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Abstract Cancer treatment is a fragmented and varied

process, as ‘‘cancer’’ is really hundreds of different dis-

eases. The ‘‘hallmarks of cancer’’ proposed by Hanahan

and Weinberg (Cell 100(1):57–70, 2000) are a framework

for viewing cancer within a common set of underlying

principles—ten properties that are common to almost all

cancers, allowing them to grow uncontrollably and ravage

the body. We used a cellular automaton model of tumour

growth paired with lattice Boltzmann methods modelling

oxygen flow to simulate combination drugs targeted at

knocking out pairs of hallmarks. We found that knocking

out some pairs of cancer-enabling hallmarks did not pre-

vent tumour formation, while other pairs significantly

prevent tumour growth (p ¼ 0:0004 using Wilcoxon

signed-rank adjusted with the Bonferroni correction for

multiple comparisons). This is not what would be expected

from models of knocking out the hallmarks individually, as

many pairs did not have an additive effect but had either no

statistically significant effect or a multiplicative one. We

propose that targeting certain pairs of cancer hallmarks,

specifically cancers ability to induce blood vessel devel-

opment paired with another cancer hallmark, could prove

an effective cancer treatment option.

Keywords Cancer modelling � Cellular automata �
Cancer hallmarks � Lattice Boltzmann � Binary fluid

1 Introduction

As of 2004, cancer was the leading cause of death in the

developed world and the second leading cause of death in

the developing world (World Health Organization 2008),

with about 12.7 million cases of cancer in 2008 alone

(Ferlay et al. 2008). While much time, money and research

are dedicated to cancer the statistics are grim, with little to

no progress in some cancers—for example, there has been

no significant improvement in survival rates of pancreatic

cancer in two decades (Sener et al. 1999). We have created

a highly abstract cellular automaton model of early cancer

growth and a lattice Boltzmann model of oxygen flow in

blood that investigates the impact of knocking out pairs of

‘‘cancer hallmarks’’.

While the traditional reductionist approach to studying

cancer has been successful in targeting some forms of the

disease, new approaches are needed that can study cancer

across scales (Rejniak and Anderson 2012). In silico

modelling of cancer is an nascent approach to attacking this

problem. Multiscale modelling is a powerful tool for cancer

simulation as it allows modelling at the cellular level, and

at the fluid level in order to accurately model oxygen flow.

Since oxygen availability is critical for cancer progression,

modelling both scales provides a more realistic model.

Many cancer models currently exist, including: Anderson
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et al.’s multiscale mathematical model of 2-dimensional

tumour growth (Anderson et al. 2006); Lloyd et al.’s

computational framework for solid tumour growth, which

comprised models at the tissue, cellular and subcellular

levels (Lloyd et al. 2008); and Ramis-Conde et al.’s hybrid

discrete-continuum model which looked at tissue invasion

by cancer cells (Ramis-Conde et al. 2008). Models focus

on different aspects of tumour growth (including the use of

the glycolytic phenotype (Gerlee and Anderson 2008),

evolution of cell motility (Gerlee and Anderson 2009) and

confined environments (Gevertz et al. 2008)) and employ

different modelling approaches [mathematical, (Hirata

et al. 2010; Ramis-Conde et al. 2008), hybrid, (Ribba et al.

2004; Gerlee and Anderson 2007), agent-based (Macklin

et al. 2012; Sun et al. 2012)]. Readers who wish a broader

prospective are directed to the following review articles:

(Anderson et al. 2008; Anderson and Quaranta 2008;

Rejniak and Anderson 2011).

Currently the state of the art in cancer modelling is

spread across different modelling techniques. A recent

review paper looking at cancer invasion discusses the use

of both hybrid discrete-continuous (HDC) models and

immersed boundary models of a cell (IBCell). HDC allows

for cells to be modelled discretely but microenvironmental

variables such as nutrients and oxygen to be modeled using

reaction-diffusion equations. The IBCell model is benefi-

cial for capturing the morphology of a tumour cell as the

cells in this model are deformable (Kam et al. 2012). In

addition to these two types of agent based models, cellular

automaton (CA) models are also used frequently. Gerlee

and Anderson created an evolutionary hybrid cellular

automaton model where the cancer cells are modelled

using cellular automata to capture the behaviour of the

tissue as a whole, while using an artificial neural network

for cell decisions (Gerlee and Anderson 2007). This type of

hybrid cellular automaton model has recently been built on

by Shrestha et al. who used a similar model to look at

large-scale growth of tumours (Shrestha et al. 2013).

Recently, CA models have been used to look at the hall-

marks of cancer (Abbott et al. 2006; Basanta et al. 2011;

Santos and Monteagudo 2012) as proposed by Hanahana

and Weinberg (Hanahan and Weinberg 2000, 2011).

Today survival rates and treatment options for cancers

vary widely, largely due to the vast differences among

cancers including location, size, aggressiveness, ability to

spread and symptoms. Hanahan and Weinberg proposed

that almost all cancers actually share eight phenotypic

changes and two unique characteristics: SELF SUFFICIENCY IN

GROWTH SIGNALS; IGNORING GROWTH INHIBITION; AVOIDANCE OF

PROGRAMMED CELL DEATH (APOPTOSIS); LIMITLESS REPRODUC-

TIVE POTENTIAL; SUSTAINED ANGIOGENESIS; TISSUE INVASION AND

METASTASIS; REREGULATED METABOLISM; EVADING THE IMMUNE

SYSTEM; INFLAMMATION; and GENETIC INSTABILITY (Hanahan

and Weinberg 2000, 2011). The ubiquitous nature of these

hallmarks in cancer suggests that treatments able to target

them may be useful against multiple types of cancer.

Both Abbott et al. and Santos et al. have developed

models looking at these hallmarks (Abbott et al. 2006;

Santos and Monteagudo 2012; Monteagudo and Santos

2012, 2013, 2014). Abbott et al. primarily focused on

looking at the order in which hallmarks were acquired in

the growing tumour. Abbott’s results differed from the

pathway to cancer proposed by Hanahan and Weinberg, as

did the results of an ordinary differential equation model

looking at the pathway (Spencer et al. 2004). Abbott’s

model was an agent based model that simulated the pro-

gression of cancer from a single healthy cell to a tumour

with at least 90 % cancer cells. They found that hallmarks

that confer an advantage to all cells (such as SUSTAINED

ANGIOGENESIS which creates blood vessels carrying oxygen

into the tumour which all nearby cells can benefit from), do

not dominate a cancer clone, whereas hallmarks such as

LIMITLESS REPLICATION appear early and dominate as they

turn over very quickly.

Santos et al. built on the work of Abbott by using a

similar modelling approach, but focused on the impact of

removing different hallmarks on tumour growth. They

investigated how critical to growth each hallmark was by

removing it from the system and comparing the total

number of cancerous and healthy cells present with and

without the hallmark. They used a cellular automaton

model which determined cell division and apoptosis (pro-

grammed cell death) based on internal rules and acquired

hallmarks. They found that with high mutation rates, the

most critical hallmark is APOPTOSIS, while in tumours with

little room to grow the IGNORE GROWTH INHIBITION hallmark

proved most impactful on overall growth.

We have used model parameters and methods similar to

those outlined in Abbott et al.’s work to build upon Santos

et al.’s hallmark relevance study. We have implemented

five of the six original hallmarks as well as two of the

newly introduced hallmarks and enabling characteristics

(focusing on those relevant during initial tumour growth),

and knocked them out in pairs to see which have the

greatest combined effect.

Henderson stated that ‘‘in the most general sense,

combinations of therapies, whether drugs and/or other

modalities, will always play an important role in the

management of diseases for which there exists no single

specific and totally effective treatment’’ (Henderson and

Samaha 1969). Combination treatment involves pairing

multiple treatments with the hope that two in combination

will not just be an additive advantage but a multiplicative

one. Targeted therapy involves identifying key pathways

involved in cancer progression and creating drugs to target

these pathways. This model simulates targeted combination

16 J. Butler et al.
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therapy as we remove key cancer properties (hallmarks) in

pairs and compare cancer growth rates to tumours with all

hallmarks active. We hypothesize that knocking out pairs

of hallmarks will not necessarily have the additive effect of

knocking the hallmarks out separately but rather will

sometimes have an even greater, potentially multiplicative,

combined impact. The following sections include: a brief

summary of each hallmark; the event process; pseudocode

for the simulation; Lattice-Boltzmann implementation

details; parameters used; results and discussion.

2 Methods

We have chosen to model two dimensional cancer growth

where the biological cells are represented by cellular

automata and the oxygen in the environment is modelled as

a two-phase fluid using the lattice Boltzman method. Most

models in the literature currently restrict themselves to two

dimensions as it is more computationally feasible and since

cancer does not grow in a sphere but rather an oblate

spheroid. Our 2D simulation is easily compared with both

existing models and 2D biopsy slices. Here we will present

a high level outline of the method, and each section will be

covered in more detail below. Pseudocode describing the

simulation is provided in Table 2. The simulation begins

with a single healthy cell at the center of a 2-dimensional

grid. An event queue keeps track of cellular events, and

initially a single mitotic event is placed on the queue for

the healthy cell. Each event popped from the queue is

another loop in the model and puts that cell through a life

cycle. The cell is checked for whether it still has enough

oxygen to survive, is in a location with growth factor, has

access to blood, has space to grow, and has sufficiently

long telomeres. If all of these checks are successful, or if

mutations confer these abilities, the cell enters a mitotic

event. This creates a daughter cell and potentially intro-

duces mutations into the daughter or parent. Both cells

have events scheduled for some point in the future and are

added to the event queue, then the next event is popped.

Oxygen is consumed by cells when they divide or every 25

time steps if they are not actively dividing. The following

sections include: a brief summary of each hallmark; the

event process; pseudocode for the simulation; Lattice-

Boltzmann implementation details; parameters used;

results and discussion.

2.1 Modelling the hallmarks

The ‘‘hallmarks of cancer’’ proposed by Hanahan and

Weinberg are changes to cell phenotype (characteristics of

the cell based on its genotype and the environment—in our

model, phenotype is the collection of hallmark mutations a

cell has along with parameter values) that seem to be con-

sistent across a variety of cancers (Hanahan and Weinberg

2000, 2011). These hallmarks give a structure and common

signature to a disease that is actually a combination of hun-

dreds of different types of diseases. We have simulated 5 of

the 6 original hallmarks and two of the recently added

characteristics and hallmarks that were described in (Hana-

han and Weinberg 2011). This model is specifically focused

on the pre-metastatic growth, when a patient has the greatest

chances of survival. Therefore, we have not modelled the

sixth hallmark, tissue invasion and metastasis. To keep our

results comparable with previous work in this field, we have

not included inflammation or energy metabolism in our

model. Our model is inspired by work in artificial life where

agent based and mathematical models have been used to

simulate cancer growth and angiogenesis (Maley and Forrest

2000; Bentley et al. 2008). Here we will briefly describe each

hallmark put forth by Hanahan and Weinberg that we are

including in this model, as well as their implementation. At

the end of this section pseudo code describing the cell life-

cycle is included.

2.2 Self-sufficiency in growth signals—hallmark

symbol: SG

Normally, cells are generally in a quiescent state where

they are functioning but not actively proliferating. In order

for a cell to become mitotically active, it needs mitogenic

growth signals, which stimulate it to move from the qui-

escent state to a dividing one. Normal, healthy tissues

regulate the creation and release of growth signals very

carefully, balancing the number of actively dividing cells

so no area is overburdened with resource requests. Cancer

cells de-regulate these signals. In fact, self-sufficiency in

growth signals is said to be the most fundamental trait of

cancer cells (Hanahan and Weinberg 2011).

The deregulation of these signals in cancer is fairly well

understood (Witsch et al. 2010; Perona 2006). Cancer cells

can sustain their growth through a variety of mechanisms

including:

• sending growth signals to surrounding cells which

reciprocate by sending even more growth factors;

• increasing their own cell-surface receptors for growth

signals so that normal levels of signal can have an

enhanced effect;

• activation of growth pathways downstream of signal

reception, which enhances proliferation but also

reduces their dependency on external stimuli;

• interference with negative feedback loops which nor-

mally lessen signals and therefore assist in maintaining

homoeostasis. Hanahan and Weinberg have predicted

that ‘‘compromised negative-feedback loops’’ will be

Halting the hallmarks: a cellular automaton model of early cancer growth inhibition 17
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found to be ‘‘wide spread among human cancer cells’’

(Hanahan and Weinberg 2011). They also believe cancer

cells may use this ability to disturb feedback loops to gain

resistance to drugs which target cell cycle signalling.

It is hypothesized by Hanahan and Weinberg that cells

may have built-in safety mechanisms to avoid excessive

growth, and they postulate that cancer may be involved in a

delicate trade-off between increased signalling for fast

growth and not growing so fast as to trigger interference

from safety mechanisms (Hanahan and Weinberg 2011). It

is also possible that cancer cells could somehow be deac-

tivating these safety mechanisms.

In order to model this hallmark, we have programmed

healthy cells such that they are only able to divide within a

certain area of the total growth environment. Healthy cells

can only divide up to some predefined limit, which is akin to

an area with growth factor present. In certain areas (outside

the limit) there is not enough growth factor to signal prolif-

eration, and therefore healthy cells become non-proliferative

in this area. Cancer cells however can obtain the SUSTAINED

GROWTH (SG) mutation, allowing them to actively divide

outside of the predefined boundary, modelling the ability to

initiate growth themselves via a variety of mechanisms.

2.3 Ignore growth inhibition—hallmark symbol:

IGI

Coupled with a tissue’s tight regulation over growth

inducing mechanisms, tissues also have strong negative

regulation over cell growth, actively suppressing it as

opposed to passively not taking part due to the absence of

growth promoting factors. The genes which do this are

often referred to as tumour suppressor genes as they can

actively limit cell growth and proliferation through a

variety of mechanisms including stopping the cell cycle

and cell-cell contact inhibition.

While there are a variety of ways cell growth can be

negatively controlled, we have chosen to look at the impact

of pressure exerted on cells by other cells. When cells grow

together the cell-to-cell contact has an inhibitory effect on

growth. This mechanism, called contact inhibition, is often

turned off or perhaps ignored in many cancer cells. An

example of a gene involved in this pathway is the NF2 gene,

the loss of which triggers human neurofibromatosis, a dis-

ease which deposits tumours throughout a patient’s body.

The gene product of NF2, Merlin, strengths cell-cell adhe-

sion and also sequesters growth factors, limiting cell growth.

In order to model cancer’s ability to ignore anti-growth

signals, we have implemented an empty space requirement

for growth. This models one of cancer’s anti-growth ave-

nues—avoid contact inhibition. In this model, healthy cells

stop actively growing once there is no more space available

on the lattice. Cancer cells in our system can have the

IGNORE GROWTH INHIBITION (IGI) hallmark activated which

allows cells to grow even without space (thereby modelling

the impact of mutations which cause a cell to ignore con-

tact inhibition). These cells have a ‘‘competition’’ factor

(c). If a cell with the IGI hallmark attempts to grow and is

out of space, they compete with cells around them and can

potentially take over the space another cell is occupying in

order to grow. Each time a cell competes (done once every

attempt to divide without space), the cell has a 1 / c like-

lihood of successfully gaining the space, where c is the

competition factor mentioned in Table 1.

2.4 Resisting cell death—Hallmark symbol: IA

Apoptosis, or programmed cell death, is a normal process

in animal tissue. Apoptosis assists in keeping the balance of

healthy living cells with dead or dying cells, keeping cell

populations in check and dealing with damaged or old

cells. In addition to helping maintain balance, it is also a

Table 1 Parameters used in simulations

Description Symbol Value References

Initial telomere length t 100 Abbott et al. (2006)

Evade apoptosis factor ev 10 Abbott et al. (2006)

Mutation rate m 500 Chosen to lay between two used in Santos and Monteagudo (2012)

Random death rate d 10000 Simulation

Competition likelihood c 10 Abbott et al. (2006)

Angiogenesis immunity ai 10 Simulation

Avoid immunity aip 10 Simulation

Immunity death i 1000 Simulation [equal to random cell death in Santos and Monteagudo (2012)]

Genetic instability factor gif 10 Simulation

Blood density qB 300 mol/m3 Erbertseder et al. (2012)

Boundary oxygen density qO 9 mol/m3 McArdle et al. (2005)

Thermal diffusivity D 0:134 mm2 s�1 Valvano et al. (1985)

18 J. Butler et al.
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safety mechanism which prevents damaged cells from

passing on damage (Lowe et al. 2004; Evan and Littlewood

1998).

Apoptosis has been found to be triggered by different

events, many of which are common during the progression

from normal, healthy cell to cancerous cell, such as high

levels of oncogene expression and DNA damage. Although

it is known that DNA damage and oncogene overexpres-

sion can lead to cancer, which should trigger apoptosis, it

has also been found that cancer cells sometimes manage to

avoid apoptosis (Hanahan and Weinberg 2011).

Various cell conditions leading to apoptosis have been

identified, with one of the most notable being DNA dam-

age (Junttila and Evan 2009). Major DNA breaks or

chromosomal abnormalities are sensed by tumour-sup-

pressor protein 53 (p53, encoded in gene TP53) which can

in turn activate apoptosis if the damage cannot be fixed.

While cancer cells evolve many mechanisms to avoid

apoptosis, one of the most common is loss of TP53 func-

tion (found to be gone in 50 % of all cancers). This allows

a cell to build up DNA damage unchecked which can lead

to additional mutations and passing down of damaged

DNA.

We have chosen to model the apoptotic pathway pri-

marily as a sensor for DNA damage. Once a healthy cell

has sustained any mutations, it is possible for it to enter the

apoptotic state (simulating the cell being killed by apop-

tosis). Since apoptosis can be activated due to genetic

damage, the chances of a cancer cell dying via apoptosis

increases with each subsequent mutation (in our model). A

cell has a m/a probability of being killed by this mecha-

nism, where m is the number of mutations already sus-

tained, and a is an apoptosis chance variable contained in

each cell (see Table 1 for exact parameters). Cells with a

mutation in this mechanism cannot die by apoptosis,

regardless of the number of mutations acquired. This

AVOIDS APOPTOSIS mutation is referred to as AA throughout

the paper.

2.5 Enabling replicative immortality—Hallmark

symbol: IT

Most normal healthy cells have a limit to how many times

they can divide before they enter a viable but non-prolif-

erative state called senescence. Healthy cells that manage

to avoid senescence often instead enter a crisis state, end-

ing with cell death. In contrast, cancer cells seem to require

unlimited replication to grow into a tumour of macroscopic

size. When cells are propagated in culture, leading to

senescence, and then for some to crisis, many of the cells

die. At this point it occasionally happens that a cell line

comes up displaying this unlimited replication, effectively

becoming immortal, continuing to grow without hitting

senescence or crisis (Hanahan and Weinberg 2000, 2011).

It is believed cells have a feature which only allows

them a certain number of replications—this feature is the

telomere. Telomeres are segments of DNA made up of

multiple repeating 6-nucleotide segments capping the ends

of chromosomes. DNA replication is not a perfect process

and always results in the loss of some material at the ends

of chromosomes. Telomeres protect the ‘‘necessary’’ DNA

by themselves being shortened at each replication. Even-

tually however they become too small to effectively protect

the DNA and at this point it is believe senescence can be

triggered.

Telomerase is a DNA polymerase that builds these

telomeres. Normally it is not active in healthy cells, how-

ever it is found to be turned on in 90 % of suddenly

immortal cells (Hanahan and Weinberg 2011). Telomerase

then can continuously extend the ends of DNA making it so

they never reach a size small enough to trigger senescence

or crisis. Accordingly, the presence of telomerase is cor-

related with resistance to both of these fates. It is believed

both of these events (senescence and crisis) are natural

barriers to cancer. Rogue cells may develop mutations, be

growing out of control of the body’s signalling, and begin

rapid division. These cells can be abruptly stopped when

their full replicative potential is reached, causing them to

not be able to divide further and not make it to a macro-

scopic tumour. Cells which manage to activate telomerase

however keep their telomeres long enough to avoid

senescence and crisis and therefore forever pass on their

mutations. As such, telomere shortening is thought to be

one of the barriers cancer cells must defeat to progress into

a dangerous tumour (Hanahan and Weinberg 2011). One

particular example supporting this hypothesis is the work

of Artandi and DePinho who found that mice genetically

predisposed to certain cancers had weakened tumourigen-

esis when born without telomerase (Artandi and DePinho

2010).

We have included in our model the ability for a cell to

become immortal. Every cell is equipped with a ‘‘telom-

ere’’ variable that decreases by one with every cell divi-

sion. This variable limits healthy cells to 100 cell divisions

(Abbott et al. 2006). Cells can acquire the IGNORE TELOMERE

hallmark which allows them to effectively ignore this

limitation and not be bound by their telomeres. This

replicates the biological activity of telomerase which

continues increasing telomeres after they are shortened,

preventing their length from impeding growth. Cells with

the IGNORE TELOMERES (IT) hallmark activated can divide

Halting the hallmarks: a cellular automaton model of early cancer growth inhibition 19

123



forever, regardless of telomere length, so long as all other

required conditions are met (oxygen, space, etc).

2.6 Inducing angiogenesis—Hallmark symbol: A

Vasculature, the system of blood vessels in the body,

serves two major purposes for cell groups: delivering

nutrients and oxygen, and removing waste products and

carbon dioxide. Both healthy and cancerous cells depend

on and need this system. Typically, vasculature is quite

stable. It is originally developed during embryogenesis,

when the processes of vasculogenesis (the birth of new

endothelial cells and their development into tubes) and

angiogenesis (sprouting) occur. After embryogenesis is

complete, angiogenesis is only turned on transiently during

wound healing and as part of the female reproductive

cycle. A key early development in tumour growth is the

activation of this normally quiescent angiogenic process,

causing new vasculature to sprout towards and even into

tumours (Hanahan and Weinberg 2000, 2011). This is

dangerous as it not only provides the tumour with fresh

oxygen, nutrients, and waste removal, but also gives it a

system to use to travel through the body.

When angiogenesis is induced in tumours it often results

in poorly set up vasculature with issues such as leakiness,

erratic blood flow and excessive and convoluted branching.

While this process was previously thought to occur later in

tumour development, such as once the tumour was rapidly

growing and macroscopic in size, research in the past two

decades has found it can begin as early as the pre-malig-

nant microscopic stage of growth (Raica et al. 2009).

Tumours exhibit widely varied tumour-induced vascu-

lature, even within the same organ. For example, adeno-

carcinoma of the pancreatic ducts is hypovascularized

(Olive et al. 2009), while pancreatic neuroendocrine car-

cinomas can be densely vascularized (Detjen et al. 2010).

The variety of tumour induced angiogenesis seen suggests

that angiogenesis is initially switched on, but complexly

regulated and impacted throughout tumour growth. While

the mechanism of angiogenesis switch activation can vary,

the net result is a common inductive signal. In some cases

oncogenes activate angiogenesis. These also can stimulate

proliferation which means other unique hallmarks (such as

sustained growth) can possibly be activated by the same

rogue players.

Since it is believed angiogenesis is at least initially

switched on in tumour growth, and this model aims to

simulate early tumour growth, we have included this

hallmark. In the simulation, angiogenesis is modelled at a

very basic level. Cells that have the INDUCE ANGIOGENESIS

(A) hallmark activated are thought to be on the path of new

vasculature. In the simulation, every lattice location has an

associated oxygen value that changes over time based on

consumption and supply, and is modelled using Lattice

Boltzmann methods (LBM) (full implementation details on

this model are described in Sect. 3). At each division a cell

checks if it has enough oxygen to survive by checking with

the lattice Boltzmann simulation to determine how much

oxygen is present where it is located. If a cell does not have

enough oxygen it either becomes quiescent or dies (de-

pending on how much oxygen is present). However, if it is

on the path of vasculature because it is inducing angio-

genesis, it is getting oxygen directly from the vasculature

so it does not require enough oxygen in its lattice cell as

calculated by the LBM. Neighbours of cells on the new

vasculature also benefit from this via diffusion from the

vasculature and are able to survive in places where there

would not otherwise be enough oxygen provided by the

original healthy vasculature.

In this model angiogenic cells also have a higher chance

of being killed by the immune system, as immune cells

travel via the vasculature. Angiogenic cells and their

neighbours have a ðaiÞ � ð1=iÞ chance of being killed by the

immune system at each replication step, where (ai) is the

angiogenesis immunity parameters and i is the immune

death probability parameter (Table 1).

2.7 Genetic instability—Hallmark symbol: GU

Cancer cells acquire the above mentioned hallmarks in

large part because of successive changes to the genome of

neoplastic cells (Hanahan and Weinberg 2011). Some

mutational changes will confer an advantage to the cell or

cells, allowing them to grow and dominate in an environ-

ment. Therefore, the many steps from normal cell to

cancerous cell, and the subsequent stages of tumour

growth, can be viewed as the successive accumulation of

favourable chance mutations each creating a new cell clone

group. However, not all clonal expansions need be caused

by mutations, as research has shown that epigenetic

changes can also impact gene expression (Berdasco and

Esteller 2010; Jones and Baylin 2007).

Many innate cell systems are able to detect and repair

DNA damage; consequently, the number of spontaneous

mutations in a cell generation tends to be low. Cancer cells

however often have higher than normal mutation rates,

which can be achieved in a variety of ways. There can be

an increased sensitivity to mutagenic agents or breakdown

in any of the genetic maintenance machinery or pathways.

Also, a disturbance in the cell machinery that detects and

fixes mutations (for example, TP53, mentioned earlier) can

lead to an increased mutation rate. The process of detecting
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and fixing DNA damage is complex, and so has a lot of

potential places breakdowns can happen, such as:

• Machinery that detects damage and activates repair

pathways;

• Machinery that repairs DNA;

• Machinery that kills a cell if too much damage is

acquired;

• The pathways involved with the inactivation and

interception of mutagenic molecules.

Other cell components can be included in the list of

‘‘caretakers’’ that watch over the genome. Some research

found that there may even be certain areas of the genome

where aberrations are likely to lead to neoplastic growth,

an interesting observation made after seeing recurrence of

specific amplifications and deletions at certain sites in

breast cancer (Korkola and Gray 2010).

Currently it is known that the genetic changes in cancer

vary across tumours, tissues and types, however one thing

that is agreed upon is the vast array of cell maintenance and

repair mechanisms that can be damaged as well as the

prevalence of copy number changes in cancers. These

widespread changes point to genome instability as an

enabling characteristic of cancer in general, and possibly

one that is causing the acquisition of cancer hallmarks

(Hanahan and Weinberg 2011).

Working with this belief, that genome instability could

cause cells to acquire some hallmarks, we have added it as

an enabling characteristic in this cancer simulation. While

there are many different pathways and mechanisms that

can be impacted in cancer growth and cause genetic

instability, the end result is a genetically unstable cell

which has a higher likelihood of mutation. We model this

characteristic with the GENETICALLY UNSTABLE hallmark

(GU) which when active increases the chances of mutation

in each mitotic event by a factor of ð1=gifÞ where gif is the

genetic instability factor parameter (Table 1). Modelling it

in this way allows for hallmarks to still be acquired

spontaneously due to any number of factors, but also

allows cells to accumulate mutations more quickly if they

are genetically unstable.

2.8 Evading immune destruction—Hallmark

symbol: AI

Listed as an ‘‘emerging hallmark’’ in the updated cancer

hallmarks paper, the ability for cancer to seemingly evade

destruction by the immune system is an unresolved issue

that appears to play a large role in cancer growth (Hanahan

and Weinberg 2011). It has long been believed that the

immune system is like a constant surveillance system,

watching the body for signs of foreign cells or incipient

cancer cells, eradicating them if they are found. By this

logic, cells that manage to grow into full macroscopic

tumours must have somehow avoided detection or

destruction by that same system.

One piece of evidence in the argument that the immune

system is involved in the early detection and eradication of

cancer cells is the fact that individuals who are immuno-

compromised have a much higher incidence of certain

cancers (Vajdic and Leeuwen 2009). However many of

these are cancers caused by viruses, and so it may seem

that perhaps the role of the immune system in cancer

prevention is just minimizing the viral load on a body.

Recently however, some studies have shown that even in

non-virus-induced cancer, the immune system still plays a

significant role as a barrier to cancer progression (Hanahan

and Weinberg 2011).

Studies with genetically engineered mice back up this

claim. Mice that have been engineered to lack various

pieces of the immune system had an increased incidence of

tumour formation. Mice that were engineered to be defi-

cient in multiple pieces of the immune system had even

higher rates of cancer (Teng et al. 2008; Kim et al. 2007).

Hanahan and Weinberg believe there is some evidence

of antitumour immunity but that it has yet to be proven

ubiquitously enough to be considered a core hallmark and

as such have set it as an ‘‘emerging hallmark’’. We have

chosen to include emerging hallmark AI in this study, as

we are interested in a high-level, abstract model. We could

assume this general model is of a type of solid mass tumour

that is affected negatively by the immune system, as many

cancers have been shown to be. This simulation has a very

simple, basic model of immune system surveillance. In the

model, cells which have sustained mutations have the

possibility of being killed by the immune system at every

life cycle (a probability of 1/i where i is the immune death

parameter in Table 1). We then model cancer’s ability to

possibly avoid this with the AVOIDS IMMUNE SYSTEM hallmark

(AI) which, when activated, lowers the probability of a

cancer cell being killed by the immune system by a factor

of aip, the avoids immune system parameter (Table 1).

2.9 A note on hallmarks not included

This model specifically includes 5 of the original 6 hall-

marks of cancer, one of the two emerging hallmarks, and

one of the two enabling characteristics. The choice of what

to model was informed by the scope and type of study, the

biological relevance at the early growth phase, and the
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computational and modelling feasibility. Those interested

in learning more about the hallmarks not included (or any

hallmarks) are directed to the revised Hallmark paper,

Hallmarks of cancer: The next generation (Hanahan and

Weinberg 2011) and the papers referenced therein.

Firstly, we left out the ‘‘tissue invasion and metastasis’’

hallmark from the original hallmark paper (Hanahan and

Weinberg 2000). This particular cancer simulation is

focused on the early, pre-metastatic growth phase of can-

cer. We are interested in early growth, the appearance of

the hallmarks, the time when tumours reach visible size

and what hallmark-stopping efforts are most useful at this

time. Patients whose tumours are found before they spread

have a much better chance of survival and we are interested

in this early phase of growth. This simulation looks

specifically at early tumour growth and the development of

the primary tumour, and as such does not include invasion

or metastasis in the simulation.

The enabling characteristic we did not include is ‘‘tu-

mour promoting inflammation’’. Hanahan and Weinberg

point out that inflammation is sometimes present at very

early stages of neoplastic progression, and has been found

to be clearly capable of assisting in the progression from

incipient neoplasias to fully functioning cancer tumours.

Also, some inflammatory cells release reactive oxygen

species which are mutagenic to the surrounding cells,

possibly assisting these cells in gaining advantageous

mutations. As such, Hanahan and Weinberg have classified

inflammation as an ‘‘enabling characteristic’’ of cancer,

however they stated that of the two enabling characteris-

tics, the most prominent is genomic instability. We have

chosen not to include this characteristic in our simulation.

We are modelling early cell growth, which has been shown

to sometimes have inflammation present, but not always.

Also, the role of inflammation is still largely unknown.

Many of the cell types that lead to inflammation, such as

cells of the innate immune system, play a dual role of

assisting in cancer development and trying to stop it.

Inflammation appears to be involved in a host of devel-

opments, specific to what cells are present, the microen-

vironment, etc. As such, there is no obvious single impact

on early tumour growth that can be abstracted to a

parameter that could be modelled in the type of high level

model we are interested in studying. In the future adding a

microenvironment at a lower level of abstraction would be

beneficial and would allow the addition of some inflam-

matory responses.

Lastly we have not modelled the emerging hallmark of

‘‘deregulated cellular energetics’’. This potential hallmark

involves a cancer cell’s ability to change their energy

metabolism pathway from the high efficiency aerobic res-

piration, to the lower efficiency anaerobic respiration. As

this is an emerging hallmark, Hanahan and Weinberg have

not decided that it is common enough to be a full hallmark.

Also, this high level model is only looking at one aspect of

the tumour microenvironment—the impact of oxygen

availability on the hallmarks. We are not specifically

modelling ATP creation or glucose, and as such we have

not included this emerging hallmark.

2.10 Event queue

Mitotic events are the driving force in this model. An event

queue keeps track of all events scheduled for the simula-

tion. Initially, the cell has a mitotic event scheduled for 5–

11 time steps in the future. When the event is popped the

time is checked. If the time for the event is beyond the

current time in the simulator the current time is updated. If

the cell is to grow in a North, East, South or West direction,

the time is scheduled 5–11 time points in the future (chosen

by random number from a uniform distribution). If the cell

is growing on a diagonal on the grid then the event is

scheduled for 7–14 (
ffiffiffi

2
p

of the normal mitotic time) to

account for the increase in spatial distance.
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2.11 Lifecycle psuedocode

3 Lattice-Boltzmann implementation details

Lattice-Boltzmann algorithms (Chen and Doolen 1998;

Succi 2001), have become increasingly popular as methods

used to model coarse-grained fluid dynamics. These

methods use a discretization of time, space, as well as

velocity in order to solve for the motion of a set of partial

distribution functions, fiðx; tÞ, each corresponding to a

discrete velocity vector, ei, which evolve according to a

discretized version of the linearized Boltzmann equation.

Macroscopic fluid quantities are then determined via

moments of these distribution functions.

In order to model the transport of oxygen dissolved in

blood, we use a two component lattice-Boltzmann algo-

rithm. Here, the quantities of interest are the total density

q ¼ qB þ qO which should satisfy both the continuity and

1: firstCell ← Cell
2: time ← 0
3: firstCell.scheduleMitoticEvent()
4: eventQueue.push(firstCell)
5: S ← 0
6: while eventQueue not empty do
7: currentCell ← eventQueue.pop()
8: if currentCell.isAlive then
9: time ← currentCell.time()

10: dead ← currentCell.died {check for random cell death.}
11: if currentCell.isMutated then
12: apop ← currentCell.apoptosis {check for death via apoptosis if cell

is mutated. Avoided if apoptosis hallmark is on}
13: end if
14: cangrow ← false
15: if selfGrowthHall or withinGrowthRange then
16: cangrow ← true
17: end if
18: if spaceToGrow then
19: space ← true {If ignore growth inhibition is on, it can compete for

space if no space available}
20: end if
21: telo ← false
22: if currentCell.getTelomere > 0 or currentCell.ignoresTelomereHallark

then
23: telo ← true
24: end if
25: if currentCell.withinBlood or currentCell.isOrWithinAngiogeneic

then
26: blood ← true
27: end if
28: if currentCell.killedByImmune ! = true or currentCell.avoidsImmune

then
29: stillAlive ← true
30: end if
31: if currentCell.enoughOxygen then
32: oxygen ← true
33: end if
34: if cangrow and space and telo and blood and stillAlive and oxygen

then
35: daugtherCell ← currentCell.mitosis {daughter cell may be mu-

tated during mitosis event}
36: currentCell.mitosisOccured() {opportunity for mutation during a

mitosis event}
37: currentCell.scheduleMitoticEvent()
38: daughterCell.scheduleMitoticEvent()
39: eventQueue.push(daughterCell, currentCell)
40: end if
41: end if
42: end while
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Navier–Stokes equations, and the density difference

between the two components / ¼ qO � qB, which will

evolve according to a convection–diffusion equation. In

these expressions, qO corresponds to the density of oxygen

in the blood, and qB is the density of the remaining blood

constituents. In order to model these two quantities we

follow the binary fluid approach of (Orlandini et al. 1995;

Swift et al. 1996), and introduce two sets of distribution

functions, fi and gi, whose moments correspond to the

physical variables,

q ¼
X

i

fi

qua ¼
X

i

fieia
ð1Þ

/ ¼
X

i

gi; ð2Þ

where u is the local fluid velocity. The time evolution of

these distribution functions is governed by the following

discretized Boltzmann equations,

fiðxþ eiDt; t þ DtÞ � fiðx; tÞ ¼ �Dt
sq

fiðx; tÞ � f
eq
i ðx; tÞð Þ

giðxþ eiDt; t þ DtÞ � giðx; tÞ ¼ �Dt
s/

giðx; tÞ � g
eq
i ðx; tÞð Þ

þ hiðx; tÞDt:
ð3Þ

The first term on the right hand side describes a single time

relaxation towards the equilibrium distribution functions,

f
eq
i and g

eq
i (Bhatnagar et al. 1954), while hi is a forcing

term we have introduced in order to remove oxygen locally

from the system when it is consumed by the cancer cells.

To model these equations we use a nine velocity, 2D

algorithm with velocity vectors,

ei ¼ ð0; 0Þ; ð�vc; 0Þ; ð0;�vcÞ; ð�vc;�vcÞ½ �; ð4Þ

where vc ¼ Dx=Dt, with Dx and Dt corresponding to the

lattice spacing, and timestep respectively.

In order to satisfy conservation of mass and momentum

we choose the equilibrium distribution functions according

to,
X

i

f
eq
i ¼ q

X

i

f
eq
i eia ¼ qua

X

i

g
eq
i ¼ /

ð5Þ

X

i

g
eq
i eia ¼ /ua; ð6Þ

and define the higher moments and forcing term by the

following equations,

X

i

f
eq
i eiaeib ¼ Pab þ quaub

X

i

g
eq
i eiaeib

X

i

hi ¼ F

X

i

hieia ¼ 0:

ð7Þ

Here Pab is the pressure tensor, C is the mobility, which is

related to the diffusion constant, l is the chemical potential

difference between the fluid components, and F is an

oxygen sink term describing the amount by which /
changes at a given timestep. With these choices, a Chap-

man-Enskog expansion of our Boltzmann equations

[Eq. (3)] can be shown to reproduce the continuity and

Navier–Stokes equations,

otqþ oaqua ¼ 0

qotua þ qubobua ¼ �obPab þ gr2ua;
ð8Þ

as well as a convection–diffusion equation with oxygen

sink term, F,

ot/þoað/uaÞ¼ ðs/�Dt=2Þ Cr2l�oa
/
q
obPab

� �� �

þF:

ð9Þ

to second order in the derivatives. Here, the viscosity, g, is

defined according to qðsq�Dt=2Þv2
c=3. For the pressure,

Pab, and chemical potential difference, l, we use the

equations given in (Orlandini et al. 1995; Swift et al.

1996), which were derived based on a free energy

description of the fluid mixture,

l ¼ � k
2

/
q
þ n

2
ln

qþ /
q� /

� �

Pab ¼ qnþ /l½ �dab:
ð10Þ

Here k and n are parameters determining the state of the

system; for n\k=2 phase separation of the two compo-

nents occurs. We therefore always work in a regime where

n[ k=2 and the oxygen remains mixed in the blood. In this

framework, the diffusion constant for the model, D, is

given by,

D ¼ ðs/ � Dt=2ÞCk
2q

: ð11Þ

For the lattice-Boltzmann algorithm, we use a density of

qB ¼ 300 mol/m3 (Erbertseder et al. 2012) throughout the

simulation domain, and set the density of oxygen to qO ¼
9 mol/m3 at the boundary, representing a continual supply

of oxygen to the system. We choose a diffusion constant,

D ¼ 0:134 mm2=s (Valvano et al. 1985), corresponding to
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the thermal diffusivity of colon cancer. The oxygen grid is

updated every 25 time steps (time in the cellular automata

model) and each cell at that point consumes oxygen if it

has not consumed already during a mitotic event. The

consumption level for normal cancerous cells is 0.019. The

lattice Boltzmann grid is finer than the CA grid (a ration of

1 cancer cell to 9 lattice Boltzmann cells), and so at each

time step of the cancer cells, each cancer cell calculates the

amount of oxygen present in all lattice Boltzmann cells

mapped to it and gets a total oxygen value. These are

dimensionless and are parameters chosen by fixing the

consumption and diffusion rates, and iteratively determin-

ing what requirements gave the most physiologically rel-

evant results.

3.1 Parameter values

Parameters (Table 1) for the model were either chosen from

the literature or by searches of the parameter space. Param-

eters used in the models by Abbott (Abbott et al. 2006) and

Santos (Santos and Monteagudo 2012) were held constant

(except mutation rate which was selected to be between the

two values used by Santos) and other parameters were varied

iteratively. The output (tumour size, shape, composition and

cell type ratios) was examined for concordance with in vivo

tumours. The tumours resemble the classic solid mass

tumour structure of a necrotic core with a quiescent rim and

proliferating rim (Folkman and Hochberg 1973; Sutherland

et al. 1986). The tumours also grow to roughly 2–2.5 mm

before overwhelming the nutrients available and needing

their own vasculature (Folkman 1971) and then grow to a

maximum of 5.5 mm. All calculations were done using an

average cell diameter of 25 lm (Tom et al. 1976). The

tumours grow to this final size over a period of approximately

2 years, assuming a cell division time of 16–24 h. This is in

line with growth times for fast growing tumours, which reach

clinically detectable size (0.2 cm to 1 mm) within 2 years

(McArdle et al. 2005).

4 Results

With all hallmarks active, every simulation run produced a

tumour using parameters described in Table 1. A ‘‘tumour’’

is classified as a mass in which 99 % or more of its alive cells

have at least one mutation. The growth over time for a sim-

ulation with all hallmarks available can be seen in Fig. 1.

Figure 1a shows total cell counts throughout growth.

Initially healthy cells grow rapidly, however around step 20

they sharply decline. Then, around step 25 cancer cells

rapidly start to increase. This corresponds to a sharp

increase in angiogenic cells as well as cells that avoid

apoptosis, and relatively stable numbers of healthy cells.

Figure 1c–h shows the images produced from the same

simulation. It can be seen in Fig. 1c that initially healthy

cells dominate the clone. Death is occurring, most likely

due to random cell death or the initial fast killing of any

cancerous cells by apoptosis and the immune system. By

1d we can already see the emergence of different cancer

phenotypes. There are three major phenotypes present in

the tumour from early on. The center of the tumour also

begins to die at 1d. This is due to a lack of oxygen getting

to the center of the tumour (causing necrosis). At 1g the

outside of the tumour is also dying, as regular cells can go

no further as they are outside the growth factor and blood

range. In 1h we see the tumour is almost entirely cancer-

ous, with a few different phenotypes protruding from the

mass. This ‘‘fingering morphology’’, where the border is

not smooth but rough, is consistent with other models and

histopathological observations (Bello et al. 2004; Ander-

son et al. 2006; Bellomo and Angelis 2008). It is believed

that there are two forms of tumour invasion—either tumour

cells outgrow normal tissue and expand as a bulk mass, or

they form invasive contingents by intermingling with

stromal cells. The fingering morphology is a consequence

of this intermingling (Kam et al. 2012). It has been noted

that this fingering morphology looks like a crab, from

which the word cancer was derived (Kam et al. 2012). The

fingering morphology is correlated with harsher microen-

vironments where only cells with particular phenotypes

survive. This behaviour is evident in our model where

certain subclones and phenotypes dominate the tumour.

Knocking out some hallmark pairs had very little effect

on the growth of the tumour. In fact, knockout pairs SG &

IGI, SG & AA, SG & IT, IGI & AA, IGI & GU, IGI & AI,

AA & GU, AA & AI, IT & GU and GU & AI had no

significant effect (all p values [0.05 using Wilcoxon

signed-rank test Bonferroni corrected for multiple com-

parisons) (see Fig. 2b, c for examples of final simulation

image when cancer took over despite hallmark pair

knockouts). Other pairs of hallmarks had such a large effect

that a cancerous tumour never took over and the simulation

ended prematurely as not enough cells survived. The nor-

mal cells continued to grow to the edge of the growth factor

barrier, and then eventually consumed all of the oxygen in

the system and the healthy cells died off. This can be seen

in Fig. 2d, e. The following hallmark pairs significantly

(p = 0.0004 using Wilcoxon signed-rank test, Bonferroni

corrected) decreased cancer growth: SG & A, SG & GU,

SG & AI, IGI & A, AA & A and A & GU. Other pairs, AA

& IT and A & AI had a smaller but still significant effect

(p ¼ 0:017 and p ¼ 0:019 respectively using Wilcoxon

signed-rank test, Bonferroni corrected).

The effect of various hallmark pairs can be seen in

Fig. 3. This shows that some hallmark knockouts (A &

GU, IGI & A, IT & A, SG & A, A & AI, SG & AI) do not
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result in a tumour. Cancer growth is fairly consistent across

all of the simulations, regardless of knockout, until step 20.

Here, all cell populations take a dip however certain sim-

ulations show strong growth after this point. The knockout

pairs listed above however die off at this point, and these

simulations do not result in a cancerous tumour.

Figure 4 shows a histogram of phenotypes that were in

the top 10 phenotypes by cell count during the last stage

of simulation for 14 unique simulations (knockout pairs

that still resulted in a tumour). IDs can be mapped to

phenotype using Table 2. While it is obvious that phe-

notype 0 (dead phenotype) will be present in large

numbers in all runs, it is interesting that phenotype 4 and

132 are also present in every run in large numbers—these

are cells with the ANGIOGENESIS hallmark activated and no

other hallmarks, both alive and dead. Also, by the end of

simulation almost all tumours have a large population of

dead SELF GROWTH cells and AVOIDS APOPTOSIS cells. It is

interesting that alive ANGIOGENESIS cells dominate but dead

SELF GROWTH and APOPTOSIS. Also present in the majority of

simulations in large numbers are dead cells with IGNORES

GROWTH INHIBITION activated and IGNORES TELOMERES acti-

vated, as well as alive cells that are both ANGIOGENIC and

AVOID APOPTOSIS.

Fig. 1 Total cell count for cancerous, non cancerous, and each

hallmark is shown for an entire simulation will all hallmarks available

for activation. a Regular versus cancerous cell growth, b each

individual hallmark growth and total cancer cell growth. c–hSimulation

of a colony of cells with all hallmarks available for activation at event

steps 1–32. Dead cells are black, healthy cells are blue, all other colours

represent some kind of unique cancer phenotype phenotype. Simulation

steps: c 1, d 6, e 12, f 18, g 24, h 32. (Color figure online)

Fig. 2 End of simulation images for four different hallmark-knockout pairs. a No hallmarks knocked out, b IGI & AA, c IGI & IT, d SG & A,

e IGI & A
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5 Discussion

As expected, when all hallmarks are available for activa-

tion the tumour grows to the largest extent, presumably as

these tumours can take advantage of all hallmarks and the

different abilities each confers. It was also expected that

knocking out 2 hallmarks would significantly lower the

growth of cancer. We hypothesized that certain pairs would

perform better than others, and that knocking out hallmarks

in pairs could have more than just an additive effect.

Half of all tumours with SELF GROWTH knocked out did

not result in a tumour. SG allows a tumour to extend

beyond the normal boundary of growth. In areas of the

body where growth factor is limited, this would be a very

important hallmark. However if a tumour is growing where

there is ample growth factor the hallmark may be less

effective as a drug target.

All simulations with ANGIOGENESIS knocked out failed to

result in a tumour. Similar to SG, ANGIOGENESIS allows a cell

to live outside the predefined blood boundary. One reason

the ANGIOGENESIS hallmark is more powerful is because it

conveys benefit to not just the cell with the mutation, but

surrounding cells, as all nearby cells benefit from the new

vasculature.

The last hallmark that was knocked out in more than one

pair that did not lead to a tumour is GENOME INSTABILITY.

Since GENOME INSTABILITY can lead to all of the other

mutations being activated more frequently this is

understandable.

As evident in Fig. 3, there is a bifurcation in total cell

count—either similar to both hallmarks or almost none.

This is because cell populations which result in a tumour

show almost exponential growth and are not limited by

oxygen or space due to acquired mutations. Cell popula-

tions that do not result in a tumour are limited by both of

these factors, and so eventually almost all cells die as this

overpopulation cannot be sustained by the normal

vasculature.

It is interesting that of the phenotypes that dominated

clones at the end of simulation (shown in Fig. 4), many

cells with a single mutation grew quickly but died off.

Single mutation phenotypes were largely present, but in

dead cells. In contrast, the phenotypes that dominated and

were still alive had multiple mutations. While multiple

mutations increase the chances of death by the immune

system and apoptosis, this suggests it still conveys a very

strong advantage overall. This supports the hypothesis that

knocking out multiple hallmarks, if you can find the correct

pairs, will be better than single target treatments.

Many knockouts did not prevent the tumour from

forming. For example, all knockouts that included IGNORING

GROWTH INHIBITION still resulted in a tumour, except for one

(IGI & A). In our model IGI allows cells to grow even

when there is no space around them, but this only conveys

an advantage to internal cells. Cells on the proliferating

edge always have space, and therefore removing it does not

seem to hurt growth to a significant degree. This could be a

limitation of the model as in reality the proliferating rim of

a tumour may have space constraints from surrounding

tissue.

Other limitations of the model include the fact that AN-

GIOGENESIS only provides a benefit to itself or cells imme-

diately around it. In addition, it only provides an advantage

while the cell is living. In reality angiogenic cells start the

creation of blood vessels and those remain even if the cells

die.

Fig. 3 Total alive cancer cell count every 400 simulation steps is

shown. Each hallmark-knockout pair was simulated and run 10 times.

The average cell count from these runs was calculated and plotted

Fig. 4 Each tumour at the end of the simulation had different

phenotypes present. The top 10 phenotypes, by total number in the

tumour, in each separate simulation were recorded at the end of

simulation and totals were plotted
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6 Conclusions

We have modelled the impact of cancer hallmarks, as

proposed by Hanahan and Weinberg, on early tumour

growth using a cellular automaton model of cancer cells

and lattice Boltzmann methods for two phase fluids (oxy-

gen in the blood, which is more physiologically relevant

than the more common choice of modelling just oxygen or

blood alone, as oxygen is a fluid transported in blood)

(Hanahan and Weinberg 2000, 2011). Our results show that

knocking out pairs of hallmarks does not necessarily have

an additive effect. Santos et al. found that AVOIDING APOP-

TOSIS and IGNORING GROWTH INHIBITION were the most critical

hallmarks independently when cells had a high rate of

mutation, and they also found that IGNORING TELOMERES and

SELF GROWTH had a small impact (Santos and Monteagudo

2012). Looking at the impact of knocking out both AVOID-

ING APOPTOSIS and (IGNORING GROWTH INHIBITION), we did not

see a significant decrease in tumour growth. This is inter-

esting as it is not what would be expected from the findings

of knocking out singular hallmarks if one assumes linear

combination of knockout effects.

We found that knocking out the ability for a cancer cell

to SELF GROW and AVOID IMMUNE SYSTEM, as well as SELF

GROW and be GENETICALLY UNSTABLE, prevent a tumour from

growing. Neither SELF GROWTH nor GENETIC INSTABILITY had a

great effect in the simulations done by Santos et al. (the

immune system was not modelled in this work) however in

combination they had a strong and significant effect. This

supports our hypothesis that knowing the impact of indi-

vidual hallmarks, which can be extended to individual

drugs, does not necessarily give insight into the impact of

combining those knockouts and drugs.

Lastly, we found that knocking out the ability for cells to

INDUCE ANGIOGENESIS combined with any other hallmark

prevented tumour growth. Research has been done into

anti-angiogenesis drugs however the conclusions were not

always positive. Patients still died from small tumours

throughout the body as opposed to one large tumour, which

was seen without the drugs (Ebos et al. 2009). It is

Table 2 Phenotype codes and

the corresponding hallmarks

present in the phenotype

Code Hallmarks present

0 Healthy

128 Healthy dead

4 Angiogenesis

132 Dead, angiogenesis

192 Dead, self groth

144 Dead, avoids apoptosis

169 Dead, ignores growth inhibition, ignores telomers, avoids immunity

29 Avoids immunity, angiogenesis, ignores telomere, avoids apoptosis

136 Dead, ignore telomeres

139 Dead, avoids immunity, genome unstable, ignores telomere

22 Genome unstable, angiogenesis, avoids apoptosis

68 Angiogenesis, self grows

36 Angiogenesis, ignores growth inhibition

64 Self growth

16 Avoids apoptosis

8 Ignores telomeres

2 Genome unstable

86 Genome unstable, angiogenesis, avoids apoptosis, self growth

82 Genome unstable, avoid apoptosis, self growth

196 Dead, angiogenesis, self grows, dead

134 Dead, genome unstable, angiogenesis

54 Genome unstable, angiogenesis, avoids apoptosis, ignores growth inhibition

52 Angiogenesis, avoids apoptosis, ignores growth inhibition

178 Dead, genome unstable, avoids apoptosis, ignores growth inhibition

6 Genome unstable, angiogenesis

164 Dead, angiogenesis, ignores growth inhibition

32 Ignores growth inhibition

28 Angiogenesis, ignores telomere, avoids apoptosis

12 Angiogenesis, ignores telomere

28 J. Butler et al.
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hypothesized that without angiogenesis, other factors

became important, such as metastasis. Perhaps the key is

preventing cells from inducing angiogenesis and limiting

other cancerous abilities. Currently trials are underway to

test pairing anti-angiogenesis drugs with various

chemotherapy drugs for multiple types of cancer including

breast, colon and medulloblastoma (Chinese Academy of

Medical Sciences 2014; International breast cancer study

group 2014; Hoffmann-La 2014; Medical University of

Vienna 2014; Hellenic Oncology Research Group 2014)—

in other words, combination therapy trials.

We have found that the effect of knocking out cancer

hallmarks in pairs can have varying levels of success. This

suggests that clinical research should be done into combi-

nation drug treatment as not all drugs that are strong

individually will necessarily be strong in combination.

Since cancer treatments can be physically and emotionally

challenging for patients, knowing in advance what com-

binations will not be successful could greatly enhance the

quality of life of people undergoing cancer treatment.
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