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Research Article

Consider the relatively common experience of overhear-
ing a conversation in a completely unknown foreign lan-
guage. In contrast to speech in one’s native language, 
which is perceived as a sequence of discrete words, an 
unfamiliar language is generally heard as a seemingly 
rapid-fire and continuous stream of phonemes, broken 
only by silences at the end of utterances. This common 
perceptual experience illustrates one of the very first chal-
lenges faced by language learners: the discovery of word 
boundaries in continuous speech. Speech consists of a 
continuous stream of sound, and word onsets are not reli-
ably marked by acoustic cues, such as pauses. Parsing this 
continuous sequence into word units is a central problem 
of language acquisition and a prerequisite for acquiring 
other higher-order aspects of language, such as vocabu-
lary, morphology, and syntax.

An emerging consensus is that this problem may be at 
least partially solved through statistical learning, the pro-
cess of becoming sensitive to statistical structure in the 
environment. In spoken language, syllables that occur 
next to one another within words have higher rates of 
co-occurrence than syllables that occur next to one 

another across word boundaries, and becoming sensitive 
to these co-occurrence properties is one mechanism by 
which learners may identify words in continuous speech 
(Saffran, Aslin, & Newport, 1996; Saffran, Newport, & 
Aslin, 1996). Different mechanisms have been proposed 
to underlie statistical learning. Early studies of statistical 
learning assumed that learners’ ability to solve segmenta-
tion tasks could be attributed to their ability to compute 
conditional probabilities between co-occurring elements 
in the input (Saffran, 2001; Saffran, Aslin, & Newport, 
1996; Saffran, Newport, & Aslin, 1996; Saffran & Wilson, 
2003). These computations would then lead to the forma-
tion of chunks, or word candidates. An alternative inter-
pretation is that statistical learning is driven directly by 
the extraction of chunks from the input, which are 
strengthened or weakened according to the laws govern-
ing associative memory; sensitivity to statistical structure 
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Abstract
The identification of words in continuous speech, known as speech segmentation, is a critical early step in language 
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emerges as a by-product of this process. This explanation 
is favored by a number of different computational mod-
els (French, Addyman, & Mareschal, 2011; Mareschal & 
French, 2017; Perruchet & Vinter, 1998; Shi, Griffiths, Feld-
man, & Sanborn, 2010; Thiessen & Pavlik, 2013).

Given that speech segmentation is a prerequisite for 
acquiring language, an important question concerns how 
quickly learners become sensitive to patterns in continu-
ous speech. Presumably, it should be advantageous for 
learners to gain sensitivity to these patterns as rapidly as 
possible, which would enable them to identify word 
candidates in speech input and pave the way for later, 
higher-level stages of language acquisition. Although 
neither of two main mechanistic accounts of statistical 
learning (statistical computations and chunking) explicitly 
addresses the timescale of learning, the process of auto-
matically chunking a candidate word may presumably 
begin after just a single exposure to the word representa-
tion; associative-memory mech anisms may link successive 
syllables together after a single episode. In contrast, the 
computation of conditional probabilities would presum-
ably require a lengthier period of exposure, as the learner 
must gradually accrue information about the statistical 
properties of the input in order to compute conditional 
probabilities between different elements.

This question of how quickly statistical learning of 
speech patterns occurs has not been well addressed. In 
typical laboratory studies of speech segmentation, learn-
ers are exposed to a continuous stream of speech made 
up of repeating three-syllable nonsense words and later 
tested to assess the extent of learning. Infants are usually 
tested with a visual fixation measure, whereas adult test-
ing typically involves a forced-choice recognition task 
between previously presented items and foils. Speech-
segmentation studies using this approach have found evi-
dence of learning in infants after an exposure period of 
only 2 min (Saffran, Newport, & Aslin, 1996), while lon-
ger exposure periods (e.g., 21 min) are more common in 
studies of older children and adults (e.g., Saffran, Aslin, & 
Newport, 1996; Saffran, Newport, Aslin, Tunick, & Barrueco, 
1997). Although these studies suggest that statistical learn-
ing of speech patterns can occur relatively quickly, at least 
in a constrained artificial-language context, this general 
approach of using an off-line test to measure learning after 
an arbitrary amount of exposure has not been well suited 
to investigate the time course of learning.

The goal of the present study was to address how 
quickly learners become sensitive to patterns in continuous 
streams of speech. Following previous studies of speech 
segmentation, I exposed participants to continuous audi-
tory streams of repeating trisyllabic nonsense words, with-
out any pauses or other auditory cues marking word 
boundaries. However, in contrast to most other studies, the 
present work used an on-line measure of statistical learning 
based on reaction time (RT), which required participants to 

respond to target syllables. This target-detection task has 
been previously shown to be sensitive to statistical learn-
ing, as reflected by faster RTs to predictable than to unpre-
dictable syllables occurring at the beginnings of words 
(Batterink, Reber, Neville, & Paller, 2015; Batterink, Reber, 
& Paller, 2015; Franco, Eberlen, Destrebecqz, Cleeremans, & 
Bertels, 2015). Each syllable stream in the present study was 
composed of a novel set of repeating nonsense words, 
which ensured that statistical learning began from square 
one for each stream. I hypothesized that RT effects indexing 
learning would emerge within several exposures to a novel 
word. This finding would provide evidence that learners 
become sensitive to statistical patterns in speech very rap-
idly, a process that facilitates the identification of words and 
ultimately the acquisition of other aspects of language.

Method

Participants

A total of 19 young English-speaking adults (11 women, 8 
men; mean age = 20.2 years, SD = 1.7) participated in this 
study. I originally targeted a sample size of 15 to 20 partici-
pants on the basis of results from a previous behavioral 
study conducted at Northwestern University’s Cognitive 
Neuroscience Lab, which used a similar RT task to mea-
sure statistical learning (Batterink, Reber, Neville, & Paller, 
2015). Two separate groups, each with 12 participants, 
exhibited large and robust learning effects with a post hoc 
power of 99%. The present design included a larger num-
ber of trials per participant and condition (48 trials within 
each Word Presentation × Triplet Position bin) relative to 
the original study (36 trials per triplet position), which fur-
ther increased power. Thus, I expected that a sample size 
of 15 to 20 participants should be more than adequate to 
reveal learning effects. I planned to complete data collec-
tion within a single academic term, provided that data 
were collected from at least 15 participants, and would 
terminate data collection after reaching a sample size of 
20. At the end of the academic term, I had successfully run 
19 participants. All of the procedures and protocols fol-
lowed the guidelines of the Northwestern University Insti-
tutional Review Board.

Stimuli

Two syllable inventories, each consisting of 24 unique 
syllables, were constructed. One syllable inventory was 
recorded by a male native-English speaker and the other 
by a female native-English speaker, both using neutral 
intonation. Individual sound files, each containing a sin-
gle syllable, were created from the recordings. The begin-
ning of each sound file coincided with the precise onset 
of the syllable. All sound files had an approximate dura-
tion of 220 to 250 ms and were equated for perceived 
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volume. Continuous speech streams were created by 
concatenating the individual syllables together in a preset 
order, at a rate of 300 ms per syllable.

Procedure

For each syllable stream, a random subset of 12 syllables 
was drawn without replacement from the pool of 24 pos-
sible syllables in each syllable inventory and randomly 
distributed to create four different trisyllabic “words” (Fig. 
1a). This unique set of four repeating words allowed 
learning to be measured on a very short timescale. Each 
speech stream consisted of the four words repeated four 
times each; the resulting 16 words (48 syllables) were 
concatenated together in pseudorandom order, with the 
constraint that the same word did not repeat twice in a 
row. A specific syllable served as the target for each 
stream. The target syllable never occurred at the first or 
last two positions of the syllable stream. Each of the 24 
syllables of the syllable inventory served as the target syl-
lable three times, for a total of 72 streams for each voice 
(male and female). Participants thus listened to a total of 
144 streams. Voice order (male first or female first) was 
counterbalanced across participants. For both voices, the 

number of targets in each triplet position (first, second, or 
third syllable within a word) ranged from 45 to 53 per 
participant. Each of the 24 syllables was represented an 
equal number of times across all streams.

At the beginning of each trial, participants were pre-
sented with the written target syllable (e.g., “du”) and an 
auditory sample of the target. The written syllable then 
remained on screen while participants listened to the stimu-
lus stream (Fig. 1b). Participants were instructed to respond 
to each target syllable as quickly and accurately as possible. 
If statistical learning occurred during the individual streams, 
it was expected that RTs would be fastest to targets that 
occurred in the final position of a word, with targets occur-
ring at the beginning of a word and targets occurring in the 
middle of a word eliciting the slowest and intermediate 
RTs, respectively. These effects were expected to require 
at least one exposure to the word, emerging sometime 
between the second and fourth word presentation.

Data analysis

Robust linear mixed-effects modeling was used to account 
for repeated measures. RTs to targets (“hits”) were mea-
sured at the individual trial level for each participant and 

Continuous Speech Stream

“du”

 Target 
Syllable

Target
(First Presentation of
Word, Third Syllable)

Randomization Procedure for Each Stream

Inventory of 24 Syllables

yu ba  vu  go  
tu   ka du  ra
he  lo  me ne
mi   so   le ye
ku  di  fo  pe
bo   za  wufi

12 Randomly Selected bakufo  

kadidu  

boraye

wulome

Four Trisyllabic Words

Target-Detection Task

bakufokadiduborayewulomekadidubakufo . . . 

a

b

Target
(Second Presentation of

Word, Third Syllable)

Fig. 1. Stimulus design (a) and example trial sequence (b). Each speech stream was 
composed of a randomly selected subset of 12 syllables drawn without replacement 
from a pool of 24 syllables. These 12 syllables were then randomly distributed to 
create four trisyllabic words, which were repeated four times each. The resulting 16 
words (48 syllables) were concatenated together in pseudorandom order and pre-
sented aurally without any pauses between them. Before each stream was played, 
participants saw and heard a target syllable and were asked to identify it as quickly 
as possible every time it occurred in the stream.
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classified according to the following factors: participant 
(1–19), word presentation (1st, 2nd, 3rd, or 4th occur-
rence of the word in the stream), triplet position (1st, 2nd, 
or 3rd syllable in the word), and stream position (3rd 
through 46th syllable in the stream; targets never occurred 
at the first or last two positions of the stream). Model fixed 
effects consisted of word presentation, triplet position, 
overall stream position, and the interaction between word 
presentation and triplet position. To select random effects, 
I used the method of Bayesian information criterion (BIC) 
penalized likelihood.

In the initial full model, participant was included as a 
random intercept, and random slopes for participants 
were included for all fixed effects. BIC values were com-
puted for the initial full model and other alternative mod-
els that included one or more random slopes for the 
different fixed factors in all possible combinations. The 
final best model (associated with the lowest BIC value) 
included participant as a random intercept and stream 
position as a random slope. Random slopes for the remain-
ing factors (word presentation, triplet position, and the 
interaction between word presentation and triplet posi-
tion) were not significant and resulted in higher BIC val-
ues, and thus were excluded from the final model. Word 
presentation was modeled as a categorical predictor vari-
able, because there is a categorical difference between the 
first presentation of a word (prior to any opportunity for 
learning) and subsequent presentations. Stream position 
and triplet position were modeled as continuous predic-
tors, because both variables were originally conceptual-
ized as continuous and were empirically found to show 
significant linear relationships with RT in exploratory 
regression analyses—stream position: F(1, 9561) = 28.4,  
p < .001; triplet position (excluding Word Presentation 1): 
F(1, 7092) = 64.7, p < .001. Continuous predictors were 
centered such that the intercept represented the first value 
for both variables (stream position = 3, triplet position = 1). 
Stream position was not a variable of direct interest but 
was included as a predictor in the model in order to con-
trol for possible influences of this effect.

The central hypothesis of the study was whether RT 
effects indexing statistical learning would emerge within 
several exposures to a novel word; this was tested by 
examining the interaction between word presentation 
and triplet position. A significant interaction between 
these two factors was characterized through the param-
eter estimates of the RT slope within each word-
presentation condition and through follow-up analyses 
that tested whether the RT slope within each word-
presentation condition was significantly different from 
zero. These follow-up analyses examined when the earli-
est evidence of significant priming emerged, the main 
question of interest, and were conducted separately 

within each word-presentation condition using the same 
predictors as in the original RT model. An additional fol-
low-up analysis was conducted that compared the RT 
slope estimates between each of the first three word pre-
sentations in a stream and the subsequent presentation (i.e., 
n < n + 1), in order to examine whether learning effects 
followed an expected learning curve, gradually increas-
ing as a function of exposure to the underlying words.

In addition, for each triplet position, pairwise com-
parisons between the first word presentation (represent-
ing the baseline condition) and subsequent word presen- 
tations were conducted in order to determine whether 
RTs were faster in response to targets in the predictable 
syllables of words (Triplet Positions 2 and 3) and slower 
to targets in the unpredictable syllables (Triplet Position 
1). Such RT differences have been previously shown to 
result from statistical learning (Turk-Browne, Scholl, 
Johnson, & Chun, 2010). These comparisons were com-
puted on model estimates of the mean of each word 
presentation at each triplet position, evaluated at the first 
stream position for targets (i.e., the third overall position 
in the stream). Bonferroni corrections at the level of each 
triplet position were applied to these pairwise compari-
sons (i.e., p = .05/3 pairwise comparisons).

As described in Results, one unexpected finding was 
that targets that occurred later in the stream elicited sig-
nificantly slower RTs relative to targets that occurred ear-
lier in the stream. In order to exclude the impact of stream 
position while visualizing the main factors of interest (i.e., 
word presentation and triplet position), I also plotted the 
RTs for each triplet-position-by-word-presentation cell 
using model estimates for word presentation, triplet posi-
tion, and their interaction. This additional plot was 
included simply as a way to more clearly visualize the 
main effects of interest, relative to a plot of raw mean RTs 
that also reflected the effect of stream position.

Paralleling the main RT analysis, a follow-up analysis 
examined whether target detection was influenced by 
word presentation and triplet position. Targets were coded 
as “detected” only if they were followed by a response less 
than 1,200 ms after presentation and were otherwise 
coded as “missed.” I conducted a mixed-effects logistic 
regression model with the same factors as in the RT model 
(participant, word presentation, triplet position, and stream 
position). Of all these factors, only participant was ulti-
mately included as a random effect, as random effects for 
the remaining factors were not significant and decreased 
model fit.

Across all participants, a total of 10,944 trials were 
available for analysis. Only detected targets were included 
in RT analyses. All of the analyses were conducted using 
SPSS statistical-analysis software. All p values are from 
two-tailed tests with an alpha of .05.
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Results

Participants detected an average of 87.4% of targets. Mean 
RT as a function of triplet position and word presentation 
is shown in Figure 2a. Mean RT predicted by model esti-
mates of the main effects of interest—word presentation, 
triplet position, and their interaction—are shown in Fig-
ure 2b. As described in Data Analysis, Figure 2b is pro-
vided to clearly present only those effects that are relevant 
to the main hypothesis, as data shown in Figure 2a reflect 
the additional effect of stream position, a confounding 
variable not of interest in the present study. This follow-
up analysis was necessary because targets that occurred 
later in the stream elicited significantly slower RTs relative 

to targets that occurred earlier in the stream, F(1, 160) = 
5.41, p = .021; stream-position coefficient = 0.72 ms, SE = 
0.31, 95% confidence interval (CI) = [0.11, 1.33]; log-likeli-
hood ratio = 21.1.

Consistent with my hypothesis, results showed that 
RTs to detected targets over the three triplet positions dif-
fered significantly as a function of word presentation, 
F(3, 9527) = 6.68, p < .001; log-likelihood ratio = 20.0. 
Estimates of fixed effects indicated that at the first word 
presentation, RTs across the three triplet positions were 
stable (triplet-position coefficient = −3.35 ms, SE = 3.47, 
95% CI = [−10.14, 3.45]). However, by the second word 
presentation, a robust RT effect was already present; tar-
gets that appeared later in a word (and were thus more 
predictable) elicited faster RTs than targets at the begin-
ning of a word (triplet-position coefficient = −13.6 ms,  
SE = 4.91, 95% CI = [−23.20, −3.94]). This effect was also 
present for targets occurring at both the third word pre-
sentation (triplet-position coefficient = −25.5 ms, SE = 
4.97, 95% CI = [−35.20, −15.70]) and the fourth word pre-
sentation (triplet-position coefficient = −16.0 ms, SE = 
4.98, 95% CI = [−25.70, −6.19]). Follow-up analyses con-
firmed that the RT slope across triplet positions was not 
significantly different from zero at the first word presen-
tation, F(1, 2451) = 2.13, p = .15; log-likelihood ratio = 
2.12, but was highly significant at all subsequent word 
presentations—Presentation 2: F(1, 2397) = 16.1, p < .001, 
log-likelihood ratio = 16.0; Presentation 3: F(1, 2342) = 
50.5, p < .001, log-likelihood ratio = 49.9; Presentation 4: 
F(1, 2300) = 17.1, p < .001, log-likelihood ratio = 17.1. 
Thus, RTs were faster to more predictable syllables after 
only a single word presentation, which provides evi-
dence of rapid statistical learning of sound patterns in 
continuous speech.

Next, I examined whether the magnitude of the learn-
ing effect (i.e., the negative RT slope across triplet posi-
tions) increased with additional word presentations, 
following an expected learning curve. I found partial 
support for this idea. The effect of triplet position was 
significantly larger for the second word presentation 
compared with the first word presentation (triplet-posi-
tion effect = 10.2 ms, SE = 4.91, 95% CI = [0.59, 19.90]), 
t(9526) = 2.08, p = .038, and for the third compared with 
the second word presentation (triplet-position effect = 
11.9 ms, SE = 4.98, 95% CI = [2.12, 21.70]), t(9526) = 2.39, 
p = .017. However, the effect of triplet position did not 
significantly increase from the third to the fourth word 
presentation, but rather became marginally reduced 
(triplet-position effect = −9.51 ms, SE = 5.05, 95% CI = 
[−19.40, 0.38]), t(9526) = −1.88, p = .060. In sum, the 
learning effect increased as a function of exposure after 
several word presentations, but did not continue to grow 
from the third to the fourth word presentation.
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Fig. 2. Reaction time (RT) data as a function of triplet position (first, 
second, or third syllable in the word) and word presentation (first, 
second, third, or fourth occurrence of the word in the stream). Overall 
mean RT is shown in (a). Mean RT predicted by main effects of interest 
(triplet position, word presentation, and their interaction), controlling 
for the effect of overall syllable position in the stream, is shown in (b). 
Error bars represent ±1 SEM.
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In principle, the learning effect could reflect facilita-
tion to predictable syllables (Triplet Positions 2 and 3) or 
a delay to unpredictable syllables (Triplet Position 1), as 
has been previously demonstrated to result from statisti-
cal learning (Turk-Browne et al., 2010). Pairwise com-
parisons on the estimated marginal means of word 
presentation within each triplet position supported only 
the former possibility. For unpredictable syllables (i.e., 
those that occurred at the start of words), no significant 
differences were found between the first presentation of 
a word and subsequent presentations of a word—Word 
Presentation 2 – Word Presentation 1: mean difference = 
−9.43 ms, SE = 7.12, 95% CI = [−26.50, 7.62], t(9527) = 
9.43, p > .250; Word Presentation 3 – Word Presentation 
1: mean difference = 13.4 ms, SE = 8.60, 95% CI = [−7.18, 
34.00], t(95276) = 1.56, p > .250; Word Presentation 4 – 
Word Presentation 1: mean difference = 7.84 ms, SE = 
10.80, 95% CI = [−18.10, 33.80], t(9527) = 0.72, p > .250. 
Thus, although there is a visual hint in Figure 2b that RTs 
may be delayed to Word Presentations 3 and 4 relative to 
Word Presentation 1, consistent with anticipatory effects 
that have been reported previously (Turk-Browne et al., 
2010), these differences were not statistically significant.

When target syllables occurred in the middle of words, 
RTs to the initial word were significantly different from 
RTs to the second word, although not from RTs to the 
third or fourth word—Word Presentation 2 – Word Pre-
sentation 1: mean difference = −19.7 ms, SE = 5.00, 95% 
CI = [−31.60, −7.68], t(9527) = 3.53, p < .001; Word Pre-
sentation 3 – Word Presentation 1: mean difference = 
−8.71 ms, SE = 7.03, 95% CI = [−25.50, 8.13], t(9526) = 
1.24, p > .250; Word Presentation 4 – Word Presentation 
1: mean difference = −4.77 ms, SE = 9.60, 95% CI = 
[−27.70, 18.20], t(9526) = 0.50, p > .250. Finally, when 
target syllables occurred at the end of words, RTs to the 
initial word were significantly different from RTs to the 
second and third word but the difference between RTs to 
the first and the fourth word did not reach significance—
Word Presentation 2 – Word Presentation 1: mean differ-
ence = −29.9 ms, SE = 6.90, 95% CI = [−46.40, −13.40], 
t(9527) = 4.33, p < .001; Word Presentation 3 – Word 
Presentation 1: mean difference = −30.8 ms, SE = 8.63, 
95% CI = [−51.40, −10.10], t(9527) = 3.57, p = .001; Word 
Presentation 4 – Word Presentation 1: mean difference = 
−17.4 ms, SE = 10.80, 95% CI = [−43.20, 8.43], t(9527) = 
1.61, p > .250.

A follow-up contrast confirmed this overall pattern, 
demonstrating that predictable syllables (Triplet Positions 
2 and 3) occurring in later word presentations (2–4) elic-
ited significantly faster RTs overall relative to predictable 
syllables occurring within the first word (Word Presenta-
tion 1 – Word Presentations 2–4: mean difference = 21.3 
ms, SE = 8.28, 95% CI = [5.06, 37.50]); t(6435) = 2.57, p = 
.010. In sum, learning primarily resulted in an overall 

enhancement in processing more predictable syllables 
rather than a delay in processing less predictable sylla-
bles at the beginning of words.

Finally, I examined whether detection rate differed sig-
nificantly as a function of word presentation and triplet 
position (this paralleled the main RT analysis). In contrast 
to the observed RT effect, detection rate over the three 
triplet positions did not differ significantly as a function 
of word presentation, F(3, 10935) = 0.32, p > .250; log-
likelihood ratio = −22.9. Thus, unlike RT, detection rate 
was not a reliable index of statistical learning. The find-
ing that detection did not change as a function of triplet 
position and word presentation provides evidence that 
RT differences among conditions did not simply reflect a 
speed/accuracy trade-off; rather, faster RTs appeared to 
reflect true facilitation in processing.

Discussion

The results of the present study demonstrate that statisti-
cal learning of sound patterns in continuous speech can 
occur incredibly rapidly. After only a single exposure to 
the hidden component words of continuous nonsense 
speech, learners’ RTs were faster to more predictable syl-
lables. This RT pattern demonstrates that learners quickly 
gained sensitivity to the statistical structure of the speech 
stream and made use of this knowledge during on-line 
processing, facilitating performance on the task.

The finding that some degree of learning occurred 
after just a single word exposure suggests that learning 
was primarily driven by the extraction of chunks from 
the input, rather than through the computation of condi-
tional probabilities. Logically, the computation of condi-
tional probabilities depends on accruing statistical data 
across a sample of input and cannot occur instantly after 
only a single exposure to an underlying pattern. In 
contrast, evidence of learning after only a single word 
repetition may be explained by an automatic chunking 
mechanism. The idea that chunking, driven by associative-
memory mechanisms, can give rise to sensitivity to statis-
tical structure is supported by computational models. For 
example, according to the PARSER model (Perruchet & 
Vinter, 1998), chunks are formed from a sequence of ele-
ments on a random basis, as a natural consequence of 
the capacity-limited attentional processing of the incom-
ing information. These chunks are then stored in mem-
ory and strengthened or weakened according to the laws 
governing associative memory. If a chunk is encountered 
again, the activation of its representation increases; oth-
erwise, its representation decays over time. If an element 
within a chunk occurs in a different chunk, the previ-
ously stored chunk is subject to interference, which 
decreases its activation level. Over time, chunks that form 
statistically coherent elements within a sequence (i.e., a 
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word) will be strengthened, while chunks with lower 
probabilities of co-occurrence (i.e., syllables spanning 
word boundaries) will be forgotten (cf. Thiessen, 2017). 
Thus, in the present study, the very first exposure to a 
word might have sometimes resulted in the formation of 
a chunk, whose representation could then be stored in 
memory (albeit at a weak level). When the word was 
subsequently presented, participants may have retrieved 
the stored representation, which allowed them to antici-
pate predictable syllables and thus respond more quickly 
to second- and final-position targets.

Such a chunking mechanism would support rapid 
word learning, even prior to the emergence of condi-
tional probability computations. Rapid automatic chunk-
ing would also specifically allow language learners to 
take advantage of word repetitions that commonly occur 
in natural language, a possibility that aligns with previous 
evidence that word repetition facilitates language learn-
ing. For example, infant-directed speech is characterized 
by the frequent repetition of words, compared with non-
infant-directed speech (Cockcroft, 2002), and repetitive-
ness in maternal input at the age of 7 months predicts 
language outcomes at the age of 2 years (Newman, Rowe, 
& Bernstein Ratner, 2016). Another study found that word 
learning in 2-year-old children was successful only when 
the names of novel objects were repeated across succes-
sive sentences rather than distributed throughout label-
ing episodes, which suggests that immediate opportunities 
to detect recurring structure facilitate young children’s 
word learning (Schwab & Lew-Williams, 2016). Given 
evidence that statistical learning operates in both chil-
dren and adults (Saffran, Aslin, & Newport, 1996; Saffran, 
Newport, & Aslin, 1996; Saffran, et al., 1997), frequent 
word repetitions may also support second-language 
acquisition in adult learners.

The chunking account of statistical learning would 
predict that the magnitude of the learning effect (i.e., 
faster RTs to predictable than to unpredictable syllables 
within a word) would increase with additional exposure 
to the underlying words, reflecting an increase in chunk 
activation. A comparison of the RT effects between each 
word presentation and the subsequent one provides par-
tial support for this idea, demonstrating that the learning 
effect gradually increased from the first to the third word 
presentation. However, the learning effect did not signifi-
cantly increase from the third to the fourth word presen-
tation, inconsistent with chunking models. One possible 
explanation is that the lack of difference between the 
third and fourth presentations represents nothing more 
than a statistical blip, rather than the beginning of a long-
term trend. Alternatively, other cognitive factors beyond 
statistical learning may have influenced RTs to the final 
word presentation. For example, participants may have 
become aware that each stream contained exactly four 

targets, and after detecting three targets may have become 
more cautious or hesitant to respond to the fourth and 
final target, knowing that only a single target remained. 
This hesitancy could possibly have led to a slight reduc-
tion in the learning effect to the fourth word presenta-
tion. By incorporating a design with more than four 
exposures to the underlying words, future work may test 
whether the learning effect continues to generally 
increase with additional exposure to the underlying 
words, as would be predicted by a chunking account of 
statistical learning, or whether the effect quickly reaches 
asymptote after several word presentations.

Finally, one unexpected finding was that RTs were 
slower for targets occurring later in the syllable stream, 
an effect that was independent of the number of word 
repetitions. I suggest that this deterioration in perfor-
mance over the course of the stream may be due to sen-
sory interference or overload induced by the rapid 
presentation of previous syllables. Nonetheless, by cova-
rying out effects of stream position, I was able to isolate 
the effect of word presentation per se and to directly 
assess effects of statistical learning on performance.

In sum, these results demonstrate that statistical learn-
ing of sound patterns in speech operates on a very rapid 
timescale. The speed with which learning occurs sug-
gests that the automatic chunking of segments from input 
may be a major mechanism contributing to this type of 
learning. The efficiency of this mechanism may play a 
critical role in early stages of language acquisition, allow-
ing language learners to quickly “break in” to an unfamil-
iar language and paving the way for the acquisition of 
more advanced components of language, such as seman-
tics and syntax.
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