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Abstract

College graduates with a science or business related degree earn up to 25% higher

wages than other college graduates. However, individuals do not always pursue careers

related to their major, generating within-major gaps in wages that are similar in size to

the across major gaps. As an example, science majors who work in jobs related to their

field of study earn approximately 30% higher wages than those working in non-related

jobs. In this paper, we aim to estimate the true returns to college major accounting for

the specificity of skill. We develop a structural model of human capital that allows for both

skill uncertainty and differential accumulation of human capital across major. Our findings

indicate that the average returns to obtaining a business or science degree, although quite

large, are smaller than the raw gaps would indicate. The average return to obtaining

a science degree and working in a related job remains close to 30%. We also find that

individuals are uncertain about their future productivity at the time of the college major

decision. The combination of skill uncertainty and the specificity of the return appear to

make majoring in a science related field less attractive.

1 Introduction

On average, college graduates majoring in science or business earn significantly higher wages

than other college graduates, often on the order of 25% or more. While a portion of the

wage gaps across major is likely the result of ability bias, i.e. ex-ante more productive workers

cluster in business and science majors, part of the gap likely reflects heterogenous labor market
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returns to the varied skills students develop across majors. However, are the different skills that

students accumulate across majors general, in the sense that they are equally valued regardless

of career choice, or are they specific to particular types of jobs? This is an important question

since if the human capital accumulated in college is specific, the returns to college major will

depend critically on the type of job or career an individual pursues.

Understanding the specificity of human capital obtained in college is important not only

for students making their major decision, but also for informing higher education policy. Re-

cent programs in the U.S., such as the National Science and Mathematics Access to Retain

Talent Grant (SMART) and the Science, Technology, Engineering, and Mathematics Expan-

sion Program (STEP), indicate a strong desire among policy makers to increase the share

of college students entering technical majors. There are at least two perceived benefits from

such policies. First, policy makers believe that graduates who obtain a degree in a technical

field generate a positive externality in the broader economy, primarily through innovation.1

Second, because science and engineering majors tend to earn more on average, it is assumed

that they will have an easier time paying off student debt, a burden many believe hampers

economic growth.2 However, if the skills obtained in college are specific and students induced

to major in technical fields are less likely to work in a job related to their major, both of these

potential benefits would be undercut.

In this paper, we first present detailed descriptive evidence indicating that the wage returns

to major have a strong specific component to them. We use the Baccalaureate and Beyond

Longitudinal Study (B&B), which consists of a representative sample of 11,192 graduating

seniors drawn from the 1993 National Postsecondary Student Aid Study (NPSAS). This group

of college graduates is subsequently surveyed in 1994, 1997, and 2003 about their schooling

and labor market outcomes. Importantly, we observe a student’s undergraduate major and

self-reports about whether the current job is related to the major field of study. This direct

1Murphy et al. (1991) provides support for this belief. Note that the focus on math and science skills is not

limited to the higher educations sector. The National Math and Science Initiative is another recently developed

program that focuses strictly on primary and secondary school students.
2Avery & Turner (2012) discuss the interplay between major choice and student debt. In the March 2013

meeting of the Federal Open Market Committee, members of the panel mentioned the high level of student

debt as a risk to aggregate household spending over the next three years. Meeting minutes can be found at

http://www.federalreserve.gov/monetarypolicy/fomcminutes20130320.htm
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measure of major applicability allows us to to identify the specificity of human capital within

major by looking at wage variation across job types. Using a series of simple regressions we

show that students who work in a job related to their major earn approximately 15% higher

wages than those who do not, and that for science majors this gap can be as large as 30%.3

These gaps are robust to standard observable ability measures, such as SAT scores and college

grade point average.

Wage gaps across related and non-related jobs are consistent with a labor market where

different types of jobs reward skills differently. The idea that a portion of a worker’s accumu-

lated human capital is not universally applicable across all jobs has been incorporated into

career and occupational choice models for decades.4 Yet, in most of these models the only

channel through which workers accumulate specific human capital is through work experience

and the amount of schooling.5 Instead, what we have in mind is that individuals accumulate

specific human capital through their choice of schooling type.

While the wage differences related to the applicability of one’s major estimated by OLS are

consistent with human capital specificity, there is a concern that the gaps could be driven by

sorting on unobserved productivity. To explore this possibility further, we develop a model of

major choice and labor market outcomes that relies on a human capital framework. The model

is essentially a dynamic extension of the classic Roy (1951) model where workers first select

into major and then select job type. Our framework and identification strategy is related to

Carneiro et al. (2003) and Cunha et al. (2005), as it utilizes a similar factor-based structure.

Individuals are endowed with two types of latent human capital, which we label as math and

verbal human capital. An individual’s math and verbal human capitals evolve as a result of

schooling, where the nature of the accumulation varies across major. However, at the time of

the major decision students only observe noisy measures of their underlying human capital.

3These results are consistent with recent findings from Silos & Smith (2012) who find that wage growth is

positively related to how applicable the skills obtained in college are to the current job.
4Becker (1962) and Oi (1962) originally developed the notion of firm-specific human capital. Over time, the

idea was expanded to include occupation, industry, and location specific human capital. Prominent examples

include McCall (1990), Parent (2000), Neal (1995), Pavan (2011), and Kennan & Walker (2011). Recent papers,

such as Poletaev & Robinson (2008), Gathmann & Schnberg (2010), and Yamaguchi (2012) have focused more

on task specific human capital, stressing that what matters in not the job’s label, but the actual tasks a job

employs.
5Examples include Keane & Wolpin (1997) and Sullivan (2010).
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Upon exiting college, individuals enter the labor market, learn their true human capitals, and

endogenously work in a job that may or may not be related to their major. Wages are a

function of an individual’s level of human capital, major, and job type. While math and

verbal human capital affect wages in all jobs, their impact can vary according to major and

whether the job is related to the field of study.

The structural model of major choice yields a number of benefits relative to our initial

OLS regressions. First, in our simple wage regressions we rely on SAT and major GPA to

account for sorting into major and related jobs. Both measures are noisy, and in the case

of GPA, endogenous to major choice. Thus, the returns to major and relatedness estimated

using OLS could be attenuated or inflated. Using the factor structure of our model, however,

we are able to increase precision by seamlessly integrating additional measures of ability, such

as non-major GPAs, while also accommodating differential skill returns across major. Second,

using the model we are able to calculate the returns to major and working in a related job for

the average individual as well as for any selected sub-group. A third benefit of the model is

that we are able to decompose the within-major variation in wages into general and specific

components, illustrating precisely how much of the skills accumulated in each major are non-

portable.

Finally, our model can also be used to investigate how human capital specificity in com-

bination with skill uncertainty impacts college major choice. In our model, individuals face

two types of uncertainty when choosing a major. First, conditional on their human capitals,

individuals do not know whether they will work in a job related to their field of study. Second,

because individuals are assumed to have imperfect information about their human capitals at

the time of the major choice, the precise probability of finding a related job and the wages

associated with each job once in the labor market are also unknown. While completely elimi-

nating occupational or career uncertainty seems implausible, one could envision reducing labor

market skill uncertainty, as it is essentially driven by a disconnect between being a good stu-

dent and being a good worker. Many educational programs are already aimed at reducing this

uncertainty, including internships, cooperative education, and student mentoring. However,

these programs often don’t start until after a student has already made their major decision.

Instead, using our model we can easily examine how student major choices change if skill

uncertainty is eliminated.
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We estimate our model by maximum likelihood and show that we are able to replicate

the key findings from our descriptive analysis using data simulated from the model. The

parameter estimates indicate that at the time the college major decision is made students

are quite uncertain about their underlying human capital. Students with high expected math

human capital tend to sort into science related majors, while students with high expected

verbal human capital sort away from business and science. The returns to math human

capital are quite large for business majors, regardless of whether the individual is in a related

job or not. For science majors, however, the return to math human capital is only large if the

individual is working in a related job.

The notion that students do not have perfect information about their underlying skills

when choosing a major is an assumption of the model. We test this informational assumption

directly by examining the relative performance of an alternative model that allows the true

human capitals to enter the major choice equation directly.6 This is similar to an approach

utilized in Cunha et al. (2005) for testing the agent’s information set. We are able to reject

the model of perfect certainty in favor of the model that allows for human capital uncertainty.

Using data simulated from our model with human capital uncertainty, we calculate the

“average” returns to college major and working in a related job. We find that the returns

to obtaining a business or science degree are 0.15 and 0.18 log points respectively, a sizable

decrease relative to the returns estimated by OLS, 0.19 and 0.23 log points respectively. The

true benefit of working in a related job for the average worker is quite similar across the OLS

and model estimates. As an example, both indicate that wages are 0.27 log points higher in

related jobs following a science degree. Workers who select into related jobs, though, tend to

have much larger returns.

Finally, we examine how important the specificity of human capital is across majors

through a simple wage decomposition exercise. The specific nature of human capital as it

relates to job type explains at least 19% of the wage variability associated with human capital

in the science field. For business and all other fields, specificity is responsible for only 4% and

9% of the wage variation related to human capital. These results, in conjunction with the

6Other papers have looked at different dimensions of imperfect information for major choice, focusing on

its role for major switching, time to degree, and dropping out. See for example Altonji (1993), Arcidiacono

(2004), Beffy et al. (2012), and Montmarquette et al. (2002).
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evidence supporting human capital uncertainty at the time of the major choice, suggest that

science related majors may be a riskier human capital investment for students relative to other

fields of study. This risk could aid in explaining why students tend to shy away from math

and science related majors. In a final exercise we show that indeed, students would choose to

major in science more frequently if they knew their human capital with precision.

The remainder of the paper is as follows. Section 2 describes the B&B data in detail and

provides descriptive evidence of the specificity of human capital through schooling. In section 3

we describe our model of major choice and discuss identification. Section 4 discusses estimation

and presents the structural estimates along with some simple validation exercises. In section

5 we perform several counterfactual experiments to understand the relative importance of the

various mechanisms driving major choices. Section 6 concludes.

2 Data and Descriptive Analysis

2.1 Data

We use data from the first cohort of the B&B to investigate the links between human capital,

major choice, and wages. The initial B&B cohort consists of a representative sample of 11,192

graduating seniors drawn from the 1993 National Postsecondary Student Aid Study (NPSAS).

This group of college graduates is subsequently surveyed in 1994, 1997, and 2003. While the

sample is representative, the B&B provide sampling weights that we use in both the descriptive

and structural analysis. Additional details regarding the sample are provided below.

2.1.1 Student Background and Schooling Data

The 1993 NPSAS and 1994 wave of the B&B collected detailed background data on each

student. Using this data we are able to construct measures of respondent race, gender, and

age. We limit the sample to males to avoid the complications fertility expectations have on

female human capital accumulation and labor supply. This reduces the number of students

to 4,834. In addition, there is a significant number of graduating seniors in 1993 who are

older than 30. Older graduates tend to have lower (higher) math (verbal) SAT scores, choose

business majors more often, and earn more than their fellow graduates who are significantly

younger. In order to keep a relatively homogenous sample we drop anyone above the age of
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30 in 1993, reducing the sample to 4,264 individuals. In addition, any individual with missing

parental information or missing SAT scores is excluded from the sample, resulting in a final

sample of 2,476 individuals.7

Detailed data on college major choice, as well as major specific grade point average (GPA)

are readily available.8 In order to keep the model tractable, we collapse major choice into three

broad categories: business, science, and other. The aggregate business major includes fields

such as economics, accounting, and general business. The science major includes engineering,

the physical and natural sciences, and computer science. All remaining fields, such as social

sciences, education, psychology, humanities, etc., fall into the other category. For the estima-

tion of the structural model, we also construct variables that are assumed to be exogenous to

the model. Using information from the IPEDS, we calculate the fraction of college students

enrolled in each one of the three major categories for each state in 1993.9 We then merge this

information with the legal state of residence of the student’s parents in 1993. This variable

will act as an exogenous shifter in the choice of college major.10

In addition to major choice, information regarding student participation and performance

across the various majors is also available. Total credits and GPA are separately available

for business, social science, science and engineering, education, math, and foreign language

courses, among others. We use these disaggregated variables to construct individual specific

GPA measures for each of our broad major categories.11 Note that we can only construct these

7Many individuals in our sample take the ACT rather than the SAT. We are unable to incorporate these

individuals since only the composite ACT score is available and in our empirical analysis we treat separately

the SAT math and verbal tests. We eliminate 1,552 individuals because of missing SAT scores. 1,020 of these

individuals have a valid ACT score while 532 individuals have no valid SAT or ACT score.
8One disadvantage of the B&B is that we only observe each student’s graduating major. As a result, we

cannot incorporate major switching into our model.
9IPEDS is the Integrated Postsecondary Education Data System. Further details can be found at

http://nces.ed.gov/ipeds/.
10There is quite a bit of variation in the fraction of college major across states, mostly driven by the small

sample size. Science graduates range from 17% to 50%, business graduates range from 5% to 40%, and the

residual category ranges between 20% and 74%.
11We trim the subject-specific GPAs according to the following procedure. We find the percentile x at which

all individuals above this percentile receive a 4.0. We then find the GPA associated with the 1-x percentile, and

replace all lower GPAs with this value. Thus, the top and bottom of the GPA distribution are trimmed in a

similar fashion. The trimming does not affect the reduced form analysis and we do it to reduce the importance
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measures if a student ever took a course in one of these subjects. GPA measures for business,

science, and other majors are available for 45%, 95%, and 98% of our sample respectively.

Table 1 provides basic summary statistics describing schooling outcomes. Overall we see

that science and business majors account for approximately 50% of the sample, with students

split evenly across the two categories. A quarter of the sample eventually obtains a post-

graduate degree.12 When we examine the characteristics of the students across each major

significant differences appear. Science majors have higher SAT math and verbal scores than

either the business or residual group. In addition, their science GPA is also significantly

higher. Note that both business and other majors take a significant amount of science credits,

approximately 20 and 18 respectively. Across fields, GPA is always highest on average for those

who chose to major in that field. This likely reflects both selection and the accumulation of

additional human capital most relevant for the chosen field. Finally, across majors there also

appear to be important differences in family background. Individuals who major in science

are more likely to come from households where both parents are foreign born.

2.1.2 Labor Market Data

In survey years 1994 and 1997, respondents were asked about their primary employment during

the month of April.13 In 2003, respondents were asked about their current job. Across all

surveys, individuals provided information regarding their hours, wages, and whether their job

is related to their field of study.

Individuals can report wages either hourly, daily, weekly, monthly, or annually. We convert

all wages to full-time yearly equivalents for those individuals who report working at least 30

hours per week. For anyone working fewer than 30 hours per week, we treat their annual

salary as missing, since we do not model labor supply explicitly. All salaries are measured in

of the outliers which would be problematic once we estimate the structural model.
12In survey years 1994, 1997, and 2003, respondents are asked about post-BA degree receipt. For tractability,

we treat all graduate degrees identically and do not allow individuals to switch their major at this point. This

is largely consistent with the fact that 70% of the individuals who eventually obtain a graduate degree choose a

graduate field of study that falls in the same broad major category as their undergraduate field of study. Note

that if an individual reports obtaining a graduate degree by 1994, we utilize the graduate degree major rather

than the undergraduate major. This occurs for 31 individuals.
13Note that in 1994, individuals were also asked about their primary job. When possible, missing information

for the April job is replaced with information from the primary job.
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2000$. The most important labor market variable for our purposes is whether an individual’s

job is related to their field of study. For the 1994 and 1997 surveys, a job is defined as being

related to an individual’s field of study if the respondent reported that the April job was either

closely or somewhat related to their field of study. In 2003, the relationship question is altered

slightly. A respondent is considered to be working in a job related to their field of study if their

undergraduate education is very important in their current job or if their graduate education

is very important in their current job and the respondent reports obtaining a graduate degree.

Because of the change in the wording of the question, if an individual reports being in the

same job as they were in 1997, we use the relationship variable from 1997. Approximately

13% of the valid relationship entries in 2003 are changed as a result. If information about

whether the job is related to the field of study is missing, to the greatest extent possible we use

information from the subsequent surveys to fill it in. For example, if the respondent reports

starting their 2003 job prior to 1997, we replace the missing relationship variables in 1997

with their 2003 values.

Table 2 provides summary statistics for the labor market outcomes for the sample as a

whole and by field of study. Overall, we see that approximately 70% of college graduates are

working in jobs that are related to their college major. Not surprisingly, annual salaries are

significantly different according to whether an individual is working in a job that is related to

their field of study. This difference could reflect sorting, meaning that higher ability individuals

are more likely to work in a related job, or it could reflect the idea that human capital is priced

differently across different types of jobs.

Looking at labor market outcomes across fields of study illustrates important differences

in outcomes by major. First, business and science majors earn significantly higher salaries

relative to the residual group. This pattern is not unique to the B&B and can be found in

the National Longitudinal Surveys of Youth (1979 and 1997) and more recently in the 2009

American Community Survey.14 Second, and more important for our purposes, is the huge

impact that working in a related job has on the salary of science majors. Science majors who

work in a job related to their field of study earn close to a 30% premium relative to science

majors who work in an unrelated job. The gaps for business and the residual major are only

3% and 11% respectively. These patterns are consistent with varying returns to skill, but

14Additional details available upon request.
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could also reflect differing degrees of sorting into related jobs across majors or issues with

aggregation.

2.2 Descriptive Evidence of the Specificity of Schooling Human Capital

Table 2 illustrates that not only do wages vary considerably across college major, but also

within major according to whether an individual works in a related job. While these patterns

are consistent with heterogenous returns to college through major choice and the existence

of skill price differentials by job type, sorting or aggregation bias introduced by our course

characterization of majors could also rationalize the data. In this section we run some simple

regressions to shed light on the underlying mechanisms that drive the observed patterns and

to help motivate our modeling choices regarding human capital and college major choice.

To study the wage differences across majors, we begin with some simple OLS regressions

presented in Table 3. Column 1 indicates that conditional on year effects and graduate degree

receipt, business and science majors earn 0.19 and 0.23 log point higher wages relative to

the residual major category. Column 2 illustrates that the estimated returns to majoring

in business or science decline by 5 and 10% respectively when we add controls for SAT, an

observable measure of student ability.15 In column 3, we include an additional observable

measure of ability, major specific GPA, and find little change in the estimated return to

majoring in business or science. We hesitate to interpret this as evidence that SAT scores

are capable of fully accounting for ability sorting into major since GPA is endogenous to

major choice through both the accumulation of major-specific skill and differential grading

standards across fields of study.16 The structural model presented in the next section provides

15An interesting result that emerges in Table 3 is that conditional on math SAT scores, verbal SAT scores

negatively impact wages. This result is robust to controls for major, relatedness, and occupation. Further, the

negative impact of verbal test scores on wages can be replicated using other data sources, such as the National

Longitudinal Surveys of Youth. While we do not pursue in detail the root of this negative relationship, we

choose a specification of our human capital model that is flexible enough to replicate this empirical regularity.
16For the set of students who take at least one course in each major category we can estimate a wage

regression that includes separate GPA measures for each field of study. When we do this, the estimated returns

to business and science decline by about a third. Again, we hesitate to interpret these as more precise measures

of the returns to business and science since the GPAs measure individual skill post treatment. Science majors

will have higher science GPAs since they build up more science skills and thus part of the return we seek to

measure is likely captured by the separate GPA measures.
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a framework for extracting skill signals from field specific GPAs while also dealing with the

endogenous nature of these measures. Lastly, column 4 shows that the estimated major returns

are not sensitive to whether we use hourly wages rather than our measure of annualized income.

The primary advantage of the B&B in examining the returns to college major is that it

contains direct information on whether an individual’s job is related to their field of study.

In Table 4 we look at the relationship between this variable and the earnings of a worker. In

the first column we note that even after controlling for observable measures of human capital

using SAT and GPA, wages are significantly larger in jobs that are related to the field of study,

and this relationship is significantly stronger for science majors.17 In column 2 we show that

this pattern is not generated by our aggregation of majors. Including dummy variables for

each of the 28 majors observed in the data, we see that the impact of being in a related job

for the residual major decreases, yet we still observe large returns to working in a related job

for business and science majors.18

The third column of Table 4 examines how the inclusion of worker fixed effects alters

the estimated returns to working in a related job. The importance of the job’s relationship

with the field of study decreases significantly for business and science majors, indicating that

sorting across majors on unobserved dimensions can help explain the relationship between

wages and labor market outcomes. However, even in this case science majors receive a much

larger increase in their wage in related jobs when compared to workers with different majors.

The inclusion of worker fixed effects ensures that the returns to working in a related job are

identified by workers who switch job types. The fact that these workers switch, however,

suggests that being in a related job is less salient for them as compared to workers who do

not switch. As a result, the estimates in column 3 reflect the return to relatedness for a set

17The endogeneity of major specific GPA is less of a concern in this regression since identification of the

returns to relatedness comes from within major variation in wages. This also suggests that we could incorporate

additional GPA measures to help alleviate selection issues. If we include non-major GPA in addition to major

specific GPA the estimated returns to relatedness are essentially unchanged.
18We also examined whether the large return to relatedness for science majors is primarily driven by one

sub-major. We split the relatedness dummy for science into relatedness for engineers and relatedness for all

other science graduates. The OLS return to relatedness for engineers is 0.20 log points while the OLS return to

relatedness for all other science graduates is 0.28 points. Although the returns across the two groups of science

majors are slightly different, they are both significantly larger than the return for the residual category.
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of marginal workers who are close to being indifferent between related and non-related jobs.

If the returns to relatedness are heterogeneous, then these estimates likely understate the

average returns as the majority of workers work in a related job.

Column 4 of Table 4 shows that the returns to working in a related job decline considerably

when we control for detailed occupation effects in the regression. With occupation effects, the

impact of working in a related job is identified by differences in wages among workers with the

same major and occupation but who report differently their relatedness status. The source

of the differences in reported relatedness could reflect variability in training conditional on

major or variability in job tasks conditional on occupation. Wage differences associated with

either of these sources of variation is likely smaller than wage variation across occupation

conditional on major, which is why the returns to relatedness decline. However, we don’t

necessarily want to discard all the across occupation variation in wages, since one could view

occupation itself an indicator of relatedness. In fact, the decline in the relatedness coefficients

after the inclusion of the occupational dummies indicates that related jobs tend to cluster in

highly paid occupations.

To further investigate the relationship between occupation and relatedness we examine

how workers are distributed across fourteen occupation categories conditional on major and

relatedness. The results are displayed in Table 5 and indicate that indeed occupation and

relatedness are tightly linked. For example, approximately 90% of business majors who work

as a finance professional report working in a related job. Similarly, 95% of science majors

working as engineers report being in a related job. Alternatively, across all majors 64% of

mechanics/laborers report working in a non-related job. Thus, one could view relatedness

as partly capturing the occupation-major match. The advantage of using the relatedness

measure instead of occupation when examining the specificity of schooling human capital is

its simplicity. We can avoid explicitly modeling occupation, which significantly reduces the

computational burden.

The descriptive evidence suggests that the human capital developed through schooling is

specific to particular types of jobs, however, no definitive conclusions can be drawn since our

observable measures of ability are noisy, and in the case of GPA, endogenous to major choice.

Thus, we cannot rule out the possibility that the important patterns we find in our descriptive

analysis are either inflated or attenuated by the presence of sorting on unobservables and
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differential skill accumulation across major. For this reason, we present and then estimate a

model of college major choice and relatedness that explicitly incorporates these features. As

noted in the introduction, an additional benefit of the structural model is that it allows us to

examine how skill specificity and uncertainty combine to influence major choice.

3 The Model

In this section we present a model of major choice and labor market outcomes based on an

underlying human capital framework. The model is essentially a dynamic extension of the

classic Roy (1951) model. Workers first select into major and then job type according to

their unobserved skills. This self-selection implies that OLS will yield biased estimates of the

average return to major and job type.

The remainder of this section presents the details of our sorting model. First, we charac-

terize the factor structure of human capital since this binds the schooling and labor market

outcomes together. We then discuss agent choices and outcomes in a recursive fashion, start-

ing with outcomes in the labor market and moving backwards to the decision regarding college

major. Finally, we end the section with a brief discussion of our measurement equations and

identification. For simplicity, we exclude individual subscripts when presenting the model.

3.1 Human Capital and Scholastic Ability

Individuals enter college endowed with a vector of total ability A0, which is composed of

initial mathematical and verbal ability (Am,0, Av,0). We assume that individuals observe these

random effects, but the econometrician does not.19 Each of the endowment vector’s elements

can be further decomposed into an initial human capital (Hj,0) and an initial pure scholastic

ability (νj,0), where Aj,0 = Hj,0 + νj,0 and j = {m, v}.20 Human capital will be valued in the

labor market while scholastic ability will not, allowing us to create a wedge between being a

good worker and being a good student. In our baseline framework, we assume that agents

observe total ability, Aj,0, but not its components. Therefore, agents are unsure about how

much of their observed skill will translate to the labor market when making decisions on the

19In Section 3.4 we discuss how to incorporate noisy measures of student skill to identify the distribution of

unobserved student abilities.
20We assume that all human capital elements are drawn from independent distributions.

13



type of degree to pursue. We later introduce a strategy to test whether this assumption is

consistent with individual behavior.

While in college, each individual’s math and verbal human capital evolve as a function of

the chosen major according to

Hj,1 = Hj,0 + µHj,f∗ , for j = {m, v} (1)

where f∗ indicates the chosen field of study. Similarly, scholastic ability evolves with major

choice according to

νj,1 = νj,0 + µνj,f∗ , for j = {m, v} . (2)

The accumulation of human capital and scholastic ability through major choice is assumed to

be independent of the initial levels of the math and verbal skill.21

3.2 Labor Market

Participation in the labor market is the final stage of an individual’s life. Upon entering the

labor market, individuals learn their human capitals, H1, choose whether to work in a related

job, and earn a wage. We first describe the wage equation and then consider the relatedness

choice.

3.2.1 Wages

Each period individuals receive a wage that depends on their major field of study, their post-

schooling human capitals, and whether the chosen job is directly related to the field of study

of the worker:

lnwr,f∗,t = pr,f∗,mHm,t + pr,f∗,vHv,t. (3)

The t subscript indicates calendar time, while the r subscript indicates whether the job is

related to the studies of the individual. The coefficient on each type of human capital depends

on both the individual’s major and the relatedness status of the job. This reflects the idea

21While it is theoretically possible to identify heterogenous returns given the available data, in practice

identification would be rather weak since we only observe major and noisy measures of post collegiate ability,

namely GPA, at the end of a student’s undergraduate career. Another implication of this data restriction is

that we cannot investigate the causes and consequences of major switching or dropping out of college, since we

do not observe these events in our data.
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that workers from different schooling backgrounds sort into different occupations that possi-

bly reward each type of human capital differently. Similarly, related jobs may reward skills

differently than non-related jobs. The two types of human capital are “general” in the sense

that workers bring these skills with them to all types of jobs, but at the same time they are

“specific” since their value in the labor market depends on the particular job chosen.

Although it is reasonable to expect that human capital evolves once in the labor market

as a result of accrued experience and/or post-secondary education investment, we assume

that human capital remains constant since we have relatively few wage observations in the

time dimension. Thus, Hj,t = Hj,1 ∀ j. However, in order to allow for the fact that wages

increase both with time and the acquisition of a graduate degree, we also include in our wage

specification a time dummy and a graduate degree dummy that depends on the major chosen.

3.2.2 Working in a Related Job

Prior to earning wages each period, workers must choose whether to work in a job related to

their field of study.22 We assume that the choice of working in a related job at time t depends

on whether the latent variable R∗ is positive, i.e. the worker works in a related job if R∗ > 0,

where R∗ is defined as:

R∗ = Υt(f
∗, Hm,1, Hv,1, Zt) + uΥ

t . (4)

The probability of working in a related job depends on the worker’s chosen field of study

(f∗), human capital (Hm,1 and Hv,1), and an exogenous shifter (Zt). For the exogenous

shifter, Zt, we use state specific deviations from the national average of the fraction of workers

in related jobs, controlling for average wages and demographic composition.23 The random

22Although the choice of acquiring a graduate degree is clearly related to the human capital of an individual,

we decided to treat graduate studies as an exogenous variable known to the agent since the beginning of life,

and it is suppressed in the presentation of the model for expositional clarity. This choice simplifies greatly the

computation of the likelihood function and reduces the number of the parameters to be estimated. We believe

that the results are not strongly affected by this simplification given that in our sample workers with graduate

degrees do not earn appreciably larger wages than workers without them (around 7%) and the sorting into

those studies does not look very different across majors. Previous preliminary estimations of a version of this

model with endogenous graduate studies support this hypothesis.
23The use of panel data can actually mitigate the need for an instrument in this context, as long as there is

enough time variation in the selection rule (see for example theorem 11 of Heckman & Honore (1990)).
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variable uΥ
t is meant to capture in a reduced form way several features of the labor market

potentially affecting relatedness outcomes. For example, workers might not receive an offer

for a related job or there may be unobserved non-pecuniary benefits associated with related

jobs that are orthogonal to a worker’s skills. We believe that some of this randomness can

actually be part of the information set of the agent at the time of the college major choice. As

an example, some workers might be particularly skilled at finding a related job, independent

of their human capital, altering the relative attractiveness of each major. To incorporate this

type of heterogeneity into the model we split the “relatedness” shock into two components:

uΥ
t = αΥ

f∗θ + eΥ
t , (5)

where the random component eΥ
t is exogenous, independent over time, and unknown to the

agent at the time of college decision. The random variable θ is instead assumed to be part of

the information set of the agent at the time of the college decision and independent of other

skills. If αΥ
f∗ (or the parameters associated with θ in the college major choice decision) are

not statistically different from zero, then we can conclude that agents do not have information

about their future relatedness outcomes in addition to what is contained in their abilities.

As noted above, the reduced-form choice equation for working in a related job is meant to

to capture two distinct ideas. First, workers may not always receive a job offer that utilizes the

skills specific to their field of study. The probability of receiving such an offer likely depends

on the skill level of the worker, captured by Hm,1 and Hv,1. It will also depend on demand

factors which are field (f) and location specific (Zt). Second, even workers who receive an

offer to work in a related job may choose not to do so, and the non-monetary utility over job

type would also depend on human capital, experience, and idiosyncratic components.

The actual realization of relatedness is a mix of labor demand and supply and without

additional data would be difficult to disentangle. Therefore, we choose not to fully specify

the model matching workers to job type. Of course this simplification comes at a cost since

by taking this approach we cannot understand whether individuals work in jobs unrelated

to their field of study because they are happy to do so or because they could not find more

desirable jobs. As a result, any counterfactual analysis using our model will be focused on

sorting since it is not possible to compare individual welfare across related and non-related

jobs.
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3.3 Major Choice

Prior to entering the labor market, individuals must decide which field of study to pursue.

We assume that this choice is made under uncertainty, i.e., individuals do not observe their

initial human capitals (Hm,0, Hv,0), but instead observe their initial total abilities (Am,0, Av,0).

Because only human capital matters for labor market outcomes, individuals will infer from

their total abilities what their future human capitals will be.

The value of choosing field of study f can be summarized by the following function:

Vf + εf = EH0|A0
[Ψf (H0, θ, gpaf,f , Zf )] + εf (6)

This specification assumes that students’ major choice depends upon the human capitals that

they will carry to the labor market, skill in finding a related job, the potential GPA that they

will have within the field if they chose that major, some observed preference shifters Zf , and

an idiosyncratic preference shifter εf which is unobserved to the econometrician. We include

potential GPA in major f conditional on f being chosen, gpaf,f , to capture non-monetary

preferences over major that are driven by academic success in each field.24 For the observed

preference shifter, we utilize the fraction of students active in each major in the state of

parental residence in 1993. Given that students do not directly observe human capital, they

take expectations over the function Ψf using the information contained in their total abilities.

This function can be seen as the value function associated with a particular major, where

the agent has some flow non-monetary utility for choosing a particular major and discounts

the future utility that he will receive from the labor market. Rather then deriving the actual

value function implied by the labor market, we directly estimate Vf , reducing greatly the

computational complexity of the estimation procedure. Individuals will choose major f if

εf − εf ′ ≥ Vf ′ − Vf for all f ′.

At the time of the major decision, individuals face two types of uncertainty. First, condi-

tional on their human capitals, individuals do not know whether they will find a job related

to their field of study. Second, because individuals do not know their labor market human

capitals at the time of the major choice, the precise probability of finding a related job once

24Note that potential GPAs, gpaf,f ′ , differ from the observed GPAs, GPAf,f∗ , since only three GPAs are

realized while there exist 9 potential GPAs. The potential GPAs are inferred using our estimates of the GPA

measurement equations discussed in the next section.
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in the labor market is also unknown. By examining the importance of the random unobserved

variable θ in the equation above and formally testing whether indeed only total ability A0

enters the individuals’ information set (and not its components H0 and ν0 separately), we

can verify whether these types of uncertainty are present and analyze what their impact is for

major choice.25 For example, we can study whether individuals would change their major field

of study if they knew their human capital, even if they still do not know precisely whether

they will find a related job. This experiment can be achieved by simulating how choices would

change if agents used Ψf (·) rather than EH0|A0
[Ψf (·)] in their decision process.

3.4 Measurement and Identification

In the model described above, individual schooling and labor outcomes are driven by human

capitals and scholastic abilities which are unobserved to the econometrician. A crucial com-

ponent of our empirical analysis and identification strategy is the availability of observable

measures of individual ability, such as SAT scores and college GPAs. These measurements

allow the econometrician to have a direct, although imperfect, look at an individual’s hu-

man capital and scholastic ability. In the following sections we first present our measurement

equations and then discuss how these measures help identify the key parameters of the model.

3.4.1 Measurements

Prior to college entry individuals complete the SAT entrance exam, which provides a measure

of the initial total math and verbal abilities. We assume that the observed math and verbal

SAT scores can be decomposed according to:

SATm = ηm,c + ηm,mAm,0 + um

SATv = ηv,c + ηv,vAv,0 + ηv,mAm,0 + uv. (7)

25Unfortunately we cannot asses in our set up the full extent of the importance of uncertainty in relatedness

choices as we do not solve for the exact value function associated with each major choice. In particular, we

cannot asses the importance of the idiosyncratic relatedness shock, eΥ
t , described in Equation 5. While this is

a significant limitation, the computational gain to estimating Ψf directly is great because we avoid solving for

the expected future labor market returns associated with each major, which would entail integrating over the

human capitals.
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The residual components, um and uv, are measurement error and are independent from each

other and the total abilities. The math SAT score is a dedicated measure of the student’s

total math ability, while the SAT verbal score is a function of both total verbal and total

math ability. We include total math ability in the verbal score since SAT scores are highly

correlated in the data.26

For post-college measures of total ability, we utilize field specific GPAs. Each individual

can potentially report three GPAs, one for science related courses, one for the business related

courses, and one for all other courses. The GPA in field f for an individual choosing major

f∗ is defined as:

GPAf,f∗ = ηf,f∗ + ηf,mAm,1 + ηf,vAv,1 + ugpaf . (8)

where Aj,1 = Hj,1 +νj,1 and j = {m, v}. Note that we allow the constant of the GPA equation

to depend on the chosen major. This feature can capture the fact that grade inflation is more

severe in advanced courses within a major. Our assumption that human capital and scholastic

ability evolve as a function of the major field of study may not be ideal in the presence of

double majors. Fortunately in our data set only 5% of students have multiple majors. The

GPA measurements for science and other majors are assumed to be missing at random, while

we allow for selection into business courses on the basis of math and verbal total ability.27

The random components ugpaf are assumed to be mean zero, independent from each other and

the human capitals, but with potentially different distributions across fields.

While SAT scores and field specific GPAs yield information regarding total ability, wages

provide a measure of human capital directly. However, we assume that the econometrician

does not observe the true wage, but instead observes lnwobsr,f∗,t = lnwr,f∗,t+εr,f∗,t, where εr,f∗,t

is independent of all other random variables but its distribution is allowed to differ across

majors and relatedness.28 As the next section discusses, the covariance between wages and

26The exclusion of verbal human capital from the SAT math measurement is without loss of generality. Its

inclusion would simply require a relabeling of the “math” human capital. Note that the math and verbal labels

are themselves arbitrary.
27Essentially all students take at least one course in science and the residual major category, allowing us to

construct GPAs for these fields. However, there is a sizeable fraction of students who never take a business

course, and these students are unlikely to be randomly selected.
28It is possible that a fraction of the random variable εr,f∗,t actually captures an idiosyncratic component of

wages rather than strictly measurement error. This component would be an additional source of major-specific
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our ability measures are critical for identifying the distribution of human capital.

3.4.2 Identification

In this section, we sketch our basic approach to identification. First, in order to simplify the

discussion and eventually facilitate the estimation of the model, we substitute equations (1)

and (2) when possible in order to formulate all equations in terms of H0 and A0. As a result

some of the parameters are redefined. Equation (3) can be written as

lnwr,f∗,t = pr,f∗,c + pr,f∗,mHm,0 + pr,f∗,vHv,0, (3′)

where we should note that the wage constant is now a function of both the chosen major and

job type. Similarly, Equation (4) can be written as

R∗ = Υ̃t(f
∗, Hm,0, Hv,0, Zt) + uΥ

t . (4′)

Finally, Equation (8) can be written as

GPAf,f∗ = η̃f,f∗ + ηf,mAm,0 + ηf,vAv,0 + ugpaf , (8′)

where the constant in the above equation now includes the field specific shifters for human

capital and scholastic ability illustrated in Equations (1) and (2).

We focus primarily on the identification of the wage parameters of Equation (3′), the mea-

surement parameters of Equations (7) and (8′), and the standard deviations of the unobserved

human capitals. Our strategy is based on an infinity argument as in Carneiro et al. (2003)

and we refer to that paper for all the technical details. This assumption implies that we can

move some element of the vector of exogenous variables Z in such a way that the resulting

probability of selecting a certain combination of major choice and relatedness is equal to one.

Clearly the infinity argument is a strong argument when compared to the patterns that we

observe in the data. Our point of view is that this identification strategy indicates whether

theoretically, the data can be rich enough to identify the model even without any restrictions

implied by distributional assumptions. Of course, imposing a set of distributional assumptions

will help in the actual implementation.

uncertainty that we do not consider in our model. For example, the empirical framework developed by Nielsen

& Vissing-Jorgensen (2010) is aimed at capturing this component of uncertainty.
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To show that the key parameters of the model are identified one simply needs to examine

the correlations amongst our measures, conditional on being able to identify a set of individuals

who always choose a particular major or job type. These correlations can be expressed as

functions of the parameters of interest and are directly observed in the data. As an example,

we use the covariances between SAT and GPA to identify the factor loadings in the SAT and

GPA measurement equations and the variance of total ability. To disentangle human capital

from scholastic ability we utilize the covariances between wages and SAT measures. A more

formal presentation of identification is available in Appendix B.

Our approach yields identification of the “reduced form” equations in the sense that we

have not identified the structural parameters that govern the evolution of the human capitals.

As an example, we show identification of Equation (3′), where the constant in this equation

incorporates the major specific returns to math and verbal human capital. For the purposes

of this paper, the parameters we have identified are sufficient to describe the model.

4 Estimation and Model Fit

In this section, we first discuss our approach to model estimation. We then review some of

the key parameter estimates from the model and provide some simulation results regarding

model fit. Finally, we close this section by testing one of the key theoretical assumptions of

the model, the premise that students are uncertain about their human capitals when making

their major choice.

4.1 Estimation

We estimate our model by maximum likelihood. Let the data for an individual i be:

Yi = {f∗i , SATi, GPAi, Gi,t, ri,t, wi,t, Zi} for t ∈ {1994, 1997, 2003} (9)

where f∗i = {Science(S), Business(B), Other(O)}, rit = {1 if Related, 0 if Non-Related}, SATi

includes both math and verbal scores, and GPAi includes grades across the three major fields.

Z is the vector of exclusion restrictions while G is a dummy for graduate studies (which are

assumed to be exogenous to the model). Ω is the vector of parameters that describe the model.

For expositional convenience, suppose for a moment that the econometrician is able to
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observe human capitals Hi = {Hi,m,0, Hi,v,0}, total abilities Ai = {Ai,m,0, Ai,v,0}, and skill in

acquiring a related job, θi. Under this assumption, the individual contribution to the likelihood

function L(Yi|Zi, Hi, Ai, θi; Ω) can be written as follows:

L(Y |Z,H,A, θ; Ω) = Pr(f∗|Z,A, θ, gpaf∗,f∗ ; Ω)

×
∏

j∈{m,v}

fuSATj
(SATj |A; Ω))×

∏
f∈{S,B,O}

fuGPAj
(GPAf,f∗ |A, f∗; Ω)

×
∏

t∈{1994,1997,2003}

Pr(rt|Z,H, θ, f∗, Gt; Ω)

×
∏

t∈{1994,1997,2003}

fuwaget
(wt|Z,H, f∗, Gt, rt; Ω) (10)

where for ease of presentation we suppress the individual subscripts.29 In order to calculate

the terms in the above likelihood function we need to impose some parametric assumptions.

As noted earlier, we assume that the utility for each major choice contains an idiosyncratic

extreme-value shock, which yields a simple logit-type probability. Similarly, we assume that

the probability of working in a related job takes the standard logit form. We also assume that

the measurement errors in the GPAs, SATs, and wages are normally distributed. We let the

dispersion of the idiosyncratic component of log wages vary by education and type of job.

Of course the econometrician cannot observe Hi, Ai, or θi, so we cannot evaluate the above

likelihood function directly. The unobserved random variables must be integrated out of the

likelihood function:

L(Y |Z; Ω) =

∫
L(Y |Z,H,A, θ; Ω)dFH,A,θ(H,A, θ; Ω) (11)

We assume that the unobserved human capitals, scholastic abilities, and skill at acquiring a

related job are normally distributed, and take 10,000 draws from the vector of unobservables

to evaluate the above integral.30

29The likelihood is actually slightly more complex since there is an additional selection equation for observing

a business GPA. We model this probability as a simple probit where the only explanatory variables are total

math and verbal ability.
30We investigate the sensitivity of our model to this assumption by allowing the human capitals and scholastic

abilities to be drawn from a mixture of normals. While the estimates are not exactly the same, the qualitative

predictions of the model are unchanged. In order to make a true comparison between the models we would

need to increase the number of draws dramatically in the mixture model since there are now four additional
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In order to calculate the probability of choosing a certain major, we need to calculate the

expected human capitals conditional on the total abilities and the model parameters. Recall

that when making the major choice, students only observe the sum of their scholastic ability

and human capital. Under the assumption of normality, we can derive closed form solutions

for these expectations. However, since there exists a one-to-one mapping between expected

human capital and total ability, we just utilize total ability in our major choice equations. If

the GPA is missing for a particular major, we integrate the probability over the distribution

of its measurement error.

Parameter estimates and standard errors from the model are reported in Appendix Tables

A.1, A.2, and A.3.31 Note that when we estimate the model we restrict the loading on the

total math ability in the verbal SAT equation (ηv,m) to zero and utilize a residualized version

of the verbal SAT score as a dedicated measure of total verbal ability.32 The residual verbal

SAT score is obtained as the residual from a regression of the verbal SAT score on the math

SAT score. We found that the model fit the data better utilizing this restriction, since it

essentially allows the original measurement errors of the SAT equations to be correlated.33

Finally, we restrict the coefficients on the math human capital in the wage equation to be

positive and the coefficients on verbal human capital in the GPA equations to be positive.34

There are a few results worth pointing out directly. First, Table A.1 indicates that the

unobservables. However, this would greatly increase the computational burden and for practical reasons we do

not pursue this further. As an additional check on the model, we randomly split our sample in half and use

one half to estimate the model and the other half for out of sample prediction. The accuracy of the predicted

outcomes for the hold-out sample continues to be quite good. Additional details available upon request.
31We calculate standard errors by inverting a numerical approximation of the Hessian.
32If we estimate the model using the raw SAT verbal score and treat ηv,m as a free parameter, the basic

conclusions of the model are unchanged. We discuss this issue further in the results section.
33The SAT math and verbal tests are taken at essentially the same time, so it is likely that the components

of the test scores unrelated to ability are correlated. Indeed the SAT math and verbal scores are much more

strongly correlated than the GPA measures. Utilizing the residualized version of the SAT verbal score as a

dedicated measure of verbal ability is consistent with our original model specification if we assume that the

projection coefficient of total verbal ability on total math ability is equal to the projection coefficient of the

verbal SAT measurement error on the math SAT measurement error. Note that it is not possible to identify

the correlation in the error term and therefore our assumption cannot be tested.
34When calculating standard errors, we assume that the parameters that hit the non-negativity constraints

are equal to zero.
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standard deviations of the math and verbal human capitals are small relative to the standard

deviations of the math and verbal scholastic abilities. This means that individuals can only

extract limited information about their underlying human capitals when they observe only

total ability. More precisely,
σE[Hm,0]

σHm,0
= 0.27 and

σE[Hv,0]

σHv,0
= 0.22. In addition, individuals

appear to have little knowledge about their ability to obtain a related job. The coefficients

on θ are positive and statistically significant in the major choice equation, and positive in the

relatedness equation for science and other majors. Decomposing the variance of the relatedness

shock, eΥ
t , indicates that agents are able to observe 11% and 1.5% of the variability in this

shock for the other and science majors at the time of choosing a major.

In Table A.2, the major choice coefficients show that individuals with high math total

ability will likely choose to major in science, while those with high verbal ability are likely to

choose the other major. Our exogenous major preference shifters, the share of students in an

individual’s home state choosing each major and whether the parents were foreign born, have

a positive and significant impact on major choice. Consistent with the data, the constants

from the relatedness equations indicate that individuals who major in business or science are

more likely to be in related jobs. In addition, individuals with higher levels of math and

verbal human capital are more likely to work in related jobs conditional on major. Lastly, the

exogenous relatedness preference shifter, the share of workers in related jobs in that state, is

positive and significant.

Table A.3 lists the parameters from the wage and measurement equations. The returns to

math human capital are quite large for business majors, regardless of whether the individual

is in a related job or not. For science majors, however, the return to math human capital is

only large if the individual is working in a related job. This pattern is consistent with the

descriptive evidence presented earlier indicating larger returns to relatedness in the science

field. The GPA measurement equations indicate that math ability is productive in all fields,

but is most important for science majors. Verbal ability is only relevant for GPA in the other

major.

For additional evidence regarding the fit of our estimated model, we perform a set of

simple validation exercises. Using the estimated model parameters we simulate major choices

and labor market outcomes for a large number individuals (10 times the size of the original

sample). We then compare the simulated data to the actual data, the results of which are
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shown in Tables 6 and 7.35 In general, the model does well at matching key patterns in the

data. Science majors tend to be highly selected on SAT math scores and have wages that

are approximately 0.23 log points higher in both the data and the model. The model is also

able to capture the heterogeneity across major in the returns to working in a related job.

Wages for science majors in a related job are 0.29 log points higher than science majors in

non-related jobs, both in the data and the model. The gap for the other (business) major is

also consistent between the data and the model, 0.06 (0.10) log points. Finally, the model is

also able to match the GPA patterns across the matrix of majors in the data, and the result

that a one-point increase in GPA increases wages by about 6%.

Yet, the model is not able to capture all of the variation in the data, particularly as it

pertains to SAT verbal. In the data and in the model, business majors have the lowest SAT

verbal scores, but the model is not able to replicate the level of sorting on SAT verbal in the

other major.36 Additionally, the negative impact of SAT verbal on wages is not as strong in

the model as it is in the data. The model has difficulty replicating the wage impact of our

three measures of ability, SAT math, verbal, and GPA, with only two types of human capital.

A third type of human capital that affects GPA only would help fit the data better, however,

this adds to the computational burden and affects the identification strategy. The resulting

patterns of SAT verbal seem to pay the highest price for this simplicity, as verbal skills are

high correlated with college GPA but negatively correlated with wages, creating a distortion

in the correlation structure that a model with only two skills is not quite able to replicate.

4.2 Testing the Information Set

Our baseline model assumes that individuals are uncertain about their true underlying human

capitals when they make their major choice. Specifically, one of the arguments of our approx-

imated choice function E(Ψ) is E(H0|A), which implies that students can only extract some

35We generate standard errors for the simulated moments using a bootstrap procedure which entails repeat-

edly drawing from our original sample, estimating the model, and simulating data. We repeat this process 10

times.
36If we estimate the model using the raw SAT verbal scores we are able to capture the sorting into major based

on this measure. However, in this version SAT verbal projects positively on wages in our validation exercise.

Importantly, the estimated returns to major are not sensitive to our choice of verbal SAT or residualized verbal

SAT.
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information about their human capital from their total ability. Alternatively, students may

be able to observe H0 directly and therefore base their major decision on this rather than on

expectations of H0. Similar to Carneiro et al. (2003), Cunha et al. (2005), Navarro (2011), or

Guvenen & Smith (2010), testing the information set of the agent is essentially equivalent to

testing whether the individuals choices are a function of the human capitals or their expected

values.

Rather than assuming that individuals either know or do not know their human capitals,

we specify a more general setting in which agents base their decision on the value of:

(1− α)E[Hj,0|A; Ω] + αHj,0 for j ∈ {m, v},

where 0 ≤ α ≤ 1.37 When α = 0 we obtain the main specification of our model and when

α = 1 we obtain an alternative specification with perfect knowledge about human capital.

When we estimate this model with α as a free parameter, we maximize the likelihood function

at α̂ = 0.012. Using the results of Chant (1974) and Self & Liang (1987) for testing a parameter

at its boundary, we test the null hypothesis that α = 0 versus the alternative that α > 0.

Under the null, the P(α̂ < 0.019) is equal to 0.95, and thus we fail to reject the null hypothesis

that α = 0.

While we are able to reject that individuals know their human capital with certainty when

choosing a major, it is interesting to consider how well a model assuming perfect knowledge

performs. Rather than present the parameter estimates and simulations from the perfect

knowledge model, we simply compare the model fit for the perfect certainty model to our

baseline case. If we implement a naive χ2 test using the results from Table 6, where we

erroneously assume that the covariance matrix is diagonal, we find that the joint test of

equality between the data and the baseline model is 79.4. The 5% critical value for the χ2
17

distribution is 27.6, which means that we reject the baseline model. However, the analogous

statistic for the model assuming perfect information is 144.4, indicating that it yields a worse

fit of the data. If we compute a proper covariance matrix for the statistics in Table 6, the

χ2 test statistic for the baseline and perfect certainty models is 26.5 and 42.7 respectively. In

this case our baseline model is not rejected while the perfect certainty model is rejected.38

Finally, the Holm-Bonferroni test can also help us understand what the source of the model

37A similar expression is included for the quadratic terms related to human capital.
38In order to construct the full covariance matrix for the data moments we had to decrease the number of
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failure is for the baseline and perfect certainty cases.39 When comparing the baseline model

to the data, two of the test statistics are rejected, the math and verbal SAT scores for the

science graduates. For the model with perfect information, six statistics are rejected, again

suggesting a decidedly worse fit.

We also compare the two models using the results from Table 7. Here we perform an F-test

on the most complete wage specification and obtain for our baseline model a statistic of 1.9

with an implied a p-value of 0.03. The alternative model with perfect information delivers

an F-statistic of 8.2 with an implied p-value of 0. Again we find that the null hypothesis is

rejected for both models, but the model with imperfect information continues to outperform

the perfect certainty model.

5 Counterfactuals

While the parameter estimates and model fit are informative, the primary advantage of the

structural approach is that we can utilize our model to estimate the returns to college major

and quantify the specificity of human capital when individuals differ in their unobserved

abilities. In the following sections we estimate the returns to major and relatedness, quantify

the role of varying skill prices, and explore how major choices would change if individuals had

perfect information about their human capital at the time of the major decision. In all of

the following regressions we use simulated data from the baseline model with human capital

uncertainty as described in Section 4.

5.1 The Returns to Major Choice and Relatedness

Here we provide our estimates of the average return to each major if we forced students into

each major (Average Treatment Effect - ATE), the average return to each major for those

who selected that major (Treatment of the Treated - TT), and finally the average return

for those that selected a different major (Treatment of the Untreated - TUT). In Table 8,

observations utilized since there are a number of missing business GPA observations. As a result, the estimated

variances of the statistics increase, making it more difficult to reject the model.
39The Holm-Bonferroni test is a multiple test procedure wherein hypotheses are rejected one at a time until

no further rejections can be done. The cutoff point is determined according to P (k) > α
m+1−k , where P (k) are

the ordered p-values of the m test statistics of Table 6. For further detail see Holm (1979).
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we report the results jointly with the OLS estimates from Table 7. Across the population,

the average return to a business degree declines to 0.145 log points from an OLS estimate

of 0.204. The estimated return to obtaining a science degree drops from 0.229 log points in

the OLS specification to 0.184 in the structural model. In contrast, controlling for observable

measures of ability using SAT and major specific GPA reduces the OLS returns by only one

or two log points, highlighting the importance of accounting properly for the presence of

measurement error in the available ability measures. Yet, despite the declines, the average

return to obtaining a business or science degree continues to be quite large.

In the remaining columns of Table 8, we report the average returns for those who selected a

business, science, or residual major, respectively. Regardless of the chosen major, the average

return to a science degree is always large relative to the other major and does not vary

much across the population. The average return to a business major is actually smallest for

those who choose business. The main conclusion to draw from Table 8 is that there are real

monetary returns to majoring in business or science. However, individuals continue to major

in the residual category, reflecting the fact that individuals do not choose majors based only

on expected earnings.

The descriptive evidence presented in Section 2 indicates that not only do individuals

majoring in science related fields earn a significant wage premium, but also that this premium

varies greatly according to the type of job the individual ultimately chooses. The evidence

from Table 8 indicates that the average return to science is smaller than the reduced form

evidence indicates. Table 9 examines whether the wage returns associated with working in a

related job are robust to sorting based on unobserved skill.

The first column of Table 9 presents the OLS estimates of the returns to working in a

related job across all fields estimated on the simulated data.40 Note that the numbers in

Table 9 are not the coefficient estimates themselves, but rather the total returns which require

adding the business and science coefficients to the coefficient for the residual major group. The

results are quite similar to those from the first column of Table 4, however, the OLS estimates

are likely biased by both sorting into major and relatedness. One method for minimizing this

bias is to incorporate individual fixed effects, a strategy we pursued in the descriptive analysis

of Section 2. The second column of Table 9 lists the relatedness returns estimated on the

40In each regression we also control for major, year, and graduate degree effects.
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simulated data when individual fixed effects are incorporated.41 The results for business and

science are quite similar to the fixed-effect estimates presented in Table 4, an indication that

our model is able to replicate the returns to working in a related job for those workers who

are on the margin between working in a related and non-related job.

As noted in Section 2, the problem with the fixed effect approach is that the estimated

returns for the marginal worker likely understate the returns for the average worker. This is

largely borne out by the results in column 3 of Table 9, which presents the average return to

working in a related job when there is no selection into major. In other words, these numbers

reflect the population returns to working in a related job for each major. For science and

other majors, the average return to working in a related job is higher than the corresponding

fixed-effect estimate. Moreover, the returns to relatedness for those choosing to work in a

related job is much higher then the corresponding fixed effect estimate. In particular, the

return to a related job for science majors choosing to work in related job is 0.341 as compared

to the fixed effect estimate of 0.159. In contrast to science and other majors, the returns to

working in a related job for business majors is relatively flat across marginal, average, and

treated workers.

The final three columns of Table 9 present the average returns to relatedness conditional

on major choice. Overall, the patterns in the returns to relatedness are quite similar to those

presented in columns 3 through 5. However, the relatedness return for science majors do

increase, a result of the fact that high math human capital students tend to sort into the

science field and high math human capital individuals benefit the most from working in a

related job. The sizeable returns to working in a related job indicates that the specificity of

human capital within major is a distinct feature of the data. In the next section we investigate

further the specificity of schooling human capital.

41In our simulations we estimate the fixed effect model using first differences as it was simpler to incorporate

into our bootstrap procedure. The two estimators are asymptotically equivalent under our assumptions, but

yield marginally different estimates.
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5.2 The Importance of the Specificity of Human Capital

In this exercise, we decompose the within-major variation in wages related to human capital

into general and specific components.42 Recall that the wage equation is given by

lnwr,f∗,t = pr,f∗,c + pr,f∗,mHm,0 + pr,f∗,vHv,0.

We view the wage variation that arises strictly through Hm,0 and Hv,0 as variation in the

general skills that individuals bring to the labor market. In contrast, the variation in wages

due to p is related to how math and verbal general skills apply to a specific type of job.43

The variation in wages related to general human capital can be pinned down by fixing the

p’s for each major using a weighted average of the related and non-related coefficients. We use

the predicted proportion of individuals within each major working in related jobs as our weight.

Combining these coefficients with the within-major variation in human capital we can easily

generate the overall variation in wages related to general human capital. Table 10 provides

the decomposition of wages into initial human capital and other components, followed by a

decomposition of the impact of initial human capital into its general and specific components.

We find that initial human capital plays the largest role in the science field, explaining 32%

of the overall variation in wages. Moreover, we find that for science majors variation in

math and verbal human capital alone can explain only 81% of the wage variation related to

human capital, meaning that 19% of the variation is driven by skill prices. In contrast, math

and verbal human capital are responsible for 96% and 91% of the overall variation in wages

related to human capital for business and other majors. Thus, not only does human capital

42The initial human capitals and their coefficients are responsible for approximately a third of the overall

wage variation. The remaining variation arises through the graduate degree and year dummies, as well as the

measurement error. Obtaining a graduate degree and/or accumulating additional work experience certainly

boosts human capital. Thus, the wage variation arising from human capital is most certainly larger than what

is presented here.
43Notice that we only explore the within major variation in wages when decomposing wage variability into

its general and specific components. However, the between major variation could potentially be decomposed

into general and specific components given that the price of human capital differs by major. We are unable to

do this since we cannot decompose the cross-major variation in the wage constants into specific and general

components. This is a consequence of estimating the reduced-form parameters of the model rather than the

structural parameters governing the accumulation of human capital. Therefore, the results of this section can

be seen as a lower bound of the importance of specific human capital.
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play the largest role in the science field, but the specificity of its application is also large

relative to business or other majors.44 The results in Table 10 also complement the evidence

on the returns to relatedness presented in Table 9. Science majors have the highest returns to

working in a related job and also the greatest dispersion in wages induced by the presence of

specificity. In contrast, the specificity of human capital plays the smallest role in both returns

and wage dispersion for business majors.

The specificity of human capital is an additional source of risk in the sense that even within

major the returns to human capital can vary considerably. In this exercise, we find evidence

that in addition to taste, there is room for risk to help explain why so few students choose

to major in science related fields. The fact that relatively few students also tend to choose

a business degree is unlikely to be explained by risk, since as noted above the specificity of

human capital plays the smallest role in the wage dispersion for business majors.

Finally, we take our model quite literally and simulate the counterfactual major field of

study that students would have selected had they known their human capitals precisely, rather

than just observing their total abilities. Although we estimated the major choice equation as a

function of total ability, A, we can transform the estimated coefficients as if the equation were

directly a function of E(H|A). The counterfactual then requires replacing the expectation

with the true H. This is a courageous exercise since our model assumes that total ability

affects the choice of major because it affects students’ expectations over their human capital.

We cannot allow math and verbal total ability to enter the utility for major directly because

we would be unable to distinguish this channel from the human capital impact. However,

our model does allow preferences for major to be linked to academic performance through

the potential GPA, which is itself a function of an individual’s total abilities. Papers that

have tried to understand how important are labor market expectations for major choice have

usually found that, although they are significant and economically important, they have a

smaller impact than preferences (for example, Arcidiacono (2004), Beffy et al. (2012), and

44It should be noted that the residual major group has the greatest overall variability in wages. Therefore,

there is still much to learn about what generates such variability. The residual group is certainly the most

heterogenous in terms of the underlying group of majors and we cannot rule out that a large fraction of what

we impute as the effect of measurement error is in reality a dimension of heterogeneity that we do not account

for.
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Wiswall & Zafar (2012)). For this reason we think that the counterfactual exercise discussed

below should be seen as a upper bound on the actual impact that a richer information set

would have on student choices and as a qualitative indication on the direction of the effect.

In the counterfactual world where individuals are assumed to know their human capitals,

we observe that 30.0% of students would choose a science major, 43.8% would choose a business

major and only 25.8% would choose the residual major. Although we observe that students in

all majors tend to change their choice given the new information, the vast majority of students

who change major end up in either a science or business major. The increase in the share

of science majors is consistent our earlier hypothesis. Interestingly we also observe that the

fraction of business majors increases. It should be noted that the estimation of the parameters

of the major choice equation is not directly linked to labor market outcomes, as it would be

in a complete dynamic programming model. Therefore, it is difficult to speculate on which

are the driving forces for this result.

6 Conclusion

It is well documented that the returns to obtaining a college degree vary significantly across

fields of study, with business and science majors earning a significant wage premium relative to

all other fields. In this paper we illustrate that there also exists significant variation in wages

within major according to the type of career an individual pursues. The question is whether

the observed differences in wages are driven by selection, or if there truly are differential

returns both within and across field.

We estimate a structural human capital model that allows for sorting into major and job

type based on observed and unobserved characteristics to determine whether the observed

wage gaps are driven primarily by selection. Our findings indicate that selection plays a role

in generating the observed wage gaps across major, particularly for business. However, the

large wage gaps across job type are instead explained by true differences in returns. Even

when we account for selection into major, the returns to business and science majors are still

economically significant. Thus we are still left with the question of why do individuals pursue

less remunerative majors?

One reason individuals may not pursue a science degree is a lack of knowledge about the
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true returns. Future success in the labor market depends on the skills a worker accumulates

and the type of job pursued. If individuals do not know precisely their skills when making

their major choice, then they face two sources of uncertainty. First, there is a risk that the

human capital students accumulate will be de-valued if they do not obtain a job related to

their field of study. Second, upon obtaining a related job, individuals face an uncertain wage

since they do not know their skill level exactly. This story is consistent with our finding

that both dimensions of uncertainty may make science and math related majors unattractive

relative to business or other majors. Human capital plays the largest role in wages for science

majors, and the specificity of human capital is also most severe for graduates with a science

degree. The impact of skill uncertainty on major choice has thus far not been considered

when designing policies to increase the number of students majoring in science and technology

fields. However, reducing uncertainty by incrementing information might be more valuable

than utilizing monetary incentives, such as those provided by the SMART grant.

In our counterfactual exercises we indeed find that, were students aware of their human

capitals they would choose a science major more frequently. These results should just be

seen as qualitative evidence since in our estimation framework we do not separately estimate

monetary and non-monetary preferences over major and working in a related job. This makes

it difficult to convincingly estimate the curvature of the utility function, which is crucial for

understanding the importance of risk, and most likely tends to overstate the impact of a

change in the information set. Future research should seek to estimate the effect of risk on

major choice more directly, while also incorporating additional sources of risk not considered

here, such as risk related to college dropout, the business cycle, and wage variability over the

life cycle.
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Table 1: Schooling Statistics

Overall by Major

Business Science Other

Age in 1993 23.31 SAT Math 525 596 525

(1.48) (113) (106) (111)

SAT Math 542 SAT Verbal 450 496 474

(116) (98) (105) (102)

SAT Verbal 473 Business GPA 3.14 3.07 2.71

(103) (0.44) (0.75) (0.78)

Business Credits 37.04 2.91 5.70

% Business Major 26.12 (18.98) (7.55) (12.16)

% Math/Science Major 24.66 Science GPA 2.75 3.23 2.62

(0.65) (0.47) (0.7)

% Other Major 49.22 Science Credits 20.01 78.43 17.93

(12.61) (29.34) (17.24)

% Graduate Degree 27.34

Other GPA 2.89 3.14 3.23

Both Parents Foreign Born 0.08 (0.51) (0.53) (0.45)

Other Credits 43.00 29.34 62.69

(25.51) (19.88) (33.47)

Both Parents Foreign Born 0.08 0.13 0.04

Statistics are based on data from the Baccalaureate and Beyond Longitudinal Study. The sample includes males

who are below 30 at the time of graduation who have valid SAT scores and parental information. There are total

2,476 individuals in the sample. The Business major includes fields such as economics, accounting, and general

business. The Science major includes engineering, the physical and natural sciences, and computer science.

All remaining fields, such as social sciences, education, psychology, humanities, etc., fall into the Other major

category. Further sample details can be found in Section 2.1.
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Table 2: Labor Market Statistics

Overall by Major

Business Science Other

Job is Related to Major Field of Study 70.46 78.35 79.81 61.01

Log(Annualized Salary) 10.52 10.59 10.65 10.41

(0.62) (0.60) (0.57) (0.65)

Log(Annualized Salary) if Related 10.57 10.59 10.70 10.45

(0.59) (0.58) (0.52) (0.62)

Log(Annualized Salary) if NOT Related 10.40 10.56 10.42 10.34

(0.69) (0.66) (0.69) (0.69)

Statistics are based on data from the Baccalaureate and Beyond Longitudinal Study. Sample selection and

major definitions are provided in the notes to Table 1. Sampled individuals are observed working in 1994,

1997, and 2003. For the 1994 and 1997 surveys, a job is defined as being related to an individual’s field of

study if the respondent reported that their job was either closely or somewhat related to their field of study.

In 2003 a respondent is considered to be working in a job related to their field of study if their undergraduate

education is very important in their current job or if their graduate education is very important in their

current job and the respondent reports obtaining a graduate degree. Further details can be found in Section

2.2.
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Table 3: Returns to College Major

Dep. Var. Log(Inc) Log(Inc) Log(Inc) Log(Wage)

Business 0.191* 0.181* 0.185* 0.162*

(0.024) (0.024) (0.023) (0.021)

Science 0.234* 0.210* 0.215* 0.198*

(0.021) (0.022) (0.022) (0.021)

SAT Math/100 0.045* 0.042* 0.044*

(0.011) (0.011) (0.010)

SAT Verbal/100 -0.040* -0.045* -0.039*

(0.013) (0.014) (0.013)

Major Specific GPA 0.070* 0.065*

(0.020) (0.019)

Year/Graduate Degree Effects Y Y Y Y

N 4,927 4,927 4,927 4,927

*,** Indicate a coefficient is statistically significant at a 5 and 10% significance level.

Heteroskedastic-robust standard errors reported in parentheses. Estimates are based on data

from the Baccalaureate and Beyond Longitudinal Study. Sample selection and major definitions

are provided in the notes to Table 1. Unit of observation is an individual-year combination.
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Table 4: Returns to College Major Accounting for Utilization

Dep. Var. Log(Inc) Log(Inc) Log(Inc) Log(Inc)

Business 0.143* 0.116*

(0.051) (0.047)

Science 0.019 0.001

(0.047) (0.045)

Job is Related to Studies 0.063** 0.019 0.048 0.080*

(0.035) (0.030) (0.030) (0.037)

Business*Job is Related to Studies 0.039 0.096** 0.003 -0.057

(0.058) (0.055) (0.048) (0.058)

Science*Job is Related to Studies 0.229* 0.227* 0.118* 0.133*

(0.051) (0.049) (0.054) (0.053)

SAT Math/100 0.041* 0.031* 0.021*

(0.011) (0.011) (0.010)

SAT Verbal/100 -0.042* -0.033* -0.038*

(0.013) (0.012) (0.013)

Major Specific GPA 0.064* 0.085* 0.076*

(0.020) (0.019) (0.019)

Year/Graduate Degree Effects Y Y Y Y

Worker Fixed Effects N N Y N

Detailed Major Effects N Y N N

Detailed Occupation Effects N N N Y

N 4,927 4,927 4,927 4,927

*,** Indicate a coefficient is statistically significant at a 5 and 10% significance level.

Heteroskedastic-robust standard errors reported in parentheses. Estimates are based on data

from the Baccalaureate and Beyond Longitudinal Study. Sample selection and major definitions

are provided in the notes to Table 1. The definition of a related job is provided in the notes to

Table 2. Unit of observation is an individual-year combination.
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Table 5: Occupation Distribution by Major and Relatedness

Business Majors Science Majors Other Majors

Occupation Category Rel=0 Rel=1 Rel=0 Rel=1 Rel=0 Rel=1

Administrative / Clerical 6.99 3.53 7.2 0.75 10.91 4.39

Mechanics / Laborers 7.86 1.7 10.09 2.26 11.45 3.14

Service industries 22.27 19.95 17 3.01 20.83 10.5

Human / Protective Service 2.62 0.61 4.9 0.83 4.69 10.4

Finance Professionals 15.72 36.13 5.48 3.01 11.54 6.55

Business and Management 20.52 18.86 15.85 8.65 16.32 11.75

Legal Professionals 0.44 2.07 0.58 0.53 0.81 2.82

Medical Professionals 0 0.61 2.59 5.49 0.81 6.77

Educators 4.37 3.28 5.76 6.54 5.05 17.81

Engineering / Architecture 1.31 1.22 7.2 38.87 1.08 3.74

Research / Scientists / Technical 2.18 2.68 5.48 15.86 3.52 7.58

Computer Science 9.61 5.35 10.66 12.56 5.77 2.6

Editors / Writers / Performers 3.06 2.43 1.73 0.23 4.33 10.23

Other 3.06 1.58 5.48 1.43 2.89 1.73

N 229 822 347 1330 1,109 1,847

Statistics are based on data from the Baccalaureate and Beyond Longitudinal Study. Sample selection

and major definitions are provided in the notes to Table 1. The definition of a related job is provided in

the notes to Table 2. Unit of observation is an individual-year combination.
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Table 6: Model Validation: Summary Statistics

Business Majors Science Majors Other Majors

Data Model Data Model Data Model

% Selected 26.1 26.7 24.7 24.6 49.2 48.7

(0.9) (0.7) (0.9) (0.7) (1.0) (1.0)

SAT Math 529 539 596 573 525 533

(3.0) (8.5) (2.3) (3.9) (1.8) (4.2)

Residualized SAT Verbal 462 459 467 479 485 478

(2.2) (4.4) (1.8) (2.4) (1.2) (2.2)

Business GPA 3.15 3.17 3.11 3.09 2.78 2.82

(0.01) (0.02) (0.03) (0.05) (0.02) (0.04)

Science GPA 2.76 2.79 3.23 3.21 2.64 2.67

(0.02) (0.03) (0.01) (0.01) (0.01) (0.02)

Other GPA 2.90 2.93 3.16 3.13 3.23 3.24

(0.01) (0.03) (0.01) (0.02) (0.01) (0.01)

The numbers in parenthesis are the standard deviation of the averages. For example, we report the

standard deviation of the average GPA, not the standard deviation of the individual GPAs. The

standard deviations for the model are obtained by bootstrapping the original data set ten times

and estimating the parameter vector for each bootstrapped data set. Each one of these parameter

vectors is then utilized to simulate data ten times the size of the original data. The standard

deviations arise from the dispersion in the calculations of the table across these ten simulated

datasets. Details on the model and estimation can be found in Sections 3 and 4.

42



Table 7: Model Validation: Wage Regressions

Data Model Data Model Data Model

Business 0.191 0.204 0.185 0.206 0.144 0.163

(0.017) (0.031) (0.017) (0.031) (0.033) (0.081)

Science 0.234 0.229 0.214 0.224 0.018 0.052

(0.018) (0.032) (0.019) (0.032) (0.037) (0.044)

Job is Related 0.064 0.064

(0.022) (0.085)

Related x Bus. 0.038 0.040

(0.039) (0.098)

Related x Sc. 0.228 0.203

(0.029) (0.051)

SAT Math/100 0.019 0.017 0.020 0.016

(0.007) (0.002) (0.007) (0.002)

SAT Residual Verbal/100 -0.043 -0.008 -0.040 -0.008

(0.009) (0.003) (0.009) (0.003)

Major GPA 0.069 0.062 0.062 0.054

(0.017) (0.011) (0.017) (0.012)

Year/Grad Y Y Y Y Y Y

The standard deviations for the model are obtained by bootstrapping the original data set ten

times and estimating a new parameter vector for each bootstrapped data set. Each one of these

parameter vectors is then utilized to simulate data ten times the size of the original data. The

standard deviations arise from the dispersion in the calculations of the table across these ten

simulated datasets. Details on the model and estimation can be found in Sections 3 and 4.
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Table 8: Model Generated Returns to College Major

Sample Selected by Chosen Major

OLS All Business Science Other

Business 0.204 0.145 0.090 0.177 0.160

(0.031) (0.035) (0.037) (0.044) (0.037)

Science 0.229 0.184 0.165 0.200 0.187

(0.032) (0.029) (0.034) (0.032) (0.029)

Year/Grad controls Y Y Y Y Y

Standard deviations obtained through the bootstrap procedure described in notes to

Table 7. The OLS column mimics the wage regression from Table 3 and assumes that

all that is observed is the wage for the chosen major. The All column instead includes

all the potential wages each individual could have realized had they chosen different

majors. The final three columns condition the sample on the chosen major, but include

all potential wages.
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Table 9: Model Generated Returns to Working in a Related Job

No Selection into Major Sorting into Major

OLS FD All Rel=0 Rel=1 All Rel=0 Rel=1

Other 0.070 0.024 0.080 -0.097 0.172 0.083 -0.084 0.186

(0.044) (0.027) (0.029) (0.036) (0.049) (0.027) (0.040) (0.046)

Business 0.108 0.063 0.046 0.069 0.042 0.041 0.054 0.038

(0.060) (0.051) (0.122) (0.052) (0.145) (0.080) (0.069) (0.107)

Science 0.273 0.159 0.272 0.082 0.341 0.310 0.106 0.363

(0.030) (0.023) (0.057) (0.048) (0.083) (0.071) (0.038) (0.093)

Major/Year/Grad Y Y Y Y Y Y Y Y

Standard deviations obtained through the bootstrap procedure described in notes to Table 7. The OLS

and first differences (FD) column mimics the wage regressions from Table 4 and assumes that all that is

observed is the wage for the chosen major and job relatedness. The remaining columns estimate the average

returns to a related job, first without conditioning on the chosen major, and then conditioning on the

chosen major. The All column includes all the potential wages each individual could have realized had they

chosen different relatedness outcomes. The Rel=0 and Rel=1 conditions the sample based on the observed

relatedness outcomes.
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Table 10: Log-Wage Decomposition

Business Science Other

Wage Variability 0.355 0.318 0.418

(0.020) (0.015) (0.033)

Fraction Related to Initial Human Capital 27.3% 32.3% 26.1%

(2.3%) (3.0%) (1.2%)

General Skill 96.2% 81.0% 91.3%

(3.9%) (4.5%) (2.2%)

Specificity 3.8% 19.0% 8.7%

Standard deviations obtained through the bootstrap procedure described in notes to Table

7. Total wage variation within a major is the result of variation in wages due to human

capital, skill prices, year effects, graduate degree effects, and measurement error. Wage

variation that arises strictly through human capital and skill prices is the variability related

to initial human capital. Variation in wages related only to human capitals is deemed

general skill, while variation in wages due to skill prices captures specific skill. Wage

variation in wages related to general human capital can be pinned down by fixing the skill

prices for each major using a weighted average of the related and non-related prices. We

use the predicted proportion of individuals within each major working in related jobs as

our weight. Further details on the decomposition can be found in Section 5.2.
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A Parameter Estimates - Uncertainty

Table A.1: Skill Distributions

Standard Deviation Math Human Capital, σHm
0.142 (0.018)

Standard Deviation Verbal Human Capital, σHv
0.027 (0.006)

Standard Deviation Math Scholastic Ability, σνm 0.514 (0.023)

Standard Deviation Verbal Scholastic Ability, σνv 0.115 (0.015)

Table A.2: Major and Relatedness Choice Parameters

Major Choice Relatedness Outcomes

Constant, Business -150.009 (20.755) Constant, Business 2.146 (0.142)

Am,0, Business -11.963 (7.725) Hm,0, Business 4.647 (1.853)

A2
m,0, Business 1.039 (0.733) Hv,0, Business 52.663 (13.203)

Av,0, Business 201.437 (1.151) Graduate, Business 1.785 (0.315)

A2
v,0, Business -34.271 (0.332) Persistence, Business 0 -

Parents Foreign, Business 4.102 (1.374)

Persistence, Business 3.106 (1.359) Constant, Science 1.520 (0.277)

Hm,0, Science 12.583 (2.126)

Constant, Science -206.722 (24.657) Hv,0, Science 22.253 (14.824)

Am,0, Science -11.906 (6.845) Graduate, Science 1.185 (0.293)

A2
m,0, Science 1.569 (0.661) Persistence, Science 0.223 (0.263)

Av,0, Science 83.586 (2.323)

A2
v,0, Science -7.605 (0.703) Constant, Other 1.051 (0.212)

Parents Foreign, Science 7.290 (1.730) Hm,0, Other 17.076 (2.580)

Persistence, Science 9.716 (1.936) Hv,0, Other 22.243 (9.346)

Graduate, Other 2.179 (0.207)

Relative Potential GPA 64.827 (9.947) Persistence, Other 0.638 (0.386)

Relative Potential GPA2 -10.431 (1.605)

1997 Dummy 0.226 (0.086)

Own Share 14.614 (5.152) 2003 Dummy -0.430 (0.087)

Share Related 1.662 (0.485)
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Table A.3: Wage and Measurement Parameters

Wage Coefficients Measurement Coefficients

Constant, Business 10.151 (0.054) SAT Math Constant 5.442 (0.022)

Related, Business 0.048 (0.050) SAT Verbal Constant 4.744 (0.011)

Hm,0, Non-Related, Business 2.704 (0.424)

Hm,0, Related, Business 1.880 (0.302) Constant, Business 3.213 (0.027)

Hv,0, Non-Related, Business -4.633 (2.758) Am,0, Business 0.750 (0.044)

Hv,0, Related, Business -3.518 (2.051) Av,0, Business 0 -

Graduate, Business 0.156 (0.025) ηO,B -0.306 (0.044)

ηS,B -0.343 (0.058)

Constant, Science 9.991 (0.054)

Related, Science 0.272 (0.050) Constant, Science 2.950 (0.038)

Hm,0, Non-Related, Science 0.361 (0.577) Am,0, Science 0.945 (0.049)

Hm,0, Related, Science 1.532 (0.384) Av,0, Science 0 -

Hv,0, Non-Related, Science -14.110 (3.496) ηO,S -0.175 (0.050)

Hv,0, Related, Science -6.906 (2.440) ηB,S -0.125 (0.051)

Graduate, Science 0.052 (0.030)

Constant, Other 9.937 (0.035) Constant, Other 3.316 (0.018)

Related, Other 0.078 (0.037) Am,0, Other 0.658 (0.033)

Hm,0, Non-Related, Other 0 - Av,0, Other 0.679 (0.168)

Hm,0, Related, Other 1.292 (0.283) ηB,O -0.277 (0.042)

Hv,0, Non-Related, Other -14.585 (3.182) ηS,O -0.457 (0.039)

Hv,0, Related, Other -9.105 (2.281)

Graduate, Other 0.101 (0.031) σum
0.986 (0.015)

σuv
0.784 (0.009)

1997 Dummy 0.348 (0.014) σuB
0.339 (0.007)

2003 Dummy 0.462 (0.014) σuS
0.409 (0.010)

σuO
0.384 (0.012)
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B Identification Proof

In our empirical implementation we assume that agents can choose among 3 majors: business

(B), science (S) and other (O). We normalize the factor loadings of the math and verbal total

abilities in the SAT math and verbal measurement equations (ηm,m, ηv,v) to one. Additionally,

we normalize all random variables other than the scholastic abilities to have mean zero. We

set the mean of the scholastic abilities equal to the mean of the SAT math and verbal scores.

This allows for easier interpretability of the coefficients in the major choice equations. These

are done without loss of generality.

We start by considering the identification of the parameters of the GPA measurement

equations, the variances of the total abilities
(
σ2
Am
, σ2

Av

)
, and the parameter ηv,m that governs

the correlation between the math and verbal SAT measures. In order to prove the identification

of these parameters consider the following covariances

A = cov (SATm, SATv) = ηv,mσ
2
Am

Bf = cov(GPAf , SATm) = ηf,mσ
2
Am

Cf = cov(GPAf , SATv) = ηv,mηf,mσ
2
Am + ηf,vσ

2
Av

Df,f ′ = cov(GPAf ′ , GPAf ) = ηf,mηf ′,mσ
2
Am + ηf,vηf ′,vσ

2
Av

calculated for fields f , f ′ and f ′′ and all their combinations. Working with these 10 equations

it is possible to show that:

ηv,m =
Df,f ′′Cf ′ − Cf ′′Df,f ′

Bf
Bf ′′Cf ′−Cf ′′Bf ′

A +Df,f ′′Bf ′ −Bf ′′Df,f ′

Once ηv,m is identified we can also recover
(
σ2
Am
, σ2

Av

)
and (ηf,m, ηf,v) for all f . The measure-

ment constants can then be identified by looking at the average SAT scores and the average

GPAs across major for individuals that have a probability one of selecting each of the three

majors.45

Treating the measurement parameters and variances of the total abilities as known, we can

now study the identification of the labor market parameters (pr,f∗,m, pr,f∗,v) and the human

45Our identification proof relies on ηv,m being different from zero. If ηv,m is equal to zero the identification

is more straightforward and utilizes the same measurement equations.
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capital variances
(
σ2
Hm

, σ2
Hv

)
. Consider first the set of agents that choose with probability one

major f or major f ′ and work in a job with relatedness status r, where r = 0 or r = 1.46

Calculating the covariances of the wages with the SAT measures and the auto-covariances of

the wages we obtain:

af = cov(lnwr,f,t, SATm) = pr,f,mσ
2
Hm

bf = cov(lnwr,f,t, SATv) = ηv,mpr,f,mσ
2
Hm + pr,f,vσ

2
Hv

cf = cov(lnwr,f,t, lnwr,f,t−1) = (pr,f,m)2 σ2
Hm + (pr,f,v)

2 σ2
Hv .

Working with this set of 6 equations we can solve for the value of pr,f,m:

pr,f,m =
afcf

(
bf ′ − αaf ′

)2 − afcf ′ (bf − αaf )2

a2
f

(
bf ′ − αaf ′

)2 − a2
f ′ (bf − αaf )2

(12)

and subsequently all other parameters. Now that we have the variance of the human capitals

we can also calculate the variance of the scholastic abilities by subtracting the former from

the variance of total ability. Once the identification of these parameters is achieved we can

apply Kotlarski’s theorem (1967) as in Carneiro et al. (2003) to show the non-parametric

identification of the distribution of the unobserved variables.

What we have not shown here but it is also crucial for our estimation is the identification

of the parameters describing the functions Υ̃(f∗, Hm,0, Hv,0, Zt), Ψf (H0, θ, gpaf,f , Zf ), the

parameters αΥ
f∗ , and the distribution of θ. In this case we approximate the functions with

quadratic specifications and apply the standard normalizations (for example Ψf = 0 for f =

Other). By looking at the correlations between the choices and the measurements we can

identify all the relevant parameters.

46Using the same infinity argument we can also identify the wage constants by looking at the average wages.

Similarly, to identify the variances of all measurement errors we can utilize the variances of the associated

observable measures.
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