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The cost of moving optimally: kinematic path selection
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Kistemaker DA, Wong JD, Gribble PL. The cost of moving
optimally: kinematic path selection. J Neurophysiol 112: 1815–1824,
2014. First published June 18, 2014; doi:10.1152/jn.00291.2014.—It
is currently unclear whether the brain plans movement kinematics
explicitly or whether movement paths arise implicitly through opti-
mization of a cost function that takes into account control and/or
dynamic variables. Several cost functions are proposed in the litera-
ture that are very different in nature (e.g., control effort, torque
change, and jerk), yet each can predict common movement charac-
teristics. We set out to disentangle predictions of the different vari-
ables using a combination of modeling and empirical studies. Subjects
performed goal-directed arm movements in a force field (FF) in
combination with visual perturbations of seen hand position. This FF
was designed to have distinct optimal movements for muscle-input
and dynamic costs while leaving kinematic cost unchanged. Visual
perturbations in turn changed the kinematic cost but left the dynamic
and muscle-input costs unchanged. An optimally controlled, physio-
logically realistic arm model was used to predict movements under the
various cost variables. Experimental results were not consistent with
a cost function containing any of the control and dynamic costs
investigated. Movement patterns of all experimental conditions were
adequately predicted by a kinematic cost function comprising both
visually and somatosensory perceived jerk. The present study pro-
vides clear behavioral evidence that the brain solves kinematic and
mechanical redundancy in separate steps: in a first step, movement
kinematics are planned; and in a second, separate step, muscle
activation patterns are generated.

motor control; motor learning; force field; control effort; jerk; torque
change; muscle energy; muscle activation patterns; arm kinematics

IT IS SUGGESTED IN THE LITERATURE that the brain computes
muscle activation patterns that minimize a task-relevant cost
function (e.g., Hogan 1984; Hasan 1986; Todorov 2004). The
most important cost variables put forward in the literature can
be categorized in three distinct levels: a control (muscle input)
level, a dynamic level, and a kinematic level. At the control
level there is, for example, control effort (i.e., the sum of
squared muscle activation; Fagg et al. 2002; Todorov 2002;
van Bolhuis and Gielen 1999), which has been theorized to
minimize end-point variance due to signal-dependent noise
(Diedrichsen et al. 2010; Harris and Wolpert 1998). Two
influential variables at the dynamic level are torque change
(Uno et al. 1989) and energy expenditure (Alexander 1997;
Kistemaker et al. 2010). At the kinematic levels there is one
important variable, jerk (i.e., the time derivative of accelera-
tion), proposed to capture common invariant kinematic fea-
tures observed experimentally (Hogan 1984). All of these cost

variables have been successful at predicting common kinemat-
ics of human movements in free space (in this work taken as
movements performed in an inertial reference frame without
additional forces applied to the moving limb), even though
they are very different in nature. As a result it is experimentally
impractical to discern if and what unique cost function may be
used by the brain.

Evidence exists in the literature that (visual) kinematics play
an important role in movement planning. For example, Thor-
oughman et al. (2007) showed human arm movements per-
formed in a robot-induced force field after learning were
consistent with minimization of kinematic jerk, but not with
minimizing either end-point variance or minimal torque
change. In addition, Wolpert et al. (1995) used a simple, yet
very clever experimental setup to artificially increase the cur-
vature of the seen hand trajectory. Even though subjects did not
need to change their muscle activation patterns to reach the
targets, it was found that participants moved to reduce the
visual perturbation. These results clearly suggest that kine-
matic variables play an important role in kinematic planning.
However, it does not exclude the possibility that dynamic
and/or control variables may also play a role. Furthermore,
Todorov and Jordan (2002) theorized that due to the systematic
discrepancy introduced between “expected and received feed-
back,” the internal model that generates motor commands
undergoes changes, which may lead to adaptation in kinematic
planning.

The goal of the present study was to investigate the role that
control, dynamic, and kinematic variables play in movement
planning. To do so, we designed a combined virtual and
mechanical environment that allowed us to independently
manipulate cost variables at a control, dynamic, and kinematic
level. Subjects moved in a force field (FF) induced by a robotic
manipulandum at different strengths while being visually per-
turbed. We used optimal control (see Optimization) to find
optimal muscle activations for a detailed musculoskeletal
model of the arm that included, among others, nonlinear
activation dynamics accounting for the electromechanical de-
lay and muscle activation level-dependent optimum lengths,
nonlinear elastic tendon forces, and nonlinear force-length-
velocity relationships of muscle fibers (Kistemaker et al. 2006,
2010). This model was used to predict arm kinematics that
minimized various cost variables at the level of muscle acti-
vation (e.g., sum of squared muscle activation and min/max), at
the level of dynamics (e.g., muscle torque change, muscle
fatigue), and at the level of kinematics (jerk).

The experimental and model results of this study strongly
suggest that neither control variables nor dynamical variables
play an important role in kinematic planning of human arm
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movements. The paths taken by the subjects are only consistent
with a cost function that comprises solely kinematic variables.

METHODS

Ethics statement. All subjects reported no history of visual, neuro-
logical, or musculoskeletal disorder. Written informed consent was
obtained from each subject prior to participation. All procedures were
approved by the University of Western Ontario Research Ethics
Board.

Experimental setup. Subjects made movements while grasping the
handle of an InMotion robotic manipulandum (Interactive Motion
Technologies, Cambridge, MA; see Fig. 1A). Commanded forces to
the robot were adjusted to compensate for position dependency of the
robot arm’s inertia to create an isotropic inertial characteristic with a
mass of 1 kg. This was done using an inverse model of the inertial
properties of the robot to calculate the force applied to the hand such
that the total handle force that a subject experiences equals that of
accelerating an object with a mass of 1 kg. The right arm was
supported by a custom-made air sled, which expelled compressed air
beneath the sled to minimize surface friction. The subject’s arm and
the manipulandum were beneath a semi-silvered mirror, which re-
flected images projected by a computer-controlled liquid crystal
display (LCD) screen. Visual targets (diameter of 2 cm) were pro-
jected which appeared to lie in the same plane as the hand. Positional
and force data were sampled at 600 Hz. All movements were made in
the dark, and only reflected images of the LCD were visible to the
subjects.

Force field. The FF used in this study was similar to that used in
Kistemaker et al. (2010). We had designed a new FF for several
reasons. Most importantly, we wanted to make the FF such that there
is a mechanical advantage (less muscle force/torque) to make move-
ments curved markedly to the right, instead of the typical slightly

leftward path taken in free space. In this study we used this FF to test
variables that might be used by the brain to select a kinematic path in
a novel mechanical environment. The force applied at the hand in the
y-direction (fore-aft; Fy) was

Fy � b�� ẏ � ẋ� · �ytarget � y� . (1)

In contrast with our previous study in which we used a value of either
0 or 150 N·s/m2, we have set b to 0, 150, or 225 N·s/m2. ytarget, y, ẏ,
and ẋ are, respectively, the y-position of the target, the y-position of
the hand, the y-velocity of the hand, and the leftward/rightward (x)
velocity of the hand. Note that the force in the x-direction (Fx) was
always zero. For a detailed description of the FF, please see Kiste-
maker et al. (2010).

Visual perturbation. Visual warp was similar to that used in
Wolpert et al. (1995) and only warped the depicted hand position
along the x-axis. The depicted x-direction of the hand was the actual
x-position plus a function of the y-position that defined an arc from the
start position to the target position with a maximal lateral distance
halfway along the y-position between the start and target. The maxi-
mal lateral distance, w, was set to 0 (no warp), 20, or 30 mm to the
right or �30 mm to the left (see Fig. 1B). Note that this warp results
in no visual distortion of the hand position at both the start and target
position. Therefore, no correction in movement path was required to
adequately reach the target. To further explain the warp, we have
plotted a sample trajectory of the hand in solid lines and the accom-
panying visually warped hand position in dashed lines for the case that
the warp was set to �30 mm (Fig. 1B). This means that to make the
hand go visually straight, subjects need to make a counter arc of 30
mm to the right.

To implement the visual perturbation, we calculated the perturbed
visual hand position in the x-direction (cx) as a function of the actual
hand position in the x-direction (xh) and the (unperturbed) hand
position in the y-direction (cy � yh). First, radius R of the circle was

Fig. 1. A: schematic drawing of the experimental setup. Targets were projected onto a semi-silvered mirror by using a liquid crystal display monitor suspended
15 cm above the mirror (not shown). Subjects moved from the red start position to the green target position. Two seconds after the target was reached, start and
target position were swapped and subjects initiated a new movement. B: illustration of the visual perturbation using 2 hypothetical trajectories of the hand (black)
and the perturbed hand trajectory (blue) with width w set to �30 mm. If a subject were to move straight to the target, the depicted movement would be an arc
from the start position (green circle) to the target position (red circle; left). The visual distortion was 0 at the start and target position and was maximal halfway
the 2 positions. To move visually straight, participants needed to make a counter arc to the right (right). C: schematic drawing of the musculoskeletal model.
The implemented Hill-type muscle-tendon complex model consisted of a contractile element (CE), a series elastic element (SE), and a parallel elastic element
(PE) and included activation dynamics modeling the CE length-dependent Ca2� dynamics and active state-dependent force-length-velocity relationship.
D: flowchart of the musculoskeletal modeling procedure. See text for definitions.
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calculated, leading to an apex halfway along the movement with the
desired width w and movement distance D:

R �
�0.5 · D�2 � w2

2w
� w .

cx was calculated as follows:

cx � R · cos�arcsin� yh

R �� � R � w � x . (2)

In a pilot study we investigated the maximal level of warp (grad-
ually introduced) that was not detected by any of the participants.
Several subjects reported that “something was wrong” for visual
perturbations of 50 mm and greater, and data analysis showed that
participants ignored visual feedback altogether. Only for distortions as
small as 30 mm did none of the subjects become aware of the visual
manipulation. Furthermore, after the experiments, subjects were asked
if they had noticed the visual perturbation. All subjects responded in
the negative and were surprised that the depicted and real hand
positions did not coincide. None of the subjects in this pilot study
participated in the experiment.

Experimental protocol. To ensure that the FF and associated motor
costs were salient, we used FF strength levels and desired movement
times that resulted in considerable forces applied to the hand. To have
a uniform group of participants that experienced similar relative
forces applied to their hand, we restricted our selection criterion to
right-handed males. Forty-nine participants performed point-to-point
movements to visual targets while grasping the handle of the robotic
linkage with their right hand. Movements (30 cm) were made toward
and away from the body in a horizontal plane along the surface of a
desk, at shoulder height (see Fig. 1A). The subjects’ view of their arm
was occluded by the semi-silvered mirror. Visual targets and a small
dot representing the position of the hand were displayed on the mirror
using an LCD monitor. When the target circle was reached, the target
changed color to provide feedback indicating that the movement was
either well timed (between 300 and 500 ms), too slow, or too fast. To
avoid biasing subjects to move along a particular hand path, apart
from the timing aspect, no instructions were given as to how the target
was to be reached. After 2 s, start and target position were swapped,
and subjects initiated a new movement toward the original start
position. In contrast with our previous study (Kistemaker et al. 2010),
we provided continuous feedback of hand position by plotting a small
white circle (diameter 1 cm) that matched the position of the robot
handle (or was warped; see above).

The subjects were randomly assigned to seven different experimen-
tal groups on the basis of the strength of the FF (0, 150, or 225 N·s/m2)
and level of warp (�30, 0, 20, or 30 mm). The different experimental
groups are shown in Table 1.

All experimental groups started first with block 1 in which subjects
made 100 movements in free space (i.e., force field turned off, FF0)
and no visual warp (w0). After that, in block 2 either 100 or 150
movements were made while the perturbations (both visual warp and
FF) were gradually introduced according to experimental group.
These differences in number of movements in the second block were
such that the subjects had an equal gradual increase in visual warp and

forces applied to the hand across the different experimental groups.
Subjects that either had a FF strength of b � 150 N·s/m2 and/or had
a visual warp level of �20 mm had 100 movements in block 2.
Subjects that either had a FF strength of b � 225 N·s/m2 and/or had
a visual warp level of � 30 mm had 150 movements in block 2. In
blocks 3 and 4, subjects always made 100 movements in the condition
according to their experimental group. In block 5, all subjects made
100 movements in FF0 and with normal visual feedback of their hand
position.

Data analysis. Positional and force data were sampled at 600 Hz
and then digitally filtered using a fourth-order bidirectional Butter-
worth filter with a cutoff frequency of 15 Hz. Successful trials were
selected on the basis of the following conditions: 1) at movement
onset, hand position was within the start circle (diameter of 2 cm), 2)
initial velocity was lower than 0.01 m/s [in some trials subjects
anticipated the appearance of the target circle (“go-cue”) before it
actually appeared, leading to a movement start before the robot motors
were turned on], and 3) the time between leaving the start circle and
entering the target circle was between 300 and 500 ms. All successful
trials per subject per block were analyzed, and movements were
omitted for which the absolute maximum lateral deviation was greater
than the mean plus three times the standard deviation for that subject
in that block. Kinematics were analyzed on basis of the last 10
successful inward and the last 10 successful outward movements in
block 1 (baseline) and those of block 4.

Musculoskeletal model. The musculoskeletal model of the arm
consisted of three rigid segments interconnected by two hinge joints
representing the glenohumeral joint and elbow joint and has been
described in full detail elsewhere (Kistemaker et al. 2006, 2010; see
Fig. 1C). In short, the arm was actuated by six Hill-type muscle units
(2 monoarticular shoulder and elbow muscles and 2 biarticular mus-
cles; see Fig. 2). The implemented Hill-type muscle model consisted
of a contractile element (CE), a series elastic element (SE), and a
parallel elastic element (PE). Figure 1D shows schematically the
musculoskeletal modeling procedure. Activation dynamics describe
the nonlinear dynamic relationship between muscle stimulation
(STIM, the only independent input to the musculoskeletal system) and
active state (q, the relative amount of Ca2� bound to troponin C; see
Kistemaker et al. 2005). Activation dynamics were furthermore de-
pendent on the length of the CE to account for the experimentally
observed shifts in optimum CE length as a function of the activation
of a muscle (Kistemaker et al. 2005). Contraction dynamics relates q
to the muscle torques (M) using force-length-velocity relationship and
joint angles. The lengths of the muscle-tendon complexes and moment
arms were functions of the joint angles. All skeletal and muscle
parameters (such as maximal force, maximal contraction velocity,
tendon stiffness, etc.) were based on human cadaver studies and in
vivo and in vitro (human and animal) experimental data (see Kiste-
maker et al. 2005, 2006, 2007). Except for one parameter introducing
discontinuity of the force-velocity relationship (see below), none of
the parameters were changed or attuned to this study. Please see the
Appendix of Kistemaker et al. (2006) for a sensitivity analysis of the
used muscle parameters. The robot forces were modeled as a force
applied to the hand using Eq. 1.

The musculoskeletal model was reformulated to ensure that all
functions were continuous up to the first derivatives and useable for
direct collocation (part of the optimization procedure; see Optimiza-
tion). This included the change in a single parameter that defined the
difference in concentric and eccentric slope of the force-velocity
relationship at zero CE contraction velocity. This was originally set
such that the slope of the eccentric part is twice that of the concentric
part (see also van Soest and Bobbert 1993). Such discontinuity in the
derivative of the force-velocity relationship was found to be problem-
atic for the optimal control solver and was set such that the slopes
were equal. We carried out forward simulations with both slope
factors for the movements investigated in this study, and they showed
no notable differences. Also, we have reformulated the force-length

Table 1. Overview of experimental groups

FF0w2 FF1w0 FF1w2 FF0w3 FF2w0 FF2w3 FF2w-3

b, N·s/m2 0 150 150 0 225 225 225
w, mm 20 0 20 30 0 30 �30

Experimental groups based on strength of the forcefield (FF; b � 0, 150, or
225 N·s/m2, corresponding to FF0, FF1, or FF2, respectively) and level of warp
(w � 0, 20, 30, or �30 mm; corresponding to w0, w2, w3, or w-3,
respectively).
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relationship of the tendon and parallel elastic components (without
changing their behavior) such that it is continuously differentiable.
This was done by multiplying the force-length relationship of these
elastic components by a sigmoid function. In the original formulation,
tendon force (FSE) was modeled as a quadratic spring (see e.g.,
Kistemaker et al. 2006):

FSE � kSE · max�0, �lSE � lSE_0�	2,

where lSE is the tendon length and lSE_0 is the tendon slack length. In
the original formulation, the term max[0,x] ensures that the force of
the tendon is always zero if the length of the tendon is less than the
slack length (i.e., the tendon is not allowed to push), yet is not
continuously differentiable. To address this, we calculated FSE by

FSE �
1

1 � e���lSE�lSE_0�
· kSE · �lSE � lSE_0�2.

The sigmoid function goes from 0 to 1, is 0.5 at lSE_0, and has an
arbitrary steep slope, set by �. In words, the sigmoidal function is zero
when lSE is under its slack length and one when lSE is above its slack
length (apart from a small region around slack length). We have
similarly changed the formulation for the parallel elastic component.

Cost functions: control level. The most influential cost variable at
the level of control is the sum of the squared muscle stimulations, also
known as control effort (Diedrichsen et al. 2010; Fagg et al. 2002; van
Bolhuis and Gielen 1999). Control effort was calculated by

J � 

n�1

6

�
0

T

STIMn�t�2dt .

The cost function is denoted as J, T is the movement duration, STIM
is the muscle activation, and n denotes each muscle.

It has been suggested in the literature that fatigue is related to the
total amount of muscle fibers activated (Crowninshield and Brand
1981) and was implemented by weighting the control effort cost by
their relative maximal force (maximal force Fmax is assumed here to
have a fixed relationship with physiological cross-sectional area).

J � 

n�1

6 Fmax,n



n�1

6

Fmax,n

6

�
0

T

STIMn�t�2dt .

In the remainder of this article we refer to this cost variable as control
fatigue.

The last control variable investigated is called the MinMax and
minimizes the maximal muscle activation (Rasmussen et al. 2001).
For numerical reasons, an approximation for MinMax was used (see
Ackermann and van den Bogert 2010):

J � 

n�1

6

k�
0

T

STIMn�t�10dt .

Because STIM is the relative muscle stimulation frequency (between
0 and 1), setting the exponent to 10 causes the cost for MinMax to be
extremely low (�10�10). Rather than lowering the threshold of
optimality conditions on the cost function, we used an arbitrary large
number, k, to rescale the cost. For k � 1 	 105, no differences in
solutions were found.

Cost functions: dynamic level. At the dynamic level, three cost
variables were used. First, we implemented muscle torque change
(Uno et al. 1989) that minimizes the sum of squared individual muscle
torques (M) differentiated with respect to time:

J � 

n�1

6

�
0

T �dMn�t�
dt �2

dt .

Second, muscle effort (or load sharing) typically assumes that the sum
of squared forces produced by the individual muscles is minimal (e.g.,
An et al. 1984),

J � 

n�1

6

�
0

T

FCE,n�t�2dt .

or, alternatively, they can be scaled for the maximal isometric force
(Fmax) of the individual muscles (FCE) to minimize muscle fatigue
(e.g., Crowninshield and Brand 1981):

J � 

n�1

6 Fmax,n



n�1

6

Fmax,n

�
0

T

FCE,n�t�2dt .

Cost functions: kinematic level. At the level of kinematic cost
variables, there is only one cost variable referred to in the literature,
termed jerk (Hogan 1984),

J � 

n�1

2

�
0

T

��n
2dt ,

in which ��n refers to joint space jerk, the third time derivative of the
shoulder and elbow joint angle.

As mentioned above, in this study we used visual perturbations that
influenced the curvature of the perceived kinematics. Based on the idea
that the brain may integrate visual and somatosensory information to
estimate hand position (e.g., Smeets et al. 2006; van Beers et al. 1999),
and hence jerk, we also investigated a cost function of weighted jerk:

J � �

n�1

2

�
0

T

��n
2dt��1 � �� 


k�x,y
�
0

T

c�k
2dt ,

where � is the relative weight factor and c�x and c�y denote the visual
Cartesian hand jerk. c�x is calculated by (see also Eq. 2)

c�x �
d3

dt3��R · cos�arcsin� cy

R �� � xh� .

Note that cy is unaffected by the visual perturbation, and, as stated before,
xh is the actual hand position in the x-direction. Note also that the two
terms in the cost function have different dimensions and are nonlinearly
related, and thus the exact value of the relative weight is noninformative.
As a first-order approximation of equal weighting of the visual and
somatosensory information, we first identified the � for which in the
unperturbed condition the two costs were equal (� � 0.11). The optimal
path for (unperturbed) visual jerk of the hand is a straight line from the
start to the end, and as such the optimal path for this value of � is about
half of the curve that is typical for minimizing joint-based jerk. This value
was used to find the optimal paths in the experimental conditions.

There is, however, no a priori need for equal contributions. For
example, one could use Bayesian optimal cue combination and allow for
different visual and somatosensory contributions. This may improve the
quality of the predictions. Such a weighting requires knowledge about
how the brain may combine two signals with different coordinate frames
and about the relative variance of the signals (van Beers et al. 1999,
2002). Experimentally estimating the relative variance goes beyond the
scope of this article, and we have chosen to find the optimal weighting
through numerical optimization. A simple golden section search method
(fminbnd.m) implemented in MATLAB (The MathWorks) was used to
find the optimal value for � (0.128) that minimized the root mean squared
difference between the experimentally observed maximal lateral x-posi-
tion of the hand and that of the optimal path of the model (see also
RESULTS, Model predictions vs. experimental data) found using the opti-
mal control techniques described below.

Optimization. For each cost function, optimal activations were
found for the six muscle-tendon units of the 2-degrees-of-freedom
musculoskeletal model for a fast arm movement, similar to the
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experimental task. In the experiments, successful trials were those
with a “movement time” of 400 � 100 ms, defined as the time
between leaving the start circle and entering the target circle. There-
fore, the actual movement time was a bit longer, and we have
heuristically set the constraint movement time of the model to 425 ms.
Boundary constraints matched the experiments and were the start
positions of the shoulder and elbow joints (35° and 172°) and desired
end positions (64° and 127°), with zero angular velocity and acceler-
ation. Importantly, initial CE length and tendon length were set such
that the tendons are at their slack length (the optimal control solver is
otherwise “intelligent” enough to choose very short CE lengths at
movement onset, therefore “spring-loading” the tendons that release
energy). All other initial states were set to zero. The dynamic equa-
tions of the musculoskeletal model were translated into dynamic
constraint functions and discretized on several temporal nodes termed
collocation points (direct collocation method). Important in this pro-
cess was the use of an implicit formulation of musculoskeletal
dynamics (see van den Bogert et al. 2011). To identify the minimal
required collocation points leading to accurate solutions of the mus-
culoskeletal model, we carried out forward simulations of the model
using a variable step-size ordinary differential equation (ODE) solver
embedded in MATLAB, with absolute and relative tolerance set to
1e�8, and using the optimal control STIM patterns obtained using
different numbers of collocation points. The dynamic constraints,
together with the task and boundary constraints and the cost function,
were solved simultaneously using a sparse nonlinear optimal control-
ler (SNOPT; TOMLAB Optimization, Pullman, WA). The derivatives
and second derivatives of the constraint and cost function were
computed analytically using PROPT (TOMLAB Optimization). It was
found that the states obtained from a forward simulation and those
obtained from SNOPT were nearly identical for 45 collocation points
(on average about 1 collocation point per 10 ms).

To reduce computation time, we ran optimizations for each cost
function with increasing numbers of collocation points starting from
15 to the desired amount of 45. For each cost function, the optimizer
was run several times using different initial guesses. First, we used an
initial guess in which all states and inputs were set to 0. In a second
set of optimization runs we used the optimal outcome of a particular
cost function and used those as an initial guess for all other cost
functions. Reassuringly, optimal solutions were found to be indepen-
dent of initial guesses tested. Two exceptions were found. First,
minimizing jerk led to different optimal STIM patterns, yet with
similar kinematics. This result is, however, to be expected because
minimizing jerk only solves the kinematic redundancy and does not
lead to a unique STIM solution (i.e., there is an infinite number of
solutions for STIM yielding identical kinematics). Second, the Min-
Max criterion showed local minima depending on the initial guess.
Investigating the costs of several optimization runs showed that the
costs were very similar, indicating a flat cost landscape. This can be
understood since this criterion is not sensitive to changes in the
activation of muscles that have a low activation. The optimal kine-
matic paths were, however, robust against initial guesses, and there-
fore we simply selected per condition the optimal solution that had the
lowest cost and discarded the rest as local minima.

RESULTS

Model predictions. We first examined the predictions with
the optimal control arm model for the different cost functions
for the different levels of FF. The FF was constructed such that
participants required less force to reach the target using a
rightward curved movement, instead of the leftward curved
movements observed experimentally in free space (see Kiste-
maker et al. 2010 for a detailed explaination of the force field).
The FF was either turned off (FF0), set to a medium level (FF1;
similar to that in Kistemaker et al. 2010), or set to a high level

(FF2). To gain more insight in the relationship between pre-
dicted paths and the FF used, we also have included two
intermediate FF strengths (0.33 and 0.66, corresponding to b �
50 and 100 N·s/m2). Inward and outward movements were very
similar, and we only show here the optimal kinematic paths for
the outward movements.

Figure 2 shows an overview of the predicted movements for
the various cost functions at the control, dynamic, and kine-
matic levels. A first interesting result is that the predicted
movements in the FF0 conditions were very similar to each
other: a slightly leftward curved hand path for right arm
movements (gray lines). This finding is in agreement with the
literature showing that several cost variables adequately predict
the common characteristics of human arm movements in free
space (e.g., Alexander 1997; Hogan 1984; Kistemaker et al.
2010; Uno et al. 1989), even though they are very different in
nature. However, importantly and as argued in the Introduc-
tion, these results indicate that it is experimentally very diffi-
cult to distinguish the different cost functions from each other
for movements made in free space (see also DISCUSSION).

The predicted optimal movements in the FFs were different.
Kinematics obtained by minimization of cost variables at the
control level and the dynamic level were in general greatly
influenced by the FF and were markedly different for the
different levels of FF strength (dashed lines refer to interme-
diate levels of FF strengths, solid lines were identical to those
used experimentally). This is because the FF was designed
such that the robot opposes the movement less for movements
curved rightward. This can readily be seen in the optimal
solutions for control variables that include muscle force. Also,
in general less muscle activation is required for smaller forces,
and hence control effort cost is smaller when a rightward
movement is made. These effects are stronger with increasing
FF strength: the rightward bend becomes increasingly greater
with the FF strength. Only for minimizing muscle torque
change were changes in optimal paths less pronounced. This is
discussed separately (see DISCUSSION).

In contrast, minimum jerk hand paths are not at all influ-
enced by the FF (gray and red lines in Fig. 2 overlap com-
pletely). This can be readily understood, because minimization
of jerk is by definition purely minimizing a kinematic variable,
and so the cost function does not depend on how much muscle
activation or muscle force is required. Note, however, that even
though kinematic paths are identical, the optimal STIM pattern
changed substantially for the different strengths of the FF to
compensate for the forces applied to the hand.

Figure 2 also shows the kinematic paths predicted by the
cost function combining visual (perturbed) hand jerk and
somatosensory (unperturbed) joint jerk. Optimizations were
run for all experimental conditions. The movements for no
visual warp were similar to that of minimizing joint jerk alone,
yet were straighter. This too can be readily understood, because
hand-based jerk, in the absence of a visual perturbation, would
predict zero jerk in x-direction and thus a straight line from
start to target. The diminished curvature is thus due to the added
cost on visual (Cartesian) jerk. The optimal relative weighting
factor � (see METHODS) and the value for approximately equal
relative weighting of visual and somatosensory jerk were very
close (0.13 vs. 0.11, respectively) and showed very similar results.
In the remainder of this article we show only the results for � set
to 0.13. As expected, the identified optimal hand paths were not
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dependent on the presence or strength of the FF. The optimal
movements minimizing weighted jerk were affected by the pres-
ence of the visual perturbation: movements were such that they
countered the perturbation.

Experimental data. Figure 2 also shows the average of the
last 10 trials in FF1 and FF2, with and without visual pertur-
bation, for both the outward and inward movements. For
reference, also plotted are the averages of the last 10 baseline

movements in the first block of movements with FF0w0 (recall
that all subjects started with this in block 1). One subject (in the
FF2w�3 group) was removed from the data set because he was
not able to meet the minimal amount of 20 successful move-
ments per block (even in the easiest block FF0w0, for which
the group average success rate was 
85%).

By visual inspection of experimental data in Fig. 2 it can be
appreciated that subjects changed their kinematics when visu-

Fig. 2. Overview of model predictions of kinematic paths under the various cost functions and experimental data. Please note the equal scaling of the x- and
y-axes. Model predictions shown are the outward optimal movements for all cost functions investigated at control, dynamic, and kinematic levels. Note that the
predicted kinematic paths for minimizing jerk are identical for all experimental conditions. Note also that the predicted kinematic paths do not change for different
force field (FF) strengths, both for jerk and weighted jerk. Thus, for example, the red and gray lines overlap completely. The predicted paths are depicted for
the conditions indicated. Experimental data furthermore show the average hand paths of outward and inward movements of the last 10 trials per condition. FF0,
FF1, and FF2 refer to the strength of the FF (b � 0, 150, or 225 N·s/m2, respectively) and w0, w2, w3, and w-3 to the visual perturbation (w � 0, 2, 3, and
�3 cm, respectively). Note that the red lines almost completely overlay the gray lines.
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ally perturbed to counteract the perturbation; the FF0w2 move-
ments (blue lines) are more to the left than the baseline
movements (FF0w0, gray lines; note that the red lines almost
entirely overlay the gray lines). This effect was larger for a
greater visual perturbation (c.f. FF0w2 and FF0w3 in left and
right experimental data, respectively). Neither the presence nor
the magnitude of the FF influenced the kinematic path taken by
the subjects. As mentioned before, the FF1w0 and FF2w0 (red
lines) are very similar to the baseline movements (gray lines).
Only in combination with the visual perturbation did the
subjects in the FF change their kinematics to counter the visual
perturbation. Subjects in the FF visually perturbed to the right
moved more to the left (FF1w2 and FF2w3, black lines) and
when visually perturbed to the left moved more to the right
(FF2w�3, green lines).

The effects appear rather subtle, but as it turns out they are very
consistent. The effects were in general small due to the small
visual perturbation used and especially relative to the distance
travelled in the y-direction. To look into more detail, we have
computed the change in maximal x-deviation of the kinematic
paths taken by the subjects (from now on referred to as �x-dev).
This was done by calculating per subject the maximal x-deviation
subtracted by the average value for the last 10 	 2 movements in
their baseline measurement (block 1). Figure 3A shows the �x-dev
of successful trials during blocks 3 and 4 binned in 10 	 2 (inward
and outward) successful trials. The successful trials were binned
starting from the last 10 	 2 successful trials in block 4 (bin 20)
to the first successful trials in block 3. Bins 1 and 2 were omitted
due to a lack of successful trials (indicating an average hit rate
across blocks 3 and 4 of around 80%). Data points are the mean
values across subjects, and the error bars indicate the standard
error of the mean. Figure 3 shows that changes in x-deviation
occur early in block 3 and remain rather constant until the end of
block 4.

To test for reliable differences in kinematics among the
groups, we performed a split plot (mixed design) ANOVA on
the last 10 	 2 successful movements in blocks 1 and 4 (see
Fig. 3B). The ANOVA indicated a significant interaction
[F(6,41) � 14.8, P � 0.0001]. Post hoc paired t-tests showed
that subjects moved on average significantly 4.0 � 3.3 mm
(P � 0.019) and 6.8 � 6.5 mm (P � 0.032) more to the left
when visually perturbed to the right by 20 and 30 mm,

respectively (see Fig. 3B; note that these error bars indicate
95% confidence intervals). The subjects did not significantly
change their maximal x-deviation when moving in the FF (P �
0.86 for FF1w0 and P � 0.23 for FF2w0). When moving in the
FF while being visually perturbed, subjects changed their
kinematics independently of the FF, but only to counter the
visual perturbation. They moved significantly more to the left
when visually perturbed to the right (�6.7 � 2.7 mm, P �
0.001 for FF1w2 and �9.5 � 3.1 mm, P � 0.001 for FF2w3)
and moved significantly more to the right when visually per-
turbed to left (9.0 � 4.8 mm, P � 0.01). Thus, although
curvature was entirely independent of the FF level, subjects
changed their kinematics significantly to counteract the visual
perturbation. However, subjects did not fully compensate for
the distorting effect of the warped visual feedback, on average,
28%. These results are in agreement with a previous study
using a similar visual distortion (Wolpert et al. 1995). Results
are summarized in Table 2.

Model predictions vs. experimental data. Table 3 shows a
comparison between the experimentally observed �x-dev and
those predicted for all cost functions. The optimal kinematics
based on cost variables from the control and dynamic levels did
not match those observed experimentally; all optimal paths
showed rightward curved movements that increased with the
strength of FF set, whereas none of the kinematic paths of the
subjects did. Only the paths predicted by the kinematic vari-
ables (jerk and weighted jerk) were in agreement with those
observed experimentally.

Table 2. Overview of statistical results for change in maximal
x-deviation

�x-dev, mm SD, mm P Value

FF0w2 �4.0 3.3 0.019
FF1w0 �0.2 3.4 0.856
FF1w2 �6.7 2.7 0.001
FF0w3 �6.8 6.5 0.032
FF2w0 �1.5 2.9 0.230
FF2w3 �9.5 3.1 0.000
FF2w-3 9.0 4.8 0.006

Values are mean and SD of change in maximal x-deviation of the kinematic
paths taken by the subjects (�x-dev).

Fig. 3. A: average changes in maximal x-deviation (�x-dev) of the hand trajectories relative to baseline (last 10 successful inward and 10 outward movements
in block 1) during blocks 3 and 4 for all 7 experimental conditions. Movements were binned in 20 successful (10 inward and 10 outward) movements, starting
from the last 20 successful trials. The first 2 bins were omitted due to a lack of successful movements. Data points are the mean values, and error bars indicate
standard error of the mean. B: close-up of �x-dev in the last 10 inward and outward movements of block 4. Note that the error bars denote the 95% confidence
interval. *P 	 0.05; **P 	 0.01; ***P 	 0.001 denote means significantly different from zero. The arrows represent the predicted changes in maximal
x-deviation for the cost function using weighted visual and somatosensory jerk.
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The subjects readily changed their kinematics when visually
perturbed. Irrespective of FF magnitude, they moved to coun-
teract visually perturbed movement curvature. These changes
in kinematics cannot be explained by minimizing control or
dynamics cost variables. When visually perturbed to the right,
subjects changed their hand paths to the left, and therewith
increasing the cost at the control and dynamic levels. Further-
more, the visual perturbation was such that it was zero at both
the start and the target position, and thus muscle activation
patterns do not need to be adjusted to adequately reach the
target when visually perturbed (see also Wolpert et al. 1995).
Also, the cost for the variables at the control level and dynamic
level are not influenced by the (perceived) changes in kinemat-
ics. On the other hand, a cost function that combined visually
perceived jerk and somatosensory perceived jerk was capable
of adequately predicting the kinematic hand paths taken in all
experimental conditions. The arrows in Fig. 3B show the
predicted changes in maximal x-deviation predicted using
weighted jerk (� � 0.128; see METHODS).

After showing that a cost function based on weighted jerk is
capable of adequately predicting the spatial aspects of the
kinematic paths, we investigated the temporal aspects by com-
paring the velocity profiles of the model and the subjects. In
Fig. 4, the grand mean of the y-velocity profiles of the hand of
all subjects in the last 10 movements in all experimental

conditions is plotted, together with the standard deviation. The
subject averages per experimental condition were aligned on
instant of peak velocity to calculate the grand mean. Shown in
black, the velocity profile is plotted for the optimal path for the
weighted visual and somatosensory jerk. The optimal y-veloc-
ity profiles for the different experimental conditions did not
change notably. The experimentally observed maximal veloc-
ity was 1.37 � 0.13 m/s, and that for the model was 1.38 �
0.00 m/s. The experimentally observed time to peak velocity
(time between 1% of peak velocity and reaching peak velocity)
was 0.189 � 0.018 s, and that for the model was 0.199 �
0.003 s. Together with Fig. 3B, these results show the excellent
fit between experimental data and the optimal kinematic paths
for weighted jerk in all conditions tested experimentally.

DISCUSSION

In this study we tested a number of hypotheses about how
the brain controls voluntary arm movement. Specifically, we
investigated to what extent control, dynamic, and kinematic
variables play a role in movement path selection. To do so, we
had seven groups of subjects move in a novel FF at different
strength levels while being visually perturbed. The visual
perturbation changed the visual curvature of their hand paths.
We used a detailed nonlinear musculoskeletal model of the
human arm in combination with direct collocation and a sparse
nonlinear optimal control solver to predict optimal movement
paths using various cost variables. The first important finding
was that, in line with the literature, all cost variables investi-
gated (be it at the control, dynamic, or kinematic level), were
capable of adequately predicting the kinematic paths taken by
subjects in free space, at least for the two-dimensional planar
tasks studied here. These results clearly show that it is prob-
lematic to discern different cost functions on the basis of
movements performed in free space. The predicted movements
in the FFs did show a clear change: optimal movement paths
based on all control and dynamic variables were different
depending on the strength of the FF (see Fig. 2 and Table 3).
In general, the stronger the FF, the more movements curved
rightward. The predicted kinematics based on the kinematic
cost variable (jerk; Hogan 1984) were not affected by the FFs.
The experimental results showed that none of the subjects’
kinematics were influenced by the FF; subjects moved as they
did in free space. However, when feedback was perturbed such
to change the visual curvature of the hand, subjects moved
more to the left when visually perturbed to the right, and vice
versa. They also did so irrespective of FF magnitude. The

Table 3. Comparison of predicted and experimentally observed change in maximal x-deviation

Experimental Data

Control Level Dynamic Level Kinematic Level

CE CF MM TC ME MF J WJ

FF0w2 �4.0 0 0 0 0 0 0 0 �5.5
FF1w0 �0.2 35.4 95.4 51.7 7.7 98.0 111.4 0 0
FF1w2 �6.7 35.4 95.4 51.7 7.7 98.0 111.4 0 �5.5
FF0w3 �6.8 0 0 0 0 0 0 0 �8.2
FF2w0 �1.5 47.4 122.0 71.7 22.1 124.4 134.1 0 0
FF2w3 �9.5 47.4 122.0 71.7 22.1 124.4 134.1 0 �8.2
FF2w-3 9.0 47.4 122.0 71.7 22.1 124.4 134.1 0 7.6

Values are �x-dev in mm for all cost functions: CE, control effort; CF, control fatique; MM, MinMax; TC, torque change; ME, muscle effort; MF, muscle
fatique; J, jerk; and WJ, weighted jerk.

Fig. 4. Average velocity profile of the hand in the y-direction (fore-aft) of all
subjects of the last 10 movements in all experimental conditions (gray line; the
gray shading indicates standard deviation). The optimal velocity profile pre-
dicted for the minimization of combined visual and somatosensory perceived
jerk is plotted in black.
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experimental results were found to be consistent only with a
cost function that solely comprises cost variables on the kine-
matic level (see Fig. 3 and Table 3).

It is unlikely that the lack of adaptation of the subjects to the
FF is caused by flaws in the experimental setup and/or proto-
col. The strength of the FFs was set such that it is implausible
that the change in control and dynamic costs was below the
participants’ threshold for detection. The two levels of the FFs
led to an average maximal force in the y-direction of about 35
and 46 N, respectively, and subjects also reported getting tired
from making movements in the FF. Furthermore, if the differ-
ent paths in the FF lead only to changes in cost below their
threshold, they would do so when subjects were moving in free
space and hence would not play a substantial role. It is unlikely
that providing visual feedback of the hand played a role in not
adjusting the kinematics of the subjects. The FF1w0 condition
in this study was, apart from the provided visual feedback,
identical to that in a previous study that showed similar results
in the FF (Kistemaker et al. 2010). It is also unlikely that
subjects did not converge to stable behavior due to lack of
training. The subjects were gradually introduced to the pertur-
bations of their condition over 100–150 movements (block 3;
see METHODS) and then twice made 100 movements with the full
perturbation (blocks 3 and 4), of which only the last 10 inward
and last 10 outward movements of block 4 were used for
statistical data analyses. Moreover, as can be appreciated by
studying Fig. 3A, the changes in x-deviation did not change
much from early exposure to the perturbations in block 3 to that
at the end of block 4, providing further evidence that subjects’
behavior is not due to a lack of training. Also, in a previous
study with a similar FF (yet without visual feedback and visual
perturbations), movements did not change over hours of train-
ing (Kistemaker et al. 2010). Furthermore, the subjects had a
high percentage of successful movements in block 4 (
80 vs.

85% in the FF0w0 condition). Last, the standard errors of the
mean of maximal x-deviation (i.e., the error bars in Fig. 3A)
indicated no difference in difficulty when another path was
taken than they did in FF0. One might argue that control
difficulties in the FF impede the motor system’s ability to adapt
movements. The presence of visual perturbation data dispels
this concern. When visually perturbed to the left during FF
learning, subjects readily changed their hand paths to the right,
resulting in lower cost at the control and dynamic levels. When
visually perturbed to the right, subjects readily moved more to
the left and therewith increased the control and dynamic costs.
However, subjects did not change their path in the FF when not
visually perturbed. Last, the presence of local minima could
have hampered subjects to adapt. However, the optimal trajec-
tories for several intermediate strength levels of the FF show a
gradual increase in curvature for the control and dynamic
variables and as such do not indicate local minima. On the
contrary, this result indicates a continuous negative gradient in
cost that, from a pure minimization perspective, would sim-
plify finding the optimal paths.

Our data clearly suggest that neither control cost variables
nor dynamic variables play an important role in kinematic path
selection. On the basis of these results, one may argue that a
possible exception would be muscle torque change: the kine-
matics predicted were much less affected by the FF than the
other dynamic variables. The effect of the FF is less pro-
nounced for the movements minimizing this cost, because it

does not penalize the magnitude of the muscle torques, but
rather the rate of change of the produced muscle torque. Be that
as it may, muscle torque change is unlikely to play an impor-
tant role in kinematic path selection. First, the optimal solu-
tions of the control variables and dynamic variables, including
torque change, are not affected by the visual perturbation (see
also Wolpert et al. 1995). This is because 1) at the start and
target position, visual warp was zero, and as such the control
signals do not need to be adjusted to adequately arrive at the
target, and 2) control cost and dynamic costs do not change on
the basis of (perceived) kinematics. However, subjects showed
clear and significant changes in kinematics while being visu-
ally perturbed. Second, although the predicted effects of the FFs
on torque change may be small compared with those obtained
when other cost variables are minimized, they are actually very
large compared with the experimental data: the predicted
changes in x-deviation are about 8 mm to the right for FF1 and
over 22 mm for FF2 vs. �0.2 and �1.5 mm to the left (not
significantly different from 0, P � 0.8 and P � 0.2; see Fig. 3B
and Table 3) observed experimentally. Clearly, these predic-
tions based on minimization of muscle torque change are not
supported by the experimental data.

The behavioral results of this study are consistent with
minimization of only kinematic cost variables. Yet, if path
selection does not depend on control and/or dynamic vari-
ables, why do subjects change their kinematics when visu-
ally perturbed? There are two major sources of information
informing the brain about movement kinematics: vision and
proprioception. It is likely that the two sources of informa-
tion are combined to generate an estimate of the actual limb
kinematics, for example, through Bayesian maximal likeli-
hood estimation (Kording and Wolpert 2004). In the current
study, we have perturbed the visual information and hence
may indeed have caused a change in perceived kinematics
that is partway between the visually and somatosensory
sensed limb kinematics. This explanation is in line with our
experimental results. Subjects clearly and significantly re-
sponded to the visual perturbation of perceived hand curva-
ture yet did not fully compensate: on average, about 28%
(which is in agreement with Wolpert et al. 1995). This was
independent of the direction of the visual perturbation and
the presence of the FF. To test the idea of cue combinations,
we implemented a cost function that combined visually
perceived (perturbed) and somatosensory perceived (actual)
kinematics. This cost function was not only capable of
qualitatively describing the spatial hand paths taken by the
subjects in all experimental conditions but also adequately
predicted the temporal aspects such as maximal velocity and
time to peak velocity.

The current study provides evidence that selection of move-
ment kinematics is based purely on kinematic variables. In this
study we have used only one kinematic variable: jerk, the third
time derivative of (angular) position (Hogan 1984). Here we note
that our results would likely be consistent with any other kine-
matic variable that adequately predicts movements in free space.
Furthermore, even though we have used optimal control to find
the optimal paths for weighted jerk and have shown that they were
in agreement with the experimental data, this does not mean that
the human brain necessarily uses optimal control; obviously, any
process based on kinematic variables that would yield the same
kinematic planning would be consistent with our finding.

1823MOVING OPTIMALLY: KINEMATIC PATH SELECTION

J Neurophysiol • doi:10.1152/jn.00291.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ Western Ontario (129.100.109.136) on February 11, 2020.



A consequence of explicit movement selection is that the
brain needs to generate the required muscle activation in a
separate step. Such a hierarchical view of motor control has
been suggested in work starting from the late 1900s (John
Hughlings-Jackson; see York and Steinberg 2006) to more
recent studies (e.g., Hollerbach 1982; Kawato et al. 1987;
Rosenbaum 1983; Saltzman 1979) and is consistent with a
body of neurophysiological data (e.g., Dum and Strick 2002;
Rao et al. 1993).

We stress here that if control and dynamic costs do not play a
role in movement planning, this does not mean that movements in
free space are performed inefficiently. In fact, using a detailed
optimally controlled musculoskeletal model, we have shown that
the minimal jerk trajectory is very similar to those obtained for
several control and dynamic variables, such as effort, fatigue, and
energy in free space. Furthermore, muscle activation patterns
leading to the planed movement trajectory may in fact be selected
for on the basis of effort, fatigue, or energy. Such a view is
consistent with recent behavioral data and oxygen consumption
measured during FF learning. Subjects rapidly learned how to
move in a FF as they do in free space, while oxygen consumption
decreased over a longer time scale (Huang et al. 2012).
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