
Polynomial Kernels for Graph and
Hypergraph Optimisation Problems

Gabriele Muciaccia

A thesis submitted to Royal Holloway, University of London for the degree of

Doctor of Philosophy in the Faculty of Science

Department of Computer Science

August 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I Gabriele Muciaccia hereby declare that this thesis and the work presented in it is entirely

my own. Where the work is a result of collaborative research, or the work of others has been

used, this is clearly stated.

1

Abstract

When dealing with hard problems, problems which we are not able to solve in polynomial

time, it is common practice to preprocess an instance to reduce its size and make the task

of solving it easier. Parameterized Complexity offers a theoretical framework to prove the

efficiency of preprocessing algorithms, which are called kernelizations. The underlying idea is

that for every problem we identify a parameter which represents the part of the input which

is ‘difficult’ to solve, then we try to reduce the input size and we measure the result in terms

of the parameter.

Especially successful kernelizations are the ones that compute a kernel whose size is

bounded by a polynomial in the parameter. In this thesis we consider some combinatorial op-

timisation problems on graphs and hypergraphs, and we study the existence (or non-existence)

of polynomial kernels for these problems. In particular, we describe a generic kernelization

for a theoretical class of graph problems, which can be used to derive the existence of a

polynomial kernel for many graph problems of interest.

2

Acknowledgements

First of all, I want to thank my supervisors, Gregory Gutin and Anders Yeo, who helped me

immensely during these past three years. In particular, I would like to thank Gregory for

his availability and for his continuous support, both for academic and personal issues, and I

would like to thank Anders for always trying to patiently answer my many questions.

Furthermore, I would like to thank all the persons I worked with for the many inspiring

discussions and fruitful hours spent together: Robert Crowston, Gregory Gutin, Mark Jones,

Fahad Panolan, Geevarghese Philip, Ashutosh Rai, M.S. Ramanujan, Saket Saurabh, and

Anders Yeo. In particular, I would like to thank my senior PhD colleagues Robert Crowston

and Mark Jones, whom it has been a pleasure working with. General thanks go to everyone

I met at Royal Holloway during these years, and I would like to especially thank Janet Hales

for all her help.

My thanks also go to my former teachers, who were a source of inspiration and encouraged

me to persist in this path. Among the others, I would like to mention René Schoof, Ilaria

Damiani, Francesca Tovena, Lorenzo Tortora de Falco, Lionel Vaux, Paul Ruet, Frédéric

Havet.

Obviously I thank all of my friends and flatmates, present and past, far and close, whom

I owe so much. Thanks to Giulio and Gug for sharing many difficult and stressful moments

before the exams. Thanks to Martina for the long chats whenever I grew nostalgic. Thanks

to Ele, Jer, Max and Ale for having made a home of this house. And also thanks to Spatto

for having inspired so many of my goals.

My deepest gratitude goes to my family, my parents and my brother. I know that come

what may, I can always count on a bowl of minestra when I need. And special thanks to my

grandmother, who does not grow tired of adding flags on the map.

This thesis is dedicated to the two persons without whom I would have never even sus-

pected the beauty of Maths, my aunt Baba and my friend Natalia.

3

Contents

Declaration 1

Abstract 2

Acknowledgements 3

1 Introduction 6

1.1 What is Parameterized Complexity . 6

1.2 Basic definitions . 8

1.3 Kernels . 11

1.3.1 Practical tools for kernelization . 13

1.4 Fixed-parameter intractability . 14

1.5 Kernel Lower Bounds . 17

1.5.1 Cross-composition . 19

2 Notation and Problem presentation 25

2.1 Graphs . 25

2.1.1 Subgraphs and supergraphs . 27

2.1.2 Paths and cycles . 27

2.1.3 Connectedness and blocks of a graph . 28

2.1.4 Some classes of graphs . 28

2.1.5 Hypergraphs . 29

2.2 Structure of the thesis . 29

2.3 Bibliographic Notes . 31

3 k-Chinese Postman 32

4

4 Test Cover 42

4.1 Four parameterizations of Test Cover . 46

4.1.1 The standard parameterization . 46

4.1.2 Parameterization above a tight lower bound 48

4.1.3 Parameterization below the number of vertices 49

4.1.4 Parameterization below the number of edges 51

4.2 Test cover with edges of bounded size . 51

4.2.1 The standard parameterization (bounded case) 52

4.2.2 Parameterization above a tight lower bound (bounded case) 54

4.2.3 Parameterization below the number of vertices (bounded case) 56

4.2.4 Parameterization below the number of edges (bounded case) 63

5 λ-Extendible Properties 71

5.1 A polynomial time reduction for WAPT (Π) . 76

5.1.1 Weighted Max Cut . 83

5.2 Polynomial kernel for APT (Π) . 86

5.2.1 Diverging properties . 88

5.2.2 Kernel when λ 6= 1
2 or K3 ∈ Π . 95

5.2.3 Kernel when λ = 1
2 . 96

5.3 Signed Max Cut . 102

6 Discussion and Future Work 115

A List of the problems 117

A.1 Classical Problems . 117

A.2 Parameterized Problems . 119

5

Chapter 1

Introduction

1.1 What is Parameterized Complexity

In the course of the twentieth century humankind became able to create machines that could

perform calculations at a speed that would have been inconceivable before. The appearance

of the first prototypes of these machines was preceded by the formulation of a theoretical

model of computation, known as Turing machine, which was introduced in 1936 by British

mathematician Alan Turing.

This model was intended to formalize the notion of functions that are ‘effectively calcula-

ble’. The Church-Turing hypothesis, in fact, states that such functions correspond precisely to

the functions that can be computed by a (universal) Turing machine, the so-called computable

functions.

During the same period, other definitions were given for the class of computable functions

and, despite their apparent dissimilarity, they were proven to be equivalent. Hence, the

Church-Turing hypothesis became generally accepted and it has kept its status practically

unchallenged until now.

Nonetheless, it was soon clear that not all computable functions were equivalent from a

practical point of view; in particular, though effectively calculable in theory, there were some

that appeared to be somewhat more difficult to compute in practice.

The problem is that the definition of computable function would not take into account the

physical resources needed to perform the calculation. In particular, the amount of required

time and memory is a key aspect: once it is clear that a problem can be solved using a

6

computable function, it is of primary importance to optimise it as much as possible. In other

words, even when a problem can be solved using a mechanical procedure which requires a

finite amount of resources, we may not have a sufficient amount of them available, and this

could be a limitation as serious as not having a procedure at all.

In order to be able to compare different problems according to how efficiently they can

be solved, in the 1960s it was suggested to relate the time and memory needed to the length

of the input, in a paper by Hartmanis and Stearns which is considered the starting point of

modern Computational Complexity theory [53]. It was proposed, and later became generally

accepted, that feasible problems corresponded (at least to a certain extent) to the ones that

could be solved using an amount of time bounded by a polynomial in the input size [15], that

is, the problems that are in the complexity class P . This is known as the Cobham’s thesis.

The realm of infeasibility instead became associated with the complexity class NP (and

complexity classes beyond). Strictly speaking, there was and there still is no proof that

P 6= NP . Problems in NP are such that, given a candidate solution, it is easy (polynomial

time solvable) to check whether it is a correct solution. For some of them, though, despite

this we do not know an efficient way to solve them, neither do we believe there exists one.

Examples of these problems are the NP -complete problems: it is well-known that finding an

efficient solution to one of them would enable us to find an efficient solution to every other

and, in particular, would imply that P = NP .

In the 1970s, Karp showed that many problems, considered interesting because of their

practical applications, are in fact NP -complete [62]. This gave rise to the increasing inter-

est in the study of Computational Complexity, which led to the appearance of many other

complexity classes and theoretical methods to classify problems.

Nonetheless, the relation between P and NP remained the central question. If P is a

proper subclass of NP as it is generally believed, to solve problems which are NP -complete

a superpolynomial (in the input size) amount of time is required, no matter which method is

used. Unfortunately, from the point of view of feasibility this represents a big difficulty, as

even small input sizes entails astronomic running times and even small increases in the input

size entails huge variations in the required computation time.

However, since many problems of interest, starting from the ones contained in Karp’s

list, have been shown to be NP -complete over the years, different methods were devised to

obtain a solution with a practical amount of resources. These methods include approximation,

probabilistic and heuristic approaches.

7

The main idea of approximation is to sacrifice the optimality of the solution in order to

obtain a better running time; at the same time, some bound on the size of the computed

solution in terms of the optimal one is required. Probabilistic approaches aim to reduce the

running time too, allowing a certain degree of randomness that may cause the answer to

be wrong, or not optimal, with some (small) probability. Finally, heuristic approaches are

methods that perform well in practice, but without proof of their correctness or without a

theoretical bound on their running time.

The common feature of these methods is that they generally do not produce optimal

solutions, in the sense that they often produce just an approximate solution within practical

amount of time.

In this respect, Parameterized Complexity can be considered as a natural counterpart

to these approaches. As a matter of fact, in Parameterized Complexity one looks for exact

solutions for hard problems, where by hard it is generally intended NP -complete or worse. Of

course, assuming P 6= NP , to achieve this one has to sacrifice the polynomial bound on the

running time. For a long time, this was considered a synonym of infeasibility. Instead, the

core idea behind Parameterized Complexity is that it is possible in some cases to harness the

superpolynomial factor in the running time, making it dependent only on a parameter of the

input, which is (hopefully) small compared to the total size. In this way, at least in theory

even large instances can be efficiently solved when the associated parameter is small enough.

Compared to approximation, probabilistic or heuristic approaches, Parameterized Com-

plexity is a fairly new area. Its late appearance in the field of Computational Complexity is

probably partly due to the wariness that superpolynomial running times always arouse. Nev-

ertheless, Parameterized Complexity proved useful in a way that goes beyond the one already

mentioned. In particular, the notion of kernel has proved to be one of the finest contributions

to the difficult art of solving resource-demanding problems.

1.2 Basic definitions

We will assume the reader familiar with classical Computational Complexity theory, in partic-

ular with the notion of model of computation (Turing machine, Random Access Machine. . .),

with the asymptotic notation (big O, small o, big Ω) and with the most known complexity

classes like P and NP .

We will denote by Σ an alphabet of finite size, that is, a set of symbols which will form

8

the ‘letters’ which languages we consider are written with. For an alphabet Σ, the set Σ∗ =

{l1 . . . ln : n ∈ N and li ∈ Σ for 1 ≤ i ≤ n} is the set of all possible words of finite length

that can be written using symbols in Σ. The length, or size, of an element x = l1 . . . ln ∈ Σ∗

is n and it is denoted by |x|. Similarly, the size of an integer n ∈ N is the number of digits

that are used in a unary representation of n, that is, precisely n. Finally, the size of a string

(a1, . . . , an) ∈ A1 × · · · ×An is defined as |(a1, . . . , an)| =
∑n
i=1 |ai|.

A formal language L, also called just language, is a subset of Σ∗. A problem can be seen as

a language L on a finite alphabet Σ: in fact, the two words will be to all purposes considered

interchangeable.

In classical Computation Complexity, the objective is to find ‘recipes to solve problems’, or,

more precisely, to find algorithms to recognise languages. Such algorithms could be described

as mechanical procedures that, given an element x ∈ Σ∗, called the input, check whether

x ∈ L and answer YES or NO accordingly. When an algorithm exists, the next question is

whether it can be ‘improved’, where a better algorithm is an algorithm that requires less

physical resources (time and memory, usually) to be computed.

The drawback of the classical approach is that once a problem is shown to be NP -hard

little can be done to further classify its complexity. Parameterized Complexity instead offers

the tools to distinguish between ‘hard’ problems and ‘even harder’ ones, and in doing so also

helps to understand where the hard core of the problem lies and to find feasible ways of dealing

with it [76].

Parameterized Complexity has sometimes been described as a two-dimensional complexity

analysis [75]. The input of a parameterized problem is composed of two parts: the first one

is the input of the problem in the classical sense and the second one is the parameter, a part

of the input which is deemed to account for the hard nature of the problem. The parameter,

in this sense, could literally be anything, from the size of the solution to the treewidth of a

graph: in fact, it can be defined as an element of Σ∗ [30]. Nevertheless, for the purposes of

this thesis, it is enough to restrict the parameter to be an integer, but the reader should bear

in mind that different definitions are possible 1.

Definition 1.1. A parameterized problem Q is a subset of Σ∗ ×N. An instance of a param-

eterized problem is an element (x, k) ∈ Σ∗ ×N, where k is the parameter. An instance which

is in Q is a YES-instance and every other instance is a NO-instance.

1In particular, sometimes more than one parameter is considered for a problem, in which case it is possible

to define the parameter as an element of Nt, with t ∈ N+.

9

When it is clear from the context, a parameterized problem will be just called a problem.

The fact that for every instance of a parameterized problem a parameter is specified does

not mean, generally speaking, that any additional information is given: the parameter is often

implicitly contained in the classical version of the input (though it is not always the case).

The parameter should be thought of as a measure of the complexity of an instance.

Definition 1.2. Let Q ⊆ Σ∗×N be a parameterized problem. The problem is said to be fixed-

parameter tractable, or FPT , if there exists an algorithm A which for every (x, k) ∈ Σ∗ × N

checks whether (x, k) ∈ Q and whose running time is bounded by f(k)|x|O(1), where f is a

computable function from N to N.

The algorithm A is called an FPT -algorithm.

The complexity class that contains all the parameterized problems that can be solved by

an FPT -algorithm is denoted FPT . It is clear from the definition that a fixed-parameter

tractable problem Q can be solved in polynomial time for every fixed value of the parameter.

In other words, the language Qk = {(x, k′) ∈ Q : k′ = k}, where k is fixed, also known as the

k-th slice of Q, lies in P for every k ∈ N.

However, this is not the defining property of FPT problems, as even an algorithm with

running time |x|g(k), g : N→ N, satisfies this property but not the requirements of Definition

1.2. As a matter of fact, this property describes the complexity class XP , which the class

FPT is a proper subclass of [30].

In Parameterized Complexity the role of the class FPT is the counterpart of the role of the

class P in classical Computational Complexity. Algorithms with running time bounded by

f(k)|x|O(1), though impractical in the classical sense, proved to be feasible in cases of interest

[1, 57, 16], as opposed to algorithms of running time of the order of |x|g(k).

The parameterized counterpart of the class NP is more difficult to describe. In Section

1.4 we will give a brief introduction on this subject.

Before concluding this section, we define the unparameterized version of a parameterized

problem.

Definition 1.3. Let Q ⊆ Σ∗ ×N be a parameterized problem. The unparameterized version

Q̃ of Q is the language {x#1k : (x, k) ∈ Q}, where # is a new character and 1 is an arbitrary

letter in Σ.

10

1.3 Kernels

The notion of kernel is closely related to the notion of preprocessing. When a problem must be

solved on large instances, or when the algorithm to find a solution is not particularly efficient,

it is often convenient to simplify the instance, firstly tackling the easier part of the problem.

In the framework of Parameterized Complexity it is possible to make this idea rigorous.

Definition 1.4. Let Q ⊆ Σ∗ ×N be a parameterized problem. The problem is said to admit

a kernel if there exists an algorithm K which takes as input an element (x, k) ∈ Σ∗ × N and

in time polynomial in |x| and k outputs an element (x′, k′) ∈ Σ∗ × N such that

• (x, k) ∈ Q if and only if (x′, k′) ∈ Q,

• |x′| is bounded by g(k) for some function g : N→ N,

• k′ ≤ k.

The algorithm K is a kernelization for Q and the function g is the size of the kernel.

The analysis of polynomial preprocessing techniques was generally overlooked before the

introduction of the formalism of Parameterized Complexity. This is due to the fact that

being able to unconditionally reduce in polynomial time the size of an instance for an NP -

hard problem would mean that P = NP : in fact, applying multiple times the reduction

it would be possible to reduce the problem to an instance of constant size in polynomial

time, thus solving it [71]. Parameterized Complexity resolves this dilemma because the size

reduction can be defined with respect to the parameter, negating the possibility of reducing it

by an arbitrary amount.

Polynomial preprocessing has been widely used to deal with computationally hard prob-

lems, not only for heuristic algorithms but also for approximation and probabilistic ones.

Using the notion of kernel it is possible to prove theoretical bounds for the efficiency of such

preprocessing. Its usefulness is not limited to this, though: for instance, it has applications in

cryptography, or as a technique to store and transmit large instances of hard problems [52].

Even limiting the attention to the field of Parameterized Complexity only, it is generally

believed that “kernelization is the way of understanding fixed-parameter tractability” [71].

The next theorem partially explains why.

Theorem 1.5. A parameterized problem Q ⊆ Σ∗×N is fixed-parameter tractable if and only

if it is decidable and admits a kernel.

11

Proof. Assume first that Q is fixed-parameter tractable. In this case Q admits an FPT -

algorithm A that solves it (hence the problem is decidable) and whose running time on an

instance (x, k) ∈ Σ∗ × N is bounded by f(k)|x|c, for a function f : N → N and a constant

c ∈ N. Then we can define a kernelization K of size f in the following way. Run A for at most

|x|c+1 steps: if this solves the problem, K outputs a trivial YES or NO-instance of constant

size accordingly; otherwise, this means that |x|c+1 < f(k)|x|c, that is, |x| < f(k), then K just

outputs the original instance.

Assume now that Q is decidable and admits a kernel. An algorithm which first applies the

kernelization K and then solves the problem using a brute-force search is an FPT -algorithm,

hence Q is fixed-parameter tractable.

Theorem 1.5 is not useful in practice, as the size of the kernel it produces is usually too

large, but it shows the central role that kernelization plays in the study of parameterized

problems.

The efficiency of a kernelization depends on its running time and on its size. In this thesis

we will consider mainly the latter; in particular, we will be often interested in polynomial

kernels, that is kernels for which the size is bounded by a polynomial.

Sometimes, it is easier to devise a kernelization that produces an equivalent instance of a

different problem. In the literature, this is sometimes called a bikernel [2].

Definition 1.6. Let Q,Q′ ⊆ Σ∗ × N be parameterized problems. The problem Q is said to

admit a bikernel if there exists an algorithm K which takes as input an element (x, k) ∈ Σ∗×N

and in time polynomial in |x| and k outputs an element (x′, k′) ∈ Σ∗ × N such that

• (x, k) ∈ Q if and only if (x′, k′) ∈ Q′

• |(x′, k′)| is bounded by g(k) for some function g : N→ N.

The algorithm K is a bikernelization for Q and the function g is the size of the bikernel.

A kernel for a problem Q is obviously also a bikernel. On the other hand, note that

Theorem 1.5 could be rewritten as “Q is FPT if and only if it admits a bikernel where the

target problem is decidable”: the proof is essentially the same. Hence, if we assume we are

dealing with decidable problems, a problem admits a kernel if and only if it admits a bikernel,

but the size of the kernel obtained via this reasoning is superpolynomial in the size of the

bikernel, which makes it uninteresting from a practical point of view.

12

Being able to prove the existence of a small size kernel for a problem is indeed an important

achievement, but there are problems for which we do not believe that such kernels can be

found. Nonetheless, this does not necessarily mean that we have to lose hope, there are notions

more general than the one of kernel, which may still be useful in practice. In particular, though

not directly related to the subject of this thesis, we give the definition of Turing kernel [69],

which we believe will have a growing importance, particularly because of its ties with the

theory of parallel algorithms.

Definition 1.7. Let Q be a parameterized problem. A t-oracle for Q is an oracle that takes

as input (x, k) with |x| ≤ t, k ≤ t and decides whether (x, k) ∈ Q in constant time.

Definition 1.8. Let Q ⊆ Σ∗ × N be a parameterized problem and let g : N → N be any

function. The problem Q is said to admit a Turing kernel if there exists an algorithm T

which takes as input an element (x, k) ∈ Σ∗×N together with a g(k)-oracle for Q and decides

whether (x, k) ∈ Q in time polynomial in |x| and k. The function g is the size of the Turing

kernel.

A problem that admits a kernel admits a Turing kernel. In addition, a problem that admits

a polynomial number of independent kernels admits a Turing kernel too: such a situation may

still be practically feasible if parallel computation is employed and this is in fact the original

motivation for the definition of Turing kernel [8, 69]. Note that there exist problems which

admit a Turing kernel of this kind but they are unlikely to admit a kernel in the classical

sense [38, 80]. Nevertheless, Turing kernels may be even more involved, as for some problems

it is not clear whether they admit a polynomial number of independent kernels, though they

do admit a Turing kernel [82].

1.3.1 Practical tools for kernelization

Roughly speaking, there are two different methods to show that a problem admits a kernel.

The first one is to devise rules that, when applied to an instance, transform it into an equivalent

instance of smaller size. The second one is to show that large instances can be easily solved.

In most cases, a kernelization results from the combination of these two methods.

The basic step of an approach of the first type is the application of a reduction rule:

Definition 1.9. [informal] Let Q ⊆ Σ∗×N be a parameterized problem. A Reduction Rule

R for Q is an algorithm formed by one or more if statements, that takes (x, k) ∈ Σ∗ × N as

input and outputs a possibly different instance (x′, k′) with k′ ≤ k.

13

In other words, a reduction rule checks whether some conditions apply and, if so, applies

some transformations to an instance of a problem. A reduction rule can be applied in polyno-

mial time when the algorithm runs in time polynomial in the size of the input. An instance

(x, k) is reduced under Reduction Rule R when (x, k) does not satisfy the conditions for the

application. We are only interested in reduction rules which are valid.

Definition 1.10. A Reduction Rule R is valid if it can be applied in polynomial time and if

for every instance (x, k) it outputs an instance (x′, k′), with k′ ≤ k, which is in Q if and only

if (x, k) is.

As for the second method, it often depends upon devising structural properties of the input

of a problem that can be checked in polynomial time and enables to immediately answer YES

or NO. Most of the times, these properties are related to the size of the input; for instance,

when dealing with graph problems, one may try to show that the problem can be easily solved

if the size of the graph is large, compared to the parameter.

Observe that when in the description of a kernelization it is stated that a certain property

characterizes the instance as a YES or NO-instance, it is implicitly intended that the kerneliza-

tion returns a trivial equivalent instance of constant size.

1.4 Fixed-parameter intractability

To prove that a parameterized problem is fixed-parameter tractable is not necessary to use

involved theoretical tools, but the situation changes when one tries to show that a problem

is fixed-parameter intractable. An elaborate theory has been developed with the objective of

obtaining a parameterized counterpart of the NP class, but it turned out that the world of

parameterized intractability is generally more complex and varied than its unparameterized

counterpart.

This section is by no means a thorough account of the subject, only very basic notions

are presented and only in so far as it is needed for the rest of the thesis. See the following

monographs for more information on the subject [30, 39, 75].

Before any other consideration, a clarification is needed about the definition of parame-

terized problem. Definition 1.1 is fine for general purposes, but in this context it is better to

restrict the study to decision problems for which the parameter is a function of the input.

Definition 1.11. A parameterized problem Q is a subset of Σ∗ × N such that there is no

x ∈ Σ∗ with (x, k) ∈ Q and (x, k′) ∈ Q for k 6= k′.

14

In classical Computational Complexity the notion of polynomial time many-one reduction

can be used to show that a problem is at least as difficult as another problem. A similar tool

can be defined for parameterized problems.

Definition 1.12. Let Q,Q′ ⊆ Σ∗ × N be two parameterized problems. Q is said to reduce

to Q′ by a parameterized (many-one) reduction if there exists an algorithm A which takes as

input an element (x, k) ∈ Σ∗ × N and outputs an element (x′, k′) ∈ Σ∗ × N, satisfying the

following conditions:

• (x, k) ∈ Q if and only if (x′, k′) ∈ Q′,

• k′ ≤ f(k) for some computable function f : N→ N,

• the running time of A is bounded by g(k)|(x, k)|O(1) for some computable function

g : N→ N.

The algorithm A is called a parameterized reduction.

If there is a parameterized reduction from Q to Q′ and Q′ is fixed-parameter tractable,

then Q is too. At the same time, a parameterized problem which is fixed-parameter tractable

admits a parameterized reduction to any other problem [39]. Hence, this is a sound tool to

compare parameterized problems.

In the complexity classes we will consider here, the notions of hardness and completeness

will be always defined using parameterized reductions, in the same way it is done in classical

Computational Complexity with polynomial time many-one reductions.

At the end of Section 1.2 it was mentioned that an algorithm whose running time on input

(x, k) is of the order of |x|g(k), g : N → N, is considered intractable from a parameterized

point of view.

Definition 1.13. The class XP contains all the parameterized problems Q for which there

exists a computable function g : N → N such that it can be verified in time |x|g(k) whether

(x, k) ∈ Q.

Recall that FPT is a proper subclass of XP .

Another class which contains hard problems (from a parameterized point of view) is the

following one:

Definition 1.14. The class para-NP contains all the parameterized problems Q for which

there exists a non-deterministic Turing machine that verifies whether (x, k) ∈ Q in at most

f(k)|x|O(1) steps, for some function f : N→ N.

15

The class para-NP is the analogous of the class NP . It contains FPT as a subclass, and

FPT = para-NP if and only if P = NP .

The following theorem provides a useful description of para-NP -complete problems. A

parameterized problem Q is nontrivial if there exist x ∈ Σ∗ and k ∈ N with (x, k) ∈ Q, and

there exists x′ ∈ Σ∗ such that (x′, k′) /∈ Q for every k′ ∈ N. Also, recall that a slice of a

parameterized problem Q is the language Qk that contains the instances (x, k) in Q for a

fixed k (see also Section 1.2).

Theorem 1.15. [39] Let Q be a nontrivial parameterized problem in para-NP . Then the

following statements are equivalent:

• Q is para-NP -complete,

• The union of finitely many slices of Q is NP -complete. That is, there are l,m1, . . . ,ml ∈

N such that Qm1 ∪ · · · ∪Qml
is NP -complete.

Nonetheless, not all the problems that do not appear to admit an FPT -algorithm are XP -

hard or para-NP -hard. In order to prove useful intractability results, it is necessary to refine

the analysis. For this reason it was defined a sequence of classes, known as the W -hierarchy,

which satisfies the following inclusions:

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [SAT] ⊆W [P] ⊆ XP ∩ para−NP

It is not known whether the inclusions are all strict, but it is generally believed this is the

case. Hence, under the reasonable assumption that FPT 6= W [1], the boundaries between

fixed-parameter tractability and fixed-parameter intractability lie between these two classes.

Note that so far there are no results ensuring that a W [1]-complete parameterized problem

can be solved faster than a W [2]-complete one, or even than an XP -complete one: in practice,

the running times to solve W [1]-hard problems which lie in XP are of the order of |x|g(k),

g : N→ N, for an instance (x, k) ∈ Σ∗ × N.

The rigorous definition of the classes in the W -hierarchy requires some care and is beyond

the scope of this thesis. Hence, here we will give only the definitions for the classes W [1] and

W [2], since they are the only one which will be useful later.

Consider the following two parameterized problems:

16

Weighted 2-CNF-Satisfiability

Input: A Boolean formula in conjunctive normal form whose clauses have

size at most 2 and an integer k.

Parameter: k

Question: Is there a satisfying truth assignment which has weight exactly k?

Weighted CNF-Satisfiability

Input: A Boolean formula in conjunctive normal form and an integer k.

Parameter: k

Question: Is there a satisfying truth assignment which has weight exactly k?

A Boolean formula is in conjunctive normal form if it is a conjunction of clauses, where

each clause consists of a disjunction of literals, which are negated or non-negated Boolean

variables. The weight of a satisfying truth assignment is the number of variables which are

set to ‘true’.

For both problems there is no known FPT -algorithm and it is widely believed that one

cannot be found. These problems can be used to define the complexity classes W [1] and W [2]

[75].

Definition 1.16. The class W [1] contains all the parameterized problems that can be re-

duced to Weighted 2-CNF-Satisfiability by a parameterized reduction. A parameterized

problem is W [1]-hard if Weighted 2-CNF-Satisfiability can be reduced to it. A param-

eterized problem in W [1] which is W [1]-hard is W [1]-complete.

The class W [2] is defined in the same way replacing Weighted 2-CNF-Satisfiability

with Weighted CNF-Satisfiability.

Note that since Weighted 2-CNF-Satisfiability is a special case of Weighted CNF-

Satisfiability, it immediately follows that W [1] is contained in W [2].

1.5 Kernel Lower Bounds

It is clear at this point that for a decidable problem admitting a kernel is equivalent to being

fixed-parameter tractable. Nonetheless, for a kernel to be practically useful it is mandatory

to have its size reduced as much as possible, hence all the effort in proving better and better

kernel size upper bounds. In particular, a kernel whose size is bounded by a polynomial in

17

the parameter seems particularly attractive.

However, it was soon clear to researchers that not all problems were likely to admit such

polynomial kernels, but, despite this, for some time no theoretical tools were available to show

lower bounds on kernel sizes.

The first results in this direction relied on known lower bounds for the approximation

version of a problem, or on the notion of duality [75]. In the former case, if there exists a

lower bound on the polynomial time approximability of a problem, and the parameter under

consideration is the solution size, then there exists a similar bound on the size of a (possible)

linear kernel: this is motivated by the observation that such a linear kernel would enable to

produce a polynomial time approximation [75].

The notion of duality was introduced by Chen et al. [13] as a tool to show kernel lower

bounds. The core idea is that if both a problem and one of its dual versions are fixed-

parameter tractable, then a two-sided attack can be performed to efficiently solve an instance,

thus providing lower bounds as too much ‘efficiency’ would mean an algorithm to solve an

NP -hard problem running in polynomial time.

The definition of dual is as follows (see also section 4.1.3, where the notion of dual is used

to prove kernel lower bounds in a different context):

Definition 1.17. Let Q ⊆ Σ∗ × N be a parameterized problem and let s : Σ∗ → N be a

mapping such that 0 ≤ k ≤ s(x) for every (x, k) ∈ Q and s(x) ≤ |x| for every x ∈ Σ∗. The s-

dual Qs of Q is the parameterized problem corresponding to the language Qs = {(x, s(x)−k) :

(x, k) ∈ Q}.

The definition is slightly different from the one of Chen et al., but the differences are not

substantial and are intended only to make clearer that the dual of a problem is not unique, but

depends on the size function s. Chen et al. used this notion to prove the following theorem:

Theorem 1.18 ([13]). Let Q ⊆ Σ∗ × N be an NP -hard parameterized problem and s be a

size function for it. Suppose that Q admits a kernel of size αk and Qs admits a kernel of size

αsks, where α, αs ≥ 1. If (α− 1)(αs − 1) < 1 then P = NP .

Proof (sketch). It is possible to write an algorithm that according to the value of the parameter

uses the kernelization for Q or for Qs, obtaining in both cases an instance whose size is strictly

less than the size of the original instance. Clearly, a linear number of applications of such

an algorithm produces an instance with constant size, thus effectively solving the problem in

polynomial time.

18

It is clear though that both these approaches only provide lower bounds for kernels of

linear sizes and, in addition, only work in a limited amount of cases. Unfortunately, in

Computational Complexity theory it is often harder to prove lower bounds than to prove

upper bounds. Only in 2009 it was produced a technique, using the concept of compositional

parameterized problem, that could be used to prove the nonexistence of polynomial kernels

for certain problems [9], under a widely believed computational complexity assumption 2.

This was a major breakthrough and eventually gave the possibility to further classify the

complexity of fixed-parameter tractable problems, according to the size of the kernels they

are expected to admit. Later, this technique was complemented with the tool of polynomial

parameter transformation [10], and finally both notions were unified using the concept of

cross-composition [6].

The rest of this section will be devoted to the description of this method and of some of

its more recent generalizations.

1.5.1 Cross-composition

Cross-composition is the technique of encoding multiple instances of an NP -hard problem L

into a single instance of a parameterized problem Q: ‘composition’ refers to the encoding of

many into one, while ‘cross’ is due to the fact that L and Q may be different problems (while

originally they had to be the same [9]). When a cross-composition is possible and, in addition,

the problem Q admits a polynomial kernel, then this ensures the existence of a distillation

for SAT (see Appendix A, Definition 1), which is deemed to be unlikely.

There are two different types of cross-composition, depending on whether the composition

algorithm works as an OR gate or an AND gate. Nonetheless, traditionally cross-composition

refers to the OR-cross-composition, as theoretical evidence against the existence of a polynomial

kernel for parameterized problems which admit an OR-cross-composition was provided before

its AND equivalent [40]. Hence, here cross-composition will implicitly refer to the notion of

OR-cross-composition.

The following definition is a useful practical tool in the proofs of existence of a cross-

composition:

2Note that one should expect complexity theoretical assumptions when proving lower bounds for the kernel

size, as if P = NP every parameterized problem admits a kernel of constant size, hence any such proof should

at least assume P 6= NP .

19

Definition 1.19. An equivalence relation R on Σ∗ is a polynomial equivalence relation if the

following two conditions hold:

• There exists an algorithm that given two strings x, y ∈ Σ∗ decides whether they belong

to the same equivalence class in (|x|+ |y|)O(1) time.

• For any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements of S into

at most (maxx∈S |x|)O(1) classes.

We are now ready to give the formal definition of cross-composition.

Definition 1.20. Let L ⊆ Σ∗ be a language and let Q ⊆ Σ∗×N be a parameterized problem.

We say that L cross-composes into Q if there exists a polynomial equivalence relation R and

an algorithm C which, given t strings x1, . . . , xt belonging to the same equivalence class of R,

computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in
∑t
i=1 |xi|, such that:

• (x∗, k∗) ∈ Q if and only if xi ∈ L for some 1 ≤ i ≤ t,

• k∗ is bounded by a polynomial in maxti=1 |xi|+ log t.

A parameterized problem Q admits a cross-composition if there exists an NP -hard language

L which cross-composes into Q. The algorithm C is called a cross-composition algorithm.

It is clear from the definition that a cross-composition is a particular kind of polynomial

time many-one reduction from OR(L) to Q, where OR(L) is the language that contains all the

tuples (x1, . . . , xt) such that at least one of the xi’s is in L. Note that the requirement for a

polynomial equivalence relation is only a tool intended to make easier to regroup the input

of a cross-composition: indeed, the trivial relation where the only class is the entire Σ∗ is a

well-defined polynomial equivalence relation.

The notion of cross-composition is closely related to the notion of weak distillation 3:

Definition 1.21. Let L,L′ ⊆ Σ∗ be languages. A weak OR-distillation of L into L′ (or, in

short, a distillation) is an algorithm D that, given t strings x1, . . . , xt ∈ Σ∗, computes a string

y ∈ Σ∗ in time polynomial in
∑t
i=1 |xi|, such that:

• y ∈ L′ if and only if xi ∈ L for some 1 ≤ i ≤ t,

• the length of y is polynomially bounded in maxti=1 |xi|.
3In the original definition of distillation L = L′: hence the ‘weak’ in this definition.

20

A language L is said to admit a distillation when there exists a distillation from L to some

language L′.

While the notion of distillation may appear similar to the notion of cross-composition,

it is considered less likely for an NP -hard problem to admit a distillation than for an NP -

hard parameterized problem to admit a cross-composition: indeed, the existence of cross-

compositions was shown for many parameterized problems, while the existence of a distillation

is deemed unlikely due to the next theorem. Note that for any language L ⊆ Σ∗, L denotes

the language Σ∗ \ L. Also, coNP = {L ⊆ Σ∗ : L ∈ NP}.

Theorem 1.22. If there exists a distillation for an NP -hard problem L, then coNP ⊆

NP/poly.

Proof (sketch). By definition, NP/poly is the set of languages which can be decided by a

non-deterministic Turing machine with the help of a polynomial advice, where a polynomial

advice is a function f : N→ Σ∗ such that |f(n)| is bounded by a polynomial in n.

It follows from the definition that the existence of a distillation for L ensures the existence

of a distillation for SAT. Therefore, the objective is to show that SAT is in NP/poly. To do

that, the distillation D of SAT (to a language L) is used as a mapping from (SATn)t, which is

the set of tuples of unsatisfiable formulae of size at most n, to Lnc , which is the set of strings

in L of size at most nc (where c is a constant depending on the distillation algorithm).

By a purely combinatorial argument, it is possible to show that if n and t are big enough

(but, at the same time, t is polynomial in n) there exists a subset Sn ⊆ Lnc whose size is

bounded by a polynomial in n, such that the following two conditions hold:

• if x ∈ SATn, there exist strings x1, . . . , xt of size at most n such that xi = x for some

i, 1 ≤ i ≤ t, and D(x1, . . . , xt) ∈ Sn,

• if x /∈ SATn, for all strings x1, . . . , xt of size at most n and such that xi = x for some

i, 1 ≤ i ≤ t, then D(x1, . . . , xt) /∈ Sn.

At this point, it is easy to design an algorithm for a non-deterministic Turing machine

which runs in polynomial time and, using f(n) = Sn as polynomial advice, decides SAT . In

fact, given an input x, a non-deterministic Turing machine can guess t strings x1, . . . , xt of

size at most |x|; then, if one of these strings is x, it computes D(x1, . . . , xt) and accept if and

only if D(x1, . . . , xt) ∈ Sn.

21

The reason why coNP ⊆ NP/poly is considered unlikely is that by Yap’s theorem [85] it

would imply the collapse of the polynomial hierarchy to the third level (the result has since

been improved [12]), whereas it is a common conjecture that all the complexity classes in the

polynomial time hierarchy are distinct. Recall, incidentally, that the polynomial time hierar-

chy conjecture is a generalization of well-believed conjectures in Computational Complexity;

for instance, if P = NP then the polynomial time hierarchy collapses to its zeroth level, and

if NP = coNP then it collapses to its first level.

As mentioned earlier, there exist parameterized problems which admit a cross-composition,

but if any of these problems also admits a polynomial kernel, or even just a polynomial

bikernel, then we can produce a distillation, as the next theorem shows.

Theorem 1.23. Let L ⊆ Σ∗ be a language and let Q ⊆ Σ∗ × N be a parameterized problem.

If L cross-composes into Q and Q admits a polynomial bikernel into a parameterized problem

Q′, then there exists a distillation of L into OR(Q̃′).

Proof. Recall that OR(Q̃′) is the language that contains tuples (x1, . . . , xt) where at least one

of the xi’s is in Q̃′, the unparameterized version of Q′. Now, let (x1, . . . , xt) be the input of

the distillation, for some t ∈ N, and define n = maxti=1 |xi|. If t > (|Σ|+ 1)n then there must

be a redundancy in the input, that is xi = xj for some 1 ≤ i < j ≤ t: assume all multiple

copies of a string are removed, then we may assume that log t ∈ O(n)).

Using the polynomial equivalence relation R associated to the cross-composition, it is

possible to partition (in polynomial time) the set of strings into r subsets Y1, . . . , Yr, such

that all the strings in one of the subsets belong to the same equivalence class. In addition, r

is bounded by a polynomial in n.

Then, the cross-composition algorithm is applied to each of these sets, producing r in-

stances (zi, ki) of Q. Note that the whole computation takes time polynomial in the total

input size, and each of the resulting ki’s is bounded by a polynomial in n, as log t ∈ O(n).

At this stage, the kernelization is applied to every instance (zi, ki) of Q, which gives r

instances (z′i, k
′
i) of Q′ such that |z′i| and k′i are bounded by a polynomial in ki and, hence,

by a polynomial in n.

Finally, (z′i, k
′
i) is converted to the unparameterized version z̃i = z′i#1k

′
i and these are all

combined together into one tuple (z̃1, . . . , z̃r).

It is straightforward to verify that (x1, . . . , xt) ∈ OR(L) if and only if (z̃1, . . . , z̃r) ∈ OR(Q̃′).

Hence, the first property in the definition of a distillation is satisfied. As for the second one,

22

as |z̃i| for 1 ≤ i ≤ r and r itself are bounded by a polynomial in n, then |(z̃1, . . . , z̃r)| is

bounded by a polynomial in n.

In conclusion, the described algorithm is a distillation of L into OR(Q̃′).

We have now all the tools needed to prove lower bounds on the kernel size, it is only left

to combine the results of Theorem 1.22 and Theorem 1.23:

Corollary 1.24. Let Q ⊆ Σ∗×N be a parameterized problem which admits a cross-composition

from an NP -hard language L ⊆ Σ∗. Then Q admits no polynomial bikernel, unless coNP ⊆

NP/poly.

The previous result has probably been the most widely used tool to prove lower bounds for

kernel sizes so far, and indeed this will be the only method needed for our purposes. Nonethe-

less, many refinements appeared later and some are worth mentioning here for completeness.

Dell and van Melkebeek [28] generalized Theorem 1.22, producing the complementary

witness lemma which made possible to prove lower bounds for kernel sizes of problems which

do admit a polynomial kernel. Building on their result, Bodlaender et al. [7] introduced

the notion of cross-composition of bounded cost, in which the parameter k∗ of the resulting

instance is bounded by O(f(t)(maxtx=1 |xi|)c), where c is a constant independent of t. The

function f(t) is the cost of the cross-composition.

When a parameterized problem Q admits a cross-composition of cost f(t) = t
1
d +o(1),

d ∈ N, from an NP -hard language L, then Q admits no bikernel of size bounded by O(kd−ε)

for any ε > 0, unless coNP ⊆ NP/poly.

The complementary witness lemma of Dell and van Melkebeek also enables to rule out the

existence of polynomial kernels using a co-nondeterministic version of the cross-composition

[65, 66].

Finally, the notions of cross-composition and distillation can be defined as a particular

case of polynomial time many-one reduction from the AND of a language instead of the OR.

It is not difficult to see that a similar version of Theorem 1.23 still holds when replacing OR

with AND, which had already been pointed out by Bodlaender et al. [9]. Unfortunately, no

equivalent of Theorem 1.22 was known until recently.

Eventually, Drucker managed to prove kernel lower bounds for problems that admit an

AND-cross-composition under the same theoretical complexity assumption, namely coNP *

NP/poly [31]. Additionally, he also strengthened previous results in multiple ways, producing

a theoretical setting able to rule out “high-quality probabilistic or quantum polynomial time

23

compression”, where ‘high-quality’ refers to the relation between reliability and compression

amount (allowing for trade-off) under theoretical assumptions which are even stronger than

the coNP * NP/poly hypothesis.

24

Chapter 2

Notation and Problem

presentation

A multiset is a set which can contain multiple copies of the same element. The set of non-

negative integers is denoted by N and the set of positive integers is denoted by N+. The set

{1, . . . , n} is denoted by [n]. The set of positive reals is denoted by R+. All logarithms are

to base 2.

2.1 Graphs

In this thesis we will consider problems that stem from Graph Theory and are either graph

or hypergraph problems. For the notation, we generally follow Diestel’s Graph Theory [29].

A graph G is an ordered pair (V (G), E(G)), where V (G) is the set of vertices and E(G)

is the set of edges (disjoint from V (G)), together with an incidence function ψG from the

set of edges to the set of unordered pairs of vertices. If ψG(e) = {v, w} for e ∈ E(G) and

v, w ∈ V (G), v and w are called endvertices of e and e is an edge between v and w, or joins v

and w. Two vertices are adjacent if there is an edge between them. For simplicity, we write

e instead of ψG(e): for instance, we write e = vw and e∩ {v}. Also, when it is clear from the

context we will write V and E instead of V (G) and E(G).

A graph is finite if V and E are finite sets. In this thesis we will only consider finite

graphs, which will be simply called graphs. Unless otherwise specified, the vertex set and

edge set of a graph will always be V = {v1, . . . , vn} and E = {e1, . . . , em} respectively, with

25

n,m ∈ N. Moreover, n and m will always be used to denote the size of the vertex set and of

the edge set of a graph G. The order of G is the number of its vertices and the size is the

number of its edges.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection

φ : V → V ′ such that uv ∈ E if and only if φ(u)φ(v) ∈ E′ for all u, v ∈ V .

The degree of a vertex v ∈ V is the number of edges that have v as endvertex. This

defines a function dG : V → N, called the degree function. The average degree d(G) of a graph

is the average on the degrees of its vertices, i.e., 1
n

∑
v∈V dG(v). If the graph contains no

loops, d(G) = 2|E|
|V | . We say that v is an odd-degree vertex if the degree of v is odd and is an

even-degree vertex if it is even.

For U ⊆ V , the neighbourhood of U is the set of vertices NG(U) = {v ∈ V \ U : ∃u ∈

U such that uv ∈ E}; a vertex v ∈ NG(U) is a neighbour for U . The closed neighbourhood of

U is the set NG[U] = NG(U) ∪ U . It is also possible to define a series Nj [U] of increasingly

large neighbourhoods of U , where N1[U] = NG(U) and Nj [U] = N1[Nj−1[U]], j ∈ N.

For disjoint subsets of vertices U,W ⊆ V , the set of edges with one endvertex in U and

the other in W is denoted by E(U,W).

A set of edges F ⊆ E is a matching if they do not share any endvertex. A maximal

matching is a matching F such that every edge in E \ F shares an endvertex with an edge in

F . A maximum matching is a matching of maximum size. A perfect matching is a matching

of size |V |/2 (i.e., every vertex is an endvertex of an edge in the matching).

A graph is simple if E ⊆ {vivj : i, j ∈ [n] and i < j}. In a simple graph there cannot be a

loop, which is an edge whose endvertices correspond, nor parallel edges, which are edges who

have the same endvertices. A multigraph is a graph where parallel edges, but no loops, are

admitted.

A graph is oriented if each edge e = vivj has one of two possible directions {>,<} (where

‘>’ means it is oriented from vi to vj and ‘<’ from vj to vi). It is labelled if each edge has

an associated label l ∈ L, where L is a finite set. For any labelled and/or oriented graph G,

U(G) denotes the underlying unoriented and unlabelled graph.

A weighted graph is a graph together with a weight function wG : E(G) → R+. For any

set F ⊆ E of edges, wG(F) =
∑
e∈F wG(e). The weight of G is equal to wG(E).

26

2.1.1 Subgraphs and supergraphs

A subgraph H of a graph G is a graph for which V (H) ⊆ V (G), E(H) ⊆ E(G) and ψH is the

restriction of ψG to E(H). In addition, H inherits the orientations, labels and weights of the

edges of G. A supergraph of G is a graph which G is a subgraph of.

For U ⊆ V , the subgraph G[U] of G induced by U is the subgraph of G that has U has

vertex set and contains all and only the edges between vertices in U . On the other hand,

deleting U from G produces the graph G − U , which is defined as the graph G[V \ U]. For

F ⊆ E, G[F] is the subgraph of G induced by F , that has vertex set V (G[F]) = {v ∈ V :

∃e ∈ E such that v ∈ e} and edge set E(G[F]) = F . Finally, deleting F from G produces the

graph G \ F , which has V as vertex set and E \ F as edge set. Note that every subgraph of

G may be obtained deleting a set of vertices and a set of edges.

For F ⊆ E, duplicating the edges in F produces a supergraph of G which contains one

additional copy of every edge in F .

2.1.2 Paths and cycles

Let r ∈ N. A walk in a graph G = (V,E) is a sequence v1e1v2 . . . vrervr+1 where vi and vi+1

are the endvertices of ei for i ∈ [r]: v1 is the initial vertex, vr+1 is the terminal vertex and

v2, . . . , vr are the internal vertices. The walk is from v to w if v is the initial vertex and w

is the terminal one. A walk is closed if v1 = vr+1. The length of the walk is the number of

edges it contains. A trail is a walk v1e1v2 . . . vrervr+1 for which the edges ei, i ∈ [r], are all

distinct. A trail is closed if v1 = vr+1. Two walks or two trails v1e1 . . . ervr+1, v
′
1e
′
1 . . . e

′
rv
′
r+1

are edge-disjoint if ei 6= e′j for every i, j ∈ [r]. Deleting a walk from a graph means deleting

the set of its edges.

A path is a graph with vertex set v1, . . . , vr+1 and edge set v1v2, v2v3, . . . , vrvr+1. Let

r ≥ 2. A cycle is a graph with vertex set v1, . . . , vr and edge set v1v2, v2v3, . . . , vr−1vr. A

path which contains r edges is an r-path, and a cycle which contains r edges is an r-cycle. An

r-path is an odd path if r is odd and an even path otherwise; similarly, an r-cycle is an odd

cycle if r is odd and an even cycle otherwise.

A graph G contains a path or a cycle if it contains them as subgraphs. Note that G

contains an r-path if and only if it contains a walk v1e1v2 . . . vrervr+1 for which the vertices

vi, i ∈ [r + 1], are all distinct. Similarly, it contains an r-cycle if and only if it contains a

closed walk v1e1v2 . . . vrerv1 for which the vertices vi, i ∈ [r], are all distinct.

When there is no possibility of confusion (for instance, if the graph is simple), walks, trails,

27

paths and cycles are denoted by a sequence of vertices and the edges are omitted, i.e., a path

v1e1v2 . . . vrervr+1 is denoted by v1v2 . . . vrvr+1.

2.1.3 Connectedness and blocks of a graph

A graph G = (V,E) is connected if there is a walk from v to w for every pair v, w ∈ V of

vertices with v 6= w. A connected component of G, or simply a component, is a connected

subgraph G[U] for some U ⊆ V , such that G[U ∪ {v}] is disconnected for every v ∈ V \ U .

We denote by C(G) the set of connected components of G. A vertex v ∈ V is a cutvertex if

|C(G−{v})| > |C(G)|: in particular, if G is connected, a cutvertex is a vertex whose deletion

disconnects the graph. Similarly, an edge e ∈ E is a bridge if |C(G \ {e})| > |C(G)|.

A graph G is l-connected, l ≥ 2, if it contains at least l+1 vertices and G−U is connected

for every U ⊆ V with |U | ≤ l − 1.

A block of G is a connected subgraph G[U], for some U ⊆ V , which does not contain a

cutvertex and such that G[U∪W] is disconnected or contains a cutvertex for every W ⊆ V \U .

Note that if G is 2-connected then the only block of G is G itself. Different blocks of G overlap

in at most one vertex, which is a cutvertex of G; the interior of a block is the set of vertices

which are contained in that block only, and an interior vertex is a vertex contained in the

interior of a block. Every edge lies in a unique block and the same holds for cycles. The block

decomposition B(G) of G is the set of its blocks and it can be computed in O(|V |+ |E|) time.

The block graph of G is a tree that contains a vertex for every cutvertex of G and a vertex

for every block of G, and an edge between them only if the cutvertex is contained in the

block. A block is a pendant block if it corresponds to a leaf in the block graph. The root of a

pendant block is the only cutvertex it contains. Note that the interior of a pendant block is

never empty.

2.1.4 Some classes of graphs

Let G = (V,E) be a simple graph. We say that G is a complete graph if uv ∈ E for every

u, v ∈ V . The complete graph on s vertices (s ≥ 1) is usually denoted Ks. A set U ⊆ V of

vertices is a clique in G if G[U] is a complete graph. A clique is an odd clique if it contains

an odd number of vertices, otherwise it is an even clique.

We say that G is a forest if it does not contain any cycles. We say that G is a tree if it

is connected and it does not contain any cycles. A vertex in a forest is a leaf if its degree is

one. A tree T is a spanning tree for a graph G if V (T) = V (G).

28

We say that G is a bipartite graph if there exists a partition V0, V1 of V such that E =

E(V0, V1). This condition is equivalent to asking that G does not contain odd cycles.

A graph is chordal if every cycle has a chord, that is, an edge between two vertices which

are not adjacent in the cycle.

2.1.5 Hypergraphs

A hypergraph is an ordered pair H = (V (G), E(G)), where V (G) is the set of vertices and

E(G) is a family of nonempty subsets of V , whose elements are called hyperedges, or simply

edges. When E(G) only contains subsets of V with exactly two elements then H is a simple

graph, hence the concept of hypergraph is a generalization of the concept of graph. As for the

graphs, n will be always used to denote the size of the vertex set, and m to denote the size of

the edge set. In addition, when it is clear from the context we will write V and E instead of

V (G) and E(G).

The degree of a vertex v is the cardinality of {e ∈ E : v ∈ e}. For U ⊆ V , the neighbourhood

of U is the set of vertices N(U) = {v ∈ V \U : ∃e ∈ E ,∃u ∈ U such that {v, u} ⊆ e}, while the

closed j-neighbourhood of U , j ∈ N, is recursively defined as N1[U] = N(U)∪U and Nj [U] =

N1[Nj−1[U]]. A similar notion is available for edges: given F ⊆ E , the neighbourhood of F is

the set of edges N(F) = {e ∈ E \F : ∃f ∈ F , f ∩e 6= ∅}; moreover, the closed j-neighbourhood

of F , j ∈ N, is recursively defined as N1[F] = N(F) ∪ F and Nj [F] = N1[Nj−1[F]]. By

V (Nj [F]) we denote the set of vertices contained in the edges in Nj [F].

A subhypergraph I of a hypergraph H is a hypergraph for which V (I) ⊆ V (H) and

E(I) ⊆ E(H). For U ⊆ V , H−U is the subhypergraph of H obtained deleting U ; it has V \U

as vertex set and {e ∈ E : e ∩ U = ∅} as edge set. For F ⊆ E , H \ F is the subhypergraph of

H obtained deleting F ; it has V as vertex set and E \ F as edge set.

2.2 Structure of the thesis

In the next chapters, we study some parameterized problems, focusing the attention on

whether they admit polynomial kernels. In Chapter 3 we study the k-Chinese Postman

problem, which, given a connected weighted simple graph G = (V,E) and integers k and p (k

being the parameter), asks for k closed nonempty walks which contain every edge of the graph

and whose total weight is at most p. For combinatorial optimisation problems such as this

one, the choice of a meaningful parameter can be more difficult, as often obvious parameters

29

as the solution size are not interesting. The parameterization we consider was suggested by

van Bevern et al. [84] and Sorge [81]. We show that the problem is FPT producing a kernel

with O(k2 log k) vertices and O(k2 log k) edges.

In Chapter 4 we study the Test Cover problem: given an hypergraph H = (V, E) and

an integer p, decide whether there exists a set T ⊆ E with at most p edges such that for

every v, w ∈ V there exists e ∈ T with |e ∩ {v, w}| = 1. The problem arises in fault analysis,

medical diagnostics, pattern recognition, and biological identification [50, 49, 73]. We study

the problem using different parameterizations, showing that it is generally difficult to solve

(either W [1]-hard, or likely not to admit a polynomial kernel). Then, in Section 4.2, we

restrict the problem to hypergraphs with edges of bounded size (at most r vertices in each

edge). For this special case, we are able to show that the problem admits a polynomial kernel

for three out of the four parameterizations we consider. The results are summarised in the

next table, where the first row contains the size of the solution for the given parameterization.

Note that n = |V |, m = |E|, k is the parameter, α(n) = dlog ne in the unbounded case and

α(n) = d 2(n−1)
r+1 e in the restricted one. Also, ‘no poly’ means that the problem does not admit

a polynomial kernel unless coNP ⊆ NP/poly, while O(·) means that the problem admits a

kernel with at most O(·) vertices.

k α(n) + k n− k m− k

Unbounded No poly W [2]-hard [73, 26] No poly W [1]-complete [20]

Bounded (r) O(rk) para-NP -complete O(rk3) O(k6r16)

In Chapter 5, we study a class of parameterized problems called WAPT (Π), where Π

denotes a graph property: given a connected weighted graph G (possibly labelled and/or

oriented) and an integer k, decide whether there exists a subgraph H of G which has the

property Π and whose weight is at least pt(G) + k (where pt(G) is a constant which depends

on the property Π and on G). The graph properties which WAPT (Π) is defined for are

known in the literature as λ-extendible properties, where 0 < λ < 1 is a real number which

depends on Π. Well-known examples of λ-extendible properties are ‘being bipartite’, ‘being

balanced’, ‘being acyclic’ and ‘having a homomorphism into a vertex-transitive graph’ [78].

In particular, when the property is ‘being bipartite’, WAPT (Π) corresponds to Weighted

Max Cut, which is one of the most central problems in Computational Complexity [62], and

has received attention in Parameterized Complexity since its early days [70].

In Section 5.1 we show that if the weights are integral WAPT (Π) can be reduced in

polynomial time to an easier problem, for which the input graph has a specific structure.

30

Using this fact, we prove that Weighted Max Cut is FPT when we restrict the problem

to graphs with integral weights. Then, in Section 5.2, we show that for APT (Π) (the version

of WAPT (Π) on unweighted graphs) we can obtain better. More precisely, we show that the

problem admits a kernel with at most O(k3) vertices if one of the following holds: (i) λ 6= 1
2 ,

(ii) all orientations and labels (if applicable) of the graph K3 have the property Π, or (iii) Π

is a hereditary property of simple or oriented graphs. Finally, in Section 5.3 we show that

APT (Π) admits a kernel with O(k3) vertices when Π is the property of ‘being balanced’,

which is needed to prove the results of Section 5.2, but is also an interesting result in itself.

Lastly, Appendix A contains the definitions of all the problems we mention in the thesis.

2.3 Bibliographic Notes

Most of the results of this thesis are based on some published and unpublished papers.

More specifically, the results of Chapter 3 are based on:

[47] Parameterized complexity of k-Chinese Postman Problem.

G. Gutin, G. Muciaccia, and A. Yeo.

Theor. Comput. Sci. 513: 124-128 (2013).

The results of Chapter 4 are based on:

[46] (Non-)existence of polynomial kernels for the Test Cover problem.

G. Gutin, G. Muciaccia, and A. Yeo.

Inf. Process. Lett. 113(4): 123-126 (2013).

[22] Parameterizations of test cover with bounded test sizes.

R. Crowston, G. Gutin, M. Jones, G. Muciaccia, and A. Yeo.

CoRR, abs/1209.6528, (2012).

The results of Chapter 5 are based on discussions with Robert Crowston, Mark Jones,

Geevarghese Philip, Ashutosh Rai and Saket Saurabh, and on the following papers:

[24] Polynomial Kernels for λ-extendible Properties Parameterized Above the

Poljak-Turźık Bound.

R. Crowston, M. Jones, G. Muciaccia, G. Philip, A. Rai, and S. Saurabh.

FSTTCS, 43-54 (2013).

[21] Maximum balanced subgraph problem parameterized above lower bound.

R. Crowston, G. Gutin, M. Jones, and G. Muciaccia.

Theor. Comput. Sci. 513: 53-64 (2013).

31

Chapter 3

k-Chinese Postman

In this chapter we study a generalization of the Chinese Postman problem, which is a

well-studied problem in combinatorial optimisation.

Chinese Postman (CP)

Input: A pair (G, p) where G = (V,E) is a connected weighted simple graph

and p is an integer.

Question: Is there a closed walk W on G such that every edge of G is contained

in it and the total weight of the edges in the walk is at most p?

The Chinese Postman problem models the difficulty which a postman encounters when

planning the shortest route that goes through every street where mail must be delivered

and terminates at the starting point. The problem was first studied in 1962 by a Chinese

mathematician, Kuan Mei-Ko, hence the name. This problem is related to one of the oldest

problems in Graph Theory, namely the problem of finding an Eulerian cycle in a connected

graph, that is a closed trail which contains every edge of the graph. It was proved by Euler and

Hierholzer [36, 54] that a connected graph admits an Eulerian cycle if and only if all vertices

of the graph have even degree, and for this reason a connected graph is called Eulerian if its

vertices satisfy this condition.

If an Eulerian cycle exists in a graph G, then it is a solution for CP 1 on G, while if

a solution of weight at most p exists, then edges can be added to the graph obtaining a

supergraph of weight at most p which admits an Eulerian cycle. In fact, let 1 + ce (ce ≥ 0)

1Note that in the literature this problem is generally denoted by CPP, but to keep it consistent with the

notation used in the rest of the thesis we have preferred to rename it.

32

be the number of times the walk W of weight at most p contains the edge e. Consider the

multigraph GW obtained from G adding ce distinct copies of e for every e ∈ E: then W is an

Eulerian cycle in GW and the weight of GW is at most p.

This observation suggests that it is possible to solve CP in two steps: first construct a

supergraph of G which admits an Eulerian cycle and then find this cycle, which will be a

solution for CP on G, provided the supergraph was constructed in an optimal way (that is,

if it is the lightest supergraph of G which admits an Eulerian cycle). This approach was first

described by Edmonds and Johnson [32], and can be implemented using an algorithm which

runs in polynomial time.

Theorem 3.1. The Chinese Postman problem can be solved in polynomial time.

Proof. Let (G, p) be an instance of CP. Assume the graph G is not Eulerian, otherwise we can

solve the problem finding an Eulerian cycle in polynomial time using, for instance, Hierholzer’s

algorithm. This means that G contains vertices of odd degree: by the handshaking lemma

[36], there is an even number of these vertices.

Let G′ be the complete weighted graph which has as vertices the odd degree vertices of G

and where the weight of an edge e′ that joins two vertices v and w is defined as the minimum

weight of a path in G from v to w: such minimum weight path will be referred to as the path

corresponding to the edge e′. Let M ′ ⊆ E(G′) be a perfect matching of minimum weight in G′

and letM be the set of paths of G corresponding to the edges in M ′. Note that the paths in

M are edge-disjoint: in fact, if two paths shared some edges, then deleting these edges would

give two new paths that still induce a perfect matching in G′, whose weight is less than the

weight of M ′.

We claim that the graph GM obtained from G duplicating all the edges contained in paths

in M contains only vertices of even degree, and that there exists no supergraph of G whose

weight is less than the weight of GM satisfying the same property.

For the first part of the claim, note that every odd degree vertex of G is adjacent to exactly

one duplicated edge (as M ′ is a perfect matching) and every even degree vertex is either an

internal vertex of some of the paths or is not contained in any of them, and in the former

case is adjacent to an even number of duplicated edges as the paths in M are edge-disjoint.

To check the second part of the claim note that any supergraph G̃ of G where every vertex

has even degree must be obtained duplicating edges which form paths between odd degree

vertices. This means that there exists a multiset of edges of G′ such that G̃ is obtained from

G duplicating the paths corresponding to these edges.

33

As for the time needed to compute the algorithm, constructing the graph G′ and finding a

perfect matching of minimum weight in it can be done in polynomial time, as well as tracing

back the paths in M and constructing the graph GM. Finally, finding an Eulerian cycle in

GM can be done in polynomial time using Hierholzer’s algorithm. Hence, CP is polynomial

time solvable.

There exist many generalizations of CP, but unfortunately only few of them can be shown

to be polynomial time solvable. In this chapter, we study the following generalization:

k-Chinese Postman (k-CP)

Input: A triplet (G, p, k) where G = (V,E) is a connected weighted simple

graph and p and k are integers.

Parameter: k

Question: Is there a set W = {W1, . . . ,Wk} of k closed nonempty walks such

that every edge of G is contained in at least one of them and the

total weight of the edges in the walks is at most p?

This problem was proved to be NP -complete by Thomassen [83]. An easy way to be con-

vinced of its hardness is considering the NP -complete problem 3-Cycle Partitioning (see

Appendix A, Definition 2). An instance G = (V,E) of this problem can be straightforwardly

reduced to k-CP setting the weight of every edge to 1, k = |E(G)|
3 and p = |E(G)|: in fact,

the |E(G)|
3 -Chinese Postman problem admits a solution that uses every edge exactly once

if and only if the graph can be partitioned into 3-cycles.

We say that a solution, for k-CP or for CP, is optimal if there is no solution with smaller

weight.

Theorem 3.2. Let G be a connected weighted simple graph. The weight of an optimal solution

W for CP is not greater than the weight of an optimal solution W = {W1, . . . ,Wk} for k-CP.

Proof. Given a solution W = {W1, . . . ,Wk} for k-CP, it is easy to construct a solution W for

CP. Firstly order W1, . . . ,Wk in such a way that Wi shares a vertex with Wj , where i ∈ [k]

and 1 ≤ j < i (this is possible, as every vertex is contained in one of W1, . . . ,Wk and the

graph is connected). Then construct the walk W inductively as follows: let W (1) = W1 and

let W (i) be obtained appending Wi to W (i−1) (2 ≤ i ≤ k). It follows that W (k) = W is a

solution for CP and its weight is exactly the weight of W as no edges are added.

Note that the restriction of k-CP that asks for k closed nonempty walks containing a fixed

34

vertex v ∈ V , which may seem equivalent to the more general problem, is actually polynomial

time solvable [87, 77], hence the difficulty of solving k-CP is related to the difficulty of finding

edge-disjoint cycles in a graph. The next lemma and theorem better clarify this point.

Lemma 3.3. Let G be a connected weighted simple graph and G̃ be a multigraph obtained from

G duplicating some of its edges. If G̃ is Eulerian and contains k edge-disjoint cycles, then there

exists a solution W for k-CP on G whose weight is equal to the weight of G̃. Furthermore, if

k edge-disjoint cycles in G̃ are given, then W can be constructed in polynomial time.

Proof. Let C1, . . . , Ck be k edge-disjoint cycles in G̃. Deleting them from G̃ gives a multigraph

where it still holds that every vertex has even degree. Then in every component of this graph

it is possible to find an Eulerian cycle which can be appended to a cycle Ci, i ∈ [k], which it

shares at least one vertex with. Call W1, . . . ,Wk the closed walks which are obtained after

appending all the Eulerian cycles. Then W = {W1, . . . ,Wk} is a solution for k-CP on G

whose weight is the same as the sum of the weights of the edges in G̃.

If the k edge-disjoint cycles are given, W can be constructed in polynomial time, since

Eulerian cycles can be found and appended in polynomial time.

Theorem 3.4. Let G be a connected weighted simple graph and let W be an optimal solution

for CP on G. If the multigraph GW contains at least k edge-disjoint cycles, then the weight of

an optimal solution for k-CP on G is equal to the weight of W . Furthermore, if k edge-disjoint

cycles are given, then a solution for k-CP on G can be constructed in polynomial time.

Proof. Note that GW is obtained from G duplicating some edges, is Eulerian and contains

k edge-disjoint cycles, hence by Lemma 3.3 there exists a solution W for k-CP on G whose

weight is equal to the sum of the weights of the edges in GW , i.e., to the weight of W . Hence,

by Theorem 3.2, W is optimal.

If the k edge-disjoint cycles are given, Lemma 3.3 ensures that W can be constructed in

polynomial time.

Theorem 3.4 shows that k-CP can be efficiently solved when G contains many edge-disjoint

cycles, as for any solution W to CP, GW is a supergraph of G and hence it contains at least

as many edge-disjoint cycles. We will use this fact to produce a kernel for k-CP.

Corollary 3.5. Let G be a connected weighted simple graph. If G contains at least k edge-

disjoint cycles, then the weight of an optimal solution for k-CP on G is equal to the weight

35

of an optimal solution for CP on G. If k edge-disjoint cycles are given, then a solution for

k-CP on G can be constructed in polynomial time.

When dealing with graph problems where the input graph is simple, it is often easier to

prove an upper bound on the number of vertices of the graph: the bound on the size follows

from the fact that in a simple graph the number of edges is bounded by the square of the

number of vertices.

In this case, we will give a bound on the number of vertices according to their degree.

In particular, we partition the set of vertices V of G into three sets V1, which contains the

vertices of degree one, V2, which contains the vertices of degree two, and V≥3, which contains

the vertices of degree greater or equal to three. In fact, it is not difficult to show a bound on

the number of vertices of low degree (as is often the case), while the proof of the bound on

|V≥3| will be more involved.

From now on we will assume that (G, p, k) is an instance for the k-Chinese Postman

problem and k ≥ 2.

Lemma 3.6. If |V1| ≥ k then an optimal solution for k-CP on G can be found in polynomial

time.

Proof. Let V1 = {v1, . . . , vr}, r ≥ k, and let wi be the neighbour of vi, 1 ≤ i ≤ r (note that it

may be wi = wi′ for i 6= i′). For any solution W to CP, the multigraph GW contains at least

two copies of the edge viwi, as every vertex has even degree in GW . Hence GW contains at

least r ≥ k edge-disjoint 2-cycles, which can obviously be found in polynomial time, and by

Theorem 3.4 an optimal solution for k-CP can be found in polynomial time.

Lemma 3.6 ensures that every time G contains at least k vertices of degree one, the problem

can be efficiently solved, hence from now on we may consider only graphs which contain less

than k such vertices.

The situation with vertices of degree two is not as easy, G may contain many of them and

still there could be no obvious way of solving the problem in polynomial time. Nevertheless,

in this case it is possible to apply a reduction rule to reduce the size of the graph. First of

all, we introduce a new definition.

Definition 3.7. Let u ∈ V2 and let v and w be its neighbours. The operation of bypassing

u consists of deleting u and adding an edge vw whose weight is the sum of the weights of uv

and uw. Note that this may create parallel edges.

36

We can now state the reduction rule.

Reduction Rule 3.8. Let P = v0v1 . . . vrvr+1 be a path in G whose internal vertices have

degree two and such that r > k. Pick a vertex vi, 1 ≤ i ≤ r, bypass it and let G′ be the

resulting graph. Choose vi in such a way that the minimum weight of an edge in G and G′ is

the same.

The last condition in the reduction rule is easily applied: we can choose vi to be v1; if by

this choice the condition is not met, then we can pick v3 instead (recall that k ≥ 2). This

condition is motivated by the fact that we do not want to delete an edge of minimum weight

in the graph if there is only one. Before explaining the reason, it is necessary to define the

multigraph GW associated to every solution W for k-CP, as it was done with W and GW for

CP.

Definition 3.9. Let G = (V,E) be a connected weighted simple graph and let W =

{W1, . . . ,Wk} be a solution to k-CP on G. Let tie be the number of times the walk Wi

contains an edge e. The multigraph GW has V as vertex set and contains
∑
i∈[k] t

i
e copies of

every edge e ∈ E.

We say that e is used
∑
i∈[k] t

i
e times by W.

We already know because of Lemma 3.3 that there exist solutions for k-CP on G corre-

sponding to every supergraph of G which is obtained duplicating some edges, is Eulerian and

contains at least k edge-disjoint cycles. Now Definition 3.9 shows that for every solution we

can construct such a supergraph, hence these notions correspond to some extent. For this

reason, we will sometimes call this supergraph a ‘solution’ to k-CP on G.

It is useful at this point to study its structure.

Lemma 3.10. Let uv be an edge of minimum weight in G. There exists an optimal solution

W for k-CP on G such that every edge in E \ {uv} is used at most twice.

Proof. Let GW′ be an optimal solution for k-CP on G and assume there exists an edge

u′v′ 6= uv which is used at least three times. Construct a new solution GW′′ deleting two

copies of the edge u′v′ and adding two copies of the edge uv. The weight of GW′′ is equal

to the weight of GW′ plus 2(wG(uv)−wG(u′v′)), which is a nonpositive quantity as uv is an

edge of minimum weight.

It is only left to show that GW′′ is Eulerian and contains k edge-disjoint cycles. The first

requirement is obviously satisfied. As for the second one, note that deleting two copies of

37

an edge can reduce the number of cycles by at most one. Indeed, at most two edge-disjoint

cycles of GW′ are affected by the deletion of two copies of u′v′: let these cycles be C1 and C2,

then C1 \ {u′v′} and C2 \ {u′v′} together form a cycle in GW′′ . At the same time, adding two

copies of uv add a cycle that is edge-disjoint from all the others, which means that in GW′′

there are at least k edge-disjoint cycles.

Iterating this construction we can produce a solution W which satisfies the requirements.

Note that Lemma 3.10 is a generalization of the fact that the multigraph GW , where W

is a solution to CP on G, contains at most two copies of every edge e ∈ E [18]. Using this

lemma we can now prove that Reduction Rule 3.8 is valid.

Lemma 3.11. Reduction Rule 3.8 is valid.

Proof. First of all, note that G′ is still a simple graph, as there is no edge between vi−1 and

vi+1. By Lemma 3.10 there exists an optimal solution GW to k-CP on G which uses every

edge in P either once or twice, except for an edge uw of minimum weight (different from

vivi−1 and vivi+1) which may be used more than twice. The same is true for G′ and the path

P ′ (the one obtained from P bypassing vi).

Hence, a solution GW which uses P \ {uw} only once can be transformed into a solution

GW′ that uses P ′ \ {uw} only once and uses every other edge the same number of times.

Similarly, a solution GW which uses P \ {uw} twice can be transformed into a solution GW′

that uses P ′ \{uw} twice. The only care which must be observed is that in this case GW′ may

contain less cycles than GW , but as P ′ contains at least k edges, it holds that GW′ contains

at least k edge-disjoint cycles and therefore is a solution for k-CP on G′. In both cases the

weight of GW and GW′ is the same.

The previous reasoning can be also applied to transform a solution GW′ for k-CP on G′

into a solution GW for k-CP on G, which ensures that (G, p, k) is a YES-instance if and only

if (G′, p, k) is.

The fact that the rule can be applied in polynomial time follows from the fact that the

set V2 can be constructed in polynomial time, the paths with internal vertices in V2 can be

found in polynomial time and the operation of bypassing can be performed in polynomial

time too.

Applying Reduction Rule 3.8 does not directly give a bound on |V2|, but it can be used to

this purpose once we have obtained a bound on |V1| and |V≥3|. To show a bound on |V≥3|,

38

we will use an approach based on the fact that a graph which contains many edges must

contain many edge-disjoint cycles. The next lemma was used by Bodlaender et al. to show

the existence of a kernel of polynomial size for the Disjoint Cycle Packing problem (see

Appendix A, Definition 13) and it proves useful for k-CP too.

Lemma 3.12 ([10]). There exists a constant cv such that every graph H with minimum

degree at least 3 which contains at least cvk log k vertices contains k edge-disjoint cycles.

Such k cycles can be found in polynomial time.

In the original proof of Lemma 3.12 it is not argued that the k cycles can be found in

polynomial time. Nevertheless, it is easy to infer it, as the cycles are found using a greedy

approach that repeatedly looks for the shortest cycle in H and deletes it, which can be done

in polynomial time [58], and stops after k times. Also, Lemma 3.12 was proved only for simple

graphs, but it is easy to generalize it to multigraphs, as parallel edges form a 2-cycle, so the

greedy algorithm can be designed to delete them until it is left with a simple graph, or it has

deleted k pairs.

Lemma 3.13. If |V≥3| ≥ cvk log k + k, where cv is the constant given by Lemma 3.12, then

an optimal solution for k-CP on G has the same weight of an optimal solution for CP on G

and it can be found in polynomial time.

Proof. Let G′ be obtained from G by deleting all vertices of degree one and bypassing all

vertices of degree two. As we assumed that |V1| ≤ k and because of the lower bound on |V≥3|

it holds that G′ contains at least cvk log k vertices and the minimum degree of a vertex is

three. Then, by Lemma 3.12, G′ contains at least k edge-disjoint cycles which can be found

in polynomial time. The same holds for G, as to each of the cycles in G′ corresponds a cycle

in G. Therefore, by Corollary 3.5, the weight of an optimal solution for k-CP on G is equal

to the weight of an optimal solution for CP on G and an optimal solution can be found in

polynomial time.

Combining the results of Lemma 3.6 and 3.13 we can solve k-CP in polynomial time when

|V1∪V≥3| ≥ 2k+cvk log k, therefore from now on we may assume that |V1∪V≥3| ∈ O(k log k).

To show how this implies a bound on |V2| we make use of an auxiliary multigraph G−2: let

V (G−2) = V1 ∪ V≥3 and add an edge between vertices v and w for every path from v to w in

G whose internal vertices are in V2 (note that an edge from v to w counts as a path with no

internal vertices, which means that we also add an edge for every edge in G).

39

Now, if there are at least 2k edges in G−2 between vertices v and w then there are at least

k edge-disjoint cycles in G that can be found in polynomial time. When this does not happen,

G−2 contains at most O(k · k2 log2 k) edges, which in turn ensures that |V2| is in O(k4 log2 k)

if G is reduced under Reduction Rule 3.8. However, it is possible to obtain a better bound

using a modified version of Lemma 3.12.

Lemma 3.14. Let c be any constant. There exists a constant ce such that every multigraph

H with at most ck log k vertices and at least cek log k edges contains k edge-disjoint cycles.

Such k cycles can be found in polynomial time.

Proof. Alon et al. showed that a graph with average degree d and n vertices contains a cycle

of length at most 2(logd−1 n + 2) [3]. The result easily applies to multigraphs too, as two

parallel edges form a 2-cycle. Hence, to find k edge-disjoint cycles in H we can repeatedly find

a shortest cycle and delete its edges until we have done it k times (recall that a shortest cycle

can be found in polynomial time [58]). We want to define ce large enough to ensure that even

after deleting k cycles in this way the average degree is still at least 3: if this holds, we know

that each of the deleted cycles has length at most 2(log(|V (H)|) + 2) ≤ 2(log c+ 2 log k + 2).

In other words, we want the following inequality to be satisfied:

2(cek log k − k(2(log c+ 2 log k + 2))) ≥ 3ck log k

This holds if ce ≥ 3
2c+ 2(log c+2 log k+2)

log k , which is true if ce ≥ 3
2c+ 2 log c+ 6.

Now we can finally show the main result of this section.

Theorem 3.15. The k-Chinese Postman problem admits a kernel with O(k2 log k) vertices

and O(k2 log k) edges.

Proof. Let (G, p, k) be an instance of k-CP. If G contains at least k vertices of degree 1 or

cvk log k vertices of degree at least 3 then by Lemma 3.6 and 3.13 we conclude that the answer

is YES. Otherwise, exhaustively apply Reduction Rule 3.8 to the graph: since every time the

number of edges decreases, we will obtain a reduced graph after at most O(|E|) applications.

Applying Lemma 3.14 to the auxiliary graph G−2 we can see that the number of paths whose

internal vertices have degree 2 is bounded by O(k log k), or the instance is a YES-instance.

Since the graph is reduced by Reduction Rule 3.8, each of these paths contains at most k

vertices, hence the vertices of degree 2 are at most O(k2 log k). This shows that k-CP admits

a kernel with O(k2 log k) vertices.

40

As for the bound on the number of edges, observe that Lemma 3.14 applied to G−2 also

ensures that there can be at most O(k log k) edges between vertices in V1∪V≥3. All the other

edges have an endvertex in V2, but for each vertex in V2 there are exactly two edges having

it as endvertex, so there are at most O(k2 log k) edges of this type.

41

Chapter 4

Test Cover

The Test Cover problem is a well-known optimisation problem on hypergraphs. The un-

derlying idea is that we want to distinguish between different objects using as few tests as

possible, where a test can only give a positive or a negative answer for any object which

is tested. One of the original motivations for the problem comes from a request from the

Agricultural University in Wageningen about the identification of potato diseases [27]. Each

variety of potatoes is vulnerable to a number of diseases and one seeks to minimize the set of

different varieties needed to uniquely identify every disease.

TestCover(p)

Input: A pair (H, p) where H = (V, E) is a hypergraph and p is an integer.

Question: Is there a subset T ⊆ E with |T | ≤ p such that for every v, w ∈ V

there exists e ∈ T with |e ∩ {v, w}| = 1?

From now on, let n = |V | and m = |E|. A set T which satisfies the property we look for

is called a test cover. An edge e ∈ E separates a pair v, w ∈ V if |e ∩ {v, w}| = 1. A set of

edges E ′ ⊆ E separates v and w if there exists e ∈ E ′ which separates them. Two disjoint sets

of vertices V1, V2 ⊆ V are separated by E ′ if, for every v1 ∈ V1 and v2 ∈ V2, E ′ separates v1

and v2.

The objective is to find a subset of edges such that all pairs of vertices are separated by

it: when one exists, a solution of minimum size is called an optimal solution.

The potato diseases identification involved 28 diseases and 63 varieties, and was solved

using a combination of greedy and local improvement algorithms. Commonly, though, in-

stances of the Test Cover problem are not as small. For instance, one of the other earlier

42

applications of the problem, the protein identification by epitope recognition [49, 26], may

involve around 40 000− 100 000 different proteins when the method is applied to the human

organism.

Theorem 4.1. [41] TestCover(p) is NP -complete.

Proof (sketch). It is in NP , as we can guess T , if it exists, and then check that it is a test

cover in polynomial time. To show that it is NP -hard we can reduce from 3-Dimensional

Matching (see Appendix A, Definition 3). Let (V, T) be an instance of the latter problem.

Let V (H) = W ∪X ∪ Y ∪ {w0, x0}, where W,X, Y are three copies of V and w0, x0 are new

vertices, and let E(H) = {{w, x, y} : w ∈W,x ∈ X, y ∈ Y, (w, x, y) ∈ T}∪{W ∪{w0}}∪{X ∪

{x0}}. It follows that (V, T) admits a 3-dimensional matching if and only if H admits a test

cover which uses |V |+ 2 edges.

The previous proof can be refined using a reduction from the NP -complete problem P3-

Packing (see Appendix A, Definition 6), which leads to the following result:

Theorem 4.2. [26] TestCover(p) is NP -complete even when the size of every edge is bounded

by 2.

From the point of view of approximation, the situation is not particularly bright. The

optimisation version of the Test Cover problem, which asks for an optimal solution, admits

a reduction both from and to the optimisation version of Set Cover (see Appendix A,

Definition 4). Hence, the greedy algorithm has a performance ratio of O(log n) [73], but there

is no o(log n)-approximation unless P = NP and no (1− ε) log n-approximation for any ε > 0

unless NP ⊆ DTIME(nlog logn) [50].

When we turn to consider the Test Cover problem in the framework of Parameterized

Complexity we are faced with the difficulty of the choice of the parameter. In the early

2000s, when the field was young, the usual approach was to consider the size of the solution

as the parameter, which is known in fact as the standard parameterization. Later the situation

changed dramatically and the variety in the parameter choice eventually started to reflect the

spirit of the original definition, for which the parameter is any element of Σ∗.

For the Test Cover problem there are many interesting different parameterizations. To

make their description easier, consider first the following generic parameterization.

43

TestCover(p, k)

Input: A triplet (H, p, k) where H = (V, E) is a hypergraph and p and k are

integers.

Parameter: k

Question: Is there a subset T ⊆ E with |T | ≤ p such that for every v, w ∈ V

there exists e ∈ T with |e ∩ {v, w}| = 1?

In this chapter we consider four different parameterizations of the Test Cover problem,

namely the ones obtained when p = k, p = n− k, p = m− k or p = dlog ne+ k 1.

Note that if E is not a test cover, then the answer to the problem is NO for every p. On

the other hand, to check whether a set of edges is a test cover takes polynomial time, hence

we will always assume that E is a test cover.

The rest of the definitions and proofs of this section are technical tools which will be useful

later.

To any subset E ′ ⊆ E we can associate an equivalence relation on V : two vertices v, v′ ∈ V

are in the same class if and only if for any e ∈ E ′ either v, v′ ∈ e or v, v′ /∈ e. The classes

induced by this equivalence relation are called the classes induced by E ′. In other words, these

classes contain objects that cannot be distinguished using tests in E ′. Note that a test cover

is a set of edges which induces n classes.

Let C ⊆ V be a class induced by E ′. We say that an edge e ∈ E splits C if there exist

v, v′ ∈ C such that v ∈ e and v′ /∈ e. Observe that e cannot be in E ′, and when adding e to

E ′ the class C is replaced by two classes C1, C2 ⊆ C with C1 ∪ C2 = C.

We say that E ′ ⊆ E isolates U ⊆ V if it separates U and V \ U . An isolated vertex is a

vertex which is not contained in any edge (note that there may be at most one in an instance,

otherwise the answer to the problem is NO).

Lemma 4.3. For every class C ⊆ V induced by E ′ ⊆ E and for every e ∈ E ′, either C ⊆ e or

C ∩ e = ∅. Also, for every pair of classes C1, C2 induced by E ′, there exists e′ ∈ E ′ such that

e′ contains exactly one of them.

Proof. If C ∩ e 6= ∅ 6= C \ e, then e splits C, which therefore cannot be a class induced by E ′.

Moreover, if for every e ∈ E ′ either C1 ∪C2 ⊆ e or (C1 ∪C2)∩ e = ∅, then C1 and C2 are not

separated by E ′, which is a contradiction.

1In section 4.2, dlogne+ k will be replaced by d 2(n−1)
r+1

e+ k.

44

Lemma 4.4. [22] If E induces t ≥ 2 classes in a hypergraph H = (V, E) and i ∈ [t− 1], then

there exists a subset E ′ of E with i edges that induces at least i+ 1 classes.

Proof. By induction on i ∈ [t− 1]. To see that the lemma holds for i = 1 set E ′ = {e}, where

e is any edge of E with less than |V | vertices. Let E ′ be a subset of E with i − 1 edges that

induces at least i classes, let v, w be vertices separated by E not separated by E ′, and let

e ∈ E \ E ′ be an edge separating v and w. It remains to observe that E ′ ∪ {e} induces at least

i+ 1 classes.

Theorem 4.5. Let H = (V, E) be a hypergraph and let E be a test cover. Then there exists a

test cover E ′ ⊆ E such that |E ′| ≤ n− 1.

Proof. Since a test cover is a set of edges which induces n classes, Lemma 4.4 immediately

implies the result.

Theorem 4.5 shows an interesting upper bound on the size of an optimal solution, which

complements the trivial upper bound provided by the number of edges. It will be used in

Section 4.1.3 to show that the difference between the number of vertices and the size of an

optimal solution can be used as a parameter.

Definition 4.6. Let H = (V, E) be a hypergraph, V ′ ⊆ V and E ′ ⊆ E . Let C1, . . . , Cl,

l ∈ N, be the classes induced by E ′ which contain vertices from V ′. The hypergraph HE′ [V
′]

associated to E ′ and V ′ has vertex set {v′1, . . . , v′l} and edge set {e′ = {v′j : Cj ⊆ e} : e ∈ E ′}.

In other words, HE′ [V
′] is obtained from H keeping only the vertices in V ′, but identifying

the ones that are in the same classes induced by E ′. This construction works because by

Lemma 4.3 an edge in E ′ either contains or does not intersect a class induced by E ′. Note

that for every edge in E ′ there is an edge corresponding to it in E(HE′ [V
′]). In particular, the

edges corresponding to E ′ form a test cover in HE′ [V
′].

Lemma 4.7. Let H = (V, E) be a hypergraph, V1, V2 ⊆ V be such that V1∩V2 = ∅ and E ′ ⊆ E

be a set of edges that separates V1 and V2. Let t1 be the number of classes induced by E ′ in

V1, and t2 be the number of classes induced by E ′ in V2. Then there exists a subset F of E ′

that separates V1 and V2 and contains at most t1 + t2 − 1 edges.

In particular, it is always possible to separate V1 and V2 using at most |V1|+ |V2|−1 edges.

Proof. Let HE′ [V1 ∪ V2] be as in Definition 4.6. Note that this hypergraph contains t1 + t2

vertices and its edge set is a test cover, hence by Theorem 4.5 there exists a subset of at

45

most t1 + t2 − 1 edges which is a test cover in HE′ [V1 ∪ V2]. The corresponding set of edges

in E ′ separates every class which has nonempty intersection with V1 or V2, and in particular

separates V1 and V2.

4.1 Four parameterizations of Test Cover

4.1.1 The standard parameterization

Firstly we consider TestCover(k, k), that is, the parameterization where the parameter is

the size of the solution. The following theorem is a well-known property of every test cover

[50].

Theorem 4.8. Any test cover T contains at least dlog ne edges.

Proof. We count the maximum number of classes induced by a set of cardinality s. Assume

that a set E ′ ⊆ E induces t classes. In order to induce new classes when added to E ′, an edge

e /∈ E ′ has to split some of the classes induced by E ′: each class which is split is replaced by

two classes, which means that adding e can increase the classes by at most t. On the other

hand, a set containing only one edge can induce at most 2 classes. Hence it is not difficult to

see by induction that a set of cardinality s induces at most 2s classes.

Since a test cover T induces n classes, it must hold that 2|T | ≥ n, which implies |T | ≥

dlog ne.

Since there exists this lower bound on the size of a test cover, the proof of the next theorem

is easy.

Theorem 4.9. TestCover(k, k) is fixed-parameter tractable.

Proof. If k < dlog ne then answer NO. Otherwise, it holds that n ≤ 2k, which in turn implies

m ≤ 22k

. Hence, even a brute force search can be performed in O(222k

) time.

Theorem 4.9 shows in fact that TestCover(k, k) admits a kernel, but the size of the

kernel is definitely not practical. One may ask whether it is possible to obtain something

better; in particular, one may try to find a polynomial kernel for the problem. Unfortunately,

TestCover(k, k) is unlikely to admit one.

Theorem 4.10. TestCover(k, k) does not admit a polynomial bikernel unless coNP ⊆

NP/poly.

46

Proof. We will use Corollary 1.24 withQ being TestCover(k, k) and L being 3-Dimensional

Matching. Firstly, we define a polynomial equivalence relation R on Σ∗: two instances

(V1, T1) and (V2, T2) of 3-Dimensional Matching are equivalent if and only if |V1| = |V2|,

while two strings x, y ∈ Σ∗ which are not instances of 3-Dimensional Matching are al-

ways equivalent to each other. It is not difficult to verify that R is a polynomial equivalence

relation; in particular, note that given a finite set S ⊆ Σ∗, its elements belong to at most

maxx∈S |x|+ 1 different classes.

Now, let (V1, T1), . . . , (Vt, Tt) be t instances of 3-Dimensional Matching belonging to

the same equivalence class, that is, |V1| = |V2| = · · · = |Vt| = n. Without loss of gener-

ality we may suppose that Vi = Vj for i, j ∈ [t]. We will now define an instance (H, k) of

TestCover(k, k). Let W,X and Y be three copies of V and let V (H) = W ∪ X ∪ Y ∪

{w0, x0, y0} ∪ {zji : 0 ≤ i ≤ dlog te, 0 ≤ j ≤ n − 1} ∪ {z̃i : 0 ≤ i ≤ dlog te}, where w0, x0, y0,

zji and z̃i are new vertices. Call Z the set {zji : 0 ≤ i ≤ dlog te, 0 ≤ j ≤ n − 1}: this set can

be thought of as a matrix whose purpose is distinguishing between the different instances of

3-Dimensional Matching.

For l ∈ [t], let rl be the base-2 representation of l modulo 2dlog te which uses dlog te digits

(e.g., if t = 28 and l = 5, rl = 00101, while if t = 32 = l, rl = 00000). Let rli be the ith digit

in rl for 1 ≤ i ≤ dlog te. For l ∈ [t] and 0 ≤ j ≤ n−1, let Ejl = {zj0}∪{z
j+rli
i : 1 ≤ i ≤ dlog te},

where superscripts are taken modulo n. In other words, Ejl roughly corresponds to the j-th

column of Z, where some of the vertices are taken from the (j + 1)-th column and the choice

is made according to the base-2 representation of l.

Note that ∪0≤j≤n−1E
j
l = Z for every l ∈ [t], but there is no other way of covering Z using

n sets of this form. First of all, note that the chosen sets must be disjoint, as their cardinality

is 1 + dlog te and the cardinality of Z is (1 + dlog te)n. Now, suppose Ejl and Ej
′

l′ are used,

with l 6= l′. Then there exists 1 ≤ i ≤ dlog te such that rli 6= rl′i: without loss of generality,

assume rli = 1. This means that zj0 ∈ E
j
l , z

j
i /∈ E

j
l and zj0, z

j
i ∈ E

j
l′ , hence the only way to

cover zji without covering twice zj0 is to use Ej−1
l . Iterating this reasoning we can show that

Ej
′

l must be used, which is not allowed.

Let Zi = {zji : 0 ≤ j ≤ n − 1} ∪ {z̃i} for 0 ≤ i ≤ dlog te be the i-th row of Z (with

the addition of the vertex z̃i). For l ∈ [t], let El = {{w, x, y} ∪ Ejl : w ∈ W,x ∈ X, y ∈

Y, (w, x, y) ∈ Tl, and 0 ≤ j ≤ n − 1}. We are now able to describe the edge set of H:

E(H) = (∪l∈[t]El)∪{Zi : 0 ≤ i ≤ dlog te}∪{W∪{w0}}∪{X∪{x0}}. Finally, let k = n+log t+3.

If (Vl, Tl) admits a 3-dimensional matching Ml = {m0, . . . ,mn−1} for l ∈ [t], then T =

47

{mj ∪Ejl : 0 ≤ j ≤ n−1}∪{Zi : 0 ≤ i ≤ dlog te}∪{W ∪{w0}}∪{X ∪{x0}} is a test cover for

H containing n+ log t+ 3 edges. In fact, y0 is the only vertex not contained in any edge, w0

and x0 are only contained in W ∪ {w0} and X ∪ {x0} respectively, w ∈W is the only vertex

contained in m∩ (W ∪{w0}) for some m ∈Ml (and similarly for x ∈ X and y ∈ Y), zji is the

only vertex contained in Zi ∩ Ejl (or Zi ∩ Ej−1
l if rli = 1), and z̃i is contained in Zi only.

On the other hand, if H admits a test cover T with at most n+ log t+ 3 edges, W ∪{w0},

X ∪ {x0} and Zi, 0 ≤ i ≤ dlog te, must be in T because they are the only edges containing

w0, x0 and z̃i respectively (and since y0 is not contained in any edge, every other vertex must

be). This leaves n edges available to separate the other vertices: using the previous reasoning,

these edges must be chosen in the same El, l ∈ [t] (otherwise they cannot cover Z, which is

necessary to separate zji from z̃i), and they induce a 3-dimensional matching on (Vl, Tl).

4.1.2 Parameterization above a tight lower bound

The well-known result of Theorem 4.8 suggests that it is possible to study TestCover(dlog ne+

k, k), that is the parameterization of the Test Cover problem where we look for a solution

of size at most dlog ne + k and k is the parameter. Firstly, we prove that dlog ne is a tight

bound.

Theorem 4.11. For every n ∈ N, there exists a hypergraph H = (V, T) such that |V | = n,

|T | = dlog ne and T is a test cover.

Proof. Let V = {v1, . . . , vn} and let rl, l ∈ [n], be the base-2 representation of l modulo

2dlogne which uses dlog ne digits (see the proof of Theorem 4.10 for an example). Let rli be

the ith digit in rl for 1 ≤ i ≤ dlog ne. Let T = {ei : 1 ≤ i ≤ dlog ne}, where ei = {vl : rli = 1}.

Since the base-2 representation is unique, every vertex v ∈ V is contained in a different subset

of edges in T , hence T is a test cover containing dlog ne edges.

Note that since in this case the parameter is always smaller than the size of the solution,

Theorem 4.10 already excludes the possibility of the existence of a polynomial kernel, unless

coNP ⊆ NP/poly. The situation is actually worse, as TestCover(dlog ne+k, k) is not even

likely to be in FPT . In fact, it is possible to construct a parameterized reduction from k-Set

Cover (see Appendix A, Definition 7) to TestCover(dlog ne+k, k). The proof is originally

due to Moret and Shapiro [73], but we will follow the construction of De Bontridder et al.

[26].

48

Let (H, k) be an instance of k-Set Cover with V = {v1, . . . , vn} and E = {e1, . . . , em}.

Let V ′ = {f1,m1, . . . , fn,mn}, that is, the vertex set of the instance of TestCover(dlog ne+

k, k) we want to construct contains a female vertex and a male vertex for every vertex in V .

Let M be a set of dlog ne edges separating all pairs of male vertices in V ′, which exists by

Theorem 4.11, and let M′ be obtained adding to the edges of M the female counterpart of

every male vertex they contain, that is, M′ = {{fj ,mj : mj ∈ e} : e ∈M}.

The edge set E ′ of the TestCover(dlog ne + k, k)-instance will contain all edges in M′

and, in addition, all e′ = {fj : vj ∈ e} for every e ∈ E .

A test cover for H ′ = (V ′, E ′) must contain all the edges in M′ in order to separate all

the pairs of male vertices. This in turn separates all the pairs of female vertices, hence it is

only left to separate fi and mi for every i ∈ [n]. This is possible using k edges if and only if

H admits a set cover containing k edges.

Theorem 4.12. TestCover(dlog ne+ k, k) is W [2]-hard.

Proof. This is due to the fact that k-Set Cover isW [2]-complete (see Appendix A, Definition

7) and that there exists a parameterized reduction from it to TestCover(dlog ne+k, k).

4.1.3 Parameterization below the number of vertices

When the study of the standard parameterization of a problem does not lead to appealing

FPT -algorithms, the attention is generally turned towards different parameterizations. Often,

dual parameterizations are considered. Roughly speaking, a dual parameterization is obtained

when the parameter is modified by a certain ‘quantity’, which is specific to the instance.

We recall the definition of s-dual given in Section 1.5. Observe that here we assume that

parameterized problems are defined as in Definition 1.11.

Definition 4.13. Let Q ⊆ Σ∗ × N be a parameterized problem and let s : Σ∗ → N be a

mapping such that 0 ≤ k ≤ s(x) for every (x, k) ∈ Q and s(x) ≤ |x| for every x ∈ Σ∗. The s-

dual Qs of Q is the parameterized problem corresponding to the language Qs = {(x, s(x)−k) :

(x, k) ∈ Q}.

Note that no requirements on the original parameterization of Q are made in the definition.

WhenQ is parameterized according to the standard parameterization, a dual parameterization

is obtained when the size of the solution is bounded above or below by s(x)−k. The function

s is sometimes called a size function for the problem.

49

The size function may not be unique and a problem usually admits multiple duals. Nev-

ertheless, the s-dual of the s-dual of Q is Q itself, which motivates the choice of the name.

Generally speaking, the fact that a problem is FPT or admits a polynomial kernel does not

imply anything about the duals, as it is the case with Vertex Cover, which admits a linear

kernel (in the number of vertices), and Independent Set, which is W [1]-complete (see Ap-

pendix A, Definitions 11 and 12). Sometimes, though, the notion of duality can be used in a

‘negative’ way: an example of this can be found in the work of Chen et al. [13] (see Section

1.5), while another example will be given here.

Theorem 4.14. Let Q be a parameterized problem which admits a cross-composition and let

s be a size function. Let (x∗, k∗) be the instance associated to (x1, . . . , xt) ∈ (Σ∗)t, t ∈ N,

by the cross-composition algorithm C. If for every x∗ it holds that s(x∗) ∈ O((maxti=1 |xi| +

log t)O(1)), then the s-dual problem Qs does not admit a polynomial kernel, unless coNP ⊆

NP/poly.

Proof. We will show that the same cross-composition algorithm C produces a cross-composition

for Qs. Let L ⊆ Σ∗ be the NP -hard language which cross-composes into Q. By definition,

xi ∈ L for some i ∈ [t] if and only if C(x1, . . . , xt) = (x∗, k∗) ∈ Q. However, (x∗, k∗) ∈ Q if and

only if (x∗, s(x∗)− k∗) ∈ Qs. Hence, this is a valid cross-composition if s(x∗)− k∗ is bounded

by a polynomial in maxti=1 |xi|+ log t, which is the case when the hypothesis hold.

We will soon show an application of Theorem 4.14, but first we give a description of

TestCover(n − k, k). This problem is the s-dual parameterization of TestCover(k, k)

with size function s((H, k)) = |V | = n. Note that the size function is well-defined because if

an instance admits a test cover, then it admits a test cover of size at most n−1 (see Theorem

4.5).

An FPT -algorithm for TestCover(n − k, k) was first found by Crowston et al. [20]

and it was later improved by Basavaraju et al. [4], which described an algorithm running in

O(2O(k2)(m+ n)O(1)) time. Their algorithm is based on a partially polynomial kernelization

[5], that is, they show that it is possible to reduce the instance to one that contains at most

O(k7) vertices (but without a similar bound on the number of edges).

The existence of a ‘totally’ polynomial kernel, though, is ruled out under the usual coNP *

NP/poly assumption.

Theorem 4.15. TestCover(n− k, k)does not admit a polynomial bikernel unless coNP ⊆

NP/poly.

50

Proof. Theorem 4.10 describes a cross-composition from 3-Dimensional Matching into

TestCover(k, k). Recall that H denotes the hypergraph associated to the t instances

(V1, T1), . . . (Vt, Tt) of 3-Dimensional Matching and note that s(H) = 3|V |+ 3 + (dlog te+

1)(|V |+1), which is a polynomial in maxti=1 |(Vi, Ti)|+log t. Then we conclude using Theorem

4.14.

4.1.4 Parameterization below the number of edges

The last parameterization we consider is another dual of TestCover(k, k). This time the

size function s is the number of edges in the instance, which gives TestCover(m− k, k).

Theorem 4.16. [20] TestCover(m− k, k) is W [1]-complete.

Proof (sketch). The problem is in W [1] because it can be reduced to (m−k)-Set Cover, the

s-dual of k-Set Cover with s being the number of edges, which is W [1]-complete [73, 44]. To

prove that it isW [1]-hard too, it is possible to show that there exists a parameterized reduction

from k-Independent Set. Let G = (V,E) be an instance of the latter, we construct an

instance H ′ = (V ′, E ′) of TestCover(m − k, k), where V ′ = {e, e′ : e ∈ E} and E ′ = {{e :

v ∈ e} : v ∈ V }∪{{e, e′} : e ∈ E} = E1∪E2. It follows that the edges in E2 are always needed,

while the edges in E1 that can be removed correspond to an independent set.

4.2 Test cover with edges of bounded size

We have seen that the Test Cover problem is difficult from the point of view of Parame-

terized Complexity. Out of the four parameterizations we have considered, the problem turns

out to be W [1]-hard in two cases and does not admit a polynomial kernel in the other two.

To deal with it, a possible approach is to consider a restriction of the problem, the Test-

r-Cover problem. Here, as in the rest of this section, r is a fixed integer.

Test-r-Cover(p)

Input: A pair (H, p) where H = (V, E) is a hypergraph such that |e| ≤ r for

every e ∈ E , and p is an integer.

Question: Is there a subset T ⊆ E with |T | ≤ p such that for every v, w ∈ V

there exists e ∈ T with |e ∩ {v, w}| = 1?

For some applications of the Test Cover problem, edges do contain only a small number

of vertices [26, 50], which gives the motivation for the study of this restriction. As before, we

51

define the generic parameterization of the Test-r-Cover problem.

Test-r-Cover(p, k)

Input: A triplet (H, p, k) where H = (V, E) is a hypergraph such that |e| ≤ r

for every e ∈ E , and p and k are integers.

Parameter: k

Question: Is there a subset T ⊆ E with |T | ≤ p such that for every v, w ∈ V

there exists e ∈ T with |e ∩ {v, w}| = 1?

Note that in this special case obtaining a bound on the number of vertices is enough. The

next lemma clarifies this point.

Lemma 4.17. Let H = (V, E) be a hypergraph such that |e| ≤ r for every e ∈ E, and k be

any integer. If |V | ∈ O(kc1) for a constant c1 ∈ N, then |E| ∈ O(krc1).

Proof. Assume that |V | ≤ c2k
c1 for some constant c2 ∈ N. Using a well-known bino-

mial inequality [61], the number m of edges is at most
∑r
s=1

(
c2k

c1

s

)
≤
∑r
s=1(ec2k

c1

s)s ∈

O(r(ec2k
c1)r) = O(krc1).

4.2.1 The standard parameterization (bounded case)

We have already seen that TestCover(k, k) admits a trivial FPT -algorithm. In this section

we will show that Test-r-Cover(k, k) admits a kernel of polynomial size.

Theorem 4.18. Test-r-Cover(k, k) admits a kernel with at most r(1+max(0, (k−blog rc)))

vertices.

Proof. The bound can be obtained with a counting argument as in the proof of Theorem 4.8,

but making use of the fact that each edge has bounded size. We have already seen that if

E ′ ⊆ E induces t classes, E ′ ∪{e} (e ∈ E \ E ′) can induce at most 2t classes. In addition, since

e contains at most r vertices, e can split at most r of the classes induced by E ′, hence E ′∪{e}

can induce at most t+r classes. This means that E ′∪{e} induces at most t+min(t, r) classes.

We will now prove by induction that E ′ induces at most 2blog rc + max(0, r(s − blog rc))

classes when |E ′| ≤ s. If s = 0, E ′ induces one class and 2blog rc ≥ 1. Assume now that

the bound holds for sets with at most s − 1 edges and that |E ′| = s. If s ≤ blog rc, then E ′

induces at most 2blog rc classes (see proof of Theorem 4.8). Otherwise, let e ∈ E ′ and observe

that by induction hypothesis E ′ \ e induces at most 2blog rc + r(s − 1 − blog rc) classes, as

52

s−1−blog rc ≥ 0. Then E ′ induces at most 2blog rc+r(s−1−blog rc)+r ≤ 2blog rc+r(s−blog rc)

classes, which concludes the inductive step.

Hence, if |V | > 2blog rc + max(0, r(k − blog rc)) the answer is NO, and otherwise |V | ≤

r(1 + max(0, (k − blog rc))).

Theorem 4.18 proves the existence of a kernel for Test-r-Cover(k, k) with a linear num-

ber of vertices. Nevertheless, it is possible to obtain different bounds.

Lemma 4.19. Any test cover T contains at least d 2(n−1)
r+1 e edges, and this bound is tight.

Proof. For any test cover T with |T | = t there exist at most one vertex which is not contained

in any edge, at most t vertices which are contained in exactly one edge (one vertex for every

edge), and at most tr
2 vertices which are contained in two or more edges (where tr is the

sum over the vertices contained in all the edges and we divide by 2 to take into account that

every vertex is contained in at least two edges). Let t′ be the number of edges in T which

only contain vertices which are contained in at least two edges in T . Then it follows that

n ≤ 1 + t− t′+ t(r−1)+t′

2 ≤ 1 + t+ t(r−1)
2 , which implies that t ≥ 2(n−1)

r+1 . Since t is an integer,

t ≥ d 2(n−1)
r+1 e.

To show that the bound is tight, we will describe a class of instances for which there

exists a test cover of size d 2(n−1)
r+1 e. Let r be any integer and let V = {vij : i, j ∈ [r]}.

The set E of edges contains the ‘rows’ and ‘columns’ of V (except the last ones), that is,

E = {ei = {vi1, . . . , vir} : i ∈ [r − 1]} ∪ {e′j = {v1j , . . . , vrj} : j ∈ [r − 1]}. For i, j ∈ [r − 1],

vij is the only vertex contained in both ei and e′j , vrj is the only vertex contained in e′j only

and the same holds for vir and ei. Finally, vrr is the only vertex which is not contained in

any edge. It follows that E is a test cover. Also, n = r2 and |E| = 2(r − 1) = 2 r
2−1
r+1 .

Note that the proof of Lemma 4.19 also shows that when |T | = 2(n−1)
r+1 every vertex is

contained in at most two edges, |T | vertices are contained in exactly one edge and there exists

a vertex which is not contained in any edge.

Theorem 4.20. Test-r-Cover(k, k) admits a kernel with at most k(r+1)
2 + 1 vertices.

Proof. If k < d 2(n−1)
r+1 e by Lemma 4.19 the answer is NO, otherwise k ≥ 2(n−1)

r+1 , that is,

n ≤ k(r+1)
2 + 1.

The bound provided by Theorem 4.20 is better that the bound provided by Theorem 4.18

when r is small compared to k, which is likely to be the case as r is assumed to be a ‘small’

constant.

53

Theorem 4.21. Test-r-Cover(k, k) admits a kernel with O(rk) vertices and O(kr) edges.

Proof. The results of Theorem 4.18 or Theorem 4.20 imply the bound on the number of

vertices. The bound on the number of edges is ensured by Lemma 4.17.

4.2.2 Parameterization above a tight lower bound (bounded case)

Lemma 4.19 is useful in itself, as it shows a lower bound on the size of a test cover which

is better than the trivial lower bound dlog ne. Hence, in this section we study Test-r-

Cover(d 2(n−1)
r+1 e+ k, k) instead of Test-r-Cover(dlog ne+ k, k).

Lemma 4.22. If r ≥ 3, Test-r-Cover(d 2(n−1)
r+1 e+ k, k) is NP -hard for k = 0.

Proof. We will show that there exists a reduction from r-Dimensional Matching. Let

(V ′, T ′) be an instance of the latter, with V ′ = {v′1, . . . , v′n′}. Assume that n′ is divisible

by r − 1 2 and let s = n′

r−1 . We will construct an equivalent instance (H = (V, E), 0) of

Test-r-Cover(d 2(n−1)
r+1 e+ k, k) as follows. Let

V = V1 ∪W1 ∪W0 = {vij : i ∈ [r], j ∈ [n′]} ∪ {wij : i ∈ [r − 1], j ∈ [s]} ∪ {w0}

E = E1 ∪ E2

= {{v1j1 , . . . , vrjr} : (v′j1 , . . . , v
′
jr) ∈ T ′}∪

∪ {eij = {vij1 , . . . , vijr−1
, wij} : i ∈ [r − 1], j ∈ [s], jl = (r − 1)(j − 1) + l}

The edges in E1 correspond to the subsets in T ′, while the edges in E2 contain r−1 vertices

from V1 and one vertex from W1. It holds that n = |V | = rn′+ (r−1) n′

r−1 + 1 = (r+ 1)n′+ 1,

and d 2(n−1)
r+1 e = 2n′.

Note that, since w0 is not contained in any edge, every other vertex must be, hence the

edges in E2 are contained in every test cover (otherwise there would exist vertices in W1

which are not contained in any edge). Moreover, |E2| = s(r − 1) = n′. We will show that

(V ′, T ′) admits an r-dimensional matching M if and only if (H, 0) is a YES-instance of Test-

r-Cover(d 2(n−1)
r+1 e+ k, k).

2It is not difficult to see that if r-Dimensional Matching is polynomial time solvable on instances (V ′, T ′)

where |V ′| = n′ is fixed, then it is polynomial time solvable on instances (V ′′, T ′′) with |V ′′| ≤ n′. Hence the

assumption on n′ is not restrictive.

54

If M is an r-dimensional matching for (V ′, T ′), let Ẽ = {{v1j1 , . . . , vrjr} : (v′j1 , . . . , v
′
jr

) ∈

M}. Since the size of M is n′, then the size of Ẽ ∪ E2 is 2n′. By the property defining an

r-dimensional matching, for every i ∈ [r], j ∈ [n′] the vertex vij is contained in exactly one

edge in Ẽ : denote this edge ẽij (obviously the edges ẽ thus defined are not all distinct). Hence,

every vertex vij ∈ V1, 0 ≤ j ≤ r − 1, is the only vertex contained in both ẽij and eij′ , where

j′ = b j
r−1c + 1, while vrj is the only vertex contained in ẽrj only. Moreover, wij is the only

vertex contained in eij only and w0 is the only vertex which is not contained in any edge.

This shows that Ẽ ∪ E2 is a test cover of size d 2(n−1)
r+1 e for H.

On the other hand, suppose T = Ẽ ∪ E2 is a test cover of size d 2(n−1)
r+1 e = 2n′ for H. In

this case, we know by Lemma 4.19 that there is one vertex, which has to be w0, which is

not contained in any edge of T , there are |T | vertices which are contained in one edge only

(|T |/2 = n′ of them have to be the vertices in W1) and all the others are contained in exactly

two edges. For v ∈ V , let d(v) be the degree of v in the ‘solution’ hypergraph HT = (V, T).

It holds that
∑
v∈V1

d(v) = n′ + 2(r− 1)n′. Since edges in E2 contain (r− 1)n′ vertices of V1,

edges in Ẽ have to contain rn′ of them, which means that they must be disjoint: this ensures

that they correspond to subsets that form an r-dimensional matching M for (V ′, T ′).

Lemma 4.23. Test-2-Cover(d 2
3 (n− 1)e+ k, k) is NP -hard for k = 0.

Proof. We will show that there exists a reduction from the NP -complete problem P3-Packing

(see Appendix A, Definition 6). Let G′ = (V ′, E′) be an instance of P3-Packing, let V ′ =

{v1, . . . , vn′} and let n′/3 = s. We will construct an equivalent instance (H = (V, E), 0) of

Test-2-Cover(d 2
3 (n − 1)e + k, k). Let V = V ′ ∪ {v0}, where v0 is a new vertex, and let

E = {{vi, vj} : vivj ∈ E′}. It holds that d 2
3 (|V | − 1)e = 2

3n
′.

Assume G′ contains n′/3 vertex-disjoint copies of P3 and let E′′ be the set of edges

contained in these copies. In this case T = {{vi, vj} : vivj ∈ E′′} is a test cover containing

2
3n
′ edges.

On the other hand, assume T ⊆ E is a test cover containing 2
3n
′ edges. By Lemma 4.19

there is one vertex of H which is not contained in any edge of T (which can only be v0), 2
3n
′

vertices contained in one edge only and 1
3n
′ vertices contained in two edges. This means that

the edges in T correspond to n′/3 vertex-disjoint copies of P3 in G′.

Theorem 4.24. Test-r-Cover(d 2(n−1)
r+1 e+ k, k) is para-NP -complete for each r ≥ 2.

Proof. By Lemma 4.22 and Lemma 4.23, Test-r-Cover(d 2(n−1)
r+1 e+k, k) isNP -hard for k = 0

and r ≥ 2. Since the problem is obviously in NP , it follows that Test-r-Cover(d 2(n−1)
r+1 e+

55

k, k) is NP -complete for k = 0 and r ≥ 2. Hence, we conclude using Theorem 1.15.

4.2.3 Parameterization below the number of vertices (bounded case)

The situation in this case resembles what happens with the standard parameterization. In

fact, we will show that the restriction on the size of the edges allows to find a polynomial

kernel for Test-r-Cover(n−k, k). However, the proof is more involved than the one needed

for Test-r-Cover(k, k).

Let (H = (V, E), k) be an instance of Test-r-Cover(n − k, k). Recall that we have

assumed that E is always a test cover for H = (V, E). So when k = 1, the answer to the

problem is YES (see Theorem 4.5), therefore we may assume k ≥ 2.

Definition 4.25. A set of edges F ⊆ E is a k-mini test cover if |F| ≤ 2k and the number of

classes induced by F is at least |F|+ k.

The notion of k-mini test cover allows us to define a greedy algorithm that was used by

Crowston et al. [20] to show that TestCover(n−k, k) is FPT , and that will be used here as

the starting point for the kernelization. The description of the greedy algorithm is as follows.

input : (H, k) and E ′ ⊆ E

output: A set F ⊆ E ′ with at most 2k − 1 edges

1 Set F = ∅ ;

2 while |F| < 2k − 2 do

3 if there exists e ∈ E \ F such that e splits at least two classes induced

by F then /* Case 1 */

4 Add e to F ;

5 else if if there exist e, e′ ∈ E \ F such that e splits one class induced by F and e′

splits at least two classes induced by F ∪ {e} then /* Case 2 */

6 Add e and e′ to F ;

7 else

99 return F ;

10

11 end

1313 return F ;

Algorithm 4.1: Greedy k-mini test cover

56

Lemma 4.26. If Algorithm 4.1 terminates at step 13, then F is a k-mini test cover.

Proof. The while loop is repeated as long as |F| < 2k − 2 and every time at most two edges

are added, hence it always holds that |F| < 2k. In addition, F induces at least 3
2 |F|+1 classes.

In fact, the empty set already induces a class (the whole set V of vertices) and whenever Case

1 or Case 2 applies the number of induced classes increases by at least 3
2s, where s is the

number of new edges which are added to F .

Therefore, if the algorithm terminates at step 13, then 2k − 2 ≤ |F| < 2k and F induces

at least |F|+ 1
2 |F|+ 1 ≥ |F|+ k classes.

Lemma 4.27. The following statements are equivalent:

1. E contains a test cover with at most n− k edges;

2. E contains a k-mini test cover.

Proof. If 2 holds, let F be a k-mini test cover. Repeatedly add to F an edge e ∈ E \F which

splits at least one class and call T the resulting set: T is a test cover as E is a test cover;

moreover, the number of edges that we have added is at most n− (|F|+k), which means that

|T | ≤ |F|+ n− (|F|+ k) = n− k.

On the other hand, if 1 holds, let T ⊆ E be a test cover with at most n − k edges. Use

Algorithm 4.1 on T to produce a set F . If the algorithm terminates at step 13 we are done by

Lemma 4.26, so assume that it terminates at step 9. Observe that this means that |F| < 2k−2

and Case 1 and 2 of the algorithm do not apply.

We claim that for every F ′ ⊆ T which contains F , every e ∈ T \ F ′ splits at most one

class induced by F ′. By induction on s = |F ′| − |F|, if s = 1 the claim holds, or Case 1 of

the algorithm would apply. For the inductive step, let F ′ contain s + 1 edges more than F

and assume for the sake of contradiction that there exists e ∈ T \ F ′ which splits two classes

C1, C2 induced by F ′. Note that these classes must be contained in the same class C induced

by F (otherwise Case 1 of the algorithm would hold and e would be added to F). Let e′

be an edge of F ′ which contains exactly one between C1 and C2 (which exists by Lemma

4.3). Then e and e′ together satisfy the requirements of Case 2 of the algorithm, which is a

contradiction.

Hence, if we add edges to F one by one to form T , every edge increases the number of

classes by at most one. Let s be the number of classes induced by F . Then n ≤ s+ |T |− |F|,

that is, s ≥ |F|+ k. So in every case the output of Algorithm 4.1 is a k-mini test cover.

57

Lemma 4.27 shows that the problem of finding a test cover of size n − k is equivalent to

the problem of finding a k-mini test cover. Moreover, it shows that given a test cover of size

n−k we can compute a k-mini test cover, and vice versa. On the other hand, the next lemma

shows that the notion of k-mini test cover can be relaxed, without losing this property.

Lemma 4.28. If there exists a set of edges E ′ ⊆ E which induces at least |E ′| + k classes,

then E contains a k-mini test cover F such that F ⊆ E ′.

Proof. Let l be the number of classes induced by E ′ and let HE′ [V] be as in Definition 4.6.

For simplicity, let Ṽ denote the vertex set of HE′ [V] and Ẽ denote its edge set. Then |Ṽ |−k =

l−k ≥ |E ′| = |Ẽ |, and Ẽ is a test cover in HE′ [V]. Hence by Lemma 4.27 there exists a k-mini

test cover Ẽ ′ in HE′ [V]. The corresponding edge set F = {ej : e′j ∈ Ẽ ′} is a k-mini test cover

in H, which is contained in E ′.

Note that Algorithm 4.1 provides a k-mini test cover when the input is a test cover which

contains at most n− k edges. Otherwise, the result may not be a k-mini test cover, but it is

still a set of edges with useful properties, as the next lemma shows.

Lemma 4.29. In polynomial time we may either find a k-mini test cover or find F ⊆ E such

that:

1. |F| < 2k;

2. F induces less than |F|+ k classes;

3. every e ∈ E \ F splits at most one class induced by F ;

4. for any e, e′ ∈ E \F and any class C induced by F , at least one of (e∩e′)∩C, (e\e′)∩C,

(e′ \ e) ∩ C and C \ (e ∪ e′) is empty.

Proof. Use Algorithm 4.1 on E (it is not difficult to see that the algorithm runs in polynomial

time). The output is a set F ⊆ E which contains less than 2k edges. If F is not a k-mini test

cover, then 2 holds and, by Lemma 4.26, the algorithm terminated at step 9. Hence, 3 and 4

hold because otherwise Case 1 or 2 of the algorithm would apply.

In order to obtain a kernel, we want to show that even when Algorithm 4.1 does not

compute a k-mini test cover it is still possible to reduce the instance to one that has a number

of vertices bounded by a polynomial in k.

Let F ⊆ E be a set of edges produced by Algorithm 4.1, satisfying the Conditions 1, 2, 3

and 4 of Lemma 4.29. Call C1, . . . , Cl, G (l ∈ N) the classes induced by F , where G is the class

58

of vertices which are not contained in any edge e ∈ F . Let C be the set of classes C1, . . . , Cl

and let C = C1 ∪ · · · ∪Cl. Let G ⊆ E be the set of edges that contains vertices in G. For each

edge e ∈ G, we say that e ∩ G is the G-portion of e. A subset Γ of G is a component if Γ is

the G-portion of an edge e ∈ G and Γ 6⊂ e′ ∩G for all e′ ∈ G. Every component Γ contains at

most r vertices.

Note that |C| ≤ (2k − 1)r, as |F| < 2k and every edge contains at most r vertices. If

|G| ≤ 2r, then |V | = |C|+ |G| ≤ (2k+ 1)r, that is, the number of vertices is linearly bounded

in k. Suppose this is not the case. It follows that G \ (e ∪ e′) is nonempty for every e, e′ ∈ E .

Then, by Condition 4 of Lemma 4.29, one of (e∩ e′)∩G = ∅, (e\ e′)∩G, (e′ \ e)∩G is empty.

Algorithm 4.2 (Kernelization for Test-r-Cover(n− k, k)).

Step 1: For each pair (i, j) ∈ [l] × [l], i 6= j, mark 2k unmarked components of G

which contain the G-portion of an edge which contains Ci and does not intersect Cj

and mark these edges too. If there are less than 2k components mark them all. Let

Eij denote the set of marked edges.

For each i ∈ [l], mark 2k+1 unmarked components of G which contain the G-portion

of an edge containing Ci and mark these edges too. If there are less than 2k + 1

components, mark them all. Let Ei denote the set of marked edges.

Step 2: Delete every edge in G whose G-portion is not contained in a marked com-

ponent of G, then delete every vertex which is not contained in any edge anymore,

except one vertex w0 (if it exists).

Algorithm 4.2 is the main tool which will be used to produce a kernel for Test-r-

Cover(n−k, k). We will apply it only to instances with |G| > 2r, in order to have the property

that two G-portions are either disjoint or one is contained in the other. Call (H ′ = (V ′, E ′), k)

the instance it computes. It is not difficult to see that Algorithm 4.2 runs in polynomial time.

The next lemma shows that it is effective in reducing the size of H, while Lemma 4.31 shows

that (H ′, k) is a YES-instance if and only if (H, k) is.

Let G′ ⊆ G be the set of vertices which are not deleted by Algorithm 4.2. Clearly,

V ′ = C ∪G′.

Lemma 4.30. V ′ contains at most O(rk3) vertices.

Proof. Vertices of G′ which are not deleted must be contained in components which were

marked. The algorithm marks at most 2kl(l − 1) + (2k + 1)l components and each of them

59

contains at most r vertices. Using the fact that l < |F|+k < 3k, we have that |G′| ≤ r(2k(3k−

1)(3k − 2) + (2k + 1)(3k − 1)). Since |C| ≤ (2k − 1)r, we conclude that |V ′| ∈ O(rk3).

Lemma 4.31. If |V | > (9k2 + 4k − 1)r, the instance (H ′, k) computed by Algorithm 4.2 is

equivalent to the original one.

Proof. We will show that (H ′, k) admits a k-mini test cover if and only if (H, k) admits one.

Obviously, if (H ′, k) admits a k-mini test cover, this is a k-mini test cover for (H, k) too.

For the other direction, suppose T is a k-mini test cover for (V, E , k) such that T \ E ′ is as

small as possible. For the sake of contradiction, suppose that T contains at least one edge e

in T \ E ′. We claim that it is possible to construct a set T ′′′ which induces at least |T ′′′|+ k

classes, such that T ′′′ \ E ′ = (T \ E ′) \ {e}. Then, by applying Lemma 4.28 to T ′′′, we obtain

a k-mini test cover in H which is a subset of T ′′′, which is a contradiction as it contains fewer

edges from E \ E ′ than T .

Start with T ′ = T \ {e} and let i, j ∈ [l]. Since e is not in E ′, e must be in G, and

the G-portion of e must not be contained in any marked component. Furthermore, for each

Ci, Cj ∈ C (i 6= j) with Ci ⊆ e and e ∩ Cj = ∅, we note that Ei,j must contain 2k edges, as

otherwise e would be in E ′. Similarly, for each Ci contained in e we note that Ei must contain

2k + 1 edges.

For any i, j such that |Ei,j | = 2k, let ei,j be an edge in Ei,j whose G-portion is disjoint

from the G-portion of any edge in T ′. This must exist as |T ′| ≤ 2k − 1. For any i such that

|Ei| = 2k+ 1 let ei, e
′
i be edges in Ei whose G-portions are disjoint from the G-portion of any

edge in T ′. These edges must exist as |T ′| ≤ 2k − 1.

Let C∗0 be the class induced by T ′ that consists of all vertices not in any edge in T ′ (which

exists by Claim A below). We will need the following claims.

Claim A: C∗0 exists and |G ∩ C∗0 | > (9k2 + 1)r.

Proof of Claim A: If C∗0 does not exist or |G∩C∗0 | ≤ (9k2 +1)r, then the following holds

and we have a contradiction to the assumption on |V | in the hypothesis:

|V | ≤ (2k−1)r+ |C∗0 | ≤ 2kr+(|C|+ |G∩C∗0 |) ≤ 2(2k−1)r+(9k2 +1)r = (9k2 +4k−1)r

Claim B: For each edge e′ ∈ E that splits G and every Ci we have Ci ⊆ e′ or Ci ∩ e′ = ∅. In

particular, Ci ⊆ e or Ci ∩ e = ∅.

Proof of Claim B: If Claim B is false then F does not satisfy Condition 3 of Lemma

4.29, as e′ splits both G and Ci.

60

Claim C: There is at most one class C∗G induced by T ′, such that G ∩ (C∗G ∩ e) 6= ∅ and

G ∩ (C∗G \ e) 6= ∅.

Proof of Claim C: For the sake of contradiction assume that there are two such classes

C ′G and C ′′G. By Lemma 4.3 there exists e′ ∈ T ′ which contains one but not the other.

Hence adding e and e′ to F would increase the number of classes by at least three, as

vertices in G ∩ (C ′G ∩ e), G ∩ (C ′G \ e), G ∩ (C ′′G ∩ e) and G ∩ (C ′′G \ e) are separated by

F ∪ {e, e′}, which means that F does not satisfy Condition 4 of Lemma 4.29.

Let C∗1 , . . . , C
∗
t be the classes induced by T ′ that are split by e and are different from C∗G

(if it exists) and from C∗0 . Each C∗s , s ∈ [t], must be contained in an edge, say e∗s, in T ′ and

contain vertices from C, by the definitions on C∗G and C∗0 . We are going to create a set of

edges T ′′ such that each C∗s is split by an edge in T ′′ and also T ′′ induces |T ′′| extra classes

in C∗0 . Initially let T ′′ = ∅. For each s ∈ [t] in turn, consider the following two cases.

Case 1: For some i 6= j, e contains Ci but not Cj and Ci ∩ C∗s 6= ∅ 6= Cj ∩ C∗s .

In this case observe that |Ei,j | = 2k, as otherwise e would be marked. Then add the edge

ei,j to T ′′, if ei,j is not in T ′′ already. Note that ei,j separates Ci from Cj and therefore splits

C∗s , and also creates an extra class in C∗0 , as desired.

Case 2: Case 1 does not hold. Using Claim B, this means that C∩C∗s ⊆ e or (C∩C∗s)∩e =

∅.

Recall that, since C∗s is different from C∗G, there exists a Ci such that C∗s ∩Ci 6= ∅. Suppose

e does not contain Ci. Then (C ∩C∗s) ∩ e = ∅ and, since e splits C∗s , it must contain vertices

from C∗s ∩G ⊆ e∗s ∩G (which also means that G∩ (e∩ e∗s) 6= ∅). Then e∗s splits G and the G-

portion of e∗s is in the same component as the G-portion of e, and therefore e∗s is an unmarked

edge. Furthermore since e∗s splits G it does not split Ci, and therefore Ci ⊆ e∗s. Thus, we

have that either e or e∗s is an unmarked edge containing Ci, and therefore |Ei| = 2k+1. Then

add ei to T ′′, if ei is not already in T ′′. Observe that ei splits C∗s as it contains vertices in

Ci ∩ C∗s but no vertex from (C∗s ∩ G) ∩ e (which is nonempty since otherwise e cannot split

C∗s), and ei creates an extra class in C∗0 , as required.

This completes Case 1 and Case 2. Note that the edges in T ′′ all have disjoint G-portions,

as they are in distinct Ei,j ’s and Ei’s, and their G-portions are all contained in C∗0 . Also,

note that |T ′′| ≤ l(l− 1) + l ≤ 3k(3k− 1) + 3k, which means that the union of the G-portions

of edges in T ′′ contains at most r(3k(3k− 1) + 3k) = 9k2r < |C∗0 ∩G| vertices. Moreover, for

every s ∈ [t] some edge in T ′′ splits C∗s . Therefore, if we add the edges from T ′′ to T ′, this

creates at least |T ′′|+ t additional classes (|T ′′| in C∗0 and t in V ′ \ C∗0).

61

We now consider Case (i) and Case (ii) below, which will complete the proof.

Case (i): C∗G does not exist or is equal to C∗0 or e does not split C∗0 or does not split C∗G.

In this case removing e from T decreases the number of classes by at most t+1 and adding

T ′′ increases the number of classes by at least t + |T ′′|. Hence by increasing the number of

edges by |T ′′| − 1 we have increased the number of classes by at least |T ′′| − 1 and therefore

we still have at least k more classes than edges.

Case (ii): Case (i) does not hold. That is, C∗G exists and is distinct from C∗0 and e splits

both C∗G and C∗0 .

By Claim C we note that e either contains all of C∗0 ∩G or none of C∗0 ∩G. By Claim A

e must contain none of C∗0 ∩G. As e splits C∗0 we must have C ∩ e∩C∗0 6= ∅. Therefore there

exists Ci such that e contains vertices from Ci ∩ C∗0 , and so |Ei| = 2k + 1. Add ei and e′i to

T ′′ (unless ei is already in T ′, in which case just add e′i). Observe that the G-portions of ei

and e′i are disjoint by construction, and so the G-portions of all edges in T ′′ are still disjoint.

Note that adding ei and e′i to T ′ creates three new classes in C∗0 (C∗0 now being split into

the class C∗0 ∩ ei ∩ e′i which contains vertices from Ci, the G-portion of ei, the G-portion of e′i

and the class of vertices not in any edge). Adding every other edge from T ′′ to T ′ increases

the number of classes in C∗0 by one (as by Claim A we note that some vertex in G∩C∗0 is not

contained in any edge in T ′′).

So let T ′′′ = T ′ ∪ T ′′ = (T \ e)∪ T ′′. Removing e from T decreases the number of classes

by t+2 and adding T ′′ increases the number of classes by at least t+|T ′′|+1. So by increasing

the number of edges by |T ′′| − 1 we have increased the number of classes by at least |T ′′| − 1

and therefore we still have at least k more classes than edges.

Note that the lower bound on the size of |V | in the hypothesis of Lemma 4.31 is only

needed to ensure that the G-portions of the edges that we add to T ′′ cannot entirely cover

C∗0 ∩G, in which case the last edge we add would not induce an additional class in C∗0 .

Theorem 4.32. Test-r-Cover(n− k, k) admits a kernel with at most O(rk3) vertices and

O(k3r) edges.

Proof. Let (H, k) be an instance of Test-r-Cover(n − k, k). Run Algorithm 4.1 on E .

If the output F is a k-mini test cover, then (H, k) is a YES-instance. Otherwise, assume

|V | > (9k2 + 4k + 1)r, which in particular ensures that |G| > 2r, run Algorithm 4.2 on H

and let (H ′, k) be the instance which is computed. By Lemma 4.31 H ′ admits a k-mini test

cover if and only if H admits one. In addition, by Lemma 4.30 H ′ contains at most O(rk3)

62

vertices. Finally, by Lemma 4.17, H ′ contains at most O(k3r) edges.

4.2.4 Parameterization below the number of edges (bounded case)

The case where the bound on the size of the edges appears to significantly reduce the difficulty

of the problem is Test-r-Cover(m − k, k). Recall that TestCover(m − k, k) is W [1]-

complete. Instead, we will see in this section that Test-r-Cover(m−k, k) is not only FPT ,

but it admits a polynomial kernel.

Let (H = (V, E), k) be an instance of Test-r-Cover(m−k, k), with |V | = n and |E| = m.

We consider the following generalization of the problem:

Subset-Test-r-Cover(m− k)

Input: A triplet (H,B, k) where H = (V, E) is a hypergraph such that |e| ≤ r

for every e ∈ E , B ⊆ E and k is an integer.

Parameter: k

Question: Is there a subset T ⊆ E with |T | ≤ p such that B ⊆ T and for every

v, w ∈ V there exists e ∈ T with |e ∩ {v, w}| = 1?

In other words, edges in B cannot be removed from E to form T . We call these edges black

edges.

Reduction Rule 4.33. Let v ∈ V be a vertex of degree 1 and let b ∈ B be a black edge which

contains only v. Delete b and v.

Reduction Rule 4.34. Let b ∈ B. If there exists e ∈ E with b ⊂ e, then delete e and add

e \ b to E if e is not black, and to B otherwise.

Reduction Rule 4.35. Let b, b′ ∈ B. If b ∩ b′ 6= ∅, delete b and b′ and add b ∩ b′, b \ b′ and

b′ \ b to B.

Rules 4.33, 4.34 and 4.35 will be applied to an instance in this order, that is, we always

apply the first applicable reduction rule.

Notice that for every edge e ∈ E , every pair v, w of vertices that is separated by E but is

not separated by E \ {e} is of the form v ∈ e and w /∈ e (or vice versa). This fact will be often

used in the following proofs.

Lemma 4.36. Reduction Rules 4.33, 4.34 and 4.35 are valid.

63

Proof. It is not difficult to see that each of these rules can be applied in polynomial time. Let

(H ′ = (V ′, E ′),B′, k) be an instance obtained after an application of Rule 4.33, 4.34 or 4.35.

Rule 4.33: Suppose (H ′,B′, k) is a YES-instance, with solution T ′. Then observe that

T = T ′ ∪ {b} is a solution for (H,B, k). Conversely, if T is a solution for (H,B, k), then T

must contain b, and T \ {b} is a solution for (H ′,B′, k).

Rule 4.34: It is sufficient to show that for any T ⊆ E containing e and b, T is a test cover

if and only if (T \{e})∪{e\ b} is a test cover. To see this, observe that for any v ∈ e, w /∈ e, v

and w are separated either by b or e \ b, and for any v ∈ e \ b, w /∈ e \ b, v and w are separated

either by b or e.

Rule 4.35: Similar to the previous case, if v and w are separated by one of b, b′ then

they are also separated by at least one of b \ b′, b′ \ b, b ∩ b′, and if they are separated by one

of b \ b′, b′ \ b, b ∩ b′ then they are also separated by at least one of b, b′.

From now on, assume that (H,B, k) is reduced under Reduction Rules 4.33, 4.34 and 4.35.

Lemma 4.37. For every black edge b ∈ B there exists a non-black edge e ∈ E \ B such that

b ∩ e 6= ∅.

Proof. Note that every edge contains at most one vertex of degree one. Since H is reduced

under Reduction Rule 4.33, then b contains at least one vertex of degree at least two. Let e

be a different edge containing it. Since H is reduced under Reduction Rule 4.35, e cannot be

black.

Consider now the following algorithm.

64

input : (H, k) and a vertex v ∈ V with degree greater than kr2

output: A set Ṽ of vertices

1 Set Ẽ = E , i = 1, Ṽ = {v}, j = 1;

2 while i ≤ k + 1 do

3 if Ẽ isolates Ṽ then

4 Let ei be an edge containing Ṽ , and construct a set Ei ⊆ Ẽ such that Ei ∪ {ei}

isolates Ṽ and |Ei| ≤ r − 1;

5 Set Ẽ = Ẽ \ (Ei ∪ {ei}) ;

6 Set i = i+ 1;

7 else

8 Let C be the class induced by Ẽ containing Ṽ ;

9 Set Ṽ = C, i = 1, j = j + 1;

10 end

11 end

12 return Ṽ ;

Algorithm 4.3: Vertices with bounded degree

Note that Algorithm 4.3 runs in time polynomial in its input. Its purpose is to compute

an instance in which every vertex has bounded degree, as the next lemma shows.

Lemma 4.38. The instance (H, k) can be reduced in polynomial time to an equivalent instance

such that every vertex has degree at most kr2.

Proof. Assume that there exists a vertex v with degree greater than kr2. We will show that

we are able to produce an equivalent instance in which either k or the degree of v is reduced.

Clearly this reduction can only take place a polynomial number of times, so in polynomial

time we will reduce to an instance in which every vertex has degree bounded by kr2.

Use Algorithm 4.3 on H and v to produce a special set Ṽ . Observe that at any step of

the algorithm, by construction any edge in Ẽ which contains v also contains Ṽ as a subset,

|Ṽ | ≥ j and Ẽ ⊆ E . Also, at any step at most r edges are deleted, and at most kr edges can

be deleted before j is increased. Hence, if the algorithm ever sets j = r + 1, then at that

point at most kr2 edges have been deleted from Ẽ , and, as |Ṽ | ≥ r+ 1, no remaining edges in

Ẽ contain v. But this is a contradiction as the degree of v is greater than kr2. Therefore we

may assume the algorithm never reaches j = r + 1. Hence the algorithm must terminate for

some j ≤ r.

65

We now show that as long as Ẽ isolates Ṽ we can find ei and Ei. Since v has degree

greater than kr2 and at most kr(r− 1) edges are removed from Ẽ earlier in the algorithm, we

can always find an edge ei containing v and therefore containing Ṽ . To see that Ei can be

constructed using at most r − 1 edges, apply Lemma 4.7 to Ṽ and ei \ Ṽ .

Now consider the set Ṽ formed by the algorithm. When the algorithm terminated, ei and

Ei were found for all i ≤ k + 1. If we delete k arbitrary edges in E , it is still possible to find

i ∈ [k + 1] such that no edges in Ei ∪ {ei} have been deleted. This means that as long as we

delete at most k edges, Ṽ is still isolated. Therefore if Ṽ is an edge in E , delete it and reduce

k by 1 (note that Ṽ cannot be a black edge, as it is contained in at least two distinct edges).

If Ṽ is not an edge in E , add a new black edge Ṽ to B, keeping k the same, and apply Rules

4.33, 4.34 and 4.35. Observe that since Ṽ is properly contained in at least two edges (even

before adding the black edge), this will decrease the degree of every vertex in Ṽ .

We can now assume that (H,B, k) is reduced under Reduction Rules 4.33, 4.34 and 4.35,

and the degree of every vertex is at most kr2. To describe the rest of the kernelization we

need to colour all the edges of the instance in the following way.

Algorithm 4.4. Let e be any edge in E \B. If E \ {e} is not a test cover, then colour e black

(and add it to B), then apply Reduction Rules 4.33, 4.34 and 4.35 as long as possible. If

E \ {e} is a test cover and e contains a vertex of degree one, then colour e orange. Otherwise

colour e green.

Note that there will be orange edges only if there is no isolated vertex in the instance.

Reduction Rule 4.39. Let o ∈ E be an orange edge. If N2[o] contains no green edges, then

delete o, decrease k by one, run again Algorithm 4.4 and apply Rules 4.33, 4.34 and 4.35 as

long as possible.

Notice that running Algorithm 4.4 after an application of Rule 4.39 will turn all the

remaining orange edges into black edges, as deleting an orange edge creates an isolated vertex.

Hence this rule may apply only once.

Lemma 4.40. Reduction Rule 4.39 is valid.

Proof. It is not difficult to see that this rule can be applied in polynomial time. To show

that the instance it produces is equivalent to the original one is sufficient to prove that in the

original instance there exists a test cover of minimum size which does not contain o.

66

Suppose T is a test cover which contains o. If there exists a vertex v which is not contained

in any edge in T , let e ∈ E be an edge containing it (which exists as otherwise no edge would

be coloured orange). Otherwise, let e be any edge in E \ T .

Consider T ′ = (T \ {o}) ∪ {e}. We claim that T ′ is a test cover.

First of all, note that if there is an orange edge o′ ∈ E \ T , this edge must be e. In

fact, o′ contains a vertex v′ of degree one, which is the only isolated vertex in T , namely v;

furthermore, o′ is the only edge containing it and is therefore equal to e. Since by hypothesis

N2[o] may contain only black or orange edges, then we may assume that N2[o] \ {o} ⊆ T ′.

The only vertices that may no longer be separated in T ′ are pairs u,w where u ∈ o and

w ∈ V \ o. If u is a vertex of degree one in E , then it is an isolated vertex in T ′, and it is the

only one because of the choice of e. In any other case there exists an edge e′ ∈ N1(o) which

contains u. So the only case left to consider is when u ∈ o∩ e′ and w ∈ e′ \ o with e′ ∈ N1(o).

Since E \{o} is a test cover, there exists an edge e′′ different from o separating u and w, which

means that e′′ ∈ N2[o] \ {o} ⊆ T ′ and we are done.

We assume that (H,B, k) is reduced under Reduction Rules 4.33, 4.34, 4.35 and 4.39, and

the degree of every vertex is at most kr2.

Lemma 4.41. Let v be a vertex of degree at least one. Then v ∈ V (N3[g]) for some green

edge g ∈ E.

Proof. If v is contained in a green edge, we are done. If v is contained in an orange edge

o, since H is reduced under Reduction Rule 4.39 then N2[o] contains a green edge g, and

v ∈ V (N2[g]) ⊆ V (N3[g]). Finally, if v is contained in a black edge b ∈ B, then, by Lemma

4.37, b has nonempty intersection with some edge e /∈ B. If e is green we are done, otherwise

there exists a green edge g ∈ N2[e], which means that v ∈ V (N3[g]).

Lemma 4.42. If G is a set of green edges such that, for every pair g1, g2 ∈ G, N1[g1]∩N1[g2]

is empty, then E \ G is a test cover.

Proof. The proof is by induction on |G|. If |G| = 1, then E \ G is a test cover by definition.

Assume now that G = {g1, . . . , gs+1}, s ≥ 1, and E \ {g1, . . . , gs} is a test cover. For the sake

of contradiction, assume that v and w are vertices that are not separated in E \ G. Then one

of them must be in gs+1 and the other in gi for some i ∈ [s]. Let v ∈ gs+1. Since gs+1 is green,

there must be an edge e ∈ E , different from gs+1, which contains v. Since v and w are not

separated in E \ G, then w ∈ e, but this implies that e ∈ N1[gi], which is a contradiction.

67

We are now ready to prove the existence of a polynomial kernel. The idea behind the proof

is that if there are many green edges then we can find k of them with disjoint neighbourhoods

and solve the problem using Lemma 4.42, otherwise Lemma 4.41 shows that the remaining

edges are not ‘far’ from a small set of green edges.

Theorem 4.43. Subset-Test-r-Cover(m−k) admits a kernel with at most (k−1)k5r16+1

vertices and (k − 1)k5r16 + k edges.

Proof. Let (H,B, k) be an instance coloured with Algorithm 4.4, reduced under Reduction

Rules 4.33, 4.34, 4.35 and 4.39, and where the degree of every vertex is bounded by kr2. This

can be done in polynomial time, as all the rules are valid and they either decrease the number

of vertices or reduce the degree of some of them.

Now, greedily construct a set G ⊆ E of green edges for which the hypothesis of Lemma 4.42

hold. If |G| ≥ k then we are done. Otherwise, |G| ≤ k − 1 and every green edge is in N2[G].

Hence, by Lemma 4.41, every edge e ∈ E is contained in N3[N2[G]] = N5[G]. In particular,

every vertex of degree at least one is contained in V (N5[G]), whose cardinality is less than

r|N5[G]|.

Furthermore, observe that for every F ⊆ E , |N1[F]| ≤ (kr2)r|F| because of the bound on

the degree. Hence it holds that r|N5[G]| ≤ r5(kr2)5|G|r ≤ r5(kr2)5(k − 1)r. In addition, in a

YES-instance there is at most one isolated vertex, which implies that |V | ≤ (k − 1)k5r16 + 1.

To bound the number of edges we show that there exists a solution of size at most |V |

(note that due to the black edges we cannot use the |V | − 1 bound). Start with T = B.

Since the black edges are all disjoint (as the hypergraph is reduced under Reduction Rule

4.35), then |B| ≤ |V |; moreover, for the same reason, they induce at least |T | classes. If T

is a test cover we are done, otherwise repeatedly add an edge which splits at least one class,

which is always possible if E is a test cover. Eventually, T will induce |V | classes and will

contain at most |V | edges. Hence if |E| − k ≥ |V | and E is a test cover, then the instance is a

YES-instance. Otherwise, |E| ≤ |V |+ k − 1 = (k − 1)k5r16 + k.

Corollary 4.44. Test-r-Cover(m− k, k) admits a kernel with at most 5((k− 1)k5r16 + 1)

vertices and 3(k − 1)k5r16 + k + 2 edges.

Proof. First we transform an instance (H, k) of Test-r-Cover(m − k, k) to an equivalent

instance (H,B, k) of Subset-Test-r-Cover(m − k), with B = ∅. Then we apply the ker-

nelization on (H,B, k) and we compute an instance (H ′,B′, k′) where the bounds of Theorem

4.43 hold. Finally we transform (H ′,B′, k′) to an equivalent instance (H ′′ = (V ′′, E ′′), k′′)

68

of Test-r-Cover(m − k, k) in the following way. Let b ∈ B′ be a black edge. If E \ {b} is

not a test cover then simply uncolour b. Otherwise, note that edges are coloured black only

by Rules 4.34 and 4.35, Lemma 4.38 and Algorithm 4.4: in the first two cases the edge is a

proper subset of some edge previously coloured black and in the third case it is contained in

at least k′′ + 1 edges, hence it holds that |b| ≤ r − 1; finally, in the last case, deleting b does

not produce a test cover, which is against the assumptions. We will show that it is possible

to replace b with a small gadget which forces b to be in the solution.

Add vertices v1, v2, v3, v4 to V ′′, delete b and add b ∪ {v1}, e′ = {v1, v2, v3} and e′′ =

{v3, v4}. Observe that e′ is necessary to separate v3 and v4, e′′ is necessary to separate v2

and v3 and b ∪ {v1} is necessary to separate v1 and v2. Hence all three edges must be in a

test cover. Moreover, having b in a test cover in H ′ is equivalent to having b ∪ {v1}, e′, e′′ in

a test cover in H ′′.

The last thing to observe is that for every black edge we add four new vertices and two

new edges. Since |B′| ≤ |V ′|, it holds that |V ′′| ≤ |V ′| + 4|V ′| ≤ 5((k − 1)k5r16 + 1) and

|E ′′| ≤ |E ′|+ 2|V ′| ≤ 3((k − 1)k5r16) + k + 2.

We conclude this section describing an FPT -algorithm for Subset-Test-r-Cover(m −

k), which works for Test-r-Cover(m− k, k) too.

Theorem 4.45. Subset-Test-r-Cover(m− k) can be solved in time (r2 + 1)k(n+m)O(1)

on (H,B, k).

Proof. We first need to guess whether there will be a vertex not contained in any edge in the

solution, and if so, which vertex it will be. If there already exists a vertex w0 not in any edge

in E , then we are done. Otherwise, either pick a vertex v which is not contained in any black

edge, or guess that every vertex in V will be contained in an edge in the solution. If a vertex

v is picked, delete all the edges containing v, and reduce k by the number of deleted edges.

If it is guessed that every vertex in V will be contained in an edge, add a new vertex w0

which is not in any edge. Observe that this does not change the solution to the problem. By

doing this we have split the problem into at most n+ 1 separate instances, with each instance

containing an isolated vertex. Thus we may now assume that there exists a vertex w0 which

is not contained in any edge in E .

Consider an edge e ∈ E \ B, and suppose that E \ {e} is a test cover. Let E0 be a minimal

set of edges in E \ {e} which contain every vertex in e. Note that such a set must exist, as

otherwise there would be vertices in e which are not contained in any edge in E \ {e} and

69

cannot be separated from w0. Furthermore, we may assume |E0| ≤ |e| ≤ r. Now for each

e′ ∈ E0, let Ee′ be a minimal set of edges in E \{e} separating every vertex in e′ \ e from every

vertex in e′ ∩ e. By Lemma 4.7, we may assume that |Ee′ | ≤ r − 1.

Now let E ′ = E0 ∪ (
⋃
e′∈E0 Ee′), and observe that E ′ isolates e. Thus, in every solution

with minimum number of edges, at least one edge from E ′ ∪ {e} will be missing. Note that

|E ′| ≤ r + r(r − 1) = r2.

We now describe a depth-bounded search tree algorithm which solves the problem. If E is

not a test cover, return NO. Otherwise if k = 0 return YES. Otherwise, for each edge e ∈ E \B

check whether E \ {e} is a test cover. If for all e ∈ E \ B, E \ {e} is not a test cover, then a

test cover must contain all m edges and so return NO. Otherwise, let e be a non-black edge

such that E \ {e} is a test cover, and construct the set E ′ as described above. Then we may

assume one of E ′ ∪ {e} is not in the solution. Thus we may pick one non-black edge from

E ′ ∪ {e}, delete it, and reduce k by 1. So we split into at most r2 + 1 instances with reduced

parameter.

We therefore have a search tree with at most (r2 + 1)k leaves and where the distance

from every leaf to the root (the vertex corresponding to the original instance) is at most k.

Hence, the total number of nodes is at most 2(r2 + 1)k − 1. Note also that guessing the

isolated vertex at the start split the problem into at most n+1 instances, so there are at most

(n+ 1)(2(r2 + 1)k − 1) nodes to compute in total. As each node in the tree takes polynomial

time to compute, we have an algorithm with total running time (r2 + 1)k(n+m)O(1).

70

Chapter 5

λ-Extendible Properties

The class of problems we study in this chapter arises from the generalization of a classical

combinatorial problem, namely Max Cut.

Max Cut

Input: A pair (G, k) where G = (V,E) is a connected simple graph and k is

an integer.

Question: Is there a subset U ⊆ V such that |E(U, V \ U)| ≥ k?

As always, let n = |V | and m = |E|. For any U ⊆ V , the set E(U, V \ U) is a cut. In the

weighted version of the problem, denoted Weighted Max Cut, every edge has a positive

weight and the objective is to find a cut whose weight (that is, the sum of the weights of its

edges) is greater than k. Under this formulation, the problem appears in Karp’s list of 21

NP -complete problems [62].

Another way to look at the problem is in terms of bipartite subgraphs. Note that the

graph H = G
[
E(U, V \ U)

]
is a bipartite subgraph of G whose weight is equal to the weight

of the cut E(U, V \U). On the other hand, the edge set of every maximal bipartite subgraph

H of G (that is, a bipartite subgraph which is not properly contained in any other bipartite

subgraph) forms a cut in G of the same weight. It is clear then that the problem of finding a

cut of weight at least k is equivalent to the problem of finding a bipartite subgraph of weight

at least k. Therefore, the Weighted Max Cut problem is part of the wide class of problems

whose objective is to find a heavy (i.e., large) subgraph satisfying some particular properties.

These problems are often NP -hard, but sometimes it is possible to find lower bounds

on the weight of an optimal solution (that is, one whose weight is the greatest possible).

71

In particular, in 1965 Erdős described a randomized algorithm for Max Cut, running in

polynomial time, which computes a cut with at least m
2 edges [35], and in 1973 Edwards

improved the result, showing that a connected graph always contains a cut with m
2 + n−1

4

edges [34, 33]: this became known as the Edwards-Erdős bound.

Initially, Erdős had conjectured that it was possible to obtain a solution with m
2 +εm edges,

but later it was proved that finding a cut of that size is NP -hard for every ε > 0 [48, 74].

Additionally, constant approximation over the m
2 lower bound is impossible if the Unique

Game Conjecture holds [63], and the best one can hope for is a cut with
(

1
2 + Ω(ε

log(1/ε))
)
m

edges when the graph contains a cut of size (1
2 + ε)m. On the positive side, it is possible to

find in randomized polynomial time a cut which contains an α − ε fraction of the edges of a

maximum cut, where α > 0.87856 and ε > 0 [42], but if the Unique Game Conjecture holds

this is the best possible approximation [64].

The Max Cut problem has been studied from the point of view of Parameterized Com-

plexity too. In 1997 Mahajan and Raman proved that there is an algorithm to find a cut of size

m
2 + k running in 2O(k)nO(1) time [70]. In 2002 Bollobàs and Scott obtained a similar result

using the strongest m
2 + 1

8 (
√

8m+ 1− 1) bound [11]. The existence of an FPT -algorithm for

the parameterization above the Edwards-Erdős bound remained an open question for a time,

until in 2012 it was positively solved by Crowston et al. [23], who also showed the existence

of a kernel with O(k5) vertices.

Observe that the Edwards-Erdős bound is tight for infinitely many non-isomorphic graphs,

as it is tight for every complete graph with an odd number of vertices. In addition, a cut whose

size is at least the Edwards-Erdős bound can be found in O(m) time [74]. When a problem

admits this sort of lower bound, parameterizing by the size of the solution, the so-called

standard parameterization, is not particularly interesting. In the case of Max Cut, suppose

we are looking for a cut of size k: if k < m
2 , then the answer is obviously YES, otherwise

m < 2k. This reasoning produces a kernel of linear size for the standard parameterization of

Max Cut, but it does not shed light on how it is possible to efficiently compute solutions

whose size is greater than the Edwards-Erdős bound.

We have seen examples of parameterizations above tight lower bounds in Chapter 4 with

TestCover(dlog ne+k, k) and Test-r-Cover(d 2(n−1)
r+1 e+k, k), which also showed how often

this kind of parameterizations are significantly harder to solve than the standard ones. In

this chapter, though, we will see an example of a class of problems which admit a polynomial

kernel when parameterized above a tight lower bound.

72

For the rest of this chapter, let G denote a class of (possibly labelled and/or oriented)

graphs, such that U(G) is a simple graph for every G ∈ G. A graph property Π is a subset of

G. Let Ks be the complete (unlabelled and unoriented) graph with s vertices: we say that

Ks ∈ Π if G ∈ Π for every (oriented, labelled) graph G ∈ G with U(G) = Ks.

Definition 5.1. [78] Let λ ∈ R+ and 0 < λ < 1. A graph property Π ⊆ G is λ-extendible if

it satisfies:

1. Inclusiveness: K1 and K2 are in Π,

2. Block additivity: a graph G ∈ G is in Π if and only if each block of G is in Π,

3. λ-edge extension: given a graph G = (V,E), a weight function wG : E → R+ and a

partition U,W of V such that U = {u, v}, with uv ∈ E, and G[W] ∈ Π, in polynomial

time it is possible to find F ⊆ E(U,W) satisfying wG(F) ≥ λwG
(
E(U,W)

)
and so that

the graph G \
(
E(U,W) \ F

)
∈ Π.

Poljak and Turźık introduced the notion of λ-extendible property with the objective of

generalizing the Weighted Max Cut problem. The next theorem will make this point

clearer.

Theorem 5.2. Let GS contain all simple graphs, let ΠBP ⊆ GS contain all bipartite graphs

and let λ = 1
2 . Then ΠBP is a λ-extendible property.

Proof. K1 and K2 are bipartite graphs, so Inclusiveness holds. As for Block additivity,

note that every cycle of a graph is contained in one of its blocks and, additionally, a graph

is bipartite if and only if it contains no odd cycles, so combining these facts implies that a

graph is bipartite if and only if each of its blocks is. Finally, note that a graph G = (V,E) is

bipartite if and only if there exists a partition V0, V1 of V such that E = E(V0, V1). Hence,

assume that U = {u, v} and W are given as in the hypothesis of λ-edge extension and that

a partition V0, V1 is given for V −{u, v}, such that E[W] = E(V0, V1). Either add u to V0 and

v to V1, or add u to V1 and v to V0, then delete the edges of G which have both endpoints in

Vi, i = 0, 1. The graph G′ which is obtained is bipartite by construction, and in at least one

of the two cases the weight of the edges in E(V \ {u, v}, {u, v}) which G′ contains is at least

half of the weight of all the edges in E(V \ {u, v}, {u, v}).

Observe that the Weighted Max Cut problem is equivalent to the problem of finding

a subgraph H of a graph G such that H ∈ ΠBP and the weight of H is at least k. By abuse

of language, we can say that Weighted Max Cut is a λ-extendible property for λ = 1
2 .

73

Other well-known λ-extendible properties are the property of ‘being q-colourable’ for sim-

ple graphs (where q is fixed) and the property of ‘being acyclic’ for oriented graphs [78].

Moreover, in Section 5.3 we will study another property (‘being signed’, a generalization

of ‘being bipartite’ to signed graphs) which is λ-extendible. See also Chapter 6 for more

examples.

The characteristic that Poljak and Turźık wanted to capture with their definition is the

existence of the Edwards-Erdős bound. Indeed, for λ-extendible properties, a generalization

of the Edwards-Erdős bound holds.

Lemma 5.3. Let G = (V,E) be a 2-connected graph. Then for each vertex u ∈ V there exist

edges uv and uw such that both G− {u, v} and G− {u,w} are connected.

Proof. Since G is 2-connected, G − {u} is connected. If G − {u} has only one block, then u

has at least two neighbours v and w in it, otherwise its only neighbour would be a cutvertex

in G. If G − {u} has more than one block, then it has more than one pendant block, and u

has a neighbour in the interior of every pendant block, otherwise the root of that block is a

cutvertex in G. Thus, let v and w be two neighbours of u contained in the interiors of two

different pendant blocks. In both cases, both G− {u, v} and G− {u,w} are connected.

Let Π ⊆ G be a λ-extendible property for 0 < λ < 1. For every weighted graph G ∈ G,

let opt(G) be the maximum weight of a subgraph of G which is in Π and let wt(G) be the

minimum weight of a spanning tree of G. Recall that B(G) denotes the set of blocks of G.

Theorem 5.4. For any graph G = (V,E) ∈ G and any weight function wG : E → R+, it

is possible to find in polynomial time a subgraph H ∈ Π such that wG(E(H)) ≥ λwG(E) +

1−λ
2 wt(G). In particular, opt(G) ≥ λwG(E) + 1−λ

2 wt(G).

Proof. The proof is by induction on |V |. If G is disconnected, we can prove the result for

every component separately, so we may assume that G is connected. Since by Inclusiveness

K1 and K2 are in Π, the result holds when |V | ≤ 2. Now, assume that |V | ≥ 3. First, assume

that G is 2-connected. Let u be a vertex in V , and let v and w be as in Lemma 5.3. Without

loss of generality assume that wG(uv) ≥ wG(uw) and let F̃ = E(V \ {u, v}, {u, v}) ⊆ E.

Using the inductive hypothesis, we may assume that G − {u, v} contains a subgraph H ′ =

(V ′, E′) ∈ Π such that wG(E′) ≥ λwG(E \ (F̃ ∪{uv}))+ 1−λ
2 (wG(T ′)), where T ′ is a spanning

tree of G− {u, v} of minimum weight. By λ-edge extension, there exists F ⊆ F̃ satisfying

wG(F) ≥ λwG(F̃) and so that the subgraph H of G with vertex set V (H) = V ′ ∪ {u, v} and

74

edge set E(H) = E′ ∪ F ∪ {uv} is in Π. Let T ′′ be a spanning tree of G formed adding uv

and uw to T ′. Hence,

wG(E(H)) = wG(E′) + wG(F) + wG(uv)

≥ λwG(E \ (F̃ ∪ {uv})) +
1− λ

2
(wG(T ′)) + λwG(F̃) + wG(uv)

= λwG(E) +
1− λ

2
(wG(T ′)) + (1− λ)wG(uv)

≥ λwG(E) +
1− λ

2
(wG(T ′′))

where the last inequality holds since wG(uv) ≥ wG(uw). Then we conclude using the fact

that by minimality wG(T ′′) ≥ wt(G).

If, on the other hand, G is not 2-connected, we may apply the inductive hypothesis on

each of its blocks, which is justified because of Block additivity and because λwG(E) +

1−λ
2 wt(G) =

∑
B∈B(G)

(
λwG(E(B)) + 1−λ

2 wt(B)
)

1 .

Note that a recursive algorithm performing these steps takes polynomial time, as the block

decomposition of a graph can be found in O(m + n) time, the number of recursive calls is

bounded by O(m) and each step can be performed in polynomial time.

The lower bound of Theorem 5.4 is known as the Poljak-Turźık bound. We denote by pt(G)

the value of the Poljak-Turźık bound on a graph G. Note that if G = (V,E) is a connected

graph in which every edge has weight one, and λ = 1
2 , then pt(G) = 1

2 |E|+
1
4 (|V | − 1), which

corresponds to the Edwards-Erdős bound on G.

Let ex(G) = opt(G)− pt(G) be the excess of Π on G ∈ G. Observe that by Theorem 5.4,

ex(G) ≥ 0 for every G ∈ G. We are interested in the following generic parameterized problem:

Weighted Above Poljak-Turźık (Π) (WAPT (Π))

Input: A pair (G, k) where G = (V,E) is a connected weighted graph, and

k is an integer.

Parameter: k

Question: Does it hold that ex(G) ≥ k?

In Section 5.1, we will study a restriction of the WAPT (Π) (which is still quite general)

and show that it can be reduced to an easier problem. Then in Section 5.2, building on

1Note that every edge is contained in exactly one block and a minimum weight spanning tree for G results

from the union of minimum weight spanning trees for every block.

75

this result, we will show that the APT (Π), the unweighted version of WAPT (Π), admits a

polynomial kernel in most of the cases.

Before concluding this section, we prove some technical results which will be useful in the

rest of the chapter. Recall that C(H) denotes the connected components of a graph H.

Lemma 5.5. Let G = (V,E) ∈ G and let v be a cutvertex in G. Then

ex(G) =
∑

C∈C(G−{v})

ex(G[V (C) ∪ {v}])

Proof. Let GC = G[V (C) ∪ {v}] for C ∈ C(G − {v}). To begin with, note that pt(G) =∑
C∈C(G−{v}) pt(GC). In fact, every edge of G is contained in exactly one of GC , and T is a

minimum weight spanning tree for G if and only if T [V (GC)] is a minimum weight spanning

tree for GC for every C ∈ C(G− {v}).

Now, let HC ∈ Π be a subgraph of GC with wG(HC) = opt(GC) and let H be the subgraph

of G obtained by the union of the different HC ’s. By Block additivity it holds that H ∈ Π,

hence opt(G) ≥
∑
C∈C(G−{v}) opt(GC). On the other hand, let H ∈ Π be a subgraph of G

with wG(H) = opt(G) and let HC = H[V (GC)]. Again, by Block additivity it holds that

HC ∈ Π for every C ∈ C(G− {v}), hence opt(G) ≤
∑
C∈C(G−{v}) opt(GC).

To conclude it is enough to observe that by definition ex(G) = opt(G)−pt(G) and ex(GC) =

opt(GC)− pt(GC).

Lemma 5.6. Let T ∈ G be a weighted tree. Then T ∈ Π and ex(T) = 1−λ
2 wT (E(T)).

Proof. It follows from Inclusiveness and Block additivity, since the blocks of U(T) are

all isomorphic to K2, and ex(K2) = wK2(E(K2))− pt(K2) = 1−λ
2 wK2(E(K2)).

5.1 A polynomial time reduction for WAPT (Π)

The notion of λ-extendible property does not appear to be strong enough to ensure an FPT -

algorithm in general. We consider the following refinement.

Definition 5.7. [72] Let 0 < λ < 1. A graph property Π ⊆ G is strongly λ-extendible if it

satisfies:

1. Inclusiveness: K1 and K2 are in Π,

2. Block additivity: a graph G ∈ G is in Π if and only if each block of G is in Π,

76

3. strong λ-subgraph extension: given a graph G = (V,E), a weight function wG :

E → R+ and a partition U,W of V such that G[U] ∈ Π and G[W] ∈ Π, in polynomial

time it is possible to find F ⊆ E(U,W) satisfying wG(F) ≥ λwG
(
E(U,W)

)
and so that

the graph G \
(
E(U,W) \ F

)
∈ Π.

Essentially, a strongly λ-extendible property is a λ-extendible property which satisfies a

strengthened version of λ-edge extension. This does not appear to be a particularly strict

requirement, as, for instance, all λ-extendible properties described by Poljak and Turźık [78]

can be shown to be strongly λ-extendible [72, 21]. In particular, this is true for Weighted

Max Cut.

Theorem 5.8. Let GS contain all simple graphs, let ΠBP ⊆ GS contain all bipartite graphs

and let λ = 1
2 . Then ΠBP is a strongly λ-extendible property.

Proof. By Theorem 5.2, we only have to show that strong λ-subgraph extension holds.

Assume G[U] and G[W] are bipartite graphs for a partition U,W of V . Let U0 and U1

be a partition of U such that E(G[U]) = E(U0, U1), and choose W0,W1 in W in the same

way. Either let F = E(U0,W1) ∪ E(U1,W0) or F = E(U0,W0) ∪ E(U1,W1): observe that

G\(E(U,W)\F) is bipartite in both cases, while in at least one case wG(F) ≥ 1
2wG(E(U,W)).

The aim of this section is to prove that, whenever Π ⊆ G is a strongly λ-extendible

property, the Weighted Above Poljak-Turźık (Π) problem, restricted to graphs with

integral weights, can be reduced in polynomial time to a restricted problem for which the

input has a ‘simple’ structure.

Definition 5.9. A uniform clique in a weighted graph is a clique such that all edges between

its vertices have the same weight. A connected weighted graph is a tree of uniform cliques

if the vertex set of every block is a uniform clique. A weighted graph is a forest of uniform

cliques if every component is a tree of uniform cliques.

Weighted Structured Above Poljak-Turźık (Π) (WSAPT (Π))

Input: A triplet (G,S, k) where G = (V,E) is a connected weighted graph,

S ⊆ V contains at most 6k
1−λ vertices, G − S is a forest of uniform

cliques, and k is an integer.

Parameter: k

Question: Does it hold that ex(G) ≥ k?

77

The input of the Weighted Structured Above Poljak-Turźık (Π) problem is a

graph which contains a small set of vertices whose deletion makes the graph a forest of

uniform cliques.

For the rest of this section, let Π denote a generic strongly λ-extendible property on G

and let G = (V,E) ∈ G be a connected weighted graph G with weight function wG : E → N+.

Let P3 denote the path with two edges. We say that v1, v2, v3 ∈ V form an induced P3 if

v1v2 ∈ E, v2v3 ∈ E and v1v3 /∈ E. If this happens, we say that G contains an induced P3.

We will use Algorithm 5.1 to compute a small set S such that G−S is a forest of uniform

cliques. The rest of this section is devoted to prove the correctness of the algorithm.

Lemma 5.10. Algorithm 5.1 with input G runs in time polynomial in |V | and outputs a pair

(S, t) such that t ≥ 1−λ
6 |S| and ex(G) ≥ t.

Proof. Firstly, we will show that the algorithm runs in polynomial time. Note that checking

whether Case 1, 2 or 3 applies can be done in timeO(n4), therefore we are done if we can bound

the number of recursive calls. Consider the tree associated to the execution of Algorithm 5.1

on G. Since every time a recursive call is made it is made on a connected graph, this means

that every leaf of the tree corresponds either to a graph with at least one edge or to a graph

with only one vertex. In addition, note that Case 2 and 3 do not add any edges to the graph

and every time Case 1 applies every edge appears in exactly one of the recursive calls. This

ensures that the number of leaves is bounded by O(n + m) = O(n2). As for the vertices of

degree 2, they correspond to either an application of Case 2 or Case 3: every time a recursive

call is made in these cases, at least one edge is deleted, so at most O(m) of these recursive

calls can be made. In total, this gives O(n2) vertices in the tree.

The rest of the proof is by induction on |V |. First suppose |V | = 1. In this case

Struct(G) = (∅, 0), then t ≥ (1−λ)
6 |S| trivially holds and ex(G) ≥ t holds by Theorem

5.4. Now suppose that the result holds for any graph with at most n vertices and that

|V | = n+ 1. First of all, note that at every iteration of the algorithm, if we add any vertices

to S, we add at most 3 vertices to S and increase t by at least (1−λ)
2 , as the weights are

integral. Therefore t ≥ (1−λ)
6 |S| holds.

Concerning the other inequality, note that if Struct(G) = (∅, 0), it is true by Theorem

5.4. Therefore we may assume that one of Cases 1, 2 or 3 applies.

Case 1 (G contains a cutvertex v): For each component C of G−{v}, let GC = G[V (C)∪{v}]

and let (SC , tC) = Struct(GC). By Lemma 5.5 and the inductive hypothesis, ex(G) =∑
C∈C(G−{v}) ex(GC) ≥

∑
C∈C(G−{v}) tC = t.

78

input : A connected weighted graph G = (V,E) ∈ G

output: A set S ⊆ V and a nonnegative real number t

1 Set S = ∅; Set t=0;

2 if G contains a cutvertex v then /* Case 1 */

3 foreach component C of G− {v} do

4 Set (S′, t′) = Struct(G[V (C) ∪ {v}]) ;

5 Set S = S ∪ S′;

6 Set t = t+ t′;

7 end

8 else if ∃{v1, v2, v3} ⊆ V such that v1v2, v2v3 ∈ E, wG(v1v2) > wG(v2v3) and

G− {v1, v2} is connected then /* Case 2 */

9 Set (S′, t′) = Struct(G− {v1, v2});

10 Set S = S′ ∪ {v1, v2};

11 Set t = t′ + (1−λ)(wG(v1v2)−wG(v2v3))
2 ;

12 else if ∃{v1, v2, v3, z} ⊆ V such that v1, v2, v3 form an induced P3, G− {v1, v2, v3} is

connected, and there exists xz ∈ E, x ∈ {v1, v2, v3}, such that wG(xz) ≤ wG(v1v2)

then /* Case 3 */

13 Set (S′, t′) = Struct(G− {v1, v2, v3});

14 Set S = S′ ∪ {v1, v2, v3};

15 Set t = t′ + (1−λ)wG(v1v2)
2 ;

16 end

17 return (S, t);

Algorithm 5.1: Struct

79

Case 2 (∃{v1, v2, v3} ⊆ V such that v1v2, v2v3 ∈ E, wG(v1v2) > wG(v2v3) and G − {v1, v2} is

connected): Let G′ = G − {v1, v2} and F̃ = E({v1, v2}, V \ {v1, v2}). Clearly G[{v1, v2}] ∈

Π, as its underlying graph is isomorphic to K2. Then by λ-edge extension, opt(G) ≥

wG(v1v2) + opt(G′) + λwG(F̃). Let (S′, t′) = Struct(G′).

Observe that we can form a spanning tree of G by taking a minimum weight spanning tree

of G′ and adding the edges v1v2, v2v3, and therefore wt(G) ≤ wt(G′) +wG(v1v2) +wG(v2v3).

Then

opt(G)− t ≥ wG(v1v2) + opt(G′) + λwG(F̃)− t

≥ wG(v1v2) + λwG(E(G′)) +
(1− λ)wt(G′)

2
+ t′ + λwG(F̃)− t

= λwG(E) + (1− λ)wG(v1v2) +
(1− λ)wt(G′)

2
− (1− λ)(wG(v1v2)− wG(v2v3))

2

= λwG(E) +
(1− λ)(wt(G′) + wG(v1v2) + wG(v2v3))

2

≥ λwG(E) +
(1− λ)wt(G)

2

= pt(G).

Case 3 (∃{v1, v2, v3, z} ⊆ V such that v1, v2, v3 form an induced P3, G − {v1, v2, v3} is connected,

and there exists xz ∈ E, x ∈ {v1, v2, v3}, such that wG(xz) ≤ wG(v1v2)): Since we may as-

sume Case 1 and Case 2 do not apply, then G − {v1, v2} and G − {v2, v3} are both con-

nected and we have wG(v1v2) = wG(v2v3) = wG(xz). Let G′ = G − {v1, v2, v3} and F̃ =

E({v1, v2, v3}, V \ {v1, v2, v3}). By Lemma 5.6, G[{v1, v2, v3}] ∈ Π. Therefore, by strong λ-

subgraph extension, opt(G) ≥ 2wG(v1v2)+opt(G′)+λwG(F̃). Let (S′, t′) = Struct(G′).

Observe that we can form a spanning tree of G by taking a minimum weight spanning tree

of G′ and adding the edges xz, v1v2, v2v3, and therefore wt(G) ≤ wt(G′) + 3wG(v1v2). Then,

opt(G)− t ≥ 2wG(v1v2) + opt(G′) + λwG(F̃)− t

≥ 2wG(v1v2) + λwG(E(G′)) +
(1− λ)wt(G′)

2
+ t′ + λwG(F̃)− t

= λwG(E) + 2(1− λ)wG(v1v2) +
(1− λ)wt(G′)

2
− (1− λ)wG(v1v2)

2

≥ λwG(E) +
(1− λ)wt(G)

2

≥ pt(G).

Lemma 5.11. Let G be nonempty. Then one of the following holds:

80

1. G contains a cutvertex;

2. G contains vertices v1, v2, v3 such that v1v2, v2v3 ∈ E, wG(v1v2) > wG(v2v3) and G −

{v1, v2} is connected;

3. G contains vertices v1, v2, v3 such that v1, v2, v3 form an induced P3, G − {v1, v2, v3}

is connected, and there exist xz ∈ E with x ∈ {v1, v2, v3}, z /∈ {v1, v2, v3} such that

wG(xz) ≤ wG(v1v2);

4. V is a uniform clique.

Proof. We consider the connectivity of G.

G is connected, but not 2-connected: Then G contains a cutvertex and so case 1 holds.

G is 2-connected, but not 3-connected: Let v, w be two vertices such that G − {v, w}

is disconnected, and observe that v is a cutvertex for G − {w}. Therefore G − {w} has at

least two blocks, and in particular at least two pendant blocks. Furthermore, every pendant

block must contain an interior vertex adjacent to w, as otherwise G is not 2-connected. So

now let v1, v3 be vertices such that v1 and v3 are interior vertices of different pendant blocks

in G−{w}, and both v1 and v3 are adjacent to w. Then observe that v1, v2, v3, with v2 = w,

is an induced P3 and G− {v1, v2, v3} is connected.

If there exists an edge between {v1, v2, v3} and V \ {v1, v2, v3} with weight at most

wG(v1v2), then Case 3 applies. So now assume that wG(xz) > wG(v1v2) for all x ∈ {v1, v2, v3}

and z /∈ {v1, v2, v3}. We will show that v1 has a neighbour u /∈ {v1, v2, v3} such that G−{v1, u}

is connected. Since wG(v1u) > wG(v1v2), it follows that Case 2 holds. For a generic vertex

y ∈ V , let R(y,W) be the set of vertices connected to y in the graph G −W , for any set of

vertices W not containing y. Let us call u′ ∈ V \ {v1, v2, v3} an important neighbour of v1 if

v1u
′ ∈ E, and R(v3, {v1, u

′}) 6⊂ R(v3, {v1, u
′′}) for any u′′ ∈ V \ {v1, v2, v3} with v1u

′′ ∈ E.

Note that v1 must have a neighbour in V \ {v1, v2, v3}, as otherwise v2 is a cutvertex for

G, a contradiction. So it follows that v1 has an important neighbour. Let u be an important

neighbour of v1. Note that u is adjacent to a vertex in R(v3, {v1, u}), as otherwise v1 is a

cutvertex for G. Suppose G−{v1, u} is not connected, and let C be a component of G−{v1, u}

not containing v3. If C contains a vertex u′ adjacent to v1, then u′ is a neighbour of v1 not

in {v1, v2, v3} and R(v3, {v1, u
′}) ⊇ R(v3, {v1, u})∪ {u}, a contradiction as u is an important

neighbour of v1. On the other hand if C contains no vertices adjacent to v1, then u is a

cutvertex of G, a contradiction. So we must have that G− {v1, u} is connected, as required.

81

G is 3-connected: Since deleting any pair of vertices leaves the graph connected, we may

assume that every pair of edges that share a vertex have the same weight, as otherwise Case

2 holds. As G is connected, it follows that all edges in G have the same weight.

Observe that if G is complete, then V is a uniform clique, and so Case 4 holds. Thus we

may assume G is not complete, and so contains an induced P3. We will show that Case 3

holds.

Let v be an arbitrary vertex in V . If for any v1, v2, v3 which form an induced P3 it holds

that v ∈ {v1, v2, v3}, then G− {v} contains no induced P3, and so V \ {v} must be a clique:

therefore, G− {v1, v2, v3} is connected for any v1, v2, v3 which form an induced P3.

Suppose this is not the case. We say that a set of vertices {v1, v2, v3} is an important P3 if

v1, v2, v3 form an induced P3 and R(v, {v1, v2, v3}) 6⊂ R(v, {v′1, v′2, v′3}), for any v′1, v
′
2, v
′
3 ∈ V

which form an induced P3. Assume {v1, v2, v3} is an important P3 and v /∈ {v1, v2, v3}. If

R(v, {v1, v2, v3}) = V \ {v1, v2, v3} then G− {v1, v2, v3} is connected. Otherwise, let C be a

component of G−{v1, v2, v3} not containing v. Since G is 3-connected both R(v, {v1, v2, v3})

and C must have vertices adjacent to each of v1, v2, v3. Therefore there must be a path

u0u1 . . . ul, where u0 = v1, ul = v3, and ui ∈ C for all 1 ≤ i < l. By taking a shortest

such path, and considering three consecutive vertices v′1, v
′
2, v
′
3 on this path, we have that

v′1, v
′
2, v
′
3 induce a P3 such that R(v, {v′1, v′2, v′3}) ⊇ R(v, {v1, v2, v3}) ∪ {v2}, a contradiction

as {v1, v2, v3} is an important P3.

Thus G−{v1, v2, v3} is connected, as required. As all weights are equal, Case 3 holds.

Lemma 5.12. Let G be nonempty and let (S, t) = Struct(G). Then G − S is a forest of

uniform cliques.

Proof. In what follows, it will be useful to note that if G′ − S′ is a forest of uniform cliques

for some subgraph G′ of G and S′ ⊆ S, then G′ − S is also a forest of uniform cliques.

We prove the claim by induction on |V |. Observe that if |V | = 1 then G− S contains at

most one vertex and is therefore a forest of uniform cliques. So now suppose that |V | = n

and the result is true for smaller graphs. Consider the three cases of the if statement of

Algorithm 5.1:

Case 1 (G contains a cutvertex v): For each component C of G−{v}, let GC = G[V (C)∪{v}]

and let (SC , tC) = Struct(GC). By the inductive hypothesis, GC −SC is a forest of uniform

cliques and so GC − S is also a forest of uniform cliques, where S = ∪C∈C(G−{v})SC . Since

G− S is formed either by taking the disjoint union of all GC − S (if v ∈ S), or by joining all

GC − S at a single vertex (if v /∈ S), it follows that G− S is also a forest of uniform cliques.

82

Case 2 (∃{v1, v2, v3} ⊆ V such that v1v2, v2v3 ∈ E, wG(v1v2) > wG(v2v3) and G − {v1, v2} is

connected): Let G′ = G−{v1, v2} and let (S′, t′) = Struct(G′). Then since S = S′∪{v1, v2},

G− S = G′ − S′, which is a forest of uniform cliques by the inductive hypothesis.

Case 3 (∃{v1, v2, v3, z} ⊆ V such that v1, v2, v3 form an induced P3, G − {v1, v2, v3} is connected,

and there exists xz ∈ E, x ∈ {v1, v2, v3}, such that wG(xz) ≤ wG(v1v2)): Let G′ = G−{v1, v2, v3}

and let (S′, t′) = Struct(G′). Then since S = S′ ∪ {v1, v2, v3}, G− S = G′ − S′, which is a

forest of uniform cliques by the inductive hypothesis.

Finally, if none of the previous cases apply, then, by Lemma 5.11, V is a uniform clique,

hence G is a tree of uniform cliques containing only one block.

Theorem 5.13. Let (G, k) be an instance of WAPT (Π) such that the weight function of G

takes values in N+. In polynomial time we can either answer YES or compute a set S ⊆ V

such that |S| ≤ 6k
1−λ and G− S is a forest of uniform cliques.

Proof. Run Algorithm 5.1 on G and let (S, t) be the output. By Lemma 5.10, ex(G) ≥ t.

Hence if k ≤ t, the instance is a YES-instance. Otherwise, by Lemma 5.10, k > t ≥ 1−λ
6 |S|.

Hence |S| < 6k
1−λ . In addition, by Lemma 5.12, G− S is a forest of uniform cliques.

From Theorem 5.13, by using the fact that Algorithm 5.1 does not modify the graph, the

following corollary immediately follows.

Corollary 5.14. WAPT (Π) restricted to graphs with integral weights can be reduced in poly-

nomial time to WSAPT (Π), and the reduction preserves the weights of the edges.

5.1.1 Weighted Max Cut

Unfortunately, Corollary 5.14 is not enough in itself to ensure the existence of an FPT -

algorithm. Nonetheless, it is generally easier to prove that WSAPT (Π) is FPT , or admits a

polynomial kernel, than to prove it for WAPT (Π). As an example, we consider Weighted

Max Cut restricted to graphs with integral weights.

Weighted Max Cut APT

Input: A pair (G, k) where G = (V,E) is a connected weighted graph with

weight function wG : E → N+, and k is an integer.

Parameter: k

Question: Is there a bipartite subgraph H of G such that wG(E(H)) ≥ pt(G)+

k?

83

The result of this section is based on the work of Crowston et al. [23]. Also, note that a

proof which uses the same approach has already been given by Jones [60].

Consider first the following auxiliary problem.

Max Cut with Weighted Vertices

Input: A quadruplet (G,w0, w1, p) where G = (V,E) is a weighted graph with

weight function wG : E → N+, w0 and w1 are functions from V to N,

and p is an integer.

Question: Is there an assignment f : V → {0, 1} such that
∑
uv∈E |f(u) −

f(v)|wG(uv) +
∑
f(v)=0 w0(v) +

∑
f(v)=1 w1(v) ≥ p?

Lemma 5.15. The Max Cut with Weighted Vertices problem can be solved in poly-

nomial time if G is a forest of uniform cliques.

Proof. We provide a polynomial time transformation that replaces an instance (G,w0, w1, p)

with an equivalent instance (G′, w′0, w
′
1, p
′) such thatG′ has fewer vertices thanG. By applying

the transformation at most |V | times to get a trivial instance, we have a polynomial time

algorithm to decide (G,w0, w1, p).

Let B be a pendant block of G and let u be its root, unless G consists of a single block,

in which case let u be an arbitrary vertex and B = G. Let C = B − {u}. Recall that by

definition of forest of uniform cliques, V (B) is a uniform clique. For each possible assignment

to u, we will in polynomial time calculate the optimal extension to the vertices in C (this

optimal extension depends only on the assignment to u, since no other vertices are adjacent

to vertices in C). We can then delete all the vertices in C, and change the values of w0(u)

and w1(u) to reflect the optimal extension for each assignment.

Suppose we assign u the value 1. Let ε(v) = w1(v) − w0(v) for each v ∈ V (C). Now

arrange the vertices of C in order v1, v2, . . . vn′ (where n′ = |V (C)|), such that if i < j then

ε(vi) ≥ ε(vj). We claim that there is an optimal assignment for which vi is assigned 1 for

every i ≤ t, and vi is assigned 0 for every i > t, for some 0 ≤ t ≤ n′. In fact, consider an

assignment for which f(vi) = 0 and f(vj) = 1, for i < j, and observe that switching the

assignments of vi and vj will increase
∑
f(v)=0 w0(v) +

∑
f(v)=1 w1(v) by ε(vi)− ε(vj), which

is a nonnegative quantity. At the same time,
∑
vw∈E |f(v) − f(w)|wG(vw) does not change,

as the edges between vertices in C all have the same weight.

Therefore the claim holds and we only need to try n′ + 1 different assignments to the

84

vertices in C in order to find the optimal one for f(u) = 1. Let w1 be∑
vw∈E(B)

|f(v)− f(w)|wG(vw) +
∑

v∈V (B):f(v)=0

w0(v) +
∑

v∈V (B):f(v)=1

w1(v)

where f is the optimal assignment computed in this way.

By a similar method we can find the optimal assignment when u is assigned 0. Let w0 be

its value. Now we can delete the vertices in C and let w1(u) = w1 and w0(u) = w0.

Theorem 5.16. Let GS contain all simple graphs, let ΠBP ⊆ GS contain all bipartite graphs

and let λ = 1
2 . Then the Weighted Structured Above Poljak-Turźık (ΠBP) problem

restricted to graphs with integral weights is FPT .

Proof. Let (G,S, k) be an instance of Weighted Structured Above Poljak-Turźık

(ΠBP), with G = (V,E) and weight function wG : E → N+. We will show that every partition

V S0 , V
S
1 of S can be optimally extended in polynomial time to a partition V0, V1 of V . Let

V S0 , V
S
1 be any such partition. For every vertex v ∈ V \ S, let w0(v) =

∑
s∈(V S

1 ∩N(v)) wG(vs)

and w1(v) =
∑
s∈(V S

0 ∩N(v)) wG(vs), then delete S and let G′ = G− S.

Let l be the weight of the edges in E(V S0 , V
S
1) and let p = pt(G) + k − l. Note that

(G′, w0, w1, p) is an instance of Max Cut with Weighted Vertices. For an assignment

to the vertices of G−S, the total weight of edges in G with one endvertex assigned 0 and the

other 1 would be exactly
∑
uv∈E(G−S) |f(u)−f(v)|wG(uv)+

∑
f(v)=0 w0(v)+

∑
f(v)=1 w1(v)+l.

Thus, V S0 , V
S
1 can be extended to a partition V0, V1 of V such that wG(E(V0, V1)) ≥ pt(G)+k

if and only if (G′, w0, w1, p) is a YES-instance. By Lemma 5.15, the latter problem can be

solved in polynomial time.

Since there exist at most 2O(k) different partitions of S, we conclude that the problem is

FPT .

Corollary 5.17. Weighted Max Cut APT is FPT .

Proof. Note that Weighted Max Cut APT is equivalent to the Weighted Above Poljak-

Turźık (ΠBP) problem on graphs with integral weights. Let (G, k) be an instance of the

latter. By Theorem 5.8 and Theorem 5.13, in polynomial time we can either answer YES

or transform it into an equivalent instance (G,S, k) of Weighted Structured Above

Poljak-Turźık (ΠBP), which by Theorem 5.16 can be solved in 2O(k)|V |O(1) time.

85

5.2 Polynomial kernel for APT (Π)

We restrict the attention to unweighted graphs, that is, graphs where every edge has weight

one. We will prove that for (nearly) every strongly λ-extendible property Π, the Above

Poljak-Turźık (Π) problem admits a polynomial kernel.

We restate the definition of the problem:

Above Poljak-Turźık (Π) (APT (Π))

Input: A pair (G, k) where G = (V,E) is a connected graph, and k is an

integer.

Parameter: k

Question: Does it hold that ex(G) ≥ k?

By Corollary 5.14, though, the Above Poljak-Turźık (Π) problem can be reduced in

polynomial time to the the Structured Above Poljak-Turźık (Π) problem. Note that

we simply call forest of cliques an unweighted forest of uniform cliques.

Structured Above Poljak-Turźık (Π) (SAPT (Π))

Input: A triplet (G,S, k) where G = (V,E) is a connected graph, S ⊆ V

contains at most 6k
1−λ vertices, G− S is a forest of cliques, and k is

an integer.

Parameter: k

Question: Does it hold that ex(G) ≥ k?

Hence, we may assume that we are given a set S of O(k) vertices such that G − S is a

forest of cliques, and we only need to find a bound on the number of vertices in G− S.

Observe that so far we have not used the strong λ-subgraph extension hypothesis

heavily: in fact, we only used it when U(G[U]) is isomorphic to K2 or P3. The situation will

change here, as the next lemma will be one of the most useful tools to prove the existence of

a kernel, and its validity depends on the fact that U(G[U]) can be any graph in Π.

Lemma 5.18. Let G = (V,E) ∈ G be a connected graph, and let V1, V2 be a partition of V .

Let c1 be the number of components of G[V1] and c2 be the number of components of G[V2].

If ex(G[V1]) ≥ k1 and ex(G[V2]) ≥ k2, then ex(G) ≥ k1 + k2 − 1−λ
2 (c1 + c2 − 1).

Proof. Let F̃ = E(V1, V2). Using strong λ-subgraph extension it is not difficult to see

that opt(G) ≥ opt(G[V1]) + opt(G[V2]) + λ|F̃ |. Moreover,

86

pt(G) = λ|E|+ 1− λ
2

(|V | − 1)

= λ(|E(G[V1])|+ |E(G[V2])|+ |F̃ |) +
1− λ

2
(|V1|+ |V2| − 1)

=
(
λ|E(G[V1])|+ 1− λ

2
(|V1| − c1)

)
+
(
λ|E(G[V2])|+ 1− λ

2
(|V2| − c2)

)
+ λ|F̃ |+ 1− λ

2
(c1 + c2 − 1)

= pt(G[V1]) + pt(G[V2]) + λ|F̃ |+ 1− λ
2

(c1 + c2 − 1).

It follows that ex(G) ≥ k1 + k2 − 1−λ
2 (c1 + c2 − 1).

The definition of strongly λ-extendible property is quite generic and includes many differ-

ent properties, but a possible rough classification consists of distinguishing between properties

which diverge and properties which do not. Intuitively, a property diverges when the Poljak-

Turźık bound is not tight on complete graphs, that is, the size of an optimal solution increases

faster than the Poljak-Turźık bound when we consider complete graphs of increasing size. We

will see that when a property diverges it is easy to produce a polynomial kernel, and that this

happens in most of the cases.

Let ex(Kj) denote the minimum value of ex(G) for any (oriented, labelled) graph G such

that Kj = U(G). Thus, for example, if ex(K3) = t then any graph G with underlying graph

K3 has a subgraph H ∈ Π with at least pt(G)+t edges, regardless of orientations or labellings

on the edges of G.

Definition 5.19. A strongly λ-extendible property Π diverges on cliques if there exists j ∈ N+

such that ex(Kj) >
1−λ

2 .

Lemma 5.20. Let Π be a strongly λ-extendible property which diverges on cliques, and let

j, a be such that ex(Kj) = 1−λ
2 + a, a > 0. Then ex(Krj) ≥ 1−λ

2 + ra for each r ∈ N+.

Furthermore, lims→+∞ ex(Ks) = +∞.

Lemma 5.20 formalises the intuition behind the notion of diverging properties. To prove

it, we need an auxiliary lemma, but we want to prove a slightly more general version of this

lemma, as it will be useful later. We need first the following definitions. We say that a simple

connected graph K̃ is almost-complete if it is either complete or it can be made complete by

deleting one vertex. For an almost-complete graph K̃, we use ex(K̃) to denote the minimum

value of ex(G) for any (oriented, labelled) graph G such that K̃ = U(G), and we say that

K̃ ∈ Π if and only if G ∈ Π for every (oriented, labelled) graph G with underlying graph K̃.

87

Lemma 5.21. Let ex(Kj) = a ≥ 1−λ
2 for some j ∈ N. Then, for every almost-complete graph

K̃ with at least j + 1 vertices, ex(K̃) ≥ a− 1−λ
2 .

Proof. Let G = (V,E) ∈ G be a graph such that U(G) = K̃, where K̃ is an almost-complete

graph with at least j+1 vertices. Let V ′ be a minimum-sized subset of V such that G−V ′ is a

complete graph. Set V1 to be any subset of exactly |V |−j vertices of G such that V ′ ⊆ V1 and

G[V1] is connected. Set V2 = V \ V1. Observe that G is connected, V1, V2 is a partition of V ,

G[V1] is connected, and U(G[V2]) = Kj . Furthermore, ex(G[V1]) is obviously at least 0, and

ex(G[V2]) is at least a by assumption. So by Lemma 5.18, we get that ex(G) ≥ a− 1−λ
2 .

In particular, Lemma 5.21 holds when K̃ is a complete graph. We are now ready to prove

Lemma 5.20.

Proof of Lemma 5.20. We prove the first part of the lemma by induction on r. The claim

holds for r = 1 by assumption. Suppose that the claim holds for some r ≥ 1. We show that

it holds for r + 1 as well. Let G = (V,E) ∈ G be a graph such that U(G) is isomorphic to

K(r+1)j , and consider a partition of V into two parts V1, V2 with |V1| = j, |V2| = rj. Note that

U(G[V1]) is isomorphic to Kj and U(G[V2]) is isomorphic to Krj . By assumption we have that

ex(G[V1]) ≥ 1−λ
2 + a, and from the induction hypothesis we get that ex(G[V2]) ≥ 1−λ

2 + ra.

Lemma 5.18 now tells us that ex(G) ≥ 1−λ
2 + (r+ 1)a, and this completes the induction step.

Now consider the function f : N+ → R+ defined as f(r) = ex(Krj). Our arguments above

show also that f is an unbounded function. We use this to argue that given any x ∈ R+,

there is an rx ∈ N+ such that ex(Kr) > x for all r ≥ rx; this would prove the second part of

the lemma. So let x ∈ R+. We choose p ∈ N+ such that f(p) = ex(Kpj) > x+ 1−λ
2 . Since f

is unbounded, such a choice of p exists. We set rx = pj, and from Lemma 5.21 we get that

ex(Kr) > x for all r ≥ rx.

5.2.1 Diverging properties

Let (G,S, k) be an instance of the Structured Above Poljak-Turźık (Π) problem,

with G = (V,E). Let Q be the set of cutvertices of G − S. For any block B of G − S,

let Bint = V (B) \ Q be the interior of B. Let B be the set of blocks of G − S, that is,

B = B(G − S). A block neighbour of a block B is a block B′ different from B such that

|V (B) ∩ V (B′)| = 1. Given a sequence of blocks B0, B1, . . . , Bl, Bl+1 in G− S, the subgraph

induced by V (B1) ∪ · · · ∪ V (Bl) is a block path if, for every 1 ≤ i ≤ l, V (Bi) contains exactly

two vertices from Q, and Bi has exactly two block neighbours Bi−1 and Bi+1. A block B in

88

G−S is a leaf block if V (B) contains exactly one vertex from Q, which is called its root 2 . A

block in G − S is an isolated block if it contains no vertex from Q. Observe that an isolated

block has no block neighbour, while a leaf block has at least one block neighbour.

Let B0 and B1 be the set of isolated blocks and leaf blocks, respectively, contained in B.

Let B2 be the set of blocks B ∈ B such that B is a block in some block path of G−S. Finally,

let B≥3 = B \ (B0 ∪ B1 ∪ B2). Thus:

• B0 is the set of all blocks of G− S which contain no cutvertex of G− S, and therefore

have no block neighbour;

• B1 is the set of all blocks of G − S which contain exactly one cutvertex of G − S, and

therefore have at least one block neighbour;

• B2 is the set of all blocks of G− S which contain exactly two cutvertices of G− S, and

have exactly two block neighbours;

• B≥3 is the set of all the remaining blocks of G−S. A block of G−S is in B≥3 if and only

if it contains at least two cutvertices of G− S, and has at least three block neighbours.

In order to bound the number of vertices in G − S it is enough to bound the number of

blocks and the size of each block. For the rest of this section we will assume that Π is a

strongly λ-extendible property that diverges on cliques.

Definition 5.22. Let v be a cutvertex of G and let C be a component of G − {v} such

that G[V (C) ∪ {v}] is a 2-connected almost-complete subgraph of G. Then we say that

G[V (C) ∪ {v}] is a dangling component with root v.

To bound the number of isolated and leaf blocks inG−S, we require the following reduction

rule.

Reduction Rule 5.23. Let G ∈ G be a connected graph which is not 2-connected and let G′

be a dangling component. Then if ex(G′) = 0, delete G′ − {v} (where v is the root of G′) and

leave k the same.

Lemma 5.24. Reduction Rule 5.23 is valid.

Proof. Let G′′ be the graph obtained after an application of the rule. By Lemma 5.5, ex(G) =

ex(G′′) + ex(G′) = ex(G′′). Now, observe that in polynomial time it is possible to find the

2Note that a leaf block of G is simply a pendant block of G−S. For ease of discussion, though, a different

name is used.

89

block decomposition of G and to check which blocks have an underlying graph which is almost-

complete. Thus, in polynomial time we can find all dangling components. Now, we claim

that in constant time it is possible to evaluate whether their excess is zero. In fact, it holds

that ex(Kj) >
1−λ

2 for some j. Given a graph G′ whose underlying graph is almost-complete,

if G′ has at least j + 1 vertices Lemma 5.21 ensures that ex(G′) > 0. On the other hand, if

G′ has at most j vertices, a brute force algorithm which finds opt(G′) runs in time O(2j
2

),

where j is a constant which only depends on Π.

Observe that every time Reduction Rule 5.23 is applied the number of vertices decreases,

hence in polynomial time we can produce a graph which is reduced under this rule. In such

a graph, the excess of every dangling component is strictly positive. We are interested in the

infimum of these values.

Definition 5.25. We use AK+ to denote the class of all graphs G′ ∈ G such that U(G′) is

almost-complete and ex(G′) > 0. Let infAK denote the value inf(G∈AK+) ex(G
′).

Note that the class AK+ contains an infinite number of graphs in general. Hence, it could

be the case that infAK = 0. Nonetheless, next lemma shows that this is not the case.

Lemma 5.26. The infimum infAK is strictly greater than 0.

Proof. Since Π diverges on cliques, there exist j ∈ N+ and a ∈ R+ such that ex(Kj) = 1−λ
2 +a.

Then, by Lemma 5.21, for every graph G′ ∈ AK+ with at least j + 1 vertices, ex(G′) ≥ a.

Now observe that {G′ ∈ AK+ : |V (G′)| ≤ j} is a finite set (recall that the number of labels, if

there are any, is finite), hence the minimum of ex(G′) over this set is defined and is positive.

So we have that infAK ≥ min(a,min{G′∈AK+:|V (G′)|≤j} ex(G
′)) > 0.

Now, we are able to bound the number of dangling components.

Lemma 5.27. Let G be a connected graph reduced under Reduction Rule 5.23. Then the

number of dangling components is bounded by b0k (where b0 is a constant depending only on

Π) or the instance is a YES-instance.

Proof. Let B1, . . . , Bl be the dangling components of G. Since the graph is reduced under

Reduction Rule 5.23, ex(Bi) > 0 for every 1 ≤ i ≤ l. In addition, Lemma 5.26 ensures that

infAK > 0. Let G′ = G− (∪li=1((Bi)int).

By Lemma 5.5, ex(G) = ex(G′) +
∑l
i=1 ex(Bi) ≥ 0 + (infAK)l. Then if l ≥ k

infAK
the

instance is a YES-instance. Otherwise, l ≤ k
infAK

= b0k.

90

Note that an isolated block always contains a neighbour of S, as G is connected, and a leaf

block which does not contain a neighbour of S in its interior is a dangling component, whose

number is bounded. Therefore, we now want to prove a bound on the number of neighbours

that vertices in S can have in the interiors of blocks of G − S. This will lead to a bound on

|B0|+ |B1| and on the number of connected components of G− S.

Theorem 5.28. Let G be a connected graph reduced under Reduction Rule 5.23. If there

exists s ∈ S such that
∑
B∈B |NG(Bint)∩{s}| is at least (16

1−λ + 2
infAK

)k− 2, then the instance

is a YES-instance.

Proof. Let U = {s}. For every block B of G−S such that |NG(Bint)∩{s}| = 1, pick a vertex

in N(s)∩Bint and add it to U . Since the vertices are chosen in the interior of different blocks

of G− S, G[U] is a tree and, therefore, by Lemma 5.6 it is in Π and ex(G[U]) = 1−λ
2 d, where

d is the degree of s in G[U]. Let c be the number of components of G−U , and assume that U

is constructed such that d is maximal and c is minimal. By Lemma 5.18, ex(G) ≥ 1−λ
2 (d− c).

We will now show that c is bounded. The number of components of G−U which contain

a vertex of S \ {s} is bounded by (|S|− 1) < 6k
1−λ − 1. In addition, the number of components

of G − U which contain at least two blocks from which a vertex has been added to U is at

most d
2 .

Now, let C be a component of G− S such that, in the graph G, no vertex in C −U has a

neighbour in S \{s} and |U ∩V (C)| = 1. Firstly, suppose that C contains only one block B of

G−S. Let {v} = U ∩V (C). Note that, by the current assumptions, N(S \{s})∩V (C) ⊆ {v}.

If v is the only neighbour of s in C, then it is a cutvertex in G, hence B is a dangling component

of G. If s has another neighbour v′ in C and v has no neighbour in S different from s, then s

is a cutvertex, therefore G[V (B)∪{s}] is a dangling component. Finally, if v has at least two

neighbours in S and s has at least another neighbour v′ in C, let U ′ be the set obtained by

replacing v with v′ in U , and observe that C is connected to S \ {s} in G−U ′, contradicting

the minimality of c.

Now, suppose that C contains at least two blocks of G−S. In this case, every block except

one block B does not contain neighbours of S. In particular, this holds for at least one leaf

block B′ in C. Hence, B′ is a dangling component.

This ensures that carefully choosing the vertices of U we may assume that any component

of G − U still contains a neighbour of S \ {s}, or contains at least two blocks from which a

vertex of U has been chosen, or contains part of a dangling component. Hence, the number

of components of G− U is at most 6k
1−λ − 1 + d

2 + k
infAK

.

91

Therefore, if d ≥ (16
1−λ + 2

infAK
)k − 2, then ex(G) ≥ k.

Corollary 5.29. Let G be a connected graph reduced under Reduction Rule 5.23. Then∑
s∈S

∑
B∈B |NG(Bint) ∩ {s}| is bounded by b1k

2 (where b1 is a constant depending only on

Π), or the instance is a YES-instance.

Proof. It follows from Theorem 5.28 and from the fact that |S| ≤ 6k
1−λ .

Corollary 5.30. Let G be a connected graph reduced under Reduction Rule 5.23. Then

|B0| + |B1| is bounded by (b0 + b1)k2 (where b0 and b1 are as in Lemma 5.27 and Corollary

5.29 respectively), or the instance is a YES-instance.

Proof. Note that every isolated or leaf block either has a neighbour of S in its interior or is a

dangling component. The claim follows from Lemma 5.27 and Corollary 5.29.

Corollary 5.31. Let G be a connected graph reduced under Reduction Rule 5.23. Then either

G−S has at most (b0+b1)k2 components (where b0 and b1 are as in Lemma 5.27 and Corollary

5.29 respectively), or the instance is a YES-instance.

Proof. Since a component of G−S contains at least one block from B0∪B1, the result follows

applying Corollary 5.30.

The bound on the number of components of G − S allows us to prove a bound on the

number of blocks in B which have positive excess, as the next lemma shows.

Lemma 5.32. Let G be a connected graph reduced under Reduction Rule 5.23. The blocks

with positive excess of G− S are at most b2k
2 (where b2 is a constant depending only on Π),

or the instance is a YES-instance.

Proof. Let p be the number of blocks in G−S with positive excess, and let G′ be the union of

all components of G−S which contain a block with positive excess. Observe that by Corollary

5.31, we may assume that G′ has at most (b0 + b1)k2 components. Observe that by repeated

use of Lemma 5.5, ex(G′) ≥ (infAK)p. Now let G′′ = G−G′, and observe that G′′ has at most

|S| ≤ 6k
1−λ components. Then by Lemma 5.18, ex(G) ≥ (infAK)p− 1−λ

2 ((b0 +b1)k2 + 6k
1−λ −1).

Therefore if p ≥ 1
infAK

(
1−λ

2 ((b0 + b1)k2 + 6k
1−λ − 1) + k

)
= b2k

2, the instance is a YES-

instance.

Now, we show that an instance which contains ‘large’ blocks is a YES-instance.

92

Lemma 5.33. Let j, a be such that ex(Kj) = 1−λ
2 + a, a > 0. If |V (B)| ≥ d 4k

a ej = b3k for

any block B of G− S, then the instance is a YES-instance.

Proof. Let C be the component of G − S containing B. Note that G − V (C) has at most

|S| ≤ 6k
1−λ components, since every component of G−S which does not contain B still contains

a neighbour of S. In addition, by repeated use of Lemma 5.5, we get that ex(C) ≥ ex(B).

Therefore, if ex(B) ≥ 1−λ
2

6k
1−λ + k = 4k, Lemma 5.18 ensures that we have a YES-instance.

By Lemma 5.20, if r is an integer such that r ≥ d 4k
a e, then ex(Krj) ≥ 4k + 1−λ

2 . Further-

more, by Lemma 5.21, if |V (B)| ≥ rj then ex(B) ≥ 4k. Thus, if |V (B)| ≥ d 4k
a ej we have a

YES-instance.

At this point, we are able to prove that a restricted case of the Above Poljak-Turźık

(Π) problem admits a polynomial kernel. Note that this theorem is just an auxiliary result

which is needed to prove the existence of a kernelization in the general case.

Theorem 5.34. Let Π be a strongly λ-extendible property which diverges on cliques, and

suppose ex(Ki) > 0 for all i ≥ 2. Then the Above Poljak-Turźık (Π) problem admits a

kernel with at most O(k2) vertices.

Proof. By Corollary 5.14, APT (Π) can be reduced in polynomial time to SAPT (Π). Then it

is enough to show that SAPT (Π) admits a kernel with at most O(k2) vertices. Let (G,S, k)

be an instance of this problem and assume that G is reduced under Reduction Rule 5.23. Let

j ∈ N be such that ex(Kj) = 1−λ
2 +a, where a > 0. Let V (G−S) = V ′∪V ′′∪V ′′′, where V ′ is

the set of vertices contained in blocks of G−S with exactly one vertex, V ′′ is the set of vertices

contained in blocks of G− S with between 2 and j − 1 vertices and V ′′′ is the set of vertices

contained in blocks of G − S with at least j vertices (note that in general V ′′ ∩ V ′′′ 6= ∅).

Observe that the blocks containing V ′ are isolated blocks, therefore by Corollary 5.30 we may

assume that |V ′| ≤ (b0 + b1)k2 for some constants b0, b1 depending only on Π. Moreover, by

Lemma 5.32, there exists a constant b2 depending only on Π such that |V ′′| ≤ b2(j − 1)k2, or

the instance is a YES-instance.

Now, let B′′′ be the set of blocks of G − S which contain at least j vertices. Given a

block B ∈ B′′′, let jrB + lB be the number of its vertices, where 0 ≤ lB < j. Note that, by

Lemma 5.20 and Lemma 5.18, ex(B) ≥ rBa. Let d =
∑
B∈B′′′ rB and let G′′′ be the union of all

components of G−S which contain a block in B′′′. By Corollary 5.31, we may assume that G′′′

has at most (b0 + b1)k2 components. Furthermore, by repeated use of Lemma 5.5, we get that

ex(G′′′) ≥ da. Observe that G−G′′′ has at most |S| ≤ 6k
1−λ components: then, by Lemma 5.18,

93

ex(G) ≥ da− 1−λ
2 ((b0+b1)k2+ 6k

1−λ−1). Therefore if d ≥ 1
a

(
1−λ

2 ((b0+b1)k2+ 6k
1−λ−1)+k

)
, the

instance is a YES-instance. Otherwise, |V ′′′| ≤ 2dj ≤ bjk2, where b is a constant which depends

only on Π, which means that |V (G)| = |S|+|V (G−S)| ≤ 6k
1−λ +(b0 +b1 +b2(j−1)+bj)k2.

Before moving to the next section, we prove that even when we cannot use the strong

result of Theorem 5.34, we are able to derive a bound on |B≥3| using the bound on |B1|.

Lemma 5.35. The number of blocks in B≥3 is bounded by 3|B1|.

Proof. The proof is by induction on |B|. We may assume that G− S is connected, otherwise

we can prove the bound separately for every component. If |B| = 1, then |B≥3| = 0 and the

bound trivially holds. Suppose now that |B| = l + 1 ≥ 2 and that the bound holds for every

tree of cliques with at most l blocks. Let B ∈ B be a leaf block and let v be its root. Let

G′ = G − (V (B) \ {v}). G′ − S is a tree of cliques with at most l blocks, so by induction

hypothesis |B′≥3| ≤ 3|B′1|. Now, note that only block neighbours of B can be influenced by

the deletion of B: in other words, if a block B′ is not a block neighbour of B and B′ ∈ Bi,

then B′ ∈ B′i for every i ∈ {1, 2,≥ 3}.

We distinguish three cases.

Case 1 (B has at least three block neighbours): In this case it holds that Q = Q′, which ensures

that the deletion of B does not increase the number of leaf blocks, that is, |B′1| = |B1| − 1.

In addition, if a block neighbour B′ of B is in B≥3, then it is in B′≥3, which means that

|B′≥3| = |B≥3|. Therefore in this case, using the induction hypothesis it follows that |B≥3| =

|B′≥3| ≤ 3|B′1| = 3|B1| − 3.

Case 2 (B has two block neighbours): As in the previous case Q = Q′, hence |B′1| = |B1| − 1.

On the other hand, if a block neighbour B′ of B is in B≥3, it could be the case that B′ is in

B′2. Therefore, we only have |B′≥3| ≥ |B≥3|− 2. Using the induction hypothesis it follows that

|B≥3| ≤ |B′≥3|+ 2 ≤ 3|B′1|+ 2 = 3|B1| − 1.

Case 3 (B has exactly one block neighbour): Let B̃ be the only block neighbour of B. Again,

we distinguish three cases. If B̃ ∈ B1, then B and B̃ are the only blocks of G − S and

|B≥3| = 0, therefore the bound trivially holds. If B̃ ∈ B2, then B̃ is a leaf block in G′ − S,

hence |B1| = |B′1| and |B≥3| = |B′≥3|: the bound follows using the induction hypothesis.

Lastly, let B̃ ∈ B≥3. If |V (B̃)∩Q| ≥ 3, then |B′≥3| ≥ |B≥3|−1 and |B′1| = |B1|−1: therefore,

by induction hypothesis, |B≥3| ≤ |B′≥3|+1 ≤ 3|B′1|+1 ≤ 3|B1|−2. Otherwise, |V (B̃)∩Q| = 2

and B̃ is a leaf block in G′−S. In this case, |B′1| = |B1| and |B′≥3| = |B≥3|−1. Now, consider

94

the graph G′′ = G′ − (V (B̃) \ {v′}), where v′ is the root of B̃ in G′ − S. Deleting B̃ from G′

corresponds either to Case 1 or 2, hence it holds that |B′′1 | = |B′1| − 1 and |B′′≥3| ≥ |B′≥3| − 2.

Therefore, using the induction hypothesis on G′′ − S (which is a tree of cliques with l − 1

blocks) it follows that |B≥3| = |B′≥3| + 1 ≤ |B′′≥3| + 3 ≤ 3|B′′1 | + 3 = 3|B′1| = 3|B1|, which

concludes the proof.

Corollary 5.36. Let G be a connected graph reduced under Reduction Rule 5.23. Then

|B0| + |B1| + |B≥3| ≤ 4(b0 + b1)k2 (where b0 + b1 is the constant of Corollary 5.30), or the

instance is a YES-instance.

Proof. The bound follows from Corollary 5.30 and Lemma 5.35.

Note that combining Corollary 5.36 and Lemma 5.33 produces a bound on the number

of blocks which are not contained in a block path, and on the size of their interiors. As a

matter of fact, bounding the blocks in B2 looks like the most difficult part. We will not show

a straightforward bound as the one in Corollary 5.36: instead, we will tackle the problem on

a case-by-case basis.

5.2.2 Kernel when λ 6= 1
2

or K3 ∈ Π

Here, we will assume that λ 6= 1
2 , or that Π contains every graph whose underlying graph is

isomorphic to K3. In this case, we are able to make use of Theorem 5.34. The next lemmata

have the purpose of showing that the hypothesis of the theorem hold.

Lemma 5.37. It holds that ex(K3) ≥ 1− 2λ and, if λ > 1
2 , ex(K3) = 2− 2λ. In particular,

ex(K3) > 0 in every case.

Proof. Note that opt(G) ≥ 2 for any connected graph G ∈ G with at least two edges, because

any graph whose underlying graph is a path on three vertices is in Π by Lemma 5.6. Therefore,

opt(K3) ≥ 2, which ensures that ex(K3) ≥ 2− (3λ+ 1−λ
2 2) = 1− 2λ, which is strictly greater

than zero if λ < 1
2 .

Now, assume λ > 1
2 , let G ∈ G be such that U(G) = K3 and let V (G) = {v1, v2, v3}. Con-

sider U = {v1, v2} and W = {v3} and note that G[U], G[W] ∈ Π by Inclusiveness. Then,

by strong λ-subgraph extension, it holds that G ∈ Π, which ensures that opt(K3) = 3.

This means that ex(K3) = 3− (3λ+ 1−λ
2 2) = 2− 2λ > 0.

Lemma 5.38. If λ 6= 1
2 , then ex(K3) > 1−λ

2 or ex(K4) > 1−λ
2 . In particular, Π diverges on

cliques.

95

Proof. If λ > 1
2 , then by Lemma 5.37 ex(K3) = 2− 2λ > 1−λ

2 . If λ < 1
3 , then by Lemma 5.37

ex(K3) ≥ 1 − 2λ, which is greater than 1−λ
2 . Lastly, if 1

3 ≤ λ < 1
2 , let G ∈ G be such that

U(G) = K4 and let V (G) = {v1, v2, v3, v4}. Consider U = {v1, v2} and W = {v3, v4} and note

that G[U], G[W] ∈ Π by Inclusiveness. By strong λ-subgraph extension, it holds that

opt(G) ≥ 4, since λ > 1
4 . Therefore, ex(K4) ≥ 4− 6λ− 1−λ

2 3 = 5
2 −

9
2λ which is greater than

1−λ
2 .

Lemma 5.39. If K3 ∈ Π, then ex(K3) > 1−λ
2 . In particular, Π diverges on cliques.

Proof. If K3 ∈ Π, then opt(K3) = 3, which means that ex(K3) = 2− 2λ > 1−λ
2 .

Lemma 5.40. If λ 6= 1
2 or K3 ∈ Π, then ex(Ki) > 0 for all i ≥ 2.

Proof. By Lemma 5.38 and Lemma 5.39, ex(K3) > 1−λ
2 or ex(K4) > 1−λ

2 . In the first case,

by Lemma 5.21, it holds that ex(Kj) > 0 for all j ≥ 4, while in the second case, using the

same lemma, ex(Kj) > 0 for all j ≥ 5. In addition, by Lemma 5.37, ex(K3) > 0. Finally,

ex(K2) = 1− (λ+ 1−λ
2) = 1−λ

2 > 0.

Theorem 5.41. Let Π be a strongly λ-extendible property. If λ 6= 1
2 or K3 ∈ Π, then the

Above Poljak-Turźık (Π) problem admits a kernel with O(k2) vertices.

Proof. By Lemma 5.38 or Lemma 5.39, Π diverges on cliques. Furthermore, by Lemma 5.40,

ex(Ki) > 0 for all i ≥ 2. Then, by Theorem 5.34, APT (Π) admits a kernel with at most

O(k2) vertices.

5.2.3 Kernel when λ = 1
2

It is left to consider when λ = 1
2 and Π does not contain every graph whose underlying graph

is isomorphic to K3. In this case it is not true that every property diverges: for instance, the

size of an optimal solution for Max Cut on complete graphs with an odd number of vertices

is equal to the Poljak-Turźık bound, independently from how large the graphs are.

At the same time, in a sense, the situation with Max Cut is the ‘worst possible’. We will

show that every property Π, except ‘being bipartite’, diverges, and we will use this fact to

produce a kernel for APT (Π). Nonetheless, we are only able to do so for hereditary properties

on simple or oriented graphs.

Definition 5.42. A graph property Π is hereditary if, for any graph G and vertex-induced

subgraph G′ of G, if G ∈ Π then G′ ∈ Π.

96

Observe that all λ-extendible properties which Poljak and Turźık [78] described in their

paper are hereditary.

From now on, assume λ = 1
2 . The next theorem characterizes the hereditary properties

which are equivalent to ‘being bipartite’, in terms of the complete graphs with three vertices

they contain. Let GS contain all simple graphs.

Theorem 5.43. Suppose Π is hereditary and G3 /∈ Π for any G3 ∈ G such that U(G3) = K3.

Then for every G ∈ G, G ∈ Π if and only if U(G) ∈ ΠBP = {GS ∈ GS : GS is bipartite}.

Proof. First, assume for the sake of contradiction that Π contains a non-bipartite graph H.

Then H contains an odd cycle Cl. By choosing l as small as possible we may assume that Cl

is a vertex-induced subgraph of H. Then, since Π is hereditary, Cl is in Π. Note that if l = 3,

then U(C3) = K3, so this is not the case. Consider the graph H ′ obtained from Cl adding a

new vertex v and an edge from v to every vertex of Cl. Since both Cl and K1 = {v} are in Π,

by strong λ-subgraph extension we can find a subgraph of H ′ which contains Cl, v and

at least half of the edges between v and Cl. Since l is odd, for any choice of l+1
2 edges there

are two of them, say e1 = vu and e2 = vw, such that the edge uw is in E(Cl). Therefore,

since Π is hereditary, H ′[v, u, w] ∈ Π, which leads to a contradiction, as U(H ′[v, x, y]) = K3.

Now, we will show that all connected bipartite graphs are in Π, independently from any

possible labelling and/or orientation. We will proceed by induction. The claim is true for

j = 1, 2 by Inclusiveness. Assume j ≥ 3 and that every bipartite graph with l < j vertices is

in Π. Consider any connected bipartite graph H with j vertices, and let V1, V2 be a partition

of V (H) such that E(H) = E(V1, V2). Consider a vertex v such that H ′ = H − {v} is

connected. By induction hypothesis, H ′ ∈ Π. Consider the graph H ′′ obtained from H ′ and

G2, where G2 is any graph in G with U(G2) = K2 (let V (G2) = {v1, v2}), adding an edge

from vi, i = 1, 2, to w ∈ V (H ′) if and only if in H there is an edge from v to w. Colour red

the edges from v1 and blue the edges from v2.

Since G2 ∈ Π by Inclusiveness and H ′ ∈ Π, by strong λ-subgraph extension there

must exist a subgraph H̃ of H ′′ which contains G2, H ′ and at least half of the edges between

them. Note that the red edges are exactly half of the edges and that if H̃ contains all of them

and no blue edges, then we can conclude that H is in Π by Block additivity. The same

holds if H̃ contains every blue edge and no red edge.

If, on the contrary, H̃ contains one red and one blue edge, we will show that it contains a

vertex-induced cycle of odd length, which leads to a contradiction according to the first part

of the proof. First, suppose that both these edges contain w ∈ V (H ′): if this happens, H̃

97

contains a cycle of length 3 as a vertex-induced subgraph.

Now, suppose H̃ contains a red edge v1w1 and a blue edge v2w2. Since H ′ is connected,

there is a path from w1 to w2 and, since w1 and w2 are in the same side of the partition of

V (H) (that is, both in V1 or both in V2), the path has even length. Together with v1w1, v2w2

and v1v2, this gives a cycle of odd length. Choosing the shortest path between w1 and w2,

we may assume that the cycle is vertex-induced.

Thus, we conclude that the only possible choices to make H̃ are either picking the red

edges or picking the blue edges, which concludes the proof.

Theorem 5.43 ensures that when Π contains all and only bipartite graphs we can use the

following result to compute a polynomial kernel (see Section 5.3 for a proof).

Theorem 5.76. The Above Poljak-Turźık (ΠBP) problem admits a kernel with O(k3)

vertices.

Simple case

Theorem 5.44. Let GS be the class of simple graphs, that is, without any labelling or ori-

entation. Let Π ⊆ GS be a strongly λ-extendible property, with λ = 1
2 , and suppose Π is

hereditary. Then APT (Π) admits a kernel with O(k2) or O(k3) vertices.

Proof. Firstly, note that in this case there is only one graph, up to isomorphism, whose

underlying graph is K3 (namely, K3 itself). If K3 /∈ Π, by Theorem 5.43 Π = ΠBP and

therefore by Theorem 5.76 it admits a kernel with O(k3) vertices. On the other hand, if

K3 ∈ Π, then by Theorem 5.41 Π admits a kernel with O(k2) vertices.

Oriented case

When G is the class GO of oriented graphs, the proof of the existence of a polynomial kernel

is more involved. The difference is that in this case there are two different graphs whose

underlying graph is isomorphic to K3.

Definition 5.45. Let
→
K3∈ GO be such that U(

→
K3) is isomorphic to K3, V (

→
K3) = {v1, v2, v3}

and vivi+1 is oriented from vi to vi+1 for 1 ≤ i ≤ 3 (where subscripts are taken modulo 3).

We will call
→
K3 the oriented triangle.

Similarly, let
9
K3∈ GO be such that U(

9
K3) is isomorphic to K3, V (

9
K3) = {u1, u2, u3} and

uiuj is oriented from ui to uj for 1 ≤ i < j ≤ 3. We will call
9
K3 the non-oriented triangle.

98

It is not difficult to see that, up to isomorphism,
→
K3 and

9
K3 are the only graphs in GO

with K3 as underlying graph.

Lemma 5.46. If
→
K3∈ Π, then

9
K3∈ Π.

Proof. Consider the graph H obtained by adding a vertex v to
→
K3 and an edge from v to

vi ∈ V (
→
K3), oriented from v to vi (i = 1, 2, 3). Since

→
K3∈ Π, by strong λ-subgraph

extension there exists a subgraph H ′ ∈ Π of H which contains
→
K3, v and at least two edges

between
→
K3 and v: without loss of generality, assume these edges are vv1 and vv2. Then since

Π is hereditary H ′[v, v1, v2] ∈ Π and note that H ′[v, v1, v2] is isomorphic to
9
K3.

Lemma 5.46 shows that there are only three possibilities: (i) K3 ∈ Π, (ii)
→
K3 /∈ Π and

9
K3∈ Π, and (iii)

→
K3,

9
K3 /∈ Π. The one that we cannot immediately solve using the results of

the previous sections is the second one. The rest of this section is mainly devoted to study

this case.

Lemma 5.47. If
9
K3∈ Π, then ex(K4) > 1

4 . In particular, Π diverges on cliques.

Proof. Let H ∈ GO be such that U(H) is isomorphic to K4 and let V (H) = {w1, w2, w3, w4}.

If H[w1, w2, w3] and H[w2, w3, w4] are isomorphic to
→
K3, then H[w1, w2, w4] is isomorphic to

9
K3. Hence, for any orientation on the edges of H, the graph contains

9
K3 as a vertex-induced

subgraph. Now, since
9
K3∈ Π, by strong λ-subgraph extension there exists a subgraph

of H which is in Π and contains at least 5 edges, which means that opt(H) ≥ 5. This ensures

that ex(K4) ≥ 5− (3 + 3
4) = 5

4 , which concludes the proof.

Lemma 5.48. If
9
K3∈ Π, then ex(Kj) > 0 for every j 6= 3.

Proof. Note that ex(K4) > 1
4 , then by Lemma 5.21 ex(Kj) > 0 for every j ≥ 4. In addition,

ex(K2) = 1
4 .

When
→
K3 /∈ Π and

9
K3∈ Π, the property diverges by Lemma 5.47, but we cannot use

Theorem 5.34 because ex(
→
K3) = 0. Nonetheless, by Corollary 5.36 we only need to bound

|B2|.

Let B0
2 be the subset of B2 which contains all the blocks with excess zero which have no

internal vertices in N(S). Let Q0 denote the set of cutvertices of G−S which only appear in

blocks in B0
2. Note that every vertex in Q0 appears in exactly two blocks in B0

2.

99

Lemma 5.49. Suppose
→
K3 /∈ Π and

9
K3∈ Π. Let (G,S, k) be an instance of SAPT (Π) reduced

under Reduction Rule 5.23. For any s ∈ S, if |Q0 ∩N(s)| ≥ (b0 + b1 + 4)k2 (where b0 + b1 is

the constant of Corollary 5.30), then the instance is a YES-instance.

Proof. First, note that all the blocks in B0
2 are isomorphic to

→
K3 by Lemma 5.48. Observe that

every vertex in Q0 has at most two neighbours in Q0. Since all vertices in Q0 are cutvertices

of G−S, it follows that G[Q0 ∩N(s)] is a disjoint union of paths. It follows that we can find

a set Q′0 ⊆ Q0 ∩N(s) such that |Q′0| ≥
|Q0∩N(s)|

2 and Q′0 is an independent set.

For each v ∈ Q′0, let B1, B2 be the two blocks in B0
2 that contain v, and let vi be the

unique vertex in (Bi)int, for i ∈ {1, 2}. Then let U = {s} ∪Q′0 ∪ {vi : v ∈ Q′0, i ∈ {1, 2}}, and

observe that G[U] is a tree with 3|Q′0| edges. By Lemma 5.6 it follows that G[U] ∈ Π and

ex(G[U]) =
3|Q′0|

4 . By Lemma 5.18, ex(G) ≥ 3|Q′0|−c
4 , where c is the number of components of

G− U .

Consider the components of G− U . Each component either contains a block in B1 ∪ B≥3

or it is part of a block path of G − S containing two vertices from Q′0: by Corollary 5.30

there are at most (b0 + b1)k2 components of the first kind, while there are at most |Q′0| of the

second kind.

Thus, if 2|Q′0| − (b0 + b1)k2 ≥ 4k then we have a YES-instance; otherwise |Q0 ∩ N(s)| ≤

2|Q′0| ≤ (b0 + b1)k2 + 4k ≤ (b0 + b1 + 4)k2.

Lemma 5.49 is needed to bound the number of cutvertices adjacent to S. To ensure that

there cannot be long block paths which do not contain neighbours of S we will need the

following reduction rule:

Reduction Rule 5.50. Let B1, B2 ∈ B2 be blocks isomorphic to
→
K3 such that V (B1) ∩

V (B2) = {v}, {v} ∩ N(S) = ∅ and (Bi)int ∩ N(S) = ∅ for i = 1, 2. Let {wi} = (Bi)int and

{ui} = V (Bi) \ {v, wi} for i = 1, 2. If G − {v} is disconnected, delete v, w1, w2, identify u1

and u2 and set k′ = k. Otherwise, delete v, w1, w2 and set k′ = k − 1
4 .

Lemma 5.51. If
→
K3 /∈ Π, then Reduction Rule 5.50 is valid.

Proof. Let G′ be the graph which is obtained after an application of the rule. Initially, suppose

that G − {v} is disconnected and let G′′ be the graph obtained from G deleting v, w1 and

w2 and without identifying any vertices. Then, note that G′′ has two connected components,

one containing u1 and the other containing u2: hence, G′ is connected. Additionally, observe

that pt(G) = pt(G′′) + pt(G[{v, w1, w2, u1, u2}]), opt(G′′) = opt(G′) (by Block additivity)

100

and pt(G′′) = pt(G′). If, on the other hand, G − {v} is connected, then pt(G) = pt(G′) +

pt(G[{v, w1, w2, u1, u2}]) − 1
4 . In both cases, pt(G[{v, w1, w2, u1, u2}]) = 4. Let G̃ = G′′

if G − {v} is disconnected and G̃ = G′ otherwise: we are done if we show that opt(G) =

opt(G̃) + 4.

Let H̃ ∈ Π be a subgraph of G̃: we may assume that H̃ is a spanning subgraph, otherwise

we may extend it adding a spanning tree for every connected component of G̃− V (H̃) (note

that the resulting graph is in Π by Inclusiveness and Block additivity). Moreover,

G[v, w1, w2] is a tree and is in Π by Lemma 5.6. Then, by strong λ-subgraph extension

there exists a subgraph H ∈ Π of G which contains H̃, G[v, w1, w2] and at least half of the

edges between them. Note that these edges are exactly four: vu1, w1u1, vu2 and w2u2. If vu1

and w1u1 are in E(H), then since Π is hereditary it holds that
→
K3∈ Π, which is a contradiction.

Similarly if vu2 and w2u2 are in E(H). This means that exactly two edges among them are

in E(H), that is that |E(H)| = |E(H̃)| + 4, which ensures that opt(G) ≥ opt(G̃) + 4. On

the other hand, if H ∈ Π is a subgraph of G, then H[V (G̃)] is a subgraph of G̃ which is

in Π because Π is hereditary. If |E(H[{v, w1, w2, u1, u2}]) ≥ 5, then
→
K3 is a vertex-induced

subgraph of H and is therefore in Π, a contradiction. Thus, opt(G) ≤ opt(G̃) + 4.

Finally, observe that the rule can be applied in polynomial time, as the block decomposition

of G− S can be computed in polynomial time.

Note that every time Rule 5.50 applies, the resulting graph contains less vertices, hence

we can compute in polynomial time a graph which is reduced under this rule. We are finally

able to describe the kernelization.

Theorem 5.52. Let GO be the class of oriented graphs. Let Π ⊆ GO be a strongly λ-extendible

property, with λ = 1
2 , and suppose Π is hereditary. Then APT (Π) admits a kernel with O(k2)

or O(k3) vertices.

Proof. If
→
K3∈ Π, by Lemma 5.46

9
K3∈ Π. This means that K3 ∈ Π and, by Theorem 5.41,

APT (Π) admits a kernel with O(k2) vertices. On the other hand, if
→
K3 /∈ Π and

9
K3 /∈ Π, then,

by Theorem 5.43, G ∈ Π if and only if U(G) ∈ ΠBP for every G ∈ G; hence, by Theorem 5.76,

APT (Π) admits a kernel with O(k3) vertices.

Lastly, suppose
9
K3∈ Π and

→
K3 /∈ Π. By Corollary 5.14, APT (Π) can be reduced in

polynomial time to SAPT (Π), so it is enough to describe a kernelization for the latter problem.

By Lemma 5.47, Π diverges on cliques. Let (G,S, k) be an instance of SAPT (Π) reduced

by Reduction Rule 5.23 and 5.50: note that by Lemma 5.24 and Lemma 5.51 both rules are

101

valid.

By Corollary 5.36, we may assume that |B0| + |B1| + |B≥3| ≤ 4(b0 + b1)k2, for some

constants b0, b1 depending only on Π. We now need to consider different types of blocks in B2

separately. Let B+
2 be the blocks in B2 with positive excess. By Lemma 5.32, we may assume

the number of such blocks is at most b2k
2 for some constant b2 depending only on Π.

Let B′2 be the blocks in B2 \B+
2 which have an interior vertex in N(S). By Corollary 5.29,

we may assume the number of such blocks is at most b1k
2.

Let B′′2 be the blocks in B2 \ (B+
2 ∪B′2) which contain a vertex in Q∩N(S). Observe that

these blocks must either contain a vertex of Q0∩N(S) or be adjacent to a block in B1,B≥3,B+
2

or B′2. Furthermore they must be in block paths between such blocks, from which it follows

that |B′′2 | ≤ 2(|B1|+ |B≥3|+ |B+
2 |+ |B′2|+ |Q0 ∩N(S)|).

Finally let B′′′2 = B2 \ (B+
2 ∪B′2 ∪B′′2). These are just the blocks in B2 with excess 0 which

contain no neighbours of S. By Reduction Rule 5.50, no two such blocks can be adjacent.

Therefore every block in B′′′2 is adjacent to two blocks from B1,B≥3,B+
2 ,B′2 or B′′2 . It follows

that |B′′′2 | ≤ |B1|+ |B≥3|+ |B+
2 |+ |B′2|+ |B′′2 |.

Note that by Lemma 5.49 and the fact that |S| ≤ 12k, we may assume that |Q0∩N(S)| ≤

b4k
3 for some constant b4 depending only on Π. Then we may conclude from the above that

|B′2|+ |B′′2 |+ |B′′′2 | ≤ b5k3 for some constant b5 depending only on Π.

Therefore the total number of blocks in G− S is at most 4(b0 + b1)k2 + b2k
2 + b5k

3.

By Lemma 5.33, we may assume that the number of vertices contained in any block is at

most b3k, for some constant b3 depending only on Π. It follows that the number of vertices in

blocks from B0,B1,B≥3 or B+
2 is at most b3(b0 + b1 + b2)k3. To bound the number of vertices

in blocks from B′2 ∪ B′′2 ∪ B′′′2 , note that each of these blocks contains at most 3 vertices, by

Lemma 5.48 and the fact that these blocks have excess 0 by definition. Therefore the number

of vertices in blocks from B′2 ∪B′′2 ∪B′′′2 is at most 3b5k
3. Finally, recalling that |S| ≤ 12k, we

have that the number of vertices in G is at most O(k3), as required.

5.3 Signed Max Cut

The Signed Max Cut problem is a generalization of Max Cut to signed graphs. A signed

graph is a simple graph where every edge is labelled by + or −. An edge is positive if it is

labelled + and negative otherwise: the labels are the signs of the corresponding edges.

Let G = (V,E) be a signed graph and let V = V1 ∪ V2 be a partition of V . We say that G

102

is (V1, V2)-balanced if an edge with both endpoints in V1, or both endpoints in V2, is positive,

and an edge with one endpoint in V1 and one endpoint in V2 is negative; G is balanced if it is

(V1, V2)-balanced for some partition V1, V2 of V (V1 or V2 may be empty). The problem we

will consider in this section is defined as follows.

Signed Max Cut APT

Input: A pair (G, k) where G = (V,E) is a connected signed graph, and k

is an integer.

Parameter: k

Question: Is there a balanced subgraph H of G with at least pt(G) + k edges?

When a graph contains only negative edges, Signed Max Cut APT asks for a bipartite

subgraph of U(G) with at least pt(G) + k edges, therefore the problem is equivalent to Max

Cut APT. The problem, in general, has various applications and interesting theoretical

properties [14, 25, 51, 86]. Previously, it has been studied from the parameterized point of

view by Hüffner et al. [56], who considered the parameterization below the number of edges

(that is, decide whether there exists a balanced subgraph with at least |E| − k edges, where

k is the parameter), and showed that it admits an FPT -algorithm.

In this section, we will show that Signed Max Cut APT admits a polynomial kernel, and

we will use the result to derive a polynomial kernel for Max Cut APT, thus proving Theorem

5.76, which has been used in Section 5.2 to prove the existence of a generic kernelization for

APT (Π).

For an edge set F of a signed graph G, F+ and F− denote the set of positive and negative

edges of F , respectively. Let G = (V,E) be a signed graph. For a partition V1, V2 of the

vertex set V of a signed graph G = (V,E), the balanced subgraph H induced by this partition

is the subgraph of G which contains all the positive edges in G[V1] and G[V2], and all the

negative edges in E(V1, V2).

We say that a cycle C in G is positive if the number of negative edges is even, and it is

negative otherwise. A triangle is a cycle with three edges. If G is a signed graph, the positive

neighbours of W ⊆ V are the neighbours of W in G+ = (V,E+); the set of positive neighbours

is denoted N+
G (W). Similarly, for the negative neighbours and N−G (W). The next theorem is

a well-known characterization of the condition of ‘being balanced’.

Theorem 5.53. [51] A signed graph G is balanced if and only if every cycle in G is positive.

For a subset W ⊆ V , the W -switch of G is the signed graph GW obtained from G by

103

switching the signs of the edges in E(W,V \W). Note that the sizes of the largest balanced

subgraphs of G and of GW are the same; in fact, the balanced subgraph H of G induced by

a partition V1, V2 is isomorphic to the balanced subgraph H ′ of GW induced by (V1 \W) ∪

(V2 ∩W) and (V2 \W) ∪ (V1 ∩W).

The next theorems, which we state without proof, will prove useful later.

Theorem 5.54. [43] Let G = (V,E) be a signed graph. Deciding whether G is balanced is

solvable in polynomial time. Moreover, if G is balanced then, in polynomial time, we can find

a subset W of V such that GW has no negative edges.

Theorem 5.55. [21] Let (G = (V,E), k) be an instance of Signed Max Cut APT, let

U ⊆ V and let G[U] be a chordal graph which does not contain a positive triangle. Then there

exists a set W ⊆ U , such that the instance (GW , k) is equivalent to (G, k), and GW [U] does

not contain positive edges.

For the following, it will be useful to note that a forest of cliques is a chordal graph.

Now, we want to show that the notion of strongly λ-extendible property is general enough

to capture the property of ‘being balanced’.

Theorem 5.56. Let G+
− contain all signed graphs, let ΠBL ⊆ G+

− contain all balanced graphs

and let λ = 1
2 . Then ΠBL is a hereditary strongly λ-extendible property.

Proof. It is hereditary because if a graph contains no negative cycles then the same is true

for every subgraph. Now, observe that K1 and K2 are balanced for every labelling because

they contain no cycles, hence Inclusiveness holds. Moreover, Block additivity holds

because a graph does not contain a negative cycle if and only if its blocks do not contain

a negative cycle, as every cycle is contained in one block. Finally, let G = (V,E) be any

signed graph and assume that G[U] and G[W] are balanced graphs for a partition U,W of V .

Let U1 ⊆ U and W1 ⊆ W be such that G[U]U1
and G[W]W1

contain no negative edges (see

Theorem 5.54). Let X = U1 ∪W1 ⊆ V . Let F ⊆ E(U,W) contain all the edges which are

positive in GX , or all the edges which are negative (select the largest group). In the first case,

(GX) \ (E(U,W) \ F) contains no negative edges; in the other, let Y = (U \ U1) ∪W1 and

observe that (GY)\(E(U,W)\F) contains no negative edges. In both cases we find a balanced

subgraph of G containing G[U] and G[W] and at least half of the edges in E(U,W).

Observe that Signed Max Cut APT is equivalent to the Above Poljak-Turźık (ΠBL)

problem. Therefore, we can use the results of Section 5.1, in particular Theorem 5.13, to

immediately obtain the following result.

104

Theorem 5.57. Given an instance (G, k) of Signed Max Cut APT, in polynomial time

it is possible either to answer YES, or to produce a set S ⊆ V such that G − S is a forest of

cliques, and |S| ≤ 12k.

Making use of Theorem 5.57, we only need to bound the number of vertices in G − S.

First of all, we need to modify the graph in such a way that G − S contains only negative

edges. Let B be the set of blocks of G − S and recall the definitions of B0,B1,B2,B≥3 from

Section 5.2:

• B0 is the set of all blocks of G− S which contain no cutvertex of G− S, and therefore

have no block neighbour;

• B1 is the set of all blocks of G − S which contain exactly one cutvertex of G − S, and

therefore have at least one block neighbour;

• B2 is the set of all blocks of G− S which contain exactly two cutvertices of G− S, and

have exactly two block neighbours; and,

• B≥3 is the set of all the remaining blocks of G−S. A block of G−S is in B≥3 if and only

if it contains at least two cutvertices of G− S, and has at least three block neighbours.

We will need a reduction rule:

Reduction Rule 5.58. Let B ∈ B1 be a leaf block which does not contain a neighbour of

S in its interior. If B contains no positive triangles, then delete Bint and decrease k by 1
4 if

|V (B)| is even, and leave it the same otherwise.

Lemma 5.59. Reduction Rule 5.58 is valid.

Proof. It is not difficult to see that the rule can be applied in polynomial time. Now, let

(G′, k′) be the instance obtained after an application of Rule 5.58. Then by Lemma 5.5,

ex(G) = ex(G′) + ex(B), as B − {v} is a connected component of G − {v}, where v is the

root of B. Now, observe that by Theorem 5.55 we may assume that B contains only negative

edges, as it does not contain a positive triangle by hypothesis. Hence, opt(B) is equal to the

maximum size of a bipartite subgraph of B, which is equal to pt(B) + 1
4 if |V (B)| is even, and

is equal to pt(B) otherwise.

We will show that we can add the vertices of the positive triangles in G−S to S, and that

in doing so the size of S increases only by a constant, or the instance is a YES-instance.

105

Theorem 5.60. Given an instance (G, k) of Signed Max Cut APT and a set S ⊆ V ,

such that G − S is a forest of cliques and |S| ≤ 12k, in polynomial time it is possible either

to answer YES, or to find a set S′ ⊇ S of vertices such that G−S′ is a forest of cliques which

does not contain positive edges, and |S′| ≤ 60k.

Proof. Start by exhaustively applying Reduction Rule 5.58: every time the rule applies, the

number of vertices of G decreases, so in polynomial time we obtain a graph which is reduced

under this rule. Then greedily construct a set T of edge-disjoint positive triangles in G− S,

with the condition that triangles chosen in the same block must also be vertex-disjoint. We

will show that either (G, k) is a YES-instance, or |T | is bounded. Let U be the set of vertices

contained in triangles in T and, for every block B in B(G[U]), let TB be the set of triangles in

T which are contained in B. Note that every block of G[U] is contained in a block of G− S.

Hence, by repeated use of Lemma 5.5 and Lemma 5.18, we obtain that

ex(G[U]) =
∑

B∈B(G[U])

ex(B) ≥
∑

B∈B(G[U])

(|TB | −
1

4
(|TB | − 1))

Hence ex(G[U])− 1
4 |C(G[U])| ≥ ex(G[U])− 1

4 |B(G[U])| ≥
∑
B∈B(G[U])

3
4 |TB | =

3
4 |T |.

Now we consider the components of G − U . We will show by induction on the number

of blocks of G − S that they are at most 2|T | + |S|. If there is only one block B, if B does

not contain a positive triangle then U = ∅ and G − U is connected, otherwise G − U has at

most |S|+ 1 components and we are done. Now assume that G− S contains r > 1 blocks. If

B1 = ∅, then B = B0: in this case, G − U has at most |S| + |T | components, as every block

which is disconnected from S in G − U contains a positive triangle. So assume that B1 6= ∅

and let B ∈ B1. Since the graph is reduced under Reduction Rule 5.58, either B contains a

positive triangle in T or Bint \U contains a neighbour of S. The idea is that we want to delete

B to use the induction hypothesis, but simply doing this is not enough, as the resulting graph

may not be reduced under Reduction Rule 5.58.

Hence, let B0, B1, . . . , Bl, Bl+1 be a sequence of blocks in G − S such that the subgraph

induced by V (B1) ∪ · · · ∪ V (Bl) is a block path, B0 = B and Bl+1 /∈ B2 (note that it may

be l = 0). Let j ≤ l + 1 be the greatest index such that B1, . . . , Bj do not contain a positive

triangle in T and Bj+1 does; if B1, . . . , Bl+1 do not contain a positive triangle in T , simply

let j = l + 1. Delete ∪j−1
i=0V (Bi) ∪ (Bj)int and call G′ the resulting graph. Observe that

B′1 ⊆ (B1 ∪ {Bj+1}) \ {B} if j ≤ l and B′1 = B1 \ {B} if j = l + 1. In both cases G′ − S is

reduced under Reduction Rule 5.58 and we may apply the induction hypothesis, which says

that G′ − U has at most 2|T ′| + |S| components, where T ′ is the set of positive triangles in

106

T which are contained in G′ − S.

If B contains a positive triangle in T , then 2|T ′| + |S| ≤ 2|T | − 2 + |S|, and observe

that G − U has at most 2 components more than G′ − U (one containing B − U and the

other containing V (B1) ∪ · · · ∪ V (Bj)). If on the other hand Bint contains a neighbour of S

and B does not contain a positive triangle in T , then the component of G − U containing

V (B0)∪· · ·∪V (Bj) also contains a vertex in S, and there are at most |S| of these components.

This completes the induction step.

Finally, using Lemma 5.18 we can see that ex(G) ≥ ex(G[U]) + ex(G−U)− 1
4 (|C(G[U])|+

|C(G − U)| − 1) ≥ 1
4 (|T | − |S| + 1). Hence if |T | ≥ |S| − 1 + 4k, then the instance is a

YES-instance. Otherwise, |T | ≤ 16k and |U | ≤ 48k. In this case, form S′ adding U to S and

note that |S′| ≤ 60k and G−S′ is a forest of cliques which does not contain a positive triangle

(because of the way T was constructed). To conclude it is enough to apply Theorem 5.55 to

G− S′, which is possible because a forest of cliques is a chordal graph.

From now on, we may assume that (G = (V,E), k) is an instance of Signed Max Cut

APT and S ⊆ V is a set of at most O(k) vertices such that G−S is a forest of cliques which

does not contain positive edges.

Observe that solving the problem on subgraphs of G − S is equivalent to solving Max

Cut APT. We will use this equivalence in multiple occasions in our proofs, mainly to find

largest solutions on complete graphs.

We now state the reduction rules that will be used to obtain the kernel.

Reduction Rule 5.61. Let B be a block in G − S. If there exists U ⊆ Bint such that

|U | > |V (B)|+|NG(U)∩S|
2 ≥ 1, N+

G (u) ∩ S = N+
G (U) ∩ S and N−G (u) ∩ S = N−G (U) ∩ S for all

u ∈ U , then delete two arbitrary vertices u1, u2 ∈ U and set k′ = k.

Reduction Rule 5.62. Let B be a block in G−S. If |V (B)| is even and there exists U ⊆ Bint

such that |U | = |V (B)|
2 and NG(U) ∩ S = ∅, then delete a vertex u ∈ U and set k′ = k − 1

4 .

Reduction Rule 5.63. Let B be a block in G−S with vertex set {u, v, w}, such that NG(w) =

{u, v}. If the edge uv is a bridge in G−{w}, delete V (B), add a new vertex z, positive edges

{zx : x ∈ N+
G−{w}({u, v})}, negative edges {zx : x ∈ N−G−{w}({u, v})} and set k′ = k.

Otherwise, delete w and the edge uv and set k′ = k − 1
4 .

Reduction Rule 5.64. Let C be a connected component of G− S only adjacent to a vertex

s ∈ S. Form a Max Cut with Weighted Vertices instance on C (see Section 5.1.1) by

107

defining w0(v) = 1 if v ∈ N+
G (s) ∩ C (w0(v) = 0 otherwise) and w1(v) = 1 if v ∈ N−G (s) ∩ C

(w1(v) = 0 otherwise). Let p ∈ N be the maximum integer such that (C,w0, w1, p) is a

YES-instance. Then delete C and set k′ = k − p+ pt(V (C) ∪ {s}).

To prove that these rules are valid, we need the following two lemmas.

Lemma 5.65. Let B be a block in G − S. If there exists U ⊆ Bint such that |U | ≥ |V (B)|
2 ,

then there exists a (V1, V2)-balanced subgraph H of G with opt(G) edges such that at least one

of the following inequalities holds:

• |V2 ∩ V (B)| ≤ |V1 ∩ V (B)| ≤ |NG(U) ∩ S|+ |V2 ∩ V (B)|;

• |V2 ∩ V (B)| ≤ |V1 ∩ V (B)| ≤ |V2 ∩ V (B)|+ 1.

Proof. Let H be a (V1, V2)-balanced subgraph of G with opt(G) edges for some partition V1, V2

of V . We may assume that |V1∩V (B)| ≥ |V2∩V (B)|. Note that if |V1∩V (B)| > |V2∩V (B)|,

then U ∩ V1 6= ∅ (because |U | ≥ |V (B)|
2).

First, if NG(U) ∩ S = ∅ and |V1 ∩ V (B)| ≥ |V2 ∩ V (B)| + 2, then, for any u ∈ U ∩ V1,

the balanced subgraph induced by the partition V1 \ {u}, V2 ∪ {u} has more edges than the

balanced subgraph induced by (V1, V2), which is a contradiction.

Now, suppose that NG(U) ∩ S 6= ∅ and suppose also that |V1 ∩ V (B)| − |V2 ∩ V (B)| is

minimal. If |V1 ∩ V (B)| ≤ |V2 ∩ V (B)| + 1 we are done, so suppose |V1 ∩ V (B)| ≥ |V2 ∩

V (B)| + 2. Consider the partition V ′1 = V1 \ {u}, V ′2 = V2 ∪ {u}, where u ∈ V1 ∩ U , and

the balanced subgraph H ′ induced by this partition. Then |E(H ′)| ≥ |E(H)| + |E(V1 \

{u}, {u})| − |E(V2, {u})| ≥ |E(H)| + (|V1 ∩ V (B)| − 1 − |NG(U) ∩ S| − |V2 ∩ V (B)|). Since

|V ′1 ∩ V (B)| − |V ′2 ∩ V (B)| < |V1 ∩ V (B)| − |V2 ∩ V (B)|, it holds that |E(H ′)| ≤ |E(H)| − 1.

Therefore, |V1 ∩ V (B)| ≤ |NG(U) ∩ S|+ |V2 ∩ V (B)|.

Lemma 5.66. Let B be a block in G − S. If there exists U ⊆ Bint such that |U | >
|V (B)|+|NG(U)∩S|

2 , N+
G (u) ∩ S = N+

G (U) ∩ S and N−G (u) ∩ S = N−G (U) ∩ S for all u ∈ U ,

then, for any u1, u2 ∈ U , there exists a (V1, V2)-balanced subgraph H of G with opt(G) edges

such that u1 ∈ V1 and u2 ∈ V2.

Proof. First, we claim that there exist vertices u1, u2 ∈ U for which the result holds. Let H

be a (V1, V2)-balanced subgraph of G with opt(G) edges as given by Lemma 5.65.

Suppose NG(U)∩S = ∅. Then, by Lemma 5.65 it holds that |V2 ∩V (B)| ≤ |V1 ∩V (B)| ≤

|V2 ∩ V (B)| + 1; in addition, |U | > |V (B)|
2 . Hence, either we can find u1 and u2 as required,

or U = V1 ∩V (B) and |V1 ∩V (B)| = |V2 ∩V (B)|+ 1. In the second case, pick a vertex u ∈ U

108

and form the partition V ′1 = V1 \ {u} and V ′2 = V2 ∪ {u}. Consider the balanced subgraph H ′

induced by this partition. Observe that |E(H ′)| = |E(H)|−|E({u}, V2)|+ |E({u}, V1\{u})| =

|E(H)|− |V2 ∩V (B)|+ |V1 ∩V (B)|− 1 = |E(H)|, so H ′ is a balanced subgraph of size opt(G)

for which we can find u1 and u2 as required.

Now, suppose NG(U) ∩ S 6= ∅. Then by Lemma 5.65 it holds that |V2 ∩ V (B)| ≤ |V1 ∩

V (B)| ≤ |NG(U) ∩ S| + |V2 ∩ V (B)|. For the sake of contradiction, suppose U ⊆ V1 ∩ V (B)

or U ⊆ V2 ∩ V (B): in both cases, this means that |U | ≤ |V1 ∩ V (B)|. Note that |V (B)| =

|V1 ∩ V (B)|+ |V2 ∩ V (B)| = 2|V2 ∩ V (B)|+ t, where t ≤ |NG(U) ∩ S|. Hence, |V1 ∩ V (B)| ≥

|U | > |V (B)|+|NG(U)∩S|
2 = |V2 ∩V (B)|+ t

2 + |NG(U)∩S|
2 ≥ |V2 ∩V (B)|+ t = |V1 ∩V (B)|, which

is a contradiction.

To conclude the proof, notice that for a (V1, V2)-balanced subgraph H of G with opt(G)

edges and vertices u1, u2 ∈ U such that u1 ∈ V1 and u2 ∈ V2, we have |E(H)| = |E(H ′)|,

where H ′ is a balanced subgraph induced by V ′1 = V1 \{u1}∪{u2} and V ′2 = V2 \{u2}∪{u1}:

this is true because N+
G (u1) ∩ S = N+

G (u2) ∩ S and N−G (u1) ∩ S = N−G (u2) ∩ S.

Theorem 5.67. Reduction Rules 5.61-5.64 are valid.

Proof. It is not difficult to see that all rules can be applied in polynomial time (for Rule 5.64,

this is true because Max Cut with Weighted Vertices can be solved in polynomial time

on a forest of cliques, see Lemma 5.15). Moreover, each of them reduces the order of the

graph, hence they can be applied at most O(|V |) times.

Rule 5.61: Let B,U be as in the description of Rule 5.61. Let u1, u2 ∈ U . By Lemma

5.66, there exists a (V1, V2)-balanced subgraph H of G with opt(G) edges such that u1 ∈ V1

and u2 ∈ V2. Now, let G′ = G − {u1, u2} and H ′ = H − {u1, u2}, and note that G′ is

connected. Since N+
G (u1) ∩ S = N+

G (u2) ∩ S and N−G (u1) ∩ S = N−G (u2) ∩ S, it holds

that |E(H)| = |E(H ′)| + |E(G,{u1,u2})|
2 + 1, and so opt(G′) + |E(G,{u1,u2})|

2 + 1 ≥ opt(G).

Conversely, by Lemma 5.18, opt(G) ≥ opt(G′) + |E(G,{u1,u2})|
2 + 1. Finally, observe that

pt(G) = pt(G′) + |E(G,{u1,u2})|
2 + 1, which implies that ex(G) = ex(G′).

Rule 5.62: Let B,U be as in the description of Rule 5.62. Let u ∈ U . By Lemma 5.65,

there exists a (V1, V2)-balanced subgraph H of G with opt(G) edges, such that |V1 ∩ V (B)| =

|V2 ∩ V (B)|. Consider the graph G′ = G − {u} formed by the application of the rule and

the balanced subgraph H ′ = H − {u}, and note that G′ is connected. Then |E(H)| =

|E(H ′)|+ |V (B)|
2 , and thus opt(G′) ≥ opt(G)− |V (B)|

2 . Conversely, by Lemma 5.18, opt(G) ≥

opt(G′) + |V (B)|
2 . However, pt(G) = pt(G′) + |V (B)|

2 − 1
4 . Hence, ex(G) = ex(G′) + 1

4 .

109

Rule 5.63: Let B and {u, v, w} be as in the description of Rule 5.63, and let G′ be the graph

obtained after an application of the rule. Firstly consider the case when uv is a bridge in

G−{w}. Note that the vertex z which replaces u and v is well-defined as in this case u and v

have no common neighbour apart w; in addition, G′ is connected. For any maximal balanced

subgraph H of G (that is, a balanced subgraph which is not properly contained in a larger

balanced subgraph of G), without loss of generality one may assume that uw, vw ∈ E(H) and

uv /∈ E(H). Suppose H is induced by a partition (V1, V2) and u, v ∈ V1. Form a balanced

subgraph of G′ from H −{u, v, w} by placing z in V1. Therefore, opt(G) = opt(G′) + 2. Since

pt(G) = pt(G′) + 3
2 + 2

4 = pt(G′) + 2, it follows that ex(G) = ex(G′).

Now consider the case when uv is not a bridge in G− {u}. Then the graph G′ formed by

deleting the vertex w and the edge uv is connected. Furthermore, regardless of whether u and

v are in the same partition that induces a balanced subgraph H ′ of G′, H ′ can be extended

to a balanced subgraph H of G such that |E(H)| = |E(H ′)|+ 2. This means that, as before,

opt(G) = opt(G′) + 2. But in this case pt(G) = pt(G′) + 7
4 and thus ex(G) = ex(G′) + 1

4 .

Rule 5.64: Let C and s ∈ S be as in the description of Rule 5.64. Solving Max Cut with

Weighted Vertices gives opt(G[V (C)∪{s}]). Moreover, s is a cutvertex, hence by Lemma

5.5, ex(G) = ex(G− C) + ex(G[V (C) ∪ {s}]) = ex(G− C) + p− pt(V (C) ∪ {s}).

As in Section 5.2, we will bound the number of vertices in each block and the total number

of blocks. The difference is that in this case we will make use of the specific properties of

Signed Max Cut to locally solve the instance in an optimal way.

Henceforth, we assume that the instance (G,S, k) is such that G is reduced under Reduc-

tion Rules 5.61-5.64, G − S is a forest of cliques which does not contain a positive edge and

S contains at most O(k) vertices.

We begin with two results about the neighbours of S in the interior of blocks in B0∪B1∪B2.

For a block B ∈ B, let Bext = V (B) \Bint.

Lemma 5.68. For every block B ∈ B0 ∪ B1, NG(Bint) ∩ S 6= ∅. Furthermore, if C is a

component of G− S and |NG(S) ∩ V (C)| = 1, then C consists of a single vertex.

Proof. We start by proving the first claim. Note that if B ∈ B0 consists of a single vertex,

then NG(Bint) ∩ S 6= ∅ since G is connected, and if B ∈ B1, then it contains at least two

vertices. So assume that B has at least two vertices. Suppose that NG(Bint) ∩ S = ∅ and let

U = Bint. Then if |Bint| > |Bext|, Rule 5.61 applies. If |Bint| = |Bext| then Rule 5.62 applies.

Otherwise, |Bint| < |Bext|, and, since |Bext| ≤ 1, B has only one vertex, which contradicts our

110

assumption above. For the second claim, first note that since |NG(S)∩V (C)| = 1, C consists

of a single block. Let NG(S)∩V (C) = {v} and U = V (C)−{v}. If |U | > 1, Rule 5.61 applies.

If |U | = 1, Rule 5.62 applies. Hence V (C) = {v}.

Let B′2 be the set of blocks B of B2 such that |Bext| = 2 and |Bint| = 0.

Lemma 5.69. If B ∈ (B2 \ B′2), then NG(Bint) ∩ S 6= ∅.

Proof. Let B ∈ B2 and assume that NG(Bint) ∩ S = ∅. Recall that by definition |Bext| = 2.

If |Bint| > 2, then Rule 5.61 applies. If |Bint| = 2, then Rule 5.62 applies. If |Bint| = 1, then

Rule 5.63 applies. Hence it must hold that |Bint| = 0 and B ∈ B′2.

The next lemma provides a similar bound to the one given by Lemma 5.28 for diverging

strongly λ-extendible properties. The proof is analogous.

Lemma 5.70. If there exists a vertex s ∈ S such that
∑
B∈B |NG(Bint)∩{s}| ≥ 2(|S|−1+4k),

then (G, k) is a YES-instance.

Proof. Form U ′ ⊆ NG(s) by picking a vertex from each block B for which |NG(Bint)∩{s}| = 1:

if there exists a vertex v ∈ Bint such that NG(v) ∩ S = {s}, pick this, otherwise pick v ∈ Bint

arbitrarily. Let U = U ′ ∪ {s} and W = V \ U .

Observe that G[U] is connected and it is balanced because it is a tree. Thus ex(G[U]) =

|U ′|
4 . Now, consider a connected component C of G− S. By Rule 5.64, |NG(C) ∩ S| ≥ 2 and

by Lemma 5.68, if |NG(S) ∩ V (C)| = 1 then C consists of a single vertex. Otherwise, either

(NG(S) \NG(s)) ∩ V (C) 6= ∅, or C has at least two vertices in U ′. Moreover, note that the

deletion of interior vertices does not disconnect the component itself. Hence G[W] has at most

(|S| − 1) + |U ′|
2 connected components. Applying Lemma 5.18, ex(G) ≥ |U

′|
4 −

(|S|−1)+
|U′|
2

4 =

|U ′|
8 −

|S|−1
4 . Hence if |U ′| ≥ 2(|S| − 1 + 4k), then (G, k) is a YES-instance.

Corollary 5.71. If
∑
B∈B |NG(Bint) ∩ S| ≥ |S|(2|S| − 3 + 8k) + 1, the instance is a YES-

instance. Otherwise,
∑
B∈B |NG(Bint) ∩ S| ≤ b1k2 for some constant b1.

Proof. If
∑
B∈B |NG(Bint) ∩ S| ≥ |S|(2|S| − 3 + 8k) + 1, then for some s ∈ S we have∑

B∈B |NG(Bint)∩{s}| ≥ 2|S|− 3 + 8k+ 1
|S| and, since the sum is integral,

∑
B∈B |NG(Bint)∩

{s}| ≥ 2(|S| − 1 + 4k). Thus, by Lemma 5.70 (G, k) is a YES-instance. The second inequality

of the corollary follows from the fact that |S| ∈ O(k).

111

Corollary 5.71 can be used to bound the number of blocks in B0 ∪ B1 ∪ (B2 \ B′2), as by

Lemma 5.68 and Lemma 5.69 all these blocks contain a neighbour of S in the interior. For

the blocks in B′2 we will need the following lemma.

Lemma 5.72. If in G − S there exist vertices U = {u1, u2, . . . , up} such that NG−S(ui) =

{ui−1, ui+1} for 2 ≤ i ≤ p− 1, and p ≥ |S|+ 4k + 1, then (G, k) is YES-instance. Otherwise,

p ≤ b2k for some constant b2.

Proof. Observe that G[U] is balanced since it is a tree. Thus ex(G[U]) = p−1
4 . Let W = V \U

and observe that G[W] has at most |S| components, since by Lemma 5.68 for every vertex in

G − U there is a path to a vertex in S. Applying Lemma 5.18, ex(G) ≥ p−1
4 −

|S|
4 . Hence if

p − 1 − |S| ≥ 4k, (G, k) is a YES-instance. The second inequality of the lemma follows from

the fact that |S| ∈ O(k).

Now we combine the results we have proved so far, and we also derive a bound on |B≥3|

using the structural result of Lemma 5.35.

Theorem 5.73. G− S contains at most 4b1k
2 blocks in B \ B′2 and 4b1b2k

3 blocks in B′2, or

the instance is a YES-instance.

Proof. By Lemma 5.68, Lemma 5.69 and Corollary 5.71, there are at most b1k
2 blocks in

B0 ∪ B1 ∪ (B2 \ B′2), or the instance is a YES-instance. Then, by Lemma 5.35, |B≥3| ≤ 3b1k
2.

As for the blocks in B′2, observe that each of them corresponds to a vertex of degree two in the

block graph of G−S; in addition, by Lemma 5.72 there cannot be more than b2k blocks in B′2
which correspond to adjacent vertices in the block graph, or the instance is a YES-instance.

Hence there are at most (4b1k
2)(b2k) blocks in B′2.

It is only left to prove a bound on the size of a block. Next lemma will be used to this

purpose.

Lemma 5.74. For a block B ∈ B, if |V (B)| ≥ 2|Bext| + |NG(Bint) ∩ S|(2|S| + 8k + 1), then

(G, k) is a YES-instance. Otherwise, |V (B)| ≤ 2|Bext| + b3k|NG(Bint) ∩ S| for some constant

b3.

Proof. Consider a fixed s ∈ NG(Bint) ∩ S. We will show that we may assume that either

|N+
G (s) ∩ Bint| ≤ 4k+|S|

2 or |N+
G (s) ∩ Bint| ≥ |Bint| − 4k+|S|

2 , because otherwise (G, k) is a

YES-instance.

112

Indeed, suppose d 4k+|S|
2 e ≤ |N+

G (s) ∩ Bint| ≤ |Bint| − d 4k+|S|
2 e. Let U1 ⊆ N+

G (s) ∩ Bint,

|U1| = d 4k+|S|
2 e, and let U2 ⊆ Bint\N+

G (s), |U2| = d 4k+|S|
2 e. Let U = U1∪U2∪{s} and consider

the subgraph H of G[U] induced by the edges E(U1, U2) ∪ E(s, U1) ∪ E(s, U2). Observe that

H is (U1 ∪ {s}, U2)-balanced and so opt(G[U]) ≥ |U1|2 + |U1| + |U2 ∩ N−G (s)|. Furthermore,

pt(G[U]) = |U1|2 + |U1|
2 +

|U2∩N−G (s)|
2 , and hence ex(G[U]) ≥ |U1|+|U2∩N−G (s)|

2 ≥ 4k+|S|
4 .

Now consider W = V \U . Any connected component of G−S is connected to two vertices

in S, hence G[W] has at most |S| − 1 components adjacent to vertices in S \ {s} and one

component corresponding to the block B. Applying Lemma 5.18, ex(G) ≥ (4k+|S|)−|S|
4 , which

means that (G, k) is a YES-instance.

Similarly, we can show that we may assume that either |N−G (s)∩Bint| ≤ 4k+|S|
2 or |N−G (s)∩

Bint| ≥ |Bint| − 4k+|S|
2 , because otherwise (G, k) is a YES-instance.

Let S+
1 = {s ∈ S : 0 < |N+

G (s) ∩Bint| ≤ k+|S|
2 }, S+

2 = (N+
G (Bint) ∩ S) \ S+

1 and

U+ = (Bint \N+
G (S+

1)) ∩ (∩s∈S+
2
N+
G (s))

Observe that for all s ∈ S+
2 , |N+

G (s)∩Bint| ≥ |Bint| − 4k+|S|
2 , which means that |U+| ≥ |Bint \

N+
G (S+

1)| − |S+
2 |

4k+|S|
2 . In addition, |N+

G (S+
1) ∩ Bint| ≤ |S+

1 |
4k+|S|

2 , hence |Bint \N+
G (S+

1)| ≥

|Bint| − |S+
1 |

4k+|S|
2 . Therefore, |U+| ≥ |Bint| − (|S+

1 | + |S
+
2 |)

4k+|S|
2 = |Bint| − |N+

G (Bint) ∩

S| 4k+|S|
2 ≥ |Bint| − |NG(Bint) ∩ S| 4k+|S|

2 .

With similar definitions and the same argument we obtain |U−| ≥ |Bint| − |NG(Bint) ∩

S| 4k+|S|
2 . Now let U = U+ ∩U− and observe that and |U | ≥ |Bint| − |NG(Bint)∩S|(4k+ |S|).

However, by Rule 5.61, |U | ≤ |V (B)|+|NG(Bint)∩S|
2 . So, |Bint| ≤ |NG(Bint) ∩ S|(|S| + 4k +

1
2) + |V (B)|

2 , and so |V (B)| ≤ 2|Bext|+ |NG(Bint) ∩ S|(2|S|+ 8k + 1) as claimed. The second

inequality of the lemma follows from the fact that |S| ∈ O(k).

Finally, we can prove the main result of this section.

Theorem 5.75. Signed Max Cut APT admits a kernel with O(k3) vertices.

Proof. Let (G = (V,E), k) be an instance of Signed Max Cut APT. By Theorem 5.57

in polynomial time it is possible either to answer YES or to produce a set S ⊆ V such that

|S| ≤ 12k and G − S is a forest of cliques. Apply Reduction Rule 5.58 as many times as

possible (every time the number of vertices decreases, so it is possible to apply it at most

O(n) times), and let (G′, k′) be the resulting instance. By Theorem 5.60, in polynomial time

it is possible either to answer YES, or to find a set S′ ⊇ S of vertices such that G′ − S′ is a

forest of cliques which does not contain positive edges, and |S′| ≤ 60k.

113

Now, apply Rules 5.61–5.64 exhaustively to (G′, S′, k′) to obtain a new instance (G′′, S′, k′′).

If k′′ ≤ 0, then (G, k) is a YES-instance since Rules 5.61–5.64 are valid. Now let G = G′′,

S = S′ and k = k′′. Check whether (G, k) is a YES-instance due to Corollary 5.71, Lemma

5.72 or Lemma 5.74. If this is not the case, by Theorem 5.73, G− S contains at most 4b1k
2

blocks in B \ B′2 and 4b1b2k
3 blocks in B′2. Also, note that Theorem 5.73 also implies that

|Q| ∈ O(k3), as in every graph the number of cutvertices is bounded by the number of blocks.

Hence,

|S|+ 8b1b2k
3 +

∑
B∈B\B′2

|V (B)| ≤ |S|+ 8b1b2k
3 + 2

∑
B∈B\B′2

|Bext|+ b3k
∑

B∈B\B′2

|NG(Bint) ∩ S|

Now, observe that
∑
B∈B\B′2

|Bext| is bounded by the sum of the degrees of the vertices of

the block graph of G− S, which is bounded by 2(|B|+ |Q|) ∈ O(k3), as the block graph is a

tree. Therefore, applying again Corollary 5.71, we obtain that |V | ∈ O(k3).

The kernelization for Max Cut APT follows immediately.

Theorem 5.76. The Above Poljak-Turźık (ΠBP) problem admits a kernel with O(k3)

vertices.

Proof. Let (G, k) be an instance of Above Poljak-Turźık (ΠBP). Transform it into an

instance of Signed Max Cut APT by labelling every edge negative. Note that this is

possible as a balanced subgraph in a graph where every edge is negative is a bipartite subgraph.

Now, since none of Rules 5.61–5.64 increase the number of positive edges in the graph, then the

instance (G′, k′) produced using Theorem 5.75 only contains negative edges, hence (U(G′), k′)

is an instance of Above Poljak-Turźık (ΠBP) equivalent to (G, k) and such that |V (G′)| ∈

O(k3).

114

Chapter 6

Discussion and Future Work

In Chapter 3 we studied the k-Chinese Postman problem and we showed that it admits

a kernel with O(k2 log k) vertices and O(k2 log k) edges. There exists a similar version of

this problem on directed graphs, where one is asked to find k directed closed walks which

contain every arc of the digraph and whose total weight is at most p. Note that for k = 1 this

problem corresponds to the Directed Chinese Postman problem, which is polynomial

time solvable [32]. For the general k, it can be shown that the problem is NP -complete [47].

The Directed k-Chinese Postman problem appears to be more difficult to solve than

its undirected version. Recently, it has been proved by Gutin et al. that this problem admits

an FPT -algorithm [45]. Nonetheless, the running time of their algorithm is bounded by a

function f(k) which is a multiply iterated exponential, where the number of iterations is also

a multiply iterated exponential, so this result is of no practical interest. It would be desirable

to improve the bound on the running time and, at the same time, to explore the possibility

of the existence of a polynomial kernel.

In Chapter 4, we considered the Test Cover problem under different choices of the

parameter. The main results are the existence of a polynomial kernel for Test-r-Cover(n−

k, k) and Test-r-Cover(m−k, k). In fact, for the latter we proved a stronger fact: Test-r-

Cover(m−k, k) admits a polynomial kernel for the parameter k+r (that is, r is not required

to be a constant). It would be interesting to find out whether the same holds for Test-r-

Cover(n − k, k). Also, sometimes kernelizations do not produce the most efficient FPT -

algorithms, hence it would be interesting to devise an FPT -algorithm for Test-r-Cover(n−

k, k) which is not based on the kernelization (as it was done for Test-r-Cover(m− k, k)).

115

In Chapter 5, we studied the theoretical class of strongly λ-extendible properties and the

associated Weighted Above Poljak-Turźık (Π) problem. In their 1986 paper, Poljak

and Turźık described various graph properties which are strongly λ-extendible: apart from

the ones we considered in this thesis, ‘being bipartite’ and ‘being balanced’, there are the

properties of ‘being acyclic’ and ‘having a homomorphism into a vertex-transitive graph G0’.

The former is strongly λ-extendible for λ = 1
2 [72]. The associated WAPT (Π) asks for

an acyclic subgraph of weight at least pt(G) + k of an oriented graph G. The latter, instead,

is strongly λ-extendible for λ = d
n0

, where n0 is the number of vertices of G0, and d is the

minimum number of edges of the given label and the given orientation incident to any vertex

of G0 over all allowed labels and orientations [72]. The associated WAPT (Π) asks for a

subgraph of an oriented and/or labelled graph G such that its weight is at least pt(G) + k,

and it has a homomorphism into G0.

Considering only graphs with integral weights, we showed that for any strongly λ-extendible

property Π we can either solve an instance (G, k) of WAPT (Π), or find a small set of vertices

S such that G − S has a simpler structure. We used this result to prove that Weighted

Max Cut APT on graphs with integral weights is FPT . In his doctoral thesis [60], Jones

built on the same result to prove that Weighted Signed Max Cut APT can be solved in

FPT time on graphs with integral weights. It is still an open question whether it is possible

to apply the result to devise an FPT -algorithm for WAPT (Π) when Π is the property of

‘being acyclic’ or ‘having a homomorphism into a vertex-transitive graph G0’ (note that for

the unweighted case the question was positively answered by Mnich et al. [72]).

We also proved that the unweighted version of the problem, namely APT (Π), admits a

polynomial kernel for every strongly λ-extendible property Π, unless Π is strongly λ-extendible

for λ = 1
2 , does not contain some labelling of the triangle, and either is not hereditary or it is

a property of labelled graphs. This ensures that APT (Π) admits a polynomial kernel when Π

is the property of ‘being acyclic’ (note, however, that this result had already been proved by

Crowston et al. [19]), and when Π is the property of ‘having a homomorphism into a vertex-

transitive graph G0’: in fact, in the former case Π is a hereditary property on unlabelled

graphs, and in the latter Π is hereditary, and when G0 contains at least two edges labelled in

a different way then d
n0
< 1

2 .

The natural extensions of this result are on one side removing, if possible, the condition

that Π should be an unlabelled property for λ = 1
2 , and on the other generalising the algorithm

to produce a polynomial kernel for WAPT (Π) on graphs with integral weights.

116

Appendix A

List of the problems

Here we give the definitions of the classical and parameterized problems that we mention in

the thesis, adding some comments on their complexity when necessary.

A.1 Classical Problems

Definition 1. Problem 1

A Boolean variable is a variable that can take only two values, either TRUE or FALSE. A

Boolean formula is built from Boolean variables through the use of conjunctions, disjunctions,

negations and parentheses. A formula is satisfiable if there exists an assignment of values to

its variables that makes it TRUE.

Boolean Satisfiability (SAT)

Input: A Boolean formula.

Question: Is the formula satisfiable?

This is a central problem in Computer Science and it was the first problem that was shown

to be NP -complete (this result is known as the Cook-Levin theorem [17, 68, 41]).

Definition 2. Problem 2

Let C3 denote the cycle with three edges.

117

3-Cycle Partitioning

Input: A graph G = (V,E) with |E| = m divisible by 3.

Question: Is it possible to partition E into sets E1, . . . , Em
3

in such a way that

G[Ei] is isomorphic to C3 for i ∈ [m3]?

This problem is an NP -complete problem due to a classical result by Holyer [55].

Definition 3. Problem 3

3-Dimensional Matching

Input: A pair (V, T) where V is a set containing n elements and T ⊆ V ×

V × V .

Question: Is there a subset M ⊆ T such that |M | = n and vi 6= v′i, i = 1, 2, 3,

for all (v1, v2, v3), (v′1, v
′
2, v
′
3) ∈M?

The set M is called a 3-dimensional matching.

This problem is one of the 21 NP -complete problems described by Karp [62]. Note that

the version we consider is a restriction of the more general problem where T is a subset of

W ×X × Y , with W,X, Y being three sets of possibly different cardinality.

Definition 4. Problem 4

Set Cover (optimisation version)

Input: A hypergraph H = (V, E).

Question: Find the smallest subset S ⊆ E , if it exists, such that for every v ∈ V

there exists e ∈ S with v ∈ e.

This problem admits a polynomial time O(log |V |)-approximation [59], but no polynomial

time o(log |V |)-approximation unless P = NP [79] and no polynomial time (1 − ε) log |V |-

approximation for any ε > 0 unless NP ⊆ DTIME(nlog log |V |) [37].

Definition 5. Problem 5

Let r ∈ N be a constant. Let V r denote the cartesian product of r copies of a set V .

r-Dimensional Matching

Input: A pair (V, T) where V is a set containing n elements and T ⊆ V r.

Question: Is there a subset M ⊆ T such that |M | = n and vi 6= v′i, i ∈ [r], for

all (v1, . . . , vr), (v
′
1, . . . , v

′
r) ∈M?

118

The set M is called an r-dimensional matching.

The fact that this problem is NP -complete follows from a reduction from 3-Dimensional

Matching to r-Dimensional Matching with r ≥ 4. Let (V, T) be an instance of 3-

Dimensional Matching: for every (v1, v2, v3) ∈ T and every v ∈ V , add (v1, v2, v3, v, . . . , v)

to T ′ (where the copies of v are r−3). Then (V, T ′) is an equivalent instance of r-Dimensional

Matching.

Definition 6. Problem 6

Let P3 denote the path with two edges.

P3-Packing

Input: A graph G = (V,E) with |V | = n divisible by 3.

Question: Is it possible to partition V into sets V1, . . . , Vn
3

in such a way that

G[Vi] is isomorphic to P3 for i ∈ [n3]?

This problem is NP -complete [41].

A.2 Parameterized Problems

Definition 7. Problem 1

k-Set Cover

Input: A pair (H, k) where H = (V, E) is a hypergraph and k is an integer.

Parameter: k

Question: Is there a subset S ⊆ E with |S| ≤ k such that for every v ∈ V there

exists e ∈ S with v ∈ e?

The set S is called a set cover. This problem is W [2]-complete [30].

Definition 8. Problem 2

(m− k)-Set Cover

Input: A pair (H, k) where H = (V, E) is a hypergraph with |E| = m and k

is an integer.

Parameter: k

Question: Is there a subset S ⊆ E with |S| ≤ m− k such that for every v ∈ V

there exists e ∈ S with v ∈ e?

119

This problem is a dual of k-Set Cover with the size function being the size of the edge

set. It is W [1]-complete [73, 44].

Definition 9. Problem 3

A Boolean formula is in conjunctive normal form if it is a conjunction of clauses, where

each clause consists of a disjunction of literals, which are negated or non-negated Boolean

variables. The weight of a satisfying truth assignment is the number of variables which are

set to TRUE.

Weighted 2-CNF-Satisfiability

Input: A Boolean formula in conjunctive normal form whose clauses have

size at most 2 and an integer k.

Parameter: k

Question: Is there a satisfying truth assignment which has weight exactly k?

This problem is W [1]-complete. In fact, it is sometimes used to define the class W [1] [75].

Definition 10. Problem 4

See Definition 9 for the notions of Boolean formula in conjunctive normal form and weight

of a satisfying truth assignment.

Weighted CNF-Satisfiability

Input: A Boolean formula in conjunctive normal form and an integer k.

Parameter: k

Question: Is there a satisfying truth assignment which has weight exactly k?

This problem is W [2]-complete. In fact, it is sometimes used to define the class W [2] [75].

Definition 11. Problem 5

k-Vertex Cover

Input: A pair (G, k) where G = (V,E) is a graph and k is an integer.

Parameter: k

Question: Is there V ′ ⊆ V such that |V ′| ≤ k and NG[V ′] = V ?

This is probably the most classical problem in Parameterized Complexity. It admits a

kernel with 2k − c log k vertices for any constant c [67].

Definition 12. Problem 6

120

k-Independent Set

Input: A pair (G, k) where G = (V,E) is a graph and k is an integer.

Parameter: k

Question: Is there V ′ ⊆ V such that |V ′| ≥ k and G[V ′] does not contain any

edge?

This is a dual problem of Vertex Cover, with the size function being the number of

vertices. It is W [1]-complete [75].

Definition 13. Problem 7

Disjoint Cycle Packing

Input: A pair (G, k) where G = (V,E) is a graph and k is an integer.

Parameter: k

Question: Is it possible to partition E into sets E1, . . . , Ek+1 such that G[Ei]

is a cycle for i ∈ [k]?

This problem admits a kernel with at most O(k log k) vertices [10].

121

Bibliography

[1] F.N. Abu-Khzam, M.A. Langston, P. Shanbhag, and C.T. Symons. Scalable Parallel Al-

gorithms for FPT Problems. Algorithmica 45 (3), pages 269-284 (2006). 10

[2] N. Alon, G. Gutin, E.J. Kim, S. Szeider, and A. Yeo. Solving MAX-k-SAT Above a Tight

Lower Bound. Algorithmica 61 (3), pages 638-655 (2011). 12

[3] N. Alon, S. Hoory, and N. Linial. The Moore bound for irregular graphs. Graphs and

Combinatorics 18 (1), pages 53-57 (2002). 40

[4] M. Basavaraju, M.C. Francis, M.S. Ramanujan, and S. Saurabh. Partially Polynomial

Kernels for Set Cover and Test Cover. FSTTCS 2013, pages 67-78 (2013). 50

[5] N. Betzler, J. Guo, C. Komusiewicz, and R. Niedermeier. Average parameterization and

partial kernelization for computing medians. Journal of Computer and System Sciences

77 (4), pages 774-789 (2011). 50

[6] H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch. Cross-composition: A new technique for

kernelization lower bounds. STACS 2011, pages 165-176 (2011). 19

[7] H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-

composition. SIAM Journal on Discrete Mathematics 28 (1), pages 277-305 (2014). 23

[8] H.L. Bodlaender, E.D. Demaine, M.R. Fellows, J. Guo, D. Hermelin, D. Lokshtanov,

M. Müller, V. Raman, J. van Rooij, and F.A. Rosamond. Open problems in parameterized

and exact computation. IWPEC 2008 (2008). 13

[9] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin. On problems without

polynomial kernels. Journal of Computer and System Sciences 75 (8), pages 423-434

(2009). 19, 23

122

[10] H.L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and disjoint

paths. Lecture Notes in Computer Science 5757, pages 635-646 (2009). 19, 39, 121

[11] B. Bollobàs and A. Scott. Better bounds for Max Cut. Contemporary Combinatorics,

Bolyai Society Mathematical Studies 10, pages 185-246 (2002). 72

[12] J.Y. Cai, V.T. Chakaravarthy, L.A. Hemaspaandra, and M. Ogihara. Competing Provers

Yield Improved Karp-Lipton Collapse Results. Lecture Notes in Computer Science 2607,

pages 535-546 (2003). 22

[13] J. Chen, H. Fernau, I.A. Kanj and G. Xia. Parametric Duality and Kernelization: Lower

Bounds and Upper Bounds on Kernel Size. Lecture Notes in Computer Science 3404, pages

269-280 (2005). 18, 50

[14] C. Chiang, A.B. Kahng, S. Sinha, X. Xu, and A.Z. Zelikovsky. Fast and efficient bright-

field AAPSM conflict detection and correction. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 26 (1), pages 115-126 (2007). 103

[15] A. Cobham (1965). The intrinsic computational difficulty of functions. Studies in logic

and the foundations of mathematics, North-Holland, pages 24-30 (1965). 7

[16] D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Engineering Algorithms

for Workflow Satisfiability Problem with User-Independent Constraints. Lecture Notes in

Computer Science Volume 8497, pages 48-59 (2014). 10

[17] S.A. Cook. The Complexity of Theorem-Proving Procedures. STOC 1971, pages 151-158

(1971). 117

[18] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver. Combinatorial Opti-

mization. Wiley (1997). 38

[19] R. Crowston, G. Gutin, and M. Jones. Directed Acyclic Subgraph Problem Parameterized

above Poljak-Turźık Bound. FSTTCS 2012: LIPICS 18, pages 400-411 (2012). 116

[20] R. Crowston, G. Gutin, M. Jones, S. Saurabh, and A. Yeo. Parameterized Study of the

Test Cover Problem. Lecture Notes in Computer Science 7464, 283-295 (2012). 30, 50, 51,

56

[21] R. Crowston, G. Gutin, M. Jones, and G. Muciaccia. Maximum balanced subgraph prob-

lem parameterized above lower bound. Theoretical Computer Science 513, pages 53-64

(2013). 31, 77, 104

123

[22] R. Crowston, G. Gutin, M. Jones, G. Muciaccia, and A. Yeo. Parameterizations of test

cover with bounded test sizes. CoRR, abs/1209.6528 (2012). 31, 45

[23] R. Crowston, M. Jones, and M. Mnich. Max-Cut Parameterized above the Edwards-Erdős

Bound. Automata, Languages, and Programming Lecture Notes in Computer Science

7391, pages 242-253 (2012). 72, 84

[24] R. Crowston, M. Jones, G. Muciaccia, G. Philip, A. Rai, and S. Saurabh. Polynomial Ker-

nels for λ-extendible Properties Parameterized Above the Poljak-Turźık Bound. FSTTCS

2013, pages 43-54 (2013). 31

[25] B. DasGupta, G.A. Enciso, E.D. Sontag, and Y. Zhang. Algorithmic and complexity

results for decompositions of biological networks into monotone subsystems. Biosystems

90 (1), pages 161-178 (2007). 103

[26] K.M.J. De Bontridder, B.V. Halldórsson, M.M. Halldórsson, C.A.J. Hurkens,

J.K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms for the test cover prob-

lem. Mathematical Programming 98 (1-3), pages 477-491 (2003). 30, 43, 48, 51

[27] K.M.J. De Bontridder, B.J. Lageweg, J.K. Lenstra, J.B. Orlin, and L. Stougie. Branch-

and-Bound Algorithms for the Test Cover Problem. Lecture Notes in Computer Science

2461, pages 223-233 (2002). 42

[28] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the

polynomial-time hierarchy collapses. STOC 2010, pages 251-260 (2010). 23

[29] R. Diestel. Graph Theory, 4th Edition. Graduate texts in mathematics 173, Springer

(2012). 25

[30] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer

(2013). 9, 10, 14, 119

[31] A. Drucker. New limits to classical and quantum instance compression. FOCS 2012, pages

609-618 (2012). 23

[32] J. Edmonds and E.L. Johnson. Matching Euler tours and the Chinese postman problem.

Mathematical Programming 5 (1), pages 88-124 (1973). 33, 115

[33] C.S. Edwards. An improved lower bound for the number of edges in a largest bipartite

subgraph. Recent Advances in Graph Theory, pages 167-181 (1975). 72

124

[34] C.S. Edwards. Some extremal properties of bipartite subgraphs. Canadian Journal of

Mathematics 25, pages 475-485 (1973). 72

[35] P. Erdős. On some extremal problems in graph theory. Israel Journal of Mathemathics

3, pages 113-116 (1965). 72

[36] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae

Petropolitanae 8, pages 128-140 (1741). 32, 33

[37] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM 45 (4),

pages 634-652 (1998). 118

[38] H. Fernau, F.V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger. Kernel(s)

for problems with no kernel: On out-trees with many leaves. STACS 2009, pages 421-432

(2009). 13

[39] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag (2006). 14,

15, 16

[40] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs

for NP. Journal of Computer and System Sciences 77 (1), pages 91-106 (2011). 19

[41] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP -Completeness. W.H. Freeman & Co. New York, NY, USA c© (1979). 43, 117, 119

[42] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming. Journal of the ACM 42 (6),

pages 1115-1145 (1995). 72

[43] N. Gülpınar, G. Gutin, G. Mitra, and A. Zverovitch. Extracting Pure Network Subma-

trices in Linear Programs Using Signed Graphs. Discrete Applied Mathematics 137, pages

359-372 (2004). 104

[44] G. Gutin, M. Jones, and A. Yeo. Kernels for Below-Upper-Bound Parameterizations of

the Hitting Set and Directed Dominating Set Problems. Theoretical Computer Science

412, pages 5744-5751 (2011). 51, 120

[45] G. Gutin, M. Jones, B. Sheng, and M. Wahlström. Parameterized Directed k-Chinese

Postman Problem and k Arc-Disjoint Cycles Problem on Euler Digraphs. CoRR,

abs/1402.2137 (2014). 115

125

[46] G. Gutin, G. Muciaccia, and A. Yeo. (Non-)existence of polynomial kernels for the Test

Cover problem. Information Processing Letters 113 (4), pages 123-126 (2013). 31

[47] G. Gutin, G. Muciaccia, and A. Yeo. Parameterized complexity of k-Chinese Postman

Problem. Theoretical Computer Science 513, pages 124-128 (2013). 31, 115

[48] D.J. Haglin and S.M. Venkatesan. Approximation and intractability results for the maxi-

mum cut problem and its variants. IEEE Transactions on Computers 40 (1), pages 110-113

(1991). 72

[49] B.V. Halldórsson, J.S. Minden, and R. Ravi. PIER: Protein identification by epitope

recognition. Currents in Computational Molecular Biology, pages 109-110 (2001). 30, 43

[50] B.V. Halldórsson, M.M. Halldórsson, and R. Ravi. On the approximability of the Mini-

mum Test Collection problem. Lecture Notes in Computer Science 2161, 158-169 (2001).

30, 43, 46, 51

[51] F. Harary. On the notion of balance of a signed graph. Michigan Mathematical Journal

2 (2), pages 143-146 (1953). 103

[52] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic

applications. SIAM Journal on Computing 39 (5), pages 1667-1713 (2010). 11

[53] J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Transac-

tions of the American Mathematical Society 117, pages 285-306 (1965). 7

[54] C. Hierholzer. Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Un-

terbrechung zu umfahren. Mathematische Annalen 6 (1), pages 30-32 (1873). 32

[55] I. Holyer. The NP -Completeness of Some Edge-Partition Problems. SIAM Journal on

Computing 10 (4), pages 713-717 (1981). 118

[56] F. Hüffner, N. Betzler, and R. Niedermeier. Optimal edge deletions for signed graph

balancing. Lecture Notes in Computer Science 4525, pages 297-310 (2007). 103

[57] F. Hüffner, R. Niedermeier, and S. Wernicke. Techniques for Practical Fixed-Parameter

Algorithms. The Computer Journal 51 (1), pages 7-25 (2008). 10

[58] A. Itai, M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing

7 (4), pages 413-423 (1978). 39, 40

126

[59] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-

puter and System Sciences 9, pages 256-278 (1972). 118

[60] M. Jones. Above And Below Guarantee Parameterizations For Combinatorial Optimisa-

tion Problems. PhD thesis, Royal Holloway, University of London, UK (2013). 84, 116

[61] S. Jukna. Extremal Combinatorics. Texts in Theoretical Computer Science, 2nd ed.

(2011). 52

[62] R.M. Karp. Reducibility Among Combinatorial Problems. Complexity of Computer Com-

putations. The IBM Research Symposia Series, pages 85-103 (1972). 7, 30, 71, 118

[63] S. Khot and R. O’Donnell. SDP gaps and UGC-hardness for Max-Cut-Gain. Theory of

Computing 5, pages 83-117 (2009). 72

[64] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for

Max Cut and other 2-variable CSP s?. SIAM Journal on Computing 37 (1), pages 319-357

(2007). 72

[65] S. Kratsch. Co-nondeterminism in compositions: a kernelization lower bound for a

Ramsey-type problem. SODA 2012, pages 114-122 (2012). 23

[66] S. Kratsch, M. Pilipczuk, A. Rai, and V. Raman. Kernel lower bounds using co-

nondeterminism: Finding induced hereditary subgraphs. Lecture Notes in Computer Sci-

ence 7357, pages 364-375 (2012). 23

[67] M. Lampis. A kernel of order 2k−c log k for vertex cover. Information Processing Letters

111 (23-24), pages 1089-1091 (2011). 120

[68] L. Levin. Universal search problems. Problems of Information Transmission 9 (3), pages

115-116 (1973). 117

[69] D. Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD thesis,

Universitetet i Bergen, Bergen, Norway (2009). 13

[70] M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and Max-

Cut. Electronic Colloquium on Computational Complexity 4 (36) (1997). 30, 72

[71] N. Misra, V. Raman, and S. Saurabh. Lower bounds on kernelization. Discrete Optimiza-

tion 8, pages 110-118 (2011). 11

127

[72] M. Mnich, G. Philip, S. Saurabh, and O. Suchý. Beyond Max-Cut: λ-extendible prop-

erties parameterized above the PoljakTurźık bound. Journal of Computer and System

Sciences 80 (7), pages 1384-1403 (2014). 76, 77, 116

[73] B.M.E. Moret and H.D. Shapiro. On minimizing a set of tests. SIAM Journal on Scientific

and Statistical Computing 6, pages 983-1003 (1985). 30, 43, 48, 51, 120

[74] N.V. Ngoca and Zs. Tuza. Linear-time approximation algorithms for the max cut prob-

lem. Combinatorics, Probability and Computing 2 (2), pages 201-210 (1993). 72

[75] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press

(2006). 9, 14, 17, 18, 120, 121

[76] R. Niedermeier. Ubiquitous Parameterization - Invitation to Fixed-Parameter Algo-

rithms. Lecture Notes in Computer Science 3153, pages 84-103 (2004). 9

[77] W.L. Pearn. Solvable cases of the k-person Chinese postman problem. Operations Re-

search Letters 16 (4), pages 241-244 (1994). 35

[78] S. Poljak and D. Turz̀ık. A polynomial time heuristic for certain subgraph optimization

problems with guaranteed worst case bound. Discrete Mathematics 58 (1), pages 99-104

(1986). 30, 73, 74, 77, 97

[79] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant

error-probability PCP characterization of NP . STOC 1997, pages 475-484 (1997). 118

[80] A. Schäfer, C. Komusiewicz, H. Moser, and R. Niedermeier. Parameterized Computa-

tional Complexity of Finding Small-Diameter Subgraphs. Optimization Letters 6 (5), pages

883-891 (2012). 13

[81] M. Sorge. Some algorithmic challenges in arc routing. Talk at NII Shonan Seminar No.

18 (2013). 30

[82] S. Thomassé, N. Trotignon, and K. Vušković. Parameterized algorithm for weighted

independent set problem in bull-free graphs. CoRR, abs/1310.6205 (2013). 13

[83] C. Thomassen. On the complexity of finding a minimum cycle cover of a graph. SIAM

Journal on Computing 26 (3), pages 675-677 (1997). 34

128

[84] R. van Bevern, R. Niedermeier, M. Sorge, M. Weller. Complexity of arc rooting problems.

Arc Routing: Problems, Methods and Applications, Chapter 2, SIAM, Philadelphia, in

press. 30

[85] C.K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical

Computer Science 26 (3), pages 287-300 (1983). 22

[86] T. Zaslavsky. Bibliography of signed and gain graphs. Electronic Journal of Combina-

torics (1998). 103

[87] L. Zhang. Polynomial Algorithms for the k-Chinese Postman Problem. Information Pro-

cessing 1992 1, pages 430-435 (1992). 35

129

	Declaration
	Abstract
	Acknowledgements
	Introduction
	What is Parameterized Complexity
	Basic definitions
	Kernels
	Practical tools for kernelization

	Fixed-parameter intractability
	Kernel Lower Bounds
	Cross-composition

	Notation and Problem presentation
	Graphs
	Subgraphs and supergraphs
	Paths and cycles
	Connectedness and blocks of a graph
	Some classes of graphs
	Hypergraphs

	Structure of the thesis
	Bibliographic Notes

	k-Chinese Postman
	Test Cover
	Four parameterizations of Test Cover
	The standard parameterization
	Parameterization above a tight lower bound
	Parameterization below the number of vertices
	Parameterization below the number of edges

	Test cover with edges of bounded size
	The standard parameterization (bounded case)
	Parameterization above a tight lower bound (bounded case)
	Parameterization below the number of vertices (bounded case)
	Parameterization below the number of edges (bounded case)

	lambda-Extendible Properties
	A polynomial time reduction for WAPT
	wmc

	Polynomial kernel for APT
	Diverging properties
	Kernel when lamnon or krin
	Kernel when lamhalf

	Signed Max Cut

	Discussion and Future Work
	List of the problems
	Classical Problems
	Parameterized Problems

