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Behavioral/Cognitive

Mirror Reversal and Visual Rotation Are Learned and
Consolidated via Separate Mechanisms: Recalibrating or
Learning De Novo?

Sebastian Telgen, Darius Parvin, and X Jörn Diedrichsen
Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom

Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping
that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies.
We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal
(left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During
mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only
generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In
contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual
displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for
mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations,
exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas mem-
ory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the
first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning
tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy
and that offline gains between sessions are a characteristic of latter.

Key words: consolidation; mirror reversal; reaching movements; sensorimotor adaptation; skill learning; visual rotation

Introduction
Humans are experts in adjusting their movements to changing
task demands (Helmholtz, 1866; McLaughlin, 1967; Gentilucci et
al., 1995). Learning a new task requires a change in the functions
that translate goals (and states) into motor commands. These
functions have been synonymously referred to as visuomotor
mappings, control policies, or inverse models (Sutton and Barto,
1998; Todorov and Jordan, 2002).

But are all new tasks learned the same way? Here we contrast
the learning processes for two different visuomotor transforma-
tions: visual rotation (VR) and mirror reversal (MR). It has been
suggested that MR and VR are learned using separate learning
mechanisms (Werner and Bock, 2010). Here we hypothesize that
VR can be learned by a gradual recalibration of the existing con-

trol policy, whereas MR requires the establishment of a novel
mapping. This idea is motivated by how the motor system uses
error to update future movements (Fig. 1). When confronted
with VR, the correction calculated under the old policy will be
directed approximately (for rotations �90°) in the appropriate
direction. The new policy therefore could be learned by updating
the next motor command with the correction calculated follow-
ing the outdated mapping (Kawato and Gomi, 1992). Repeated
applications of this learning rule lead to the correct policy. Dur-
ing MR, however, the update inferred from the old mapping
points in the wrong direction, and a novel policy would have to be
acquired instead.

Krakauer and colleagues suggested that the difference between
recalibration and acquisition is visible in speed-accuracy tradeoffs
(Reis et al., 2009; Shmuelof et al., 2012). Because fast sequential
movements require the rapid generation of feedforward and
feedback commands, this likely relates to the speed of the under-
lying computational processes: When the system recalibrates a
well-learned control policy, it should be able to use existing fast
automatic processes and generate accurate responses even under
time pressure. The establishment of a new control policy, how-
ever, should entail initially slower, and possibly more explicit,
components (Hikosaka et al., 2002), requiring additional pro-
cessing time. Only with long practice, it should become automa-
tized and achieve equivalent performance at shorter time
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intervals. Thus, we expected that the acquisition of a control
policy would be accompanied by a shift in time-accuracy
tradeoffs. We tested this idea by studying fast feedforward and
feedback commands.

Finally, we also tested whether VR and MR learning differ in
how the memory consolidates between sessions. Adaptation tasks
typically show forgetting between sessions (Tong et al., 2002;
Klassen et al., 2005; Krakauer et al., 2005; Trempe and Proteau,
2010), whereas skill-learning tasks, such as learning novel se-
quences of finger movements, show little forgetting (Reis et al.,
2009), and sometimes even offline gains (Stickgold, 2005; Doyon
et al., 2009; Brawn et al., 2010; Wright et al., 2010; Abe et al.,
2011). Given that skill-learning tasks are also characterized by
shifts in speed-accuracy tradeoff (Reis et al., 2009; Shmuelof et al.,
2012), we hypothesized that MR learning may also show offline
gains between sessions.

Materials and Methods
Participants. All participants (N � 112, 52 male) were right-handed ac-
cording to the Edinburgh Handedness Inventory (median 84.6, inter-
quartile range 25.3) (Oldfield, 1971) and were 18 –30 years of age. None
had a history of neurological illness and/or was taking medication. Par-
ticipants were recruited through online advertising and received mone-
tary compensation (£7/h) at the conclusion of the study. Informed
consent was obtained before the study started, and all procedures were
approved by the University College London Ethics Committee.

General procedure. Participants made 15 cm center-out reaching
movements to targets displayed on a TFT LCD while holding a robotic
handle with the right hand. The robotic device allowed unrestrained
movement in the horizontal plane and was able to exert forces to the
participant’s hand. Movements were recorded at 200 Hz. Visual feedback
was provided on a monitor (60 Hz refresh rate) that was viewed via a
horizontal mirror placed over the participant’s hand. The delay of the
visual display (65 ms) was empirically measured using a photodiode and

taken into account in the analysis of the data. Because of the mirror, the
arm and hand were not directly visible. The position of the right hand was
represented on the mirror by a cursor (2 mm diameter).

At the beginning of each trial, the robot guided the participant’s hand
to the start location, a small rectangle, �15 cm in front of the partici-
pant’s chest. After the hand remained inside the start rectangle for �400
ms, a target (0.7 � 0.7cm 2 square) appeared on the screen. To probe the
time dependency of the forward command under the two visuomotor
mappings, it was essential to enforce tight bounds on reaction time (RT),
the time from target appearance to movement onset. Thus, participants
were instructed that their first priority was to react quickly to the onset of
the target. We played an unpleasant buzzing tone for slow reactions
(RT � 385 ms) and an unpleasant high beep for anticipatory movements
(RT � 35 ms).

A movement was considered started when the tangential velocity ex-
ceeded 3.5 cm/s and ended when it fell �3.5 cm/s. For offline analysis, the
velocity threshold for the movement start was set to 2.5 cm/s. Partici-
pants were also instructed that their movements had to be fast and accu-
rate to receive points. If the movement time (MT), the duration from
movement onset to termination, was too long or if the peak velocity was
too low (�40 cm/s), all items turned blue; if the peak velocity was too
high (�100 cm/s), yellow. Green feedback indicated that the peak veloc-
ity was in the correct range but the movement was terminated outside of
the tolerance zone around the target. Only when all criteria were met, did
all items in the visual display turn red and a pleasant sound was played,
signaling that the participants had gained a point. Participants were ex-
plicitly informed and then familiarized with these criteria over the first
four practice blocks. The target zone in which the movement had to end
was initially set to 1.2 cm, and the maximum MT to 1200 ms. These
criteria were manually adjusted after each block to maintain a constant
average success rate: If a participant achieved �50% of all points in the
last block, both criteria were decreased by 0.1 cm and 100 ms, respec-
tively, until they reached 0.7 cm or 800 ms. This adjustment ensured that
the rate of reward stayed within a motivating range. Visually, the target
always remained the same size (0.7 cm) because changes of target size
might have caused participants to alter their strategy. For offline analysis,
we included all trials, regardless of whether they satisfied the criteria
described above (see Data analysis).

Experiment 1: mirror reversal, feedforward control. The experiment
consisted of two testing sessions, in which 15 participants were exposed
to a mirror-reversed environment. The two experimental sessions took
place between 4 and 10 PM on two consecutive days for all participants.
Participants reached from a central starting location to one of six possible
targets located at �20°, 0°, 20°, 160°, 180°, and �160° (Fig. 2).

Each session consisted of 16 blocks, each comprising 72 trials. The first
session started with four training blocks to familiarize participants with
the performance feedback (not included in the analysis) followed by four
baseline blocks (blocks 1– 4). Visual feedback was mirrored during the
following eight blocks of the first session (blocks 5–12); e.g., to reach to
the right target, one had to generate a reaching movement to the left. In
the second session, visual feedback was mirrored during the first 12
blocks (blocks 13–24). In the last 4 blocks of the second session, visual
feedback was returned to normal (blocks 25–28). Each block contained a
total of 72 trials consisting of 12 reaches toward each of the six targets.
The four lateral targets (�160°, �20°, 20°, and 160°) were chosen so that
the required change in the motor command equaled 40° and would
match the required change in the visual rotation condition (see below).
To assess the state of the feedforward command in all experiments, we
measured the initial movement direction, the angular hand position av-
eraged from 100 to 150 ms after movement onset. This early measure is
relatively uninfluenced by possible feedback corrections (Franklin and
Wolpert, 2008).

In Experiments 1– 4, participants were informed in the break between
block 4 and 5 that a visuomotor transformation would be imposed, and
the nature of the transformation (visual rotation or mirror reversal) was
explained to them. We then stressed that their first priority should be to
initiate their movement within RT limits, even if it meant that they
missed the target. These restrictions largely prevented participants from
consciously replanning their movement endpoint (Georgopoulos and

Figure 1. Schematic drawing of recalibration during MR and VR. The hyphenated vertical
line indicates the mirror reversal axis. In trial n, hand (red) movements toward the �20° target
(Fig. 2 for coordinate frame) result in the cursor (blue) traveling to 20°, thus producing an error
(hyphenated black arrow) of 40°. A fraction of this error vector is used to update the next motor
command. On trial n � 1, the hand movement direction (solid red arrow) is therefore shifted
from the previous movement direction (hyphenated red arrow). During VR (top), this leads to
error reduction between cursor (solid blue arrow) and target compared with the previous move-
ment. During MR (bottom), the same update results in an increased error.
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Massey, 1987; Mazzoni and Krakauer, 2006; Neely and Heath, 2009;
Taylor et al., 2010; Taylor and Ivry, 2011).

Experiment 2: visual rotation, feedforward control. Experiment 2 had
generally the same structure as Experiment 1, with two testing sessions
taking place on consecutive days. This time the participants (N � 15)
were exposed to a 40° visual rotation instead of a mirror reversal of the
cursor. As noted above, the required change in the motor command from
the original to the new mapping in Experiment 1 was also 40°, such that
the magnitude of the mapping change was equal in both experiments.
Center-out reaching movements were executed toward eight circularly
arranged targets (Fig. 2). Feedback regarding movement performance
was given following the same criteria that were used for Experiment 1.
Each session consisted of 16 blocks, and each block contained 72 trials,
with each target appearing 9 times in random order. Again, the first 4 of
the 16 blocks in the first session were training blocks and were excluded
from all further analyses. This was followed by 4 baseline blocks, and 8
blocks in which a 40° visual rotation was imposed. The second session
began with 12 VR blocks, followed by 4 blocks without rotation.

Experiment 3: mirror reversal, feedback control, and sleep dependency.
Whereas Experiments 1 and 2 assessed learning of feedforward control,
Experiment 3 was designed to also assess learning of fast feedback com-
mands with mirror reversed visual feedback, by laterally displacing the
cursor on a fraction of trials. Additionally, we tested the hypothesis that
consolidation between sessions depended on sleep, motivated by the
finding that sleep has been reported to benefit offline consolidation
(Walker et al., 2002; Stickgold, 2005). Experiment 3 had generally the
same structure as Experiments 1 and 2, using identical feedback proce-
dures, number of trials per block, and the number of blocks per day.
We tested feedback control only for the 0° target, as here no change in the
feedforward command was required that could possibly confound the
measurement. To increase the number of reaches to each target, we only
tested targets at �20°, 0°, and 20°. Each block was divided into 9 mini-
blocks, and each miniblock consisted of 8 different trials (Table 1), de-
signed to test either feedforward or feedback control. The trials within
each miniblock were ordered randomly, with each trial type occurring
once. To test changes in feedforward commands, reaching targets in trial
Types 1 and 2 were presented at an angle of 20° or �20° from straight-
ahead. As in Experiments 1 and 2, the angular hand position averaged
from 100 to 150 ms after movement onset was measured for studying
feedforward control. In the remaining 6 trials in each miniblock, partic-

ipants reached to the straight-ahead target, and we tested fast feedback
mechanisms. For trial types 4, 5, 7, and 8, we displaced the cursor by 1.5
cm to the left or right after the hand had traveled �1 cm from the origin.
Cursor displacements elicit an automatic corrective response in the op-
posite direction with the aim of bringing the cursor back to the initial
trajectory. This response has shorter latencies than voluntary response
initiation (Franklin et al., 2008) and cannot be voluntarily suppressed.

To obtain a sensitive measure of the feedback response, we clamped
the hand to a straight-line trajectory toward the target using a force
channel for trial Types 6 – 8. These channels exerted a spring-like force of
6000 N/m. When a cursor was displaced, participants pushed into the
channel wall attempting to correct for the displacement. The hand force
was immediately counteracted by an equal amount of force from the
robotic handle, which could then be used as a reliable measure of correc-
tion. On force channel trials, the cursor was displaced back to the original
trajectory after the hand had moved �10 cm in the channel to allow the
participants to reach the target. Because the automatic return of the
cursor can cause attenuation of feedback responses (Franklin and Wol-
pert, 2008), we also added trials without channels (trial Types 4 and 5) in
which the cursor was not returned. These trials therefore required a
correction to reach the target. For the same reason, we also displaced, and
did not return, the cursor on 2 of 3 trials in which the movement was
directed at lateral targets (trial Types 1 and 2).

To determine whether performance changes between the sessions
(forgetting or offline gains) depended on sleep, we assigned participants
to one of four groups (Table 2). The first group (morning evening [ME];
16 participants) had the first session in the morning and the second
session 12 h later on the same day. The second group (evening morning
[EM]; 15 participants) had the first session in the evening and the next
session 12 h later after a night of sleep in the morning of the next day. To
control for the effect of the time of day on performance, we included one
control group that did both sessions in the evening (evening evening
[EE]; 13 participants) and one that did both sessions in the morning
(morning morning [MM]; 17 participants). For both groups, the sessions
were separated by a 24 h break and a night of sleep. There were no
significant age or gender differences between the four groups. Morning
sessions took place between 7:30 and 10:30 AM and evening sessions
between 7:30 and 10:30 PM. The role of sleep was only tested for MR, but
not for VR, because no offline improvements were found for the latter.

Experiment 4: visual rotation, feedback control. Experiment 4 was de-
signed to assess changes in fast feedback control during VR learning and
was again similar in length and structure to Experiments 1–3. Move-
ments were executed toward 8 targets. Instead of a 40° rotation, we im-
posed 60° or �60° rotations (balanced across 18 participants) to achieve
sufficient power to detect changes in the direction of feedback correc-
tions. On 48 of 72 trials, the cursor position was displaced by 1.5 cm once

Figure 2. Target arrangements in Experiments 1 and 2. Gray circles represent target loca-
tions in Experiment 1, whereas white circles represent target locations in Experiment 2. Targets
at 0° and 180° are half-gray/half-white because they were presented in both experiments. The
hyphenated vertical line indicates the mirror reversal axis in Experiment 1. In Experiment 2, the
rotations were applied relative to the start location.

Table 1. Trial types within every miniblock in Experiment 3a

Trial type 1 2 3 4 5 6 7 8

Force channel � � � � � � � �
Target location �20 20 0 0 0 0 0 0
Cursor displacement � � � 4 ¡ � 4 ¡

4 4
¡ ¡

aFor trial Types 1 and 2, each of the three cursor displacements (none, left, right) occurs only once for every 3
miniblocks. Crosses indicate the absence of cursor displacements or force channels, whereas � marks and arrows
indicate the presence of force channels and direction of cursor displacements, respectively.

Table 2. Experimental groups in Experiment 3 with testing sessions at different
times of daya

Blocks/groups 4 normal 8 MR Break 12 MR 4 normal

ME Morning 12 h Evening
EM Evening 12 h Morning
EE Evening 24 h Evening
MM Morning 24 h Morning
aBoth days consisted of 16 blocks, each containing 72 reaching movements. The first 4 blocks of day 1 were training
blocks with normal visual feedback and are not listed in the table.
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the hand had traveled �1 cm from the origin. Because force channels are
only suitable to measure feedback corrections orthogonal to the move-
ment direction, we assessed fast feedback responses using the direction of
the initial corrective response in free movements. This was measured by
computing the difference in instantaneous velocity of the hand on trials
with and without displacements. The cursor displacement was applied
after the hand had traveled 1 cm from the start at an angle of �90° or 90°
relative to the initial movement direction of the cursor, and therefore
always at an angle of �30° or 150° relative to the movement direction of
the hand (see Fig. 6B). An unadapted feedback response would yield an
initial hand direction exactly opposing the visual displacement. For ex-
ample, if the cursor was displaced �90° relative to the cursor direction
(or �30° relative to the hand, hyphenated dark blue arrow), the correc-
tion should be directed toward 150° (see Fig. 6B, solid light blue arrow).
A fully adapted feedback response would be rotated by 60° opposite to the
imposed visual rotation, thus resulting in a 90° correction if the cursor
was displaced �30° relative to the hand (see Fig. 6B, solid dark blue
arrow).

Experiment 5: control experiment for feedback response. Experiment 4
relies on the assumption that the feedback response is always opposite to
the cursor displacement, independent of the direction of hand move-
ment. That is, we assumed that the visuomotor system corrects equally
for displacements parallel and orthogonal to the direction of movement.
To test this assumption, three participants performed reaching move-
ments over 16 blocks toward 8 different targets without a visual rotation.
We then displaced the cursor by 1.5 cm at angles of �150°, �90°, �30°,
30°, 90°, and 150° relative to the initial hand and cursor movement di-
rection (Fig. 6A, hyphenated colored arrows). If both orthogonal and
parallel displacement components are corrected equally, the correction
should always be exactly opposed to the displacement (Fig. 6A, solid
colored arrows). In addition, each block contained two movements with-
out displacement toward each target.

Data analysis. The data were analyzed using custom-written MATLAB
(MathWorks) routines. For all five experiments, we excluded move-
ments where the angle between the first and the second 100 ms segment
after movement onset was �60°, as a large difference between the two
segments indicates that the movement was initially not directed at the
target and only corrected online thereafter. Trials with peak movement
velocities �40 or �100 cm/s or RTs �50 ms or RTs� 730 ms were
excluded in Experiments 1–3. For Experiment 3, we further excluded
channel trials where force responses exceeded 5 Newton (N) at any point
in time between 150 and 400 ms after the cursor displacement. Because
the main variable of interest in Experiments 4 and 5 was the corrective
velocity vector, we excluded for these experiments trials where the peak
velocity deviated by �25 cm/s from the median in the respective block
but included all trials independent of their reaction time. Combined,
these criteria led to an exclusion of 5.4% of the trials in Experiment 1,
5.5% in Experiment 2, 4.5% in Experiment 3, 4.8% in Experiment 4, and
4.4% in Experiment 5.

In Experiment 1, tradeoffs between preparation time and accuracy of
the feedforward command were quantified by the slope of the simple
linear regression between RT and error. A tradeoff would show up as a
negative relationship between these two variables. Assessing this rela-
tionship is complicated by the fact that both RT and error reduce over the
course of learning, leading to a positive relationship that could obscure
existing time-accuracy tradeoffs. To account for this effect, we first re-
moved (within each subject and block) any linear trend across the block
for RT and error independently. The movements toward the peripheral
targets were then assigned to 1 of 5 bins according to this relative RT. This
was done for each block, each participant, and each target separately. To
obtain more stable estimates, we then combined the data across all four
lateral targets by mirroring results toward the �20° and 160° onto the 20°
and �160° targets. Furthermore, we averaged the data across 4 blocks for
each participant. As a measure of the relationship between RT and error,
we performed a simple linear regression analysis with the mean RT of
each bin as the independent, and the mean signed error as the dependent
variable, separately for each subject and block. The slope values were then
compared using paired t tests. The time-accuracy tradeoff for visual ro-

tations in Experiment 2 was assessed using a similar analysis, while rotat-
ing the data to combine results across all 8 targets.

In Experiment 3, we compared the state of the feedforward command
across days. Because of the possible RT dependency of the feedforward
command and because mean RTs could change from session to session,
we determined the expected initial error for a RT of 250 ms. For this, the
relationship between RT and error was fitted for each participant, each
block, and each target separately. Because this relationship was slightly
nonlinear, we used Gaussian Process Regression (Rasmussen, 2006),
which can accommodate any smooth relationship between two variables.
The values of the length scale, variance, and noise variance hyperparam-
eters were determined by fitting the data from all subjects together for
each mirror reversed block and then taking the median values.

For Experiments 4 and 5, data were combined across all targets by
rotating the movement data such that the movement direction 1 cm into
the movement was located at 0° because the cursor displacements were
always performed at an angle relative to this initial movement direction.
We then used the difference between the average instantaneous velocity
vector of trials with and without displacements to compute the velocity
component that was due to the corrective response.

Results
Time-accuracy tradeoff in feedforward commands
We hypothesized that the learning of mirror reversal would be
associated with a new time-dependent process that maps targets
to actions, whereas visual rotation learning would be supported
by the recalibration of an existing control policy and should
therefore require no extra processing time.

We tested this idea by enforcing fast RTs in all reaching tasks.
For MR learning (Experiment 1; Fig. 3A), RTs increased at the
onset of MR by 145 ms (	18 ms SE), t(14) � �8.232, p � 0.9.8 �
10�7. RTs reached a plateau in the late MR blocks of the second
session and approached the levels of the baseline performance.
However, when the visual feedback switched back to the nonre-
versed mapping in block 25, RTs increased at first but subse-
quently decreased to 272 ms (	5 ms) in the last block, yielding
almost significantly shorter RTs than the last MR block (t(14) �
2.123, p � 0.052). Thus, even after 2 d of training, movements in
a MR environment required slightly more preparation time than
in the normal environment.

For the equivalent VR experiment (Experiment 2, Fig. 3B), we
expected RT to increase to a lesser degree, if at all. Average RT
increased by 45 ms (	8 ms) when the rotation was first intro-
duced (t(28) � �2.918, p � 0.007) (Fig. 3B). Thus, the increase of
RT during VR learning was considerably smaller than the in-
crease during MR learning (t(28) � �5.170, p � 1.74 � 10�5).
During the second day of training, none of the VR blocks differed
significantly from baseline anymore (block 13: t(14) � �1.683,
p � 0.114). After the rotation had washed out (last block), the
RTs were not significantly shorter than in the fourth block of
training (t(14) � �1.256; p � 0.23). Thus, we found that visual
rotations induced less than one-third of the RT increase com-
pared with mirror reversals.

Our main prediction, however, was that the difference be-
tween the two learning mechanisms should become visible in a
time-accuracy tradeoff: the fact that, for a given adaptation state,
trials with longer RTs show smaller errors. Because RTs as well as
movement errors decreased over the course of the experiment,
we first subtracted out any possible linear relationship between
trial number and error and between trial number and reaction
time for each participant and block separately in the MR and the
VR conditions. We then plotted the initial movement direction of
the hand (averaged from 100 to 150 ms after movement onset) as
a function of RT for different groups of 4 blocks (Fig. 4). For MR
learning (Experiment 1; Fig. 4A), baseline reaching angles were
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offset from zero by �5°, indicating that participants showed a
bias toward moving in the straight forward or backward direction
(for how angles were combined across targets, see Fig. 3 legend),
an effect likely caused by the unequal distribution of targets
around the circle.

To determine whether there was a time-accuracy tradeoff, we
calculated the regression slope between error and RT across bins
(see Materials and Methods) (Fig. 4). In the MR experiment
(blocks 1– 4), there was a small, but significant, negative slope
(t(14) � �4.477, p � 0.001) during baseline. With the beginning
of MR learning (blocks 5– 8), the slope became significantly more
negative compared with baseline (t(14) � 5.004, p � 1.93 �
10�4). For long RTs, participants produced the correctly mir-
rored movements. However, for the fastest RT bin, movements
started in the direction of the visually presented target, rather
than in the opposite, correct direction; the error was significantly
larger than 20°, where a 20° error signifies a movement toward
the mirror reversal axis (t(14) � 3.812, p � 0.001). As training
proceeded, the relationship between RT and movement error
retained similar slopes across all groups of 4 blocks (repeated-
measures ANOVA with groups of 4 blocks as within-subject fac-
tor: F(4,56) � 0.588, p � 0.673). Even in the end of training in
Experiment 1, the difference in the RT-error relationship was still
significant compared with baseline (t(14) � 3.995, p�.001). How-
ever, the time-accuracy curve shifted sideways, such that higher
accuracies could be achieved at shorter RTs. To quantify this
observation, we calculated the RT necessary to reduce the error to
12°, as this time point allowed for assessment for all groups of 4
blocks of the experiment (Fig. 4A), by assuming an approxi-
mately linear relationship between error and RT in the range
tested here and linearly predicting the reaction time for an error
of 12° for each participant and quadruple of blocks. We found
significant differences between blocks 5– 8 and blocks 9 –12 (t(14)

� 2.405, p � 0.031), blocks 13–16 (t(14) � 4.836, p � 2.64 �
10�4), blocks 17–20 (t(14) � 3.769, p � 0.002), and blocks 21–24
(t(14) � 3.860, p � 0.002). Likewise, we found significant hori-
zontal shifts between blocks 9 –12 and blocks 13–16 (t(14) �
2.806, p � 0.014), blocks 17–20 (t(14) � 3.405, p � 0.004), and
blocks 21–24 (t(14) � 3.353, p � 0.005), meaning that each curve
on day 2 was significantly shifted compared with each curve on
day 1. In other words, MR training led to automatization of the
new target-to-movement mapping, visible in a shift of the time-
accuracy tradeoff.

In contrast, we hypothesized that VR learning (Experiment 2)
is achieved by the recalibration of an existing control policy. Par-
ticipants should therefore be able to exploit the automaticity of
the old mapping even during learning and should thus not re-
quire additional time for processing. Hence, we predicted that,
for VR learning, longer reaction times should not result in lower
errors. This is indeed what we found (Fig. 4B). At baseline, there
was a small, but significantly positive, relationship between error
and RT (t(14) � 3.453, p � 0.004). However, with the introduc-
tion of the VR, this relationship did not change (t test between the
slopes of blocks 5– 8 and blocks 1– 4: t(14) � �1.442, p � 0.171).
Thus, although angular errors increased as soon as the visual
display was rotated (blocks 5– 8), longer RTs did not result in
smaller errors. In subsequent blocks, the error reduced further,
but no change in the dependency on RT was observed (t test
between the slopes of blocks 21–24 and blocks 1– 4: t(14) � 0.503
p � 0.623).

Although the range of RTs between Experiments 1 and 2 were
slightly different, the RT distribution overlapped considerably,
especially for the later learning phases. To compare the MR and
VR conditions directly, we recalculated the slopes between RT
and reach angle for the fastest 4 bins during MR and the slowest 4
bins during VR learning, such that the average reaction time used
for calculating the slopes in MR (292 	 9 ms) and VR (279 	 9
ms) were not significantly different (t(28) � 1.053, p � 0.301).
After subtracting the baseline slopes from all other phases we
found that in all phases, there was a significant difference between
the time-accuracy slope of the MR and VR learning conditions
(blocks 5– 8: t(28) � 4.429, p � 1.4 � 10�4; blocks 9 –12: t(28) �
5.101, p � 2.1 � 10�5; blocks 13–16: t(28) � �4.781, p � 5.05 �
10�5; blocks 17–20: t(28) � 3.420, p � 0.002; blocks 21–24: t(28) �
�4.401, p � 1.4 � 10�4). Thus, over a comparable range of RTs,
the MR learning group clearly showed a significantly stronger
dependency of accuracy on RT than the VR learning group.

Adaptation of fast feedback responses
A second window of insight into how computations in the motor
system unfold over time is to investigate fast feedback responses.
If a new control policy requires more time to compute a motor
command, then the feedback responses after learning should also
be delayed, or possibly the early responses should be dominated
by the old policy. If, however, an existing policy was recalibrated,

A B

Figure 3. Group-average reaction time across Experiments 1 and 2. White background represents reaching under normal visual feedback, whereas gray background represents reaching during
mirror reversed or rotated visual feedback. The vertical line indicates the break between sessions. A, RT for �160°, �20°, 20°, and 160° targets during mirror reversal learning (Experiment 1). B,
RT for reaching toward 8 targets during VR (Experiment 2). Error bars indicate between-subject SE.
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then both early and late components of the feedback response
should adapt simultaneously.

To address this question for mirror reversal learning, Experi-
ment 3 probed the reactions of the arm to sudden displacements
of the cursor (Sarlegna et al., 2003). We then calculated the dif-
ference between force responses to left and rightward cursor
jumps and halved it to inspect the temporal evolution of the
feedback correction in different groups of 4 blocks of the exper-
iment. Fig. 5 shows the results averaged across the four consoli-
dation conditions. During unmirrored baseline movements, the
corrective response began �110 ms after the onset of the dis-
placement and reached �1N after 250 ms. In the first 4 mirror-
reversed blocks (blocks 5– 8), it still reached �0.8N in the same
direction but became less sustained thereafter; in the time win-
dow 250 –350 ms, it was significantly lower than during baseline,
t(60) � 8.35, p � 1.2 � 10�11. This unreversed response would
increase the visual error, rather than compensate for it (Fig. 1). In

blocks 9 –12, the force response further decreased but still did not
reverse. Only during the second day (blocks 13–24) did we ob-
serve a reversal of the force response in the time window 250 –350
ms (blocks 13–16, �0.14 	 0.038N, t(60) � �3.695, p � 4.8 �
10�4). Yet, even in blocks 21–24, the initial incorrect force re-
sponse was not fully abolished: in the time window between 130
and 200 ms, it remained significantly positive (0.13 	 0.018N,
t(60) � 8.028, p � 4.3 � 10�11).

In sum, feedback responses during MR learning provide a very
similar picture as feedforward responses. While the system gen-
erates correct movements after additional processing time, the
fast and automatic responses remained unadapted even after 2
training sessions (Gritsenko and Kalaska, 2010). The data clearly
showed a progression of learning in which the correct response
was progressively generated at shorter delays, suggesting that the
new control policy, which was initially rather slow, became
automatized.

Determining how feedback commands adapt during visual
rotation is more challenging, as the adapted and unadapted re-
sponses are not opposite to each other but differ only by the
imposed rotation angle. To amplify the contrast, we conducted
another study (Experiment 4) in which participants adapted to
either a 60° or a �60° rotation and probed feedback responses by
displacing the cursor orthogonally to the cursor movement
(	90°, Fig. 6B, hyphenated dark blue and red arrows). In the
condition in which the cursor was rotated by 60°, the effective
visual displacement was in a direction �30° and 150° relative to
the hand movement. For a fully adapted feedback response, the
hand should correct orthogonally to the hand trajectory as before
(Fig. 6B, solid red and dark blue arrows). In contrast, if the
feedback response is unadapted, the correction should be op-
posite to the visual displacement (i.e., 150° or �30° relative to
the hand movement direction) (Fig. 6B, solid orange and light
blue arrows).

The latter prediction, however, relies on the assumption that
participants would correct their hand movement opposite to the
visual cursor displacements, even if the displacement were not
orthogonal to the movement direction. Because it is possible that
the motor system reacts less to the component of the visual dis-
placement in the direction of the movement, we tested our as-

A

B

Figure 4. Relationship between RT and the directional error in Experiments 1 and 2. Blocks
1– 4 were collected during baseline and blocks 5–24 during MR or VR. The trials were binned by
RT for each target, participant, and block. Visual feedback was veridical during blocks 1– 4 and
mirror reversed or rotated during blocks 5–24. Blocks 1–12 were measured during the first
session, blocks 13–24 during the second session. A, Mirror reversal: visual errors from move-
ments toward the �160° and 20° target were flipped to allow averaging with errors from the
�20° and 160° targets. Visual errors �20° indicate that the hand reached into the wrong
(unmirrored) direction. Completely unadapted responses would yield an error of 40°. B, Visual
rotation. A completely unadapted response would result in an error of 40°. Error bars indicate
between-subject SE.

Figure 5. Relationship between time and feedback response during mirror reversal learning
(Experiment 3). Shown is the force measured in the channel produced in reaction to a 1.5 cm
cursor displacement. Blocks 1– 4 were collected during baseline and blocks 5–24 during MR.
The hyphenated line indicates the reversed baseline response to serve as an illustration of what
a perfectly mirror reversed feedback response would have looked like. Shaded area represents
between-subject SE.
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sumption in an additional experiment. In Experiment 5, we
displaced the cursor by 1.5 cm at an angle of 	30°, 	90°, and
	150° relative to hand and cursor movement (Fig. 6A). Even for
the oblique angles, the initial correction should be exactly oppo-
site to the cursor displacements.

We used the difference between the instantaneous velocity
vectors between trials with and without displacements at differ-
ent time points after the displacement as a measure of the correc-
tive response. We found that, for the 90° displacements under the
natural mapping, the velocity difference vectors were slightly
tilted downward, meaning that the hand not only corrected in the
appropriate direction, but also decelerated along the main direc-
tion of movement (Fig. 6C). To summarize the effects across
displacement directions offline, we rotated the correction vector
for the �90° displacements by 180°, effectively canceling out any
decelerating effect.

For oblique displacements, we found that the corrections were
approximately opposite to the displacement (Fig. 6D). To analyze
the responses together, we inverted the horizontal component of
the responses to the 150° and 30° displacements, and the vertical
component of the responses to the 	150° displacement, such
that all corrections would superimpose with the correction for
the �30° displacements (which requires a 150° correction for full
cancellation). The angle of the resulting correction was 136.4°
(	9.1°), slightly less than the ideal response of 150°, indicating
that participants reacted to displacements in movement direction
slightly less than to displacements orthogonal to it. Thus, based
on these results, we would expect that a fully unadapted feedback
response to an anticlockwise (�90°) cursor displacement under a
60° cursor rotation should be 136.4°.

In Experiment 4, we averaged the results of the 60° and �60°
rotation groups, by flipping the trajectories for the group that
underwent the �60° rotation. The average feedback responses
during VR learning (Fig. 6F) did not resemble the feedback re-
sponses observed in the control experiment (Fig. 6D). Rather, the
corrections were oriented �90° and 90° relative to the movement
direction. In other words, the feedback response in VR appeared
to be immediately oriented in the correct direction (Fig. 6G).
Although we cannot directly compare the forces measured in
Experiment 3 with the velocity vectors measured in Experiment

A B
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Figure 6. Feedback responses in Experiments 4 and 5. A, In Experiment 5, the cursor (hy-
phenated gray line) and the hand (solid gray line) moved in the same direction. The cursor was
displaced (hyphenated colored arrows) at an angle of �90° (dark blue), � 30° (light blue), 90°
(red), or 150° (orange) relative to the movement direction. Displacements also occurred in 30°
and �150° directions (data not shown). The hand movements that cancel out the cursor
displacements are shown as solid arrows of the same color. B, In Experiment 4, the cursor

4

(hyphenated gray line) was rotated by 60° or �60° (only the 60° is shown in the schematic)
from the hand movement (solid gray line). Displacements were �90° (blue hyphenated) or 90°
(red hyphenated) relative to the movement direction of the cursor. The solid red and dark blue
arrows indicate the required hand movement directions that cancel out the corresponding
displacement (hyphenated arrow with the same color). The orange and the light blue arrows
represent what an unadapted response would look like. C, Quiver plot of feedback responses in
Experiment 5 to �90° (dark blue) and 90° (red) cursor displacements. The vector origin repre-
sents the average hand position at time points from 75 to 375 ms after the cursor displacement
(20 ms resolution), and the vector the difference in instantaneous hand velocity between trials
with and without displacement. D, Feedback responses to �30° (light blue) and 150° (orange)
cursor displacements in Experiment 5. E, Response to �90° (dark blue) and 90° (red) cursor
displacements during baseline reaching (i.e., before cursor rotation in Experiment 4) and (F)
with rotated cursor (blocks 5– 8). Results are shown averaged over the 60° and �60° rotation
groups, by right-left flipping the results for the �60° group. G, Mean angular direction of
feedback correction (	SE) 250 –350 ms after the displacement plotted over all blocks of Ex-
periment 4. Responses are combined across cursor displacements and rotation groups. Light
blue background represents blocks with visual rotation. Blue line and shading represent predic-
tion of fully unadapted feedback response, based on mean and SE of responses to oblique cursor
displacement in Experiment 5. H, Mean angular error of the feedforward command (	SE)
averaged from 100 to 150 ms after movement onset while adapting to the 60° rotation in
Experiment 4 for comparison.
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4, these results contrast starkly with the slow and incomplete
adaptation of fast feedback responses during MR learning.

Our results therefore suggest a fundamental difference in the
way in which MR and VR are learned. MR learning initially re-
quires extra processing time to compute accurate feedforward
and feedback commands, indicating that it may involve the es-
tablishment of a new control policy. Although the new motor
commands could be generated more quickly after 2 d of training,
it remained dependent on processing time. In contrast, VR learn-
ing did not show such dependency, even early in learning-
consistent with the idea that here a fully automatized control
policy was recalibrated.

Offline gains in performance between sessions
With the shifting time-accuracy tradeoff, MR learning shares an
important feature with other motor learning tasks (Beilock et al.,
2008). It has been recently suggested that such shifts should be
considered the defining feature of “skill learning” (Reis et al.,
2009; Shmuelof et al., 2012). Another characteristic of many tasks
that are considered “skill” tasks concerns consolidation between
sessions: For example, for learning of sequential movements, per-
formance levels typically deteriorate very little overnight (Rick-
ard et al., 2008) and sometimes even appear to show offline gains
(Stickgold, 2005; Wright et al., 2010; Abe et al., 2011). In contrast,
adaptation tasks that require a recalibration of an existing control
policy nearly universally show some decay of the motor memory
during an intervening interval (Tong et al., 2002; Klassen et al.,
2005; Krakauer et al., 2005; Trempe and Proteau, 2010). If this
different temporal dynamic of consolidation can be attributed to
the suggested distinction of automatization of a new control pol-
icy versus recalibration of an existing control policy, then MR
learning should show offline gains in the break between the two
sessions, whereas VR learning should show offline forgetting.

Offline gains in skill learning experiments are often reported
to depend on sleep (Walker et al., 2002; Cohen et al., 2005; Rob-
ertson et al., 2005; Stickgold, 2005; Rickard et al., 2008). For MR
learning in Experiment 3, we therefore randomly assigned the
participants to one of four groups. The ME group had the first
session in the morning and the second session in the evening of
the same day, and therefore did not have a night of sleep between
the two sessions. The EM group had the first session in the eve-
ning and the next session in the morning of the next day. Both of
these groups had a break of 12 h between their two sessions. To
test whether potential differences depended on the time of day of
the first or second session, rather than on the presence or absence
of sleep, we included two additional groups, which performed the
experiment either on the mornings (MM) or on the evenings
(EE) of 2 consecutive days. If consolidation really depended on
sleep but not time of day, then only the ME group (the only group
without sleep) should show worse consolidation than any of the
other three groups, whereas the other three groups should not
differ from each other.

Because error depended on RT and because RT may differ
from one session to the next, we quantified the skill level as the
movement error that the participant would show for a fixed RT.
The slightly nonlinear relationship between error and RT was
fitted using Gaussian Process Regression (see Materials and
Methods), and we then simply read off the movement error for an
RT of 250 ms. Errors from movements toward the 20° target were
inverted, so that the RT-corrected directional error for both pe-
ripheral targets could be averaged.

We found that MR learning did not show forgetting between
sessions, but rather offline gains in performance (Fig. 7). Across

all groups, there was a significant improvement in feedforward
performance from the last block of the first session to the first
block of the second session (t(60) � �4.72, p � 1.4 � 10�5).
Tested individually, the EM group (t(14) � �2.678, p � 0.018),
the EE group (t(12) � �3.174, p � 0.008), and the MM group
(t(16) � �2.138, p � 0.048) all significantly improved overnight.
The only group that did not show significant improvements was
the ME group (t(15) � �1.872, p � 0.081), which did not have a
night of sleep between the two sessions. However, there was no
significant direct difference between the group without sleep and
the groups with a night of sleep between the two sessions in terms
of their change in movement error from Session 1 to Session 2
(t(59) � �1.471, p � 0.147).

Offline gains were even more clearly visible in the feedback
corrections (Fig. 8). For this analysis, we averaged the feedback
response (Fig. 5) over the interval from 250 to 350 ms after the
displacement, as this time period showed the most profound
learning-related changes. Again, all participants combined
showed very strong offline gains (t(60) � �4.637, p � 1.9 �
10�5). We also plotted this measure as a function of block for all
four groups separately. The EM group (t(14) � 2.265, p � 0.04),
the EE group (t(12) � 3.011, p � 0.011), and the MM group (t(16)

� 2.656, p � 0.017) showed significant increases in performance
from one session to the next. The only group that did not show
improvements was the ME group (t(15) � 1.189, p � 0.253) (i.e.,
the group that did not have a night of sleep between the two
sessions). The groups with sleep had only marginally stronger
offline gains than the group without sleep (t(59) � 1.837, p �
0.071), indicating that offline improvements may have been en-
hanced by sleep. There was no significant effect of time of day of
the first (t(59) � 1.220, p � 0.227) or the second session (t(59) �
0.650, p � 0.518), nor was there an effect of the duration of the
break between the sessions (t(59) � 1.314, p � 0.194). Together,
these results clearly demonstrate the existence of offline gains
during MR learning. In respect to the sleep dependency of this
effect, our results remain inconclusive. Even though there are
some trends in the data that indicate that an intermitted night of
sleep may amplify this effect, the direct comparison of the groups
failed to reach significance.

In contrast to MR, VR learning showed clear forgetting be-
tween sessions, in line with many other adaptation tasks (Tong et
al., 2002; Klassen et al., 2005; Krakauer et al., 2005; Trempe and
Proteau, 2010). Although we did not find a significant relation-
ship between RT and angular error, we used, for the sake of
consistency, the same method for RT correction as for the MR
data. Within the first day, the initial error reduced from 24.4°
(	2.1°) to 8.7° (	1.5°) (Fig. 7E). When participants returned on
the second day, their error had increased again to 14.7.2° (	3°).
Angular errors in the first block of the second session were sig-
nificantly larger than angular errors in the last block of the first
session (t(28) � �2.192, p � 0.049; Fig. 7F). Thus, our results
confirm previous literature showing that adaptation is forgotten
between sessions, and provide evidence for a clear dissociation
from MR learning, for which offline gains are observed.

Discussion
We directly contrasted learning of two different visuomotor
transformations. For MR learning, we found a clear RT depen-
dency of initial movement error, with faster responses leading to
larger errors than slow responses. We hypothesized that MR
learning involves the acquisition of a new sensorimotor mapping,
which initially takes more time than the old mapping to perform
the necessary computations. Therefore, under strict time con-
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straints, the response was still dictated by the old mapping. With
2 d of training, we found that the new mapping became increas-
ingly automatic, achieving the same movement error at shorter
RTs. It did not, however, achieve the same automaticity as the
baseline mapping.

For VR learning, movement error did not decrease with in-
creasing RT. We propose that this form of motor learning relies
on the recalibration of an already existing mapping and therefore
can exploit the established automaticity of the underlying com-
putational processes. Thus, in this view, the appearance of a time-
accuracy tradeoff at the beginning of learning with subsequent
shifts of this relationship is a cardinal sign that the motor system
acquires and automatizes a new mapping from goals to motor
commands (Shmuelof et al., 2012).

Intriguingly, we found a parallel dissociation between MR and
VR learning during fast feedback responses to displacements of
the visual cursor. For MR learning, the corrective response was
initially directed into the wrong direction, even after 2 d of train-
ing (Day and Lyon, 2000; Gritsenko and Kalaska, 2010) and re-
versed only in the late phases of the response. Thus, feedforward
and feedback control both require additional processing time in
the beginning of learning and then are increasingly automatized.

In contrast, the feedback command during VR learning ap-
peared to be fully adapted immediately. It has been suggested that
feedback responses during large VR must adapt rapidly within a
single trial because the hand would otherwise circle around the
target (Braun et al., 2009a). Another explanation might be that
the feedback command does not need to adapt at all because it
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Figure 7. Consolidation of the feedforward command in Experiments 2 and 3. Average angular errors 100 –150 ms after movement onset are plotted over the different blocks of the experiment
(A–D) for the four mirror reversal groups (Experiment 3) and (E) the visual rotation group (Experiment 2). The error is corrected for the influence of time-accuracy tradeoff by calculating the average
error at RT � 250 ms (see Materials and Methods). Colored background represents blocks with mirror reversal or visual rotation. The vertical hyphenated line separates the two sessions. All mirror
reversal groups performed as well or better in the first block of the second session than in the last block of the first session. F, Bar graph of the difference in error between the first block in the second
session (block 13) and the last block in the first session (block 12) split up by the visual rotation and the four mirror reversal groups: ME, EM, EE, MM; and the VR group. *p � 0.05 (significant t test
against 0). Error bars indicate between-subject SE.
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always bases its reactions on the relative angle between the dis-
placement and the visually observed trajectory. Whatever the ex-
act mechanism, the presence of time-accuracy tradeoffs in MR,
and their absence during VR, provides clear evidence that the two
visual transformations are learned via separate processes.

A previous study found a relationship between RT and how
quickly participants learned a 60° visual rotation (Fernandez-Ruiz et
al., 2011). However, in this study, RTs were unconstrained and on
average 400–600 ms. We argued that unconstrained RTs may have
invited strategic replanning of the endpoint (Mazzoni and
Krakauer, 2006; Taylor et al., 2010; Taylor and Ivry, 2011), a
process more related to an explicit mental rotation of the desired
movement direction (Georgopoulos and Massey, 1987; Neely
and Heath, 2009) than to visuomotor adaptation. Indeed, when
RTs were constrained to �350 ms, as in our study, no evidence
for a time-accuracy tradeoff in VR learning was found. These
results therefore argue that even visual rotations are not always
learned purely through recalibration of an existing control policy:
without speed constraints, additional time-consuming processes

(strategic remapping) can help to improve performance more
quickly.

Why does the brain have to learn a new control policy for
mirror reversals whereas it appears to recalibrate an existing con-
trol policy for visual rotations? At a computational level of de-
scription (Marr and Poggio, 1976), MR and VR learning seems to
be comparably difficult. Both can be described with a simple
change in the function that transforms visual inputs into arm
movements. However, what is difficult for the brain has to be
viewed in the context of its prior experience. In ambiguous situ-
ations, the motor system appears to interpret visuomotor errors
as being caused by VR (Turnham et al., 2011), possibly reflecting
inherent assumptions about the structure of the environment.
These priors can be changed through repeated exposure to dif-
ferent environments, a process termed structural learning (Braun
et al., 2009b). Viewed in this framework, MR learning would be
slow as it violates the learned structure of possible visuomotor
transformations, requiring the slow acquisition of a new struc-
ture. A related explanation is based on the assumption that a
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Figure 8. Consolidation of the feedback command in Experiment 3. The average feedback command 250 –350 ms after the displacement is plotted over different blocks of the experiment.
Colored background represents mirror reversal of the visual feedback. A–D, Feedback commands of the four mirror reversal groups. E, Bar graph of the force differences between the first block in the
second session (block 13) and the last block in the first session (block 12) split up by the four groups: ME, EM, EE, and MM. *p � 0.05 (significant t test against zero). Error bars indicate
between-subject SE.
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visuomotor mapping is adapted by adding some part of the cor-
rective response under the old mapping to the old motor com-
mand (Kawato and Gomi, 1992). VRs up to 90° could be learned
like this, whereas for MR the initial corrective response would
point in the wrong direction (Fig. 1), again requiring the estab-
lishment of a new control policy. This hypothesis would make the
yet to be tested prediction that rotations �90° should also show
time-accuracy tradeoffs. Indeed, it has been suggested that such
large rotations are learned by different mechanisms (Abeele and
Bock, 2001).

Rather than providing a clear computational-level explana-
tion, the main empirical contribution of the paper is to show that
MR and VR learning clearly differs in their time-accuracy
tradeoff, both in feedforward and feedback control. We hypoth-
esize that these tradeoffs are tightly related to the tradeoff be-
tween movement speed and accuracy, as faster movements
impose tighter time constraints on feedback processes. Consis-
tent with our interpretation, shifts in such speed-accuracy
tradeoffs have been interpreted as a sign of the establishment of a
new control policy (Haith and Krakauer, 2013). Following this
definition, the learning of new trajectories (Shmuelof et al.,
2012), finger sequences (Karni et al., 1995), or finger configura-
tions (Waters-Metenier et al., 2014) should have some similarity
to MR learning.

Our second main finding is that the presence of a time-
accuracy tradeoff is associated with how the learned behavior
consolidates between sessions. For VR learning for which no
time-accuracy tradeoff was found, forgetting occurred between
sessions. This is in line with other studies of adaptation (Kassard-
jian et al., 2005; Krakauer et al., 2005; Galea et al., 2011). For MR
learning, we found clear evidence for offline gains, both in the
feedforward and the feedback command. So far, offline gains have
mainly been reported for motor learning of sequential movements
(Robertson et al., 2004). Our study provides to our knowledge the
first reported instance of offline improvement for learning of visuo-
motor transformations during reaching movements.

There has been an extensive debate on whether true offline
gains in sequential finger movements depend on sleep (Stickgold,
2005; Wright et al., 2010; Abe et al., 2011). Our results do not
allow for a definite conclusion in the MR learning task: For both
feedback and feedforward commands, we found trends indicat-
ing that offline gains are brought about by sleep; however, a direct
comparison of the different MR groups did not reach statistical
significance. Thus, our failure to find evidence of sleep depen-
dency may be partly due to a lack of power, and the relationship
between sleep and memory in this context may warrant further
study.

The presence of a time-accuracy tradeoff and offline gains
suggests that the learning mechanisms that underlie MR and 40°
VR have different physiological underpinnings. Specifically, one
may speculate that the establishment of a new control policy
relies on corticostriatal circuits. Indeed, Gutierrez-Garralda et al.
(2013) showed that basal ganglia patients exhibit normal learning
in a dart throwing task when the visual scene is horizontally dis-
placed but impaired performance when the visual scene is mirror
reversed (but see Stebbins et al., 1997; Laforce and Doyon, 2001).
The basal ganglia have been associated with action selection (Ge-
rardin et al., 2004) and the acquisition of new control policies
(Doya, 2000; Middleton and Strick, 2000; Hikosaka et al., 2002;
Boyd et al., 2009; Doyon et al., 2009). In addition, Parkinson’s
and Huntington’s disease patients are impaired in learning se-
quential finger movements and learning of other novel tasks (Ge-
rardin et al., 2004; Boyd et al., 2009; Penhune and Steele, 2012). In

contrast, the adaptation of eye movements (Takagi et al., 1998,
2000), arm movements (Martin et al., 1996; Tseng et al., 2007),
and gait (Reisman et al., 2007) heavily depends on the integrity of
the cerebellum, whereas basal ganglia-associated disorders affect
adaptation to a lesser degree (Fernandez-Ruiz et al., 2003;
Marinelli et al., 2009; Gutierrez-Garralda et al., 2013).

A strict dissociation between the cerebellum as the substrate
for adaptation/recalibration and the basal ganglia as the substrate
for control policy acquisition has recently been called into ques-
tion with increasing evidence that the cerebellum is involved in
both adaptation and “skill learning” (Penhune and Steele, 2012).
Cerebellar patients are impaired in dart throwing tasks with hor-
izontally shifted as well as with mirror reversed visual feedback
(Sanes et al., 1990; Vaca-Palomares et al., 2013).

To date, it has been very difficult to determine whether any
differences found between adaptation and skill-learning tasks can
be truly attributed to the underlying learning mechanism or the
differences between the tasks that are used to measure them. Here
we demonstrate that the two mechanisms are differently engaged
in the learning of two different visuomotor mappings during
reaching movements. The current paradigm may therefore be
ideally suited for studying the neural correlates of acquisition and
recalibration of control policies using functional imaging or neu-
rophysiologic recordings within a single task.
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