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Cognitive deficits are recognized in Parkinson's disease. Understanding cognitive functions mediated by the stri-
atum can clarify some of these impairments and inform treatment strategies. The dorsal striatum, a region
impaired in Parkinson's disease, has been implicated in stimulus–response learning. However, most investiga-
tions combine acquisition of associations between stimuli, responses, or outcomes (i.e., learning) and expression
of learning through response selection and decision enactment, confounding these separate processes. Using
neuroimaging, we provide evidence that dorsal striatum does not mediate stimulus–response learning from
feedback but rather underlies decision making once associations between stimuli and responses are learned.
In the experiment, 11males and 5 females (mean age 22) learned to associate abstract images to specific button-
press responses through feedback in Session 1. In Session 2, theywere asked to provide responses learned in Ses-
sion 1. Feedback was omitted, precluding further feedback-based learning in this session. Using functional mag-
netic resonance imaging, dorsal striatum activation in healthy young participants was observed at the time of
response selection and not during feedback, when greatest learning presumably occurs. Moreover, dorsal stria-
tum activity increased across the duration of Session 1, peaking after most associations were well learned, and
was significant during Session 2 where no feedback was provided, and therefore no feedback-based learning oc-
curred. Preferential ventral striatum activity occurred during feedback and was maximal early in Session 1.
Taken together, the results suggest that the ventral striatum underlies learning associations between stimuli and
responses via feedback whereas the dorsal striatum mediates enacting decisions.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Parkinson's disease (PD) is a common movement disorder, though
cognitive impairments are now recognized.Movement symptoms asso-
ciated with PD appear when degeneration of dopamine-producing cells
of the substantia nigra (SN) is sufficient to seriously interrupt dopamine
supply to the dorsal striatum (DS; Kish et al., 1988). In contrast,
dopamine-producing cells in the ventral tegmental area (VTA) are rela-
tively spared and dopamine supply to its efferent, the ventral striatum
(VS), along with the limbic and frontal cortices, is better preserved
(Haber and Fudge, 1997). The striatum is the input region for a collec-
tion of subcortical nuclei, known as the basal ganglia, that are generally
implicated in movement regulation and increasingly in cognitive

functions. VS includes the nucleus accumbens and ventral portions
of the caudate nucleus and putamen, and is considered separately
fromDS – comprising the bulk of the caudate and putamen – because
they have distinct dopaminergic inputs (Voorn et al., 2004; Wickens
et al., 2007), vascular supplies (Feekes and Cassell, 2006), and func-
tions (Cools, 2006; MacDonald and Monchi, 2011). As the patho-
physiology predicts, dopamine replacement medications, such as L-
3,4-dihydroxyphenylalanine (L-dopa) or dopamine receptor agonists,
considerably improve DS-mediated symptoms, both motor and cogni-
tive. However, in PD, these medications impair cognitive functions per-
formed by VTA-innervated regions, such as VS, presumably a result of
dopamine overdose of these relatively dopamine-replete regions
(Cools, 2006). Accordingly, understanding cognitive functionsmediated
by these striatal sub-regions is an important aim. Along with motor
symptoms, this knowledge could guide medication titration to address
cognitive symptoms that are ranked highly as a cause of reduced quality
of life in PD (Barone et al., 2009; Schrag et al., 2000).
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DS has been implicated in learning associations between stimuli
and responses (See Ashby et al., 2007; Yin and Knowlton, 2006 for
reviews), including in early goal-directed or feedback-guided learn-
ing (Balleine et al., 2009; Boettiger and D'Esposito, 2005; Brovelli
et al., 2011; Brown and Stern, 2013; Foerde et al., 2013; Garrison
et al., 2013; Hart et al., 2014; O'Doherty et al., 2004). This ability to
learn associations among stimuli, responses, and outcomes of actions
is essential for adaptive behavior. Despite considerable evidence
suggesting that DS mediates learning, in some cases, learning is pre-
served in non-human animals (Atallah et al., 2007; McDonald and
Hong, 2004; Ragozzino, 2007) and in patients (Ell et al., 2006;
Exner et al., 2002; Shin et al., 2005) with DS lesions, casting doubt
on this notion. Furthermore, learning is oftenworsened by dopaminergic
therapy in PD, not expected if DS mediates learning stimulus–response
associations (Cools et al., 2007; Feigin et al., 2003; Ghilardi et al., 2007;
MacDonald et al., 2013a,b; Seo et al., 2010; Shohamy et al., 2006;
Tremblay et al., 2010).

This discrepancy in the literature regarding DS' role in stimulus–
response learning is potentially explained by increasing evidence that
DS mediates decision making, coupled with a methodological feature
of many learning studies. Decision making refers to the process of
representing and assigning values and probabilities to different
response options, then choosing and performing a response (Rangel
et al., 2008; Ryterska et al., 2013). Investigations of learning frequently
combine enacting decisions with learning per se (Jessup and
O'Doherty, 2011;McDonald andWhite, 1993). For example, typical par-
adigms proceed as follows: a) a stimulus is presented and participants
decide among a set of responses, b) feedback about accuracy of response
is provided, throughwhich stimulus–response associations are learned.
In functional magnetic resonance imaging (fMRI) studies, a) selecting
and enacting a response, and b) learning from feedback are treated as
a single event, neural activity is merged, and all significantly-activated
brain regions are ascribed a role in learning (Delgado et al., 2005;
Dobryakova and Tricomi, 2013; Jessup and O'Doherty, 2011; Nomura
et al., 2007; Poldrack et al., 1999; Ruge and Wolfensteller, 2010; Xue
et al., 2008).

Our aim was to directly test the notion that DS underlies early
learning of associations between stimuli and responses through
feedback. In the experiment, participants learned to associate abstract
images and specific button-press responses through feedback. Using
fMRI, we investigated whether DS was differentially activated at the
time of response selection versus during feedback-based learning.

Materials and methods

Participants

Sixteen healthy, young adults participated in this experiment
(11 males and 5 females). Participants had a mean (SEM) age and
education level of 22 (0.56) and 16.20 (0.31) years, respectively. Two
participants were excluded from the analyses. One participant failed
to reach a pre-set learning criterion as described further below and
imaging data from the other participant did not sync correctly with
the behavioral task. Participants abusing alcohol, prescription or street
drugs, or taking cognitive-enhancing medications including Methyl-
phenidate (Ritalin) were excluded from participating. The Health Sci-
ences Research Ethics Board of the University of Western Ontario
approved this study. All participants provided informedwritten consent
to the approved protocol before beginning the experiment, according to
the Declaration of Helsinki (1991).

Procedures

All participants performed a task during which they learned to asso-
ciate abstract images with one of three button-press responses in Ses-
sion 1. Images were computer-generated with GroBoto (Braid Art Labs,

Colorado Springs, USA). On each trial, an abstract image appeared in
the center of a projection screen until the participant responded with
a button-press. Feedback (i.e., ‘Correct’ or ‘Incorrect’) was provided
after every response and in this way, participants learned to associate
each of the abstract images with the appropriate button-press response
through trial and error in Session 1. Trials were organized into blocks.
After each block, participants were provided with a percentage score,
summarizing their learning performance. Aminimum learning criterion
of 74% on two successive blockswas required to complete Session 1. The
performance criterionwas selected for two reasons: 1) piloting data in-
dicated that most participants could achieve 74% in a reasonable num-
ber of blocks, and 2) our aim was to investigate early learning. Before
proceeding to Session 1, participants received 20 practice trials with dif-
ferent images from those employed during the main experimental ses-
sions. In Session 2, recall of the correct button-press response for each of
the abstract images presented during Session 1was tested. No feedback
was provided to preclude new feedback-based learning during this
session.

Sessions 1 and 2 were performed in the MRI scanner. Twelve ab-
stract images were used in the experiment (Fig. 1). There were 24
trials per block in Session 1, with each abstract image occurring
twice in random order. Four images were assigned to each of the sec-
ond, third, and fourth buttons on the button box and participants
pressed these buttons with their index, middle, and ring fingers, re-
spectively. A button-press response was required to advance from
the feedback phase to the next trial. In this way, motor responses
were included in both decision making and feedback phases.

Trials in Session 1 proceeded as follows: (i) a cross appeared in
the center of the projection screen for 500 ms; (ii) a blank screen oc-
curred for 500 ms; (iii) an abstract image was presented until a
button-press response (mean range: 564–4200 ms); (iv) a blank
screen appeared for 1400–1800 ms; (v) feedback (i.e., “Correct” or
“Incorrect”) appeared for 1000–1500 ms, the screen went blank
until the participant pressed the first button with his/her thumb to
advance to the next trial (mean range: 1800–6000 ms); and (vi) a
blank screen appeared for 400–800 ms.

Two distractor tasks (data not shown) were employed between
Sessions 1 and 2 to prevent rehearsal of stimulus–response associa-
tions. In Session 2, participants performed three blocks of 24 trials,
in which the same 12 images studied during Session 1 were present-
ed in random order, twice per block. Participants provided the
button-press response that they had learned for each image in Ses-
sion 1. No feedback regarding accuracy was provided, precluding
new feedback-based learning. Parameters for each trial in Session 2
were otherwise identical to those in Session 1. Figs. 2A and B present
example trials in Sessions 1 and 2.

Behavioral data analysis

Efficiency of encoding stimulus–response associations across Ses-
sion 1 was estimated by the rate of change of correct responses across
the session. The slope of change was measured by summing the scores
obtained at the end of each block over the total number of blocks re-
quired to reach the pre-set learning criterion (i.e., standard slope of
the linear regression function, Microsoft Excel, 2011), as follows:

b ¼
X

x−xð Þ y−yð Þ
X

x−xð Þ2

where b is the slope, and x and y are the samplemeans of the number of
blocks andblock scores, respectively. Slopeswere calculated in the same
manner separately for the first and second halves of Session 1 to inves-
tigate differential rates in learning across the session. The percentage of
accurate responses in the final block of Session 1 (i.e., the highest accu-
racy score achieved) measured learning efficacy. In Session 2, decision
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making based on previously-learned associations was measured with
an adjusted-savings score, calculated as follows: average accuracy in
Session 2 ÷ accuracy in the last block of Session 1 × 100.

Imaging acquisition

FMRI data were collected in a 3 Tesla Siemens Magnetom Trio with
Total ImagingMatrix MRI at Robarts Research Institute at the University
of Western Ontario. We obtained a scout image for positioning the par-
ticipant and T1 for anatomical localization. Number of runs of T2⁎-
weighted functional acquisitions varied depending on the participant's
rate of learning but ranged from a minimum of one to a maximum of
three runs. Each run consisted of three blocks of 24 trials. Distractor
tasks were administered after Session 1. All participants performed

Session 2 as the final run. All runs lasted on average 8 min with one
whole brain image consisting of 43, 2.5 mm-thick slices taken every
2.5 s. The field of view was oriented along the anterior and posterior
commissure with a matrix of 88 × 88 pixels, an isotropic voxel size of
2.5 × 2.5 × 2.5mm3. The echo timewas 30ms and the flip anglewas 90°.

FMRI data analysis

Statistical Parametric Mapping version 5 (SPM5; Wellcome Depart-
ment of Imaging Neuroscience, London, United Kingdom) was used in
conjunctionwithMatrix Laboratory (MATLAB;MathWorks, Inc., Natick,
Massachusetts, United States) to complete fMRI analysis. The first ten
functional volumes (i.e., 25 s) were discarded, during which partici-
pants became familiar with the testing situation. Images were slice-

Fig. 1. Abstract images shown in the experiments. The 12 images were presented in Sessions 1 and 2. Images were computer-generated with GroBoto (Braid Art Labs, Colorado Springs,
USA).

Fig. 2. Example of a single trial in Sessions 1 and 2 of the experiment. The experiment was completed in the MRI scanner with healthy participants. A. Session 1: Participants learned to
associate 12 abstract images with a button-press response through feedback. The following is an example of a trial. Trials in Session 1 proceeded as follows: (i) a cross appeared in the
center of the projection screen for 500 ms; (ii) a blank screen occurred for 500 ms; (iii) an abstract image was presented until a button-press response (mean range: 564–4200 ms);
(iv) a blank screen appeared for 1400–1800ms; (v) feedback (i.e., “Correct” or “Incorrect”) appeared for 1000–1500ms, the screenwent blank until the participant pressed thefirst button
with his/her thumb to advance to the next trial (mean range: 1800–6000 ms); and (vi) a blank screen appeared for 400–800 ms. B. Session 2: During the test phase, stimulus-specific
button-press responses for stimuli learned in Session 1 were performed in the absence of feedback. The parameters for each trial in Session 2 were otherwise identical to those in Session 1.
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time corrected, reoriented for participant motion, spatially normalized
to the standard Montreal Neurological Institute (MNI) template,
smoothed with an 8 mm full-width half-maximum Gaussian kernel,
and high-pass filtered (0.0056 Hz).

Individual participant's data were modeled using fixed effects
analyses in SPM5. Predictor functions were formed by convolving
onsets and durations of psychological events of interest, namely
stimulus–response and feedback events, with the canonical hemody-
namic response function. The stimulus–response event was defined as
the time from onset of the abstract image until the participant made a
button-press response. The feedback event was defined as the time
from onset of feedback, (i.e., “Correct” or “Incorrect”) for 1000–1500
ms, until the button-press to advance to the next trial. In this way, a
motor response was included in both stimulus–response and feedback
events. General linear models (GLM) were created for both stimulus–
response and feedback events for Session 1. The first GLM investigated
regional blood oxygenation level dependent (BOLD) activity associated
with the stimulus–response event relative to the rest of the trial ele-
ments in a block. Number of regressors corresponded to number of
blocks to reach the pre-set learning criterion in Session 1. An analogous
model was created for feedback events, which convolved onsets and
durations of feedback in Session 1. Finally, a GLM investigated stimu-
lus–response events relative to the rest in Session 2 for all trials in a
block, with three regressors corresponding to the three blocks per-
formed by all participants.

To investigate brain areas with activity that paralleled learning
behavior, models examining activity early and late for both stimulus–
response and feedback events in Session 1 were created. Because num-
ber of blocks to reach the pre-set learning criterion varied across partic-
ipants, individualized contrasts were implemented. Session 1 was
divided in half and blocks in the first half were considered early and
blocks in the second half were considered late. Contrast images were
collected and examined together at the group level in a t-test in SPM5
for both stimulus–response and feedback events separately. A second-
ary analysis separated correct and incorrect feedback events, modeling
them separately.

Region of interest analysis

To test our predictions regarding the involvement of the striatum
in stimulus–response learning and decision making, regions of inter-
est (ROIs) were created using the MarsBaR toolbox for SPM5 (Brett
et al., 2002). We selected separate ROIs for VS and DS. For VS, coordi-
nates (x=±10, y=8, z=−4) were taken from Cools et al. (2002),
centering around the nucleus accumbens and including portions of
the posterior ventral caudate and putamen. Another ROI for VS was
created to incorporate anterior portions of the VS. Coordinates for
the anterior VS ROI (x = ±12, y = 18, z = −6) were taken from
MacDonald et al. (2011). Brovelli et al. (2011) employed a stimu-
lus–response learning paradigm with healthy participants using
fMRI. Peaks of activity that were related to learning were reported
in the bilateral head of the dorsal caudate nucleus, as well as in ante-
rior andmiddle portions of the left dorsal putamen and anterior right
putamen. The activation that centered on the left dorsal caudate
head, and not the surrounding cortex, served as the center of our dorsal
caudate ROI (x=±18, y=24, z=6). The average coordinates in MNI
space of the left and right dorsal anterior putamen activations served as
the center of our dorsal putamen ROI (x=±29, y=9, z=6). Spheres
with a radius of 5mmwere centered on the ROIs discussed above. Peaks
within the striatum were reported at a significance level of p b 0.05,
corrected for multiple comparisons, using Bonferroni correction for
the eight regions of interest in the analysis. Fig. 3 depicts each ROI in
MNI space. Striatal areas were defined using the Harvard–Oxford Sub-
cortical Atlas in the FMRIB Software Library version 5.0 (FSL v5.0; Anal-
ysis Group, FMRIB, Oxford, United Kingdom). All x, y, z values are
reported in MNI space.

Beta values were used to determine the level of activation present in
VS and DS in each of the contrasts of interest described below. Further,
average beta values for VS andDS are presented graphically in Fig. 5. For
the figures, average beta values for VS in each of the contrasts of interest
were obtained by averaging beta values of the bilateral anterior and
posterior VS ROIs. For the figures, average beta values for DS were sim-
ilarly calculated by combining beta values of the bilateral dorsal caudate
and putamen ROIs.

There were eleven contrasts of interest involving Session 1 and Ses-
sion 2: (i) stimulus–response events versus the rest in Session 1, (ii)
feedback events versus the rest in Session 1, (iii) stimulus–response
versus feedback events in Session 1, (iv) early stimulus–response events
versus the rest in Session 1, (v) late stimulus–response events versus
the rest in Session 1, (vi) early feedback events versus the rest in Session
1, (vii) late feedback events versus the rest in Session 1, (viii) early stim-
ulus–response versus feedback events in Session 1, (ix) late stimulus–
response versus feedback events in Session 1, (x) correct versus incor-
rect feedback in Session 1, and (xi) stimulus–response events versus
the rest in Session 2.

Results

Behavioral data

Behavioral data for Sessions 1 and 2 are presented in Table 1. Ef-
ficiency of learning stimulus–response associations was estimated
by the slope of accuracy scores achieved for each block over the
total number of blocks required to reach the pre-set learning criteri-
on using the standard slope of the linear regression function in
Microsoft Excel (2011). Learning slopes were significantly greater
than zero (t= 10.32, p b 0.001); evidence that participants successfully
learned stimulus–response associations through feedback across Ses-
sion 1. Participants on average required five blocks to complete Session
1. We expected that greater learning would occur early relative to late
in the session. To test this assumption, Session 1 was divided into
early and late, to investigate changes in the rate of learning. Indeed,
the slope of learning was significantly steeper early relative to late in
the session (t = 4.00, p = 0.002; Fig. 4).

The percentage of correct responses in the final block in Session 1
was not statistically different from accuracy in the initial block of Ses-
sion 2 (t = 1.79, p = 0.097, with numerically greater accuracy in Ses-
sion 1 than Session 2), confirming that no new learning occurred in
Session 2 where feedback was not provided. In Session 2, an adjusted-
savings scorewas obtained tomeasure retention of associations learned
in Session 1 (Table 1). On average, in Session 2, participants had amean
(SEM) percentage accuracy of 91.8% (0.01).

FMRI data

Significant activations in ROIs are reported at a significance level
of p b 0.05, corrected for multiple comparisons (Table 2). Analyses of
beta values for contrasts of interest are presented in Fig. 5.

Session 1

Enacting stimulus–response decisions and receiving feedback: overall.Acti-
vation in the left dorsal caudate during stimulus–response events rela-
tive to rest trended toward significance (t = 2.57, p = 0.089). During
this period, stimuli are presented and a specific response is selected
and enacted. For the stimulus–response minus feedback contrast, no
significant striatal activation occurred.

Significant activation occurred in the right posterior VS (t= 3.48,
p b 0.05) in the feedback event relative to rest. During the feedback
phase, the response outcome is revealed and participants learnwhether
or not a stimulus is associated with a specific response. DS activity was
not detected during the feedback phase, even using a liberal criterion of
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p b 0.05, uncorrected for multiple comparisons. Significant activation
occurred in the left and right posterior VS (t = 3.02, p b 0.05, and
t = 3.35, p b 0.05, respectively) in the feedback minus stimulus–
response contrast.

Enacting stimulus–response decisions and receiving feedback: early. From
our behavioral analyses, learning to associate stimuli to specific
button-press responses was maximal early and slowed late in Session
1. We predicted that brain regions implicated in learning would be
most active early in Session 1. When stimulus–response events were
examined during the early part of Session 1 alone, no striatum activity
was associated significantly with stimulus–response events relative to
the rest or relative to feedback events. Even when we used a liberal
threshold of p b 0.05 uncorrected for multiple comparisons, no striatum
activity was associated with stimulus–response events in the early part
of the experiment.

For feedback events relative to rest early in Session 1, significant
activation occurred in the right posterior VS (t = 3.19, p b 0.05)
and trended toward significance in the right anterior VS (t = 2.53,
p = 0.07). Significant activation occurred in the left posterior VS (t =

3.36, p b 0.05), right anterior VS (t= 3.81, p b 0.05) and right posterior
VS (t = 4.03, p b 0.05) for the contrast of feedback minus stimulus–
response events early in Session 1.

Enacting stimulus–response decisions and receiving feedback: late. Consid-
ering trials late in Session 1 only, significant activation in the right dorsal
putamen (t= 3.19, p b 0.05) occurred for the stimulus–responseminus
rest contrast as well as the stimulus–response minus feedback contrast
(t = 2.95, p b 0.05).

For the reverse contrast (i.e., feedback minus stimulus–response
events) significant activation occurred in the left anterior VS (t =2.12,
p b 0.05), left and right posterior VS (t = 3.37, p b 0.05 and t = 3.81,

Fig. 3.Regions of interest used in the analysis. Regions of interest (ROIs) used in the fMRI analysis. A. Spherical ROI for dorsal caudate (±18, 24, 6)with a radius of 5mm. B. Spherical ROI for
the dorsal putamen (±29, 9, 6) with a radius of 5 mm. Coordinates for the dorsal caudate and dorsal putamen ROI were taken from Brovelli et al. (2011). C. Spherical ROI for posterior VS
(±10, 8,−4)with a radius of 5mm. Coordinates were taken from Cools et al. (2002). D. Spherical ROI for anterior VS (±12, 18,−6)with a radius of 5 mm. Coordinates were taken from
MacDonald et al. (2011). *When average BOLD signal was examined using beta values, beta values from the left and right dorsal caudate and dorsal putamen were combined to obtain a
mean signal change for DS. A mean signal change for VS was similarly obtained by combining the left and right posterior VS and anterior VS.

Table 1
Behavioral results

Session 1 Session 2

Learning slope Final block score (%) First block score (%) Adjusted-savings (%)

0.143 92.86 89.00 99.25
(0.014) (5.70) (1.66) (1.81)

All values reported are means (SEM). Learning slope was measured by the standard slope
of the linear regression function inMicrosoft Excel (2011) using the scores obtained at the
end of each block over the total number of blocks required to reach the pre-set learning
criterion. Adjusted-savings (%) in Session 2was calculated by the following equation: (av-
erage score in Session 2 ÷ score in the last block of Session 1 × 100).

Fig. 4.Average learning slopes early and late in Session 1 Average learning slopeswere cal-
culated for early and late halves of Session 1. Error bars represent SEM. Participants' scores
obtained after each block in Session 1 were first divided into early and late halves, and
slopes were calculated for each phase using the standard slope of the linear regression
function in Microsoft Excel (2011). Asterisks indicate a statistically significant difference
between the early and late slopes (***p b 0.01).
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p b 0.05, respectively) and trended toward significance in the right an-
terior VS (t = 1.66, p = 0.055).

Correct vs. incorrect feedback. Brain regions that mediate learning
should be sensitive to the outcomes associated with actions (i.e., feed-
back). Significant bilateral posterior VS activation (left posterior VS:
t = 3.86, p b 0.05; right posterior VS: t = 4.33, p b 0.05) and right
anterior VS (t = 2.72, p b 0.05) arose for correct minus incorrect
feedback. For incorrect minus correct feedback, there were no signif-
icant striatal activations. Therefore, overall, there were no significant
peaks in DS for correct minus incorrect or for incorrect minus correct
feedback.

Session 2

Enacting stimulus–response decisions in the absence of feedback. Brain re-
gions that mediate feedback-based learning should not be significantly
active once stimulus–response decisions are well learned and when
no feedback is provided. Significant bilateral dorsal caudate activation
arose in the stimulus–response events minus rest contrast (left dorsal
caudate: t = 3.18, p b 0.05; right dorsal caudate: t = 3.18, p b 0.05) in
Session 2.

Discussion

Using a relatively standard paradigm (Boettiger and D'Esposito,
2005), we tested a prevalent view that DS mediates aspects of
feedback-based stimulus–response learning (see Ashby et al., 2007;
Garrison et al., 2013; Hart et al., 2014; O'Doherty et al., 2004; Yin and
Knowlton, 2006 for reviews). In the experiment, participants learned
to associate abstract images and specific button-press responses
through feedback in Session 1. On each trial, participants provided a re-
sponse to a stimulus and then received feedback regarding the accuracy
of the response. In this way, we conceptualized these phases as decision
making and learning in each trial and modeled them separately to ex-
amine regional brain activity that correlated with these distinct pro-
cesses. In Session 2, participants performed the associations learned in
Session 1 but in the absence of feedback. Using fMRI, the pattern of DS

Table 2
Significant ROI activations in the contrasts of interest

Anatomical area t value p corrected

SR events minus rest in Session 1
Left dorsal caudate 2.57 0.089*

FB events minus rest in Session 1
Right posterior VS 3.48 0.016

FB events minus rest early in Session 1
Right anterior VS 2.53 0.070*
Right posterior VS 3.19 0.021

FB events minus rest late in Session 1
Right posterior VS 2.54 0.068*

SR events minus rest late in Session 1
Right dorsal putamen 3.19 0.015

FB minus SR events in Session 1
Left posterior VS 3.02 0.022
Right posterior VS 3.35 0.0099

FB minus SR events early in Session 1
Left posterior VS 3.36 0.0097
Right anterior VS 3.81 0.0031
Right posterior VS 4.03 0.0018

FB minus SR events late in Session 1
Left anterior VS 2.12 0.022
Left posterior VS 3.37 0.0012
Right anterior VS 1.66 0.055*
Right posterior VS 3.81 0.00039

SR minus FB events late in Session 1
Right dorsal putamen 2.95 0.026

FB correct versus incorrect trials in Session 1
Correct minus Incorrect

Left anterior VS 2.59 0.061*
Left posterior VS 3.86 0.0027
Right anterior VS 2.72 0.045
Right posterior VS 4.33 0.00079

SR events minus rest in Session 2
Left dorsal caudate 3.18 0.012
Right dorsal caudate 3.18 0.012

Coordinates of each ROI are as follows: dorsal caudate (x = ±18, y = 24, z = 6), dorsal
putamen (x = ±29, y = 9, z = 6), posterior VS (x = ±10, y = 8, z = −4) and Anteri-
or VS (x = ±12, y = 18, z = −6). Striatal regions that trended toward significance are
reported with an asterisk (*).

Fig. 5.Mean beta values for VS andDS for contrasts of interestMean beta values for VSwere determined by combining beta values in the left and right posterior and anterior VS.Mean beta
values for DS were similarly determined by combining beta values in the left and right dorsal caudate and putamen. Mean beta values for DS and VS are presented for each contrast of
interest. Error bars represent SEM. A.Mean beta values for SR eventsminus rest and FB eventsminus rest in Session 1. B.Mean beta values for FB eventsminus rest early and late in Session
1. C. Mean beta values for SR events minus rest early and late in Session 1. D. Mean beta values for FB minus SR events in Session 1. E. Mean beta values for FB minus SR early and late in
Session 1. F. Mean beta values for correctminus incorrect FB events. G.Mean beta values for SR eventsminus rest in Session 2. Asterisks indicate a statistically significant difference in each
condition from zero (*p b 0.05, ♦p b 0.1).
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activitywas inconsistentwithwhatwould be expected of a brain region
mediating learning. DS was preferentially activated at the time of re-
sponse selection rather than during learning via feedback and did not
appear to track the progression of learning. DS activation also arose in
Session 2 where response selection occurred without feedback, and
therefore in the absence of new feedback-based learning.

DS in feedback-based learning or decision making?

Wemodeled stimulus–response and feedback events independently
to examine brain regions associated with performing decisions versus
early learning of stimulus–response associations based on feedback, re-
spectively. The notion that the stimulus–response and feedback events
represent separate processes—decisionmaking in the former and learn-
ing in the latter—has been suggested by others as well (Foerde and
Shohamy, 2011; Rangel et al., 2008; Ryterska et al., 2013). This design
differs from many learning studies that combine decision making (i.e.,
stimulus–response events) and learning from outcomes (i.e., feedback
events) into a single event, assigning all brain regions whose activity
correlates with these merged processes a role in learning (Delgado
et al., 2005; Dobryakova and Tricomi, 2013; Nomura et al., 2007;
Poldrack et al., 1999; Ruge and Wolfensteller, 2010; Xue et al., 2008,
but see Aron et al., 2004; Daniel and Pollmann, 2010; Haruno and
Kawato, 2006; Helie et al., 2010; Rodriguez, 2009; Waldschmidt and
Ashby, 2011 for investigations that separated stimulus–response and
feedback events). Significant DS activation arose in the stimulus–
response or decision making event of our trials and not in the feedback
or learning phase. To eliminate the possibility that DS activity arose for
stimulus–response events simply because a motor response occurred
during this phase, a specific button-press response was also required
in the feedback event of our experiment.

There was no significant DS activation in the early part of Session
1 when learning was maximal according to our behavioral data. In
contrast, significant DS activation arose only late in Session 1, after
stimulus–response associations were well learned. This pattern is
opposite to what is expected for brain regions that mediate learning.
Brain regions underlying learning are also expected to be sensitive to
feedback valence. There were no significant peaks in DS for contrasts
of correct versus incorrect feedback. Finally, significant DS activation
arose during Session 2 where no feedback was given and therefore
no feedback-based learning could occur. Collectively, these results are
inconsistent with the contention that DS mediates early stimulus–
response learning based on feedback in our experimental paradigm
and instead suggest a more primary role in decision making.

We conceive that initially responses are selected arbitrarily and later
are based on biases between stimuli and specific responses that evolve
through feedback.We consider the phase duringwhich a response is se-
lected and enacted to be more reflective of decision making processes
though the mere act of performing a specific response to a particular
stimulus can also contribute to establishing stimulus–response (re)
mapping. Receiving outcome information is arguably a more critical
step in the process of learning associations in stimulus–response para-
digms such as the one that we have implemented, however (Worthy
et al., 2013).

We used multiple strategies for uncovering brain regions that
support learning versus decision making. The patterns of DS activa-
tion consistently were those expected for a brain region associated
with decision making and not feedback-based learning. Our results
are therefore at odds with the notion that DSmediates learning asso-
ciations between stimuli and responses via feedback (Ashby et al.,
2007; Foerde et al., 2013; Garrison et al., 2013; Yin and Knowlton,
2006). So how can our findings be reconciled with the literature
supporting this claim? Again, many fMRI investigations of learning
confound decision making and learning by combining neural activity
associated with both response-selection and feedback events
(Delgado et al., 2005; Dobryakova and Tricomi, 2013; Jessup and

O'Doherty, 2011; Nomura et al., 2007; Poldrack et al., 1999; Ruge and
Wolfensteller, 2010; Xue et al., 2008). The conclusion that DS activation
in these studies reflects a role in learning could be a misinterpretation.
For example, Delgado et al. (2005) examined learning to associate
cards with concepts of ‘high’ versus ‘low’ via feedback. As is typical,
they considered response selection (i.e., high vs. low decisions) and
feedback portions of each trial as a single event. Compared to baseline,
they found significant peaks in the dorsal caudate nucleus and VS, con-
cluding that both mediate learning. Combining decision making and
feedback events caused ambiguity. Consequently, concluding that pref-
erential DS activation was related to the response selection operation,
whereas VS activity reflected learning through feedback is an alterna-
tive explanation for these data that is equally plausible, and in line
with our findings.

The finding that DS activation was maximal late in the learning ses-
sion when behavioral change and learning are actually diminishing has
been reported by others. Despite the disconnectwith behavioral indices
of learning, and focusing on the fact that experience appears to modu-
late DS activity, this result is offered as support for its role in learning
nonetheless (Boettiger and D'Esposito, 2005; Seger et al., 2010; Toni
and Passingham, 1999). The frequent finding that DS activity remains
significantly increased above baseline after sequences (Reiss et al.,
2005), categorization rules (Helie et al., 2010; Seger et al., 2010), or
stimulus–reward (Daw and Doya, 2006; Seger et al., 2010), and
response–reward (Delgado et al., 2005; Ohira et al., 2010) associations
have been acquired should challenge the notion that DS underlies learn-
ing, yet has not instigated such a revision. The alternative interpretation
that DS mediates response selection, which predictably improves once
stimulus–response associations are learned, accounts for both the pat-
tern of brain–behavior relations and the observation that DS activity
changes with exposure to learning events. Using single-cell recording
in a go/no-go reversal learning paradigm in rats, Takahashi et al.
(2007) found increasedDS activity for rewarded odor cues only after be-
havioral learning criteria were achieved. These findings, like ours, sup-
port the view that DS mediates decision making, not learning per se.
Indeed, there is a growing literature that implicates DS in performing
decisions (Atallah et al., 2007; Grahn et al., 2008; Jessup and
O'Doherty, 2011; MacDonald et al., 2014; McDonald and Hong, 2004;
Postle and D'Esposito, 1999; Smittenaar et al., 2012) and consequently
the results presented here unite two literatures that have advocated dis-
parate functions for DS.

DS in habit formation or decision making?

Regions of DS have also been theorized to support later forms of
learning that do not depend upon feedback, such as habit formation
(Ashby et al., 2010; Balleine et al., 2009; Ruge and Wolfensteller,
2013; Tricomi et al., 2009). Habit formation refers to strengthening of
stimulus–response associations that become independent of outcomes
and even resistant to feedback (Tricomi et al., 2009). The notion is
that early stages involve goal-directed learning that implicate VS and
dorsomedial striatum/caudate. This early learning is transferred to dor-
solateral striatum/putamen, which is instrumental in strengthening as-
sociations (i.e., later habit formation; Tricomi et al., 2009).

Although we have shown that early, goal-directed, feedback-based
learning is not associated with DS activation, even in our dorsomedial/
caudate ROI, our results do not entirely rule out the possibility that DS
activation observed late in Session 1, and only at the time of response
enactment, reflected a role in habit formation. However, this possibility
is lessened by the fact that we focused on early phases of learning in this
experiment, having set our learning criterion to 74% accuracy on two
consecutive blocks. This was specifically to avoid over-learning in the
current experiment.

Others have failed to support the notion that habit formation de-
pends upon DS (de Wit et al., 2011). Further, a recent meta-analysis of
35 fMRI studies of reinforcement learning through feedback – the
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majority of which combined neural activity for response selection/deci-
sion and feedback phases – found both VS and DS to be equally associ-
ated with performing feedback-based learning. This meta-analysis casts
doubt on the theory that VS mediates feedback-based learning and DS
underlies later habit formation (Garrison et al., 2013), unless the con-
tention is that both forms of learning co-occur.

Evidence supporting our view that DS mediates decision making
rather than learning per se is provided by Atallah et al. (2007).
They investigated the role of DS in learning versus selecting re-
sponses that relied on learned associations. In a Y-maze task using
odor cues, they observed impairment in rats' ability to consistently
select a rewarded versus unrewarded arm for animals receiving infu-
sions of inhibitory gamma-amino butyric acid (GABA) agonist to DS
compared to a saline solution during the learning phase of the exper-
iment. At first blush, this seemed to suggest that animals receiving
inhibitory infusions to DS were learning associations between odor
cues and rewards more poorly. When both groups were later tested
once the infusions were stopped, however, both experimental and
control groups performed the selection task similarly. This demon-
strated that associations were learned equally well for both experi-
mental and control (i.e. saline-infused) groups during Session 1.
Rather, inhibition of DS impaired the animal's ability to use learned
associations to perform selections reliably. To complement this in-
teresting finding, in another experiment, they found that GABA infu-
sions to DS at test phase resulted in impaired selection performance
compared to saline infusions to DS, although both groups had previ-
ously shown identical learning of these odor–reward associations
during the training phase. Taken together, these results challenge
the direct involvement of DS in learning and instead suggest a
more specific role in performance, as we claim here. The fact that
DS inhibition did not impair early feedback-based learning disputes
contentions that portions of DS are critical for goal-directed, early,
learning through feedback (Balleine et al., 2009; Boettiger and
D'Esposito, 2005; Brovelli et al., 2011; Brown and Stern, 2013;
Foerde et al., 2013; Garrison et al., 2013; Hart et al., 2014). That DS
integrity was essential for adequate stimulus–response performance
even early in the training phase is also at odds with the notion that
DS mediates later-stage habit formation specifically.

VS in stimulus–response learning

Our results implicate VS in learning stimulus–response associa-
tions. VS activation occurred during the feedback event, peaked
early, and decreased across Session 1. VS was sensitive to valence
of feedback, exhibiting greater activity for correct than incorrect out-
comes. Together, these results are highly consistent in suggesting
that VSmediates early stimulus–response learning via feedback. Tra-
ditionally, VS has been implicated as a key region in reward learning
and processing (Camara et al., 2010; Cools et al., 2002; Delgado,
2007; Delgado et al., 2000; Knutson and Cooper, 2005; O'Doherty,
2004; Preuschoff et al., 2006; Sesack and Grace, 2010). However,
studies have recently been published that implicate VS in learning
situations that are devoid of reward and punishment, for example
in stimulus–stimulus association learning (MacDonald et al., 2011),
sequence learning (Ghilardi et al., 2007; Seo et al., 2010), motor se-
quence learning (Feigin et al., 2003), and category learning
(Shohamy et al., 2006). That VS couldmediate stimulus–response as-
sociation learning is highly in line with many of these learning situ-
ations and has been suggested by others as well (Abler et al., 2006;
Daniel and Pollmann, 2010; O'Doherty, 2004; O'Doherty et al., 2003).

Conclusion

In our experiment, we demonstrated that (i) DS does not mediate
early feedback-based stimulus–response learning but is implicated in
performing response decisions, and (ii) VS underlies stimulus–response

association learning. Our findings challenge the claim that DS mediates
stimulus–response learning via feedback (Balleine et al., 2009; Boettiger
and D'Esposito, 2005; Brovelli et al., 2011; Brown and Stern, 2013;
Foerde et al., 2013; Garrison et al., 2013; Hart et al., 2014), and recast
it as a brain regionmediating decisionmaking, integratingwith a grow-
ing literature supporting this view (Atallah et al., 2007; Grahn et al.,
2008; Jessup and O'Doherty, 2011; MacDonald et al., 2014; McDonald
and Hong, 2004; Postle and D'Esposito, 1999; Smittenaar et al., 2012).

Implications for cognition in Parkinson's disease

Cognitive dysfunction is an undisputed symptom of PD that leads
to significant impairment in quality of life (Barone et al., 2009;
Schrag et al., 2000). The etiology of cognitive impairments in PD is
complex but it is now clear that at least a subset of these symptoms
arises from dysfunction of the striatum itself (Ray and Strafella,
2012). In PD, DS-mediated functions are compromised at baseline
and improved by dopamine replacement therapy. Conversely, VS
functions are relatively spared off medication and worsened by do-
paminergic therapy, most notably at early stages of the disease
(Cools, 2006; MacDonald and Monchi, 2011). Understanding VS-
and DS-mediated cognitive functions therefore informs cognitive
symptoms in PD and has implications for treatment. Currently, dopa-
minergic therapy is titrated to relieve DS-mediated motor symp-
toms, without taking into account the potential overdose of VTA-
innervated regions. Ultimately, this greater understanding will
prompt clinicians to formulate medication strategies that include
both motor and cognitive symptoms, as well as individual patient
priorities.
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