
Revocation in Publicly Verifiable Outsourced
Computation

James Alderman?, Christian Janson, Carlos Cid??, and Jason Crampton

Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

{James.Alderman.2011, Christian.Janson.2012}@live.rhul.ac.uk
{Carlos.Cid, Jason.Crampton}@rhul.ac.uk

Abstract. The combination of software-as-a-service and the increasing
use of mobile devices gives rise to a considerable difference in compu-
tational power between servers and clients. Thus, there is a desire for
clients to outsource the evaluation of complex functions to an external
server. Servers providing such a service may be rewarded per computa-
tion, and as such have an incentive to cheat by returning garbage rather
than devoting resources and time to compute a valid result.
In this work, we introduce the notion of Revocable Publicly Verifiable
Computation (RPVC), where a cheating server is revoked and may not
perform future computations (thus incurring a financial penalty). We
introduce a Key Distribution Center (KDC) to efficiently handle the
generation and distribution of the keys required to support RPVC. The
KDC is an authority over entities in the system and enables revocation.
We also introduce a notion of blind verification such that results are ver-
ifiable (and hence servers can be rewarded or punished) without learning
the value. We present a rigorous definitional framework, define a number
of new security models and present a construction of such a scheme built
upon Key-Policy Attribute-based Encryption.

Keywords— Publicly Verifiable Outsourced Computation, Key Distribu-
tion Center, Key-policy Attribute-based Encryption, Revocation

1 Introduction

It is increasingly common for mobile devices to be used as general computing
devices. There is also a trend towards cloud computing and enormous volumes of

? The first author acknowledges support from BAE Systems Advanced Technology
Centre under a CASE Award.

?? This research was partially sponsored by US Army Research laboratory and the UK
Ministry of Defence under Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the US
Army Research Laboratory, the U.S. Government, the UK Ministry of Defence, or
the UK Government. The US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation
hereon.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data (“big data”) which means that computations may require considerable com-
puting resources. In short, there is a growing discrepancy between the computing
resources of end-user devices and the resources required to perform complex com-
putations on large datasets. This discrepancy, coupled with the increasing use
of software-as-a-service, means there is a requirement for a client device to be
able to delegate a computation to a server.

Consider, for example, a company that operates a “bring your own device”
policy, enabling employees to use personal smartphones and tablets for work.
Due to resource limitations, it may not be possible for these devices to per-
form complex computations locally. Instead, a computation is outsourced over
some network to a more powerful server (possibly outside the company, offering
software-as-a-service, and hence untrusted) and the result of the computation is
returned to the client device. Another example arises in the context of battlefield
communications where each member of a squadron of soldiers is deployed with
a reasonably light-weight computing device. The soldiers gather data from their
surroundings and send it to regional servers for analysis before receiving tactical
commands based on results. Those servers may not be fully trusted e.g. if the
soldiers are part of a coalition network. Thus a soldier must have an assurance
that the command has been computed correctly. A final example could consider
sensor networks where lightweight sensors transmit readings to a more powerful
base station to compute statistics that can be verified by an experimenter.

In simple terms, given a function F to be computed by a server S, the client
sends input x to S, who should return F (x) to the client. However, there may
be an incentive for the server (or an imposter) to cheat and return an invalid
result y 6= F (x) to the client. The server may wish to convince a client of an
incorrect result, or (particularly if servers are rewarded per computation per-
formed) the server may be too busy or may not wish to devote resources to
perform the computation. Thus, the client wishes to have some assurance that
the result y returned by the server is, in fact, F (x). This problem, known as
Verifiable Outsourced Computation (VC), has attracted a lot of attention in the
community recently. In practical scenarios, it may well be desirable that cheating
servers are prevented from performing future computations, as they are deemed
completely untrustworthy. Thus, future clients need not waste resources dele-
gating to a ‘bad’ server, and servers are disincentivised from cheating in the
first place as they will incur a significant (financial) penalty from not receiving
future work. Many current schemes have an expensive pre-processing stage run
by the client. However, it is likely that many different clients will be interested
in outsourcing computations, and that functions of interest to each client will
substantially overlap, as in the “bring your own device” scenario above. It is also
conceivable that the number of servers offering to perform such computations
will be relatively low (limited to a reasonably small number of trusted companies
with plentiful resources). Thus, it is easy to envisage a situation in which many
computationally limited clients wish to outsource computations of the same (po-
tentially large) set of functions to a set of untrusted servers. Current VC schemes
do not support this kind of scenario particularly well.

Our main contribution, then, is to introduce the new notion of Revocable
Publicly Verifiable Computation (RPVC). We also propose the introduction of a
Key Distribution Center (KDC) to perform the computationally intensive parts
of VC and manage keys for all clients, and we simplify the way in which the
computation of multiple functions is managed. We enable the revocation of mis-
behaving servers (those detected as cheating) such that they cannot perform
further computations until recertified by the KDC, as well as “blind verifica-
tion”, a form of output privacy, such that the verifier learns whether the result
is valid but not the value of the output. Thus the verifier may reward or pun-
ish servers appropriately without learning function outputs. We give a rigorous
definitional framework for RPVC, that we believe more accurately reflects real
environments. This new framework both removes redundancy and facilitates ad-
ditional functionality, leading to several new security notions.

In the next section, we briefly review related work. In Section 3, we define our
framework and the relevant security models. In Section 4, we provide a concrete
instantiation of our framework using Attribute-based Encryption as well as full
security proofs. Additional background details can be found in the Appendix.

Notation. In the remainder of this paper we use the following notation. If A is
a probabilistic algorithm we write y ← A(·) for the action of running A on given
inputs and assigning the result to an output y. We denote the empty string by
ε and use PPT to denote probabilistic polynomial-time. We say that negl(·) is a
negligible function on its input and κ denotes the security parameter. We denote
by F the family of Boolean functions closed under complement – that is, if F
belongs to F then F , where F (x) = F (x)⊕ 1, also belongs to F . We denote the
domain of F by Dom(F) and the range by Ran(F). By M we denote a message
space and the notation AO is used to denote the adversary A being provided
with oracle access. Finally, [n] denotes the set {1, . . . , n}.

2 Verifiable Computation Schemes and Related Work

The concept of non-interactive verifiable computation was introduced by Gen-
naro et al. [5] and may be seen as a protocol between two polynomial-time
parties: a client, C, and a server, S. A successful run of the protocol results in
the provably correct computation of F (x) by the server for an input x supplied
by the client. More specifically, a VC scheme comprises the following steps [5]:
1. KeyGen (Run once): C computes evaluation information EKF that is given

to S to enable it to compute F ;
2. ProbGen (Run multiple times): C sends the encoded input σF,x to S;
3. Compute (Run multiple times): S computes F (x) using EKF and σF,x and

returns an encoding of the output θF (x) to C;
4. Verify (Run multiple times): C checks whether θF (x) encodes F (x).

The operation of a VC scheme is illustrated in Figure 1a. KeyGen may be
computationally expensive but the remaining operations should be efficient for
the client. The cost of setup is amortized over multiple computations of F .

SC

1. EKF

2. σF,x

3. θF (x)

4.

(a) A VC system

SC1 C2

Public

EKF

σF,x1

θF (x1)

σF,x2

θF (x2)

PKF , V KF,x1 V KF,x2

Verify Verify

(b) A PVC system

Fig. 1: The operation of verifiable computation schemes

In prior work, Gennaro et al. [5] gave a construction using Garbled Cir-
cuits [11], which provides a “one-time” Verifiable Outsourced Computation al-
lowing a client to outsource the evaluation of a function on a single input. How-
ever, the construction is insecure if the circuit is reused on a different input
and thus this cost cannot be amortized. Moreover, the cost of generating a new
garbled circuit is approximately equal to the cost of evaluating the function it-
self. The authors therefore suggested using fully homomorphic encryption [6] to
re-randomise the circuit to allow multiple executions. In independent and con-
current work, Carter et al. [3] introduce a third party to generate garbled circuits
for such schemes but require this entity to be online throughout and model the
system as a secure multi-party computation between the client, server and third-
party. Some works [7, 4] consider the multi-client case where functions are com-
puted over joint input from multiple clients. Parno et al. [10] introduced Publicly
Verifiable Computation (PVC), where a single client C1 computes EKF , as well
as publishing information PKF that enables other clients to encode inputs (so
only one client has to run the expensive pre-processing stage). A client submits
an input x and may publish V KF,x to allow other clients to verify the output.
The operation of a PVC scheme is illustrated in Figure 1b. It uses the same
four algorithms as VC but KeyGen and ProbGen now output public values that
other clients may use to encode inputs and verify outputs. Parno et al. gave an
instantiation of PVC using Key-Policy Attribute-based Encryption (KP-ABE)
for a class of Boolean functions. Further details are available in Appendix A.

3 Revocable Publicly Verifiable Computation

We now describe our new notion of PVC, which we call Revocable Publicly Ver-
ifiable Computation (RPVC). We assume there is a Key Distribution Center
(KDC) and many clients which make use of multiple untrusted or semi-trusted
servers to perform complex computations. Multiple servers may be certified, by
the KDC, to compute the same function F . As we briefly explained in the in-
troduction, there appear to be good reasons for adopting an architecture of this
nature and several scenarios in which such an architecture would be appropri-
ate. The increasing popularity of relatively lightweight mobile computing devices
in the workplace means that complex computations may best be performed by

more powerful servers run by the organization or in the cloud and we would wish
to have some guarantee that those servers are certified to perform certain func-
tions. It is essential that we can verify the results of the computation. If cloud
services are competing on price to provide “computation-as-a-service” then it is
important that a server cannot obtain an unfair advantage by simply not both-
ering to compute F (x) and returning garbage instead. It is also important that
a server who is not certified cannot return a result without being detected.

Key Distribution Center. Existing frameworks assume that a client or clients
run the expensive phases of a VC scheme and that a single server performs
the outsourced computation. We believe that this is undesirable for a number
of reasons, irrespective of whether the client is sufficiently powerful. First, in
a real-world system, we may wish to outsource the setup phase to a trusted
third party. In this setting, the third party would operate rather similarly to a
certificate authority, providing a trust service to facilitate other operations of an
organization (in this case outsourced computation, rather than authentication).
Second, we may wish to enforce an access control policy limiting the functions
each client can outsource; an internal trusted entity would operate both as a
facilitator of outsourced computation and as a policy enforcement point. (We
will examine the integration of RPVC and access control in future work.)

We consider the KDC to be a separate entity to illustrate separation of duty
between the clients that request computations, and the KDC that is authoritative
on the system and users. The KDC could be authoritative over many sets of
clients (e.g. at an organizational level as opposed to a work group level), and
we minimise its workload to key generation and revocation only. It may be
tempting to suggest that the KDC, as a trusted entity, performs all computations
itself. However we believe that this is not a practical solution in many real
world scenarios, e.g. the KDC could be an authority within the organization
responsible for user authorization that wishes to enable workers to securely use
cloud-based software-as-a-service. As an entity within organization boundaries,
performing all computations would negate the benefits gained from outsourcing
computations to externally available servers.

System Architecture. In this paper we consider two system architectures,
which we call the Standard Model and the Manager Model. The standard model
is a natural extension of the PVC architecture with the addition of a KDC (as
shown in Fig. 2a). The entities comprise a set of clients, a set of servers and a
KDC. The KDC initializes the system and generates keys to enable verifiable
computation. Clients submit computation requests to a particular server and
publish some verification information. Any party can verify the correctness of a
server’s output. If the output is incorrect, the client may report the server to the
KDC for revocation which will prevent the server from performing any further
computations. The manager model, in contrast, employs an additional Manager
entity who “owns” a pool of computation servers (as shown in Fig. 2b). Clients
submit jobs to the manager, who will select a server from the pool based on

Algorithm
Run by

VC PVC RPVC Standard RPVC Manager

KeyGen C1 C1 KDC KDC

ProbGen C1 C1, C2, . . . C1, C2, . . . C1, C2, . . .

Compute S S S1, S2, . . . S1, S2, . . .

Verify C1 C1, C2, . . . C1, C2, . . . –

Blind Verify – – – M

Retrieve – – – C1, C2, . . .

KDCS1 S2 S3

PublicC1 C2

EKF,S1 EKF,S2

EKG,S3

σF,x1 θF (x1)

σF,x2 θF (x2)

σG,x3

θG(x3)

V KF,x1

V KF,x2

V KG,x3

Revoke PKF , PKG

Verify

Verify

(a) Standard Model

KDCS1

M
S2

Public

C1

C2

EKF,S1

EKG,S2

σF,x1

θF (x1)

τθF (x1)

σ
G,x

2

θG(x2)

τθ
G
(x

2)

V KF,x1

PKF

PKG

V KG,x2

Revoke

BVerif
Retrieve

Retrieve

(b) Manager model

Fig. 2: The operation of RPVC

workload scheduling, available resources or by a bidding process if servers are to
be rewarded per computation. A plausible scenario is that servers enlist with a
manager to “sell” the use of spare resources, whilst clients subscribe to utilise
these through the manager. Results are returned to the manager who should
be able to verify the server’s work. The manager forwards correct results to the
client whilst a misbehaving server may be reported to the KDC for revocation,
and the job assigned to another server. In some situations we may not desire
external entities to access the result, yet there remain legitimate reasons for
the manager to perform verification. Thus we introduce “blind verification”, as
hinted by Parno et al. [10], such that the manager (or other entity) may verify
the validity of the computation without learning the output, while the client
holds an extra key that enables the output to be retrieved.

3.1 Formal Definition

Definition 1. A Revocable Publicly Verifiable Outsourced Computation Scheme
(RPVC) comprises the following algorithms:

– (PP ,MK) ← Setup(1κ): Run by the KDC to establish public parameters
PP and a master secret key MK.

– PKF ← FnInit(F,MK,PP): Run by the KDC to generate a public delega-
tion key, PKF , for a function F .

– SKS ← Register(S,MK,PP): Run by the KDC to generate a personalised
signing key SKS for a computation server S.

– EKF,S ← Certify(S, F,MK,PP): Run by the KDC to generate a certificate
in the form of an evaluation key EKF,S for a function F and server S.

– (σF,x, V KF,x, RKF,x) ← ProbGen(x, PKF , PP): ProbGen is run by a client
to delegate the computation of F (x) to a server. The output value RKF,x is
used to enable output retrieval after the blind verification step.

– θF (x) ← Compute(σF,x, EKF,S , SKS , PP): Run by a server S holding an
evaluation key EKF,S , SKS and an encoded input σF,x of x, to output an
encoding, θF (x), of F (x), including an identifier of S.

– (ỹ, τθF (x)
)← Verify(θF (x), V KF,x, RKF,x, PP):

Verification comprises:

• (RTF,x, τθF (x)
)← BVerif(θF (x), V KF,x, PP): Run by any verifying party

(standard model), or by the manager (manager model), in possession
of V KF,x and an encoded output, θF (x). This outputs a token τθF (x)

=
(accept, S) if the output is valid, or τθF (x)

= (reject, S) if S misbehaved.
It also outputs a retrieval token RTF,x which is an encoding of the actual
output value.

• ỹ ← Retrieve(τθF (x)
, RTF,x, V KF,x, RKF,x, PP): Run by a verifier hold-

ing RKF,x to retrieve the actual result ỹ which is either F (x) or ⊥.1

– {EKF,S′} or ⊥ ← Revoke(τθF (x)
,MK,PP): Run by the KDC if a misbe-

having server is reported i.e. that Verify returned τθF (x)
= (reject, S) (if

τθF (x)
= (accept, S) then this algorithm outputs ⊥). It revokes all evaluation

keys EK·,S of the server S thereby preventing S from performing any further
evaluations. Updated evaluation keys EK·,S′ are issued to all servers.2

Although not stated, the KDC may update the public parameters PP during
any algorithm. A RPVC scheme is correct if the verification algorithm almost
certainly outputs accept when run on a valid verification key and an encoded
output, where the encoded output is honestly produced by a computation server
given a validly generated encoded input and evaluation key. That is, if all algo-
rithms are run honestly then the result should almost certainly be accepted.

3.2 Security Models

We now formalize several notions of security as a series of cryptographic games.
The adversary against a particular function F is modelled as a PPT algorithm
A run by a challenger with input parameters chosen to represent the knowledge
of a real attacker as well the security parameter κ and a parameter qt > 1
denoting the number of queries the adversary makes to the Revoke oracle before
the challenge is generated. The adversary algorithm may maintain state and
be multi-stage and we overload the notation by calling each of these adversary
algorithms A. The notation AO denotes the adversary A being provided with
oracle access to the following functions: FnInit(·,MK,PP), Register(·,MK,PP),

1 Note that if a server is not given RKF,x then it too cannot learn the output.
2 In some instantiations, it may not be necessary to issue entirely new evaluation keys

to each entity. In Sect. 4, we only need to issue a partially updated key for example.

Certify(·, ·, ·,MK,PP) and Revoke(·, ·, ·,MK,PP).3 For each game, we define
the advantage and security of A as:

Definition 2. The advantage of a PPT adversary A making a polynomial
number of queries q (including qt Revoke queries) is defined as follows, where
X ∈ {sSS -PubVerif , sSS -Revocation, sSS -VindictiveM }:
– AdvXA (RPVC, F, 1κ, q) = Pr[ExpX

A [RPVC, F, qt, 1κ] = 1]

– AdvVindictiveS
A (RPVC, F, 1κ, q) = Pr[ExpVindictiveS

A [RPVC, F, 1κ] = 1]

– AdvBVerif
A (RPVC, F, 1κ, q) = Pr[ExpBVerif

A [RPVC, F, 1κ] = 1] −
max

y∈Ran(F)
(Pr
x∈Dom(F)

[F (x) = y]).

A RPVC is secure against Game X, VindictiveS or BVerif for a function F , if
for all PPT adversaries A, AdvX,VindictiveS ,BVerif

A (RPVC, F , 1κ, q) ≤ negl(κ).

Public Verifiability In Game 1 we extend the Public Verifiability game of
Parno et al. [10] to formalize that multiple colluding servers should be unable to
convince any verifying party of an incorrect output (i.e. that Verify returns accept
on an encoded output not representing the true output of the computation). We
define a selective, semi-static notion4 such that the adversary must select its
challenge input before seeing the public parameters and must declare a list of
entities that must be revoked at the challenge time before receiving oracle access.

The adversary first selects an input value to be outsourced. The challenger
initializes a list of currently revoked entities QRev and a time parameter t before
running Setup and FnInit to create a public delegation key for the function F
(lines 2 to 5). The adversary is given the generated public parameters and must
output a list R of servers to be revoked when the challenge is created. It is then
given oracle access to the above functions which simulate all values known to
a real server as well as those learnt through corrupting entities. The challenger
responds to Certify and Revoke queries as detailed in Oracle Queries 1 and 2
respectively. It must ensure that QRev is kept up-to-date by adding or remov-
ing the queried entity, and in the case of revocation must increment the time
parameter. It also ensures that issued keys will not lead to a trivial win.

Once the adversary has finished this query phase (and in particular, due to
the parameterisation of the adversary, after exactly qt Revoke queries), the chal-
lenger must check that the queries made by the adversary has indeed left the list
of revoked entities to be at least that selected beforehand by the adversary. If
there is a server that the adversary included on R but is not currently revoked,
then the adversary loses the game. Otherwise, the challenger generates the chal-
lenge by running ProbGen on x?. The adversary is given the resulting encoded
input and oracle access again, and wins the game if it creates an encoded output
that verifies correctly yet does not encode the correct value F (x?).

3 We do not need to provide a Verify oracle since this is a publicly verifiable scheme
and A is given verification keys (thus we also avoid the rejection problem).

4 This is due to the selective IND-sHRSS game that we base the construction upon.
Since this is used in a black-box manner however, a stronger primitive may allow
this game to be improved accordingly.

Game 1 ExpsSS-PubVerif
A [RPVC, F, qt, 1κ]:

1: x? ← A(1κ);
2: QRev = ε;

3: t = 1;

4: (PP ,MK)← Setup(1κ);

5: PKF ← FnInit(F,MK,PP);

6: R← A(PKF , PP);

7: AO(PKF , PP);

8: if (R 6⊆ QRev) return 0;

9: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

10: θ? ← AO({σF,x? , V KF,x? , RKF,x?}, EKF,A, SKA, PKF , PP);

11: if ((((ỹ, τθ?)← Verify(θ?, V KF,x? , RKF,x? , PP))

and ((ỹ, τθ?) 6= (⊥, (reject, ·))) and (ỹ 6= F (x?))))

12: return 1;

13: else return 0;

Oracle Query 1 OCertify(S, F ′,MK,PP):

1: if ((F ′ = F and S /∈ R) or (t = qt and R 6⊆ QRev \ S)) return ⊥;
2: QRev = QRev \ S;
3: return Certify(S, F ′,MK,PP);

Oracle Query 2 ORevoke(τθF ′(x)
,MK,PP):

1: t = t+ 1;
2: if (τθF ′(x)

= (accept, ·)) return ⊥;

3: if (t = qt and R 6⊆ QRev ∪ S) return ⊥;
4: QRev = QRev ∪ S;
5: return Revoke(τθF ′(x)

,MK,PP);

Revocation The notion of revocation requires that any subsequent computa-
tions by a server detected as misbehaving should be rejected (even if the result
is correct). Thus a misbehaving server may be completely removed from the
system and will be punished by not receiving rewards for future work.

The selective, semi-static notion of Revocation given in Game 2 proceeds
exactly as the sSS-PubVerif game except that the adversary wins if it outputs
any result (even a correct encoding of F (x?)) that is accepted as a valid response
from any server that was revoked at the time of the challenge. This game also uses
the Certify and Revoke oracles specified in Oracle Queries 1 and 2 respectively.

Vindictive Server This notion is motivated by the manager model where the
client does not a priori know the identities of servers selected from the pool.
Since an invalid result can lead to revocation, this reveals a new threat model
(particularly if servers are rewarded per computation). A malicious server may
return incorrect results but attribute them to an alternate server ID such that an
(honest) server is revoked, thus reducing the size of the server pool and increasing
the future reward for the malicious server. In Game 3, the challenger maintains
a list of registered entities QReg. The game proceeds similarly to the previous

notions, except that, on lines 6 and 7, the adversary selects a target server ID, S̃,

Game 2 ExpsSS-Revocation
A [RPVC, F, qt, 1κ]:

1: x? ← A(1κ);
2: QRev = ε;

3: t = 1;

4: (PP ,MK)← Setup(1κ);

5: PKF ← FnInit(F,MK,PP);

6: R← A(PKF , PP);

7: AO(PKF , PP);

8: if (R 6⊆ QRev) return 0;

9: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

10: θ? ← AO(σx? , V KF,x? , RKF,x? , PKF , PP);

11: if (((ỹ, (accept, S))← Verify(θ?, V KF,x? , RKF,x? , PP))

and (S ∈ R) then

12: return 1

13: else

14: return 0

Game 3 ExpVindictiveS
A [RPVC, F, 1κ]:

1: QReg = ε;

2: (PP ,MK)← Setup(1κ);

3: PKF ← FnInit(F,MK,PP);

4: x? ← AO(PKF , PP);

5: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

6: S̃ ← AO,Register2(σF,x? , V KF,x? , RKF,x? , PKF , PP) subject to (1);

7: θ? ← AO,Compute,Register2(σF,x? , V KF,x? , RKF,x? , PKF , PP) subject to (2);

8: if ((ỹ, τθ?)← Verify(θ?, V KF,x? , RKF,x? , PP))

and ((ỹ, τθ?) = (⊥, (reject, S̃))) and (⊥8 Revoke(τθ? ,MK,PP))) then

9: return 1

10: else

11: return 0

he wishes to be revoked and generates an encoded output that will cause this. He
is given oracle access subject to the following constraints to avoid trivial wins:
(1) No query of the form ORegister(S̃,MK,PP) was made;
(2) As above and no query OCompute(σF,x?

i
, EKF,S̃ , SKS̃ , PP) was made.

In addition, he is provided with an oracle, Register2, which performs the Register
algorithm but does not return the resulting key SKS (it may however update
the public parameters to reflect the additional registered entity). The adversary
may query any identity to Register2 (including S̃). We also modify the stan-
dard Register oracle such that if an identity has been previously queried to the
Register2 oracle, it generates the same parameters (and vice versa). The adver-
sary wins if the KDC believes S̃ returned ỹ and revokes S̃.

Vindictive Manager This is a natural extension of the Public Verifiability
notion to the manager model where a vindictive manager may attempt to pro-
vide a client with an incorrect answer. We remark that instantiations may vary
depending on the level of trust given to the manager: a completely trusted man-
ager may simply return the result to a client, whilst an untrusted manager may

Game 4 ExpsSS-V indictiveMA [RPVC, F, qt, 1κ]:

1: x? ← A(1κ);
2: QRev = ε;

3: t = 1
4: (PP ,MK)← Setup(1κ);
5: PKF ← FnInit(F,MK,PP);

6: R← A(PKF , PP)
7: AO(PKF , PP);

8: if ((R 6⊆ QRev) or (R = UID)) return 0;

9: S
$← UID \R;

10: SKS ← Register(S,MK,PP);

11: EKF,S ← Certify(S, F,MK,PP);

12: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);
13: θF (x?) ← Compute(σF,x? , EKF,S , SKS , PP);

14: (RTF,x? , τθF (x?)
)← AO(σF,x? , θF (x?), V KF,x? , PKF , PP);

15: if (ỹ ← Retrieve(τθF (x?)
, RTF,x? , V KF,x? , RKF,x? , PP))

and (ỹ 6= F (x?)) and (ỹ 6=⊥) then

16: return 1

17: else
18: return 0

have to provide the full output from the server. Here we consider a semi-trusted
manager where the clients would still like a final, efficient check.

The security model is presented in Game 4. First, the adversary selects its
challenge input x?, and the challenger initializes a list of revoked entities QRev

and a time paramter t. It also sets up the system and gives the public parameters
to the adversary, who must select a list R of servers to be revoked at the challenge
time. We require that R is not the full set of all servers in the system, as one non-
revoked identity is required to generate the challenge. The adversary then gets
oracle access (using the Certify and Revoke oracles specified in Oracle Queries 1
and 2 respectively). If, after finishing this query phase (and in particular after qt
Revoke queries), the list of revoked entities does not include R then the adversary
loses the game. Otherwise, a server S is chosen at random from the set of all
server identities UID excluding R (as these must be revoked at the challenge
time). This server is used to generate the challenge. If not already done, the
challenger registers and certifies S for F , and runs ProbGen on the challenge
input, before finally running Compute to generate an encoded output θF (x?).
The adversary is then given the encoded input, verification key and θF (x?), as
well as oracle access, and must output a retrieval token RTF,x? and an acceptance
token τθF (x?)

. The challenger runs Retrieve on RTF,x to get an output value ỹ,
and the adversary wins if the challenger accepts this output and ỹ 6= F (x?).

Blind Verification With this notion we aim to show that a verifier that does
not hold the retrieval token RTF,x chosen in ProbGen cannot learn the value of
F (x) given the encoded output. This property was hinted at by Parno et al. [10]
but was not formalized. The game begins as usual with the challenger initializing
the system. The challenger then selects an input at random from the domain
of F , and a random server S. It registers and certifies S, runs ProbGen for the

Game 5 ExpBV erifA [RPVC, F, 1κ]:

1: (PP ,MK)← Setup(1κ);
2: PKF ← FnInit(F,MK,PP);

3: x
$← Dom(F);

4: S
$← UID;

5: SKS ← Register(S,MK,PP);

6: EKF,S ← Certify(S, F,MK,PP);

7: (σF,x, V KF,x, RKF,x)← ProbGen(x, PKF , PP);
8: θF (x) ← Compute(σF,x, EKF,S , SKS , PP);

9: ŷ ← AO(θF (x), V KF,x, PKF , PP);

10: if (ŷ = F (x)) then

11: return 1
12: else

13: return 0

chosen input and runs Compute to generate an output θF (x). This is given to the
adversary along with the verification key and oracle access, and the adversary
wins if it can guess the value of F (x) without seeing the retrieval key. Clearly,
the adversary can trivially make a guess for F (x) based on a priori knowledge of
the distribution of F over all possible inputs. Unless F is balanced (i.e. outputs
1 exactly half the time), the adversary could gain an advantage. Thus, we define
security by subtracting the most likely guess for F (x).

4 Construction

We now provide an instantiation of a RPVC scheme. Our construction is based
on that used by Parno et al. [10] (summarised in App. A) which uses Key-Policy
Attribute-based Encryption (KP-ABE) in a black-box manner to outsource the
computation of a Boolean function.5 Notice that to achieve the outsourced eval-
uation of functions with n bit outputs, it is possible to evaluate n different
functions, each of which applies a mask to output the single bit in position i.

Recall that if ⊥ is returned by the server then the verifier is unable to deter-
mine whether F (x) = 0 or whether the server misbehaved. To avoid this issue, we
follow Parno et al. and restrict the family of functions F to be the set of Boolean
functions closed under complement. That is, if F ∈ F then F (x) = F (x) ⊕ 1
also belongs to F . Then, the client encrypts two random messages m0 and m1.
The server is required to return the decryption of those ciphertexts. Thus, a
well-formed response θF (x), comprising recovered plaintexts (db, d1−b), satisfies
the following, where RKF,x = b:

(db, d1−b) =

{
(mb,⊥), if F (x) = 1;

(⊥,m1−b), if F (x) = 0.
(1)

5 Following Parno et al. we restrict our attention to Boolean functions, and in partic-
ular the complexity class NC1 which includes all circuits of depth O(logn). Thus
functions we can outsource can be built from common operations such as AND, OR,
NOT, equality and comparison operators, arithmetic operators and regular expres-
sions.

4.1 Technical Details

We require an indirectly revocable KP-ABE scheme comprising the algorithms
ABE.Setup, ABE.KeyGen, ABE.KeyUpdate, ABE.Encrypt and ABE.Decrypt. We
also use a signature scheme with algorithms Sig.KeyGen, Sig.Sign and Sig.Verify,
and a one-way function g. Let U be the universe of attributes acceptable by the
ABE scheme, and let U = Uattr∪UID∪Utime∪UF where: attributes in Uattr form
characteristic tuples for input data, as detailed in Appendix A; UID comprises
attributes representing entity identifiers; Utime comprises attributes representing
time periods issued by the time source T; and finally UF comprises attributes that
represent functions in F . Define a bijective mapping between functions F ∈ F
and attributes f ∈ UF . Then the policy F∧f denotes adding a conjunctive clause
requiring the presence of the label f to the expression of the function F , and
(x∪f) denotes adding the function attribute to the attribute set representing the
input data x. This will prevent servers using alternate evaluation keys for a given
input and hence we are able to certify servers to compute multiple functions.

Parno et al. [10] considered two models of publicly verifiable computation.
In single function PVC, the function to be computed is embedded in the public
parameters, whilst in multi-function PVC delegation keys for multiple functions
can be generated and a single encoded input can be used to input the same
data to multiple functions. To achieve this latter notion, Parno et al. required
the somewhat complex primitive of KP-ABE with Outsourcing [9]. In this work,
we take a different approach. We believe that in practical environments it is
unrealistic to expect a server to compute just a single function, and we also
believe that it is a reasonable cost expectation to prepare an encoded input per
computation, and that the input data to different functions may well differ. Thus,
whereas Parno et al. use complex primitives to allow an encoded input to be used
for computations of different functions on the same data, we use the simple trick
of adding a conjunctive clause to the functions requiring the presence of the
appropriate function label in the input data – that is, the function F is encoded
in a decryption key for the policy F ∧ f where f is the attribute representation
of F in UF ; the complement function F is encoded as a key for F ∧ f ; and we
encode the input data x to the function F as x∪f . Thus, the client must perform
the ProbGen stage per computation as the function label in the input data will
differ, but servers can be certified for multiple functions and may not use a key
for one function to compute on data intended for another (since the function
label required by the conjunctive clause in the key will not be present in the
input data). As a result, and unlike the single function notion of Parno et al.,
we are able to provide the adversary with oracle access in our security games.

The scheme of Parno et al. required a one-key IND-CPA notion of security
for the underlying KP-ABE scheme. This is a more relaxed notion than consid-
ered in the vast majority of the ABE literature (where the adversary is given a
KeyGen oracle and the scheme must prevent collusion between holders of differ-
ent decryption keys). Parno et al. could use this property due to their restricted
system model where the client is certified for only a single function per set of
public parameters (so the client must set up a new ABE environment per func-

tion). In our setting, we must be able to certify servers for multiple functions
and hence the KDC must be able to issue multiple keys and we require the more
standard, multi-key notion of security usually considered for ABE schemes.

4.2 Instantiation

Informally the scheme operates as follows.
1. RPVC.Setup establishes public parameters and a master secret key by calling

the ABE.Setup algorithm twice. This algorithm also initializes a time source6

T, a list of revoked servers, and a two-dimensional array of registered servers
LReg – the array is indexed in the first dimension by server identities and
the first dimension will store signature verification keys while the second will
store a list of functions that server is authorized to compute.

2. RPVC.FnInit simply outputs the public parameters.
3. RPVC.Register creates a public-private key pair by calling the signature

KeyGen algorithm. This is run by the KDC (or the manager in the man-
ager model) and updates LReg to store the verification key for S.

4. RPVC.Certify creates the key EKF,S that will be used by a server S to
compute F by calling the ABE.KeyGen and ABE.KeyUpdate algorithms twice
– once with a “policy” for F and once with the complement F . It also updates
LReg to include F . Note that since we have a form of multi-function PVC,
we must prevent a server certified to perform two different functions, F
and G (that differ on their output) from using the key for G to retrieve
the plaintext and claiming it as a result for F . To prevent this, we add an
additional attribute to the input set in ProbGen encoding the function the
input should applied to, and add a conjunctive clause for such an attribute to
the key policies. Thus an input set intended for F (including the F attribute)
will only satisfy a key issued for F (comprising the F conjunctive clause),
and a key for G will not be satisfied as G is not in the input set.

5. RPVC.ProbGen creates a problem instance σF,x = (cb, c1−b) by encrypting
two randomly chosen messages under an attribute set corresponding to x,
and a verification key V KF,x by applying a one-way function g to the mes-
sages. The ciphertexts and verification tokens are ordered randomly accord-
ing to RKF,x = b for a random bit b, such that the positioning of an element
does not imply whether it relates to F or to F .

6. RPVC.Compute is run by a server S. Given an input σF,x = (cb, c1−b) it
returns (m0,⊥) if F (x) = 1 or (⊥,m1) if F (x) = 0 (ordered according to
RKF,x chosen in RPVC.ProbGen) and a signature on the output.

7. RPVC.Verify either accepts the output θF (x) = (db, d1−b) or rejects it. This
algorithm verifies the signature on the output and confirms the output is
correct by applying g and comparing with V KF,x. In RPVC.BVerif the ver-
ifier can compare pairwise between the components of θF (x) and V KF,x to
determine correctness but as they are unaware of the value of RKF,x, they

6 T could be a counter that is maintained in the public parameters or a networked
clock.

do not know the order of these elements and hence whether the correct out-
put corresponds to F or F being satisfied i.e. if F (x) = 1 or 0 respectively.
The verifier outputs an accept or reject token as well as the output value
RTF,x ∈ {db, d1−b,⊥} where RKF,x = b. Parno et al. [10] gave a one line
remark that permuting the key pairs and ciphertexts given out in ProbGen
could give output privacy. We believe that doing so would require four de-
cryptions in the Compute stage to ensure the correct keys have been used
(since an incorrect key,associated with different public parameters, but for
a satisfying attribute set will return an incorrect, random plaintext which
is indistinguishable from a valid, random message). Since our construction
fixes the order of the key pairs, we do not have this issue and only require
two decryptions. In RPVC.Retrieve a verifier that has knowledge of RKF,x

can check whether the output from BVerif matches m0 or m1.
8. RPVC.Revoke is run by the KDC and redistributes fresh keys to all non-

revoked servers. This algorithm first refreshes the time source T (e.g. incre-
ments T if it is a counter). It then updates LReg and LRev, and updates
EKF,S using the results of two calls to the ABE.KeyUpdate algorithm.

More formally, our scheme is defined by Algorithms 1–9.
Alg. 1 (PP ,MK)← RPVC.Setup(1κ)

1: Let U = Uattr ∪ UID ∪ Utime ∪ UF
2: (MPK0

ABE,MSK0
ABE)← ABE.Setup(1κ,U)

3: (MPK1
ABE,MPK1

ABE)← ABE.Setup(1κ,U)
4: for S ∈ UID do

5: LReg[S][0] = ε

6: LReg[S][1] = {ε}
7: LRev = ε

8: Initialise T
9: PP = (MPK0

ABE,MPK1
ABE, LReg,T)

10: MK = (MSK0
ABE,MSK1

ABE, LRev)

Alg. 2 PKF ← RPVC.FnInit(F,MK,PP)

1: Set PKF = PP

Alg. 3 SKS ← RPVC.Register(S,MK,PP)

1: (SKSig, V KSig)← Sig.KeyGen(1κ)

2: SKS = SKSig

3: LReg[S][0] = V KSig

Alg. 4 EKF,S ← RPVC.Certify(S, F,MK,PP)

1: LReg[S][1] = LReg[S][1] ∪ F
2: LRev = LRev \ S
3: t← T
4: SK0

ABE ← ABE.KeyGen(S, F ∧ f,MSK0
ABE,MPK0

ABE)

5: SK1
ABE ← ABE.KeyGen(S, F ∧ f,MSK1

ABE,MPK1
ABE)

6: UK0
LRev,t

← ABE.KeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE)

7: UK1
LRev,t

← ABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

8: EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

Alg. 5 (σF,x, V KF,x, RKF,x)← RPVC.ProbGen(x, PKF , PP)

1: t← T
2: (m0,m1)

$←M×M
3: b

$← {0, 1}
4: cb ← ABE.Encrypt(mb, (x ∪ f), t,MPK0

ABE)

5: c1−b ← ABE.Encrypt(m1−b, (x ∪ f), t,MPK1
ABE)

6: Output: σF,x = (cb, c1−b), V KF,x = (g(mb), g(m1−b), LReg) and RKF,x = b

Alg. 6 θF (x) ← RPVC.Compute(σF,x, EKF,S , SKS , PP)

1: Input: EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

) and σF,x = (cb, c1−b)

2: Parse σF,x as (c, c′)

3: db ← ABE.Decrypt(c, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

4: d1−b ← ABE.Decrypt(c′, SK1
ABE,MPK1

ABE, UK
1
LRev,t

)

5: γ ← Sig.Sign((db, d1−b, S), SKS)

6: Output: θF (x) = (db, d1−b, S, γ)

Alg. 7 (RTF,x, τθF (x)
)← RPVC.BVerif(θF (x), V KF,x, PP)

1: Input: V KF,x = (g(mb), g(m1−b), LReg) and θF (x) = (db, d1−b, S, γ)

2: if F ∈ LReg[S][1] then

3: if accept← Sig.Verify((db, d1−b, S), γ, LReg[S][0]) then

4: if g(mb) = g(db) then Output (RTF,x = db, τθF (x)
= (accept, S))

5: else if g(m1−b) = g(d1−b) then Output (RTF,x = d1−b, τθF (x)
= (accept, S))

6: else

Output (RTF,x =⊥, τθF (x)
= (reject, S))

7: Output (RTF,x =⊥, τθF (x)
= (reject,⊥))

Alg. 8 ỹ ← RPVC.Retrieve(τθF (x)
, RTF,x, V KF,x, RKF,x, PP)

1: Input: V KF,x = (g(mb), g(m1−b), LReg), θF (x) = (db, d1−b, S, γ), RKF,x = b, and

(RTF,x, τθF (x)
) where RTF,x ∈ {db, d1−b,⊥}

2: if (τθF (x)
= (accept, S) and g(RTF,x) = g(m0)) then Output ỹ = 1

3: else if (τθF (x)
= (accept, S) and g(RTF,x) = g(m1)) then Output ỹ = 0

4: else Output ỹ =⊥

Alg. 9 {EKF,S′} or ⊥ ← RPVC.Revoke(τθF (x)
,MK,PP)

1: if τθF (x)
= (reject, S) then

2: LReg[S][1] = {ε}
3: LRev = LRev ∪ S
4: Refresh T
5: t← T
6: UK0

LRev,t
← ABE.KeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE)

7: UK1
LRev,t

← ABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

8: for all S ∈ UID do

9: Parse EKF,S as (SK0
ABE, SK

1
ABE, UK

0
LRev,t−1, UK

1
LRev,t−1)

10: Update and send EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

11: else

12: output ⊥

Theorem 1. Given a revocable KP-ABE scheme secure in the sense of in-
distinguishability against selective-target with semi-static query attack (IND-
sHRSS) [2] for a class of Boolean functions F closed under complement, an

EUF-CMA secure signature scheme and a one-way function g. Let RPVC be
the RPVC scheme defined in Algorithms 1–9. Then RPVC is secure in the sense
of selective semi-static Public Verifiability, selective semi-static Revocation, Vin-
dictive Servers, Blind Verification and selective semi-static Vindictive Managers.

Lemma 1. The RPVC construction defined by Algorithms 1–9 is secure against
Vindictive Servers (Game 3) under the same assumptions as in Theorem 1.

Proof. Let AV C be an adversary with non-negligible advantage against the Vin-
dictive Servers game (Game 3) when instantiated by Algorithms 1–9. We show
that an adversary ASig with non-negligble advantage δ in the EUF-CMA sig-
nature game can be constructed using AV C . ASig interacts with the challenger
C in the EUF-CMA security game and acts as the challenger for AV C in the
security game for Vindictive Servers for a function F as follows. The basic idea
is that ASig can create a VC instance and play the Vindictive Servers game with
AV C by executing Algorithms 1–9 himself. ASig will guess a server identity that
he thinks the adversary will select to vindictively revoke. The signature signing
key that would be generated during the Register algorithm for this server will be
implicitly set to be the signing key in the EUF-CMA game and any Compute
oracle queries for this identity will be forwarded to the challenger to compute.
Then, assuming that ASig guessed the correct server identity, AV C will output
a forged signature that ASig may output as its guess in the EUF-CMA game.

1. C initializes Q = ε to be an empty list of messages queried to the Sig.Sign
oracle and runs Sig.KeyGen(1κ) to generate a challenge signing key SK and
verification key V K. C sends V K to ASig.

2. ASig chooses a function F on which to instantiate AV C .
3. ASig initializes the revocation list QReg = ε. Furthermore, it chooses a server

identity from UID \ AV C which will be denoted by S.
4. ASig runs RPVC.Setup(1κ) and RPVC.FnInit(F,MK,PP), as specified in

Algorithms 1 and 2 and passes PKF and PP to the VC adversary AV C .
5. AV C may now perform oracle queries to RPVC.FnInit RPVC.Register

RPVC.Certify and RPVC.Revoke which ASig handles by running Algo-
rithms 2, 3, 4 and 9 respectively.

6. Eventually, AV C finishes querying and declares the challenge input x?.
7. ASig runs RPVC.ProbGen on the challenge x? as specified in Algorithm 5.
8. AV C is given the values of PKF , PP , σF,x? , V KF,x? and RKF,x? . It is also

given oracle access to the following functions. ASig simulates these oracles
and maintains a state of the generated parameters for each query.
– FnInit(·,MK,PP): ASig runs this step as per Algorithm 2.
– Register(·,MK,PP): If, for a queried server S, S = S then return ⊥.

Otherwise, ASig makes queries to ORegister(S,MK,PP). If S has not
been registered before and therefore does not appear on the registration
list QReg then the oracle returns a signing key SKS for S and adds the
pair (S, SKS) to QReg. Otherwise, the stored signing key is returned.

– Certify(·, ·,MK,PP): ASig honestly runs Algorithm 4.
– Revoke(·,MK,PP): ASig operates as in Algorithm 9.

– Register2(·,MK,PP): ASig responds in the same way as for standard
Register queries above, but always returns ⊥ and not a signing key.

AV C eventually outputs a target server identity S̃.
9. If S̃ 6= S then ASig outputs ⊥ and stops. Else, AV C continues with oracle

access as in Step 8 as well as a Compute oracle. AV C submits queries of the
form OCompute(σF,x, EKF,S , SKS , PP) for its choice of server S and σF,x. If
S 6= S thenASig simply follows Algorithm 6 using the decryption and signing
keys generated during the oracle queries. Otherwise, S = S and ASig does
not have access to the signing key SKS . Thus, he runs the ABE.Decrypt
operations correctly to generate plaintexts d0 and d1, and submits m =
(d0, d1, S) as a Sig.Sign oracle query to C. C adds m to the list Q and returns
γ ← Sig.Sign(m,SK), which ASig uses to return θF (x) = (d0, d1, S, γ).

10. AV C finally outputs θ? which appears to be an invalid result com-
puted by S̃. Thus, Verify will output a reject token for S̃ and accept ←
Sig.Verify((d0, d1, S̃), γ, V K). Thus, γ is a valid signature under key SK.

11. ASig outputs m? = (d0, d1, S̃) and γ? = γ to C.
Note that due to Constraint 2 in Game 3, AV C is not allowed to have made a

query for OCompute(σx? , EKF,S̃ , SKS̃ , PP) and thus the forgery (m?, γ?) output
by ASig will satisfy the requirement in the EUF-CMA game that m? /∈ Q. We

argue that, assuming S = S̃ (i.e. ASig correctly guessed the challenge identity)
thenASig succeeds with the same non-negligible advantage δ asAV C . We assume
that n = |UID| is polynomial (else the KDC could not efficiently search the list
LReg). The probability that ASig correctly guesses S = S̃ is 1

n and

AdvASig
≥ 1

n
AdvAV C

≥ δ

n
≥ negl(κ)

We conclude that if AV C has a non-negligible advantage in the Vindictive
Servers game then ASig has the same advantage in the EUF-CMA game, but
since the signature scheme is assumed EUF-CMA secure, AV C may not exist.

ut

5 Conclusion

We have introduced the new notion of RPVC and provided a rigorous framework
that we believe to be more realistic than the purely theory oriented models of
prior work, especially when the KDC is an entity responsible for user autho-
rization within a organization. We believe our model more accurately reflects
practical environments and the necessary interaction between entities for PVC.
Each server may provide services for many different functions and for many dif-
ferent clients. The first model of Parno et al. [10] considered evaluations of a
single function, while their second allowed for multiple functions but required a
more exotic type of ABE scheme. This allowed a single ProbGen stage to encode
input for any function, whilst in our model, we also allow multiple functions but
use a simpler ABE scheme that also permits the revocation functionality. We re-
quire ProbGen to be run for each unique F (x) to be outsourced which we believe

to be reasonable. Additionally, in our model, any clients may submit multiple
requests to any available servers, whereas prior work considered just one server.

We have shown that by using a revocable KP-ABE scheme we can revoke
misbehaving servers such that they receive a penalty for cheating and that, by
permuting elements within messages, we achieve output privacy (as hinted at
by Parno et al. although seemingly with two fewer decryptions than their brief
description implies). We have shown that this blind verification could be used
when a manager runs a pool of servers and rewards correct work – he needs to
verify but is not entitled to learn the result. We have extended previous notions of
security to fit our new definitional framework, introduced new models to capture
additional threats (e.g. vindictive servers using revocation to remove competing
servers), and provided a provably secure construction.

We believe that this work is a useful step towards making PVC practical and
provides a natural set of baseline definitions from which to add future function-
ality. For example, in future work we will introduce an access control framework
(using our scheme as a black box construction) to restrict the set of functions
that clients may outsource, or to restrict (using the blind verification property)
the set of verifiers that may learn the output. In this scenario, the KDC entity
may, in addition to certifying servers and registering clients, determine access
rights for such entities. The full version of this paper is available online [1].

References

1. J. Alderman, C. Janson, C. Cid, and J. Crampton. Revocation in publicly verifi-
able outsourced computation. Cryptology ePrint Archive, Report 2014/640, 2014.
http://eprint.iacr.org/.

2. N. Attrapadung and H. Imai. Attribute-based encryption supporting di-
rect/indirect revocation modes. In M. G. Parker, editor, IMA Int. Conf., volume
5921 of Lecture Notes in Computer Science, pages 278–300. Springer, 2009.

3. H. Carter, C. Lever, and P. Traynor. Whitewash: outsourcing garbled circuit gen-
eration for mobile devices. In C. N. P. Jr., A. Hahn, K. R. B. Butler, and M. Sherr,
editors, Proceedings of the 30th Annual Computer Security Applications Confer-
ence, ACSAC 2014, pages 266–275. ACM, 2014.

4. S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive veri-
fiable computation. In TCC, pages 499–518, 2013.

5. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In T. Rabin, editor, CRYPTO, volume
6223 of Lecture Notes in Computer Science, pages 465–482. Springer, 2010.

6. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, STOC, pages 169–178. ACM, 2009.

7. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sahai, E. Shi,
and H. Zhou. Multi-input functional encryption. In P. Q. Nguyen and E. Oswald,
editors, Advances in Cryptology - EUROCRYPT 2014 - Proceedings, volume 8441
of Lecture Notes in Computer Science, pages 578–602. Springer, 2014.

8. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In A. Juels, R. N. Wright, and S. D. C.
di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, pages 89–98. ACM, 2006.

9. M. Green, S. Hohenberger, and B. Waters. Outsourcing the decryption of ABE ci-
phertexts. In 20th USENIX Security Symposium, San Francisco, CA, USA, August
8-12, 2011, Proceedings. USENIX Association, 2011.

10. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In R. Cramer,
editor, TCC, volume 7194 of Lecture Notes in Computer Science, pages 422–439.
Springer, 2012.

11. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167. IEEE Computer Society, 1986.

A PVC using KP-ABE

Parno et al. [10] provide a instantiation using Key-policy Attribute-based Encryp-
tion7 (KP-ABE) [8], for Boolean functions. Define a universe U of n attributes
and associate V ⊆ U with a binary n-tuple (the characteristic tuple of V) where
the ith place is 1 if and only if the ith attribute is in V . Thus, there is a natu-
ral one-to-one correspondence between n-tuples and attribute sets; we write Ax
to denote the set associated with x. A function F : {0, 1}n → {0, 1} is mono-
tonic if x 6 y implies F (x) 6 F (y), where x = (x1, . . . , xn) is less than or
equal to y = (y1, . . . , yn) if and only if ∀i, xi 6 yi. For a monotonic F, the set
AF = {x ∈ {0, 1}n : F (x) = 1} defines a monotonic access structure. Informally,
for a Boolean function F , the client generates a private key SKAF

using the
KeyGen algorithm.

Given an input x, a client encrypts a random message m “with” Ax using
the Encrypt algorithm and publishes V KF,x = g(m) where g is a suitable one-
way function (e.g. a pre-image resistant hash function). The server decrypts the
message using the Decrypt algorithm, which will either returnm (when F (x) = 1)
or ⊥.

The server returns m to the client. Any client can test whether the value
returned by the server is equal to g(m). Note, however, that a “rational” ma-
licious server will always return ⊥, since returning any other value will (with
high probability) result in the verification algorithm returning a reject decision.
Thus, it is necessary to have the server compute both F and its “complement”
(and for both outputs to be verified).

Note that, to compute the private key SKAF
, it is necessary to identify all

minimal elements x of {0, 1}n such that F (x) = 1. There may be exponentially
many such x. Thus, the initial phase is indeed computationally expensive for the
client. Note also that the client may generate different private keys to enable the
evaluation of different functions.

7 If input privacy is required then a predicate encryption scheme could be used in
place of the KP-ABE scheme.

