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Activity of the hypothalamic–pituitary–adrenal axis (measured via cortisol reactivity)may be a biologicalmarker
of risk for depression and anxiety, possibly even early in development. However, the structural neural correlates
of early cortisol reactivity are not well known, although these would potentially informbroadermodels ofmech-
anisms of risk, especially if the early environment further shapes these relationships. Therefore, we examined
links between white matter architecture and young girls3 cortisol reactivity and whether early caregiving mod-
erated these links.We recruited 456-year-old girls based onwhether they had previously shownhighor low cor-
tisol reactivity to a stress task at age 3. White matter integrity was assessed by calculating fractional anisotropy
(FA) of diffusion-weighted magnetic resonance imaging scans. Parenting styles were measured via a standard-
ized parent–child interaction task. Significant associations were found between FA in white matter regions adja-
cent to the left thalamus, the right anterior cingulate cortex, and the right superior frontal gyrus (all ps b .001).
Further, positive early caregiving moderated the effect of high cortisol reactivity on white matter FA
(all ps ≤ .05), with high stress reactive girls who received greater parent positive affect showing white matter
structure more similar to that of low stress reactive girls. Results show associations between white matter integ-
rity of various limbic regions of the brain and early cortisol reactivity to stress and provide preliminary support
for the notion that parenting may moderate associations.

© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

A growing literature suggests that hypothalamic–pituitary–adrenal
(HPA) axis dysfunction may be an important feature of internalizing
disorders (i.e., depressive and anxiety disorders). For example, distinct
HPA axis responses measured via salivary cortisol to stress have been
reported in adults and adolescents with depression and anxiety
(Barden, 2004; Rao et al., 2008; Risbrough and Stein, 2006; Shea et al.,
2005). Research also suggests that antidepressant treatment reduces
HPA axis abnormalities and that such reductions may be necessary for
stable remission of depression (DeBellis et al., 1993; Ising et al., 2005;
Kling et al., 1994; Nemeroff et al., 1991). However, HPA axis function
may be more than a state marker of disorder. Research from our
group and others has shown that considerable individual differences
in cortisol reactivity to stress exist from an early age (Bosch et al.,
2012; Gunnar, 1989, 1992; Jansen et al., 2010; Kryski et al., 2011); fur-
ther, this individual variability in HPA axis reactivity may be a

mechanism by which the associations between environmental stress
and disorder are mediated (Holsboer, 2000), although longitudinal
work is needed to provide evidence for such models. Unfortunately, lit-
tle is known about the structural brain correlates of early stress reactiv-
ity. This is an important gap in the literature, as brain circuitry and
neural organization are posited to influence stress reactions, arousal,
emotional regulation, brain development, and cognitive development
and may thus contribute to risk for mood and emotion problems (Hart
and Rubia, 2012; McCrory et al., 2010; Twardosz and Lutzker, 2010).
Thus, more comprehensive models of the biology of early emerging in-
ternalizing disorder risk require a better understanding of relations be-
tween brain structure and makers of stress reactivity, such as cortisol
reactivity to stress.

Most research on the neurological mechanisms related to individual
differences in HPA axis reactivity comes from clinical and preclinical
studies (see detailed reviews of this literature by Hart and Rubia,
2012; Jankord and Herman, 2008; Pruessner et al., 2010). These studies
show that components of the brain3s limbic system act as primary reg-
ulators of the HPA axis response to stress. For example, bilateral lesions
of the medial prefrontal cortex (mPFC) enhance adrenocorticotrophic
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hormone (ACTH) and corticosterone responses (Brake et al., 2000). In
adult rhesusmonkeys exposed to stress, lower tissue densities were ob-
served in the limbic system, particularly the thalamic nuclei, the anteri-
or cingulate cortex compared to controls (Willette et al., 2012),
suggesting an important role of these regions in HPA axis regulation.

However, associations between cortisol reactivity to stress and brain
structure likely emerge through complex pathways that also entail en-
vironmental influences. Supporting this notion is the large literature im-
plicating early care in children3s cortisol reactivity and a small literature
examining early caregiving and children3s brain structure. For example,
significant differences in cortisol reactivity have beenwidely document-
ed in young children exposed to neglect and abuse (Hunter et al., 2011).
Evenmore normative aspects of early caremay shape cortisol reactivity;
for example, positive parentingwas found tomoderate the effect of neg-
ative life events on children3s cortisol reactivity (Barry and Kochanska,
2010; Engert et al., 2010; Hagan et al., 2011; Pendry and Adam,
2007). Regarding the literature on the neural correlates of early care,
Eluvathingal et al. (2006) found decreased white matter tract density
in the left uncinate fasciculus in post-institutionalized children who ex-
perienced early deprivation. Additionally, decreased white matter den-
sity (a strong correlate of lower FA) was observed in adolescents and
young adults who were exposed to parental verbal abuse and physical
neglect during childhood (Choi et al., 2009; Huang et al., 2012). Specif-
ically, these studies reported whitematter abnormalities in areas impli-
cated in stress evaluation and regulation, such as the anterior temporal
lobe, the cingulum bundle and the fornix. However, extant research has
focused on extreme forms of early stress, such as sexual or emotional
abuse and physical neglect. While these are important aspects of early
stress, additional research is needed on links between more common
forms of contextual risk factors, such as more normative aspects of par-
enting, and children3s neural structure. Given the literature implicating
parent positive and negative caregiving behaviors in an array of child
outcomes (Lueken and Lemery, 2004; Tarullo and Gunnar, 2006), such
behaviors may be relevant to associations between stress reactivity
and neural structure as well.

Taken together, these lines of research suggest that white matter
connectivitymay be linked to both children3s cortisol reactivity to stress
aswell as early caregiving.We therefore conducted a preliminary inves-
tigation of links between cortisol reactivity to stress and structural con-
nectivity, indexed using diffusion tensor imaging (DTI), which yields
fractional anisotropy (FA) indices of white matter. FA is a measure of
directionally dependent restriction of water diffusion due to axonalmy-
elin insulation and is widely used to evaluate white matter integrity in
the brain. Myelination increases nerve conduction velocities and facili-
tates synchronous firing of neurons by reducing travel distance effects
in distributed networks (Fields, 2008). Therefore, high anisotropy is
generally interpreted as white matter with more efficient movement
of water molecules by diffusion parallel to the course of the axon fiber
bundles. Lower FA in white matter suggests underlying disruption of
myelin insulation or axonal integrity (Fields, 2008; Song et al., 2002).

In a community sample of 6-year-old girls, we examined what is, to
our knowledge, the first investigation of the neural correlates of early
neuroendocrine stress reactivity. Because we were interested in identi-
fying associations between constructs implicated in depression vulner-
ability (i.e., cortisol stress reactivity, early care; Azar et al., 2007;
Dougherty et al., 2011, 2013), we examined girls prior to the age of
risk for depression (Kendler et al., 1993, 1997; Wittchen et al., 1994)
to increase the likelihood that we were examining risk markers, rather
than the sequelae of current or past depression, and used a community
sample to increase the representativeness of any findings to typically
developing girls and families. Based on evidence for white matter dis-
ruptions in limbic regions of the brain and stress-related mood disor-
ders (Osoba et al., 2013; Yap et al., 2008), we hypothesized that early
cortisol reactivity would be associated with white matter differences
in the limbic regions of the brain. Additionally, based on research linking
early care and cortisol function, we investigated whether parenting

moderated associations between cortisol reactivity and the brain3s
white matter microstructure.

2. Methods

2.1. Participants

We recruited 45 6-year-old (mean=6.13 years, SD=0.73) girls for
the current imaging study from a larger community sample of 409 (208
girls) children participating in an ongoing longitudinal study. Children
were aged three at the time the larger study was initiated and were
screened for significant medical or psychological problems via a proce-
dure administered by trained study personnel; childrenwith such prob-
lems were ineligible to participate. Because this was a pilot study of a
small sample, only girls were recruited to eliminate the need to use
sex as a covariate in a small data set, given the well-established impact
of sex differences in young children3s brain development (Gong et al.,
2011; Paus et al., 2008), although we discuss the significant limitations
of this decision in theDiscussion section. Girls were either high or low in
cortisol reactivity to stress based on data collected at the baseline as-
sessment, operationalized as described in the following section.

Demographics for the current study subsample are provided in
Table 1. Girls were administered the Peabody Picture Vocabulary Test
(PPVT; Dunn and Dunn, 1997) at baseline to screen for gross cognitive
impairment and English proficiency; girls were of average cognitive
ability (M = 112.3, SD = 13.9). We found no differences in family de-
mographics such as family income, parent education and ethnicity and
child cognitive ability between the sample recruited for imaging analy-
ses and the original study sample (all ps N 0.28), which was representa-
tive of the region from which participants were recruited. The study
protocols were reviewed and approved by the University of Western
Ontario Health Sciences Research Ethics Board.

2.2. Assessment of cortisol reactivity to stress

The stress task and cortisol collection procedures used have beende-
scribed in great detail previously (Kryski et al., 2011; Kryski et al., 2013).
In brief, at the baseline assessment, cortisol data were collected from
children during a visit to the family3s home.1 All visits began between
12:00 pm and 3:30 pm to minimize the effects of diurnal variation on
cortisol samples (de Weerth et al., 2003; Donzella et al., 2008). Care-
givers were asked to prevent children from eating or drinking for a
half hour prior to the visit to remove the influence of food/drink on cor-
tisol assays (Magnano et al., 1989; Schwartz et al., 1998). None of the
children were taking corticosteroids. After 30 min of quiet play with
the experimenter, a baseline salivary cortisol sample was collected,
followed by the stress task described below.

The stress task was a downward adaptation of one developed and
validated by Lewis and Ramsey (2002) for use with older children and
was designed to emphasize social evaluation under motivated and un-
controllable circumstances,whichhas been shown to elicit large cortisol
responses in both adults (Dickerson and Kemeny, 2004; Magnano et al.,
1989) and preschool-aged children (Gunnar et al., 2009). Briefly, each
child attempted to complete a matching task by matching colored
game pieces to animal icons based on an answer key. A large toy replica
of a traffic light was placed adjacent to the board, and the child was
instructed that the traffic light would show how much time they had
to complete the task and win a prize, with “green” indicating that they
had time to work and “red” indicating that they were out of time. The
experimenter surreptitiously controlled the traffic light via remote con-
trol so that no child could complete the task on time during any of the
three trials conducted. The mean duration of the task for children who
completed all three trials in Study 1was 15.01min (SD=1.5), including

1 In total, 392 (95.8%) children provided all six cortisol samples, while the remaining
fourteen (3.4%) children did not provide at least one sample.
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the instruction period. Supporting the validity of this task as a means of
eliciting stress, our group has previously shown that it successfully
elicits an increase in cortisol and that child negative affect increases dur-
ing the course of participating in this task (Kryski et al., 2011).We have
also previously reported that heightened reactivity to this task is associ-
ated with elevated child symptoms of anxiety, especially for girls
(Kryski et al., 2013), as well as parent history of anxiety disorder
(Kryski, in preparation), supporting the notion that heightened cortisol
reactivity during this task is meaningfully related to internalizing disor-
der vulnerability. Following the stress task, the child and experimenter
resumed quiet playwhile the remaining cortisol sampleswere collected
every 10, 20, 30, 40, and 50 min.

To obtain cortisol, children chewed on a 2-inch absorbent cotton
dental roll until it was wet with saliva, which was expunged into a
microtube and frozen at−20 °C. The saliva sampleswere assayed in du-
plicate using salivary cortisol enzyme immunoassay kit (Salimetrics, PA,
USA). Studies consistently report high correlations in saliva to serum
cortisol concentrations (Daniel et al., 2006; Dorn et al., 2009). Optical
density was read on a standard plate reader at 450 nm and corrected
at 650 nm (Molecular Devices, Sunnyvale, CA, USA). All samples from
the same child were assayed in the same batchwith no duplicates vary-
ing more than 5%. The average intra- and interassay coefficients were
3.5 and 5.1%, respectively. Standard curve and concentration of un-
known samples were generated according to manufacturer3s instruc-
tions using a 4-parameter sigmoid minus curve fit. Cortisol data were
skewed and were therefore log10 transformed prior to all analyses, a
standard procedure with human cortisol data (Schwartz et al., 1998).

We created high and low reactivity groups for the purposes of re-
cruitment for the present study. Specifically, we created four quartile
scores for children based on their mean cortisol levels across time and
cortisol change scores (i.e., the difference from baseline to each child3s
peak cortisol level following the task). Children from the lowest (1st)
quartile on both selection variables were recruited first for the low reac-
tivity group, followed by children in the 1st quartile on one variable
(mean cortisol or peak change) and the 2nd quartile on the other. For
the high reactivity group, children were first recruited who were in
the highest (4th) quartile on both selection variables (mean cortisol
and peak change), followed by children who were in the 4th quartile
on one variable and the 3rd quartile on the other. Based on these re-
cruitment criteria, as well as other exclusion criteria (e.g., having dental
work or metal implants somewhere on the body), we had a total of 22
girls in the low reactivity group and 24 girls in the high reactivity
group who participated.

2.3. Parenting assessment

At age three, parenting behavior was assessed using a task designed
to elicit childmisbehavior and, thus, negative parenting. This task, called

the Prohibition Task, entailed a parent–child interaction task that lasted
approximately 10 min. Parent–child dyads were presented with two
bins of toys, one filled with exciting toys (electronic guitar, under-the-
sea gear set, and magnet board), the other containing toys with batte-
ries or key parts missing and age-inappropriate toys. The parent was
told to engage the child in playwith the unappealing toys and to prohib-
it the child fromplayingwith the appealing toys. After 3min the parents
were instructed to allow their child to play with the appealing toys for
6 min and were then instructed to have their child put away the toys.
Parents were instructed to refrain from helping their child put toys
away.

The parent–child interaction task was video recorded and subse-
quently coded by trained graduate and undergraduate raters using a
coding manual based on the Teaching Tasks coding manual (Weinfield
et al., 2002) and the Qualitative Ratings for Parent–Child Interactions
scale (Payley et al., 2001). Raters coded a minimum of 10 consecutive
tapes with an intraclass correlation (ICC) of .80 with a master coder be-
fore coding independently. Once this standard was established, inter-
mittent reliability checks were performed on 15% of all recordings
(mean ICC= .86). Coders periodically met and reviewed recordings to-
gether to prevent observer drift. For the present study, we elected to
focus on parent negative and positive affectivity, as these and related
parenting styles have been previously implicated in children3s stress re-
activity, depression risk, and other important developmental outcomes
(Dougherty et al., 2011, 2013; Kryski et al., 2013).

2.4. MRI scanning

The MRI assessment occurred approximately two and a half years
(mean=31.68months, SD=3.24) after the baseline datawere collect-
ed. Scans were performed on a 3 Tesla Siemens TIM Trio scanner
equipped with a 32-channel head coil. Diffusion-weighted scans were
collected at 30 directions (B1 = 700 s/mm2) following a non-diffusion
weighted b0 scan in the transverse plane (iPAT parallel EPI sequence,
GRAPPA acceleration factor = 2; TR = 9100 ms; TE = 91 ms; voxel
size = 2mm3; 62 slices; in-plane FOV= 192mm2). A T1-weighted an-
atomical MRI scan was also obtained within-session using a T1-
weighted MPRAGE sequence (iPAT GRAPPA acceleration factor = 2;
TR = 2300 ms; TE = 3.01 ms; voxel size = 1 mm3; 192 slices; in-
plane FOV = 256 mm2).

2.5. Data pre-processing

First, the rawDTI datawere corrected for headmotion and eddy cur-
rents by registering the diffusion-weighted images with the null image
through the affine transformations using FMRIB3s Diffusion Toolbox
v2.0 (FDT, part of FSL) (Smith et al., 2004). To compare movement be-
tween the groups, for each subject we quantified movement as the
mean of the absolute value of the rotations along each of the Cartesian
axes. These values were obtained from the movement correction algo-
rithm. We used t-tests to compare the high and low cortisol reactivity
groups on each of the movement variables (pitch, yaw and roll) and
found no significant group differences in head movements during
image acquisition (all ps N 0.24). Subsequently, DTI data sets were
skull stripped using Brain Extraction Tool v2.1 (BET, part of FSL)
(Smith, 2002) to remove non-tissue components, and the diffusion ten-
sor was calculated with the DTIFIT program for whole brain volumes to
yield FA.

2.6. Fiber tract visualization

Fiber tractography was generated via Diffusion Toolkit version 0.6
with interpolated streamline algorithm and visualized using TrackVis
version 0.6 (http://www.trackvis.org/, Harvard Medical School, Boston,
MA, USA) (Wang et al., 2007). The threshold for fiber tracking termina-
tion was set at a voxel FA value lower than 0.20. The ROIs were drawn

Table 1
Study sample demographics.

Child Age [yrs (SD)] 6.13 (0.73)
Child Race, [% (N)]
Caucasian 83.7 (41)
Asian 2.0 (1)
Other 10.2 (5)

Maternal Age [mean years (SD)] 33.96 (5.6)
Paternal Age [mean years (SD)] 35.87 (7.8)
Parent marital status [married, % (N)] 81.6 (40)
Education, % (N)
High School 8.9 (4)
Some 4-year college 80.0 (36)
Graduate and post-graduate degree 11.1 (5)

Family income [% (N)]
b $40,000 12.2 (6)
$40,001- $70,000 22.4 (11)
$70,001-$100,000 28.6 (14)
N $100,000 30.6 (15)
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manually with the reference to the b0 image. The streamline and voxel
counts and the length of trackedfibers in ROIswere calculated. The den-
sity of tracked fibers was calculated as the ratio of the track count over
the voxel count in the ROIs. The length of the tracked fiber to and
from the designated ROI was generated using a 2 mm seed region for
each participant and used for subsequent statistical analyses.

2.7. White matter microstructure analysis

Individual anatomical scans were aligned to a standard neuroana-
tomical template (the TT_N27 ‘Colin’ brain, transformed to the stereo-
taxic space of Talairach & Tournoux) using an automatic 12-parameter
affine transform (least-squares cost function), and resampled to
1 mm3. This transformation was then applied to each individual3s FA
image. In order to reduce the effects of anatomic misregistration due
to spatial normalization and to reduce noise and signal variations, spa-
tial smoothing was applied to all the normalized image data with a
Gaussian kernel width of 5 mm. Following these steps, data were fed
into voxel-wise cross-subject statistical analyses which compared high
cortisol reactivity vs. low cortisol reactivity groups. Volume-of-interest
(VOI) masks were first extracted based on the clusters showing signifi-
cant inter-group FA differences. These VOI masks were then back-
projected to the individual FA images of each subject, and the mean
FA subjectwise values within the VOIs were calculated.

Demographic variables such as family socioeconomic status and
child age were not associated with children3s cortisol stress responses
or FA values (all ps N 0.18); therefore, we did not include these variables
as covariates in our analyses. T-tests were used to examine associations
between study variables and significant inter-group FA differences. Fol-
lowing Forman et al. (1995), we restricted our analysis to VOIs that met
a voxel-wise cut-off p-value of .001. As a further safeguard against false
positive results, we only retained clusters that were greater than
50mm3. Pearson correlationswere used to characterize associations be-
tween FA changeswithin theVOI andbehavioralmeasures. For correlat-
ing behavioral measures with FA values, p values less than 0.05 were
considered statistically significant. From the results of VOI group com-
parisons, the brain regions showing significant inter-group differences
were located and labeled anatomically in Talairach space (Lancaster
et al., 2000).

3. Results

We first examined links between demographic variables and girls
high and low in cortisol reactivity. Demographic variables such as family
income, ethnicity, or child cognitive function were not significantly dif-
ferent between the cortisol response groups (all ps N 0.05).2

3.1. Cortisol reactivity is associated with regional differences in fractional
anisotropy

Regional differences in FA as a function of cortisol reactivity are pre-
sented in Table 2.We found significant associations betweenwhitemat-
ter tract integrity and cortisol reactivity to stress in the prefrontal and
basal regions of the brain. Specifically, girls high in cortisol reactivity
had significantly lower FA values in tracts adjacent to the left thalamus,
the right anterior cingulate cortex (rACC) and the right superior frontal
gyrus (sFG) (all ps b 0.001) (Fig. 1). Regions where FA was significantly
different between the two stress reactivity groups are presented in
Fig. 2.

3.2. Parenting as a moderator of links between cortisol reactivity and white
matter microstructure

We then examined whether the main effects of cortisol reactivity
found on FA values in the left thalamus, rACC and sFG were moderated
by early caregiving, testing moderation using standard procedures in
multiple regression (Aiken and West, 1991). No evidence for modera-
tion of cortisol reactivity–FA associations by parent negative affect in
the left thalamus, rACC and sFG was found (all ps N .05). However, we
found that the association between cortisol reactivity and FA values in
the sFG and rACC was moderated by positive parent affectivity during
caregiving, with a significant interaction term showing that the associa-
tions between cortisol reactivity and FA values were conditional based
on parent positive affectivity. Specifically, parent positive affect moder-
ated the effect of child cortisol reactivity on the white matter micro-
structure adjacent to the sFG (β = 0.04; se = 0.02; p = 0.02) and the
rACC (β = 0.05; se = 0.03; p = 0.05). Plots of these interactions (see
Fig. 2) showed that positive parentingmoderated associations between
cortisol reactivity and white matter microstructure, such that children
with parents showing high positive affect during parent–child interac-
tions had better FA in the regions adjacent to the sFG and rACC. We
next used Hayes and Matthes3 (2009) guidelines for testing regions of
significance according to the Johnson–Neyman technique (Johnson
and Fay, 1950). In both cases of moderation, the difference between
children high and low in cortisol stress reactivity in FA values was
only significant at low andmoderate levels of parent positive affectivity;
when parent positive affectivity was high, the two groups of children
did not significantly differ in FA values.3

3.3. Group differences in white matter microstructure by spatial
tractography

Based on previous literature in which altered interregional connec-
tivity of the cortex has been found in patients with stress-related psy-
chopathologies such as MDD (Korgaonkar et al., 2012), we examined
whether similar differences existed in our sample in connectivity, mea-
sured via the number of tracts and mean tract length in regions that
were associated with group differences in FA. We found a significantly
higher mean number of tracts (mean difference: 96.77 (22.14), t =
4.37, df = 41, p b 0.001) and higher length of tracts (mean difference:
14.75 (3.28), t= 4.50, df= 41, p b 0.001) projecting from the left thal-
amus in the high cortisol reactive group compared to children with low
cortisol reactivity (Fig. 3). The mean number and length of tracts were
not significantly different in the rACC and sFG (all ps N 0.05).We also ex-
amined whether parenting behavior moderated associations between
child cortisol reactivity and the length or number of tracts to and from
the left thalamus. However, no evidence for moderation was found
(all ps N 0.31).

4. Discussion

To our knowledge, this is the first study to investigate the neural cor-
relates of early neuroendocrine stress reactivity. We found associations
betweenwhitemattermicrostructure disruptions and cortisol reactivity
in three important emotion regulation regions of the limbic system.
Specifically, the white matter adjacent to the left thalamus, sFG and
rACC was significantly disrupted in girls with high cortisol reactivity.
Our findings are consistent with the extant literature implicating these
regions in the regulation of HPA axis function. For example, recent
work by Hermans et al. (2011) showed large-scale neural network re-
configuration related to differences in stress reactivity in adults. Specif-
ically, the interconnectivity within a neural network including limbic

2 Child symptommeasureswere collectedusing theChild Behavior Checklist completed
by the child3s primary caregiver (Achenbach, 1991). In this smaller sample, cortisol reac-
tivity was not associated with child depressive or anxious symptoms, attention deficit hy-
peractivity disorder or oppositional defiant disorder (all ps N 0.05), although see Kryski
et al. (2013) for findings linking certain cortisol reactivity parameters to children3s symp-
toms in a much larger, overlapping sample of children.

3 The Johnson–Neyman value of positive parenting was 2.95 in themodel predicting FA
values adjacent to the superior frontal gyrus and was 2.77 for the model predicting FA
values adjacent to the rACC. Positive parenting ranged from 1 to 3.
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regions such as the anterior cingulate, amygdala, and thalamic nuclei in-
creased as a function of stress response magnitudes. Furthermore, rats
with lesions in the thalamus exhibit unresponsive hypophyseal and ad-
renocortical reactivity to maternal separation stress (Suarez et al., 1998,
2002), suggesting the regulatory role of the thalamus in activation of the
HPA axis to stress stimuli. Functional magnetic resonance imaging
(fMRI) studies of human adults show a gender-specific effect on limbic
activation, the thalamus in particular. In these studies, a significant in-
crease in thalamic nuclei blood-oxygen-level dependent (BOLD) activi-
ty was observed upon hydrocortisone administration; this was evident
inwomen only (Merz et al., 2010; Stark et al., 2006). Sex-based regional
differences in microstructural integrity have been recently documented
in the thalamus in a community sample of healthy adults aswell, where
women had significantly lower thalamic FA than males (Menzler et al.,
2011). As our study included only girls, we cannot say whether there
were sex differences in the pattern of findings we obtained, although
our data are consistent with the possibility that FA differences in thala-
mus characterize girls3 stress reactivity during early childhood. Further
work is needed to determine whether a similar pattern of findings is
also evident in boys.

In addition to FA differences in the region adjacent to the thalamus,
we examined group differences in neuronal fiber projection from the
thalamus. Our tractography data showed that the thalamic region in
girls with high cortisol reactivity had significantly higher neuronal pro-
jections to and from the dorsolateral prefrontal cortex. Although specu-
lative, it is likely that regions with reduced FAmay compensate for lack
of neuronal signaling via an increase in number of neuronal projections.
However, as the literature has not documented links between cortisol
response and long distance axonal tracts, it is difficult to interpret
these findings as either adaptive or maladaptive, and longitudinal re-
search is required to explain these links. Recent studies have document-
ed tract specific deficits in the prefrontal cortex of patients with major

depressive disorder (for a review of these studies, see Barch, 2009;
Osoba et al., 2013). Moreover, differences in axonal tract radiations
from the thalamic nuclei have been documented in females diagnosed
with bipolar disorder (Wade et al., 2002). Our findings extend this liter-
ature by showing thatmicrostructure disruptions and neuronal tracts of
the thalamic nuclei are linked to cortisol reactivity to stress in young
girls, suggesting that the connectivity of this region is important in
HPA axis regulation early in development.

We also found group differences inwhitematter FA in a region adja-
cent to the rACC. A number of fMRI studies have shown that rACC acti-
vation is linked to cortisol increases following a psychosocial stress task
in adults (Stark et al., 2006; Thomason et al., 2011). Similarly, functional
neuroimaging in patients withmajor depression indicates increased ac-
tivation of the rACC in response to negative stimuli compared to healthy
controls. Ameta-analysis of fMRI studies suggests that the abnormal cir-
cuitry involving the rACC and negative stimuli processing is more pro-
nounced in females with major depression (Hamilton et al., 2012).
The rACC is a key component in the brain3s fear/anxiety circuitry due
to its functional coupling with the amygdala (Quirk et al., 2003),
which implicates it in regulating the activation of the HPA axis in re-
sponse to stress (Heim et al., 2000; Shin and Liberzon, 2010). Our data
add to this literature by showing that decreases in white matter FA sur-
rounding the rACC could be a mechanism by which functional coupling
of the rACC and amygdala may be affected. Although speculative, it is
possible that the individual differences in connectivity of the limbic sys-
tem structures influence the perception and evaluation of stimuli as
stressful, and, in turn, influence cortisol responses to stress.

Our analyses also showed a link between white matter microstruc-
ture adjacent to the sFG and children3s cortisol reactivity. Although rel-
atively few studies have implicated this region in stress reactivity, a
report by Kremens et al. (2010) showed a significant association be-
tween thickness of the sFG and diurnal cortisol levels. In addition, the

Table 2
Voxel-wise differences in fractional anisotropy (FA) in the high reactivity (N= 24) and low-cortisol reactivity groups (N=20). The peak coordinates, cluster size, mean FA value (±SD)
and post-hoc p-value is provided.

Peak Coordinates
(x, y, z)

Cluster size (voxels) Mean FA values

Low reactivity group
(SD)

High reactivity group
(SD)

p b

Brain region (coordinates)

Left Thalamus +9, +10, -2 259 0.52 (.04) 0.46 (.05) 0.001
Right Anterior Cingulate -14, -26, -8 141 0.43 (.06) 0.37 (.06) 0.001
Right Superior Frontal Gyrus -14, -26, +44 80 0.39 (.03) 0.34 (.04) 0.001

sFG

rACC

rAC
C

sFG

LTh

LTh
24 20 2424 20 20

***

***

***

Fig. 1.MeanFA (±SEM) values as a function of cortisol reactivity in young girls. Brain regionswith groupdifferences in FA are labeled in coronal and axial images. Talariach coordinates and
voxel sizes are presented in Table 2. High reactive = 1; low reactive = 0; LTh, left thalamus; rACC, right anterior cingulate; sFG, right superior frontal gyrus (N = 44, ***p b 0.001).
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sFG has also been linked to stress-related psychopathologies such as
major depression in adolescents (Cullen et al., 2009) and post-
traumatic stress disorder in adults (Lanius et al., 2004, 2005). Similarly,
cortisol administration has been shown to increase BOLD activity in the
sFG, but only in women (Stark et al., 2006). Additionally, maternal sep-
aration activated the sFG and higher cortisol reactivity in rhesus mon-
keys (Rilling et al., 2001), suggesting the role of this region in stress
response. Our findings suggest that structural disruptions in this region
are also associated with cortisol reactivity to stress during childhood.

We also found evidence formoderation of main effects of cortisol on
children3s FA by parenting. Specifically, positive parenting moderated
the effect of high cortisol reactivity on child FA values in the rACC and
sFG. Children with high cortisol reactivity to stress, but whose parent
showed positive affect during interactions, showedwhite matter integ-
rity that was more similar to children with low cortisol stress reactivity.
Our findings complement studies reporting associations between par-
enting styles and stress-regulating brain regions, including such associ-
ations in the context of disorders such as depression. For example,
supportive maternal style was positively associated with orbitofrontal
gray matter volume and caudate activation (Schneider et al., 2012).
Similarly, interactions between maternal aggressive behavior and lim-
bic structures such as the hippocampus, amygdala and anterior cingu-
late cortex predicted adolescent depressive symptoms (Whittle et al.,
2011; Yap et al., 2008). While the current data cannot conclusively
speak to causal processes, our findings extend this work by suggesting
that the developing brains of some children may be differentially influ-
enced by positive caregiving by virtue of the extent to which children

exhibit heightened stress reactivity. However, longitudinal data are
needed to understand the pattern of relationships between stress reac-
tivity, caregiving, and neural structure.

To our knowledge, this study is the first to examine the neural corre-
lates of early neuroendocrine stress reactivity. We used a state-of-the-
art protocol to carefully assess girls3 cortisol stress reactivity (Kryski
et al., 2011), reactivity to which has been linked to internalizing disor-
der vulnerability (Kryski et al., 2013; Kryski, in preparation). However,
our study also had several important limitations. In particular, we re-
cruited girls only for the present study, which allowed us to eliminate
the influence of sex differences on neural development and avoid
adding covariates to analyses of what was a small sample of partici-
pants, thus increasing statistical power. However, the exclusion of
boys means that the current findings cannot speak to associations be-
tweenboys3 cortisol stress reactivity and neural structure nor determine
whether boys differ from girls in such associations. Future work on this
important question is therefore needed. We did not correct for multiple
tests of interactions between parenting and cortisol reactivity to stress
lest we overlook an important new finding in this understudied area
of investigation; however, it is important to note that some of our inter-
actions may not have reached full significance had wemade such a cor-
rection. Thus, thesefindings should be interpretedwith caution pending
future replication. In addition, our stress task indexed reactivity to a
brief, standardized laboratory stressor. While previous work supports
the relevance of reactivity indexed using this task for children3s inter-
nalizing disorder risk (Kryski et al., 2013; Kryski, in preparation), we
are unable to say whether other indices of the cortisol response, espe-
cially those relevant to chronic stress reactivity (e.g., basal cortisol or
hair cortisol; Knoops et al., 2010; Wolf et al., 2002), are related to
children3s brain structure.

Additionally, our study design does not speak clearly to causal rela-
tionships between cortisol stress reactivity, caregiving, and neural de-
velopment. Even though the cortisol measures we collected were
gathered at age 3 and the imaging was conducted two and a half years
later, we do not claim that cortisol reactivity caused the structural
brain differenceswe found between high- and low-reactive girls. In par-
ticular, it is certainly possible that earlier brain development and struc-
ture shaped individual differences in children3s cortisol stress reactivity.
Decisions regarding the timing of the data collection in the present
study were based on feasibility and expense. More specifically, we
were concerned about the feasibility of collecting imaging data concur-
rent to the cortisol task, when children would have been quite young,
and because cortisol data are quite expensive to analyze, we did not re-
assess stress reactivity concurrent to the imaging assessment. Future
work using cross-lagged analyses of cortisol reactivity and brain struc-
ture assessed across time is needed to understand causal relationships
between these constructs. As such work will be quite expensive, it is
our hope that the current data provide preliminary support for the fea-
sibility and potential value of this type of research. Finally, although we
are interested in linking the findings we obtained to depression risk, we
cannot saywhether the patterns of neural structure associatedwith cor-
tisol reactivity to stress are pathognomonic. In the absence of longitudi-
nal work linking the current findings to girls3 negative outcomes, we
conclude only that there are differences in brain organization between
high- and low-reactive girls, but whether these are meaningful regard-
ing depression and other outcomes is unclear.

In conclusion, our study suggests that there are white matter micro-
structural differences related to cortisol reactivity to stress in young
girls. Thesewhitematter alterationswere found in brain regions widely
implicated in emotion regulation andmood disorders in adults.We also
found a moderating influence of positive parenting of links between
cortisol reactivity and early brain development. While further research
is needed to replicate our findings and explore whether such associa-
tions are also evident in boys, the possibility that early care mitigates
high-risk neural trajectories toward negative outcomes has implications
for early intervention and prevention.
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Fig. 2. Themain effect of cortisol reactivity onwhite matter integrity ismoderated by par-
ent positive affectivity. Childrenwith high cortisol reactivity to stress showed betterwhite
matter FA of the superior frontal gyrus (A) and the right anterior cingulate cortex (B) as a
function of positive parenting during the parent–child interaction task.

82 H.I. Sheikh et al. / NeuroImage: Clinical 6 (2014) 77–85



Financial disclosure

The authors have no financial disclosures or conflicts of interests to
declare.

Acknowledgments

This researchwas supported by research grants from Canadian Insti-
tutes of Health Research (CIHR) (MOP 86458), Children3s Health
Research Institute (r3824a12) and Ontario Ministry of Research and
Innovation to Dr. Elizabeth P. Hayden. This work is also supported by re-
search grants from the Natural Sciences and Engineering Research
Council of Canada to Dr. Marc F. Joanisse. Additional support was pro-
vided by the Western University3s Academic Development Fund to
Drs. Hayden and Joanisse.

References

Achenbach, T.M., 1991. Manual for the Child Behavior Checklist/4–18 and 1991
ProfileUniversity of Vermont, Department of Psychiatry, Burlington.

Aiken, L.S., West, S.G., 1991. Multiple Regression: Testing and Interpreting Interactions.
Sage, Newbury Park, CA.

Azar, R., Paquette, D., Zoccolillo, M., Baltzer, F., Tremblay, R.E., 2007. The association of
major depression, conduct disorder, and maternal overcontrol with a failure to
show a cortisol buffered response in 4-month-old infants of teenagemothers. Biolog-
ical Psychiatry 62 (6), 573–579. http://dx.doi.org/10.1016/j.biopsych.2006.11.
00917336943.

Barch, D.M., 2009. Neuropsychological abnormalities in schizophrenia and major mood
disorders: similarities and differences. Current Psychiatry Reports 11, 313–319.
http://dx.doi.org/10.1007/s11920-009-0045-619635240.

Barden, N., 2004. Implication of the hypothalamic–pituitary–adrenal axis in the
physiopathology of depression. Journal of Psychiatry & Neuroscience: JPN 29,
185–19315173895.

Barry, R.A., Kochanska, G., 2010. A longitudinal investigation of the affective environment
in families with young children: from infancy to early school age. Emotion
(Washington, D.C.) 10, 237–249. http://dx.doi.org/10.1037/a001848520364900.

Bosch, N.M., Riese, H., Reijneveld, S.A., Bakker, M.P., Verhulst, F.C., et al., 2012. Timingmat-
ters: long term effects of adversities from prenatal period up to adolescence on
adolescents3 cortisol stress response. The TRAILS study. Psychoneuroendocrinology
37, 1439–1447. http://dx.doi.org/10.1016/j.psyneuen.2012.01.01322365483.

Brake, W.G., Flores, G., Francis, D., Meaney, M.J., Srivastava, L.K., Gratton, A., 2000. En-
hanced nucleus accumbens dopamine and plasma corticosterone stress responses

in adult rats with neonatal excitotoxic lesions to the medial prefrontal cortex. Neuro-
science 96 (4), 687–69510727787.

Choi, J., Jeong, B., Rohan, M.L., Polcari, A.M., Teicher, M.H., 2009. Preliminary evidence for
white matter tract abnormalities in young adults exposed to parental verbal abuse.
Biological Psychiatry 65 (3), 227–234. http://dx.doi.org/10.1016/j.biopsych.2008.06.
02218692174.

Cullen, K.R., Gee, D.G., Klimes-Dougan, B., Gabbay, V., Hulvershorn, L., et al., 2009. A pre-
liminary study of functional connectivity in comorbid adolescent depression. Neuro-
science Letters 460 (3), 227–231. http://dx.doi.org/10.1016/j.neulet.2009.05.
02219446602.

Daniel, M., Moore, D.S., Decker, S., Belton, L., DeVellis, B., et al., 2006. Associations among
education, cortisol rhythm, and BMI in blue-collar women. Obesity (Silver Spring,
Md.) 14, 327–335. http://dx.doi.org/10.1038/oby.2006.4216571860.

De Bellis, M.D., Gold, P.W., Geracioti, T.D., Listwak, S.J., Kling, M., 1993. Association of flu-
oxetine treatment with reductions in CSF early adversity, HPA axis, and depression
concentrations of corticotropin-releasing hormone and arginine vasopressin in pa-
tients with major depression. American Journal of Psych. 150, 656–657.

de Weerth, C., Zijl, R.H., Buitelaar, J.K., 2003. Development of cortisol circadian rhythm in
infancy. Early Human Development 73, 39–52. http://dx.doi.org/10.1016/S0378-
3782(03)00074-412932892.

Dickerson, S.S., Kemeny, M.E., 2004. Acute stressors and cortisol responses: a theoretical
integration and synthesis of laboratory research. Psychological Bulletin 130,
355–391. http://dx.doi.org/10.1037/0033-2909.130.3.35515122924.

Dorn, L.D., Kolko, D.J., Susman, E.J., Huang, B., Stein, H., et al., 2009. Salivary gonadal and
adrenal hormone differences in boys and girls with and without disruptive behavior
disorders: contextual variants. Biological Psychology 81, 31–39. http://dx.doi.org/10.
1016/j.biopsycho.2009.01.00419428966.

Donzella, B., Talge, N.M., Smith, T.L., Gunnar, M.R., 2008. To spear or not to spear
comparison of saliva collection methods. Developmental Psychobiology 50, 714–717.
http://dx.doi.org/10.1002/dev.2034018767029.

Dougherty, L.R., Klein, D.N., Rose, S., Laptook, R.S., 2011. Hypothalamic–pituitary–adrenal
axis reactivity in the preschool-age offspring of depressed parents: moderation by
early parenting. Psychological Science 22, 650–658. http://dx.doi.org/10.1177/
095679761140408421460339.

Dougherty, L.R., Tolep, M.R., Smith, V.C., Rose, S., 2013. Early exposure to parental
depression and parenting: associations with young offspring3s stress physiology
and oppositional behavior. Journal of Abnormal Child Psychology 41 (8), 1299–1310.
http://dx.doi.org/10.1007/s10802-013-9763-723722864.

Dunn, L.M., Dunn, L.M., 1997. Peabody Picture Vocabulary Testthird edition. Guidance
Service, Circle Pines, MN, American.

Eluvathingal, T.J., Chugani, H.T., Behen, M.E., Juhász, C., Muzik, O., et al., 2006. Abnormal
brain connectivity in children after early severe socioemotional deprivation: a diffu-
sion tensor imaging study. Pediatrics 117 (6), 2093–2100. http://dx.doi.org/10.
1542/peds.2005-172716740852.

Engert, V., Efanov, S.I., Dedovic, K., Duchesne, A., Dagher, A., Pruessner, J.C., 2010. Per-
ceived early-life maternal care and the cortisol response to repeated psychosocial
stress. Journal of Psychiatry & Neuroscience: JPN 35 (6), 370–377. http://dx.doi.org/
10.1503/jpn.10002220964960.

*

*

Hi Cort

Low Cort

Tract Count

24 20 2024

Fig. 3.Mean number of tracts (±SEM) andmean fiber length (±SEM) as a function of cortisol reactivity in region adjacent to the left thalamus (N=44). The contrast of the original image
is altered to illustrate the direction of neuronal tracts. For visualization, neural tract data is presented for girls with the highest and the lowest number of fibers. Tract colors represent the
direction of neuronalfibers based ondiffusion tensor anisotropy data. Green=anterior–posterior; blue=superior–inferior, red=dorsal–ventral. Note: hi Cort=high cortisol group; low
Cort = low cortisol group; *p ≤ 0.05.

83H.I. Sheikh et al. / NeuroImage: Clinical 6 (2014) 77–85

http://refhub.elsevier.com/S2213-1582(14)00122-3/bb1
http://refhub.elsevier.com/S2213-1582(14)00122-3/bb1
http://refhub.elsevier.com/S2213-1582(14)00122-3/bb2
http://refhub.elsevier.com/S2213-1582(14)00122-3/bb2
http://dx.doi.org/10.1016/j.biopsych.2006.11.009
http://www.ncbi.nlm.nih.gov/pubmed/17336943
http://www.ncbi.nlm.nih.gov/pubmed/19635240
http://www.ncbi.nlm.nih.gov/pubmed/15173895
http://www.ncbi.nlm.nih.gov/pubmed/20364900
http://www.ncbi.nlm.nih.gov/pubmed/22365483
http://www.ncbi.nlm.nih.gov/pubmed/10727787
http://dx.doi.org/10.1016/j.biopsych.2008.06.022
http://www.ncbi.nlm.nih.gov/pubmed/18692174
http://dx.doi.org/10.1016/j.neulet.2009.05.022
http://www.ncbi.nlm.nih.gov/pubmed/19446602
http://www.ncbi.nlm.nih.gov/pubmed/16571860
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref12
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref12
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref12
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref12
http://dx.doi.org/10.1016/S0378-3782(03)00074-4
http://www.ncbi.nlm.nih.gov/pubmed/12932892
http://www.ncbi.nlm.nih.gov/pubmed/15122924
http://dx.doi.org/10.1016/j.biopsycho.2009.01.004
http://www.ncbi.nlm.nih.gov/pubmed/19428966
http://www.ncbi.nlm.nih.gov/pubmed/18767029
http://dx.doi.org/10.1177/0956797611404084
http://www.ncbi.nlm.nih.gov/pubmed/21460339
http://www.ncbi.nlm.nih.gov/pubmed/23722864
http://refhub.elsevier.com/S2213-1582(14)00122-3/bb19
http://refhub.elsevier.com/S2213-1582(14)00122-3/bb19
http://dx.doi.org/10.1542/peds.2005-1727
http://www.ncbi.nlm.nih.gov/pubmed/16740852
http://www.ncbi.nlm.nih.gov/pubmed/20964960


Fields, R.D., 2008. White matter in learning, cognition and psychiatric disorders.
Trends in Neurosciences 31 (7), 361–370. http://dx.doi.org/10.1016/j.tins.2008.04.
00118538868.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C., 1995. Im-
proved assessment of significant activation in functional magnetic resonance imaging
(fMRI): use of a cluster-size threshold. Magnetic Resonance inMedicine: Official Jour-
nal of the Society of Magnetic Resonance inMedicine / Society of Magnetic Resonance
in Medicine 33 (5), 636–6477596267.

Gong, G., He, Y., Evans, A.C., 2011. Brain connectivity: gender makes a difference. Neuro-
scientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry 17 (5),
575–591. http://dx.doi.org/10.1177/107385841038649221527724.

Gunnar, M.R., 1989. Studies of the human infant3s adrenocortical response to potentially
stressful events. New Directions for Child Development 45, 3–182687726.

Gunnar, M.R., 1992. Reactivity of the hypothalamic–pituitary–adrenocortical system
to stressors in normal infants and children. Pediatrics 90 (3 Pt 2), 491–4971513614.

Gunnar, M.R., Talge, N.M., Herrera, A., 2009. Stressor paradigms in developmental studies:
what does and does not work to produce mean increases in salivary cortisol.
Psychoneuroendocrinology 34 (7), 953–967. http://dx.doi.org/10.1016/j.psyneuen.
2009.02.01019321267.

Hagan, M.J., Roubinov, D.S., Gress-Smith, J., Luecken, L.J., Sandler, I.N., Wolchik, S., 2011.
Positive parenting during childhood moderates the impact of recent negative events
on cortisol activity in parentally bereaved youth. Psychopharmacology 214, 231–238.
http://dx.doi.org/10.1007/s00213-010-1889-520521029.

Hamilton, J.P., Etkin, A., Furman, D.J., Lemus, M.G., Johnson, R.F., Gotlib, I.H., 2012. Func-
tional neuroimaging of major depressive disorder: a meta-analysis and new integra-
tion of baseline activation and neural response data. American Journal of Psychiatry
169 (7), 693–703. http://dx.doi.org/10.1176/appi.ajp.2012.1107110522535198.

Hart, H., Rubia, K., 2012. Neuroimaging of child abuse: a critical review. Frontiers in
Human Neuroscience 19, 52. http://dx.doi.org/10.3389/fnhum.2012.0005222457645.

Hayes, A.F., Matthes, J., 2009. Computational procedures for probing interactions in OLS
and logistic regression: SPSS and SAS implementations. Behavior Research Methods
41, 924–936. http://dx.doi.org/10.3758/BRM.41.3.92419587209.

Heim, C., Newport, D.J., Heit, S., Graham, Y.P., Wilcox, M., et al., 2000. Pituitary–adrenal
and autonomic responses to stress in women after sexual and physical abuse in
childhood. JAMA: the Journal of the American Medical Association 284, 592–597.
http://dx.doi.org/10.1001/jama.284.5.59210918705.

Hermans, E.J., van Marle, H.J., Ossewaarde, L., Henckens, M.J., Qin, S., et al., 2011. Stress-
related noradrenergic activity prompts large-scale neural network reconfiguration.
Science (New York, N.Y.) 334 (6059), 1151–1153. http://dx.doi.org/10.1126/
science.120960322116887.

Holsboer, F., 2000. The corticosteroid receptor hypothesis of depression.
Neuropsychopharmacology: Official Publication of the American College of
Neuropsychopharmacology 23 (5), 477–501. http://dx.doi.org/10.1016/S0893-
133X(00)00159-711027914.

Huang, H., Gundapuneedi, T., Rao, U., 2012. White matter disruptions in adolescents
exposed to childhood maltreatment and vulnerability to psychopathology.
Neuropsychopharmacology: Official Publication of the American College of
Neuropsychopharmacology 37 (12), 2693–2701. http://dx.doi.org/10.1038/npp.
2012.13322850736.

Hunter, A.L., Minnis, H., Wilson, P., 2011. Altered stress responses in children exposed to
early adversity: a systematic review of salivary cortisol studies. Stress (Amsterdam,
Netherlands) 14 (6), 614–626. http://dx.doi.org/10.3109/10253890.2011.
57784821675865.

Ising, M., Künzel, H.E., Binder, E.B., Nickel, T., Modell, S., Holsboer, F., 2005. The combined
dexamethasone/CRH test as a potential surrogate marker in depression. Progress in
Neuro-Psychopharmacology & Biological Psychiatry 29 (6), 1085–1093. http://dx.
doi.org/10.1016/j.pnpbp.2005.03.01415950349.

Jankord, R., Herman, J.P., 2008. Limbic regulation of hypothalamo-pituitary-adrenocortical
function during acute and chronic stress. Annals of the New York Academy of Sci-
ences 1148, 64–73. http://dx.doi.org/10.1196/annals.1410.01219120092.

Jansen, J., Beijers, R., Riksen-Walraven,M., deWeerth, C., 2010. Cortisol reactivity in young
infants. Psychoneuroendocrinology 35 (3), 329–338. http://dx.doi.org/10.1016/j.
psyneuen.2009.07.00819651476.

Johnson, P.O., Fay, L.C., 1950. The Johnson–Neyman technique, its theory and application.
Psychometrika 15, 349–36714797902.

Kendler, K.S., Neale, M.C., Kessler, R.C., Heath, A.C., Eaves, L.J., 1993. A longitudinal twin
study of personality and major depression in women. Archives of General Psychiatry
50 (11), 853–862. http://dx.doi.org/10.1001/archpsyc.1993.018202300230028215811.

Kendler, K.S., Davis, C.G., Kessler, R.C., 1997. The familial aggregation of common psychi-
atric and substance use disorders in the National Comorbidity Survey: a family histo-
ry study. British Journal of Psychiatry: the Journal of Mental Science 170, 541–548.
http://dx.doi.org/10.1192/bjp.170.6.5419330021.

Kling, M.A., Geracioti, T.D., Licinio, J., Michelson, D., Oldfield, E.H., Gold, P.W., 1994.
Effects of electroconvulsive therapy on the CRH–ACTH–cortisol system in
melancholic depression: preliminary findings. Psychopharmacology Bulletin 30 (3),
489–4947878187.

Knoops, A.J., Gerritsen, L., van der Graaf, Y., Mali, W.P., Geerlings, M.I., 2010. Basal hypo-
thalamic pituitary adrenal axis activity and hippocampal volumes: the SMART-
Medea study. Biological Psychiatry 67 (12), 1191–1198. http://dx.doi.org/10.1016/j.
biopsych.2010.01.02520299006.

Korgaonkar, M.S., Cooper, N.J., Williams, L.M., Grieve, S.M., 2012. Mapping inter-regional
connectivity of the entire cortex to characterize major depressive disorder: a
whole-brain diffusion tensor imaging tractography study. Neuroreport 23 (9),
566–571. http://dx.doi.org/10.1097/WNR.0b013e328354626422562047.

Kremen, W.S., O3Brien, R.C., Panizzon, M.S., Prom-Wormley, E., Eaves, L.J., et al., 2010. Sal-
ivary cortisol and prefrontal cortical thickness in middle-aged men: a twin study.

NeuroImage 53 (3), 1093–1102. http://dx.doi.org/10.1016/j.neuroimage.2010.02.
02620156572.

Kryski, K.R., Smith, H.J., Sheikh, H.I., Singh, S.M., Hayden, E.P., 2013. HPA axis reactivity
in early childhood: associations with symptoms and moderation by sex.
Psychoneuroendocrinology 38 (10), 2327–2336. http://dx.doi.org/10.1016/j.
psyneuen.2013.05.00223764193.

Kryski, K.R., Smith, H.J., Sheikh, H.I., Singh, S.M., Hayden, E.P., 2011. Assessing stress reactiv-
ity indexed via salivary cortisol in preschool-aged children. Psychoneuroendocrinology
36, 1127–1136. http://dx.doi.org/10.1016/j.psyneuen.2011.02.00321388745.

Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., et al., 2000. Automated
Talairach atlas labels for functional brain mapping. Human Brain Mapping 10 (3),
120–131. http://dx.doi.org/10.1002/1097-0193(200007)10:3b120::AID-HBM30N3.0.
CO;2-810912591.

Lanius, R.A., Williamson, P.C., Densmore, M., Boksman, K., Neufeld, R.W., 2004. The nature
of traumatic memories: a 4-T FMRI functional connectivity analysis. American Journal
of Psychiatry 161 (1), 36–4414702248.

Lanius, R.A., Williamson, P.C., Bluhm, R.L., Densmore, M., Boksman, K., et al., 2005. Func-
tional connectivity of dissociative responses in posttraumatic stress disorder: a func-
tional magnetic resonance imaging investigation. Biological Psychiatry 57 (8),
873–884. http://dx.doi.org/10.1016/j.biopsych.2005.01.01115820708.

Lewis, M., Ramsay, D., 2002. Cortisol response to embarrassment and shame. Child Devel-
opment 73, 1034–1045. http://dx.doi.org/10.1111/1467-8624.0045512146731.

Luecken, L.J., Lemery, K.S., 2004. Early caregiving and physiological stress responses. Clin-
ical Psychology Review 24 (2), 171–191. http://dx.doi.org/10.1016/j.cpr.2004.01.
00315081515.

Magnano, C.L., Diamond, E.J., Gardner, J.M., 1989. Use of salivary cortisol measurements in
young infants: a note of caution. Child Development 60, 1099–1101. http://dx.doi.
org/10.2307/11307842805888.

McCrory, E., De Brito, S.A., Viding, E., 2010. Research review: the neurobiology and genet-
ics of maltreatment and adversity. Journal of Child Psychology and Psychiatry, and Al-
lied Disciplines 51 (10), 1079–1095. http://dx.doi.org/10.1111/j.1469-7610.2010.
02271.x20546078.

Menzler, K., Belke, M., Wehrmann, E., Krakow, K., Lengler, U., et al., 2011.Men andwomen
are different: diffusion tensor imaging reveals sexual dimorphism in the microstruc-
ture of the thalamus, corpus callosum and cingulum. Neuroimage 54 (4), 2557–2562.
http://dx.doi.org/10.1016/j.neuroimage.2010.11.02921087671.

Merz, C.J., Tabbert, K., Schweckendiek, J., Klucken, T., Vaitl, D., et al., 2010. Investigating
the impact of sex and cortisol on implicit fear conditioning with fMRI.
Psychoneuroendocrinology 35 (1), 33–46. http://dx.doi.org/10.1016/j.psyneuen.
2009.07.00919683399.

Nemeroff, C.B., Bissette, G., Akil, H., Fink, M., 1991. Neuropeptide concentrations in the ce-
rebrospinal fluid of depressed patients treated with electroconvulsive therapy.
Corticotrophin-releasing factor, beta-endorphin and somatostatin. British Journal of
Psychiatry: the Journal of Mental Science 158, 59–63. http://dx.doi.org/10.1192/bjp.
158.1.591673078.

Osoba, A., Hänggi, J., Li, M., Horn, D.I., Metzger, C., et al., 2013. Disease severity is correlat-
ed to tract specific changes of fractional anisotropy in MD and CM thalamus — a DTI
study in major depressive disorder. Journal of Affective Disorders 149 (1–3),
116–128. http://dx.doi.org/10.1016/j.jad.2012.12.02623489404.

Paus, T., Keshavan, M., Giedd, J.N., 2008. Why do many psychiatric disorders emerge dur-
ing adolescence? Nature Reviews. Neuroscience 9 (12), 947–957. http://dx.doi.org/
10.1038/nrn251319002191.

Payley, B., Cox, M.J., Kanoy, K.W., 2001. The young family interaction coding system. In:
Kerig, P.K., Lindahl, K.M. (Eds.), Family Observational Coding Systems. LEA, Mahwah,
pp. 273–288.

Pendry, P., Adam, E.K., 2007. Associations between parents3 marital functioning, maternal
parenting quality, maternal emotion and child cortisol levels. International Journal of
Behavioral Development 31, 218–231. http://dx.doi.org/10.1177/0165025407074634.

Pruessner, J.C., Dedovic, K., Pruessner, M., Lord, C., Buss, C., et al., 2010. Stress regulation
in the central nervous system: evidence from structural and functional neuro-
imaging studies in human populations — 2008 Curt Richter award winner.
Psychoneuroendocrinology 35 (1), 179–191. http://dx.doi.org/10.1016/j.psyneuen.
2009.02.01619362426.

Quirk, G.J., Likhtik, E., Pelletier, J.G., Paré, D., 2003. Stimulation of medial prefrontal cortex
decreases the responsiveness of central amygdala output neurons. Journal of Neuro-
science: the Official Journal of the Society for Neuroscience 23 (25),
8800–880714507980.

Rao, U., Hammen, C., Ortiz, L.R., Chen, L.A., Poland, R.E., 2008. Effects of early and recent
adverse experiences on adrenal response to psychosocial stress in depressed
adolescents. Biological Psychiatry 64, 521–526. http://dx.doi.org/10.1016/j.
biopsych.2008.05.01218597740.

Rilling, J.K., Winslow, J.T., O3Brien, D., Gutman, D.A., Hoffman, J.M., Kilts, C.D., 2001. Neural
correlates of maternal separation in rhesus monkeys. Biological Psychiatry 49,
146–157. http://dx.doi.org/10.1016/S0006-3223(00)00977-X11164761.

Risbrough, V.B., Stein, M.B., 2006. Role of corticotropin releasing factor in anxiety disor-
ders: a translational research perspective. Hormones and Behavior 50, 550–561.
http://dx.doi.org/10.1016/j.yhbeh.2006.06.01916870185.

Schneider, S., Brassen, S., Bromberg, U., Banaschewski, T., Conrod, P., et al., 2012. Maternal
interpersonal affiliation is associated with adolescents3 brain structure and reward
processing. Translational Psychiatry 2, e182. http://dx.doi.org/10.1038/tp.2012.
11323149446.

Schwartz, E.B., Granger, D.A., Susman, E.J., Gunnar, M.R., Laird, B., 1998. Assessing
salivary cortisol in studies of child development. Child Development 69,
1503–1513. http://dx.doi.org/10.2307/11321289914636.

Shea, A., Walsh, C., MacMillan, H., Steiner, M., 2005. Child maltreatment and HPA axis dys-
regulation: relationship to major depressive disorder and post traumatic stress

84 H.I. Sheikh et al. / NeuroImage: Clinical 6 (2014) 77–85

http://dx.doi.org/10.1016/j.tins.2008.04.001
http://www.ncbi.nlm.nih.gov/pubmed/18538868
http://www.ncbi.nlm.nih.gov/pubmed/7596267
http://www.ncbi.nlm.nih.gov/pubmed/21527724
http://www.ncbi.nlm.nih.gov/pubmed/2687726
http://www.ncbi.nlm.nih.gov/pubmed/1513614
http://dx.doi.org/10.1016/j.psyneuen.2009.02.010
http://www.ncbi.nlm.nih.gov/pubmed/19321267
http://www.ncbi.nlm.nih.gov/pubmed/20521029
http://www.ncbi.nlm.nih.gov/pubmed/22535198
http://www.ncbi.nlm.nih.gov/pubmed/22457645
http://www.ncbi.nlm.nih.gov/pubmed/19587209
http://www.ncbi.nlm.nih.gov/pubmed/10918705
http://dx.doi.org/10.1126/science.1209603
http://www.ncbi.nlm.nih.gov/pubmed/22116887
http://dx.doi.org/10.1016/S0893-133X(00)00159-7
http://www.ncbi.nlm.nih.gov/pubmed/11027914
http://dx.doi.org/10.1038/npp.2012.133
http://www.ncbi.nlm.nih.gov/pubmed/22850736
http://dx.doi.org/10.3109/10253890.2011.577848
http://www.ncbi.nlm.nih.gov/pubmed/21675865
http://www.ncbi.nlm.nih.gov/pubmed/15950349
http://www.ncbi.nlm.nih.gov/pubmed/19120092
http://dx.doi.org/10.1016/j.psyneuen.2009.07.008
http://www.ncbi.nlm.nih.gov/pubmed/19651476
http://www.ncbi.nlm.nih.gov/pubmed/14797902
http://www.ncbi.nlm.nih.gov/pubmed/8215811
http://www.ncbi.nlm.nih.gov/pubmed/9330021
http://www.ncbi.nlm.nih.gov/pubmed/7878187
http://dx.doi.org/10.1016/j.biopsych.2010.01.025
http://www.ncbi.nlm.nih.gov/pubmed/20299006
http://www.ncbi.nlm.nih.gov/pubmed/22562047
http://dx.doi.org/10.1016/j.neuroimage.2010.02.026
http://www.ncbi.nlm.nih.gov/pubmed/20156572
http://dx.doi.org/10.1016/j.psyneuen.2013.05.002
http://www.ncbi.nlm.nih.gov/pubmed/23764193
http://www.ncbi.nlm.nih.gov/pubmed/21388745
http://dx.doi.org/10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
http://dx.doi.org/10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
http://dx.doi.org/10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
http://www.ncbi.nlm.nih.gov/pubmed/10912591
http://www.ncbi.nlm.nih.gov/pubmed/14702248
http://www.ncbi.nlm.nih.gov/pubmed/15820708
http://www.ncbi.nlm.nih.gov/pubmed/12146731
http://dx.doi.org/10.1016/j.cpr.2004.01.003
http://www.ncbi.nlm.nih.gov/pubmed/15081515
http://www.ncbi.nlm.nih.gov/pubmed/2805888
http://dx.doi.org/10.1111/j.1469-7610.2010.02271.x
http://www.ncbi.nlm.nih.gov/pubmed/20546078
http://www.ncbi.nlm.nih.gov/pubmed/21087671
http://dx.doi.org/10.1016/j.psyneuen.2009.07.009
http://www.ncbi.nlm.nih.gov/pubmed/19683399
http://dx.doi.org/10.1192/bjp.158.1.59
http://www.ncbi.nlm.nih.gov/pubmed/1673078
http://www.ncbi.nlm.nih.gov/pubmed/23489404
http://www.ncbi.nlm.nih.gov/pubmed/19002191
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref62
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref62
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref62
http://dx.doi.org/10.1177/0165025407074634
http://dx.doi.org/10.1016/j.psyneuen.2009.02.016
http://www.ncbi.nlm.nih.gov/pubmed/19362426
http://www.ncbi.nlm.nih.gov/pubmed/14507980
http://dx.doi.org/10.1016/j.biopsych.2008.05.012
http://www.ncbi.nlm.nih.gov/pubmed/18597740
http://www.ncbi.nlm.nih.gov/pubmed/11164761
http://www.ncbi.nlm.nih.gov/pubmed/16870185
http://dx.doi.org/10.1038/tp.2012.113
http://www.ncbi.nlm.nih.gov/pubmed/23149446
http://www.ncbi.nlm.nih.gov/pubmed/9914636


disorder in females. Psychoneuroendocrinology 30, 162–178. http://dx.doi.org/10.
1016/j.psyneuen.2004.07.00115471614.

Shin, L.M., Liberzon, I., 2010. The neurocircuitry of fear, stress, and anxiety disorders.
Neuropsychopharmacology: Official Publication of the American College of
Neuropsychopharmacology 35 (1), 169–191. http://dx.doi.org/10.1038/npp.2009.
8319625997.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., et al., 2004. Ad-
vances in functional and structural MR image analysis and implementation as FSL.
Neuroimage 23 (Suppl 1), S208–S219. http://dx.doi.org/10.1016/j.neuroimage.2004.
07.05115501092.

Smith, S.M., 2002. Fast robust automated brain extraction. Human Brain Mapping 17,
143–155. http://dx.doi.org/10.1002/hbm.1006212391568.

Song, S.K., Sun, S.W., Ramsbottom, M.J., Chang, C., Russell, J., Cross, A.H., 2002.
Dysmyelination revealed through MRI as increased radial (but unchanged axial) dif-
fusion of water. Neuroimage 17 (3), 1429–1436. http://dx.doi.org/10.1006/nimg.
2002.126712414282.

Stark, R., Wolf, O.T., Tabbert, K., Kagerer, S., Zimmermann, M., et al., 2006. Influence
of the stress hormone cortisol on fear conditioning in humans: evidence for
sex differences in the response of the prefrontal cortex. NeuroImage 32 (3),
1290–1298. http://dx.doi.org/10.1016/j.neuroimage.2006.05.04616839780.

Suárez, M.M., Maglianesi, M.A., Perassi, N.I., 1998. Involvement of the anterodorsal thala-
mi nuclei on the hypophysoadrenal response to chronic stress in rats. Physiology &
Behavior 64, 111–116. http://dx.doi.org/10.1016/S0031-9384(98)00028-69661990.

Suárez, M., Molina, S., Rivarola, M.A., Perassi, N.I., 2002. Effects of maternal deprivation on
adrenal and behavioural responses in rats with anterodorsal thalami nuclei lesions.
Life Sciences 71 (10), 1125–1137. http://dx.doi.org/10.1016/S0024-3205(02)01830-
112095534.

Tarullo, A.R., Gunnar, M.R., 2006. Child maltreatment and the developing HPA axis. Hor-
mones and Behavior 50 (4), 632–639. http://dx.doi.org/10.1016/j.yhbeh.2006.06.
01016876168.

Thomason, M.E., Hamilton, J.P., Gotlib, I.H., 2011. Stress-induced activation of the HPA
axis predicts connectivity between subgenual cingulate and salience network
during rest in adolescents. Journal of Child Psychology and Psychiatry, and Allied Dis-
ciplines 52 (10), 1026–1034. http://dx.doi.org/10.1111/j.1469-7610.2011.02422.
x21644985.

Twardosz, S., Lutzker, J.R., 2010. Child maltreatment and the developing brain: a review of
neuroscience perspectives. Aggression and Violent Behavior 15, 59–68. http://dx.doi.
org/10.1016/j.avb.2009.08.003.

Wang, R., Benner, T., Sorensen, A.G., Wedeen, V.J., 2007. Diffusion toolkit: a software pack-
age for diffusion imaging data processing and tractography. Proceedings of the Inter-
national Society for Magnetic Resonance in Medicine 15, 3720–3725.

Wade, T.J., Cairney, J., Pevalin, D.J., 2002. Emergence of gender differences in
depression during adolescence: national panel results from three countries. Journal
of the American Academy of Child and Adolescent Psychiatry 41 (2), 190–198.
http://dx.doi.org/10.1097/00004583-200202000-0001311837409.

Weinfield, N.S., Ogawa, J.R., Egeland, B., 2002. Predictability of observed mother–child in-
teraction from preschool to middle childhood in a high-risk sample. Child Develop-
ment 73 (2), 528–543. http://dx.doi.org/10.1111/1467-8624.0042211949907.

Whittle, S., Yap, M.B., Sheeber, L., Dudgeon, P., Yücel, M., et al., 2011. Hippocampal
volume and sensitivity to maternal aggressive behavior: a prospective study of ado-
lescent depressive symptoms. Development and Psychopathology 23 (1), 115–129.
http://dx.doi.org/10.1017/S095457941000068421262043.

Willette, A.A., Coe, C.L., Colman, R.J., Bendlin, B.B., Kastman, E.K., et al., 2012. Calorie re-
striction reduces psychological stress reactivity and its association with brain volume
and microstructure in aged rhesus monkeys. Psychoneuroendocrinology 37 (7),
903–916. http://dx.doi.org/10.1016/j.psyneuen.2011.10.00622119476.

Wittchen, H.U., Knäuper, B., Kessler, R.C., 1994. Lifetime risk of depression. British Journal
of Psychiatry 26, 16–22.

Wolf, O.T., Convit, A., de Leon, M.J., Caraos, C., Qadri, S.F., 2002. Basal hypothalamo-
pituitary-adrenal axis activity and corticotropin feedback in young and older men:
relationships to magnetic resonance imaging-derived hippocampus and cingulate
gyrus volumes. Neuroendocrinology 75 (4), 241–249. http://dx.doi.org/10.1159/
00005471511979054.

Yap, M.B., Whittle, S., Yücel, M., Sheeber, L., Pantelis, C., et al., 2008. Interaction of parent-
ing experiences and brain structure in the prediction of depressive symptoms in ad-
olescents. Archives of General Psychiatry 65 (12), 1377–1385. http://dx.doi.org/10.
1001/archpsyc.65.12.137719047524.

85H.I. Sheikh et al. / NeuroImage: Clinical 6 (2014) 77–85

http://dx.doi.org/10.1016/j.psyneuen.2004.07.001
http://www.ncbi.nlm.nih.gov/pubmed/15471614
http://dx.doi.org/10.1038/npp.2009.83
http://www.ncbi.nlm.nih.gov/pubmed/19625997
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://dx.doi.org/10.1006/nimg.2002.1267
http://www.ncbi.nlm.nih.gov/pubmed/12414282
http://www.ncbi.nlm.nih.gov/pubmed/16839780
http://www.ncbi.nlm.nih.gov/pubmed/9661990
http://dx.doi.org/10.1016/S0024-3205(02)01830-1
http://www.ncbi.nlm.nih.gov/pubmed/12095534
http://dx.doi.org/10.1016/j.yhbeh.2006.06.010
http://www.ncbi.nlm.nih.gov/pubmed/16876168
http://dx.doi.org/10.1111/j.1469-7610.2011.02422.x
http://www.ncbi.nlm.nih.gov/pubmed/21644985
http://dx.doi.org/10.1016/j.avb.2009.08.003
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref83
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref83
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref83
http://www.ncbi.nlm.nih.gov/pubmed/11837409
http://www.ncbi.nlm.nih.gov/pubmed/11949907
http://www.ncbi.nlm.nih.gov/pubmed/21262043
http://www.ncbi.nlm.nih.gov/pubmed/22119476
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref88
http://refhub.elsevier.com/S2213-1582(14)00122-3/subref88
http://dx.doi.org/10.1159/000054715
http://www.ncbi.nlm.nih.gov/pubmed/11979054
http://dx.doi.org/10.1001/archpsyc.65.12.1377
http://www.ncbi.nlm.nih.gov/pubmed/19047524

	Links between white matter microstructure and cortisol reactivity to stress in early childhood: evidence for moderation by parenting.
	Citation of this paper:
	Authors

	Links between white matter microstructure and cortisol reactivity to stress in early childhood: Evidence for moderation by ...
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Assessment of cortisol reactivity to stress
	2.3. Parenting assessment
	2.4. MRI scanning
	2.5. Data pre-processing
	2.6. Fiber tract visualization
	2.7. White matter microstructure analysis

	3. Results
	3.1. Cortisol reactivity is associated with regional differences in fractional anisotropy
	3.2. Parenting as a moderator of links between cortisol reactivity and white matter microstructure
	3.3. Group differences in white matter microstructure by spatial tractography

	4. Discussion
	Financial disclosure
	Acknowledgments
	References


