involved

in the motor transformation than in the cognitive control process

(Badre and D’Esposito, 2009; Petrides, 2005).

Relevance to Cognitive Neural Prosthetics
It has been suggested that decisions, forward estimations, and

even learning-related neural signals could be decoded to control

a brain-machine interface that would produce behavioral out-

comes according to a subject’s intentions and motivations

(Andersen et al., 2010; Musallam et al., 2004). Our results sup-

port this proposal. We found that the focus of attention could

be quickly (within 100–400 ms) and reliably decoded using

chronic multielectrode array recordings from LPFC and a simple

voltage-threshold operation. Moreover, we showed that multi-

unit activity that excludes spikes from well-isolated single neu-

rons carries sufficient information to accurately decode the

allocation of attention. This result is encouraging for neural pros-

thetic applications using similar chronic implants, which tend to

lose single unit isolation over time (Chestek et al., 2011).

From a physiological standpoint, it is surprising that losing this

single-cell resolution does not dramatically alter the information

content of recorded signals. One possible explanation for this

result is that the neurons contributing to the signals captured

by a given electrode are located within the same cortical column

and share similar tuning properties (Constantinidis et al., 2001;

Opris et al., 2012). This topographic organization of area 8A

and its location on the cortical surface make it a potential target

for chronic multielectrode array implants to provide signals for

cognitive brain-machine interfaces. Further supporting this

idea, the decoding of attentional allocation using LPFC neural

ensemble activity was stable over multiple weeks of recording.

The upper limit of this stability was not investigated in the current

experiment; thus, it is plausible that accurate predictions could

have been made for longer since the generalizability of the

decoder did not seem to decay over time.

Previous studies have suggested that the microcircuits within

LPFC are very plastic, or dynamically changing as a function of

training during a given task (Buschman et al., 2012; Mante

et al., 2013; Miller and Cohen, 2001). Our results further suggest

that, despite such plasticity, visual, attentional, and saccadic

representations are encoded within a map that remains stable

over time. It has also been indicated that multielectrode arrays

may slightly change position in the cortex and thus pick up sig-

nals from different neurons over long intervals of time (Dickey

et al., 2009). Surprisingly, this variability did not seem to affect

the decoder. In conclusion, our findings demonstrate the capac-

ity of area 8A neuronal ensembles to filter visual information

within an ecologically valid timeframe and encourage the use

of neural signals from this area for cognitive neural prosthetic

applications.

EXPERIMENTAL PROCEDURES

Experiments complied with the Canadian Council of Animal Care guidelines

and were approved by the McGill Animal Care Committee. Monkeys per-

formed a visual selective attention task. A trial started when the monkey

directed its gaze on a fixation spot and pressed a lever. Following the onset

of a cue grating stimulus, the monkey allocated attention to the cued stimulus

while maintaining his gaze on the fixation point. The monkey had to saccade to

the target upon a change in its orientation and ignore changes in distractor

stimuli to obtain a juice reward. Action potentials from ensembles of neurons

were recorded using a chronically implanted multielectrode array. Neuronal

ensemble activity was decoded using a support vector machine to predict

the allocation of attention on a single-trial basis.
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tion across the horizontal and vertical meridians: evidence in favor of a premo-

tor theory of attention. Neuropsychologia 25 (1A), 31–40.

Rochel, O., and Cohen, N. (2007). Real time computation: zooming in on pop-

ulation codes. Biosystems 87, 260–266.

Sanger, T.D. (2003). Neural population codes. Curr. Opin. Neurobiol. 13,

238–249.

Schafer, R.J., and Moore, T. (2011). Selective attention from voluntary control

of neurons in prefrontal cortex. Science 332, 1568–1571.

Shadlen, M.N., and Newsome, W.T. (1994). Noise, neural codes and cortical

organization. Curr. Opin. Neurobiol. 4, 569–579.

Shadlen, M.N., and Newsome, W.T. (1998). The variable discharge of cortical

neurons: implications for connectivity, computation, and information coding.

J. Neurosci. 18, 3870–3896.

Shadlen, M.N., Britten, K.H., Newsome, W.T., and Movshon, J.A. (1996). A

computational analysis of the relationship between neuronal and behavioral

responses to visual motion. J. Neurosci. 16, 1486–1510.

Squire, R.F., Noudoost, B., Schafer, R.J., andMoore, T. (2013). Prefrontal con-

tributions to visual selective attention. Annu. Rev. Neurosci. 36, 451–466.

Stokes, M.G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., and Duncan, J.

(2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron 78,

364–375.

Suzuki, M., and Gottlieb, J. (2013). Distinct neural mechanisms of distractor

suppression in the frontal and parietal lobe. Nat. Neurosci. 16, 98–104.

Takeda, K., and Funahashi, S. (2002). Prefrontal task-related activity repre-

senting visual cue location or saccade direction in spatial working memory

tasks. J. Neurophysiol. 87, 567–588.

Thompson, K.G., and Bichot, N.P. (2005). A visual salience map in the primate

frontal eye field. Prog. Brain Res. 147, 251–262.

Thompson, K.G., Bichot, N.P., and Sato, T.R. (2005a). Frontal eye field activity

before visual search errors reveals the integration of bottom-up and top-down

salience. J. Neurophysiol. 93, 337–351.

Thompson, K.G., Biscoe, K.L., and Sato, T.R. (2005b). Neuronal basis of covert

spatial attention in the frontal eye field. J. Neurosci. 25, 9479–9487.

Tolhurst, D.J., Movshon, J.A., and Dean, A.F. (1983). The statistical reliability of

signals in single neurons in cat and monkey visual cortex. Vision Res. 23,

775–785.

Tomko, G.J., and Crapper, D.R. (1974). Neuronal variability: non-stationary re-

sponses to identical visual stimuli. Brain Res. 79, 405–418.

Treue, S., andMartı́nez Trujillo, J.C. (1999). Feature-based attention influences

motion processing gain in macaque visual cortex. Nature 399, 575–579.

Wardak, C., Ibos, G., Duhamel, J.-R., and Olivier, E. (2006). Contribution of the

monkey frontal eye field to covert visual attention. J. Neurosci. 26, 4228–4235.

Womelsdorf, T., Fries, P., Mitra, P.P., and Desimone, R. (2006). Gamma-band

synchronization in visual cortex predicts speed of change detection. Nature

439, 733–736.

Neuron

Attentional Filtering by Prefrontal Ensembles

Neuron 85, 202–215, January 7, 2015 ª2015 Elsevier Inc. 215


	Attentional filtering of visual information by neuronal ensembles in the primate lateral prefrontal cortex.
	Citation of this paper:

	Attentional Filtering of Visual Information by Neuronal Ensembles in the Primate Lateral Prefrontal Cortex
	Introduction
	Results
	Neuronal Ensemble Decoding Performance
	Noise Correlations’ Impact on Decoding Performance
	Ensemble versus Single-Neuron Decoding
	Distractor Interference of Ensemble Activity
	Ensemble Codes for Attentional Selection and Saccades
	Decoding Accuracy of Sorted versus Thresholded Activity
	Stability of Neuronal Ensemble Coding over Time

	Discussion
	Coding of Attention by LPFC Ensembles
	Responses of LPFC Ensembles to Distractors
	Coding of Attention and Saccades by LPFC Ensembles
	Relevance to Cognitive Neural Prosthetics

	Experimental Procedures
	Supplemental Information
	Acknowledgments
	References


