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Computational neuroanatomical techniques that are used to evaluate the structural correlates of disorders in the
brain typically measure regional differences in gray matter or white matter, or measure regional differences in
the deformation fields required towarp individual datasets to a standard space. Our aim in this studywas to com-
binemeasurements of regional tissue composition and of deformations in order to characterize a particular brain
disorder (here, major depressive disorder). We use structural Magnetic Resonance Imaging (MRI) data from
young adults in a first episode of depression, and from an age- and sex-matched group of non-depressed individ-
uals, and create population gray matter (GM) and white matter (WM) tissue average templates using DARTEL
groupwise registration.We obtained GMandWMtissuemaps in the template space, alongwith the deformation
fields required to co-register the DARTEL template and the GM andWMmaps in the population. These three
features, reflecting tissue composition and shape of the brain, were used within a joint independent-
components analysis (jICA) to extract spatially independent joint sources and their corresponding modula-
tion profiles. Coefficients of the modulation profiles were used to capture differences between depressed
and non-depressed groups. The combination of hippocampal shape deformations and local composition
of tissue (but neither shape nor local composition of tissue alone) was shown to discriminate reliably be-
tween individuals in a first episode of depression and healthy controls, suggesting that brain structural dif-
ferences between depressed and non-depressed individuals do not simply reflect chronicity of the disorder
but are there from the very outset.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Our understanding of the brain basis of psychiatric disorders, includ-
ing Major Depressive Disorder (MDD), has benefited greatly over the
past two decades from important advances in Magnetic Resonance
Imaging (MRI) technology. Studies of adults with primarily recurrent
episodes of MDD have shown significant volumetric differences in

temporal (e.g., superior temporal gyrus [STG], hippocampus, amygdala)
and frontal (e.g., anterior cingulate cortex [ACC] and orbitofrontal cortex
[OFC]) brain regions relative to healthy controls (see Bellani et al.,
2010; Bellani et al., 2011; Lorenzetti et al., 2009 for reviews of the
neuroanatomy and structural MRI findings associated with MDD).
The most consistent finding in these studies is reduced hippocampal
volume in adult patients with MDD compared to healthy controls.
However, some studies have also failed to find group differences in
hippocampal volumes (Hastings et al., 2004; Monkul et al., 2007;
Rusch et al., 2001; Vythilingam et al., 2004), and others have even re-
ported larger hippocampal volumes in patients with MDD relative to
healthy controls (Frodl et al., 2002; Vakili et al., 2000; Vythilingam
et al., 2004).

A large number of approaches have been developed to characterize
differences, among individuals and groups, in the neuroanatomical con-
figuration of the humanbrain. Generally, these approaches are classified
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into those that measure differences in brain shape, and those that
measure differences in the local volume (and concentration) of brain
tissue after macroscopic differences in shape have been discounted
(Ashburner and Friston, 2000). The former approaches analyze the de-
formation fields required to map individual brains onto some standard
reference in order to characterize neuroanatomy. Deformation Based
Morphometry (DBM) (Bookstein, 1996) and Tensor Based Mor-
phometry (TBM) (Chung et al., 2001) are widely used approaches
that use deformation fields. Shape-analysis methods that are related
to DBM/TBM have been widely employed to examine morphometric
differences in depression. For example, in MDD, Posener et al. (2003)
used high dimensional brain mapping on MRI data to quantitatively
characterize the shape and volume of the hippocampus in adults
with MDD and healthy controls (mean age = 33 ± 10). They found
significant group differences in hippocampal shape, but no evidence
for differences in volume. In a more recent study, Zhao et al. (2008)
applied SPherical HARMonic (SPHARM) shape analysis to the left
and right hippocampi of elderly patients with MDD (age N 60) and
healthy controls. Analysis revealed significant shape differences in
themid-body of the left hippocampus between the two groups. Further,
patients in a current episode of MDD had lower left hippocampal
volumes in comparison to controls, whereas patients in remission
(Hawley et al., 2002) from MDD showed no reduction in hippocampal
volume. In our previous study (Ramezani et al., 2014), we used multi-
object statistical pose and shape analysis, and demonstrated brain mor-
phological differences between adolescents with early-onset MDD and
healthy controls.

Approaches that focus on the local composition of brain tissue, such
as voxel-basedmorphometry (VBM), compare tissue images on a voxel-
by-voxel basis after the deformation fields have been used to spatially
normalize the images. For example, Bell-McGinty et al. (2002) applied
VBM using SPM99, and reported smaller gray-matter volume of the
right hippocampus, and smaller white-matter volume in the left
anterior cingulate and right middle frontal gyrus, in elderly patients
with MDD compared to healthy controls. Using VBM in SPM5, Vasic
et al. (2008) reported significantly lower left hippocampal volumes
in middle-aged patients with MDD in comparison to healthy controls.
Similarly, in the same group of middle-aged patients with MDD,
Bergouignan et al. (2009) compared VBM using amanual segmentation
method and the automatedmethod, and found significant hippocampal
volume reductions using both segmentation methods in comparison
with healthy controls. Finally, studies focusing on younger age groups,
and including relevant covariates (i.e., age, sex, and intracranial volume)
have also reported significantly lower hippocampal volumes, particular-
ly in the left hemisphere, in both adolescents with MDD (MacMaster
and Kusumakar, 2004) and in patients with early onset MDD and a
family history of depression (MacMaster et al., 2008).

In summary, computational neuroanatomical techniques either use
the deformation fields themselves to characterize brain structural
variation, or use these fields to normalize images that are then entered
into an analysis of regionally specific differences in tissue composition.
Ideally, a procedure like VBM should be able to automatically identify
any structural abnormalities in a single brain image. However, even
with many hundreds of subjects in a database, the method may not be
powerful enough to detect subtle abnormalities (Ashburner and
Friston, 2000). Recently, unified voxel- and tensor-basedmorphometry
(UVTM) that uses locally adaptive combination of TBM and VBM to im-
prove sensitivity is proposed (Khan et al., 2014). UVTM is an extension
of the Jacobian modulated VBM (Davatzikos et al., 2001), which gives
weights to VBM or TBM analysis based on registration confidence. In
modulated VBM, voxel concentration is scaled based on the amount of
deformation whichwas applied in the registration procedure. Although
themotivation for multiplying the Jacobian determinant of transforma-
tions and the tissue segmentation probabilities is intuitive, it is not clear
if the statistically significant regions resulting from VBM and TBM will
match, although it is assumed to be. In addition, there has been no

quantitative study on determining the optimal weight parameters
based on the registration confidence. A more powerful procedure
would be to use a voxel-wisemultivariate approach.Within amultivar-
iate framework, in addition to images of gray matter concentration,
other image features such aswhitematter concentration, and the defor-
mation fields calculated during the spatial normalization procedure, can
also be included (Ashburner and Friston, 2000). Fusion of thesemultiple
images may help in detecting subtle individual differences.

Joint independent components analysis (jICA) (Calhoun et al.,
2006a) is a multivariate technique for such “fusion analysis”. It is an
extension of independent-components analysis (ICA) that combines in-
formation frommultiple features, which are a lower-dimensional repre-
sentation of selected brain structures. jICA, as a group-level analysis
technique, uses extracted features from individual subjects3 data and
tries to maximize the independence among joint components. jICA
and extensions have been successfully applied to combine multimodal
functional and structural images to study major depression (Choi
et al., 2008), aphasia (Specht et al., 2009) and schizophrenia (Calhoun
et al., 2006a; Calhoun et al., 2006b; Sui et al., 2009; Sui et al., 2010; Xu
et al., 2009). For example, Choi et al. (2008) combined resting-state
functional-connectivity and fractional-anisotropy data within jICA in a
dataset of four subjects with MDD and nine healthy control subjects to
investigate links between functional connectivity changes and white-
matter abnormalities. They reported differences in the strength of
connectivity and in the coherence of white-matter tracts among the
subgenual anterior cingulate cortex (sACC) and perigenual ACC, anterior
midcingulate cortex, caudate, thalamus, medial frontal cortex, amygdala,
hippocampus, insula, and lateral temporal lobe.

The purpose of the current study was to combine, for the first time,
brain shape and regional brain tissue composition using multivariate
jICA in order to investigate the brain structural correlates of first-
episode MDD. We determined the joint variation of shape and tissue
composition in the hippocampal region in a sample of young people suf-
fering from a first episode of MDD in comparison to a sample of young
healthy controls. The importance of a young first-episode group is that
they have not been subject to the known neurotoxic effects of glucocor-
ticoids resulting from aging and the pathology of chronic depression
(Sapolsky, 2000; Schuff et al., 1999).We hypothesize that, whereas con-
ventional univariate analysis may not be sensitive to subtle differences
in brain structure in this group, a multivariate technique that jointly an-
alyzesmultiple brain characteristics (i.e., shape and tissue composition)
may have the requisite sensitivity to capture group differences. Fol-
lowing a group-wise registration using DARTEL (Ashburner, 2007;
Bergouignan et al., 2009) to create an average template, we obtained
individual gray-matter (GM) and white-matter (WM) tissue maps in
the template space, along with the deformation fields required to co-
register the template and the GM and WM maps. Using the jICA
technique, we combined these three features, reflecting the tissue com-
position and shape of the brain in each individual, in order to extract
spatially independent joint sources and their corresponding modula-
tion profiles. We hypothesize that the mixing coefficients of the modu-
lation profiles will lead to better discrimination of MDD subjects from
the control group compared to the results obtained when brain shape
and tissue composition are analyzed separately.

2. Material

2.1. Participants

Eleven young people with MDD (age: 18 ± 0.89, range: 16–21, 2
males, all right-handed) were recruited through referrals from commu-
nity mental health clinics and through advertisement in a small city in
Ontario, Canada. Fourteen healthy control subjects (all 18 years old;
all female, all right-handed) were recruited through advertisement.
The groups were well matched in age. There were no socioeco-
nomic status (SES) differences between the subjects in the two groups
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(p-value= 0.50). All subjects in the depressed groupmet the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM-IV-TR; American
Psychiatric Association, 2000) criteria for a current episode of major
depressive disorder based on the Structured Clinical Interview for
DSM-IVAxis I Disorders (First et al., 1996) administered by an advanced
doctoral student in clinical psychology. We used the Child and Adoles-
cent version of the Schedule for Affective Disorders and Schizophrenia;
K-SADS (Kaufman and Schweder, 2004). The K-SADS is the gold stan-
dard for DSM-IV diagnosis in children and adolescents and is the most
widely used measure for this purpose in clinical research. Subjects
were excluded if they met current or lifetime criteria for bipolar disor-
der, a psychotic disorder, a developmental disability (e.g., autism
spectrum disorder), or a medical disorder that could cause depression
(e.g., hypothyroidism). All participants in the MDD group were in
their very first episode and were medication-free. This is important be-
cause understanding neuroanatomical features that characterize the
earliest stages in the course of MDD, not confounded with medication
use or recurrent MDD pathology, may provide important clues as to
the disorder3s initial etiology. All subjects in the depressed group had
moderate to severe levels of symptoms, as defined by a score of 19 or
greater on the Beck Depression Inventory (BDI-II (Beck et al., 1996)).
The BDI is a 21-item self-report questionnaire that is themost common
way to assess the presence and severity of depressive symptoms in
adolescent and adult samples. Healthy controls had no current or past
history of any psychiatric disorder and all had BDI scores of zero. We
chose not to include the Hamilton Depression Rating Scale and to
focus exclusively on the BDI as an index of depression severity since
there is evidence that the Hamilton possesses a poor psychometric pro-
file (Bagby et al., 2004). This study was cleared by the Health Sciences
Research Ethics Board of Queen3s University, andwritten informed con-
sent was obtained from all participants, and from a parent or guardian
for those participants under the age of 18.

2.2. Image acquisition

The MRI data were acquired using a 3.0 Tesla Siemens Trio MRI
scanner with a 12-channel head coil in the MRI facility at Queen3s Uni-
versity, Kingston, Canada. A whole-brain 3D MPRAGE T1-weighted an-
atomical image was acquired for each participant (voxel resolution of
1.0 × 1.0 × 1.0mm3, flip angle α=9°, TR= 1760ms, and TE= 2.6ms).

3. Methods

In the following two subsections, first the input features to the
jICAmethod, representing tissue composition and deformation of se-
lected brain structures, are described. Then, the multivariate joint
independent-components analysis technique, used to fuse multiple
features, is briefly reviewed.

3.1. Features

The data type on which we focus in this paper is structural MRI
(sMRI). Outcome measures derived from structural images include
measures of shape (e.g., deformation) and tissue volume or concentra-
tion (e.g., gray or white matter). Below, we describe how we extracted
three different features: (1) shape deformation information, and
(2) gray- and (3) white-matter concentrations used for voxel-based
morphometric (VBM) analysis.

The sMRI data were preprocessed using Statistical Parametric
Mapping software (SPM8,Wellcome Department of Cognitive Neurolo-
gy, London, UK). Briefly, GM, WM, and cerebral spinal fluid (CSF) were
segmented using the automated segmentation processes in SPM
(Ashburner, 2007; Bergouignan et al., 2009). This resulted in a set of
three images in native space, in which each voxel is assigned a probabil-
ity of being one of the three tissue types. The GM and WM maps were
registered using the DARTEL method, which achieves accurate inter-

subject registration of images (Ashburner, 2007; Bergouignan et al.,
2009). The DARTEL procedure uses the GM and WM maps to create
new templates and warps the GM and WM maps of each subject to
the DARTEL template. Using DARTEL group-wise registration, the
inter-subject registration is more accurate comparing to other SPM
tools, therefore less spatial smoothing can be performed. We have
used a Gaussian convolution kernel with a Full Width at Half Maximum
(FWHM) of 8 mm. To demonstrate the effect of smoothing, we report
the results with and without spatial smoothing. The deformation fields
(DFs) required for warping the groupwise (DARTEL) template to the
GMandWMmaps of each subjectwere also created. These deformation
fields show howmuch the group template structure deviates from each
participant3s structure. The absolute value of the deformation field
(displacement) for each voxel is used to represent shapemorphometry.
The warped GM and WM segments along with the deformation fields
are input features to the joint analysis method.

To reduce the number of voxels in the analysis, a segmented
LPBA40/SPM5 atlas (Shattuck et al., 2008) inMNI space was used to ex-
tract the anatomical regions of interest. We selected the hippocampal
region since abnormalities in this region have been associated with
the pathology of MDD (Bellaniet al., 2010; Bellani et al., 2011;
Lorenzetti et al., 2009). To account for small errors in the atlas-to-
subject registration, the selected region was dilated using a disk with
the radius of 5 voxels, withmorphological operators to include adjacent
regions in addition to the selected brain structure. Voxels inside the
created mask were selected for joint analysis.

3.2. Joint independent-components analysis

We assume that there is a relation between brain tissue type (GM or
WM) differences and brain structural deformations. This is not an
unreasonable premise: if depression is associated with differences in
both the size and shape of brain structures, then differences in the vol-
ume and/or concentration of gray and/or white matter might be related
to differences in structural deformations in depressed individuals rela-
tive to controls. The three features described in the previous section
were used as input observations (X = [x1, x2, …, xN]T ∈ RN × K) to jICA
in order to combine brain shape deformations and local composition
of tissue. jICA can be used to identify any joint set of features (S =
[s1, s2, …, sN]T ∈ RK× N) that is anatomically differentiable between
depressed subjects and healthy controls, where xi (i = 1, 2, …, N) is
the vector of stacked features for subject i, and si shows the ith
joint independent component (source). N is the number of subjects
and K is the total dimensionality of stacked vectors. Considering the
generative model X= AS, the aim of the jICA method is to find the ma-
trix W = A−1 so that the estimation of U = WX is close to S. In this
model, A is thematrix ofmixing coefficients (also called ICA loading pa-
rameters, or the modulation profile), andW is the unmixing matrix. A
MATLAB implementation of jICA is provided by the FIT 2.0b software
(Calhoun et al., 2006a), available online at http://mialab.mrn.org/
software/. A schematic of the jICA approach is shown in Fig. 1.

Joint independent components were found using the Infomax
algorithm (Bell and Sejnowski, 1995), which is based on minimization
of mutual information of components. In this algorithm, the output en-
tropy of a neural network is adaptively maximized with as many out-
puts as the number of independent components (ICs) to be estimated.
In order to use ICA, it is necessary to first specify the number of indepen-
dent components (ICs) expected. We first attempted to estimate the
number of ICs using the Minimum Description Length (MDL) criterion,
which is an information-theoretic technique for model order selection
(Li et al., 2007). Using the MDL criterion, the number of components
in GM and WM was estimated to be 4 and 3, respectively, but because
of the heterogeneity in the location and extent of deformations across
both groups, this information-theoretic criterion did not converge for
the deformation-field dataset. Accordingly, we instead follow the prece-
dent set by Specht et al. (2009) and set the number of ICs equal to 1/3 of
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the total number of subjects: so for 25 subjects here, we specify eight
components.1

Separability of the mixing coefficients was used as a criterion for
capturing group differences. These low-dimension coefficients reflect
how much each subject3s shape deformation and tissue composition
are modulated by a joint source. To investigate whether the mixing co-
efficients truly differ between groups, we used two-sample (unpaired)
t-tests. We report mixing coefficients that differ significantly between
the two groups (p b 0.05), and for which the corresponding z-scaled
component had more than 10 voxels with values above a threshold of
|z| N 2.5 (99.4% cumulative probability). We followed the precedent
set by Altena et al. (2010) to select minimum number of voxels within
a cluster, and Sui et al. (2013) and Tosun et al. (2012) to select the
threshold.

In order to determine whether the fusion analysis is superior (in
terms of sensitivity) to analyses based on single features, we compared
the result of t-tests on the mixing coefficients from the jICA of GM,WM
and DF features to the result of the t-tests on each of the three features
separately.

To further investigate the group differences, columns of the mixing
coefficient matrix, which reflect the weighting of each joint source in a
subject3s GM,WM andDF,were used as input features to a classification
algorithm. A discriminant analysis with a quadratic discriminant func-
tion was used to classify the subjects. Performance of the classifier
was measured using leave-one-subject-out cross-validation, averaging
classification performance across iterations. The joint ICA classification
result was compared to classification results obtained with one or two
features. The mixing coefficients were used as input features for the
classification of depressed and control subjects.

Furthermore, separability of the joint source distributions was
quantified by computing a divergence measure between joint histo-
grams. Each of the joint sourceswas divided into threemaps,which cor-
respond to the GM,WM and deformation field features used in the jICA
analysis. The map elements (each one representing a specific voxel)
were thresholded and sorted in descending order by the voxel value,
resulting in a set of voxels representing the greatest differences be-
tween groups in each joint source. For each subject, voxels that survived
thresholding in all three maps were counted on a three-dimensional
joint histogram in a bin defined by the three input feature values
(from the input observation matrix X in Fig. 1) at those voxels3 loca-
tions (see Calhoun et al., 2006b for more details on computing joint

histograms). The group-averaged joint histogramswere then calculated
by taking the mean of the joint histograms across all the subjects in the
group. The difference between the two groups was then assessed using
the Renyi divergence formula (Hero et al., 2001). The divergence was
also computed for other combinations of features (two or one). The
higher the values of the Renyi divergence criterion, the better the
discrimination between groups (Calhoun and Adali, 2009). The best
combination of features is the one that yields the highest divergence
value.

4. Results

We performed VBM analysis on GM and WM images obtained by
DARTEL group-wise registration of the maps using the SPM8 toolbox.
We used the same explicit mask (described in Subsection 3.1) that
we had used for the joint ICA analysis of multiple features. Results
show no significant WM, or GM differences using a Family Wise Error
(FWE) rate of 0.05 or significance level of 0.001, and cluster size of 10
or more voxels.

We report the statistical difference among joint sources to evaluate
the performance of the proposed joint analysis. Two-sample t-test was
performed on the mixing coefficients, i.e., the eight columns of matrix
A, which correspond to eight independent components, where each
column consists of two groups of coefficients (one for each group of par-
ticipants). One source differed significantly between the two groups
(p = 0.004, which passed the Bonferroni correction for multiple
comparisons (p b 0.00625)). Fig. 2(a) shows the mixing coefficients
(i.e., weights) for this joint source, and its GM, WM and deformation-
field components. Theweights in the depressed groupwere significant-
ly higher than in the control group. Fig. 2(b), (c) and (d) depicts the sta-
tistical Z maps around the left and right hippocampi (the regions of
interest) for this joint source, and Table 1 shows the corresponding ste-
reotaxic coordinates in MNI space. As can be seen in Fig. 2(d) and
Table 1, the shape variations appear mostly in the left hemisphere of
the brain within the hippocampal region, whereas group differences
in the GM and WM concentrations appear in both hemispheres, as
shown in Fig. 2(b) and (c). We remind the reader that for each subject,
within the jICA framework, the coefficients that modulate the three
maps (shape deformations and GM and WM concentrations within
each joint source) are the same. In other words, the three maps,
which represent the variation of shape deformations, and GM and
WM concentrations among subjects, are jointly related. Hence, our re-
sults indicate that the statistically significant shape deformations ob-
served within the left hemisphere of the brain in the hippocampal
region are related to the statistically significant GM andWM alterations
in the hippocampal region in both hemispheres. It is reasonable to infer
from these results that local changes in brain tissue composition lead to
alterations of shape in distant regions, because the brain is an intercon-
nected organ.

1 We performed subsequent follow-up analyses for 4, 10 and 12 components to further
confirm the validity of ourmodel and to test for the stability of the joint independent com-
ponents. Stability analysis of the results for different numbers of independent components
showed replication of findings for 10 and 12 independent components; however, using
eight components yielded stronger group differences, and higher z-values. As expected
(Ma et al., 2007), under-estimating the number of components (e.g., choosing four as
the number of ICs in our case), yielded less reliable results. Results of analyses with 4,
10, and 12 ICs are available from the authors by request.

Fig. 1. Schematic of the jICA method. The observation matrix is made by stacking the GM, WM, and DF maps side by side. jICA tries to maximize the independence among maps of joint
sources, assuming that they share the same mixing coefficient matrix.
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To determine the sensitivity of the fusion analysis in capturing the
group differences, the results of joint analysis of GM + WM+ DF, and
of separate analysis of each of the GM, WM, and DF were compared.
Eight independent-sample t-tests were conducted to compare de-
pressed and non-depressed groups on the columns of the mixing co-
efficients for joint or separate analysis of features. The modulation
profiles differed significantly between the two groups in the fusion
analysis of GM + WM + DF features (Table 2). Results show that the
combination of shape deformations and local composition of tissue,
but neither shape nor local composition of tissue alone, can discrimi-
nate between individuals in the twogroups. As it can be seen smoothing
has not affected the results much.

Table 3 shows the average classification error for jICA (first column),
and ICA (last three columns) of GM, WM, and DF, each used as input
features in data fusion analysis. Results show that the control and de-
pressed subjects can be classified based on structural MRI data with

an error of 32% using the combination of shape deformations and tissue
composition (GM+WM+DF). The classification error using shape de-
formations or tissue composition alonewasmore than 36%. Considering
that the number of subjects is low and the dimensionality of the input
MRI dataset is quite high, the results are very promising.

Fig. 3 shows the group-average marginal histograms for for GM,
WM, and deformation fields, respectively. As can be seen, the histo-
grams of the normalized intensity values for GM and WM were almost
the same for the two groups, whereas the histogram of the absolute
deformations showed around 0.3 mm more deformation for subjects
with MDD compared to healthy controls.

The sorted maximum Renyi divergence values for different combi-
nations of contrasts are shown in Fig. 4. Higher values indicate better
discrimination between the groups. Therefore, as indicated in thefigure,
combining the deformation fields and tissue composition yielded
greater discrimination than utilizing either deformation fields or tissue
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Fig. 2. Joint independent component analysis (jICA) of brain tissue composition and shape deformation. Panel (a) shows the mixing coefficients for the depressed and control subjects
wherein the central red mark is the median, the edges of the blue box are the 25th and 75th percentiles, and the whiskers show the extreme values of the coefficients. Panels (b), (c),
and (d) show the joint source map of the most significant component for (b) GM, (c) WM, and (d) deformation field. The green dots indicate the boundaries of the region of the interest
which was created by dilating a mask around the hippocampus.

118 M. Ramezani et al. / NeuroImage: Clinical 7 (2015) 114–121



composition data alone. In particular, combining GMand DF yielded the
highest level of discriminatory power in both samples.

5. Discussion

The current study is the first to report that joint analysis of brain
shape and tissue composition is sensitive enough to identify subtle,
but reliable, differences between young people in a first episode of
MDD and healthy controls. However, future work with larger datasets
are required to confirm the superiority of the fusion analysis to separate
analysis of shape and tissue composition. The identified corresponding
sources demonstrate MDD-related links between WM, GM and shape
deformation changes in the hippocampus, which were not detectable
with univariate voxel-based methods. Assuming that the features
share the same mixing coefficient matrix (modulation profile), jICA
uses more information to estimate the same number of mixing

Table 2
p-Values of themost significant joint source, obtained from two-sample t-tests performed
on the columns of the mixing coefficients generated by jICA (first columns), and ICA (last
three columns). First and second rows show the results without and with spatial smooth-
ing of the features. GM: graymatter; WM:white matter; DF: deformation field, each used
as input features in data fusion analysis. The p-values displayed in the first column passed
a Bonferroni correction for multiple comparison (p b 0.00625).

Combination GM + WM + DF DF GM WM
Smoothing

None 0.004 0.069 0.067 0.081
FWHM: 8 mm 0.005 0.069 0.087 0.036

Table 1
Stereotaxic coordinates for themost discriminative sourcemap in three contrasts.MNI co-
ordinates of voxels, which are above a threshold of |Z| N 2.5, and create a cluster volume of
more than10 voxels, are shown. L and R show the assigned anatomical left and right hemi-
spheres, the coordinates and value of the maximum Z are also provided in the table. Not
significant regions are shown by ns.

Feature Volume
(voxels)

Random effects: max value (x, y, z)

L R L R

GM concentration
Positive

69 55 5.5 (−33, −28, −12) 4.6 (33, −15, −18)
44 74 5.0 (−39, −4, −26) 5.8 (33, 3, −30)
26 30 4.3 (−30, 2, −27) 5.3 (35, −13, −27)
23 9 5.0 (−41, −6, −26) 3.9 (38, −18, −26)
4 19 3.9 (−29, −9, −18) 4.6 (35, −16, −17)
2 18 6.4 (−39, −4, −27) 2.6 (38, −6, −29)

Negative
60 25 6.5 (−36, 3, −29) 4.0 (42, −13, −8)
28 51 6.4 (−39, −36, −14) 5.0 (26, −39, −12)
40 19 5.3 (−36, −37, −12) 4.5 (30, −33, −17)
33 11 7.1 (−38, 6, −26) 5.1 (30, 8, −26)
7 31 3.6 (−26, 8, −20) 4.1 (24, 0, −27)

WM concentration
Positive

77 27 7.8 (−36, 3, −27) 5.1 (30, −3, −26)
42 73 8.0 (−39, −36, −14) 6.6 (26, −39, −12)
16 72 3.4 (−27, 2, −27) 5.0 (24, 0, −27)
55 31 6.5 (−36, −37, −12) 5.8 (27, −39, −12)
28 18 8.7 (−38, 6, −26) 6.2 (30, 8, −26)

Negative
61 91 6.1 (−39, −4, −26) 6.3 (33, 3, −29)
80 86 6.6 (−33, −28, −12) 5.6 (33, −15, −18)
30 15 6.2 (−41, −6, −26) 4.3 (42, −13, −24)
18 1 7.8 (−39, −4, −27) 3.1 (38, −6, −27)
2 16 4.5 (−33, −33, −9) 5.7 (35, −16, −17)
13 11 5.2 (−30, 2, −27) 4.8 (33, −4, −27)

Deformation fields
Positive

515 0 4.3 (−45, −5, −18) ns
13 0 2.6 (−32, −21, −24) ns

Table 3
Classification error obtained fromdiscriminant analysis of themixing coefficients generat-
ed by jICA (first column), and ICA (last three columns). GM: graymatter;WM:whitemat-
ter; DF: deformation field, each used as input features in data fusion analysis.

Combination GM + WM + DF DF GM WM

Error 32% 36% 36% 40%
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Fig. 3. Group-average histogram for the whole dataset on GM (a), WM (b), and deforma-
tion field (c). The difference between histograms of the two groups in deformation field
was more than GM and WM.
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coefficients and may improve source estimations compared to ICA. The
observed shape deformations in left hippocampus are related toGMand
WMalterations in the hippocampus in both hemispheres (see Fig. 1 and
Table 1). These significant shape deformation differences in the left
hippocampus are consistent with a previous study of shape (Zhao
et al., 2008), and volume differences (Vasic et al., 2008) in late-life
MDD; and volume differences in adolescents with MDD (MacMaster
and Kusumakar, 2004). Our results provide compelling evidence that
shape-deformation differences in the hippocampus between depressed
and healthy individuals are present to at least some extent even in the
very initial stages of the illness; they do not simply emerge over the
recurrent and chronic pathology of thedisorder, and they are not simply
the result of any potential neurotoxic effects of chronic anti-depressant
usage.

Results demonstrate that individuals can be classified relatively
accurately (with 68% accuracy) into control and depressed groups
using only structuralMRI data. This is consistentwith previous attempts
at the diagnostic classification ofMDDusing brain structural neuroanat-
omy (67.6% diagnostic accuracy reported by Costafreda et al., 2009 and
77.8% prognosis accuracy reported by Nouretdinov et al., 2011 using
adult subjects). However, classification results reported using resting-
state functional Magnetic Resonance Imaging are higher (94.3% report-
ed by Zeng et al., 2012, 90.6% reported byMa et al., 2013 and 95% report-
ed by Craddock et al., 2009), suggesting that the analysis of cognitive
functional differences may add considerable power to diagnostic classi-
fication in MDD.

The group-average histograms for individual features suggest that
among individual features, the deformation fields may better discrimi-
nate the two groups. However, the combination of GM and deformation
fields captured the group differences better than any individual feature
alone, or any other combinations of features, as indicated by the values
of the Renyi divergence. These results suggest that future studies should
use both deformation fields, and regionally specific analyses, such as tis-
sue compositionmeasures, to better understand the brain basis of MDD
and capture structural differences between individuals with MDD and
healthy controls.

The results reported above should be interpreted in the context of
the following limitations. First, this study comprised young women
with moderate and severe depression almost exclusively; therefore,
generalization to young men in a first episode of MDD, and young
men andwomen with milder levels of depression severity requires fur-
ther study. Second, we did not assess for the presence of comorbid anx-
iety disorders or specific subtypes of MDD. Future studies are required
to examine variation in brain morphology with differing depression
syndromes in order to identify biomarkers of more homogeneous
endophenotypes. Third, it will be important in future research to deter-
mine whether the present results generalize to children and early

adolescents with MDD, as significant corticolimbic plasticity remains
throughout childhood and early adolescence (Giedd et al., 2010),
whichmay obscure any potential toxic effects of depression vulnerabil-
ity. Finally, the participants in this studywere volunteers and, thus, may
not be entirely representative of the population of young people with
depression. Nevertheless, as a community sample, they may be more
representative than the subjects of most previous studies, which have
relied on treatment-seeking patients in tertiary care centers.

The proposed method based on fusion of brain-tissue composition
and shape deformation successfully captured the differences in hippo-
campal shape and tissue composition between young people in a first
episode of depression and healthy control subjects. Specifically, using
the jICA method, significant shape deformation differences in the left
hippocampus were observed between the depressed and control
groups. In contrast, no differences were detected between the two
groups when a separate analysis of each feature was conducted. These
results suggest that the jICAmethodmay be amore sensitive technique
for detecting morphological differences in brain tissue — such sensitiv-
ity may be particularly helpful when the sample size is relatively
small, or when structural abnormalities are relatively subtle (such as
in groups of young people who are very early in their disease course).
The current results have important clinical implications. Although
prospective studies with individuals at risk for MDD are needed to
determine the causal role of these structural differences in MDD, the
current results suggest that hippocampal volume lossmay be correlated
for a particularly severe manifestation of MDD in the first onset.
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