
Western University Western University 

Scholarship@Western Scholarship@Western 

Brain and Mind Institute Researchers' 
Publications Brain and Mind Institute 

6-1-2015 

Fusion analysis of functional MRI data for classification of Fusion analysis of functional MRI data for classification of 

individuals based on patterns of activation. individuals based on patterns of activation. 

Mahdi Ramezani 
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, 
Canada & Robotics and Control Laboratory, Department of Electrical Engineering, The University of British 
Columbia, 2332 Main Mall, Vancouver, BC, Canada V6T 1Z4, mahdir@ece.ubc.ca 

Purang Abolmaesumi 
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, 
Canada 

Kris Marble 
Department of Psychology, Queen’s University, Kingston, ON, Canada 

Heather Trang 
Department of Psychology, Queen’s University, Kingston, ON, Canada 

Ingrid Johnsrude 
Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada & Department of Psychology, 
Queen’s University, Kingston, ON, Canada & Linnaeus Centre for Hearing and Deafness, Department of 
Behavioural Sciences and Learning, Linköping University, Linköping, Sweden 

Follow this and additional works at: https://ir.lib.uwo.ca/brainpub 

 Part of the Neurosciences Commons, and the Psychology Commons 

Citation of this paper: Citation of this paper: 
Ramezani, Mahdi; Abolmaesumi, Purang; Marble, Kris; Trang, Heather; and Johnsrude, Ingrid, "Fusion 
analysis of functional MRI data for classification of individuals based on patterns of activation." (2015). 
Brain and Mind Institute Researchers' Publications. 232. 
https://ir.lib.uwo.ca/brainpub/232 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brain
https://ir.lib.uwo.ca/brainpub?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/brainpub/232?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages


ORIGINAL RESEARCH

Fusion analysis of functional MRI data for classification
of individuals based on patterns of activation

Mahdi Ramezani & Purang Abolmaesumi & Kris Marble &

Heather Trang & Ingrid Johnsrude

Published online: 12 February 2014
# Springer Science+Business Media New York 2014

Abstract Classification of individuals based on patterns of
brain activity observed in functional MRI contrasts may be
helpful for diagnosis of neurological disorders. Prior work for
classification based on these patterns have primarily focused
on using a single contrast, which does not take advantage of
complementary information that may be available in multiple
contrasts. Where multiple contrasts are used, the objective has
been only to identify the joint, distinct brain activity patterns
that differ between groups of subjects; not to use the informa-
tion to classify individuals. Here, we use joint Independent
Component Analysis (jICA) within a Support Vector Machine
(SVM) classification method, and take advantage of the rela-
tive contribution of activation patterns generated from multi-
ple fMRI contrasts to improve classification accuracy. Young
(age: 19–26) and older (age: 57–73) adults (16 each) were
scanned while listening to noise alone and to speech degraded
with noise, half of which contained meaningful context that

could be used to enhance intelligibility. Functional contrasts
based on these conditions (and a silent baseline condition)
were used within jICA to generate spatially independent joint
activation sources and their corresponding modulation pro-
files. Modulation profiles were used within a non-linear SVM
framework to classify individuals as young or older. Results
demonstrate that a combination of activation maps across the
multiple contrasts yielded an area under ROC curve of 0.86,
superior to classification resulting from individual contrasts.
Moreover, class separability, measured by a divergence crite-
rion, was substantially higher when using the combination of
activation maps.

Keywords fMRI .Fusionanalysis .Functional imageanalysis .

jICA .Automatic classification

Introduction

Functional Magnetic Resonance Imaging (fMRI) studies are
typically analyzed to reveal regional specialization for cogni-
tive functions or tasks, or to compare patterns of activity
between two groups, such as patients and normal-control
participants (Coleman et al. 2007). Usually, simple compari-
sons of conditions are performed to reveal regions that are
reliably active by the task of interest, and/or regions that differ
reliably between groups (Friston et al. 1999, 1995a, b).
Several studies have taken advantage of these identified re-
gions for group classification based on fMRI data (Arribas
et al. 2010; Demirci et al. 2008; Ford et al. 2003).

Although scant previous work deals with our specific
problem of classification of individuals based on patterns of
brain activity, the closely related goal, of use machine learning
to decoding stimuli, mental states, and behaviours from fMRI
data is rapidly gaining in popularity; particularly the set of
methods called representational similarity analysis, or pattern-
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information analysis (see (Pereira et al. 2009), (Mur et al.
2009) for tutorial reviews). In this context, Haxby and col-
leagues showed that fMRI activation patterns are different
when viewing a photograph of a face from viewing a house,
a shoe, or a chair (Haxby et al. 2001). Using a similar dataset,
Cox and Savoy successfully classified patterns of fMRI acti-
vation evoked by the presentation of photographs of various
categories of objects, by applying Support Vector Machine
(SVM) and Linear Discriminant Analysis (LDA) (Cox and
Savoy 2003). Mitchell et al. successfully trained classifiers to
automatically decode the subject’s cognitive state at a single
time instant or interval (Mitchell et al. 2004). DeMartino et al.
combined multivariate voxel selection and SVM for classifi-
cation of fMRI spatial patterns (De Martino et al. 2008).
Pereira combined dimensionality reduction and classification
into a single learning objective to achieve better learning
performance (Pereira 2007). Unlike these studies that used
relatively simple stimuli or images drawn from fixed catego-
ries, Kay et al. used natural receptive-field models to identify a
specific image, viewed by an observer, from a large set of
natural images (Kay et al. 2008). Their group further com-
bined structural and semantic encoding models, and prior
information about the structure and semantic content of natu-
ral images, to produce accurate reconstructions of observed
natural images from brain activities (Naselaris et al. 2009).
Schrouff et al. used feature extraction methods with different
classifiers to decode semi-constrained brain activity patterns,
where number and duration of mental events were not exter-
nally imposed (Schrouff et al. 2012).

In our study, the goal is to characterize activity averaged
over many time intervals and to use it for classification of
individuals, rather than to detect transient cognitive states.
This procedure typically consists of three steps. The first step
is to determine the activationmaps using a data-drivenmethod
such as group-Independent Component Analysis (group-ICA)
(Calhoun et al. 2008), or a model-based approach such as
general linear model (Fan et al. 2011). The next step is to
reduce the dimensionality of the data and compute represen-
tative features using Principal Component Analysis (PCA)
(Demirci et al. 2008; Ford et al. 2003), Singular Value
Decomposition (SVD) (Arribas et al. 2010), ICA (Fan et al.
2011), GLM or Recursive Feature Addition (RFA) (Schrouff
et al. 2012). Finally, a classification is performed on the
obtained features. These approaches have only focused on
the classification based on single comparison of conditions,
and are not sensitive to shared information among different
contrasts generated from those comparisons.

Recently, considerable attention has been focused on com-
bining data across multiple modalities including fMRI, or,
within fMRI, across different contrasts, to assess the joint
information that may exist among those sources (Sui et al.
2010b). These analyses may enhance sensitivity to group
differences, and permit better understanding of complex

disorders that affect many aspects of the brain (such as its
structure, function, and organization (Calhoun et al. 2006a)).
The premise of multi-modality approaches is that each imag-
ing modality provides complementary information about dif-
ferent tissue characteristics, and at different spatial and tem-
poral resolutions. The premise of multi-task approaches is that
each fMRI contrast may provide complementary information
about how the system responds to sensory and cognitive
challenges, and this information may be usefully combined.

Many techniques have been proposed to combine multi-
modal or multi-task fMRI information. These techniques can
be categorized into two main types: data-integration and data-
fusion methods (Calhoun and Adali 2009; Daunizeau et al.
2010; Savopol and Armenakis 2002). Data-integration tech-
niques use one imaging modality to improve the results of
another modality (for example, registration of EEG orMEG to
MRI (Halchenko et al. 2005); and using fMRI to estimate the
location of dipoles or the distribution of neural sources prior to
EEG (Liu et al. 2006)). Data fusion techniques utilize multiple
modalities (Calhoun et al. 2006a) or tasks (Calhoun et al.
2006b) to take advantage of combined information.
Generally, due to weak cross-modality relationships and
inter-subject variability, finding one-to-one correspondence
in multi-modal images is difficult; however, performing fu-
sion analysis across multiple subjects makes this an easier
problem to solve. In this type of analysis, each modality is
usually reduced to a feature that is a lower-dimensional rep-
resentation of a selected brain structure or task-related activa-
tion pattern. Using variations across individual subjects, asso-
ciations across the features can be explored (Calhoun and
Adali 2009).

Joint Independent Component Analysis (jICA) (Calhoun
et al. 2006a) is one multivariate technique for fusion analysis.
It is an extension of ICA that combines information from
multiple modalities or functional contrasts. The simplified
noise-free ICA model seems to be sufficient for many appli-
cations (Hyvärinen and Oja 2000), and has been successfully
applied to fMRI data (Calhoun et al. 2001; McKeown et al.
1998; Sui et al. 2009a). In this simplified model, the ICA
components that contribute the least, and which may have a
“speckled” spatial distribution in contrast images, are noise of
unknown origin (McKeown et al. 1998). ICA is typically used
as a first-level data-driven approach to find spatially or tem-
porally independent brain sources of activity from fMRI scans
of a person’s brain, while that person is performing a desired
task (McKeown et al. 1998). Spatial ICA results in a set of
independent components (spatial brain activation patterns),
and a set of “mixing coefficients”.

ICA has also been used for making inferences at a group
level (Calhoun et al. 2009, 2001). Joint ICA is a group-level
analysis technique that uses extracted features from individual
subjects’ data and tries to maximize the independence among
joint components. Assuming that the features, obtained from
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multiple modalities or multiple contrasts, share the same mod-
ulation profile (i.e. mixing-coefficient matrix), jICA uses
more information to estimate the same number of mixing
coefficients; and may therefore yield improved results com-
pared to ICA. Joint ICA and its extensions have been success-
fully applied to study major depression (Choi et al. 2008),
aphasia (Specht et al. 2009) and schizophrenia (Calhoun et al.
2006a, b; Liu et al. 2009; Sui et al. 2009a, b, 2010a, b). These
studies demonstrate that jICA accurately identifies sources of
common variance among features. An additional advantage of
jICA is the computation of modulation profiles along with the
identified sources. Such profiles substantially reduce the di-
mensionality of the data, and can be used for group classifi-
cation. The ability of jICA to reduce the number of dimen-
sions is particularly important in the context of fMRI data
analysis, where the dimensionality of input feature space is
high and the number of available subjects is usually low.
Although the discrimination ability of joint components has
been investigated (Sui et al. 2009b), to the best of our knowl-
edge, the application of modulation profiles for classification
of individuals has not, to our knowledge, been tried. Recently,
Fan et al. used the modulation profile, which resulted from
applying ICA to resting-state fMRI data, to classify individ-
uals with schizophrenia and healthy controls (Fan et al. 2011).
Their work did not investigate the possibility of improved
classification that could be obtained by combining multiple
fMRI contrasts.

In the present study, we use jICA for group classification.
We first identify the modulation profile that reflects group
differences by fusion analysis of multiple contrasts, and then
use the resulting profile for group classification. We test this
classification approach using fMRI data collected from 16
young and 16 older neurologically normal individuals who
were scanned in multiple stimulus conditions in a speech
perception experiment (Davis et al. 2011; MacDonald et al.
2008). The jICA modulation profile, which reflects group
differences in activation patterns observed in three different
functional contrasts, is used to automatically classify individ-
uals as young or older. One contrast compares responses to
unintelligible noise bursts, amplitude modulated with the tem-
poral envelope of spoken sentences, with silence. A second
contrast compares responses to sentences without coherent
meaning (“anomalous” sentences, e.g., “Her good slope was
done in carrot”) with the unintelligible noise bursts. A third
contrast compares responses to sentences with coherent mean-
ing (“coherent” sentences, e.g., “Her new skirt was made of
denim”) to anomalous sentences. The intelligibility of anom-
alous sentences is determined by the quality of the signal,
whereas the intelligibility of coherent sentences is determined
both by the quality of the signal, and by semantic knowledge.
At any given signal quality, comprehension is greater for the
latter than for the former (referred to hereafter as “context
benefit”) (MacDonald et al. 2008). Although older and

younger adults do not differ in context benefit measured
behaviorally (MacDonald et al. 2008), we examine whether
patterns of activity in functional contrasts can be used to
classify young and older people, without considering any
information reflecting the distinct brain structural differences
of the two groups (Chee et al. 2011; Good et al. 2001).

Joint ICA is used with data from the three contrasts to
probe the unique and joint information among different con-
trasts and groups. First, joint independent components based
on different combinations of these features, along with the
mixing coefficients, are determined and then statistical differ-
ences among mixing coefficients (reflecting the network
strengths) are examined using t-tests. Third, separability of
the joint-source distributions is measured in order to assess the
difference between distributions from different young and
older participants (Hero et al. 2001). Finally, the modulation
profile extracted from the three functional contrasts is used to
classify individuals as young or older, and the accuracy of this
classification is assessed. We demonstrate that by fusing the
three contrasts with jICA, the discrimination of subjects as
young or older is substantially improved compared to using
each individual contrast alone.

Here we show the feasibility of this method by examining
age-related differences in healthy subjects, where an indepen-
dent measure (namely, age in years) can be used to differen-
tiate between groups with 100 % certainty. This ‘gold stan-
dard’ allows us to validate the approach, which we expect to
be applicable to real-world diagnostic problems without such
a clear standard to differentiate groups.

Materials

Listening study

Subjects were asked to listen to sentences in the scanner and
try to understand them as well as they could. Sentences with
and without coherent sentence-level meaning (“coherent” and
“anomalous” sentences, respectively) were taken from those
used by Davis et al. (Davis et al. 2011) and were mixed with
noise that had the same long term spectrum of the speech and
the amplitude envelope of the signal to be masked (Signal-
Correlated Noise: SCN; (Schroeder 1968) at six different
signal to noise ratios (SNRs): −5 dB, −3.5 dB, −2.5 dB,
−1 dB, 0 dB, 2.5 dB. Clear speech was also tested, making
seven sentence conditions. Coherent and anomalous sentences
were divided into seven sets, which were pseudorandomly
assigned to conditions such that each sentence set was tested
in each of the seven SNR conditions (including clear speech)
an equal number of times, across participants. Over the scan-
ning session, each participant heard 14 trials of each sentence
type at each SNR, half of which were followed by ‘repeat’
trials requiring the participant to repeat as much of the
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sentence as possible. Fourteen trials of SCN on its own and 16
trials of silence were also scanned, making 324 trials in all,
distributed across four blocks of trials, each 81 trials long. The
repeat trials were randomly ordered and counterbalanced
across participants. Intelligibility, defined here as the propor-
tion of words correctly reported, was obtained for each signal
quality level and for each sentence type, for each participant.

Participants

Sixteen young (mean age: 21.1, range: 19–26, 11 female) and
16 older (mean age: 64.2, range: 57–73, 11 female) adults
were scanned. All subjects were native speakers of English,
without any history of neurological illness, head injury, or
hearing impairment. This study was cleared by the Queen’s
University Health Sciences Research Ethics Board, and writ-
ten informed consent was obtained from all participants.

Data acquisition

The fMRI data were acquired using a 3.0 Tesla Siemens Trio
MRI system with a 12-channel head coil in the MRI facility at
Queen’s University, Kingston, Canada. Each acquisition
consisted of 32 contiguous slices with 4 mm thickness, field
of view 211×211 mm, in plane resolution of 3.3×3.3 mm,
resulting in a grid of 64×64×32 voxels, each 3.3×3.3×4 mm
in volume. The repetition time (TR) was 9 s and the acquisi-
tion time was 2 s. This sparse GE-EPI imaging technique
allowed for stimuli to be presented in the silent gaps between
scans. Total functional imaging time was 48 min. Auditory
stimuli and the visual ‘repeat’ instructions were presented to
the participants using E-Prime v.1.2 and a NEC LT265 DLP
projector. Participants viewed the screen via a mirror system
mounted on the head coil (MacDonald 2008).

Data preprocessing

Before preprocessing, the Siemens motion correction algo-
rithm1 was applied to the DICOM MR images, and then the
DICOM images were converted to NIFTI format. The fMRI
data were preprocessed using Statistical Parametric Mapping
software (SPM8, Wellcome Department of Cognitive
Neurology, London, UK). Preprocessing steps included re-
alignment, coregistration and the segmentation-based spatial
normalization of SPM8. The data were spatially smoothed
using an 8-mmGaussian kernel. The first scan of each session
was discarded, and the rest were coded according to the
auditory condition of the preceding stimulus and entered into
a single-subject general linear model. The hemodynamic re-
sponse function was selected as the basis function. Three

functional contrasts were calculated: SCN versus silence,
identifying brain regions that process the acoustic properties
of sound; anomalous sentences versus SCN to highlight
speech-responsive areas; coherent versus anomalous
sentences to reveal regions sensitive to coherent sentence-
level semantic content.

Methods

As mentioned in Section Listening study, the behavioral per-
formance for each subject was measured as the words correct-
ly reported at different SNRs. Pilot work revealed that in
general at a given SNR older people reported fewer words
than younger people. Accordingly we altered SNRs for the
two groups to match behavioral performance. The average
report score for anomalous sentences, which do not provide a
contextual benefit, gives a good indication of low-level speech
processing. A range of SNRs for each group was chosen in
order to equate the behavioral performance while hearing the
anomalous sentences. The ranges were −5 dB, −3.5 dB,
−2.5 dB, −1 dB, and 0 dB for younger people and −3.5 dB,
−2.5 dB, −1 dB, 0 dB, and +2.5 dB for older adults.

Fusion analysis

Joint ICA assumes a noise-free generative model X=ASwhere
a source matrix S=[s1, s2, …, sM]

T combines with the mixing
coefficients matrix A (also called the ICA loading parameters
matrix) to generate the observations X=[x1, x2,…, xN]

T. The jth
row, sj, of S is the jth joint independent component, and M is
the number of independent components. N is the number of
participants and xi is a vector formed by concatenating the
three contrasts described in Section Data preprocessing.

The jICA method, shown schematically in Fig. 1, involves
finding U=WX, where W=A−1 is called the unmixing matrix
andU is the estimate of the joint source matrix S. In this figure
Ay, Ao indicate the submatrices associated with the young and
old subjects. AMATLAB implementation of jICA is provided
by the FIT 2.0b software (Calhoun et al. 2006a), available
online at http://mialab.mrn.org/software/.

Joint independent components were found using the
Infomax algorithm (Bell and Sejnowski 1995), which is based
on minimization of mutual information of components. In this
algorithm, the output entropy of a neural network is adaptively
maximized with as many outputs as the number of
Independent Components (ICs) to be estimated.

The best way to estimate the most appropriate number of
independent components is not clear. This number can affect
the results of ICA, particularly if it is too small (Ma et al.
2007). To estimate the number of ICs, we first attempted to
use the Minimum Description Length (MDL) criterion (Li
et al. 2007), which is an information theoretic technique for

1 Available online at http://imaging.mrc-cbu.cam.ac.uk/imaging/
DataDiagnostics

152 Brain Imaging and Behavior (2015) 9:149–161

http://mialab.mrn.org/software/
http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics


model order selection. However, because of the heterogeneity
of activation localization and size in both groups, this criterion
did not converge. So the precedent set by (Specht et al. 2009)
was followed and eight was chosen as the number of ICs. To
justify this choice, the analysis was also repeated for 12 and 16
components, and the differences were negligible, as shown in
the results section.

The jICA procedure generated a set of joint independent
components and associated mixing coefficients. These low-
dimensional coefficients model the modulation of each subject’s
functional contrast by a joint source, and thus can be used as a
criterion for capturing group differences. To investigate whether
the groups were separable by different weightings of the joint
sources, unpaired two-sample t-tests with unequal variance
(heteroscedastic) on the mixing coefficients were performed.
The z-scaled results indicated the joint components of interest.

Selection of optimal joint sources

If two groups differ, than the distributions of their joint com-
ponents should be separable (Calhoun and Adali 2009; Sui
et al. 2009a, b). Separability can be quantified by computing a
divergence between joint histograms. Group joint-sources are
defined by Uy=Ay

-1Xy=WyXy, where Ay, Wy and Xy indicate the
submatrices associatedwith the young subjects (similar for the
older group). For each subject, the appropriate group joint
source (e.g. Uo for an older subject) was divided into three
maps, which correspond to the three contrasts used in the jICA
analysis. The map elements (each one representing a specific
voxel) were sorted and thresholded, leaving a set of voxels
statistically relevant to the joint source. Each voxel that sur-
vived thresholding in all three maps was included in a three-

dimensional joint histogram in a bin defined by the three
contrast values (from the input observation matrix X) at that
voxel’s location.

The group-averaged joint histograms were then calculated
by taking the mean of the joint histograms of each subject in
the group. The difference between the two groups was then
assessed using the Renyi divergence formula (Hero et al.
2001) with α=0.5:

Dα PkQð Þ ¼ 1

α−1
log

Xn

i¼1

pαi
qα−1
i

� �
¼ 1

α−1

Xn

i¼1
pαi q

1−α
i

ð1Þ
where P and Q are probability distributions, reflected in the
group-averaged joint histograms.

The divergence is also computed for different combina-
tions of contrasts. The higher the values of the Renyi diver-
gence criterion, the better the discrimination between groups.
Therefore, best combination of contrasts is that which yields
the highest divergence value.

Automatic classification of young and older subjects

In order to overcome the classification problems caused
by high dimensionality of fMRI data and the small set of
available subjects (16 in each group), columns of the
mixing coefficients matrix, which reflect the weighting
of each joint source in a subject’s contrast, were used as
input features to a classification algorithm. A non-linear
Support Vector Machine (SVM) was used to classify the
subjects. SVM does not assume that data points conform
to a specific model, but rather seeks to find the

Fig. 1 Schematic of the jICA method. The observation matrix is made by stacking the SPM t-contrast maps from the experimental conditions side by
side. Assuming that maps of joint sources share the same mixing-coefficient matrix, jICA tries to maximize the independence among them
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hyperplane that separates the two classes with maximum
margin (Theodoridis and Koutroumbas 2003). The hy-
perplane is defined by f (x) =ω .Ks (x) + b, where
Ks(x)=[k(x,s1), .., k(x,sd)] is the vector of kernel functions
centered at the support vectors, ω is the parameter vector
and b is a scalar. Radial Basis Functions (RBF) were
used as the kernels: k(x,s)=exp(−|x-z|2/σ2). The data were
split into a training set and a test set. In the training
phase, fusion analysis was repeated on only those sub-
jects in the training set. This produced a new mixing
coefficient matrix A(train) and joint source matrix S(train)
that modeled the generation of the training observations
X(train). The columns of the mixing matrix A(train) were
used as input features to train the classifier, which

divided the training subjects into two classes of young
and older adults.

The input features for the test set, columns of A(test), were
then found by least-squares solution of X(test)=A(test)S(train). The
positions of these vectors in k-dimensional feature space,
relative to the hyperplane found in running the classifier on
the training set, determined the classification of each test
subject. The number of columns of A, or mixing coefficients,
used in the classification was k. A MATLAB implementation
of the classifier provided by the Statistical Pattern Recognition
Toolbox (STPRtool), available at http://cmp.felk.cvut.cz/cmp/
cmp_software.html was used for this step.

Performance of the classification procedure was measured
by repeatedly splitting the data into training and test sets and
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Fig. 2 Joint Independent Component Analysis (jICA) of brain patterns.
The joint source map of themost significant component for the contrast of
high vs anomalous sentences (a), for the contrast of anomalous sentences

vs SCN (b), and for the contrast of SCN vs Silence (c), along with the
mixing coefficients for the young and older subjects (d) is presented
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averaging classification performance across iterations. The
splitting was done 200 times (each time selecting different
11 young and 11 older subjects as the training set and the
remaining five subjects in each group as the test set). The
False Positive (FP), False Negative (FN), True Positive (TP)
and True Negative (TN) values were calculated and the ratio
between TP and TN values to the total number of outcomes
was taken as the performance metric. Selecting the significant
features (mixing coefficients) is an important factor in classi-
fication results. The mixing coefficients were sorted by the p-
values resulting from a two-sample t-test checking for differ-
ences between groups, and the k coefficients with the most

significant difference were chosen for use in classification.
Unlike some statistical classification methods, SVM does not
provide posterior class probabilities (Pi). Without posterior
probabilities, it is not possible to assess the performance of
the classifier at other threshold values, and to measure the
sensitivity and specificity of the classifier. Following the Platt
(Platt 1999) approach, we trained an SVM and later the
parameters of an additional sigmoid function to map the
values of SVM outputs to posterior probabilities. Using
the posterior probabilities, the Receiver Operating
Characteristic (ROC) curves were plotted and their Area
Under the Curves (AUC) calculated. The AUC metric is

Table 1 Stereotaxic coordinates for the most discriminative source map in three contrasts. MNI coordinates of voxels, which are above a threshold of
|Z|>3.5, are shown in the table

Area Broadman area R/L volume (cc) R/L random effects: max value (x, y, z)

Higher-level cognitive patterns

Positive

Cingulate gyrus 31 0.5/0.5 4.2 (−4, −48, 35)/4.3 (7, −48, 35)
Precuneus 7,31,39 0.4/0.5 4.2 (−4, −48, 38)/4.1 (7, −48, 38)
Posterior cingulate 23,31 0.2/0.2 3.9 (0, −45, 31)/3.8 (3, −45, 31)
Angular gyrus * 0.0/0.1 ns/3.6 (44, −63, 40)

Negative

Middle frontal gyrus * 0.0/0.2 ns/4.3 (44, 15, 32)

− * 0.0/0.2 ns/4.0 (48, 15, 32)

Inferior frontal gyrus 9 0.0/0.3 ns/4.0 (44, 12, 32)

Precentral gyrus 6 0.0/0.1 ns/3.7 (48, 7, 39)

Mid-level cognitive patterns

Positive

Middle temporal gyrus 21, 22 0.7/1.6 4.8 (−64, −5, −6)/5.1 (67, −29, 8)
Superior temporal gyrus 21, 22, 42 0.3/1.7 3.8 (−55, −32, 8)/4.9 (57, −32, 6)
Middle frontal gyrus 6 0.1/1.0 3.6 (−57, 10, 55)/4.7 (51, 10, 55)

− * 0.1/0.5 3.9 (−51, −32, 8)/4.6 (57, −35, 6)
Inferior parietal lobule 40 0.0/0.4 ns/4.2 (63, −42, 31)
Supramarginal gyrus 40 0.0/0.1 ns /4.0 (63, −43, 28)
Precentral gyrus 6 0.0/0.1 ns/3.9 (57, 7, 51)

Postcentral gyrus * 0.0/0.1 ns /3.6 (63, −26, 45)
Inferior frontal gyrus * 0.0/0.1 ns/3.6 (48, 12, 32)

Low-level cognitive patterns

Positive

Postcentral gyrus 40, 43 1.1/0.1 6.0 (−74, −16, 20)/3.6 (67, −24, 23)
Superior temporal gyrus 22, 41, 42 1.9/0.7 5.6 (−74, −22, 17)/4.4 (67, −28, 24)
Transverse temporal gyrus 41, 42 1.2/0.2 5.5 (−67, −10, 12)/4.0 (67, −13, 13)
Precentral gyrus 43 0.1/0.0 4.7 (−64, −7, 12)/ns
Insula 13 0.0/0.2 ns/4.2 (63, −31, 24)
− * 0.1/0.0 5.9 (−78, −22, 17)/ns

Negative

Inferior frontal gyrus 47 0.4/0.0 3.9 (−34, 28, −4)/ns
Insula 13 0.1/0.0 3.6 (−31, 22, −6)/ns

L and R show the assigned anatomical left and right hemispheres, cc stands for cubic centimeters showing the volume concentration of voxels, the
coordinates and value of the maximum Z are also provided in the table. Not-significant regions are shown by ns
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the most common way to compare the accuracy of
classification methods in the machine learning commu-
nity. Detection reliability ρ, was defined based on AUC
as ρ=2×AUC-1 (Ramezani and Ghaemmaghami 2010).
Under this definition, ρ=1 for perfect detection and ρ=0
for failure in detection.

The joint ICA classification result was compared to ICA
for each of the three contrasts separately, to examine whether
the fusion analysis has advantages over analysis of the results
of each contrast separately. As in the fusion analysis, the
mixing coefficients were employed as input features for clas-
sification of young and older adults.

Fig. 3 The effect of combining different contrasts on differentiation between histograms. The higher the values of the Renyi divergence, the better the
discrimination between groups

Fig. 4 Classification accuracy for different number of features used. Selecting only three significant features (p-value <0.05), produced an average
classification accuracy of around 75 %
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Results

Although older adults need higher SNRs to achieve the same
performance scores as young adults (i.e. they do not perform
as well in noise), behaviorally there is no difference in the

amount of benefit they get from contextual information com-
pared to anomalous information.

The goal of our fusion analysis is to examine whether jICA
components can be used to accurately distinguish young and
older adults on the basis of fMRI data from a speech perception

ρ
ρ
ρ
ρ

Fig. 5 ROC curves and detection reliability resulting from four different
numbers of features used. Perfect detection: ρ=1; detection failure: ρ=0.
Performance of the classification was measured by repeatedly splitting
the data into training and test sets and averaging classification

performance on a test data set. Splitting was done 200 times and the
classification was repeated five times with randomized order of the
subjects in the training dataset. ROC curves are computed using posterior
probabilities of the SVM output

ρ
ρ

ρ
ρ

Fig. 6 ROC curves and detection reliability for different contrasts. Perfect detection: ρ=1; detection failure: ρ=0. All of the contrasts (except that of
coherent vs anomalous sentences) show high detection accuracy
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experiment, despite the similarity in contextual benefit be-
tween the groups. The success of this analysis is evaluated
by examining the statistical difference among the mixing co-
efficients of joint sources, by applying the Renyi divergence
criterion, and by an automatic classification method. These
tests are described in the following three subsections.

Statistical difference among joint sources

Unpaired two-sample t-tests (assuming unequal variance)
were performed on the mixing coefficients, and two compo-
nents were found to differ significantly (p-value=0.00071 and
p-value=0.0301, number of subjects=16 in each group) be-
tween the two groups. Figure 2a, b and c show the statistical
Z-maps generated for the joint source (shown as rows of Map
1, Map 2, and Map 3 in Fig. 2) with the largest group
difference. Figure 2d shows that the mixing coefficients for
this joint source have higher values in older subjects compared
to younger subjects. Table 1 shows the corresponding stereo-
taxic coordinates in MNI space for this source.

Selection of optimal joint sources

The sorted maximum Renyi divergence values for different
combinations of contrasts are shown in Fig. 3. Higher values
indicate better discrimination between the groups. It is clear
that combining all three contrast images yields the best results.
It can also be seen that the contrast comparing responses to
anomalous sentences and to unintelligible noise is the most
effective single contrast in separating the groups.

Classification

Figure 4 shows the average classification accuracy for differ-
ent numbers of features. Results show that the young and
older subjects can be classified based on their patterns of
activity across the three contrasts of interest. Considering the
fact that the number of subjects is low and the dimensionality
of the input fMRI dataset to the fusion framework is quite
high, the results are very promising. By selecting only the first
three features, an average classification accuracy of around
75 % is obtained. Figure 5 shows the ROC curves and detec-
tion reliability for four different numbers of features. Since
each additional feature is (by definition) less important than
the previous one, the addition of features beyond three leads to
asymptotically improving discriminability.

Using the first three features, the joint ICA classification
result is compared to ICA for each of the three contrasts
separately in Fig. 6, which shows the ROC curves, the detec-
tion reliability and the area under ROC curve obtained.
Classification of individuals based on ICAs of the contrast
comparing anomalous sentences and noise, and the contrast
comparing SCN and silence, yield significantly (p-value<
0.05) better-than-chance classifications, but substantially low-
er than the result obtained by the jICA classification.

Figure 7 shows the ROC curves and the corresponding
detection reliability when the analysis is run with different
numbers of ICs. It is easily seen that adding more ICs has little
effect on the performance. Comparing the classification errors,
there is really no major difference between different numbers
of ICs.

ρ
ρ
ρ

Fig. 7 ROC curves and detection reliability for different numbers of ICs. Perfect detection: ρ=1; detection failure: ρ=0
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Discussion

In this paper we used GLM to generate activation maps for
multiple fMRI conditions related to speech perception and
comprehension, and jICA to decompose the activation maps
into independent maps that share modulation profiles. This is
similar to assuming a fixed hemodynamic response for each
subject and modeling the amplitude differences in modulation
profiles (Calhoun et al. 2006b). The modulation profiles were
used within a non-linear SVM framework to classify individ-
uals. Our major findings are: (1) brain functional patterns of
activation permit classification of individuals as younger or
older; (2) combining these patterns improves the separability
of joint sources and the accuracy of classification of individuals.

The joint source that differed the most between the two
groups appeared to reflect activation differences at multiple
levels of processing, including in left inferior frontal cortex for
the contrast between coherent and anomalous sentences, in
both temporal lobes for the contrast between anomalous
sentences and SCN, and in primary auditory cortex bilaterally
for the contrast of SCN vs. silence. This reflects the well-
known hierarchy of speech processing in which low-level
acoustic features are analyzed in auditory cortex, superior
and middle temporal gyri are sensitive to processing of audi-
torily presented sentences, and left inferior frontal gyrus ac-
tivity reflects higher-level linguistic (possibly semantic) pro-
cessing (Davis and Johnsrude 2003; Davis et al. 2011; Okada
et al. 2010; Peelle et al. 2010; Rodd et al. 2005).

The relation between the three maps of the joint sources
(see Fig. 1) were investigated by looking back to the SPM
contrast images and examining regions that contributed sig-
nificantly in the joint source, i.e. computing the joint histo-
gram. The divergence criterion derived from the joint histo-
grams was used to measure the separability of the two groups
based on the joint sources. This criterion confirmed that the
fusion of contrasts improved separability, compared to the
consideration of each contrast separately.

Results demonstrate that individuals can be classified rela-
tively accurately into young and older age groups by combin-
ing functional contrasts sensitive to the processing of noise vs.
silence, anomalous sentences vs. noise, and coherent vs.
anomalous sentences. Note that although the brain imaging
data permit this classification, behavioral data did not: the
ability to report words from the anomalous and coherent
sentences was matched between young and older listeners
for the contrasts examined. Figure 4 shows that using only
three coefficients of the mixing matrix, a classification accu-
racy of around 75 % can be obtained, albeit with a high
standard deviation. The high standard deviation on the classi-
fication performance might be due to the small number of
datasets, or because our method of controlling for hearing
ability based on the behavioural performance did not work
as well as we had hoped.

Although using all three contrasts resulted in the best
detection reliability, i.e. highest area under the ROC curve,
the contrast of anomalous sentences vs. unintelligible noise
had the most impact on separability of the groups, with a
detection reliability of around 60 % (AUC of 80 %) by itself.
This may be because, in order to match intelligibility, older
adults heard sentence materials at more advantageous SNRs,
and the acoustic differences between these more positive
SNRs and those experienced by the younger listeners may
be reflected in different patterns of activity in auditory regions
in the two groups. The analysis did not appear sensitive to the
number of independent components (8, 12, or 16) included.
Also, the number of features, as long as it was three or more,
had relatively little impact on classification accuracy.

This was simply a validation study to demonstrate that
information across multiple functional contrasts can be use-
fully combined for classification. Although here we differen-
tiate young and older people, using age as an observable ‘gold
standard’ way to discriminate groups, we anticipate that this
method will be useful to aid in classification of individuals to
clinical groups using objective, quantitative, criteria. Future
work will apply this method in order to classify individuals
with mood or other mental disorders.

In summary, using the joint ICA method together with an
SVM classification algorithm, we have demonstrated that
cognitive patterns can be used to classify individuals in the
absence of behavioral differences. Feasibility of the proposed
framework is shown by demonstrating that functional activity
maps can be used to classify subjects accurately. The best
combination of contrasts and optimal components are identi-
fied. We showed that by combining three different functional
contrasts, revealing three different patterns of brain activity,
the overall performance of the classification improves. This
paper is a proof of concept that we hope to extend to diagnosis
of brain disorders in future studies.
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