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Behavioral/Cognitive

Dynamic and Opposing Adjustment of Movement
Cancellation and Generation in an Oculomotor
Countermanding Task

Brian D. Corneil,1,2,3 Joshua C. Cheng,1 and Samanthi C. Goonetilleke1

Departments of 1Physiology and Pharmacology and 2Psychology, Western University, London, Ontario N6A 5C1, Canada and 3The Brain and Mind
Institute, Robarts Research Institute, London, Ontario N6A 5K8, Canada

Adaptive adjustments of strategies help optimize behavior in a dynamic and uncertain world. Previous studies in the countermanding (or
stop-signal) paradigm have detailed how reaction times (RTs) change with trial sequence, demonstrating adaptive control of movement
generation. Comparatively little is known about the adaptive control of movement cancellation in the countermanding task, mainly
because movement cancellation implies the absence of an outcome and estimates of movement cancellation require hundreds of trials.
Here, we exploit a within-trial proxy of movement cancellation based on recordings of neck muscle activity while human subjects
attempted to cancel large eye– head gaze shifts. On a subset of successfully cancelled trials where gaze remains stable, small head-only
movements to the target are actively braked by a pulse of antagonist neck muscle activity. The timing of such antagonist muscle
recruitment relative to the stop signal, termed the “antagonist latency,” tended to decrease or increase after trials with or without a
stop-signal, respectively. Over multiple time scales, fluctuations in the antagonist latency tended to be the mirror opposite of those
occurring contemporaneously with RTs. These results provide new insights into the adaptive control of movement cancellation at an
unprecedented resolution, suggesting it can be as prone to dynamic adjustment as movement generation. Adaptive control in the
countermanding task appears to be governed by a dynamic balance between movement cancellation and generation: shifting the balance
in favor of movement cancellation slows movement generation, whereas shifting the balance in favor of movement generation slows
movement cancellation.

Introduction
A central aspect to executive control is the ability to adjust one’s
strategy to optimize behavior. Such adaptive control can be ex-
erted over a variety of time scales, reflecting events in the imme-
diate past. For example, in the countermanding (or stop-signal)
paradigm, which pits movement generation against movement
cancellation by occasionally requiring subjects to try to cancel an
impending response upon presentation of an infrequent stop sig-
nal (Logan and Cowan, 1984), saccadic reaction times (RTs) are
longer or shorter after successive trials with or without a stop
signal, respectively (Cabel et al., 2000; Kornylo et al., 2003;
Ozyurt et al., 2003; Emeric et al., 2007; Nelson et al., 2010). The
sensitivity of movement generation processes to immediate trial

history may reflect adaptive control of its priority (Bissett and
Logan, 2011).

Far less is known about the adaptive control of movement
cancellation in this task, particularly at short time scales. Al-
though the countermanding paradigm permits estimation of the
stop-signal reaction time (SSRT), or the time required for move-
ment cancellation, this estimate requires analysis of hundreds of
trials. Furthermore, the rapid modification in movement gener-
ation with recent trial history itself influences the probability of
responding on stop-signal trials. Following a stop trial for exam-
ple, do subjects selectively slow movement generation without
influencing movement cancellation, slow both movement gener-
ation and movement cancellation simultaneously, or slow move-
ment generation while simultaneously expediting movement
cancellation? Similar questions can be asked about fluctuations in
movement cancellation over longer time scales, as subjects per-
haps subtly modify their strategy or simply become fatigued. An-
swers to these questions would advance our understanding of
movement cancellation and executive control, but the SSRT es-
timate simply does not have the required resolution.

Our recent work has described a neuromuscular proxy for the
cancellation of an oculomotor program available on a single-trial
basis. When attempting to cancel an impending eye– head gaze
shift, human subjects occasionally generate a small head-only
movement toward the target even though the gaze shift is can-
celled successfully (Corneil and Elsley, 2005). Recordings of neck
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muscle activity demonstrate that this small head movement is
actively braked by a pulse of antagonist neck muscle activity
(Goonetilleke et al., 2010). The timing of such activity relative to
the stop signal, which we term the antagonist latency (see Fig.
1A), correlates positively with the SSRT across multiple subjects
(Goonetilleke et al., 2010), as does the within-subject change in
both SSRT and antagonist latency across different stop-signal
intensities (Goonetilleke et al., 2012). Here, we report fluctua-
tions in antagonist latency across a variety of time scales and
compare such fluctuations to those occurring contemporane-
ously with the RT of the saccadic gaze shift. Our results reveal
opposing trends in all of these measures, including with immedi-
ate trial history. To our knowledge, these results constitute the
first direct evidence that movement cancellation can be as prone
to dynamic adjustment as movement generation, and suggest
that adaptive control in this task is regulated through a balance
that can expedite movement cancellation at the cost of movement
generation and vice versa.

Materials and Methods
The experimental infrastructure and behavioral task is very similar to
that described in our previous work (Goonetilleke et al., 2010, 2012).
Eighteen different human subjects (mean age, 27; four female) partici-
pated in experimental procedures approved by the University Research
Ethics Board for Health Science Research at the University of Western
Ontario and were in accordance with the 1967 Declaration of Helsinki.
Subjects gave informed consent and were aware they could terminate
testing at any time.

The data set analyzed here is pooled across three experiments. As
described in more detail below, one difference in these experiments is the
intensity of the visual stop signal, which was either bright (Experiments 1
or 3) or dim or bright (Experiment 2). Data from Experiment 1 were
collected from eight subjects. This data set was used in our initial report
(Goonetilleke et al., 2010) describing neck muscle recruitment during
the countermanding of eye– head gaze shifts, and is reexamined here for
the effects of time and trial sequence. Data for Experiment 2 were col-
lected from eight subjects. This data set was used in a different manu-
script (Goonetilleke et al., 2012) to examine the effects of stop-signal
intensity on the SSRT and the antagonist latency, and is also reexamined
here for the effects of time and trial sequence. Finally, we also collected
data from an additional 10 subjects for Experiment 3, using the same
procedures as in Experiment 2 with the exception of only using a bright
stop signal. This data set was collected solely for this manuscript. There-
fore, the data set examined here encompasses a total of 26 different
experimental sessions, across 18 different subjects (two subjects per-
formed in all three experiments, two subjects performed in Experiments
1 and 2, and four subjects performed in Experiments 2 and 3).

Behavioral task. Subjects performed an oculomotor countermanding
task with their heads unrestrained. On no-stop trials, subjects generated
coordinated eye– head gaze shifts from a central fixation point (FP) to a
visual target presented either 60° left or 60° right. All visual stimuli were
LEDs. A 200 ms gap was introduced between FP disappearance and visual
target presentation in Experiment 1, and FP disappearance and visual
target presentation was synchronous in Experiments 2 and 3. On a subset
of trials (�30%, termed stop trials), a visual stop signal was presented.
The visual stop signal was either the reappearance of the central FP (Ex-
periment 1) or a visual stimulus presented directly above the central FP
(Experiments 2 and 3). In Experiment 2, the stop signal was either bright
or dim, with equal probability. In Experiments 1 and 3, the stop signal
was always bright. The interval between target presentation and the visual
stop signal is termed the stop-signal delay (SSD; Fig. 1 A). In Experiment
1, the SSD was selected pseudorandomly from a set of six SSDs that
spanned 200 ms to cover the minimum to maximum of the inhibition
function that describes movement probability as a function of SSD. In
Experiments 2 and 3, the SSD was varied adaptively using a staircasing
algorithm so that subjects successfully canceled gaze shifts on �50% of
all stop trials, with the SSD increasing (decreasing) by 40 or 80 ms with

equal probability if the gaze shift on the previous stop trial was success-
fully (unsuccessfully) cancelled. In Experiment 2, independent staircas-
ing algorithms were run for bright or dim stop signals, with both
initialized to 80 ms.

Subjects were instructed only to try to withhold a gaze shift upon
presentation of the stop signal, and were not given any explicit instruc-
tions about eye– head coordination or performance feedback. Subjects in
Experiment 1 completed three blocks of 200 trials each (600 trials per
subject total). Subjects in Experiments 2 and 3 completed six blocks of
204 trials each (1224 trials per subject total). The selection of target
direction (left or right), trial type (stop or no-stop trials), SSD (Experi-
ment 1), or stop-signal intensity (Experiment 2) on a given trial was
pseudorandomized by customized LabView (National Instruments)
programs so that all conditions were presented an appropriate number of
times within a block. Short breaks were introduced between blocks.

Data collection and analysis. We recorded horizontal eye and head
movements (summed together off-line to yield gaze in space), and elec-
tromyographic (EMG) activity from splenius capitis (SPL). SPL record-
ings were made bilaterally via intramuscular electrodes using staggered
monopolar insertions to characterize SPL recruitment across multiple
motor units. Off-line analyses included a trial-by-trial inspection and
classification of all movement and EMG traces conducted in a graphical
user interface.

Our previous work (Goonetilleke et al., 2012) demonstrated that an-
tagonist latencies are shorter with a brighter stop signal. To ensure that
this difference does not confound the results from Experiment 2, our
analysis of how the antagonist latency or SSRT changes within or across
blocks of trial examined only stop trials with a bright stop signal, or were
conducted separately for dim and bright stop signals. Our subsequent
triplet analysis of changes in antagonist latency across sequences of three
trials only used data where the stop-signal intensity was the same on trials
n � 1 and n � 1.

Results
All subjects generated one of three movement sequences on a
given stop trial: they either generated eye– head gaze shifts toward
the target (noncanceled trials), fully canceled motion of the eyes
or head (cancelled trials), or generated a head-only movement
toward the target that was compensated for by eye-in-head mo-
tion that maintained gaze stability (Fig. 1A). Our previous work
has documented the frequency of these three movement se-
quences, how their propensity changes across SSD, and the pro-
file of bilateral neck muscle recruitment during each sequence
(Corneil and Elsley, 2005; Goonetilleke et al., 2010, 2012). Head-
only errors are uniquely associated with a burst of neck EMG
activity on the antagonist muscle (Fig. 1A). Because such antag-
onist recruitment occurs during the outbound head movement,
it is a lengthening contraction that serves to actively brake the
head.

The antagonist latency extracted from head-only movements
is a proxy for the time of movement cancellation
Head-only movements are examples of successfully canceled gaze
shifts. During this movement sequence, head movements are first
initiated by agonist neck muscle activity and then actively braked
by antagonist neck muscle recruitment. Our central hypothesis is
that the antagonist latency relative to the SSD is a proxy of ocul-
omotor cancellation that can be extracted from head-only move-
ment trials. Consistent with this, antagonist muscle activity is not
seen on no-stop trials, on fully cancelled trials, or on noncan-
celled trials where gaze attains the peripheral target. Antagonist
muscle recruitment is observed during noncancelled gaze shifts
that do not attain the target (Goonetilleke et al., 2010). Large
eye– head gaze shifts can be truncated in midflight in this and
related tasks (Corneil et al., 1999; Corneil and Elsley, 2005), sug-
gesting that processing of the stop signal continues during move-
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ment generation. In this and our previous countermanding work,
we analyze antagonist muscle recruitment only during head-only
errors, rather than truncated noncancelled gaze shifts, to avoid
confounds that may be associated with gaze shift initiation.

Across our sample, subjects generated between 13 and 55
head-only movements in Experiment 1 (mean � SD, 37 � 12),
between 88 and 166 head-only movements in Experiment 2
(mean � SD, 128 � 30), and between 41 and 172 head-only
movements in Experiment 3 (mean � SD, 132 � 38; recall 600
trials were collected in Experiment 1 and 1224 trials in Experi-
ments 2 and 3). There was no difference in the propensity to
generate head-only movements in Experiments 2 and 3 (two-way
t test, t(16) � 0.23, p � 0.82), but head-only movements were
significantly less likely on a percentage basis in Experiment1
compared to Experiments 2 and 3 (two-way t test, t(24) � 3.7,
p � 0.001). This difference relates to the use of the staircasing
algorithm in Experiments 2 and 3, which tends to sample inter-
mediate SSDs at which head-only movements are more likely
(Corneil and Elsley, 2005). Regardless, we obtained a consider-
able yield of head-only movements from all experiments.

Our previous work has shown that the timing of this antago-
nist muscle recruitment relative to the stop signal, which we term
the “antagonist latency,” correlates positively with the SSRT and
decreases for longer SSDs as predicted by the race model, since
longer SSDs provide less time for stopping (Goonetilleke et al.,
2010, 2012). These findings were replicated in Experiment 3. Fur-
thermore, both the SSRT and antagonist latency are shorter for
brighter stop signals, and our recent paper showed that these
intensity-dependent changes in SSRT and antagonist latency

within a given subject are correlated as well (Goonetilleke et al.,
2012). The relationship between the average antagonist latency
and SSRT across all trials (calculated via the average of the mean
and integration methods) (for more details, see Goonetilleke et
al., 2010) is shown in Figure 1B (r � 0.67, p � 10�4 for the
regression in Fig. 1B).

While this result replicates previous findings, we sought to
examine how the relationship between the SSRT and the antago-
nist latency changes through time. To do this, we compared the
estimated SSRT with the average antagonist latency in each block
of �200 trials. This analysis also revealed strong positive correla-
tion between these two measures (r � 0.70, p � 10�8 for the
regression in Fig. 1C). More importantly, this block-by-block
comparison permitted an analysis of cofluctuations in these two
measures through time. If the antagonist latency is a valid proxy
for movement cancellation, then block-by-block increases (de-
creases) in the SSRT should be associated with block-by-block
increases (decreases) in the antagonist latency; as shown in Figure
1D this was indeed the case (r � 0.61, p � 10�8 for the regression
in Fig. 1D, with points distributing more often in the top right
and bottom left quadrants than expected by chance; � 2 test, � 2 �
3.8, p � 0.05). As a final analysis, for each subject in Experiments
2 and 3 (since these had six blocks), we ranked the blocks in order
of lowest to highest SSRT and antagonist latency, and found that
blocks with the shortest (longest) SSRT tended to also be those
blocks with the shortest (longest) antagonist latency. To do this
analysis, we took the difference in the rankings between SSRT and
antagonist latency for each block and compared it to the average
reshuffled ranking difference repeated 500 times. This was re-
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Figure 1. A, Depiction of a head-only error on a stop trial. The SSD is the time between the presentation of the target and stop signal. During a head-only error, gaze stability is maintained by
compensatory eye motion within the head. The antagonist latency is the time from stop-signal presentation to the onset of recruitment of the antagonist muscle that brakes the ongoing head
movement toward the target. SPL is an ipsilateral head turning neck muscle. Calibration: 50 ms; 10° for movement traces, 30 �V for EMG activity. B, C, Comparison of SSRT estimates and average
antagonist latency, calculated either across all trials (B) or with each block of �200 trials (C); note the positive correlations in each case. Squares in B represent different subjects; squares in C
represent different blocks of �200 trials. Solid diagonal lines show a linear regression ( p � 10 �4 for both). D, Comparison of block-to-block changes in SSRT and the antagonist latency, showing
data only from Experiments 2 and 3. Dashed lines divide quadrants, and solid line shows a linear regression ( p � 10 �8).
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peated separately for dim and bright stop signals in Experiment 2,
and the actual difference in rankings lay well below that predicted
by the reshuffling (paired t test, t(25) � �6.3, p � 10�5). To-
gether, all of these results are consistent with our hypothesis that
the antagonist latency is a proxy for oculomotor cancellation.

Nonstationarity and nonindependence of RTs and
antagonist latencies
Having established the close relationship between SSRT estimates
of movement cancellation and the antagonist latency, we now
investigate how antagonist latencies change through time. Previ-
ous work by Nelson et al. (2010) demonstrated that RTs on
no-stop trials fluctuate on a variety of different short (i.e.,
previous-trial effects) and longer time scales. Are antagonist la-
tencies prone to similar fluctuations, and, if so, how do such
fluctuations relate to contemporaneous fluctuations in RTs? We
therefore replicated the analyses of Nelson et al. (2010) on the
RTs on no-stop-signal trials and extended them to the antagonist
latencies from head-only errors (note that RT in our context
refers to the onset of the high-velocity saccadic gaze shift unless
noted otherwise).

We begin by showing how RTs on no-stop trials change
through time, showing data from one representative subject in
Experiment 3 (Fig. 2A, left) and a different subject in Experiment
2 (Fig. 2A, right). Recall that subjects in Experiments 2 and 3
performed six blocks of 204 trials each, with short breaks in be-
tween (Materials and Methods); the x-axis in Figure 2A is accord-
ingly broken between each of these blocks. From Figure 2A, it is
clear that there is both substantial trial-by-trial variability in no-
stop trial RTs, as well as medium-term (i.e., within a block) and
long-term (across all blocks) trends as well. We first examined the
medium- and longer-term trends via a linear trend analysis either
within a block or across all trials. A linear correlation between RT
and trial number within a block of trials reached significance in
15 of 132 blocks across all three experiments, with positive slopes
in 13 of these 15 significant correlations (acceptance values are
Bonferroni-adjusted for multiple comparisons). These slopes
were also significantly skewed to positive values across our sam-
ple (t test, t(131) � 3.94, p � 0.0001). A linear correlation in the
RTs across all trials reached significance in 16 of our 26 data sets

(Bonferroni-corrected for multiple comparisons), with positive
slopes in 11 of these 16 significant correlations. These slopes
tended to positive values across our sample, approaching signif-
icance (t test, t(25) � 2.03, p � 0.053). Thus, across all three
experiments, RTs on no-stop trials tended to increase both within
and across blocks of trials. Figure 2B shows examples of how the
antagonist latency changes through time for the same two sub-
jects. [Recall two different stop signals were used in Experiment 2;
these are represented with different colored symbols in Figure 2B
(right).] As with RTs, considerable short-, medium-, and long-
term variability is apparent in both subjects. To simplify compar-
ison of the data across the three experiments, we analyzed only
how the antagonist latency following a bright stop signal changed
through time. (We confirmed that similar results were obtained if
we only analyzed antagonist latencies following dim stop signals.)
Two subjects (one from Experiment 1, one from Experiment 3)
did not generate enough head-only movements to permit an
analysis within or across blocks of �200 trials. (The rate at which
both of these subjects generated head-only errors was �3 SDs
from the rates of the other subjects performing in the same ex-
periment.) From the remaining 24 subjects, a linear trend analy-
sis of the change in antagonist latency through a block of trials
never reached significance (acceptance values Bonferroni-
adjusted for multiple comparisons), perhaps due to the smaller
number of head-only error trials, nor was there any significant
skew in the tendency for the antagonist latency to increase or
decrease across a block of trials (t test of slopes, t(122) � �0.42,
p � 0.67). However, a linear correlation of antagonist latency
across all trials reached significance in 4 of 24 subjects
(Bonferroni-corrected for multiple comparisons), with negative
slopes observed in all 4 cases. These slopes tended to negative
values across our sample, but did not reach significance (t test,
t(24) � �1.73, p � 0.09).

Anticorrelated medium- and long-term trends in RTs and
antagonist latencies
The preceding analyses emphasize that both RTs and antagonist
latencies exhibit considerable fluctuations on a number of differ-
ent time scales. We now examine whether there is any relation-
ship between the medium- and long-term linear trends in RTs

Figure 2. A, B, Depiction of how RT (A) and antagonist latencies (B) change within a block of 204 trials and across all six blocks for two representative subjects. Each circle shows an individual
observation, and the lines show a running average (7 trials for RTs, 21 trials for antagonist latencies). Asterisks denote blocks where a linear trend within that block of trials reached significance.
Different shading on symbols in B (right) represents the antagonist latency measure in response to different stop-signal intensities.
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and antagonist latencies observed within or across blocks, respec-
tively, as this could provide insight into the nature of such fluc-
tuations. For example, if the long-term changes in these measures
were due to subject fatigue or dwindling motivation, then one
would expect both measures to increase over time. Instead, a
comparative analysis of the slopes of the changes in both mea-
sures either within a block of trials (Fig. 3A) or across all blocks
(Fig. 3B) revealed a surprisingly anticorrelated trend: larger in-
creases in one measure tended to be associated with larger de-
creases in the other measure (r � �0.42, p � 0.039 for Fig. 3A;
r � �0.2, p � 0.025 for Fig. 3B). Furthermore, the data in both
plots tended to cluster more in the top left or bottom right quad-
rants than would be expected by chance, approaching or exceed-
ing significance (� 2 test, � 2 � 3.6, p � 0.058 for Fig. 3A; � 2 � 4.2,
p � 0.04 for Fig. 3B), again emphasizing the anticorrelated nature
of the trends in how RT and the antagonist latency change
through time.

Another way of examining the same issue is to examine how
the RT and antagonist latencies change within the same time
window. To examine this, we performed a sliding-window anal-
ysis of the RT and antagonist latency averaged of over a 30 trial
window and plotted the results against each other. (Nota bene, the
30 trial window length is arbitrary, and similar results were ob-
tained with window lengths of 15, 20, 40, 50, or 100 trials; window
lengths shorter than �15 trials suffer from a lack of head-only
errors.) Examples of these plots are shown in Figure 4, A and B,
for the data sets shown in Figure 2, A and B, respectively. For both
representative data sets, and regardless of the intensity of the stop
signal in Experiment 2, we observed a general negative relation-
ship; periods where RT averages tended to increase were associ-
ated with shorter antagonist latency averages and vice versa.
Across our sample, the slopes of the regression relating these two
averages together skewed significantly to negative values (Fig. 4C;
t test, t(34) � �3.75, p � 0.0001), and slopes did not differ de-
pending on whether they were drawn from Experiments 1, 2
(bright stop signal only), or 3 (t tests, p � 0.39 for all compari-
sons), or depending on whether a bright or dim stop signal was

used (paired t test, t(7) � �0.55, p � 0.60).
Hence, the negative trend relating RT and
antagonist latency within a subject did not
depend on the intensity of the stop signal
or whether the SSD was drawn randomly
from a set of SSDs (Experiment 1) or de-
termined in a staircasing fashion (Experi-
ments 2 and 3).

A triplet analysis of RTs and
antagonist latencies
We now turn to an examination of
changes in the RT and antagonist latency
on a trial-by-trial basis, as this may give
insight into nature of short-term adaptive
control of both movement generation and
cancellation. The results up to now em-
phasize that both the RT and antagonist
latency measures exhibit considerable
fluctuations through time due to non-
independence and nonstationarity. As
discussed by Nelson et al. (2010), these
time-dependent fluctuations during the
countermanding paradigm can confound
the interpretation of any changes in the
RT (and presumably antagonist latency)

that may be occurring after a particular trial type. For example,
since subjects go through intervals of responding sooner or later,
which itself influences the probably of responding on a given
stop-signal trial, any changes could be attributable to adaptive
control, or may simply be a consequence of the nonstationarity
and nonindependence of the measures. We therefore conducted
a trial triplet analysis, as originally described by Nelson et al.
(2010), since this analysis references the RT or antagonist latency
measured after a given trial to the value before that trail, cancel-
ling out the effects of nonstationary and nonindependent pro-
cesses that act on longer time scales. In this analysis, the change in
a parameter (shown for RTs on no-stop trials in Fig. 5A) across
the first and third trials of a sequence is analyzed as a function of
the type of the second, intervening trial. As applied for an analysis
of RTs, note how trials n � 1 and n � 1 are no-stop trials for all
sequences; the only difference between sequences A and B is the
classification of trial n. Across our sample, RTs decreased signif-
icantly if trial n was a no-stop trial (Fig. 5A, sequence A; paired t
test, t(25) � �8.5, p � 10�8), and RTs increased if trial n was a
stop trial (Fig. 5A, sequence B; t(25) � 4.4, p � 0.001). Similar
results were observed with head RTs (results not shown). The
patterns shown in Figure 5A largely replicate those reported pre-
viously by Nelson et al. (2010). There was no correlation between
the size of these RT changes across no-stop versus stop trials on a
subject-by-subject basis (p � 0.2).

We then performed a similar triplet analysis on the antagonist
latency, examining changes in this value across trials n � 1 and
n � 1 as a function of the type of trial on trial n. The number of
appropriate trial sequences are far fewer, since the analysis re-
quires head-only movements on trials n � 1 and n � 1. Since
head-only errors were more likely in Experiments 2 and 3 given
the use of a staircasing method to determine SSD, the number of
appropriate sequences was greater in these experiments (recall as
well that we only collected 600 trials total per subject in Experi-
ment 1). We further restricted the data from Experiment 2 to
those triplets where the same intensity stop signal was presented
on trial n � 1 and n � 1. As a consequence of these constraints,
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Figure 3. Linear trends in RTs or antagonist latencies. For each block of trials (A; 123 squares total) or across all trials (B; 26
squares total), we plotted the slope expressing the change in antagonist latency across trials as a function of the slope expressing
the change in RTs across trials. Dashed lines divide quadrants; hence, values above or to the right of these lines represent measures
that increased through time. Solid diagonal lines show a linear regression through these points ( p � 0.039, A; p � 0.025, B),
demonstrating that subjects that had larger increases in one measure through time tended to have larger decreases in the other
measure.
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subjects generated, on average, 3 such sequences in Experiment 1
(mean � SD, 2.6 � 1.7; range, 1– 6), 5 such sequences in Exper-
iment 2 (mean � SD, 4.6 � 1.6; range, 3– 8), and 11 such se-
quences in Experiment 3 (mean � SD, 11.4 � 6.6; range, 3–25).
Across all subjects in all experiments, we obtained 96 sequences
were the intervening trial was a no-stop signal and 68 sequences
where the intervening trial was a stop-signal trial. When averaged
within each subject, antagonist latencies did not change signifi-
cantly if trial n was a no-stop trial (Fig. 5B, sequence A; t(25) �
0.12, p � 0.13), but decreased significantly if trial n was a stop trial
(sequence B; t(19) � �3.7, p � 0.005). (Five subjects in Experi-
ment 1 did not have a sequence where trial n was a stop trial.)
There was also no correlation between the size of these changes in
antagonist latency across no-stop versus stop trials on a subject-
by-subject basis (p � 0.24). Importantly, although the antagonist
latency decreases across stop trials, the RT of the head-only error
actually increased across stop trials (t(19) � 2.54, p � 0.01),
similar to the RTs shown in Figure 5A. This result confirms a
fundamental difference between the initiation of the head-
only error, which exhibits the same tendencies across trials as
RT, and the timing of antagonist muscle recruitment relative
to the stop signal.

Differing tendencies for short-term strategic adjustments in
RTs and antagonist latencies
We sought to further compare the changes in both RT and antag-
onist latency as a function of intervening trial type, performing
two additional analyses that compared the subject-by-subject
changes in RT and antagonist latency. In the first analysis, pre-
sented in Figure 5C, we show how either RT (squares) or antag-
onist latency (circles) changes across either intervening stop
versus no-stop trials. Note from this plot how the changes in RT
cluster in the top-left corner, meaning that RTs tended to de-
crease across no-stop trials and increase across stop trials. Such
clustering in the top-right quadrant was highly significant (� 2 �
39.5, p � 10�8). In contrast, the antagonist latency (Fig. 5C,
circles) changed in a very different fashion across stop and no-
stop trials, clustering instead in the bottom left and bottom right
quadrants. The difference between this distribution and one
evenly distributed across all four quadrants approached signifi-

cance (� 2 � 7.6, p � 0.055). Critically, the two distributions also
differed significantly from each other in multiple ways, both in
terms of the two-dimensional segregation of the circles and
squares in Figure 5C (2D Kolmogorov–Smirnov test, d � 0.52;
p � 0.01), and the comparative changes in RT and antagonist
latency across either no-stop trials (paired t test, t(19) � �2.44,
p � 0.048) or stop trials (paired t test, t(19) � 5.14, p � 10 �4;
acceptance values are Bonferroni-adjusted for multiple
comparisons).

Another way of representing the differences in how RTs and
antagonist latencies change across different trial sequences is to
plot how these values change against each other across either
intervening no-stop trials (Fig. 5D, squares) or intervening stop
trials (circles). Note again how the representations of the data in
this manner cluster differently depending on trial sequences (2D
Kolmogorov–Smirnov test, d � 0.87; p � 10�6), with changes
across no-stop trials clustering in the top left and bottom left
quadrants (� 2 � 17.2, p � 0.001), and changes across stop trials
clustering in the lower right quadrant (� 2 � 22, p � 10�6; accep-
tance values Bonferroni-adjusted for multiple comparisons).

Together, the analyses shown in Figure 5, C and D, reinforce
the differences in how the RT and the antagonist latency are
adjusted across different trial sequences. Furthermore, the posi-
tioning of the various distributions in mostly mirroring quad-
rants emphasizes the opposing nature of adjustments to RTs and
antagonist latencies: RTs tended to increase and antagonist laten-
cies decrease across intervening stop trials (sequence B), but RTs
tended to decrease and antagonist latencies increase (albeit not
significantly) across intervening no-stop trials (sequence A).

Up to now, we have not subdivided our triplet analysis on stop
trials based on whether subjects successfully cancelled a gaze shift
or not, due to the small yield of triplets of head-only errors from
which the antagonist latency could be extracted on a subject-by-
subject basis. We therefore conducted another analysis where we
first calculated the change in either the RT or antagonist latency
across a given trial sequence and then pooled these changes across
all triplets and subjects (differing from the within-subject analy-
ses conducted on the data shown in Fig. 5). As shown in Figure
6A, RTs on no-stop trials tended to decrease with intervening
no-stop trials (upward histogram), and tended to increase with
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intervening stop trials (downward histogram). Both distribu-
tions differed significantly from zero, given the very high number
of observations (intervening no-stop trial, �9.7 � 54.6 ms; t test
versus zero, t(7624) � �15.4, p � 10�5; intervening stop trial,
9.1 � 57.0 ms, t(3168) � 8.9, p � 10�5), and from each other
(two-way t test, t(10791) � �16.1, p � 10�5). In contrast, as shown
in Figure 6B, antagonist latencies tended to increase across an
intervening no-stop trial (upward histogram; 6.4 � 38.0 ms),
although this distribution did not differ from zero (t(95) � 1.6,
p � 0.10). More importantly, antagonist latencies decreased sig-
nificantly across an intervening stop trial (Fig. 6B, downward
histogram; �15.6 � 41.7 ms; t(67) � �1.6, p � 0.005), even
though the head RT of head-only movements from the same

trials actually increased (results not shown; 32.2 � 66.1 ms;
t(67) � 4.0, p � 0.001). The distributions of antagonist latencies
across stop versus no-stop trials also differed significantly from
each other (two-way t test, t(162) � 3.5, p � 0.001). Furthermore,
the change in RT and antagonist latencies differed significantly
across both no-stop trials (Fig. 6, compare upward histograms;
two-way t test, t(7719) � 2.9, p � 0.005) and across stop trials (Fig.
6, compare downward histograms; two-way t test, t(3234) � �3.5,
p � 0.001; acceptance values are Bonferroni-adjusted for multi-
ple comparisons).

Recall from our methods for Experiments 2 and 3 that we
adaptively adjusted the SSD for a given stop trial based on the
subject’s behavior on the preceding stop trial, increasing or de-

Figure 5. Triplet analysis of RTs and antagonist latencies. A, B, We analyzed either the change in no-stop signal RTs (A) or antagonist latency (B) as a function of intervening trial type (see legend
below each plot for different sequences). Each line shows data from a different subject, and asterisks show significant differences from a paired t test across the sample. C, Plot contrasting the change
in sequence B (across stop trials) versus sequence A (across no-stop trials) for RT (squares) and the antagonist latency (circles). D, Plot contrasting the change in antagonist latency versus RT for
sequence A (across no-stop trials; squares) and sequence B (across stop trials; circles). Each symbol in C and D shows data from a different subject. Ellipses in C and D are centered on the mean of the
data, with radii representing 1 SD.
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creasing the SSD if the previous stop trial was cancelled or non-
cancelled, respectively. Given that we have demonstrated
previously that antagonist latencies decrease for longer SSDs
(Goonetilleke et al., 2010, 2012), could the results shown in Fig-
ure 6B be a straightforward consequence of having longer SSDs,
and hence shorter antagonist latencies, following cancelled stop
trials? If so, we would expect that the antagonist latencies would
decrease more across cancelled versus noncancelled stop trials,
since SSDs increase after cancelled stop trials. We therefore sub-
divided the downward histogram in Figure 6B by subject perfor-
mance on the intervening stop trials. Contrary to what a simple
relationship with SSD would have predicted, we found no differ-
ence in the decreases in antagonist latencies across cancelled or
noncancelled stop trials (two-way t test, t(66) � 0.43, p � 0.67),
regardless of whether or not we restricted these data to triplets
obtained only from Experiments 2 and 3. A similar analysis on the
change in RT showed slightly larger RT increases across se-
quences of noncancelled trials versus cancelled trials, approach-
ing significance (two-way t test, t(3216) � �2.2, p � 0.06). This
final analysis demonstrates that the changes in antagonist laten-
cies across stop trials are not simply a consequence of our method
of adjusting the SSD, and also shows that the changes in both
antagonist latency and RT across stop trials are similar regardless
of subject performance.

Discussion
Using a countermanding paradigm, we have shown that the tim-
ing of a neuromuscular proxy of oculomotor cancellation ob-
tained when the head is unrestrained fluctuates on a variety of
time scales. This proxy is availably on a single trial, providing
insights into the dynamic fluctuations of movement cancellation
at an unprecedented resolution. Such fluctuations were largely
the mirror opposite of those occurring contemporaneously on
movement generation. These results advance the understanding
of how processes dictating movement cancellation and genera-
tion are balanced in this task by demonstrating that both can be
dynamically adjusted in similar, albeit opposing, manners.

Comparison to previous results
The SSRT remains a central metric for estimating the timing of
movement cancellation (for review, see Verbruggen and Logan,
2008, 2009a; for an alternative, see Salinas and Stanford, 2013).
Saccadic or manual SSRTs are not fixed for a given subject, but
can vary, for example, depending on the fixation condition, the
intensity or probability of the stop signal, or task instruction
(Logan and Burkell, 1986; Morein-Zamir and Kingstone, 2006;
Emeric et al., 2007; Morein-Zamir et al., 2007; Stevenson et al.,
2009; Verbruggen and Logan, 2009b; Goonetilleke et al., 2012).
SSRTs estimated through conventional means decrease following
stop trials, and hence can also be adaptively adjusted (Bissett and
Logan, 2012). Our results extend upon the notion of adaptive
control of movement cancellation by directly demonstrating
fluctuations within and across blocks of trials, and with immedi-
ate trial history. Moreover, our results emphasize an aspect of
subject specificity, in that different subjects had different RT
trends though time. What is remarkable, and inconsistent with
explanations of fatigue or waning motivation, is how well such
RT trends related to oppositely directed trends in the antagonist
latency.

The influence of trial history on movement generation is well
recognized in a variety of paradigms; RTs on trial n are usually
prolonged when trial n �1 involved a degree of conflict or an
error (for review, see Fecteau and Munoz, 2003). Although many
studies show that saccadic RTs are shorter when preceded by a
no-stop versus a stop trial, RT increases are not seen consistently
after noncancelled stop trials (Cabel et al., 2000; Kornylo et al.,
2003; Ozyurt et al., 2003; Emeric et al., 2007), contrary to the
notion of post-error slowing (Rabbitt, 1966). Nelson et al. (2010)
reconciled this discrepancy by controlling for substantial fluctu-
ations in RTs through time via a triplet analysis of the changes in
RT across different types of intervening trials. Our results of a
triplet analysis on RTs (Figs. 5A, 6A) replicate the findings of
Nelson et al. (2010); RTs increased across intervening stop trials
regardless of behavior, and decreased across no-stop trials.

Because the antagonist latency is available on a single trial,
we extended the logic of the triplet analysis to movement can-
cellation. This analysis required head-only movements on tri-
als n � 1 and n � 1, and hence the number of appropriate
sequences is low. Despite this, we observed a consistent de-
crease in the antagonist latency across intervening stop trials
that was not present across intervening no-stop trials (Fig.
5B), and indeed went in the opposite direction of the trends in
RTs across the same sequence (Fig. 5A), as did the RT of the
head on those same head-only movement trials. We also
pooled the changes in antagonist latencies through various
sequences across all subjects (Fig. 6) and observed a negligible
effect of subject performance on the decrease in antagonist
latency across stop trials.
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Figure 6. A, B, Frequency histograms of changes in either RT (A) or antagonist latency (B),
collapsed across all subjects and segregated by different trial types. Upward empty histograms
show how these measures change with an intervening no-stop-signal trial (A, 7625 observa-
tions; B, 96 observations); downward-filled histograms show how these measures change with
an intervening stop-signal trial (A, 3168 observations; B, 68 observations). Distributions that
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antagonist latencies. Intervening stop trials are further subdivided into cancelled (gray bins) or
noncancelled (black bins) trials.
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Perhaps the most revealing aspect of the triplet analyses is the
comparison of the changes in RTs and antagonist latencies (Fig.
5C,D). Across intervening stop trials, RTs increased, and antag-
onist latencies decreased; across intervening no-stop trials, RTs
decreased, and antagonist latencies increased. These patterns,
which were all �10 ms in magnitude, emphasize again the spe-
cific nature of adaptive control in this task with trial sequence.
While a reasonable strategy following a stop trial would have been
to slow all processes (i.e., shift a speed–accuracy trade-off to pro-
mote increased accuracy), our evidence favors an alternative
interpretation whereby movement cancellation is selectively ex-
pedited while movement generation is slowed across stop trials.
An opposing dynamic adjustment is made across intervening no-
stop trials, expediting movement generation while slowing
movement cancellation.

Is the antagonist latency an appropriate proxy of
oculomotor cancellation?
The interpretation of our results hinge critically on whether the
antagonist latency is an appropriate proxy of oculomotor cancel-
lation. We have considered this question more thoroughly previ-
ously (Goonetilleke et al., 2010, 2012), and new results presented
here further support our contention. The antagonist latency cor-
relates positively with the SSRT both within and across subjects
and within and across blocks of trials (Fig. 2A,B), and decreases
with increasing SSD (Goonetilleke et al., 2010; 2012), as expected
of a proxy of movement cancellation since longer SSDs provide
less time for stopping. Furthermore, as shown in Figure 2C, the
block-by-block changes in SSRTs estimated by traditional means
correlate positively with block-by-block changes in the antago-
nist latency, and blocks with the longest SSRT tend to be those
with the longest antagonist latency.

More fundamentally, the appropriateness of the antagonist
latency as a proxy for oculomotor cancellation depends on the
nature of eye– head coordination during large saccadic gaze
shifts. The circuits governing the initiation of orienting head
movements are more permissive than those governing gaze shifts
(for review, see Corneil, 2011); head movements can be both
initiated and actively stopped even though gaze remains stable.
Head-only movements can be considered as a partial response of
the saccadic system (Corneil and Munoz, 1999; Corneil and Els-
ley, 2005), paralleling small muscle twitches, finger movements,
or changes in force production that are occasionally made during
otherwise successfully cancelled manual movements (Osman et
al., 1986; De Jong et al., 1990; McGarry and Franks, 1997, 2003;
McGarry et al., 2000; van Boxtel et al., 2001; Scangos and Stu-
phorn, 2010; Ko et al., 2012). Considering head-only movements
as a type of partial response that are arrested midflight does not
lessen the significance of our findings, so long as the initiation of
antagonist recruitment arises from the processing of the stop
signal. The selective recruitment of antagonist neck muscles on
head-only movements, but not on fully cancelled or noncan-
celled eye– head gaze shifts that attain the target, supports this
contention. The antagonist latency clearly fluctuates across a va-
riety of time scales in a manner largely mirroring that occurring
contemporaneously with RTs. A parsimonious explanation of
these results is an adaptive and opposing adjustment of the pri-
ority given to movement generation and cancellation, as sug-
gested previously (Bissett and Logan, 2011).

Oculomotor cancellation as an active, highly dynamic process
The neurophysiology underlying antagonist muscle recruitment
remains unclear. Neural correlates of oculomotor cancellation

have been found in the decrease in movement-related activity
and increase in fixation-related activity in the SC (Paré and
Hanes, 2003) and FEF (Hanes et al., 1998). The decrease in
movement-related activity within the oculomotor system is a
common feature across a number of previous modeling studies of
behavior in saccadic countermanding tasks when the head is re-
strained (Boucher et al., 2007; Lo et al., 2009; Salinas and Stan-
ford, 2013). We do not believe it likely that either a decrease in
movement-related activity or an increase in fixation-related ac-
tivity could culminate directly in antagonist muscle recruitment.
Subthreshold movement-related activity in the SC and FEF
initiates activity on the agonist neck musculature (Rezvani and
Corneil, 2008; Corneil et al., 2010); hence, withdrawal of
movement-related activity would decrease agonist muscle activ-
ity, but not recruit antagonist muscles. Electrical stimulation in
the rostral SC or lateral FEF produces little if any neck muscle
recruitment, and never recruits anything like a braking pulse dur-
ing ongoing motion (Corneil et al., 2002; Elsley et al., 2007).
Electrical stimulation of omnipause neurons also fails to deceler-
ate or prevent head motion despite robustly arresting or prevent-
ing gaze shifts (Gandhi and Sparks, 2007), further suggesting that
an increase in fixation-related activity is not the proximate cause
of antagonist muscle recruitment.

Instead, we speculate that detection of a stop signal, perhaps
within frontostriatal circuits (for review, see Aron, 2011), initi-
ates a parallel cascade of events that both shuts down the prepa-
ration of a developing oculomotor movement in the SC and FEF,
and arrests any ongoing head motion through other circuits that
are not yet fully understood. The expression of an active braking
pulse on antagonist neck musculature before the initiation of a
gaze shift suggests that oculomotor cancellation is not simply
manifest as a withdrawal of an impending gaze shift. Our results
illustrate the dynamics of such active braking, with cancellation
being primed on precisely those trials where movement gen-
eration processes are being slowed. Whether such priming is
accomplished via top-down presetting of the fixation system
(with still unclear links to the cephalomotor system) (Lo et al.,
2009) or expedited detection of the stop signal or expression of
an inhibitory surge (Salinas and Stanford, 2013) remains to be
determined.
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