
Universitatea din Bucures, ti
Facultatea de Matematică s, i Informatică

Lucrare de disertat, ie

An Institutional Foundation for
the K Semantic Framework

Profesor îndrumător:
Conf. dr. Traian Florin S, erbănut,ă

Absolvent:
Claudia Elena Chirit,ă

Bucures, ti, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rezumat

K framework [18] este un framework semantic executabil bazat pe rescriere s, i
utilizat în definirea limbajelor de programare, a sistemelor de calcul computa-
t, ional, a sistemelor de tipuri s, i a uneltelor de analiză formală. A fost dezvoltat
ca o alternativă la frameworkurile SOS (structural operational semantics) ex-
istente s, i a fost folosit de-a lungul timpului în definirea unor limbaje de pro-
gramare reale precum C, Java, Verilog sau Scheme, în studierea metodelor de
verificare în timpul execut, iei (runtime verification) s, i în dezvoltarea unor unelte
software de analiză precum type checkere, type inferencere, model checkere, sau
verificatoare bazate pe asert, iuni de tip Hoare. O expunere detaliată a frame-
workului poate fi găsită în [19]. Programul software asociat frameworkului
semantic K [6] permite scrierea unor definit, ii modulare s, i executabile pentru
limbaje de programare complexe, dar facilitează în acelas, i timp s, i proiectarea
unor limbaje de programare noi permit,ând utilizatorului să testeze programe
s, i să exploreze comportamentul acestora în mod exhaustiv.
Bazându-ne pe studiile recente publicate în [17, 20] ce încearcă să stabilească

fundamentele teoretice ale frameworkului semantic K s, i conexiunile cu alte
frameworkuri semantice s, i sisteme formale precum semantica reductivă (re-
duction semantics), logica Hoare s, i logica separativă (separation logic), prop-
unem în această lucrare o formalizare institut, ională [9] a sistemelor logice ce
stau la baza frameworkului K: logica potrivirilor (matching logic) s, i logica
accesibilităt, ii (reachability logic). Această formalizare va permite extinderea
utilizării frameworkului prin exploatarea potent, ialului său ca un posibil lim-
baj de specificare. Mai mult, va permite stabilirea unor relat, ii riguroase din
punct de vedere matematic între K s, i alte limbaje similare, înlesnind integrarea
pachetelor software s, i a tehnicilor de verificare corespunzătoare acestora.
Logica potrivirilor [17] este un sistem formal utilizat pentru descrierea s, i

studierea proprietăt, ilor structurale ale obiectelor matematice s, i ale expresi-
ilor specifice limbajelor de programare folosind tehnici de pattern matching.
Propozit, iile specifice logicii potrivirilor se numesc patternuri s, i sunt definite
inductiv, similar termenilor din logica de ordinul întâi, folosind simbolurile
de operat, ie ale unei signaturi multisortate date, conectori booleeni s, i cuantifi-
catori. Din punct de vedere semantic, modelele logicii potrivirilor sunt mul-
tialgebre. Patternurile sunt interpretate în multialgebre ca submult, imi ale
mult, imilor subiacente acestora, definind astfel o relat, ie de satisfacere ternară
între patternuri, multialgebre s, i elemente ale multialgebrelor, numite stări.

Spre deosebire de logica de ordinul întâi, logica potrivirilor nu admite o for-
malizare fidelă ca institut, ie. Aceasta este o consecint,ă atât a naturii ternare
a relat, iei de satisfacere, cât s, i a clasificării patternurilor în funct, ie de sorturi,
în mod similar clasificării propozit, iilor logicilor temporale cu ramificat, ii în
propozit, ii de stare (state), respectiv propozit, ii de cale (path). Pentru a depăs, i
aceste limitări ale not, iunii de institut, ie ne bazăm pe conceptul de institut, ie
stratificată introdus în [2], care extinde institut, iile prin considerarea unor ab-
stractizări ale stărilor modelelor s, i prin definirea unei relat, ii de satisfacere
parametrizate nu numai de signaturi, ci s, i de stări ale modelelor. Extin-
dem această not, iune asociind propozit, iilor clase determinate de signaturi ce
parametrizează atât stratificarea modelelor cât s, i relat, ia de satisfacere. Prezen-
tăm de asemenea descrierea logicilor potrivirilor s, i computation-tree (CTL) ca
institut, ii stratificate cu clase s, i adaptăm construct, ia canonică a unei institut, ii
simple pornind de la o institut, ie stratificată astfel încât să surprindă s, i rolul
claselor propozit, iilor.
Principalul avantaj al utilizării institut, iilor stratificate cu clase în formali-

zarea logicii potrivirilor este acela că ne permite extinderea construct, iei logicii
accesibilităt, ii descrise în [20], astfel încât să admită descrierea patternurilor
folosind s, i alte sisteme logice diferite de cea a potrivirilor. Logica accesibilităt, ii
este un formalism pentru verificarea programelor prin care sistemele de tranzit, ie
corespunzătoare semanticii operat, ionale a limbajelor de programare pot fi de-
scrise folosind reguli de accesibilitate. Aceste reguli au la bază patternuri
s, i generalizează triplete Hoare pentru a specifica tranzit, ii între configurat, iile
programelor (în mod asemănător regulilor de rescriere a termenilor). Logica
accesibilităt, ii poate fi astfel considerată o alternativă independentă de limbaj a
semanticilor axiomatice s, i a sistemelor de demonstrat, ii (proof systems) partic-
ulare fiecărui limbaj în parte. Definim în această lucrare o institut, ie abstractă a
logicii accesibilităt, ii peste o institut, ie stratificată cu clase oarecare, ce permite
recuperarea not, iunii originale de accesibilitate prin instant, ierea parametrului
său cu logica potrivirilor.
Prin definirea atât a logicii potrivirilor cât s, i a logicii accesibilităt, ii ca in-

stitut, ii, putem integra aceste formalisme în grafuri ale logicilor limbajelor de
specificare eterogene bazate pe institut, ii precum HetCasl [15]. Ca un rezultat
direct al acestei formalizări, frameworkul K poate mos,teni sistemele de module
dezvoltate pentru specificat, ii construite peste institut, ii arbitrare ce cont, in op-
eratori dedicat, i de agregare, redenumire, extindere, ascundere s, i parametrizare
a modulelor. În plus, integrarea va permite combinarea logicii accesibilităt, ii
s, i a programelor software suport oferite de K cu alte sisteme logice s, i uneltele
lor software atas,ate. Încheiem această lucrare cu efortul preliminar integrării
frameworkului K în Hets [16], al descrierii unor comorfisme ce codifică logicile
potrivirilor s, i a accesibilităt, ii în institut, ia logicii de ordinul întâi.

Contents

1 Introduction 5

2 Preliminaries 7
2.1 Institution Theory . 7
2.2 K Semantic Framework . 12

3 Matching Logic 16
3.1 Stratified Institutions with Classes . 16
3.2 Matching Logic . 19
3.3 Relationship to First-Order Logic . 25

4 Reachability Logic 34
4.1 Abstract Reachability Logic . 34
4.2 Defining Reachability over Matching Logic 40
4.3 Relationship to First-Order Logic . 43

5 Conclusions 45

4

1 Introduction

The K framework [18] is an executable semantic framework based on rewriting and used for
defining programming languages, computational calculi, type systems and formal-analysis
tools. It was developed as an alternative to the existing operational-semantics frameworks
and over the years has been employed to define actual programming languages, to study
runtime verification methods and to develop analysis tools such as type checkers, type in-
ferencers, model checkers and verifiers based on Hoare-style assertions. A comprehensive
overview of the framework can be found in [19]. Its associated tool [6] enables the devel-
opment of modular and executable definitions of languages, and moreover, it allows the
user to test programs and to explore their behaviour in an exhaustive manner, facilitating
in this way the design of new languages.
Driven by recent developments on the theoretical foundations of the K semantic frame-

work [17, 20] and on the established connections with other semantic frameworks and
formal systems such as reduction semantics, Hoare logic and separation logic, we propose
an institutional formalisation [9] of the logical systems on which the K framework is based:
matching and reachability logic. This would allow us to extend the usage of K by focusing
on its potential as a formal specification language, and furthermore, through its underly-
ing logics, to establish rigorous mathematical relationships between K and other similar
languages, enabling the integration of their verification tools and techniques.
Matching logic [17] is a formal system used to express properties about the structure

of mathematical objects and language constructs, and to reason about them by means
of pattern matching. Its sentences, called patterns, are built in an inductive manner,
similar to the terms of first-order logic, using operation symbols provided by a many-
sorted signature, as well as Boolean connectives and quantifiers. The semantics is defined
in terms of multialgebras, which interpret patterns as subsets of their carriers. This leads
to a ternary satisfaction relation between patterns, multialgebras and elements (or states)
of multialgebras.
Unlike first-order logic, matching logic is difficult to formalise faithfully as an institution

due to the ternary nature of its satisfaction relation and to the fact that patterns are
classified by sorts, much in the way the sentences of branching temporal logics are classified
into state or path sentences and evaluated accordingly. We overcome this limitations by
relying on the concept of stratified institution developed in [2], which extends institutions
with an abstract notion of model state and defines a parameterised satisfaction relation
that takes into account the states of models. We further develop this concept by adding
classes, which are determined by signatures, associated with sentences, and parameterise
both the stratification of models and the satisfaction relation. We show that both matching

5

CHAPTER 1. INTRODUCTION

and computation-tree logic can be described as stratified institutions with classes, and we
adapt the canonical construction of an ordinary institution from a stratified one presented
in [2] to take into consideration the role of classes.
The main advantage of using stratified institutions with classes to formalise matching

logic is that we can extend the construction of reachability logic described in [20] from
matching to other logical systems. Reachability logic is a formalism for program veri-
fication through which transition systems that correspond to the operational semantics
of programming languages can be described using reachability rules; these rules rely on
patterns and generalise Hoare triples in order to specify transitions between program con-
figurations (similarly to term-rewrite rules). Therefore, reachability logic can be seen as a
language-independent alternative to the axiomatic semantics and proof systems particular
to each language. In our work, we define an abstract institution of reachability logic over
an arbitrary stratified institution with classes such that by instantiating this parameter
with matching logic we recover the original notion of reachability.
Having both matching and reachability logic defined as institutions allows us to inte-

grate them into the logic graphs of institution-based heterogeneous specification languages
such as HetCasl [15]. As an immediate result, the K framework can inherit the powerful
module systems developed for specifications built over arbitrary institutions, with dedi-
cated operators for aggregating, renaming, extending, hiding and parameterising modules.
In addition, this will enable us to combine reachability logic and the tool support provided
by K with other logical systems and tools. Towards that end, as a preliminary effort to
integrate the K framework into Hets [16], we describe comorphism from matching and
reachability logic to the institution of first-order logic.

6

2 Preliminaries

2.1 Institution Theory

The notion of institution [9] has evolved from the abstract model theory of Barwise [3]
and the category theory of Mac Lane and Eilenberg [13] in order to address the growing
number of logical systems used in formal specification and verification. It formalises the
intuition about logics by abstracting their alphabets, syntax, semantics and the satisfaction
relation between them. Due to their general nature, institutions proved to be successful
in capturing a great variety of logical systems and in developing numerous results at an
abstract level [7, 22], thus enabling these results to be applied to all or most of the logical
systems described as institutions. In this way, institution theory gives a unique, relativistic
and non-essentialist approach to logic, adhering to the universal-logic trend of Béziau [4].

Definition 1. An institution I = (SigI,SenI,ModI, |=I) consists of

• a category SigI whose objects are called signatures,

• a sentence functor SenI : SigI → Set giving for every signature Σ the set SenI(Σ)
of Σ-sentences and for every signature morphism φ the sentence translation map
SenI(φ),

• a model functor ModI : (SigI)op → Cat defining for every signature Σ the category
ModI(Σ) of Σ-models and Σ-model homomorphisms, and for every signature mor-
phism φ the reduct functor ModI(φ),

• a binary Σ-satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ), for every signature Σ,

such that the satisfaction condition

M ′ |=I
Σ′ SenI(φ)(ρ) iff ModI(φ)(M ′) |=I

Σ ρ

holds for any signature morphism φ : Σ→ Σ′, any Σ′-model M ′ and any Σ-sentence ρ.

Notation 1. We may omit the subscripts and superscripts in the notations of the entities
of institutions when there is no risk of confusion: for example, |=I

Σ may be simply denoted
by |= when the considered institution and signature are clear. We may also denote the
sentence translation SenI(φ) by φ(_) and the reduct functor ModI(φ) by _�φ. When
M = M ′�φ we say that M is a φ-reduct of M ′ and that M ′ is a φ-expansion of M .

7

CHAPTER 2. PRELIMINARIES

The literature on specification languages [22] and abstract model theory [7] contains a
multitude of examples of logical systems formalised as institutions both from computing
science and from mathematical logic. One of the most representative logical systems is
(many-sorted) first-order logic, which was first presented as an institution in [9].

Many-sorted first-order logic with equality (FOL)

Signatures. A (many-sorted) first-order signature is a tuple (S, F, P) consisting of

• a set S of sorts,

• a family F = {Fw→s | w ∈ S∗, s ∈ S} of sets of operation symbols indexed by arities
and sorts, where Fw→s denotes the set of operations with arity w and sort s (when
the arity is empty, Fλ→s denotes the set of constants of sort s), and

• a family P = {Pw | w ∈ S∗} of sets of S-sorted relation symbols indexed by arities.
When P is empty, we call the pair (S, F) an algebraic signature.

Signature morphisms. Signature morphisms φ : (S, F, P) → (S′, F ′, P ′) reflect the
structure of signatures and consist of

• a function φst : S → S′ between the sets of sorts,

• a family of functions φop = {φop
w→s : Fw→s → F ′φst(w)→φst(s) | w ∈ S

∗, s ∈ S} between
the sets of operation symbols, and

• a family of functions φrel = {φrel
w : Pw → P ′φst(w) | w ∈ S

∗} between the sets of relation
symbols.

Models. For every signature (S, F, P), a model M interprets each sort symbol s as a
set Ms, called the carrier set of sort s, each operation symbol σ ∈ Fw→s as a function
Mσ : Mw → Ms, where Mw = Ms1 × · · · ×Msn for w = s1 . . . sn, with s1, . . . , sn ∈ S,
and each relation symbol π ∈ Pw as a subset Mπ ⊆Mw. We will assume throughout this
paper that every signature has at least one constant for every sort, in order to avoid empty
interpretations of sorts and thus simplify the presentation of some results.
A homomorphism of (S, F, P)-models h : M → N is an indexed family of functions
{hs : Ms → Ns | s ∈ S} such that

• h is an (S, F)-algebra homomorphism: hs(Mσ(m)) = Nσ(hw(m)), for every σ ∈
Fw→s and every m ∈ Mw, where hw : Mw → Nw denotes the canonical component-
wise extension of h to w-tuples, i.e., hw(m1, . . . ,mn) = hs1(m1), . . . , hsn(mn) for
w = s1 · · · sn and mi ∈Msi for i = 1, n, and

• hw(m) ∈ Nπ if m ∈Mπ, i.e. hw(Mπ) ⊆ Nπ, for every relation symbol π ∈ Pw.

8

CHAPTER 2. PRELIMINARIES

Model reducts. For every signature morphism φ : Σ → Σ′, the reduct M ′�φ of a Σ′-
model M ′ is defined as the Σ-model given by (M ′�φ)

x
= M ′φ(x) for every sort, function, or

relation symbol x from the domain signature of φ. The reduct h′�φ of a model homomor-
phism is also defined as (h′�φ)s = h′φ(s), for every sort s ∈ S.

Sentences. The sentences are usual first-order sentences built from equational and re-
lational atoms by applying in an iterative manner Boolean connectives and first-order
quantifiers. Given a signature (S, F, P), and a sort s, the set TF,s of F -terms of sort s
is the least set such that σ(t) ∈ TF,s, for all σ ∈ Fw→s, and all tuples t ∈ TF,w, where
TF,w = TF,s1 × · · · × TF,sn , and w = s1 · · · sn. The set of (S, F, P)-sentences is the least
set containing equational atoms t = t′ (for t, t′ ∈ TF,s) and relational atoms π(t1, . . . , tn)
(where π ∈ Pw and t1, . . . , tn ∈ TF,w) that is closed under

• Boolean connectives: for any (S, F, P)-sentences ρ1 and ρ2, the negation ¬ρi, the
conjunction ρ1 ∧ ρ2, the disjunction ρ1 ∨ ρ2, the implication ρ1 → ρ2, and the
equivalence ρ1 ↔ ρ2 are also (S, F, P)-sentences,

• existential and universal quantification over sets of first-order variables, which are
triples 〈x, s, (S, F, P)〉 sometimes denoted by x : s, where x is the name of the variable,
and s ∈ S is its sort: for any (S, F]X,P)-sentence ρ, ∃X.ρ, and ∀X.ρ are (S, F, P)-
sentences, where (S, F]X,P) denotes the extension of (S, F, P) with the elements
of X as new symbols of constants.

Sentence translations. The sentence translation Sen(φ) : Sen(S, F, P)→ Sen(S′, F ′, P ′)
along a signature morphism φ : (S, F, P)→ (S′, F ′, P ′) is defined inductively on the struc-
ture of the sentences and renames the sorts, function, and relation symbols of (S, F, P)
with symbols of (S′, F ′, P ′) according to φ. For terms, we define the extension of φ as
φtm(σ(t1, . . . , tn)) = φop(σ)(φtm(t1), . . . , φtm(tn)). Then,

• Sen(φ)(t = t′) = (φtm(t) = φtm(t′)) for equations,

• Sen(φ)(π(t1, . . . , tn)) = φrel(π)(φtm(t1), . . . , φtm(tn)) for relational atoms,

• Sen(φ)(ρ1 ∧ ρ2) = Sen(φ)(ρ1)∧ Sen(φ)(ρ2), and similarly for the rest of the Boolean
connectives, and

• Sen(φ)(∃X.ρ) = ∃Xφ.Sen(φX)(ρ) for every finite set of variables X, every (S, F]
X,P)-sentence ρ, where Xφ = {x :φst(s) | x : s ∈ X} and φX : (S, F] X,P) →
(S′, F ′] Xφ, P ′) extends φ canonically. We define the translation of universally
quantified sentences in a similar manner.

Satisfaction. The satisfaction between models and sentences is the usual Tarskian sat-
isfaction defined inductively on the structure of sentences and based on the valuation of
terms in models. Given a model M of a fixed arbitrary signature (S, F, P)

• for equational atoms: M |= t = t′ if Mt = Mt′
1,

1where Mt and Mt′ are the interpretations of t and t′ in M

9

CHAPTER 2. PRELIMINARIES

• for relational atoms: M |= π(t) if Mt ∈Mπ,

• M |= ¬ρ if and only if M 6|= ρ,

• M |= ρ1 ∧ ρ2 if and only if M |= ρ1 and M |= ρ2,

• M |= ρ1 ∨ ρ2 if and only if M |= ρ1 or M |= ρ2,

• M |= ρ1 → ρ2 if and only if M |= ρ2 whenever M |= ρ1,

• M |= ∃X.ρ if there exists an expansion M ′ of M along the signature inclusion
(S, F, P) ↪→ (S, F]X,P) such that M ′ |= ρ, and

• M |= ∀X.ρ if and only if M |= ¬∃X.¬ρ.

Presentations

The presentations over an institution represent one of the simplest forms of specifications
over that logic being formed merely of a signature and a (usually finite) set of its sentences.
We will use presentations in our thesis to encode reachability logic into first-order logic in
Chapter 4.3.

Definition 2. A presentation of an institution I = (Sig, Sen,Mod, |=) is a pair (Σ, E)
consisting of a signature Σ and a set E of Σ-sentences.
The presentations of an institution form a category Pres whose arrows φ : (Σ, E) →

(Σ′, E′) are signature morphisms φ : Σ → Σ′ such that E′ |= φ(E). By extending the
sentence functor, the model functor and the satisfaction relation from the signatures of
I to presentations we obtain an institution Ipres = (Pres, Senpres,Modpres, |=pres) of I pre-
sentations.

Model amalgamation

Model amalgamation is one of the most important properties of an institution, with numer-
ous applications in the context of institution-independent model theory [7] and module
algebra [11]. In particular, as regards our work, model amalgamation will prove to be
crucial in adding quantifiers over an arbitrary institution.
Essentially, model amalgamation allows us to combine models of different signatures

whenever they are compatible with respect to a common sub-signature. Most logical
systems of interest for mathematics and specification theory have model amalgamation,
including the examples considered in this paper.

Definition 3. In any institution, a commuting square of signature morphisms

Σ Σ1

Σ2 Σ′

ϕ1

ϕ2 θ1

θ2

10

CHAPTER 2. PRELIMINARIES

is a weak amalgamation square if and only if, for each Σ1-modelM1 and Σ2-modelM2 such
that Mod(ϕ1)(M1) = Mod(ϕ2)(M2), there exists a Σ′-model M ′, called an amalgamation
of M1 and M2, such that Mod(θ1)(M ′) = M1 and Mod(θ2)(M ′) = M2. When M ′ is
required to be unique, the square is called an amalgamation square.
We say that an institution has (weak) model amalgamation if and only if each pushout

square of signature morphisms is a (weak) amalgamation square.Therefore, in order to
have model amalgamation, the square of signature morphisms must not identify entities
of Σ1 and Σ2 that do not come from Σ via the signature morphisms ϕ1 and ϕ2. Moreover,
to guarantee the uniqueness of the amalgamation, Σ′ must contain only entities that come
from Σ1 or Σ2.

Moving between institutions

When describing and reasoning about properties of highly complex structures or systems,
it is often desirable to use different formalisms for different tasks. Consequently, in order
to use institutions as formalisations of logical systems in a heterogeneous setting, one
needs to define formally a notion of map between institutions. Several concepts have been
defined over the years, including semi-morphisms, morphisms, and comorphisms, some of
which can be found in [22]. In our work, we focus only on comorphisms [14, 23], which
reflect the intuition of embedding simpler institutions into more complex ones.

Definition 4. Given two institutions I and I′, a comorphism (Φ, α, β) : I→ I′ consists of

• a signature functor Φ: Sig→ Sig′,

• a natural transformation α : Sen⇒ Φ ; Sen′, and

• a natural transformation β : Φop ; Mod′ ⇒ Mod

such that the following satisfaction condition holds for any I-signature Σ, Φ(Σ)-modelM ′,
and Σ-sentence ρ:

M ′ |=I′

Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=I
Σ ρ.

Example. There exists a comorphism that allows us to embed into FOL the first-order
equational logic (FOEQL), i.e. the fragment of FOL obtained by discarding the relation
symbols and their interpretations. We define (Φ, α, β) : FOEQL→ FOL as follows:

• Φ: SigFOEQL → SigFOL is the embedding of algebraic signatures into the category
of first-order signatures,

• for every signature Σ ∈ |SigFOEQL|, αΣ : SenFOEQL(Σ) → SenFOL(Φ(Σ)) is an
inclusion of sets,

• for every signature Σ ∈ |SigFOEQL|, βΣ : ModFOL(Φ(Σ)) → ModFOEQL(Σ) is the
identity functor.

11

CHAPTER 2. PRELIMINARIES

2.2 K Semantic Framework

The K framework [19] is an executable semantic framework based on rewriting and used for
defining programming languages, computational calculi, type systems and formal analysis
tools that was developed as an alternative to the existing operational-semantics (SOS)
frameworks and has been employed to define actual programming languages such as C,
Python, Java, and Verilog.
Although based on rewriting, K could be regarded as a notation for rewriting logic, along

the majority of semantic frameworks – big-step (natural) semantics, small-step SOS, mod-
ular SOS –, only if its concurrent semantics were to be ignored. Its concurrency properties
make it rather hard to translate faithfully (step for step) to rewriting logic. In defining
semantics for programming languages, K handles cell-like structures named configurations
and relies on computational structures – computations – to model transitions between
these configurations by applying local rewriting rules. Computations are sequences of
terms over the abstract syntax of the language – seen as computational tasks – that are
usually used for managing the evaluation strategies and the sequential part of the for-
malised language. The configurations are multisets of nested cells that allow us to manage
concurrency and modularity issues. The rules of K have the advantage of being more
concise and more modular than the regular rewrite rules, by enabling us to specify only
the fragments of configurations that we need to change.
The K tool allows not only the development of modular, executable definitions of lan-

guages, but it also facilitates language design as it supports testing and exploring be-
haviour in an exhaustive manner. The tool has been also used for defining type checkers
and type inferencers, for studying runtime verification techniques, and for developing a
model-checking tool based on predicate abstraction and a program verification tool that
uses Hoare-like assertions written in matching logic.
To briefly describe the K semantic framework we consider the following definition of the

IMP language [1], an elementary example of an imperative programming language.

Listing 2.1: The IMP programming language (K)
module IMP−SYNTAX
syntax AExp ::= Int | Id

| AExp "/" AExp [left , strict]
〉 AExp "+" AExp [left , strict]
| "(" AExp ")" [bracket]

syntax BExp ::= Bool
| AExp "〈=" AExp [seqstrict]
| "!" BExp [strict]
〉 BExp "&&" BExp [left , strict (1)]
| "(" BExp ")" [bracket]

syntax Block ::= "{" "}"
| "{" Stmt "}"

syntax Stmt ::= Block
| Id "=" AExp ";" [strict (2)]

12

CHAPTER 2. PRELIMINARIES

| " if " "(" BExp ")"
Block "else " Block [strict (1)]

| "while" "(" BExp ")" Block
〉 Stmt Stmt [left]

syntax Pgm ::= "int" Ids ";" Stmt
syntax Ids ::= List{Id ,","}

endmodule

module IMP
imports IMP−SYNTAX
syntax KResult ::= Int | Bool
configuration 〈t〉
〈k〉 $PGM:Pgm 〈/k〉
〈state〉 .Map 〈/state〉

〈/t〉
// AExp
rule 〈k〉 X:Id => I ···〈/k〉 〈state〉··· X |−> I ···〈/state〉
rule I1: Int / I2: Int => I1 /Int I2 when I2 =/=Int 0
rule I1: Int + I2:Int => I1 +Int I2

// BExp
rule I1: Int 〈= I2:Int => I1 〈=Int I2
rule ! T:Bool => notBoolT
rule true && B => B
rule false && _ => false

// Block
rule {} => .
rule {S} => S

// Stmt
rule 〈k〉 X = I:Int; => . ···〈/k〉
〈state〉··· X |−> (_ => I) ···〈/state〉
rule S1 S2 => S1 ∼> S2
rule if (true) S else _ => S
rule if (false) _ else S => S
rule while (B) S => if (B) {S while (B) S} else {}

// Pgm
rule 〈k〉 int (X:Id,Xs:Ids => Xs);_ 〈/k〉
〈state〉 Rho:Map (. => X |−>0) 〈/state〉
when notBool(X in keys(Rho))
rule int .Ids ; S => S

endmodule

The K definitions are written in machine-readable ASCII which the tool subsequently
translates for execution into Maude rewrite theories. Language features are grouped in K
using importable modules: language definitions must contain at least one module, but it is
considered a good practice (and helpful for the parser) to separate the formal syntax from
the semantic declaration. This is why we consider two distinct modules, IMP-SYNTAX
and IMP, in order to define the IMP language.

13

CHAPTER 2. PRELIMINARIES

Syntactic structures are defined in the K tool using a variant of the Backus-Naur Form
notation: we introduce nonterminals for arithmetic expressions (AExp), Boolean expres-
sions (BExp), statements (Stmt), blocks of statements (Block), identifiers (Ids) and pro-
grams (Pgm). It should be noted that K provides a number of built-in syntactic categories
(Int, Id, Bool, etc.) and corresponding semantic operations that we take advantage of
throughout the formalization of our simple imperative language.
In order to specify language semantics in K, one needs to provide evaluation strategies

(by annotating the syntax declarations with strictness-constraining attributes), to define
the nested structure of the configuration holding the state of the executed program, and to
give rules that describe reconfigurations – the transitions between configurations. In our
example, we annotate the declaration of some operations with the strict and seqstrict
attributes in order to specify that the arguments of the operation must be evaluated
before giving semantics to the construct itself. The terms that represent values, or results,
are distinguished by declaring them of sort KResult. The sequencing of evaluation is
implemented by computations that extend the syntax of the language with a list structure
through the separator ∼> (“followed by”). The initial computation contains only one task
– the program to be executed –, that is translated into a sequence of tasks by applying
rules corresponding to strictness annotations. The resulting list of computational tasks is
then processed in order. Computations define a new sort, called K, that is also a suprasort
of KResult.
We represent the state of a running program with a configuration consisting of nested,

labelled cells containing various data structures such as sets, lists, and maps. We define
the configurations using an XML-like notation, where the labels of the cells are tag names
and the contents are enclosed by tags. In our example, we define the the structure of IMP
configurations and we specify the initial configuration by introducing a cell labelled k that
contains the program we are executing (denoted by the variable $PGM of sort K that
is being initialized at the beginning of the runtime with the original IMP program), and
a cell state holding a mapping between identifier names and values. This configuration
structure will serve as a backbone for the local semantic rules discussed in what follows.
The semantic rules describe the evolution of the configuration, or how a subterm of

the configuration is rewritten to another term: any term that matches the left-hand side
of a rule is replaced with the right-hand side thereof. The reconfigurations consist, in
our case, in the advances of the computation and the changes of the state. The local
aspect of the rewriting in K allows us to omit unchanging fragments of terms from the
semantic rules. Our example reflects local rewriting through the multiple occurrences
in a rule of the rewrite symbol =>. Moreover, the rules may include only the relevant
cells and not the entire configuration, the rest of the context being inferred automatically
through a technique called configuration abstraction. Boolean predicates can be added to
the semantic rules, defining in this way side conditions.
In the following sections we introduce two logics in order to formalize the K framework.

Matching logic will be used to define the syntactic constructs – the syntax of the spec-
ified programming languages – and the patterns matched in the semantic rules, and to
partially capture the semantics of the programming languages by defining the states of

14

CHAPTER 2. PRELIMINARIES

the running programs. Subsequently, we build reachability logic upon matching logic to
capture the semantic rules. Its sentences, defined over the signatures of matching logic,
correspond to the rules in the K modules, while the models represent implementations of
programming languages. The language definitions written in K will thus be seen, leaving
aside some parsing instructions without logical interpretation, as formal specifications over
reachability logic.

15

3 Matching Logic

The generality of institutions allowed them to accommodate a great variety of logical
systems. As a downside however, and as it would be expected for such abstract notions,
certain logics cannot be captured in full detail by institutions; that is, by considering them
only as institutions we lose precious information. An example is computation-tree logic,
for which we lose the distinction between state and path sentences (which, in fact, do not
belong to the sentences of computation-tree logic formalised as an institution).
Matching logic falls in the same category, but this time, we lose the sorts of patterns and

the states of models. To palliate this, we extend institutions with notions of classes (for
sorts) and stratification of models (for states). The end result – the concept of stratified
institution with classes – is obtained as a combination of the institutions with classes
described in Definition 5 with the stratified institutions introduced in [2].

3.1 Stratified Institutions with Classes

Definition 5. An institution with classes is a tuple (Sig,Cls, Sen, κ,Mod, |=), where

• (Sig,Sen,Mod, |=) is an institution,

• Cls : Sig→ Set is a functor giving for each signature a set whose elements are called
classes of that signature, and

• κ : Sen⇒ Cls is a natural transformation associating a class to each sentence.

We will also use the notation Sen(Σ)c for κ−1(c), c ∈ Cls(Σ) to denote the set of Σ-sentences
of class c.

Example. An immediate example of an institution with classes is the atomic fragment
of equational first-order logic. In this case, Cls is the forgetful functor that maps every
algebraic signature (S, F) to its underlying set of sorts S, and κ(S,F) is the function that
assigns to each equational atom t = t′ the common sort of t and t′.

Definition 6. A stratified institution with classes I = (Sig,Cls, Sen, κ,Mod, J_K, |=) con-
sists of:

• a category Sig of signatures and signature morphisms,

• a class functor Cls : Sig→ Set, giving for every signature a set of classes,

• a sentence functor Sen: Sig→ Set, defining for every signature Σ a set of sentences,

16

CHAPTER 3. MATCHING LOGIC

• a natural transformation κ : Sen⇒ Cls, associating a class to each sentence,

• amodel functor Mod: Sigop → Cat, defining a category ofmodels for every signature,

• a stratification J_K giving

– for every signature Σ, a family of functors J_KΣ,c : Mod(Σ) → Set, indexed by
classes c ∈ Cls(Σ), and

– for every signature morphism φ : Σ → Σ′, a functorial family (see Remark 1
below) of natural transformations J_Kφ,c : J_KΣ′,Cls(φ)(c) ⇒ Mod(φ) ; J_KΣ,c, in-
dexed by classes c ∈ Cls(Σ), such that JM ′Kφ,c is surjective for every M ′ ∈
|Mod(Σ′)|, and

• a satisfaction relation between models and sentences, parameterised by model states
and classes: M |=m

Σ,c ρ, where Σ is a signature, c ∈ Cls(Σ), M ∈ |Mod(Σ)|, m ∈
JMKΣ,c, and ρ ∈ Sen(Σ)c

such that the following properties are equivalent:

i. Mod(φ)(M ′) |=JM ′Kφ,c(m′)
Σ,c ρ

ii. M ′ |=m′

Σ′,Cls(φ)(c) Sen(φ)(ρ),

for every signature morphism φ : Σ → Σ′, every class c ∈ Cls(Σ), every model M ′ ∈
|Mod(Σ′)|, every state m′ ∈ JM ′KΣ′,Cls(φ)(c), and every sentence ρ ∈ Sen(Σ)c.

Remark 1. The functoriality of the stratifications J_Kφ,c : J_KΣ′,Cls(φ)(c) ⇒ Mod(φ);J_KΣ,c
means that for every signature morphisms φ : Σ→ Σ′, φ′ : Σ′ → Σ′′, every Σ′′-model M ′′,
and every class c ∈ Cls(Σ), JM ′′Kφ;φ′,c = JM ′′Kφ′,φ(c) ; JM ′′�φ′Kφ,c.

JM ′′KΣ′′,φ′(φ(c)) JM ′′�φ′KΣ′,φ(c) J(M ′′�φ′)�φKΣ,c

JM ′′Kφ′,φ(c) JM ′′�φ′Kφ,c

JM ′′Kφ;φ′,c

Proposition 1. Every stratified institution with classes (Sig,Cls, Sen, κ,Mod, J_K, |=) de-
termines an institution whose category of signatures is Sig, sentence functor is Sen, model
functor is Mod, and satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) is defined, for every
signature Σ ∈ |Sig|, as follows:

M |=Σ ρ iff M |=m
Σ,c ρ for every m ∈ JMKΣ,c, where c = κΣ(ρ) .

Proof. We have to prove that the satisfaction condition holds for every signature morphism
φ : Σ→ Σ′, every Σ′-model M ′, and every Σ-sentences ρ, that is

M ′ |=Σ′ Sen(φ)(ρ) iff Mod(φ)(M ′) |=Σ ρ.

17

CHAPTER 3. MATCHING LOGIC

We denote by c the class κΣ(ρ) of the sentence ρ, and by c′ the class κΣ′(Sen(φ)(ρ)) of the
sentence Sen(φ)(ρ). We recall that by the naturality of κ, c′ = Cls(φ)(c).
By the definition of the satisfaction relation of the derived institution,

M ′ |=Σ′ Sen(φ)(ρ) iff M ′ |=m′
Σ′,c′ Sen(φ)(ρ) for every m′ ∈ JM ′KΣ′,c′ .

Since the satisfaction condition holds for φ as a signature morphism in a stratified insti-
tution with classes, it follows that

M ′ |=m′
Σ′,c′ Sen(φ)(ρ) iff Mod(φ)(M ′) |=JM ′Kφ,c(m′)

Σ,c ρ for every m′ ∈ JM ′KΣ′,c′ .

Hence, by the surjectivity of JM ′Kφ,c, we obtain

Mod(φ)(M ′) |=JM ′Kφ,c(m′)
Σ,c ρ iff Mod(φ)(M ′) |=m

Σ,c ρ for every m ∈ JMod(φ)(M ′)KΣ,c.

To conclude the proof notice that the right-hand side of the above equivalence means that
Mod(φ)(M ′) |=Σ ρ.

Notation 2. Let [I denote the institution obtained by applying Proposition 1 to a strat-
ified institution with classes I.

Computation-tree logic (CTL)

In this section, we formalise computation-tree logic as a first example of stratified insti-
tution with classes. Similarly to other temporal logics, the usual presentation of CTL is
based on propositional logic. CTL inherits the signatures of propositional logic, which
means that the category of its signatures is Set.

CTL formulae can express properties of a state or a path (infinite sequence of states)
of a transition system (defined below), being classified into state and path formulae:
Cls(Σ) = {state, path}, for every Σ ∈ |Sig| = |Set|.
We define the functor Sen, and the natural transformation κ simultaneously, describing

the sentences of a signature and their classes:

• the atomic propositions a ∈ Σ are sentences of class state,

• init is a proposition of class state,

• ϕ1 ∧ ϕ2 is a sentence of class state, for every ϕ1, ϕ2 sentences of class state,

• ¬ϕ is a sentence of class state, for every sentence ϕ of class state,

• ∃π,∀π are sentences of class state, for every sentence π of class path,

• ©ϕ is a sentence of class path, for every sentence ϕ of class state,

• ϕ1Uϕ2 is a sentence of class path, for every ϕ1, ϕ2 sentences of class state.

18

CHAPTER 3. MATCHING LOGIC

The models of a CTL signature Σ are transition systems TS = (S,→, I,Σ, L), where
S is a set of states, → ⊆ S × S is a transition relation, I ⊆ S is a set of initial states,
and L : S → 2Σ is a labelling function. We define a transition system morphism h : (S,→
, I,Σ, L) → (S′,→′, I ′,Σ, L′) as a function h : S → S′ such that h(I) ⊆ I ′, h(→) ⊆ →′,
and L(s) = L′(h(s)), for every s ∈ S.
The stratification of models is defined as follows:

• JTSKΣ,state is the set S of states of TS,

• JTSKΣ,path is the set of paths of TS, that is sequences s0, s1, . . . ∈ Sω, such that si →
si+1 for i ∈ ω.

For every signature morphism φ : Σ→ Σ′, the components of the natural transformations
J_Kφ,c are identity functions:

JTS′Kφ,state(s′) = s′, JTS′Kφ,path(p′) = p′,

for every s′ ∈ JTS′KΣ′,state, p
′ ∈ JTS′KΣ′,path, and TS′ ∈ |Mod(Σ′)|.

The satisfaction relation between models and sentences is given by:

• TS |=s
Σ,state ρ iff

– ρ ∈ L(s), for ρ ∈ Σ

– s ∈ I, for ρ = init

– TS 6|=s
Σ,state ϕ, for ρ = ¬ϕ

– TS |=s
Σ,state ϕ1 and TS |=s

Σ,state ϕ2, for ρ = ϕ1 ∧ ϕ2

– there is p = s0, s1, . . . ∈ JTSKΣ,path with s0 = s such that TS |=p
Σ,path π, for

ρ = ∃π,

• TS |=p
Σ,path ρ iff

– TS |=s1
Σ,state ϕ, for ρ =©ϕ

– there exists an index j such that TS |=sj
Σ,state ϕ2, and for all i < j,TS |=si

Σ,state ϕ1,
for ρ = ϕ1Uϕ2,

for every signature Σ, every state s ∈ S, every path p = s0, s1, . . ., every sentence ρ and
every model TS ∈ |Mod(Σ)|.

3.2 Matching Logic

The original notion of matching logic developed in [17] can be described as a stratified
institution with classes ML as follows.

19

CHAPTER 3. MATCHING LOGIC

Signatures. The signatures are algebraic signatures, that is pairs (S, F), where S is a
set of sort names, and F is a family of sets Fw→s of operation symbols of arity w ∈ S∗ and
sort s ∈ S. For signatures Σ = (S, F), Σ′ = (S′, F ′), a signature morphism φ : Σ → Σ′
is a pair (φst, φop), where φst : S → S′ is a function, and φop is a family of functions that
respect the arities and the sorts of operation symbols in Σ, that is φop = {φop

w→s : Fw→s →
F ′φst(w)→φst(s) | w ∈ S

∗, s ∈ S}.

Example. Let us consider the specification of the IMP programming language exemplified
in Listing 2.1. The signature of the IMP-SYNTAX module is obtained by adding to the
built-in syntactic categories and their corresponding semantic operations new sorts and
operation symbols introduced by the syntax keyword. For example, in the fragment of
the syntax module below, the AExp sort is introduced as a suprasort of Int and Id sorts1.
Addition and division are defined as binary operations with arguments and results of sort
AExp, while bracketing is defined as a unary operation of the same sort. We note that only
the bracket attribute has an effect on the signature of the specification as it determines
the removal of its corresponding symbol of operation from the signature. The left and
strict attributes are only used in parsing programs and in refining the evaluation strategy
(by sequencing computational tasks), and thus, they do not play a role in defining the
signature.

Listing 3.1: The IMP programming language – AExp syntax
syntax AExp ::= Int | Id

| AExp "/" AExp [left , strict]
〉 AExp "+" AExp [left , strict]
| "(" AExp ")" [bracket]

The signature of the fragment in Listing 3.1 is defined as

AExpSig = (S ∪ SBUILT-IN, F ∪ FBUILT-IN),

where SBUILT-IN and FBUILT-IN are the built-in sorts and operations, S = {AExp} and
FAExpAExp→AExp = {_ + _, _/_}.
Similarly, the signature of the IMP module is obtained from the signature of the im-

ported moduleIMP-SYNTAX, extending its signature through the addition of the sorts
T, K, State and KResult and the operations 〈k〉_〈/k〉 ∈ FPgm→K, 〈state〉_〈/state〉 ∈
FMap→State and 〈t〉_〈/t〉 ∈ FK State→T introduced by the keyword configuration.

Classes of a signature. Every algebraic signature (S, F) determines (through the func-
tor Cls) the set of classes S. This means that for matching logic, classes are simply sorts,
just as in the case of the atomic equational first-order logic. Similarly, every morphism
φ : (S, F)→ (S′, F ′) determines a translation of classes φst : S → S′.

1For simplicity, the formalism we used in this paper does not take into account the subsorting relation.
We could further include subsorts following ideas developed for order-sorted equational logic [10].

20

CHAPTER 3. MATCHING LOGIC

Sentences. The sentences (or patterns) in ML of given sorts are defined as follows: for
every signature Σ, Sen(Σ) is the least set that contains basic patterns (terms over Σ) and
that is closed under the Boolean connectives ¬,∧, and the existential quantifier ∃.

• For each sort s ∈ S, the basic patterns of sort s are terms in (TΣ)s, where (TΣ)s is the
least set such that σ(t1, . . . , tn) : s ∈ (TΣ)s for all operation symbols σ ∈ Fs1...sn→s
and for all terms ti ∈ (TΣ)si .

• For every pattern π of sort s, ¬π is a pattern of sort s.

• For every two patterns π1, π2 of sort s, π1 ∧ π2 is a pattern of the common sort s.

• For every variable x of sort s (defined formally as a tuple 〈x, s,Σ〉, where x is the
name of the variable, and s is its sort), and every pattern π ∈ Sen(S, F] {x : s}),
∃x : s.π is a pattern in Sen(Σ).

The sentence translation along a signature morphism φ : Σ→ Σ′ is defined inductively,
extending the translation of Σ-terms to Σ′-terms generated by φ – the family of functions
φtm
s : (TΣ)s → (TΣ′)φst(s) that map σ(t1, . . . , tn) : s to φop(σ)(φtm(t1), . . . , φtm(tn)) :φst(s),

for every σ ∈ Fs1...sn→s, and ti ∈ (TΣ)si :

• Sen(φ)(π) = φtm
s (π), for every basic pattern π ∈ (TΣ)s,

• Sen(φ)(¬π) = ¬Sen(φ)(π), for every pattern π,

• Sen(φ)(π1 ∧ π2) = Sen(φ)(π1) ∧ Sen(φ)(π2), for every two patterns π1, π2,

• Sen(φ)(∃x : s.π) = ∃x :φst(s).Sen(φx)(π), where φx is the canonical extension of φ
that maps x : s to x :φst(s), just as in the case of first-order logic.

Example. We can give as examples of sentences of an ML-signature, the patterns matched
in the K rules corresponding to the IMP programming language specification presented in
Listing 2.1: I1 : Int+ I2 : Int, I1 +Int I2, ! T : Bool, true && B etc.

Classes of sentences. The class of a pattern is given by its sort through the natural
transformation κ : Sen⇒ Cls that is defined inductively on the structure of sentences:

• κ(S,F)(π) = s, for every basic pattern π ∈ (TΣ)s,

• κ(S,F)(¬π) = κ(S,F)(π), for every pattern π,

• κ(S,F)(π1 ∧ π2) = κ(S,F)(π1), for every two patterns π1, π2,

• κ(S,F)(∃x : s.π) = κ(S,F]{x : s})(π), for every pattern π.

21

CHAPTER 3. MATCHING LOGIC

Models. The models of ML are multialgebras [12]. Multialgebras are generalisations of
algebras having nondeterministic operations that return sets of possible values; that is,
multialgebras interpret operation symbols from the carrier set of their arity to the powerset
of the carrier set of their sort. For a signature Σ = (S, F), a multialgebra homomorphism
h : M → N is a family of functions indexed by the signature’s sorts {hs : Ms → Ns | s ∈ S},
such that hs(Mσ(m1, . . . ,mn)) ⊆ Nσ(hs1(m1), . . . , hsn(mn)), for every σ ∈ Fs1...sn→s and
every mi ∈Msi .

Stratification. The stratification of models is given, for every signature Σ and class s
of Σ, by JMKΣ,s = Ms, and for every signature morphism φ : Σ → Σ′, class s of Σ and
model M ′ of Σ′, by JM ′Kφ,s(m′) = m′, where m′ ∈M ′

φst(s) .

Satisfaction relation. The satisfaction relation between a model and a sentence is
based on the interpretation of patterns in models. For any multialgebraM , we defineMπ,
the interpretation of a pattern π in M , inductively as follows:

• for every basic pattern π ∈ Fλ→s, Mπ is the interpretation of constant π in M ,

• Mπ = ⋃
{Mσ(m1, . . . ,mn) | mi ∈Mti}, for every basic pattern π = σ(t1, . . . , tn),

• Mπ = Ms \Mπ1 , for every pattern π = ¬π1, where π1 is a pattern of sort s,

• Mπ = Mπ1 ∩Mπ2 , for every pattern π = π1 ∧ π2,

• Mπ = ⋃
{(M,X)π1 | X ⊆ Mt}, for every pattern π = ∃x : t.π1, where π1 is a

pattern of sort s, and (M,X) is the expansion of M along the inclusion (S, F) ⊆
(S, F] {x : t}) given by (M,X)x = X.

We now have all the necessary concepts for defining the satisfaction relation:

M |=m
Σ,s π iff m ∈Mπ.

Proposition 2 (Satisfaction condition). The following properties are equivalent:

i. Mod(φ)(M ′) |=JM ′Kφ,s(m′)
Σ,s π

ii. M ′ |=m′

Σ′,Cls(φ)(s) Sen(φ)(π),

for every signature morphism φ : Σ → Σ′, every sort s ∈ Cls(Σ), every multialgebra
M ′ ∈ Mod(Σ′), every state m′ ∈ JM ′KΣ′,Cls(φ)(s), and every pattern π of sort s.

Proof. We rewrite the two properties as:

i. JM ′Kφ,s(m′) = m′ ∈ (M ′�φ)
π

ii. m′ ∈M ′Sen(φ)(π).

22

CHAPTER 3. MATCHING LOGIC

We therefore have to prove the equality between the interpretation of a pattern in the
reduct of the model M ′ along the signature morphism φ and the interpretation of the
translation of the pattern π along φ in M ′. We show this by induction on the structure
of the patterns:

• for every basic pattern π ∈ Fλ→s

(M ′�φ)π = M ′φop
λ→s

(π),

• for every basic pattern π = σ(t1, . . . , tn)

(M ′�φ)
σ(t1,...,tn) =

⋃
{(M ′�φ)σ(m1, . . . ,mn) | mi ∈M ′�φti}

=
⋃
{M ′φop(σ)(m1, . . . ,mn) | mi ∈M ′φtm(ti)}

= M ′φop(σ(φtm(t1),...,φtm(tn)))

= M ′φtm(σ(t1,...,tn)),

• for every pattern π = ¬π1 of sort s

(M ′�φ)¬π1
= (M ′�φ)

s
\ (M ′�φ)

π1
= M ′φst(s) \M

′
Sen(φ)(π1)

= M ′¬Sen(φ)(π1) = M ′Sen(φ)(¬π1),

• for every pattern π = π1 ∧ π2

(M ′�φ)
π1∧π2

= (M ′�φ)
π1
∩ (M ′�φ)

π2

= M ′Sen(φ)(π1) ∩M
′
Sen(φ)(π2) = M ′Sen(φ)(π1∧π2),

• for every pattern π = ∃x : t.π1

(M ′�φ)∃x : t.π1
=

⋃
{(M ′�φ, X)

π1
| X ⊆ (M ′�φ)

s
} =

⋃
{(M ′�φ, X)

π1
| X ⊆M ′φst(t)}

M ′Sen(φ)(∃x : t.π1) = M ′∃x :φst(t).Sen(φx)(π1) =
⋃
{(M ′, X)Sen(φx)(π1) | X ⊆M ′φst(t)}

The conclusion follows from the induction hypothesis by noticing that (M ′�φ, X) =
(M ′, X)�φx .

In order to formalise the K framework, we should interpret the variables in a deter-
ministic manner. For example, in the specification of the IMP programming language,
the variables in the patterns matched by the semantic rules have a deterministic inter-
pretation: the variables I1, I2 and T of the patterns I1 : Int + I2 : Int, ! T : Bool are
interpreted as sole elements of sort Int or Bool respectively, as opposed to the interpre-
tation of variables in ML as sets of elements. In the section that follows, we present a
different formalisation of matching logic that takes into consideration the deterministic
aspect of the interpretation of variables.

23

CHAPTER 3. MATCHING LOGIC

ML+

We refine the above definition of matching logic ML = (Sig,Cls,Sen, κ,Mod, J_K, |=), by
interpreting the variables in a deterministic way, as presented in [17].

ML+ is defined as a stratified institution with classes, whose category of signatures is
denoted by Sig+. Its objects are tuples (S, F,D), where (S, F) and (S,D) are algebraic
signatures of ML, such that Fw→s ∩ Dw→s = ∅ for every w ∈ S∗, and s ∈ S. For
signatures Σ = (S, F,D) and Σ′ = (S′, F ′, D′), a signature morphism φ : Σ→ Σ′ is a tuple
(φst, φop, φdet), where the pairs (φst, φop) and (φst, φdet) are signature morphisms in Sig.
We define the functor U: Sig+ → Sig by U(S, F,D) = (S, F ∪ D) for signatures, and

by U(φ) = (φst, φop ∪ φdet) for signature morphisms. The classes and the sentences of
a signature are given by the functor compositions Cls+ = U ; Cls, and Sen+ = U ; Sen2

respectively. The classes of sentences are determined by the composition U · κ : Sen+ →
Cls+ of the functor U with the natural transformation κ, that is, (U · κ)Σ = κU(Σ), for
every signature Σ.
The models of ML+ are determined by the functor Mod+ : (Sig+)op → Cat, that

assigns to each signature Σ = (S, F,D) the full subcategory of Mod(U(Σ)) consist-
ing of the models M in which every operation symbol in D is interpreted in a de-
terministic way. For every signature morphism φ : Σ → Σ′ and every model M ′ ∈
|Mod+(Σ′)| we define Mod+(φ)(M ′) as Mod(U(φ))(M ′). Notice that Mod+ is well-defined,
as |Mod(U(φ))(M ′)σ(m1, . . . ,mn)| = |M ′

φdet(σ)(m1, . . . ,mn)| = 1, for every operation sym-
bol σ of D.
The stratification of models is defined just as in the case of ML:

• J_K+
Σ,c : Mod+(Σ)→ Set maps every model M ∈ |Mod+(Σ)| to JMKU(Σ),c

• JMK+
φ,c : JMK+

Σ′,Cls+(φ)(c) → Mod(φ) ; JMK+
Σ,c maps every state m to JMKU(φ),c(m) for

every signature morphism φ : Σ→ Σ′ and every class c of Σ.

Finally, the satisfaction relation between models and sentences is defined analogously to
the satisfaction relation of ML. As a result, it holds for example, that for any basic pattern
π, any signature Σ ∈ Sig+, any class c ∈ Cls+(Σ), and any model M ∈ |Mod+(Σ)|,

M(|=ML+)mΣ,cπ iff M(|=ML)mU(Σ),cπ.

We note, however, that the satisfaction relation of ML+ is not a restriction of the satis-
faction relation of ML. For example, if π were an existentially quantified pattern ∃x : t.π1,
then only the converse implication of the above equivalence would be ensured to hold.
This follows because in ML every expansion of M may interpret in a non-deterministic
manner the variable x : t; in order words, there is no guarantee that there exists an expan-
sion of M in ML that satisfies π and is also a model of ML+. A similar proof to the one
of Proposition 2 can be given for the satisfaction condition of ML+.

2Technically, the quantification in ML+ is done only over variables that are interpreted in a deterministic
manner. This means that every extension with variables over signature U(Σ) (in ML) corresponds to
a deterministic extension of Σ in ML+.

24

CHAPTER 3. MATCHING LOGIC

3.3 Relationship to First-Order Logic

There exists a comorphism of institutions between [ML+, the institution obtained from
ML+ following Proposition 1, and FOL, the institution of first-order logic. We define
(Φ, α, β) : [ML+ → FOL as follows:

For signatures: The underlying signature functor Φ: Sig[ML+ → SigFOL maps
• every [ML+ signature Σ = (S, F,D) to the FOL signature Σ′ = (S′, F ′, P ′), with

the same sorts as Σ, with predicates σ ∈ P ′ws for every function symbol σ ∈ Fw→s,
and function symbols σ ∈ F ′w→s for each function symbol σ ∈ Dw→s

S′ = S F ′w→s = Dw→s P ′w′ =

Fw→s for w′ = ws

∅ for w′ = λ

• every [ML+-signature morphism φ : Σ1 → Σ2 to the FOL-signature morphism φ′ =
(φ′st, φ′op, φ′rel), where φ′st = φst, φ′op = φdet, and φ′rel

ws = φop
w→s, for ws 6= λ.

For models: For every signature Σ = (S, F,D), βΣ : ModFOL(Φ(Σ))→ Mod[ML+(Σ) is
the functor that maps

• every first-order structure M ′ for Φ(Σ) to the multialgebra M whose carrier sets Ms

are defined asM ′s, for every sort s ∈ S, whose interpretationsMσ : Ms1×. . .×Msn →
2Ms of function symbols σ ∈ Fs1...sn→s are defined as Mσ(m1, . . . ,mn) = {m ∈
Ms | (m1, . . . ,mn,m) ∈ M ′σ}, and whose interpretations Mσ of function symbols
σ ∈ Dw→s are given by the composition of M ′σ with the singleton-forming map
{_} : Ms → 2Ms , and

• every morphism of first-order structures h′ : M ′ → N ′ in ModFOL(Φ(Σ)) to a multi-
algebra morphism h : βΣ(M ′)→ βΣ(N ′) given by hs = h′s, for every s ∈ S. We note
that the fact that h′ commutes with the interpretation of operation symbols suits
the deterministic nature of the morphism h for the interpretation of operations in
D, while its compatibility with the interpretation of predicate symbols guarantees
the satisfaction of the morphism condition for multialgebras.

Proposition 3. β : Φop ; ModFOL ⇒ Mod[ML+ is a natural transformation.
Proof. We have to show that the following diagram commutes for every pair of [ML+

signatures Σ1 = (S1, F1, D1), Σ2 = (S2, F2, D2), and every morphism φ : Σ1 → Σ2.

ModFOL(Φ(Σ1)) Mod[ML+(Σ1)

ModFOL(Φ(Σ2)) Mod[ML+(Σ2)

βΣ1

ModFOL(Φ(φ))

βΣ2

Mod[ML+(φ)

25

CHAPTER 3. MATCHING LOGIC

We only give the details for the case of models; the morphisms of models can be treated
similarly. Therefore, we want to show that for every model M ′ ∈ |ModFOL(Φ(Σ2))|,
βΣ1(M ′�Φ(φ)) = βΣ2(M ′)�φ. We denote by Si, Fi, Di the components of Σi, for i ∈ {1, 2}.

• For every s ∈ S1, we can easily see that βΣ1(M ′�Φ(φ))s = (βΣ2(M ′)�φ)s, because
βΣ1(M ′�Φ(φ))s = (M ′�Φ(φ))s = M ′φst(s) and (βΣ2(M ′)�φ)s = βΣ2(M ′)φst(s) = M ′φst(s).

• To show that βΣ1(M ′�Φ(φ))σ = (βΣ2(M ′)�φ)σ for every σ ∈ F1s1...sn→s, we first
observe that (M ′�Φ(φ))σ = M ′φop(σ), and thus

βΣ1(M ′�Φ(φ))σ(m1, . . . ,mn) = {m ∈ βΣ1(M ′�Φ(φ))s | (m1, . . . ,mn,m) ∈ (M ′�Φ(φ))σ}

= {m ∈M ′φst(s) | (m1, . . . ,mn,m) ∈M ′φop(σ)}.

Moreover, by the definition of model reducts, we obtain

(βΣ2(M ′)�φ)σ(m1, . . . ,mn) = βΣ2(M ′)φop(σ)(m1, . . . ,mn)

= {m ∈ βΣ2(M ′)φst(s) | (m1, . . . ,mn,m) ∈M ′φop(σ)}

= {m ∈M ′φst(s) | (m1, . . . ,mn,m) ∈M ′φop(σ)}

• It can be easily observed that βΣ1(M ′�Φ(φ))σ = (βΣ2(M ′)�φ)σ for every function
symbol σ ∈ D1s1...sn→s, as (M ′�Φ(φ))σ = M ′

φdet(σ).

For sentences: For every signature Σ = (S, F,D), αΣ : Sen[ML+(Σ) → SenFOL(Φ(Σ))
is the function that maps every Σ-pattern π to

αΣ(π) = ∀m : s.FOLm : s
Σ (π),

where s = κΣ(π), m is a first-order variable of sort s for the signature Φ(Σ), and
FOLm : s

Σ : κ−1
Σ (s)→ SenFOL(Φ(Σ)] {m : s}) is the sorted translation of sentences defined

as follows:

We begin with a notation: for every operation symbol σ ∈ (F∪D)s1,...,sn→s, and every
variablesmi : si andm : s, we denote by σ=(m1, . . . ,mn,m) either the relational atom
σ(m1, . . . ,mn,m) if σ ∈ F , or the equational atom σ(m1, . . . ,mn) = m if σ ∈ D.

• for every basic pattern π ∈ (F ∪D)λ→s,

FOLm : s
Σ (π) = π=(m),

• for every basic pattern π = σ(t1, . . . , tn), with σ ∈ (F ∪D)s1,...,sn→s,

FOLm : s
Σ (π) = ∃m1 : s1 . . . ∃mn : sn.FOLm1 : s1

Σ (t1) ∧ . . . ∧ FOLmn : sn
Σ (tn)

∧ σ=(m1, . . . ,mn,m),

26

CHAPTER 3. MATCHING LOGIC

• for every pattern π = ¬π1,

FOLm : s
Σ (¬π1) = ¬FOLm : s

Σ (π1),

• for every pattern π = π1 ∧ π2,

FOLm : s
Σ (π1 ∧ π2) = FOLm : s

Σ (π1) ∧ FOLm : s
Σ (π2),

• for every pattern π = ∃x : t.π1, where π1 ∈ Sen[ML+(Σ] {x : t}) we have

FOLm : s
Σ (∃x : t.π1) = ∃x : t.ξΣ(FOLm : s

Σ]{x : t}(π1)),

where ξΣ is a FOL-signature morphism from Φ(Σ]{x : t})]{m : s} to Φ(Σ)]{m : s}]
{x : t} defined as the extension of 1Φ(Σ) that maps the matching-logic variable x : t
for the signature Σ to the first-order variable x : t for the signature Φ(Σ)] {m : s},
and the first-order variable m : s for the signature Φ(Σ] {x : t}) to the first-order
variable m : s but for the signature Φ(Σ) (see Remark 2 below).

Remark 2. We recall from the definitions of the institutions of matching and first-order
logic that from a technical point of view, variables are triples, consisting of name, sort, and
signature over which they are defined. Consequently, the signature morphism ξΣ maps
〈x, t,Σ〉 to 〈x, t,Φ(Σ)] 〈m, s,Φ(Σ)〉〉, and 〈m, s,Φ(Σ] x)〉 to 〈m, s,Φ(Σ)〉. Nonetheless,
whenever possible, we will choose the compact notations x : t and x : s, and specify the
logics and the signatures to which the variables correspond.

The naturality of α results from an analogous property for the family of maps FOLm : s
Σ .

Proposition 4. For every two [ML+ signatures Σ1, Σ2, every signature morphism
φ : Σ1 → Σ2, and every variable m : s for Σ1, the following diagram commutes.

κ−1
Σ1

(s) SenFOL(Φ(Σ1)] {m : s})

κ−1
Σ2

(φst(s)) SenFOL(Φ(Σ2)] {m :φst(s)})

FOLm : s
Σ1

Sen[ML+(φ)(_)

FOLm :φst(s)
Σ2

SenFOL(Φ(φ)m)

Proof. We prove the statement by induction on the structure of patterns, that is for every
pattern π ∈ κ−1

Σ1
(s),

FOLm :φst(s)
Σ2

(φ(π)) = Φ(φ)m(FOLm : s
Σ1 (π)).

To this purpose, let us first recall that Φ(φ)m is the canonical extension of the first-
order signature morphism Φ(φ) that maps the Φ(Σ1) variable m : s to the Φ(Σ2) variable
m :φst(s).

27

CHAPTER 3. MATCHING LOGIC

• For basic patterns π ∈ (F ∪D)λ→s

FOLm :φst(s)
Σ2

(φ(π)) = FOLm :φst(s)
Σ2

(φop(π)) = φop(π)=(m)

and
Φ(φ)m(FOLm : s

Σ1 (π)) = Φ(φ)m(π=(m)) = φop(π)=(m).

• For basic patterns π = σ(t1, . . . , tn) ∈ (F ∪D)s1...sn→s

FOLm :φst(s)
Σ2

(φ(π)) = FOLm :φst(s)
Σ2

(φop(σ)(φtm(t1) . . . φtm(tn)))
= ∃m1 :φst(s1) . . . ∃mn :φst(sn).φop(σ)=(m1, . . . ,mn,m)

∧ FOLm :φst(s)
Σ2

(φtm(t1)) ∧ . . . ∧ FOLm :φst(s)
Σ2

(φtm(tn))

and

Φ(φ)m(FOLm : s
Σ1 (π)) = Φ(φ)m(∃m1 : s1 . . . ∃mn : sn.σ=(m1, . . . ,mn,m)

∧ FOLm : s
Σ1 (t1) ∧ . . . ∧ FOLm : s

Σ1 (tn))
= ∃m1 :φst(s1) . . . ∃mn :φst(sn).φop(σ)=(m1, . . . ,mn,m)
∧ Φ(φ)m(FOLm : s

Σ1 (t1)) ∧ . . . ∧ Φ(φ)m(FOLm : s
Σ1 (tn)).

The conclusion follows since from the induction hypothesis FOLm :φst(s)
Σ2

(φ(ti)) =
Φ(φ)m(FOLm : s

Σ1 (ti)), for i = 1, n,.

• For every pattern π = ¬π1

FOLm :φst(s)
Σ2

(φ(¬π1)) = FOLm :φst(s)
Σ2

(¬φ(π1)) = ¬FOLm :φst(s)
Σ2

(φ(π1))

and

Φ(φ)m(FOLm : s
Σ1 (¬π1)) = Φ(φ)m(¬FOLm : s

Σ1 (π1)) = ¬Φ(φ)m(FOLm : s
Σ1 (π1)).

The conclusion follows since from the induction hypothesis FOLm :φst(s)
Σ2

(φ(π1)) =
Φ(φ)m(FOLm : s

Σ1 (π1)).

• For every pattern π = π1 ∧ π2

FOLm :φst(s)
Σ2

(φ(π1 ∧ π2)) = FOLm :φst(s)
Σ2

(φ(π1) ∧ φ(π2))

= FOLm :φst(s)
Σ2

(φ(π1)) ∧ FOLm :φst(s)
Σ2

(φ(π2))

and

Φ(φ)m(FOLm : s
Σ1 (π1 ∧ π2)) = Φ(φ)m(FOLm : s

Σ1 (π1) ∧ FOLm : s
Σ1 (π2))

= Φ(φ)m(FOLm : s
Σ1 (π1)) ∧ Φ(φ)m(FOLm : s

Σ1 (π2)).

28

CHAPTER 3. MATCHING LOGIC

The conclusion follows since from the induction hypothesis FOLm :φst(s)
Σ2

(φ(πi)) =
Φ(φ)m(FOLm : s

Σ1 (πi)), for i ∈ {1, 2}.

• For every pattern π = ∃x : t.π1, where π1 ∈ Sen[ML(Σ1] {x : t})

FOLm :φst(s)
Σ2

(φ(∃x : t.π1)) = FOLm :φst(s)
Σ2

(∃x :φst(t).φx(π1))

= ∃x :φst(t).ξΣ2(FOLm :φst(s)
Σ2]{x :φst(t)}(φ

x(π1)))

and

Φ(φ)m(FOLm : s
Σ1 (∃x : t.π1)) = Φ(φ)m(∃x : t.ξΣ1(FOLm : s

Σ1]{x : t}(π1)))

= ∃x :φst(t).(Φ(φ)m)x(ξΣ1(FOLm : s
Σ1]{x : t}(π1)))

From the induction hypothesis we have

FOLm :φst(s)
Σ2]{x :φst(t)}(φ

x(π1)) = (Φ(φ)x)m(FOLm : s
Σ1]{x : t}(π1)),

which, combined with the commutativity of the diagram below, yields

FOLm :φst(s)
Σ2

(φ(∃x : t.π1)) = ∃x :φst(t).ξΣ2((Φ(φ)x)m(FOLm : s
Σ1]{x : t}(π1)))

= ∃x :φst(t).(Φ(φ)m)x(ξΣ1(FOLm : s
Σ1]{x : t}(π1)))

= Φ(φ)m(FOLm : s
Σ1 (∃x : t.π1)).

Φ(Σ1] {x : t})] {m : s} Φ(Σ1)] {m : s}] {x : t}

Φ(Σ2] {x :φst(t)})] {m :φst(s)} Φ(Σ2)] {m :φst(s)}] {x :φst(t)}

ξΣ1

(Φ(φx))m

ξΣ2

((Φ(φ))m)x

It is now straightforward to prove the naturality of α.

Proposition 5. α : Sen[ML+ ⇒ Φ ; SenFOL is a natural transformation.

Proof. We have to show that the following diagram commutes for every two [ML+ signa-
tures Σ1, Σ2, and every signature morphism φ : Σ1 → Σ2.

29

CHAPTER 3. MATCHING LOGIC

Sen[ML+(Σ1) SenFOL(Φ(Σ1))

Sen[ML+(Σ2) SenFOL(Φ(Σ2))

αΣ1

Sen[ML+(φ)

αΣ2

SenFOL(Φ(φ))

For every pattern π ∈ Sen[ML+(Σ1),

αΣ2(φ(π)) = ∀m :φst(s).FOLm :φst(s)
Σ2

(φ(π)),

where s = κΣ1(π). On the other hand,

Φ(φ)(αΣ1(π)) = Φ(φ)(∀m : s.FOLm : s
Σ1 (π)) = ∀m :φst(s).Φ(φ)(FOLm : s

Σ1 (π)).

We recall that the equality

FOLm :φst(s)
Σ2

(φ(π)) = Φ(φ)(FOLm : s
Σ1 (π))

is guaranteed by Proposition 4.

Satisfaction condition. We conclude our presentation by showing that the definitions
of the components of the comorphism given above guarantee that the satisfaction condition
holds.

Proposition 6. For every [ML+ signature Σ, every first-order structure M for Φ(Σ),
and every Σ-pattern π of sort s,

M |=FOL
Φ(Σ) αΣ(π) iff βΣ(M) |=[ML+

Σ π.

Proof. We rewrite the left-hand side of the equivalence as

M |=FOL αΣ(π) iff M |=FOL ∀m : s.FOLm : s
Σ (π)

iff MFOLm : s
Σ (π) = Ms

and the right-hand side as

βΣ(M) |=[ML+
π iff βΣ(M)π = βΣ(M)s = Ms.

In order to show that the satisfaction condition holds it thus suffices to prove the equality
MFOLm : s

Σ (π) = βΣ(M)π, which is discussed below, in Proposition 7.

Proposition 7. For every [ML+ signature Σ, every first-order structure M for Φ(Σ),
and every Σ-pattern π of sort s,

MFOLm : s
Σ (π) = βΣ(M)π.

30

CHAPTER 3. MATCHING LOGIC

Proof. We prove the property by induction on the structure of π:

• For basic patterns π ∈ Fλ→s

MFOLm : s
Σ (π) = {m ∈Ms | (M,m) |= π(m)} = Mπ

and
βΣ(M)π = Mπ.

• For basic patterns π = σ(t1, . . . , tn) ∈ Fs1...sn→s

MFOLm : s
Σ (π)

= {m ∈Ms | (M,m) |= ∃x1 : s1 . . . ∃xn : sn.σ(x1, . . . , xn,m)
∧ FOLx1 : s1

Σ (t1) ∧ . . . ∧ FOLxn : sn
Σ (tn)}

= {m ∈Ms | there exist mi ∈Msi , for i = 1, n, such that
(M,m,m1, . . . ,mn) |= σ(x1, . . . , xn,m)
∧ FOLx1 : s1

Σ (t1) ∧ . . . ∧ FOLxn : sn
Σ (tn)}

= {m ∈Ms | there exist mi ∈Msi , for i = 1, n, such that
(M,m,mi) |= FOLxi : si

Σ (ti), and
(M,m,m1, . . . ,mn) |= σ(x1, . . . , xn,m)}

= {m ∈Ms | there exist mi ∈Msi , for i = 1, n, such that mi ∈MFOLxi : si
Σ (ti),

for i = 1, n, and (m1, . . . ,mn,m) ∈Mσ}
= {m ∈Ms | there exist mi ∈MFOLxi : si

Σ (ti), for i = 1, n,

and (m1, . . . ,mn,m) ∈Mσ}

and

βΣ(M)π
=

⋃
{βΣ(M)σ(m1, . . . ,mn) | mi ∈ βΣ(M)ti , for i = 1, n}

= {m ∈ βΣ(M)s | there exist mi ∈ βΣ(M)ti , for i = 1, n,
s.t. (m1, . . . ,mn,m) ∈Mσ}

= {m ∈Ms | there exist mi ∈ βΣ(M)ti , for i = 1, n,
s.t. (m1, . . . ,mn,m) ∈Mσ}.

The result follows from the induction hypothesis, as

MFOLxi : si
Σ (ti) = βΣ(M)ti .

• For every pattern π ∈ Dλ→s or π = σ(t1, . . . , tn) ∈ Ds1...sn→s we proceed similarly
to the above two items.

31

CHAPTER 3. MATCHING LOGIC

• For every pattern π = ¬π1

MFOLm : s
Σ (π) = {m ∈Ms | (M,m) |= ¬FOLm : s

Σ (π1)}
= {m ∈Ms | (M,m) 6|= FOLm : s

Σ (π1)}
= {m ∈Ms | m 6∈MFOLm : s

Σ (π1)}

and

βΣ(M)π = βΣ(M)s \ βΣ(M)π1
= Ms \ βΣ(M)π1

.

The result follows from the induction hypothesis, as

MFOLm : s
Σ (π1) = βΣ(M)π1 .

• For every pattern π = π1 ∧ π2

MFOLm : s
Σ (π) = {m ∈Ms | (M,m) |= FOLm : s

Σ (π1 ∧ π2)}
= {m ∈Ms | (M,m) |= FOLm : s

Σ (π1) ∧ FOLm : s
Σ (π2)}

= {m ∈Ms | (M,m) |= FOLm : s
Σ (π1) and

(M,m) |= FOLm : s
Σ (π2)}

= {m ∈Ms | m ∈MFOLm : s
Σ (π1) and m ∈MFOLm : s

Σ (π2)}

and

βΣ(M)π = βΣ1(M)π1
∩ βΣ1(M)π2

.

The result follows from the induction hypothesis, as

MFOLm : s
Σ (πi) = βΣ(M)πi , for i ∈ {1, 2}.

• For every pattern π = ∃x : t.π1, where π1 ∈ Sen[ML(Σ1] {x : t})

MFOLm : s
Σ (π) = {m ∈Ms | (M,m) |= ∃x : t.ξΣ(FOLm : s

Σ]{x : t}(π1))}

= {m ∈Ms | exists n ∈Mt s.t. (M,m,n) |= ξΣ(FOLm : s
Σ]{x : t}(π1))}

= {m ∈Ms | exists n ∈Mt s.t. (M,m,n)�ξΣ |= FOLm : s
Σ]{x : t}(π1)}

= {m ∈Ms | exists n ∈Mt s.t. m ∈ (M,n)FOLm : s
Σ]{x : t}(π1)},

where (M,n) = (M,m,n)�ξΣ�Φ(Σ)]{x : t}

32

CHAPTER 3. MATCHING LOGIC

and

βΣ(M)π =
⋃
{(βΣ(M), n)π1 | n ∈ βΣ(M)t}

= {m ∈ (βΣ(M), n)s | exists n ∈ βΣ(M)t s.t. m ∈ (βΣ(M), n)π1}
= {m ∈Ms | exists n ∈Mt, s.t. m ∈ βΣ]{x : t}(M,n)

π1
}.

The result follows from the induction hypothesis, as

(M,n)FOLm : s
Σ]{x : t}(π1) = βΣ]{x : t}(M,n)π1 .

33

4 Reachability Logic

In order to capture reachability logic [20] as an institution, we first define an abstract,
parameterised institution over an arbitrary stratified institution with classes, which nec-
essarily has to enjoy properties such as the existence of a quantification space, model
amalgamation, and preservation of pushouts by the class functor. We then obtain the
concrete version of reachability logic that underlies the K framework by instantiating the
parameter of the abstract version with ML+, the stratified institution with classes of
matching logic, which we show to satisfy the desired properties.

4.1 Abstract Reachability Logic

We formalise reachability logic in two steps: we begin by describing a sub-institution
of reachability logic whose sentences are all atomic (reachability atoms), and we subse-
quently extend it by adding logical connectives and quantifiers through a general universal-
quantification construction.
To define atomic abstract reachability logic we first describe it as a pre-institution [21]

whose construction is based upon a stratified institution with classes. This amounts to
defining the same elements as those comprised by an institution – a category of signatures,
sentence and model functors, as well as a satisfaction relation between sentences and
models – but without imposing the requirement of the satisfaction condition.
Throughout this section we assume an arbitrary, but fixed stratified institution with

classes M = (SigM,ClsM,SenM,ModM, J_KM, |=M). This serves as a parameter for all the
constructions considered below.

Signatures. The category of signatures of atomic abstract reachability logic, denoted
by SigARL(M), is the same as the category of signatures of M.

Sentences. For every signature Σ, SenARL(M)(Σ) is the set of pairs of sentences of the
stratified institution with classes, denoted by π1 ⇒ π2, where π1, π2 ∈ SenM(Σ). The
translation of such a sentence π1 ⇒ π2 along a signature morphism φ : Σ → Σ′ is defined
as the pair of its translated components according to SenM(φ):

SenARL(M)(φ)(π1 ⇒ π2) = SenM(φ)(π1)⇒ SenM(φ)(π2).

Example. If we instantiate the parameter M with the stratified institution with classes
ML+, the sentences of ARL(ML+) will only capture atomic K semantic rules, i.e. without
quantification and side conditions. This means we could only express atomic rules in the

34

CHAPTER 4. REACHABILITY LOGIC

specification of the simple imperative programming language IMP, like rule ! true =>
notBool true. The quantifiers and boolean conditions will be introduced later in this sec-
tion, through a general construction.

Models. The reachability models of a signature Σ, given by the functor ModARL(M),
are pairs (M,), of Σ-models M of the underlying stratified institution with classes, and
families of preorders c ⊆ JMKΣ,c × JMKΣ,c indexed by the classes of the signature. The
model homomorphisms h : (M1, 1) → (M2, 2) are defined as the morphisms between
the M-models M1 and M2 that preserve the preorders: for every c ∈ Cls(Σ), the function
JhKΣ,c from (JM1KΣ,c, 1) to (JM2KΣ,c, 2) is monotone. This allows ModARL(M)(Σ) to
inherit the identities and the composition of model homomorphisms of ModM(Σ).
For every two signatures Σ,Σ′, and every signature morphism φ : Σ → Σ′, the model

reduct ModARL(M)(φ) : ModARL(M)(Σ)→ ModARL(M)(Σ′) is defined as

• for every Σ′ model (M ′, ′), ModARL(M)(φ)(M ′, ′) = (ModM(φ)(M ′),), where
 c⊆ JM ′�φKΣ,c × JM ′�φKΣ,c is the reflexive and transitive closure of JM ′Kφ,c(′φ(c)),
which will be further denoted by →c,

• for every two Σ′ models M ′1,M ′2, and every model homomorphism h′ : (M ′1, ′1) →
(M ′2, ′2), ModARL(M)(φ)(h′) is simply ModM(φ)(h′).

Proposition 8. For every signature morphism φ : Σ → Σ′, the map ModARL(M)(φ) is
well-defined.

Proof. We have to show that for every two Σ′-models (M ′1, ′1), (M ′2, ′2), every model
homomorphism h′ : (M ′1, ′1) → (M ′2, ′2), and every class c ∈ Cls(Σ), the function
Jh′�φKΣ,c : JM ′1�φKΣ,c → JM ′2�φKΣ,c is monotone. Therefore, for every m,n ∈ JM ′1�φKΣ,c,
such that m 1,c n, we need to show that Jh′�φKΣ,c(m) 2,c Jh′�φKΣ,c(n), where 1,c and
 2,c are the preorders resulting from the reduction of (M ′1, ′1) and (M ′2, ′2) along φ.
From m 1,c n we deduce that there exist x0, . . . , xk ∈ JM ′1�φKΣ,c such that m =

x0 →1,c x1 →1,c . . . →1,c xk = n. From the definition of →1,c results that there ex-
ist u0, . . . , uk−1, v1, . . . , vk ∈ JM ′1KΣ′,φ(c) such that JM ′1Kφ,c(ui) = JM ′1Kφ,c(vi) = xi and
ui ′1,φ(c) vi+1, for i = 1, k. As Jh′KΣ′,φ(c) : (JM ′1KΣ′,φ(c),

′
1,φ(c))→ (JM ′2KΣ′,φ(c),

′
2φ(c)) is

monotone, we deduce that Jh′KΣ′,φ(c)(ui) ′2,φ(c) Jh′KΣ′,φ(c)(vi+1), for i = 1, k. From the
definition of →2,c it follows that JM ′2Kφ,c(Jh′KΣ′,φ(c)(ui)) →2,c JM ′2Kφ,c(Jh′KΣ′,φ(c)(vi+1)),
and thus, from the commutativity of the diagram below, Jh′1�φKΣ,c(JM ′1Kφ,c(ui)) →2,c
Jh′1�φKΣ,c(JM ′1Kφ,c(vi+1)), for i = 1, k. We now have Jh′1�φKΣ,c(xi) →2,c Jh′1�φKΣ,c(xi+1),
for i = 1, k and hence Jh′�φKΣ,c(m) = Jh′�φKΣ,c(x0) 2,c Jh′�φKΣ,c(xk) = Jh′�φKΣ,c(n).

35

CHAPTER 4. REACHABILITY LOGIC

JM ′1KΣ′,φ(c) JM ′1�φKΣ,c

JM ′2KΣ′,φ(c) JM ′2�φKΣ,c

JM ′1Kφ,c

Jh′KΣ′,φ(c)

JM ′2Kφ,c

Jh′�φKΣ,c

Proposition 9. ModARL(M) is a functor.

Proof. It can be easily observed that ModARL(M) inherits from ModM most of the proper-
ties needed to ensure that it is a functor. The only situation that requires special attention
is the preservation of the composition of signature morphisms, and even in this case, it
suffices to consider the reduction of models. We need to make sure that for every three
signatures Σ, Σ′, and Σ′′, every signature morphisms φ : Σ→ Σ′, φ′ : Σ′ → Σ′′, and every
Σ′′-model (M ′′, ′′), the models ((M ′′, ′′)�φ′)�φ and (M ′′, ′′)�φ;φ′ are equal. Since the
equality (M ′′�φ′)�φ = M ′′�φ;φ′ of their underlying M models is assured by the functoriality
of ModM, we only have to focus on the equality of their corresponding preorders. This
means that we need to compare, for every class c ∈ Cls(Σ),

JM ′′�φ′Kφ,c(JM ′′Kφ′,φ(c)(′′φ′(φ(c)))∗)∗ and JM ′′Kφ;φ′,c(′′φ′(φ(c)))∗.

From the functoriality of the stratification (see Remark 1) we know that

JM ′′Kφ;φ′,c(′′φ′(φ(c))) = JM ′′�φ′Kφ,c(JM ′′Kφ′,φ(c)(′′φ′(φ(c)))),

therefore we need to compare

JM ′′�φ′Kφ,c(JM ′′Kφ′,φ(c)(′′φ′(φ(c)))︸ ︷︷ ︸
R

∗)∗ and JM ′′�φ′Kφ,c(JM ′′Kφ′,φ(c)(′′φ′(φ(c)))︸ ︷︷ ︸
R

)∗.

The conclusion now follows from a well-known property of reflexive and transitive closures:
for any function f : A→ B (in this case JM ′′�φ′Kφ,c from JM ′′�φ′KΣ′,φ(c) to J(M ′′�φ′)�φKΣ,c),
and any relation R ⊆ A × A, f(R∗) ⊆ f(R)∗. This entails that f(R∗)∗ ⊆ f(R)∗. The
inclusion f(R)∗ ⊆ f(R∗)∗ holds for any closure operators.

Satisfaction relation. The satisfaction relation between any model (M,) and any
sentence π1 ⇒ π2 is defined as follows: (M,) |=ARL(M)

Σ π1 ⇒ π2 iff for every m ∈ JMKΣ,c
such that M(|=M)mΣ,cπ1, there exists n ∈ JMKΣ,c such that M(|=M)nΣ,cπ2, and m c n.

Corollary 1. The tuple ARL(M) = (SigARL(M),SenARL(M),ModARL(M), |=ARL(M)) is a
pre-institution.

36

CHAPTER 4. REACHABILITY LOGIC

We now focus on proving the satisfaction condition, showing that the direct implication
of the equivalence holds unconditionally.

Proposition 10. For every signature morphism φ : Σ→ Σ′, every class c ∈ Cls(Σ), every
model (M ′, ′) ∈ |ModARL(M)(Σ′)|, and every sentence π1 ⇒ π2,

(M ′, ′) |=ARL(M)
Σ′) φ(π1 ⇒ π2) implies (M ′, ′)�φ |=

ARL(M)
Σ π1 ⇒ π2.

Proof. Let c be the class of π1 and π2, and m ∈ JM ′�φKΣ,c such that M ′�φ(|=M)mΣ,cπ1. We
have to show that there exists n ∈ JM ′�φKΣ,c, such that M ′�φ(|=M)nΣ,cπ2 and m c n.
From the surjectivity of JM ′Kφ,c, there exists m′ ∈ JM ′KΣ′,φ(c) such that JM ′Kφ,c(m′) = m,

and thus M ′�φ(|=M)JM ′Kφ,c(m′)
Σ,c π1. From the satisfaction condition in M it follows that

M ′(|=M)m′

Σ′,φ(c)φ(π1). According to the hypothesis, (M ′, ′) |=ARL(M)
Σ′ φ(π1) ⇒ φ(π2),

and hence, from the definition of the satisfaction relation of ARL(M), there exists n′ ∈
JM ′KΣ′,φ(c) such that M ′(|=M)n′

Σ′,φ(c)φ(π2) and m′ ′φ(c) n
′. By applying once more the

satisfaction condition in M, we haveM ′�φ(|=M)
JM ′Kφ(c)(n′)
Σ,c π2. By choosing n = JM ′Kφ,c(n′),

from the fact that m′ ′φ(c) n
′, we obtain m→c n, and thus m c n.

The converse of Proposition 10 holds if the stratification of the underlying institution
of ARL(M) satisfies a property similar to that of lifting relations from [7, Chapter 9].

Proposition 11. If in ARL(M), for every signature morphism φ : Σ → Σ′, every class
c ∈ Cls(Σ), every Σ′-model (M ′, ′), and every states m′ ∈ JM ′KΣ′,φ(c) and n ∈ JM ′�φKΣ,c
such that JM ′Kφ,c(m′) c n, there exists n′ ∈ JM ′KΣ′,φ(c) such that m′ ′φ(c) n

′ and
JM ′Kφ,c(n′) = n, then

(M ′, ′)�φ |=
ARL(M)
Σ π1 ⇒ π2 implies (M ′, ′) |=ARL(M)

Σ′ φ(π1 ⇒ π2),

for every sentence π1 ⇒ π2.

Proof. Let c be the class of π1 and π2, and m′ ∈ JM ′KΣ′,φ(c) such thatM ′(|=M)m′

Σ′,φ(c)φ(π1).
We have to prove that there exists n′ ∈ JM ′KΣ′,φ(c), such that M ′(|=M)n′

Σ′,φ(c)φ(π2) and

m′ ′φ(c) n
′. From the satisfaction condition in M, we have M ′�φ(|=M)JM ′Kφ,c(m′)

Σ,c π1. As
(M ′, ′) |=ARL(M)

Σ π1 ⇒ π2 and M ′�φ(|=M)mΣ,cπ1 for m = JM ′Kφ,c(m′), we deduce that
there exists n ∈ JM ′�φKΣ,c such that M ′�φ(|=M)nΣ,cπ2 and m n. From the surjectivity
of JM ′KΣ′,φ(c) it follows that there exists n′ ∈ JM ′KΣ′,φ(c) such that JM ′Kφ,c(n′) = n, and

hence M ′�φ(|=M)JM ′Kφ,c(n′)
Σ,c π2. By applying the satisfaction condition in M we obtain that

M ′(|=M)n′

Σ′,φ(c)φ(π2).

Corollary 2. If the stratified institution with classes M satisfies the hypothesis of Propo-
sition 11, then ARL(M) is an institution.

Remark 3. In most concrete examples of stratified institutions with classes the natu-
ral transformations JM ′Kφ,c of the stratification are bijective, or even identities (see for

37

CHAPTER 4. REACHABILITY LOGIC

example the definitions of ML+ and CTL). Therefore, the hypothesis of Proposition 11
is usually satisfied, entailing that ARL(M) is an institution. However, we note that the
aforementioned hypothesis does not imply the injectivity (and bijectivity) of the maps
JM ′Kφ,c. Even though by requiring these maps to be bijective we are imposing more re-
strictive conditions than what would be necessary to insure that ARL(M) is an institution,
we still choose to do so from now on because the property is satisfied in all of our examples
and it brings significant technical advantages in the developments that follow.

We have hitherto defined only an atomic fragment of the desired institution of abstract
reachability logic. To describe the construction of the institution with universally quan-
tified Horn-clause sentences over the atomic sentences of ARL(M), we use the notion of
quantification space originating from [8].

Definition 7. For any category Sig a class of arrows D ⊆ Sig is called a quantification
space if, for any χ : Σ→ Σ′ ∈ D and ϕ : Σ→ Σ1 there exists a designated pushout

Σ Σ1

Σ′ Σ′1

ϕ

χ χ(ϕ)

ϕ[χ]

with χ(ϕ) ∈ D and such that the horizontal composition of these designated pushouts is
also a designated pushout, i.e. for the pushouts in the diagram below

Σ Σ1

Σ′ Σ′1

Σ2

Σ′1

ϕ θ

χ χ(ϕ) χ(ϕ)(θ)

ϕ[χ] θ[χ(ϕ)]

ϕ[χ] ; θ[χ(ϕ)] = (ϕ ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ ; θ), and such that χ(1Σ) = χ and 1Σ[χ] =
1Σ′ . A quantification space D for Sig is adequate for a functor Mod: Sigop → Cat when
the aforementioned designated pushouts are weak amalgamation squares for Mod. A
quantification space D for Sig is called adequate for an institution if it is adequate for its
model functor.

Proposition 12. For any institution I with an adequate quantification space D, the
following data defines an institution, called the institution of universally D-quantified
Horn clauses over I, and denoted HCL(I):

• SigHCL(I) = SigI,

• ModHCL(I) = ModI,

38

CHAPTER 4. REACHABILITY LOGIC

• SenHCL(I)(Σ) = {∀χ.ρ′1 ∧ . . .∧ ρ′n → ρ′ | (χ : Σ→ Σ′) ∈ D and ρ′i, ρ′ ∈ SenI(Σ′)}, for
every signature Σ,

• SenHCL(I)(ϕ)(∀χ.ρ′1∧ . . .∧ρ′n → ρ′) = ∀χ(ϕ).SenI(ϕ[χ])(ρ′1)∧ . . .∧SenI(ϕ[χ])(ρ′n)→
SenI(ϕ[χ])(ρ′), for every signature morphism ϕ : Σ→ Σ1,

• M |=HCL(I)
Σ ∀χ.ρ′1 ∧ . . . ∧ ρ′n → ρ′ iff for all χ-expansions M ′ of M , M ′ |=I

Σ′ ρ′

whenever M ′ |=I
Σ′ ρ′i, for i = 1, n.

In order to build an institution of universally quantified sentences over ARL(M) as
described in Proposition 12, we need to ensure that ARL(M) satisfies its hypothesis.
This cannot be guaranteed in general, because M is abstract. Nevertheless, we can obtain
an appropriate set of hypotheses for the underlying stratified institution M that allow us
to apply Proposition 12:

• the existence of a quantification space for ARL(M) is guaranteed by the existence
of a quantification space for M, as the categories SigARL(M) and SigM are equal,

• that fact that ARL(M) has weak model amalgamation follows from the weak model
amalgamation property of M (see Definition 8 below) and the preservation of pushouts
by the class functor of M (see Proposition 13 below).

Definition 8. A stratified institution with classes M has (weak) model amalgamation
whenever its corresponding institution [M has this property.

Proposition 13. For any stratified institution with classes M having (weak) model amal-
gamation, if its Cls functor preserves pushouts, ARL(M) has (weak) model amalgamation.

Proof. Consider the following pushout square in SigARL(M), i.e. in SigM.

Σ Σ1

Σ2 Σ′

ϕ1

ϕ2 θ1

θ2

We have to show that for each Σ1-model (M1, 1) and Σ2-model (M2, 2) such that
ModARL(M)(ϕ1)(M1, 1) = ModARL(M)(ϕ2)(M2, 2), there exists a Σ′-model (M ′, ′)
so that ModARL(M)(θ1)(M ′, ′) = (M1, 1) and ModARL(M)(θ2)(M ′, ′) = (M2, 2).
From the definition of the model reduct in ARL(M) and from the hypothesis that M

has (weak) model amalgamation it follows that there exists a Σ′-model M ′ in M such
that ModM(θ1)(M ′) = M1 and ModM(θ2)(M ′) = M2. Therefore, we only need to focus
on the preorders that need to be defined over the stratifications of M in order to obtain
an ARL(M) model. This means that we need to define a family of preorders ′ on the
stratifications of M ′ based on 1 and 2.
Consider a class c′ ∈ Cls(Σ′). Since Cls preserves pushouts we deduce that there exists a

class ci ∈ Cls(Σi), for some i ∈ {1, 2}, such that θi(ci) = c′. We recall that, by hypothesis,

39

CHAPTER 4. REACHABILITY LOGIC

the function JM ′Kθi,ci is bijective. This allows us to define ′c′ = JM ′K−1
θi,ci

(ici). Note
that this relation is well-defined. First of all, it is a preorder. And if c′ = θ1(c1) = θ2(c2),
there exists c ∈ Cls(Σ) such that c1 = ϕ1(c), c2 = ϕ2(c); since (M1, 1) and (M2, 2) have
the same Σ reduct it follows that 1c1 = JM1K−1

ϕ1,c
(c), 2c2 = JM2K−1

ϕ2,c
(c). Therefore,

JM ′K−1
θ1,c1

(1c1) = JM ′K−1
θ2,c2

(2c2). We have thus obtained a Σ′-model (M ′, ′) that is
obviously a Σ′-expansion of (M1, 1) and (M2, 2). Moreover, (M ′, ′) is unique with
this property if M′ is the unique Σ′-expansion of M1 and M2 in M.

Corollary 3. For any stratified institution with classes M having an adequate quantifi-
cation space and a pushout preserving class functor, HCL(ARL(M)) is an institution.

4.2 Defining Reachability over Matching Logic

In order to capture reachability logic in its original, concrete form, we must instantiate the
parameter of the institution HCL(ARL(M)) defined above, with the stratified institution
ML+. To this end, we first prove that by adding variables as deterministic constants
to the signatures of ML+ we obtain a quantification space. Furthermore, to show that
the quantification space is adequate, we use the property of model amalgamation of the
comorphism (Φ, α, β) between [ML+ and FOL defined in Section 3.3.

Proposition 14. ML+ has pushouts of signatures. Moreover, its class functor preserves
pushouts.

Proof (sketch). We recall that the signatures of ML+ are tuples (S, F,D), where (S, F),
and (S,D) are algebraic signatures such that Fw→s ∩ Dw→s = ∅. Let ϕ1 : (S, F,D) →
(S1, F1, D1), and ϕ2 : (S, F,D) → (S2, F2, D2) be two signature morphisms in SigML+ .
They determine two pairs of morphisms of algebraic signatures, ϕFi : (S, F) → (Si, Fi),
ϕDi : (S,D) → (Si, Di), for i ∈ {1, 2}, that agree on sorts – the signatures have the
same sorts, and the morphisms are defined in the same way on sorts: (ϕFi)st = (ϕDi)st.
According to the construction of pushouts of algebraic signatures, we can choose the
pushouts (θF1 , θF2), and (θD1 , θD2) of (ϕF1 , ϕF2), and (ϕD1 , ϕD2) respectively,

(S, F) (S1, F1)

(S2, F2) (S′, F ′)

(S,D) (S1, D1)

(S2, D2) (S′, D′)

ϕF1

ϕF2 θF1

θF2

ϕD1

ϕD2 θD1

θD2

such that (θFi)st = (θDi)st; this follows from the fact that pushouts can be first built on
sorts. Moreover, the families F ′, D′ of sets of operation symbols can be chosen such that
F ′w′→s′∩D′w′→s′ = ∅, for each w′ ∈ S′∗, s′ ∈ S′. In this way, the category of ML+ signatures
inherits the pushouts of algebraic signatures. In addition, Cls preserves pushouts because
the forgetful functor from the category of algebraic signatures to Set that maps every
signature to its set of sorts preserves pushouts.

40

CHAPTER 4. REACHABILITY LOGIC

Example. Let us consider the K definition of the IMP programming language. By split-
ting the syntax module into three modules, AExp, BExp and IMP-SYNTAX importing
the two expressions modules, we have an immediate and natural example of a pushout of
signatures: as both the AExp and BExp modules import the BUILT-IN module contain-
ing the built-in sorts and corresponding operations of K, we need to construct the pushout
of their signatures in order to obtain the signature of the module IMP-SYNTAX.

BUILT-INSig AExpSig

BExpSig IMP-SYNTAXSig

⊆

⊆ ⊆

⊆

Proposition 15. In ML+, the family of extensions with deterministic constants forms a
quantification space.

Proof. Since we know that the signature extensions with a finite set of variables form
a quantification space in the case of the institution of total algebras [8], we can easily
conclude that the ML+ signature extensions χ : (S, F,D) ↪→ (S, F,D]{x : s}) constitute a
quantification space for SigML+ : for any signature morphism ϕ : (S, F,D)→ (S1, F1, D1),

• the inclusions χ(ϕ) : (S1, F1, D1) ↪→ (S1, F1, D1] {x :ϕst(s)}) and

• the canonical extensions ϕ[χ] of ϕ that map the variable x : s to x :ϕst(s)

define a pushout square satisfying the properties of Definition 7.

The following definition originates from [5].

Definition 9. An institution comorphism (Φ, α, β) : I→ I′ has weak model amalgamation
if for every I-signature morphism ϕ : Σ → Σ′, every Σ′-model M ′, and every Φ(Σ)-model
N such that βΣ(N) = M ′�ϕ, there exists a Φ(Σ′)-model N ′ such that βΣ′(N ′) = M ′ and
N ′�Φ(ϕ) = N . We say that (Φ, α, β) : I→ I′ has model amalgamation when N ′ is required
to be unique.

Proposition 16. ML+ has model amalgamation.

Proof. Let us first note that the comorphism (Φ, α, β) between the institution [ML+

and FOL defined in the previous section has model amalgamation. This property holds
trivially since the model reduction functors βΣ are isomorphisms of categories, for every
signature Σ. As the institution of FOL also has model amalgamation, we can use a
general result of institution theory to deduce that [ML+, and implicitly ML+, has model
amalgamation.

Corollary 4. HCL(ARL(ML+)) is an institution.

Example. We can now rewrite the K definition of our imperative programming language
IMP into a specification over HCL(ARL(ML+)) using a HetCasl-like syntax.

41

CHAPTER 4. REACHABILITY LOGIC

Listing 4.1: The IMP programming language (HetCasl)
spec IMP_SYNTAX =

BUILT_IN and LIST[sort Id] then
free type AExp ::= sort Int | sort Id

| __/__(AExp, AExp)
| __+__(AExp, AExp)
| (__)(AExp)

free type BExp ::= sort Bool
| __≤__(AExp, AExp)
| !__(BExp)
| __&&__(BExp, BExp)
| (__)(BExp)

free types Block ::= {} | {__}(Stmt);
Stmt ::= sort Block

| __=__;(Id, AExp)
| if (__)__else__(BExp, Block, Block)
| while(__)__(BExp, Block)
| ____(Stmt, Stmt)

free types Pgm ::= int__;__(Ids, Stmt);
Ids ::= sort List [Id]

end

spec IMP =
IMP_SYNTAX then
free type KResult ::= sort Int | sort Bool
free types K ::= 〈k〉__〈/k〉(Pgm);

State ::= 〈state〉__〈/state〉(Map);
T ::= 〈t〉__ __〈/t〉(K, State)

% AExp
∀ X:Id; I : Int
• 〈t〉 〈k〉 X ···〈/k〉 〈state〉··· X 7→ I ···〈/state〉 〈/t〉
⇒
〈t〉 〈k〉 I ···〈/k〉 〈state〉··· X 7→ I ···〈/state〉 〈/t〉
∀ I1, I2 : Int
• I2 6=Int 0 → (I1 / I2) ⇒ (I1 /Int I2)
∀ I1, I2 : Int
• I1 + I2 ⇒ I1 +Int I2

% BExp
∀ I1, I2 : Int
• I1 ≤ I2 ⇒ I1 ≤ Int I2
∀ T:Bool
• ! T ⇒ notBoolT
∀ B:Bool
• true && B ⇒B
∀ B:Bool
• false && B ⇒ false

42

CHAPTER 4. REACHABILITY LOGIC

% Block
• {} ⇒ .
∀ S:Stmt
• {S} ⇒ S

% Stmt
∀ X:Id; I , J:Int
• 〈t〉 〈k〉 X = I; ···〈/k〉 〈state〉··· X 7→ J ···〈/state〉 〈/t〉
⇒
〈t〉 〈k〉 . ···〈/k〉 〈state〉··· X 7→ I ···〈/state〉 〈/t〉
∀ S1, S2:Stmt
• S1 S2 ⇒ S1 ∼> S2
∀ S1, S2:Block
• if (true) S1 else S2 ⇒ S1
∀ S1, S2:Block
• if (false) S1 else S2 ⇒ S2
∀ S:Block; B:BExp
• while (B) S ⇒ if (B) {S while (B) S} else {}

% Pgm
∀ X:Id; Xs:Ids; Rho:Map
• notBool(X in keys(Rho)) →
〈t〉 〈k〉 int (X, Xs); ···〈/k〉 〈state〉 Rho .Map 〈/state〉 〈/t〉
⇒
〈t〉 〈k〉 int (Xs); ···〈/k〉 〈state〉 Rho X 7→ 0 〈/state〉 〈/t〉
∀ S:Stmt
• int .Ids ; S ⇒ S

end

4.3 Relationship to First-Order Logic

For any institution ARL(M) defined over a stratified institution with classes M , there
exists a comorphism of institutions between ARL(M) and FOLpres, the institution of
presentations over first-order logic whenever there exists a comorphism of institutions
(Φ, α, β) between [M and FOL such that:

• the classes of a signature in Sig[M are given by the sorts of its translation to FOL:
Cls = Φ ; St, where St is the forgetful functor St: SigFOL → Set,

• for every signature Σ, αΣ(π) = ∀m : s.FOLm : s
Σ (π), for every sentence π of class s,1

• for every model N ∈ |ModFOL(Φ(Σ))|, and every s ∈ Cls(Σ), Ns = JβΣ(N)KΣ,s.

We define (ΦR, αR, βR) : ARL(M)→ FOLpres as follows:

1Note that, in this case, FOLm : s
Σ (π) is just a notation, and it should not be confused with the first-order

sentence described in the previous section, for which we would need to instantiate M with ML+.

43

CHAPTER 4. REACHABILITY LOGIC

For signatures: The signature functor ΦR : SigARL(M) → SigFOLpres maps every signa-
ture Σ of ARL(M) to

ΦR(Σ) = (Reach(Σ), E),

where

• Reach(Σ) denotes the first-order signature obtained by adding to Φ(Σ) = (S′, F ′, P ′)
a predicate reach of arity s s for every sort s ∈ S′, and

• E is a set of axioms that define the predicates reach as preorders:

E = {∀x : s.reach(x, x),∀x, y, z : s.reach(x, y) ∧ reach(y, z)→ reach(x, z) | s ∈ S′}.

For sentences: For every signature Σ of ARL(M), the sentence translation function
αRΣ : SenARL(M)(Σ)→ SenFOL(Reach(Σ)) maps every Σ-sentence π1 ⇒ π2 to

αRΣ(π1 ⇒ π2) = ∀m : s.FOLm : s
Σ (π1)→ ∃n : s.FOLn : s

Σ (π2) ∧ reach(m,n).

For models: For every signature Σ, βRΣ : ModFOL(Reach(Σ), E) → ModARL(M)(Σ) is
the functor that maps every first-order structure N ∈ |ModFOL(Reach(Σ), E)| to the
model (M,) ∈ |ModARL(M)(Σ)|, given byM = βΣ(N) ∈ |ModM(Σ)| and s = {(m,n) |
(N,m, n) |= reach(x, y)}, for every sort s. Note that the preorder s is well-defined as
Cls = Φ ; St and Ns = JMKΣ,s.

Proposition 17. (ΦR, αR, βR) is a comorphism of institutions.

To encode the Horn-clause reachability logic of Corollary 4 (defined over ML+) into
first-order logic, it suffices to notice that the comorphism (Φ, α, β) : [ML+ → FOL con-
sidered in Section 3.3 satisfies all of the above requirements, and thus can be extended
to a comorphism (ΦR, αR, βR) : ARL(M) → FOLpres. This comorphism can be further
extended to an encoding of HCL(ARL(ML+)) into FOLpres through the use of a general
results about Horn-clause institutions (described in Proposition 18 below).

Proposition 18. Let I and I′ be institutions equipped with quantification spaces. Every
comorphism of institutions (Φ, α, β) : I → I′ that has weak model amalgamation, and
for which Φ preserves the quantification space of I, can be extended to a comorphism of
institutions between HCL(I) and HCL(I′).

44

5 Conclusions

In this thesis, we proposed an institutional formalisation of the logical systems that under-
lie the K semantic framework. These logical systems account for the structural properties
of program configurations (through matching logic), and changes of these configurations
(through reachability logic).
Since reachability relies on matching, our first results focus on the formalisation of

matching logic. To this purpose, we extended the notion of stratified institution with
classes, thus allowing us to integrate, at the abstract level, the classification of matching-
logic patterns according to their sorts, and the states associated with the models and
satisfaction relation of matching logic. Building on these results, we developed an abstract
form of reachability logic over an arbitrary stratified institution with classes subject to a
few elementary properties, namely model amalgamation, the existence of a quantification
space and the preservation of pushouts of signatures with respect to classes. We proved
that the stratified institution of matching logic smoothly satisfies these properties and
we used it to derive the institution of reachability logic. Finally, for both matching and
reachability, we defined comorphisms to the institution of first-order logic.
Our work sets the foundation for integrating the K semantic framework into heteroge-

neous institution-based toolsets like Hets, allowing us to exploit the combined potential
of the K tool and of other software tools such as the MiniSat solver, the SPASS automated
prover or the Isabelle interactive proof assistant. Another line of research concerns the
development of K from a purely formal-specification perspective, including for example,
studies on modularisation and initial semantics. Within this context, verification can be
performed based on the proof systems that have already by defined for K.

45

Bibliography

[1] The IMP language. http://www.kframework.org/imgs/releases/k/tutorial/1_
k/2_imp/lesson_5/imp.pdf.

[2] Marc Aiguier and Răzvan Diaconescu. Stratified institutions and elementary homo-
morphisms. Information Processing Letters, 103(1):5–13, 2007.

[3] Kenneth Jon Barwise. Axioms for abstract model theory. Annals of Mathematical
Logic, 7(2–3):221 – 265, 1974.

[4] Jean Yves Béziau. Universal Logic: An Anthology: From Paul Hertz to Dov Gabbay.
Studies in Universal Logic. Birkhauser Verlag GmbH, 2012.

[5] Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical
Computer Science, 286(2):197–245, 2002.

[6] Traian Florin Şerbănuţă, Andrei Arusoaie, David Lazar, Chucky Ellison, Dorel Lu-
canu, and Grigore Roşu. The K primer (version 3.3). Electronic Notes in Theoretical
Computer Science, 304(0):57–80, 2014.

[7] Răzvan Diaconescu. Institution-independent Model Theory. Studies in Universal
Logic. Springer London, Limited, 2008.

[8] Răzvan Diaconescu. Quasi-boolean encodings and conditionals in algebraic specifica-
tion. Journal of Logic and Algebraic Programming, 79(2):174–188, 2010.

[9] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the ACM, 39(1):95–146, 1992.

[10] Joseph A. Goguen and Razvan Diaconescu. An oxford survey of order sorted algebra.
Mathematical Structures in Computer Science, 4(3):363–392, 1994.

[11] Joseph A. Goguen, Răzvan Diaconescu, and Petros Stefaneas. Logical support for
modularisation. Proceedings of Logical Environments, pages 83–130, 1993.

[12] Yngve Lamo. The Institution of Multialgebras–a general framework for algebraic
software development. PhD thesis, University of Bergen, 2003.

[13] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in
Mathematics. Springer, 1998.

46

Bibliography

[14] José Meseguer. General logics. In M. Garrido D. Lascar H.-D. Ebbinghaus, J.
Fernandez-Prida and M. Rodriquez Artalejo, editors, Logic Colloquium’87 Proceed-
ings of the Colloquium held in Granada, volume 129 of Studies in Logic and the
Foundations of Mathematics, pages 275 – 329. Elsevier, 1989.

[15] Till Mossakowski. HetCasl–heterogeneous specification. Language summary, 2004.

[16] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous tool set,
Hets. In Orna Grumberg and Michael Huth, editors, TACAS, volume 4424 of Lecture
Notes in Computer Science, pages 519–522. Springer, 2007.

[17] Grigore Roşu. Matching logic: A logic for structural reasoning. Technical Report
http://hdl.handle.net/2142/47004, University of Illinois, Jan 2014.

[18] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the k semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[19] Grigore Roşu and Traian Florin Şerbănuţă. K overview and SIMPLE case study.
Electronic Notes in Theoretical Computer Science, 304(0):3–56, 2014.

[20] Grigore Roşu, Andrei Ştefănescu, Ştefan Ciobâcă, and Brandon M. Moore. One-
path reachability logic. In Proceedings of the 28th Symposium on Logic in Computer
Science (LICS’13), pages 358–367. IEEE, June 2013.

[21] Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories of
pre-institutions. Mathematical Structures in Computer Science, 6(3):261–286, 1996.

[22] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and
Formal Software Development. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 2012.

[23] Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editors, COMPASS/ADT, volume 1130 of Lecture Notes in
Computer Science, pages 478–502. Springer, 1995.

47

