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Human premotor areas parse sequences 
into their spatial and temporal features
Katja Kornysheva1,2*, Jörn Diedrichsen1

1Institute of Cognitive Neuroscience, University College London, London,  
United Kingdom; 2Department of Neuroscience, Erasmus Medical Centre, 
Rotterdam, Netherlands

Abstract Skilled performance is characterized by precise and flexible control of movement 
sequences in space and time. Recent theories suggest that integrated spatio-temporal trajectories 
are generated by intrinsic dynamics of motor and premotor networks. This contrasts with behavioural 
advantages that emerge when a trained spatial or temporal feature of sequences is transferred  
to a new spatio-temporal combination arguing for independent neural representations of these 
sequence features. We used a new fMRI pattern classification approach to identify brain regions 
with independent vs integrated representations. A distinct regional dissociation within motor 
areas was revealed: whereas only the contralateral primary motor cortex exhibited unique patterns 
for each spatio-temporal sequence combination, bilateral premotor areas represented spatial 
and temporal features independently of each other. These findings advocate a unique function  
of higher motor areas for flexible recombination and efficient encoding of complex motor 
behaviours.
DOI: 10.7554/eLife.03043.001

Introduction
Skilled performance in music, speech, or sports often involves long sequences of movements, which 
demand a precise sequential activation of different muscles in time. The ordering of these muscle 
activations—and hence the ordering of the movements of different body parts in space—is here 
referred to as the ‘spatial feature’ of a sequence. Additionally, movement sequences are often charac-
terized by a stereotypical temporal structure or rhythm—their ‘temporal feature’. The latter can either 
emerge spontaneously as part of chunk formation (Sakai et al., 2003), or be directly relevant to the 
goal of the sequence, as in musical performance, dance, or speech (Shin and Ivry, 2002; Lewis and 
Miall, 2003; Repp, 2005; Kotz and Schwartze, 2010; Bläsing et al., 2012; Grahn, 2012; Penhune 
and Steele, 2012). One of the hallmarks of human motor performance is the ease with which experts 
can modify the temporal and spatial features of learned motor skills. For example, a pianist is able to 
play the same tune using different variations of the rhythm, and a fluent speaker can change separately 
the word order or the rhythmic profile of speech for effective communication. How is such flexibility in 
skilled actions achieved neurally?

There has been a long-standing debate on whether a dedicated representation of temporal struc-
ture of skilled movements exists, or whether it is tightly integrated with a representation of its spatial 
features (Conditt and Mussa-Ivaldi, 1999; Shin and Ivry, 2002; Ullén and Bengtsson, 2003; Medina 
et al., 2005; Spencer and Ivry, 2009; Ali et al., 2013). Recent work suggests that spatio-temporal 
trajectories of movements can be learned and produced by a dynamical network of neurons that 
encodes patterned muscle dynamics, instead of by representing different parameters of a movement 
sequence separately (Laje and Buonomano, 2013; Shenoy et al., 2013). This neural implementation 
has been advocated for the primary motor and premotor cortices and implies that temporal features 
are stored inseparably from the specific movement trajectory trained. From this perspective, a spatial 

*For correspondence: 
k.kornysheva@ucl.ac.uk

Competing interests: The 
authors declare that no 
competing interests exist.

Funding: See page 20

Received: 10 April 2014
Accepted: 11 July 2014
Published: 12 August 2014

Reviewing editor: Jody C 
Culham, University of Western 
Ontario, Canada

 Copyright Kornysheva and 
Diedrichsen. This article is 
distributed under the terms of 
the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

RESEARCH ARTICLE

http://elifesciences.org/
http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg
https://creativecommons.org/
http://dx.doi.org/10.7554/eLife.03043
http://dx.doi.org/10.7554/eLife.03043.001
mailto:k.kornysheva@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Neuroscience

Kornysheva and Diedrichsen. eLife 2014;3:e03043. DOI: 10.7554/eLife.03043 2 of 23

Research article

sequence performed with two different temporal profiles would constitute two distinct behaviours and 
demand the training of independent neural generators.

Alternatively, the motor system may parse movement sequences into their constituent spatial and 
temporal features, which then are represented independently. Such an encoding scheme would 
explain the ability of both animals and humans to flexibly recombine learned temporal patterns with 
a new spatial sequence and vice versa (Ullén and Bengtsson, 2003; Ali et al., 2013; Kornysheva 
et al., 2013).

Neurally, sequence representations are characterised by the occurrence of sequence-specific 
tuning. For example, neurons in the supplementary motor area (SMA) vary their firing rate for specific 
movement transitions and whole sequences of movements rather than for individual movements in 
a sequence (Tanji and Shima, 1994). Inactivating the SMA, the primary motor cortex, the putamen 
or the dentate nucleus in monkeys disrupts sequential behaviour whilst sparing individual actions (Tanji 
and Shima, 1994; Shima and Tanji, 1998; Hikosaka et al., 1999; Lu and Ashe, 2005), with a similar 
effect demonstrated for the SMA/pre-SMA in humans with non-invasive stimulation techniques 
(Gerloff et al., 1997; Kennerley et al., 2004). Recent evidence in primates also argues for the exist-
ence of neurons tuned to specific temporal intervals between movements in the same area, with 
a subset also tuned to the position of an interval in a sequence (Merchant et al., 2013). However, it 
remains unknown whether these neurons are simply part of a dynamical network that represents 

eLife digest Once a pianist has learned to play a song, he or she can nearly effortlessly 
reproduce the sequence of finger movements needed to play the song with a particular rhythm.  
A skilled pianist can also improvise, pairing the same keystrokes with a different rhythm or playing 
the same rhythm with a slightly different sequence of keys. This ability to flexibly modify and 
recombine sequences of physical movements in space and time enables humans to exhibit great 
creativity in music, language, and many other tasks that require motor skills. However, the underlying 
brain mechanisms that allow this flexibility are only beginning to be explored.

Some scientists have theorized that networks of brain cells in the parts of the brain that control 
movement store a sequence in time and space as one inseparable unit. However, this theory 
doesn't explain why pianists and other skilled individuals can separate and recombine the physical 
movements and timing of a sequence in new ways. An alternate idea is that the brain captures the 
information necessary to execute a series of physical movements separately from the timing at 
which the movements are to be carried out. This would allow these features to be put together in 
new ways.

Kornysheva and Diedrichsen taught a group of volunteers a series of finger movements paired 
with particular rhythms. Half the volunteers performed the task using their left hand and the 
other half with their right hand. After training the volunteers performed better when producing 
sequences they had been trained on, even in trials where either the rhythm or the finger sequence 
was slightly changed.

The volunteers were also asked to perform the trained movements while their brain activity was 
monitored in a functional magnetic resonance imaging (fMRI) machine. Kornysheva and Diedrichsen 
looked for areas that showed similar patterns of increases and decreases in activity whenever  
a particular sequence was performed. This identified areas that showed unique patterns for each 
trained sequence combination of finger movements and rhythm, which could be distinguished from 
areas where the activity patterns for sequences remained similar across rhythms or across finger 
movements.

Kornysheva and Diedrichsen found that a region of the brain that controls movement encodes 
sequences on the opposite side of the brain from the moving hand. In this part of the brain, the 
movement and timing were encoded together as one unit. However, in premotor areas—which are 
known to help individuals to plan movements—the timing and the finger movements appeared to 
be encoded separately in overlapping patches on both sides of the brain. This automatic separation 
appears to be a fundamental function of the premotor cortex, enabling behavioural flexibility and 
the storage of complex sequences of movements in space and time.
DOI: 10.7554/eLife.03043.002
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spatial and temporal features in an integrated manner, or whether independent populations of neu-
rons encode spatial and temporal features in isolation.

Here, we used fMRI to study the sequential tuning of individual voxels in the human brain.  
We hypothesized that following training, specific neuronal sub-populations will become differentially 
active for different sequences, as has been observed in neurophysiological studies for spatial sequence 
features (Tanji and Shima, 1994). If such sequence-specific tuning is sufficiently clustered, it should be 
detectable with the relatively low spatial resolution of fMRI (Kamitani and Tong, 2005; Swisher et al., 
2010). Using a classification approach to evaluate these subtle differences in the local patterns of brain 
activity during sequence production, a recent imaging study (Wiestler and Diedrichsen, 2013) indeed 
showed that such sequential tuning can be detected in the human brain in a range of motor and pre-
motor areas. This study, however, did not reveal whether and how these areas represented spatial 
or temporal features of sequences.

To this end, we developed a visually paced motor learning paradigm. Participants were trained 
on nine sequences consisting of unique combinations of three spatial and three temporal features 
(Figure 1). Half the participants were trained on the right and half on the left hand to probe whether 
possible differences between hemispheres reflected hemispheric specialisation or the difference 
between contra vs ipsilateral encoding. First, by looking at behavioural generalisation, we show trans-
fer of trained temporal and spatial features to new combinations. Second, by employing separate 
classification procedures of fMRI voxel activity patterns and testing for generalization of patterns 
across temporal or spatial contexts, we were able to dissociate independent spatial and temporal from 
integrated representation profiles across the human motor system.

Results
Learning and transfer of sequence features
We used a visually cued motor learning task to induce and assess the acquisition of sequences 
involving finger movements (Kornysheva et al., 2013). Subjects were trained to produce nine finger 
sequences that were unique combinations of three temporal and three spatial sequence features 
(Figure 1) randomly generated for each subject. Half the participants trained and performed the 
sequences with the left, the other half with the right hand. Over the course of 3 days of training 
the force responses on the keyboard triggered by the visual stimulus became faster (Figure 2A). 
The average reaction time (RT) decreased from 410 ms (SD: 70) to 288 ms (SD: 48, Figure 2B). To 
assess the specificity of the improvement in motor performance to the trained sequences, we also 

Figure 1. Subjects were trained on nine sequences, which were unique combinations of three spatial (finger 
order) and three temporal sequence features. Sequences were presented in mini-blocks of three trials in a row. 
Each sequence began with the presentation of a warning cue (square).
DOI: 10.7554/eLife.03043.003
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tested participants on sequences composed of 
untrained spatial and temporal features. Subjects 
also reduced the RT for untrained sequences 
from 456 ms (SD: 90) to 346 ms (SD: 64), which 
suggests a general effect of visuomotor learning. 
However, the reduction was significantly smaller 
than that for the trained sequences (F(1,30) = 13.342, 
p=0.001), and there was no interaction with  
the group (right-hand-trained vs left hand,  
F(1,30) = 1.235, p=0.275). Overall error rates across 
conditions paralleled the RT findings (Figure 2—
figure supplement 1). For trained sequences 
the error rate reduced from 46.1% (SD: 26.7) to 
6.3% (SD: 4.9). For untrained from 52.1% (SD: 31.6) 
to 29.5% (SD: 21), suggesting that the RT find-
ings were not due to a change in the speed-
accuracy trade-off. During the fMRI session we 
only tested the nine trained sequences. The RTs 
increased as compared to the end of training 
(Figure 2B, t(31) = 6.57, p<0.0001). This occurred 
despite the subjects' familiarity with a supine 
position on a mock MRI bed during training and 
may be related to the fMRI noise during the 
performance of the task, the lack of any audi-
tory movement feedback occurring, as well as  
a more restricted mobility in an MRI environment. 
Importantly, however, across subjects individual 
RTs during fMRI session strongly correlated with 
RTs for trained sequences in the last training block  
(r = 0.717, p<0.0001), indicating that the responses 
reflected consistent measures of behaviour.

On the day following fMRI, we conducted  
a post-test to assess whether participants would 
be able to utilize both the learned spatial and 
temporal features when these were paired with 
novel untrained features. Based on previous studies 
(Shin and Ivry, 2002; O’Reilly et al., 2008; 
Brown et al., 2013; Kornysheva et al., 2013), 
we expected evidence only for spatial, but not 
for temporal feature transfer in the first three 
trials. Indeed, during the training phase, in which 
each sequence was repeated only three times in 
a row (Figure 2B), and during the first trials in the 
post-test (Figure 2C) the temporal transfer condi-
tion was not performed faster than untrained 
control sequence. However, consistent with two 
previous experiments (Kornysheva et al., 2013), 
a delayed RT advantage for the temporal transfer 
condition emerged after a few repetitions of the 
new sequence combination (Figure 2C, left panel). 
Averaged over all nine repetitions in the post-test, 
sequences which combined a trained temporal 
(F(1,28) = 12.963, p=0.001) or spatial (F(1,28) = 20.830, 
p=0.0001) feature with an untrained feature were 
performed faster than a repetition of a com-
pletely novel sequence (Figure 2C, right panel). 

Figure 2. Reaction time (RT) results. (A) Two trial 
examples of force traces show faster finger responses 
to visual stimuli after (‘post’) as opposed to the begin-
ning of training (‘pre’). (B) Subjects showed general 
and sequence-specific learning during the training of 
the combined temporal and spatial sequences. The RT 
remained relatively stable across the fMRI session runs, 
albeit overall higher than at the end of training outside 
the MRI environment. (C) Post-test results. Left panel: 
repeating sequences nine times in the test phase 
yielded an immediate RT decrease for trained spatial 
sequences (blue) relative to untrained sequences 
(black), and only delayed RT differences for trained 
temporal sequences (red), in line with previous results 
(Kornysheva et al., 2013). Right panel: a boxplot 
displaying RT results across subjects and all sequence 
repetitions in the post-test revealed significant RT 
advantages for the trained sequence, as well as the 
trained spatial and trained temporal feature conditions 
when compared to untrained sequences, suggesting 
that both the finger order and their relative timing 
were represented independently. A double asterisk (**) 
indicates a significant difference between conditions 
Figure 2. Continued on next page
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This suggests that training of timed finger 
sequences automatically results in independent 
storage of its spatial and temporal features. 
ANOVAs also revealed that these effects did not 
differ between the left and right-hand-trained 
groups (p>0.127). These results replicate ear-
lier findings and can be explained by a model  
in which the temporal representation acts as  
a multiplicative go signal on a concrete spatial 
plan (Kornysheva et al., 2013); while both tem-
poral and spatial sequences are represented 
independently, the temporal representations act 
at the output stage as a modulator on a spatial 
expectation. Thus, without a spatial expectation, 
temporal knowledge does not have an effect. 
For this reason, temporal transfer cannot mani-
fest itself immediately, but only after a plan for 
the next movement has been formed (Hikosaka 
et al., 1999; Penhune and Steele, 2012).

Average activation increases
Compared to rest, the visually cued production of 
trained finger sequences yielded increased activity 
in motor and visual areas. To analyse the imaging 

data from the left-hand and right-hand groups together, we grouped the hemispheres according to 
whether they were ipsi- or contralateral to the moving hand. As would be expected from earlier 
studies of visually trained skilled sequence production (Wiestler and Diedrichsen, 2013), increased 
activation was observed in the contralateral primary motor cortex (hand knob area of M1) extending 
into the dorsal premotor cortex (PMd), the ipsilateral lobule V-VI of the cerebellum, bilateral (pre) sup-
plementary motor area (SMA/pre-SMA), bilateral ventral premotor cortex (PMv), left dorsolateral pre-
frontal cortex (dlPFC), and visual areas—left posterior precuneus and secondary visual cortex (V2), as 
well as right associative visual and occipito-temporal cortices.

Classification approach to determine independent and integrated 
representations
To determine the tuning characteristic of population of voxels in different cortical areas, we utilized 
a system of four different cross-validated classification analyses (‘Materials and methods’). The overall 
classifier (Figure 3A) was trained and tested on all nine sequences (albeit from different imaging runs), 
and distinguished between all sequences independently of their component features. As confirmed by 
simulations of voxel activity patterns (Figure 3E, black bar), this classifier shows above-chance accu-
racy whenever there are any reliable differences between the nine activity patterns, independently of 
the underlying tuning functions, and therefore can detect any sequence representation.

In contrast, a region that contains an independent representation of the order of finger presses in 
space should show consistent activity patterns for spatial features of sequences, independent of their 
temporal features. To detect such patterns, a spatial classifier was trained on trials where the three 
spatial features were combined with two different temporal features, and then tested on data in which 
these spatial features were combined with a new temporal feature (Figure 3B). Therefore, this classi-
fier can only yield above-chance accuracy, when the voxels show consistent tuning for the spatial fea-
tures, independently of the temporal structure of finger sequences. The temporal classifier (Figure 3C) 
was defined in the same way, but classified temporal features combined over two spatial features, and 
tested on the left out spatial feature. Finally, the integrated classifier (Figure 3D) tested for a non-
linear interaction between the tuning for temporal and spatial features by subtracting out information 
that could be explained by each component (spatial or temporal) separately. The classifier therefore 
only detects regions that show unique, idiosyncratic patterns for each of the nine sequences. Our 
pattern simulations demonstrated that this set of four classifiers could sensitively reveal the type of the 
underlying representation. Importantly, we could distinguish between a region containing a unique, 

with p<0.01. Errorbars in the lineplots and maximum 
and minimum RTs (boxplot whiskers) are corrected  
for differences in the mean RT across individuals,  
and therefore represent the interindividual variability 
of relative RT differences across conditions. In the 
boxplot, upper and lower edges signify the 75th (third 
quartile) and 25th percentile (first quartile), respec-
tively. The median is designated as a horizontal white  
or black line in the box. Outliers (equal or above 
3*interquartile range above the third quartile or below 
the first quartile) are depicted as filled circles, suspect-
ed outliers (1.5*interquartile range above the third 
quartile and below the first quartile) are depicted as 
unfilled circles, respectively.
DOI: 10.7554/eLife.03043.004
The following figure supplement is available for 
figure 2:

Figure supplement 1. Error rate paralleled the  
RT results during the training (A) and fMRI showing  
clear sequence-specific advantages for the trained 
sequences, as well as sequences which retained the 
spatial features. 
DOI: 10.7554/eLife.03043.005

Figure 2. Continued
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integrated, representation of the two sequential features (in which case only the integrated classifier 
should be above chance, Figure 3E, ‘Integrated encoding’) and a region containing a superposition of 
independent temporal and spatial sequence representations (in which case both independent classi-
fiers within one region are above chance, Figure 3E, ‘Independent encoding’).

Overall sequence representations
To determine which cortical regions showed any differences between the activity patterns for the nine 
unique combinations of temporal and spatial features, we utilized the overall classifier. We found sig-
nificant above-chance classification accuracy in the hand knob area of the contralateral M1 extending 
into primary sensory area (S1), PMd and PMv, the contralateral anterior insula, the ipsilateral Lobules 
V–VI of the cerebellum (Figure 4—figure supplement 1), the bilateral SMA, superior parietal and 
extrastriate cortices, the ipsilateral medial M1, and inferior parietal cortex (Figure 4A; Table 1). Overall, 
the above threshold clusters were more widespread on the contralateral than on the ipsilateral side. 
These results were in line with the regions found in an earlier study (Wiestler and Diedrichsen, 2013), 

Figure 3. Four classification procedures were employed to classify the voxel pattern of each searchlight (160 voxels, 
here reduced to 16 units for illustration purposes). (A) To test whether a voxel searchlight contained any sequential 
information, the overall classifier distinguished between the nine sequences independently. Classification was 
always cross-validated across imaging runs (‘Materials and methods’). (B) To determine encoding of the spatial 
feature, the classifier was trained on data involving only two of the three temporal sequences, and tested on trials 
from a left-out imaging run in which the spatial sequences were paired with the remaining temporal sequence. 
(C) The temporal classifier followed the same training-test principle, but in an orthogonal direction. (D) The 
integrated classifier detected nonlinear encoding of the unique combinations of temporal and spatial features that 
could not be accounted for by linear superposition of independent encoding. The spatial and temporal mean 
patterns for each run were subtracted from each combination, respectively, to yield a residual pattern, which was 
then submitted to a nine-class classification. (E) Classification accuracy of the four classifiers on simulated patterns 
(z-transformed, chance level = 0). Results indicate that the underlying representation can be sensitively detected by 
contrasting the overall, temporal, spatial, and integrated classifiers. Importantly these classification procedures 
can differentiate between a non-linear integrated encoding of the two parameters as opposed to the overlap of 
independent temporal and spatial encoding.
DOI: 10.7554/eLife.03043.006
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which used faster finger sequences that were produced from memory. Thus, our results indicate that 
similar encoding can be found for visually paced sequences involving longer temporal intervals between 
finger presses. From the overall classifier, however, we cannot yet determine how different features of 
the sequences were encoded.

Integrated and independent encoding of sequence features
We then determined which regions encoded the nine sequences with a unique activity pattern with-
out any consistent patterns for temporal or spatial features/components alone, using the integrated 

Figure 4. Searchlight classification results shown on an inflated representation of the cortical surface. (A) Group 
t-values indicate regions in which the overall classifier performed significantly above chance. (B) Significant 
group-level above chance classification of spatial (blue), temporal (red), and integrated (green) classifiers. Results 
are presented at an uncorrected threshold of t(31) > 3.37. p<0.001. CinS, cingulate sulcus; CS, central sulcus; IPS, 
intraparietal sulcus; PoSC, postcentral sulcus; SFS, superior frontal sulcus.
DOI: 10.7554/eLife.03043.007
The following figure supplements are available for figure 4:

Figure supplement 1. Searchlight classification results in the cerebellum. 
DOI: 10.7554/eLife.03043.008

Figure supplement 2. Mean searchlight classification accuracy results displayed as in Figure 4, split by group 
trained on the right and left hand. 
DOI: 10.7554/eLife.03043.009

Figure supplement 3. Classification accuracy of the main response function and temporal derivative. 
DOI: 10.7554/eLife.03043.010

Figure supplement 4. Maximum force for finger 1(thumb) to 5 (pinkie) during fMRI. 
DOI: 10.7554/eLife.03043.011

http://dx.doi.org/10.7554/eLife.03043
http://dx.doi.org/10.7554/eLife.03043.007
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Table 1. Areas showing above-chance classification accuracy for the decoding of sequences and their 
spatial and temporal features

MNI

Classifier Area (Brodmann area) Area (cm2) Pcluster Peak t(31) X Y Z

Overall Contralateral

 M1/PMd/PMv (BA4/BA6) 43.25 <0.001 9.40 −36 −22 53

 Superior parietal (BA40/BA7) 15.80 <0.001 5.82 −32 −54 56

 Extrastriate vis cortex (BA18) 8.53 <0.001 5.75 −27 −90 −1

 Extrastriate vis cortex (BA19) 2.35 0.002 5.57 −36 −83 27

 SMA (BA6) 3.86 <0.001 5.27 −8 −12 57

2.22 0.002 4.73 −42 −82 −13

 Anterior insula (BA48) 1.35 0.036 4.35 −35 −10 −2

1.81 0.008 4.32 −42 2 12

 Occipitotemporal area (BA37) 1.75 0.01 4.10 −40 −62 −11

Ipsilateral

 Extrastriate vis cortex (BA19) 20.84 <0.001 5.77 34 −89 −6

 PMd (BA6) 12.72 <0.001 5.24 21 −12 60

 Superior parietal (BA5) 3.76 <0.001 5.19 19 −55 61

 Superior parietal (BA7) 3.27 <0.001 4.92 30 −59 46

 Medial M1 (BA4) 4.84 <0.001 4.86 14 −40 59

 Occipitotemporal area (BA37) 1.83 0.014 4.55 45 −70 6

 Extrastriate vis cortex (BA19) 2.55 0.002 4.22 32 −75 −11

 SMA/Pre-SMA (BA6/BA32) 1.39 0.05 3.93 8 18 49

Integrated Contralateral

 M1 (handknob, BA4) 5.89 <0.001 5.39 −33 −23 59

Spatial Contralateral

 Superior parietal (BA7) 10.00 <0.001 6.93 −31 −56 60

 PMd (BA6) 9.66 <0.001 6.20 −31 −13 53

 Inferior parietal (BA40) 6.00 <0.001 5.78 −39 −36 37

 SMA (BA6) 2.69 0.002 5.70 −9 1 54

Ipsilateral

 PMd (BA6) 5.23 <0.001 4.68 29 −2 47

 Inferior parietal/occipital 3.98 <0.001 4.31 33 −66 34

 (BA39/BA19)

Temporal Contralateral

 SMA (BA6) 3.47 <0.001 5.74 −8 9 48

 PMd (rostral BA6) 6.38 <0.001 5.53 −24 −15 58

 Extrastriate vis cortex (BA18) 11.00 <0.001 4.58 −29 −92 −5

 Extrastriate vis cortex (BA19) 2.35 0.006 4.34 −35 −82 10

Ipsilateral

 PMd (rostral, BA6) 9.78 <0.001 5.98 23 −9 49

 PMv (BA6) 5.19 <0.001 5.28 51 −6 24

 Posterior cingulate (BA23) 2.44 0.006 4.83 9 −30 31

 Pre-SMA/anterior cingulate 2.73 0.004 4.79 9 34 42

 (BA32)

Table 1. Continued on next page
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MNI

Classifier Area (Brodmann area) Area (cm2) Pcluster Peak t(31) X Y Z

 PMd (caudal BA6) 1.75 0.034 4.66 20 −26 57

 Extrastriate vis cortex (BA19) 1.75 0.034 4.13 42 −85 1

Results of surface-based random effects analysis (N = 32) with an uncorrected threshold of t(31) > 3.37, p<0.001.  
p (cluster.) is the cluster-wise p-value for the cluster of that size. The p-value is corrected over the cortical surface 
using the area of the cluster (Worsley et al., 1996). The cluster coordinates reflect the location of the cluster peak 
in MNI space.
DOI: 10.7554/eLife.03043.012

Table 1. Continued

classifier. The only region that carried such integrated, non-additive encoding was the cortical out-
put area—the M1 (handknob area) contralateral to the hand involved in producing the sequences 
(Figure 4B, green, Table 1). This region was clearly visible in the contralateral motor cortex of both 
the right and the left-hand groups (Figure 4—figure supplement 2). To test the encoding in motor-
related areas in more detail, we analysed the data in four symmetrically defined regions of interest 
(ROIs): primary motor cortex (M1), dorsal (PMd), ventral premotor cortex (PMv), and supplementary 
motor area (SMA). Mean integrated encoding reached only significant above chance level in the con-
tralateral M1 (Figure 5, p=0.0005, Bonferroni correction at p=0.05/8=0.0063), but not in any of the 
premotor regions (p>0.155).

We then searched for regions in which voxels would show consistent tuning for temporal or spa-
tial features of the sequence, independently of the respective other component. For the spatial and 
temporal classifiers we found highest encoding outside M1, particularly in premotor, as well as in 
parietal areas. The spatial classifier detected consistent patterns related to the order of the finger 

presses that remained unchanged when executed 
with different temporal features. Spatial classifi-
cation accuracy was significantly above chance in 
the contralateral SMA, bilateral PMd, as well as 
superior and inferior parietal lobes (Table 1). The 
temporal classifier detected representations of 
temporal sequences, which did not change across 
different spatial sequences (orthogonal to the 
spatial classification analysis). Clusters in bilateral 
PMd, contralateral SMA, ipsilateral PMv, anterior 
and posterior cingulate, and bilateral extrastriate 
visual areas were significant after correction for 
multiple tests (Table 1).

These results suggest that while contralat-
eral M1 exhibits mostly integrated encoding of 
temporal and spatial sequence features, the two 
sequence components are represented inde-
pendently in the bilateral premotor cortex. An 
ROI (M1 vs premotor) × hemisphere (contralateral 
vs ipsilateral) × classifier (integrated vs inde-
pendent spatial and temporal) × group (right vs 
left hand) mixed ANOVA indeed revealed a sig-
nificant ROI × hemisphere × classifier interaction 
(F(1,30) = 12.808, p=0.001). This effect did not 
interact with group (p=0.75), suggesting that 
although the effect was less pronounced for 
left-hand-trained participants, the distribution 
of integrated and independent sequence encod-
ing was similar for left and right hand sequence 
production (Figure 5—figure supplement 1). 

Figure 5. Classification accuracy (z-values) in anatomi-
cally and symmetrically defined motor regions of 
interest (ROI). Integrated classification accuracy was 
significant above chance level in contralateral M1 only, 
whereas temporal and spatial classifiers showed higher 
accuracy in premotor areas, in a partly overlapping 
manner.
DOI: 10.7554/eLife.03043.013
The following figure supplement is available for  
figure 5:

Figure supplement 1. Classification accuracy as in 
Figure 5 split by group trained on the right and left 
hand. 
DOI: 10.7554/eLife.03043.014
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The difference in representation can be better appreciated in Figure 6A, which shows the level of 
temporal, spatial, and integrated sequence feature encoding on a cross-section running from rostral 
PMd to the caudal end of the occipito-parietal junction (cf. Figure 6—figure supplement 1 for profiles 
split by right and left hand groups). In contrast to temporal and spatial encoding, integrated encoding 
peaked at the level of the central sulcus in the contralateral hemisphere. To test for differences in the 
distribution of integrated and independent encoding, we used a Center of Gravity (CoG) analysis. We 
determined the CoG for integrated and independent (averaged over spatial and temporal) classifica-
tion accuracies on the precentral part of the cross-section. Indeed, we found a more caudal CoG for 
integrated, and a more rostral CoG for independent encoding in the contralateral hemispheres of 
both left- and right-hand groups (Figure 6C). A hemisphere (contralateral vs ipsilateral) × classifier 
(integrated vs independent) × group (right vs left hand) mixed ANOVA revealed a hemisphere × classifier 
interaction (F(1,30) = 6.417, p=0.017), but no interaction with group (p=0.409). For the postcentral part 
of the cross-section, we found the reverse pattern—a more caudal CoG for independent as compared 
to integrated encoding (Figure 6D). Again the hemisphere (contralateral vs ipsilateral) × classifier 
(integrated vs independent) interaction was highly significant (F(1,30) = 13.394, p=0.001), and did not 
interact with group (p=0.088). These results therefore clearly suggest a difference in how primary 
motor and premotor, as well as parietal areas represent spatio-temporal finger sequences.

Although temporal and spatial features were represented independently in premotor and parietal 
cortex (i.e., these regions showed specific activity patterns for one feature, independent of the respec-
tive other feature), spatially these representations overlapped to a certain degree, especially in caudal 
PMd (Figure 4B). It is only through the use of multivariate analysis techniques that we were able to 
distinguish such overlap of independent representations from the integrated representation in the 
primary motor cortex. Inspection of the temporal and spatial representation maps, however, also sug-
gests a difference in where temporal and spatial features are localised. Especially in the ipsilateral 
premotor cortex, it appears that temporal encoding was more pronounced in the ventral, whereas 
spatial representations are more evident in the dorsal premotor cortex. This gradient can be seen more 
clearly on a profile plot of encoding in the premotor cortex (Figure 6B). A CoG across lateral premotor 
cortex indeed revealed that temporal encoding was centred more ventrally and spatial encoding more 
dorsally (Figure 6E). A hemisphere (contralateral vs ipsilateral) × classifier (temporal vs spatial) × group 
(right hand trained vs left hand) mixed ANOVA showed a main difference between classifier  
(F(1,30) = 5.836, p=0.022), but no interaction with group (p=0.687) or hemisphere (p=0.678).

In summary, we found that outside of primary motor cortex, both temporal and spatial features of 
a learned movement sequence are represented independently, albeit in partly overlapping areas. 
Furthermore, we found a functional gradient with temporal representation being stronger in ventral 
and spatial representation stronger in dorsal premotor areas.

Voxel patterns reflect sequence-related encoding rather than  
finger-related encoding
One potential concern regarding multivariate analysis for fMRI data is that the voxel patterns used for 
classification may simply reflect differences in the temporal profile of activation rather than differences 
in the spatial activation patterns related to sequence-specific encoding. Since voxels in M1 are known 
to show differential tuning for isolated finger movements (Diedrichsen et al., 2013b), some voxels 
may show higher activity early in each sequence, while others would peak late in the sequence.

However, there is good evidence to suggest that this effect cannot account for the results reported 
here. First, if the classification reflected tuning to individual finger movements, all classifiers should 
show the highest accuracy in the contralateral hand area of S1 and M1, where finger representations 
are the strongest (Wiestler et al., 2011). This, however, could not be observed, as evidenced by 
a differential distribution of temporal, spatial, and integrated encoding across the brain. Second, each 
sequence trial was produced three times in a row (mini-block), so that the main response function was 
elevated across the execution of three sequences and did not return to baseline before the end of the 
last trial (Figure 4—figure supplement 3A). It therefore should be insensitive to differences in the 
temporal activation profile within each execution. In contrast, the temporal derivative of the main 
response function included in our first level general linear model (GLM), captured variations of the 
temporal profile within each trial. For example, the derivative would indicate whether a voxel was 
activated more in the early or late phase of each sequence. For the main classification analysis, we 
discounted the derivative, as we wanted to isolate differences in spatial activity patterns, rather than 
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Figure 6. Distribution of encoding in cortical cross-sections. Shown are profiles of integrated (green), temporal 
(red), and spatial (blue) classification accuracy (z-values), (A) on a cross-section running from rostral premotor cortex, 
through the hand area, to the occipito-parietal junction and (B) on a profile running from the ventral, through the 
dorsal premotor cortex, to the SMA (BA 6). (C) Center of gravity (CoG) analysis across the precentral part (between 
rostral PMd and central sulcus) of the profile in A shows that independent temporal and spatial classification 
accuracy (mean in purple) is represented more rostrally to integrated classification accuracy in the contralateral 
hemisphere across right and left hand groups. (D) CoG analysis across the postcentral part of the profile shows the 
opposite pattern to C with independent classification accuracy represented more caudally, further away from the 
CS towards the parietal cortex as compared to integrated classification accuracy. This gradient was found in the 
contralateral hemisphere across right and left hand groups. (E) CoG analysis across the lateral premotor cortex 
shows a slight ventral bias for temporal compared to spatial classification accuracy across hemispheres and groups. 
BA, Brodmann area; CoG, center of gravity; IPS, inferior parietal sulcus; m, medial wall; M1, primary motor cortex; 
OPJ, occipito-parietal junction; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; PoCS, postcentral 
sulcus; PreCS, precentral sulcus ventral premotor cortex; S1, primary sensory cortex; SFS, superior frontal sulcus; 
SMA, supplementary motor area.
DOI: 10.7554/eLife.03043.015
The following figure supplement is available for figure 6:

Figure supplement 1. Distribution of encoding as in Figure 6 split by group (A) on a cross-section running from 
rostral premotor cortex, through the hand area, to the occipito-parietal junction and (B) on a cross-section running 
from the ventral, through the dorsal premotor cortex, to the SMA (BA 6). 
DOI: 10.7554/eLife.03043.016
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different temporal profiles. However, the response derivate also allowed us to test for the information 
contained in different temporal activation profiles (Figure 4—figure supplement 3B). As expected, 
based on the derivative, we observed increased classification accuracy of independent spatial and to 
some degree also temporal features in M1, while in premotor areas such as the PMd, the independent 
classifiers performed much worse, in line with the evidence suggesting weaker finger representations 
in premotor areas (Diedrichsen et al., 2013b). The factors response type (main response vs derivative), 
ROI (M1 vs PMd), and hemisphere (contralateral vs ipsilateral) showed a significant interaction between 
the three factors for both spatial (F(1,31) = 9.165, p=0.005) and temporal encoding (F(1,31) = 5.395, 
p=0.027). This suggests that the voxel patterns based on the main response estimates are unlikely to 
reflect differences in the temporal profile of the observed response.

Finally, the above chance classification could reflect simple differences of movement parameters 
during the sequence execution rather than sequence encoding (Todd et al., 2013). Despite employing 
the same fingers and the same temporal intervals across all nine sequences, as well as by controlling 
the number of runs and jumps between finger digits and intervals (ascending or descending interval 
transitions), in some subjects minor, but systematic finger force differences between the trained 
sequences occurred, such as more force on the thumb in one sequence and on the index finger in 
a different sequence (Figure 4—figure supplement 4). Accordingly, force on the five fingers could be 
used to reliably classify the nine-trained sequences (mean zacc = 2.25, t(31) = 10.914, p<0.001). 
Importantly, however, the strength of force differences did not correlate with classification accuracy in 
contralateral M1 (r = −0.210, p=0.257), such that simple differences in finger forces could not account 
for the finding of integrated feature encoding here.

Instead, we hypothesized that the reported multivariate encoding of sequences in contralateral 
M1 would covary with the degree with which that participant showed sequence-specific learning, 
defined as the RT advantages for trained as opposed to untrained sequences at post-test. Indeed, the 
classification accuracy correlated with the amount of sequence-specific learning, (r = 0.468, p=0.008). 
Thus, participants with higher behavioural learning effects also showed higher classification accuracy 
(Figure 7A). No positive relationship could be revealed for ipsilateral M1 and either force differences 
or sequence learning (r <−0.222, p>0.186, Figure 7B for correlation with sequence learning). This 
further supports that encoding in contralateral M1 is likely to be related to the sequential skill level.

Discussion
Our study employed fMRI multivoxel pattern analysis that reflects the differential tuning of individual 
voxels (Kamitani and Tong, 2005; Kriegeskorte et al., 2006) to identify neural representations 
of spatial and temporal finger sequence features. We were able to dissociate independent feature 

Figure 7. Correlation between sequence-specific learning (RT advantages for trained relative to untrained 
sequences in the post-test) and overall encoding in M1. Learning significantly covaried with the overall encoding 
in the contralateral M1 r = 0.47, p=0.008 (A), but not in the ipsilateral M1 r = −0.25, p=0.169 (B). The correlation of 
sequence learning and contralateral encoding in M1 remained significant when taking all, and not only the 
task-activated voxels in contralateral M1 into account, (r = 0.369, p=0.041).
DOI: 10.7554/eLife.03043.017
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representations in which voxel patterns related to spatial and temporal sequence features combined 
linearly, from integrated feature representations in which each spatio-temporal combination was asso-
ciated with a unique activity pattern. We demonstrate that only the output stage of the cortical motor 
hierarchy, the primary motor cortex (M1) contralateral to the moving hand, encoded spatio-temporal 
features of finger sequences in an integrated fashion. In contrast, bilateral medial and lateral premotor 
cortices showed partly overlapping, but mutually independent representations of the spatial and tem-
poral features. The independent encoding of sequence features in higher order motor areas paralleled 
our behavioural findings—the nervous system's ability to flexibly transfer both spatial and temporal 
features from trained to new sequence contexts.

The integrated sequence encoding found in the contralateral M1 is in line with electrophysiological 
data showing that 40% of neurons in the primary motor area in monkeys can exhibit tuning to 
sequences of muscle commands (Matsuzaka et al., 2007), evidence that inactivation of M1 via musci-
mol can selectively disrupt sequential behaviour (Lu and Ashe, 2005), as well as previous sequence 
learning studies in humans (Karni et al., 1995; Penhune and Doyon, 2005; Steele and Penhune, 
2010). We found that the overall sequence encoding in the contralateral M1 covaried with the amount 
of behavioural advantages for the trained sequences, suggesting that our analysis uncovered skill-
dependent representations. The fact that each spatio-temporal sequence combination had its unique 
activity pattern in M1 is consistent with a dynamical systems view which proposes that each movement 
is controlled by a subpopulation of neurons that form a dynamical network (Laje and Buonomano, 
2013; Shenoy et al., 2013). Instead of representing movement features separately, these networks 
are assumed to produce complex movement patterns based on a neural state-space trajectory, which 
is determined by the internal connectivity and external input to the circuitry (Shenoy et al., 2013). 
Accordingly, for each unique spatio-temporal sequence a slightly different distribution of neurons is 
activated in M1 which in turn cause distinct voxel activity patterns for each of the studied sequence 
combinations (Kamitani and Tong, 2005; Kriegeskorte et al., 2006). This integrated encoding in M1 
is in line with our model, which suggests that the temporal and spatial sequence features are inte-
grated non-linearly in the nervous system (Kornysheva et al., 2013).

While adequate for learning and producing specific spatio-temporal sequences, integrated encod-
ing such as found in M1 alone would not allow the system to use learned spatial or temporal features 
independently. However, subjects showed behavioural advantages for untrained sequence in which 
only one of the trained features (spatial or temporal) was retained. With spatial and temporal features 
of movement trajectories emerging from the same local circuits, an integrated representation as pro-
posed in dynamical systems models (Shenoy et al., 2013) cannot explain the flexible transfer or inde-
pendent adaptation of spatial and temporal features reported here and in previous studies (Ullén and 
Bengtsson, 2003; Ali et al., 2013; Kornysheva et al., 2013). In contrast, our results indicate that 
higher order motor areas (lateral and medial premotor cortices) parsed the sequences into the two 
constituent features, in line with the modularity and flexibility we observed in behaviour. The inde-
pendent albeit partly overlapping spatial and temporal encoding suggests a modular feature-separating 
storage for movement production.

Although our experiment provides both behavioural and imaging evidence for the independent 
representation of temporal and spatial features of movements, it is possible that not all classes of 
movements lend themselves to such a separation. For example, the temporal profile of a force per-
turbation during a reaching movement is learned inseparably from the whole spatio-temporal trajec-
tory (Conditt and Mussa-Ivaldi, 1999). One critical factor that distinguishes these classes may be 
whether movement kinematics are continuous as in reaching movements or fall into discrete phases, 
as induced by the current task (Ivry et al., 2002). In contrast, for discrete sequential movements, as 
studied here, the evidence for an independent representation of the temporal structure is compel-
ling. Importantly, our behavioural finding is unlikely to be an effect artificially induced by the orthog-
onal design, in which all three spatial sequence features were crossed with three temporal features, 
since flexibility in independently adapting spatial or temporal features of sequences has also been 
observed in a previous study which involved the training of only one particular spatio-temporal com-
bination (Kornysheva et al., 2013).

Previous data demonstrated that the premotor cortex modulates its activity once movement 
sequences are made more complex in either their spatial or temporal structure (Bengtsson et al., 
2004), or in the presence of both features (Sakai et al., 2002; Brown et al., 2013). However, these 
studies did not establish how temporal and spatial features were encoded. Here, we address this issue, 
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starting from a recent study that showed that voxel pattern analysis can uncover sequence representa-
tions in motor and premotor areas, which are specifically enhanced for trained sequences (Wiestler 
and Diedrichsen, 2013). This classification analysis was now extended to identify regions with voxel 
patterns related to spatial and temporal sequence features that were represented independently from 
the respective other feature. Our representational analysis allowed us for the first time to distinguish 
between integrated vs independent representations, even if the independent spatial and temporal 
representations overlapped spatially. While we validated this approach by voxel pattern simulations, 
the analysis hinges critically on the assumption that activity in independent neuronal populations 
within a single voxel combine additively in the observed BOLD signal. Is this assumption justified? 
Functional imaging signals show clear non-linearities when studied over a large dynamic range 
(Logothetis et al., 2001). However, the activity of single voxels only varied very slightly between dif-
ferent sequences in our paradigm. For this restricted range, therefore, we can be relatively confident 
that a linear approximation is reasonable (Diedrichsen et al., 2013a). Furthermore, because any non-
linearity between neural signal and hemodynamic response should be relatively homogenous across 
adjacent cortical motor areas, the distinct representational dissociation found between M1 and PMd 
is likely to reflect neural rather than hemodynamic differences.

How can the independent encoding of spatial and temporal features be implemented on a single 
cell level? Neurons in primate premotor cortices have been shown to be tuned to specific spatial tran-
sitions between movement elements and whole sequences of movements increasing their firing rate 
prior to a movement based on its sequential context (Mushiake et al., 1991; Tanji and Shima, 1994; 
Shima and Tanji, 2000). Such units have been suggested to be an important component in the organi-
sation of skilled sequential behaviours, however whether timing between movements modulates the 
same neurons has not been systematically explored. Our findings of independent representations 
of the spatial and temporal features predict that the representation of movement order in space first 
reported by Shima and Tanji in the SMA (Tanji and Shima, 1994) is likely to be independent of the 
exact timing of individual movements in the sequence. In other words, changing the temporal intervals 
between movements in a sequence should not interfere with the tuning of the neuron to a specific 
spatial movement transition or sequence.

At the same time our findings predict independent encoding of the temporal features of movement 
sequences within the same areas as the spatial features. In the medial premotor cortex of monkeys, 
Merchant et al. (2013) found evidence for the encoding of sub-second intervals sensitive to the 
sequential context within a synchronization-continuation task. In addition to neurons tuned to interval 
duration, the authors found cells that are tuned to both a specific interval between movements and 
a specific position in a sequence, for example, a neuron increased its firing rate only to the 850 ms 
interval between the fifth and sixth lever push. This type of encoding would be detectable with our 
method since in the trained sequences the individual digits and temporal intervals occurred at unique 
positions. However, the intervals tested in each sequence were isochronous, and it is currently unknown 
whether this type of encoding would generalize to a sequential temporal pattern similar to the one 
employed in the current task.

Furthermore, the timing of a motor responses can be related to the firing of neural units in the 
cerebellum, as for instance in the case of cerebellar Purkinje cells which decrease simple spike activity 
in a timed fashion depending on the trained interval between the conditioning stimulus and the con-
ditioned response following training (Jirenhed and Hesslow, 2011a, 2011b). Yet, whether this type of 
encoding can also be modulated by the sequential context is not known. In contrast to our findings in 
the cortex, the cerebellum did not yield significant results with regard to temporal encoding, although 
there was a clear significant overall encoding of the sequences in the ipsilateral lobule VI which forms 
reciprocal connections with contralateral premotor areas (Buckner et al., 2011; Bostan et al., 2013). 
This null result could be related to higher noise levels for subtentorial structures (Wiestler et al., 2011) 
or the more complex folding structure of the cerebellar cortex, which may push the informative signal 
variations below the threshold of effective spatial resolution.

Despite partly overlapping temporal and spatial representations, we found a gradient with spatial 
features represented more in dorsal and temporal features more in ventral aspects of the lateral pre-
motor cortex similar to studies involving spatial and temporal production (Bengtsson et al., 2004) and 
prediction (Schubotz and von Cramon, 2001). This regional distribution raises the possibility that the 
temporal representation uncovered here may not be an abstract representation of the temporal struc-
ture of sequences, but rather a representation of an additional effector system. Indeed, most subjects' 
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introspective reports suggests subvocal rehearsal at the beginning of their training, albeit less so 
towards the end of training and during fMRI. However, a simple mapping of the temporal feature rep-
resentations to the control of vocal sequencing and timing is unlikely. There was no direct involvement 
of more posterior and perisylvian primary vocalization centres. Moreover, cross-sections through the 
cortical Brodmann area 6 suggest that temporal encoding largely overlapped with spatial encoding 
along the premotor cortex, instead of being restricted to ventral-most premotor areas recruited for 
rhythmically structured vocal rehearsal (Riecker et al., 2002). Instead, the nervous system may build 
on specialised processes in premotor areas for temporal control, which have originally evolved for the 
sequencing of the oro-facial and laryngeal musculature in speech production (Schubotz, 2007). Such 
a temporal representation in the premotor cortex could modulate the finger motor system at the level 
of M1 by interacting with premotor input from the spatial representation in a non-linear manner, as 
suggested in our multiplicative model (Kornysheva et al., 2013), thereby modulating the integrated 
dynamical systems representation of the sequences in M1.

The presence of multiple temporal and spatial representations across the cortex suggests parallel 
computations related to the same sequential features. These may have complimentary functions. The 
medial vs lateral premotor cortex encoding of sequence features may be related to the concurrent 
encoding of both internally and externally (visually) driven sequential movements (Goldberg, 1985; 
Mushiake et al., 1991). Within the lateral premotor cortex, temporal processing has been hypothe-
sized to be associated with the degree of motor involvement; Chen et al. (2009) have shown that the 
ventral premotor cortex enables direct action-related encoding of temporal structure while the dorsal 
premotor cortex facilitates higher order temporal organisation of sequences, in line with the direct vs 
indirect transformation hypothesis by Hoshi and Tanji (2007). Finally, multiple spatial representations 
may reflect different spatial sequence reference frames—such as movement sequences in extrinsic 
spatial coordinates in the rostral PMd and the posterior parietal cortex (Brown et al., 2013; Wiestler 
et al., 2014) and in intrinsic spatial coordinates in the caudal PMd (Wiestler et al., 2014). Taken 
together, such a diversity of spatial and temporal sequence representations across the network of 
premotor and parietal areas may enable flexible control of skilled behaviour that can adapt to the sit-
uational task requirements.

Overall, the independent encoding of the spatial and temporal features of movement sequences in 
premotor areas endows the nervous system with the ability for adjustments of individual movement 
parameters—which would not be possible with a fixed integrated representation such as in M1 alone. 
For example, this separate encoding may explain why a pianist who learned a particular passage can 
effortlessly produce the same sequence of finger movements with a novel rhythmic structure—or com-
bine the same rhythm with new variations of the sequence of notes.

Finally, the decomposition into features in the premotor cortex provides a computational solution for 
representing longer and more complex sequences of actions. If the system utilized integrated encod-
ing alone, such as in the primary motor cortex, it would have to represent all relevant permutations of 
spatial, temporal and other relevant parameters (e.g., amplitude and direction), which very quickly would 
lead to a combinatorial explosion. Instead, the premotor cortex may dedicate its resources to represent-
ing these features separately, creating a more compact and flexible representation. This special feature 
may explain why evolution endowed us with premotor areas, rather than simply with a larger primary 
motor cortex. This architecture has parallels in the ventral visual stream, in which lower visual areas 
encode specific combinations of simple features at specific spatial locations, whereas higher visual areas 
represent more complex visual arrangements—such as body parts and scenes—independently of their 
orientation or location of the stimulus (Freeman and Simoncelli, 2011). Thus, the decomposition of 
movements into features may be the cardinal function of premotor areas, and endow the system both 
with behavioural flexibility and the capacity to store long, complex sequences of movements.

Materials and methods
Participants
32 neurologically healthy volunteers took part in this study (16 female), aged between 19 and 36 
(mean: 24.8, SD: 5.6). Half of the subjects were trained and scanned on the right and half on the left hand 
(males and females balanced across groups). All subjects were right-handed according to the Edinburgh 
Inventory of Manual Preference (Oldfield, 1971) with a mean score of 89 (range: 70–100; SD: 11.9;  
both groups had the same mean score of 89, right group SD: 10.4, left group: SD 13.5). None of them 
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were professional musicians or athletes. All subjects were naive concerning the hypothesis of this 
study. Experimental procedures were approved by the research ethics committee of University College 
London. Written informed consent was obtained from each participant for data analysis and publica-
tion of the study results.

Apparatus
Participants placed all five fingers of either the left or right hand on a keyboard, which was secured with 
a foam pillow on the participant's lap. The keyboard had five elongated keys, 20 mm wide, with a groove 
for each fingertip. A force transducer was mounted below each key and measured the force exerted by 
the fingers. The force transducers (Honeywell FS series) had a dynamic range up to 16 Newton (N), with 
a repeatability of constant force measurements of <0.02 N. Signals from the force transducers were 
transmitted from the scanner room via a shielded cable. Filters in the scanner room wall prevented 
leakage of radiofrequency noise. In 21 out of 32 subjects, the force of the fingers of the untrained hand 
was recorded on a keyboard for the other hand to monitor potential mirror movements (Diedrichsen 
et al., 2013b). In the remaining subjects, the passive hand was placed on the pillow on the left or right 
leg, respectively. Force traces revealed no mirror movements on the contralateral hand.

Procedure and behavioural task
Participants viewed a projection screen mounted behind the scanner bore via a mirror. The screen 
showed a central cross, on which participants were instructed to fixate during the entire experiment. 
Participants executed isometric right or left finger presses against the non-movable keys. We imple-
mented a visually cued motor learning task (Figure 1), (Kornysheva et al., 2013) to force the subjects 
into a specific spatial and temporal structure of movement. Subjects were presented with a sequence 
of white digits (1–5) in the middle of a black screen that was repeated three times in the training and 
fMRI sessions. The digits 1, 2, 3, 4, and 5 instructed to press the thumb, index, middle, ring, and little 
finger of the right or left hand, respectively. We expected that while the first execution of a sequence 
would be rather reactive and driven by the cue, the second and third execution would rely on a learned 
representation of the sequence in question. Indeed the second and third execution during fMRI was 
significantly faster than the first one (t(31) = 9.608, p<0.001). Participants were instructed to perform 
the task as fast and accurately as possible. Each trial started with a warning cue (‘!’; duration: 400 ms), 
followed by a sequence of five digits that was timed according to a sequence of five possible inter-
stimulus-interval values (ISI; 600, 800, 1000, 1400, 1700 ms). The first ISI commenced when the warning 
cue disappeared.  Each digit remained on the screen until the onset of the next digit according to the 
respective ISI value or for 600ms after the onset of the last digit. The trial ended with an inter-trial 
interval of 1.6 s, making each trial 8.1 s long. Subjects received feedback on their performance 
throughout the experiment as follows: if the subjects pressed the correct button within the limits of 
50 ms before the onset of the current and 50 ms before the onset of the next digit, that digit turned 
green; if the response was too early the next digit appeared in yellow; if the response was too late the 
digit turned turquoise; if the finger press was incorrect, the digit turned red. Subjects received a point 
only when all digits in a sequence turned green, that is, when they pressed the correct finger in the 
correct time window. After each block of 27 (training and post-test) and 54 (fMRI test) trials, respec-
tively, subjects received feedback on their cumulative point score and the median RT in the last block. 
They were informed that the participant with the highest cumulative score (weighted by their reaction 
time) would receive an additional financial reward.

Movements were instructed by sequences with a particular combination of digit order and timing 
(ISI sequence). Ascending or descending digit run triplets (e.g., 2-3-4) were excluded from the pool of 
possible sequences. Identical triplets across sequences were prohibited. The number of ascending to 
descending and descending to ascending direction changes was fixed at 2 across all sequences (e.g., in 
the sequence and 5-2-4-3-1 the direction change is at 2-4 and 4-3). The position of the five elements 
(finger digits and temporal intervals) had to be different for the three-trained spatial sequences and the 
three-trained temporal sequences, respectively. The sequences were randomly generated for each par-
ticipant according to these criteria and matched across the right and the left hand training groups.

The experiment was conducted over 5 consecutive days, with a training (days 1–3), fMRI (day 4), 
and post-test phase (day 5). Note that one of 32 subjects could not take part in a post-test. 3 of the 
32 subjects had a delay of 1–4 days between fMRI and post-test. Finally, one subject had the last 
training session scheduled on the same day as the fMRI.
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The training phase took place on 3 days and took approximately 1.5 hr per day, involving 21 blocks of 
27 trials each. 18 of 21 blocks contained the nine different combined sequences (3 spatial × 3 temporal 
structures) presented three times in a row (mini-blocks). Three additional probe blocks per day were 
introduced to measure RT advantages related to trained sequences, as well as independent temporal 
and spatial transfer to new sequences throughout the training phase. Each probe block contained 
three probe conditions. In the trained temporal condition the cues appeared with each of the trained 
temporal features, but indicating an untrained order of finger presses. The untrained order was dif-
ferent in each of the three timing probe blocks, but was repeated across the three trials of each mini-
block. In the trained spatial condition, the visual stimulus cued sequences involving trained spatial 
sequence features of finger presses, but in combination with a new temporal feature, that is an 
untrained sequence of inter-stimulus-intervals. Equally, the new temporal sequence was different 
in each of the three order probe blocks, but did not change across the three trials of each mini-
block. Finally, the untrained condition cued a sequence of finger presses and inter-stimulus inter-
vals that were different from any other trained condition. Again, the novel combination of spatial 
and temporal features was different in each of the three untrained sequence blocks, but repeated 
three times in each mini-block. This made the probe blocks as similar as possible to the training 
blocks. Finally, the three training sessions were identical in terms of sequences and trial randomi-
sation, ensuring that behavioural change could not be explained by differences in sequences or trial 
delivery. The probe blocks appeared in the beginning (1st block), the middle (11th block) and the 
end (21st block) of each training session. Whether subjects started the first training day with a probe 
block or a training block was counterbalanced across subjects. Note that Figure 2B displays the first 
probe block as 1st block and the first training block on 2nd block for all participants.

Behavioural analysis
Reaction times (RTs) for each response were defined as the time at which the force of a finger reached 
maximum velocity around the onset of the visual cue. Only correct responses were considered. Also, 
responses that occurred more than 100 ms before stimulus onset or more than 600 ms after stimulus 
onset were considered as errors and excluded from further analysis. Within each correct trial, we aver-
aged the RT for all responses. We then used the median RT across trials for each individual and condi-
tion in the group analysis. Since one of the subjects in the right hand training group did not participate 
in the post-test, in the post-test analysis only, we excluded a subject trained on corresponding 
sequences on the left hand to ensure that sequences employed were matched across groups. However, 
the results of the post-test analysis did not change qualitatively when these subjects were included. 
Error rates were determined for each block and condition (cf. Figure 2—figure supplement 1).

Scan acquisition
Data were acquired on a 3 T Siemens Trio system with a 32-channel head coil. Functional data com-
prised 6 runs of 190 vol each, using a 2D echo-planar imaging sequence (repetition time [TR] = 2.72 s). 
The first 3 vol were discarded to allow magnetization to reach equilibrium. We acquired 32 slices 
in an interleaved sequence at a thickness of 2.7 mm (0.3 mm gap) and an in-plane resolution of  
2.3 × 2.3 mm2. The matrix size was 96 × 96. Trials were triggered every 2.97 TR (every 95 slices). 
The slices were positioned to cover the cortical motor and premotor areas, as well as the cerebellum. 
The ventral prefrontal cortex, anterior temporal lobe, and the superior-most part of the parietal lobe 
were not covered in each subject. Field maps were obtained after the first functional run to correct 
for inhomogeneities in the main magnetic field (Hutton et al., 2002). We also acquired a single 
T1-weighted anatomical scan (3D magnetization-prepared rapid gradient echo sequence, 1 mm 
isotropic, 240 × 256 × 176 mm field of view).

First-level analysis
The functional data were analysed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), and custom written 
MATLAB code (The MathWorks, Inc., Natick, MA). First, we corrected for slice acquisition timing by 
shifting the acquisition to align with the middle slice of each volume. We then corrected for head 
movements using a 6-parameter motion correction algorithm. This step also included correction of 
possible image distortions using the acquired fieldmap data (Andersson et al., 2001; Hutton et al., 
2002). The realigned functional data were then coregistered to the individual anatomical scan, using 
the automatic algorithm in SPM. The coregistration was visually checked, and the affine parameters 
were adjusted by hand to improve the alignment, if necessary.

http://dx.doi.org/10.7554/eLife.03043
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The preprocessed data were analysed using a general linear model. To remove the influence of 
movement-related artifacts, we used a weighted least-squares approach (Diedrichsen and Shadmehr, 
2005). For each of the nine trial types, we defined one regressor per imaging run that captured the 
activation for each voxel across the three sequence executions. This main regressor consisted of boxcar 
functions for each execution of the sequence of that type, each starting at the moment of warning cue 
and lasting for 6.5 s (2.4 TRs), which was then convolved with the standard hemodynamic response 
function (Figure 4—figure supplement 3). Additionally, we included the temporal derivate of the 
response in the model, linearly independent of the main response. Only the main response was used 
for classification analysis, to determine differences in spatial activation patterns averaged over the 
sequence executions, rather than differences in the temporal profiles of the sequence. In addition, 
each error (incorrect finger response) was modeled as a regressor of no interest, one regressor per 
imaging run starting at the onset of the digit presentation associated with an erroneous response and 
lasting for 2.72 s (1 TR) to account for errors at different positions in the sequence. For each imaging 
run and voxel, the analysis therefore estimated in 20 regression coefficients (9 sequence regressors, 
1 error regressor plus 10 respective temporal derivative), from which the nine main sequence response 
estimates were used in the classification analysis.

Searchlight approach
The searchlight analysis was performed taking into account each subject's individual anatomy. This 
approach was used to consider anatomical variations and achieve maximum accuracy in the localiza-
tion of representation. The cortical searchlight analysis was implemented on each subjects' individual 
surfaces. The cerebellar searchlight was volume-based within the cerebellar grey matter as defined 
by SUIT.

From the anatomical images, we obtained a surface reconstruction using the software Freesurfer 
(Dale et al., 1999), which estimates the outer boundary of the gray matter (pial surface) and the white–
gray matter boundary (white surface). The surfaces were aligned via spherical registration to the 
Freesurfer average atlas (Fischl et al., 1999). Individual data were then projected onto the group map 
via the individual surface. Correction for multiple tests was performed on the surface using Gaussian 
field theory (Worsley et al., 1996).

To detect sequence-specific representations in the neocortex, we used a surface-based searchlight 
approach (Oosterhof et al., 2011). The corresponding toolbox is available on http://surfing.sourceforge.
net. A circular region was defined on the cortical surface and the radius increased until exactly 160 voxel 
lay between the selected surface patches on the pial and white surfaces. It has been shown that a 
surface-based searchlight minimizes the spillover of multivoxel information from one region to the 
next across a sulcus and therefore allows for more regionally specific inferences (Oosterhof et al., 
2011) than volume-based searchlights (Kriegeskorte et al., 2006). The classification accuracy for each 
searchlight (cf. classification procedures below) was assigned to the center of each searchlight. A clas-
sification accuracy map was generated by moving the searchlight across the cortical surface.

For the identification of sequence-specific representations in the cerebellar cortex, a volume-based 
searchlight approach was utilized (Kriegeskorte et al., 2006; Wiestler et al., 2011). Each searchlight 
consisted of 160 adjacent voxels and the calculations were restricted to voxels lying in the cerebellum 
using a masking algorithm in the SUIT toolbox (Diedrichsen, 2006).

Multivoxel pattern classifiers
We implemented different classification procedures to extract information regarding the overall, tem-
poral, spatial, and integrated encoding of sequences. We first employed an overall multi-class classi-
fier, which tested for any differences in the activity patterns associated with nine unique classes 
(combinations of three spatial and three temporal structures) of sequences (Figure 3A). The mean 
pattern for each class, and the common voxel-by-voxel co-variance matrix was determined from the 
training data set, consisting of five of the six imaging runs. A Gaussian-linear multi-class classifier (for 
details see Wiestler et al., 2011 and Source code 1) was then used to independently classify the nine 
patterns of the test data set (the remaining imaging run). By rotating which runs served as training and 
test set, we obtained a cross-validated classification accuracy. Values above the chance level of 11% 
(1/9 classes) indicated that there were some systematic differences between the activity patterns.

A region that encodes the order of finger presses (spatial sequence) independently of the temporal 
sequence should show similar activation patterns for each spatial sequence across the three temporal 
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sequences (Figure 3B). To test for such a representation, we used a linear classifier that distinguished 
between three spatial sequences paired with one particular temporal sequence, while being trained 
on data from trials in which spatial sequences were paired with the two remaining temporal sequences. 
To guarantee independence of the beta estimates, training and test sets were drawn from separate 
imaging runs. The procedure therefore involved training to distinguish between three spatial sequences 
timed according to two temporal sequences from five runs and testing the difference between the 
spatial sequence patterns paired with the remaining different temporal sequence from the remaining 
run, resulting in a 18-fold cross-validation procedure. Significant above-chance classification accuracy 
performance (33.3%, 1/3 classes) indicated the presence of systematically different local activation 
patterns for different spatial sequences. The temporal classifier (Figure 3C) was designed following 
the same principle, simply exchanging the role of spatial and temporal sequence.

Finally, the integrated classifier isolated representations that code for the unique combination of 
temporal and spatial sequences. Like the overall classifier, it treated each of the nine unique combina-
tions as a separate class. Critically, however, the mean temporal and the mean spatial class patterns of 
each run were subtracted from the overall pattern of the respective run. Since this was done for every 
run separately, subtracting the respective activity patterns did not induce dependence between 
training and test sets (see also Figure 3E for simulation results). The residual patterns therefore reflected 
the interaction component between timing and order that cannot be attributed to a linear combina-
tion of the two factors.

For better comparability across classifiers, as well as for group analysis, the classification accuracies 
were transformed to z-scores, assuming a binomial distribution of the number of correct guesses. We 
then tested these z-scores against zero (chance level) across participants. Whole brain results were 
corrected using a surface-based random effects analysis (N = 32) with an uncorrected threshold of 
t(31) > 3.37, p<0.001 and a cluster-wise p-value for the cluster of that size. The p-value was corrected 
over the cortical surface using the area of the cluster (Worsley et al., 1996) and further Bonferroni 
corrected for tests over two hemispheres (pcorrected = p*2). Significance in the cerebellum was assessed 
using a small volume correction (SUIT).

Pattern distance simulations
We validated this classification approach using simulations of activity patterns of 160 voxels. The 
activity pattern (y) for the ith spatial and jth temporal sequence for the kth imaging run was generated as:

yi,j,k = si + tj + ii,j + rk + ei,j,k

Each pattern component (Diedrichsen et al., 2011) was generated as a normal random vector over 
160 voxels. By varying the variance of the spatial (s), temporal (t), and integrated (i) representations 
relative to the noise (e), we obtained simulated data sets that were then submitted to the same classi-
fication approach used for the actual imaging data (Figure 3E).

Regions of interest (ROIs)
To examine the distribution of different types of finger sequence representations (spatial, temporal, 
integrated) across motor areas and a possible interaction with the hand being trained, anatomical 
regions of interests were defined symmetrically in both hemispheres based on probabilistic cytoarchi-
tectonic maps aligned to the average Freesurfer surface (Fischl et al., 2008) as areas with at least 35% 
probability of the respective field. Four motor areas with significant overall sequence encoding were 
considered for ROI analysis: bilateral primary motor (M1), supplementary motor area (SMA), dorsal 
(PMd), and ventral premotor cortex (PMv). The hand region of primary motor cortex (M1) was defined 
as Brodmann area (BA) 4, 2.5 cm above and below the hand knob (Yousry, 1997). Dorsal premotor 
cortex (PMd) was defined as the lateral aspect of BA 6, superior and PMv inferior to the middle frontal 
gyrus. The supplementary motor areas (SMA/pre-SMA) comprised the medial aspect of BA6. The M1, 
SMA, and PMd were identical to the ROIs used in previous work (Wiestler and Diedrichsen, 2013) 
and the PMv was added as the lateral part of the premotor cortex (BA6) ventral to PMd.

We averaged data across all voxels in the anatomically defined ROIs. This approach enabled us to 
uncover the respective sequence representations in regions independent of their metabolic demand 
during the task.

A z-score for the classification accuracy for overall, spatial, temporal, and integrated encoding 
across each in the respective ROI was determined for each subject. ROI analysis was performed on 
non-smoothed data of each individual. One-sample t tests were employed to probe encoding above 
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chance level (zero). The p-value was Bonferroni-corrected for eight comparisons in each ROI (critical 
p-value was 0.006=0.05/8).

Cross-sections and center of gravity (CoG) analyses
In addition to the ROI approach, we defined two symmetrical cross-sections to investigate the contin-
uous profile of sequence feature encoding across cortical regions of both the contra- and ipsilateral 
hemispheres. The first cross-section through the surface map ran from the rostral end of PMd to the 
posterior superior parietal cortex. The second cross-section went through BA6, from the ventral tip 
through dorsal premotor cortex into the SMA. To determine biases in sequence feature encoding 
within these cross-sections, we determined the center of gravity (CoG) for each subject, classification 
type, and hemisphere. The minimum classification accuracy value of the respective classifier across the 
profile of interest was first set to zero (baseline) before determining the CoG of the accuracy shapes. 
The CoG was calculated by computing the spatial average of the coordinates of all nodes in the cross-
section, after weighting each with the normalised classification accuracy z at this point. The CoG anal-
ysis was performed for three subsections: (1) rostral PMd to central sulcus, (2) central sulcus to the 
lateral part of the superior parietal cortex hitting the medial wall, and (3) The lateral aspect of BA6, 
starting at the level of the inferior frontal gyrus up to the crown of the cortex, excluding the portion of 
BA6 in the medial wall.

Multivoxel encoding and behaviour
We set out to probe the relationship between the amount of sequence learning across subjects and 
the encoding of the sequences in the contralateral primary motor cortex (M1) that our classification 
approach revealed to be involved in integrating the spatial and temporal features of sequences, as 
well as the ipsilateral M1 as a control region. We considered the 20% most activated voxels in contra-
lateral and ipsilateral M1, thus taking only nodes that were most recruited during the task. Sequence-
specific learning was defined as the individual RT advantage for the trained sequences compared to 
untrained sequences in the post-test phase (cf. RT results). However, we also considered the possibility 
that the classification results may have been influenced by systematic differences in the execution of 
the sequences, specifically by differences in force produced by each finger. A region that is sensitive 
to these lower-level behavioural differences may look like it encodes sequential aspects of the task. 
To quantify the differences between sequences along these behavioural variables, we computed the 
accuracy of multivariate classification of the nine trained sequences (overall classifier), using maximum 
forces at each of the five fingers as different data features instead of voxel activity. Higher classification 
accuracy would indicate more pronounced force differences between the sequences. Subsequently, 
two-sided Pearson's correlations between the overall encoding in the contralateral and ipsilateral M1 
and the RT difference between untrained and trained sequences in the post-test (RT advantage), as 
well as force classification accuracy were calculated.
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