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Abstract. We formalize a combinatorial principle, called the 3XOR
principle, due to Feige, Kim and Ofek [12], as a family of unsatisfiable
propositional formulas for which refutations of small size in any propo-
sitional proof system that possesses the feasible interpolation property
imply an efficient deterministic refutation algorithm for random 3SAT
with n variables and Ω(n1.4) clauses. Such small size refutations would
improve the state of the art (with respect to the clause density) efficient
refutation algorithm, which works only for Ω(n1.5) many clauses [13].
We demonstrate polynomial-size refutations of the 3XOR principle in
resolution operating with disjunctions of quadratic equations with small
integer coefficients, denoted R(quad); this is a weak extension of cutting
planes with small coefficients. We show that R(quad) is weakly autom-
atizable iff R(lin) is weakly automatizable, where R(lin) is similar to
R(quad) but with linear instead of quadratic equations (introduced in
[25]). This reduces the problem of refuting random 3CNF with n vari-
ables and Ω(n1.4) clauses to the interpolation problem of R(quad) and
to the weak automatizability of R(lin).

1 Introduction

In the well known random 3-SAT model one usually considers a distribution on
formulas in conjunctive normal form (CNF) with m clauses and three literals
each, where each clause is chosen independently with repetitions out of all pos-
sible 23 ·

(
n
3

)
clauses with n variables (cf. [1]). The clause density of such a 3CNF

is m/n. When m is greater than cn for sufficiently large c, that is, when the
clause density is greater than c, it is known (and easily proved for e.g. c ≥ 5.2)
that with high probability a random 3CNF is unsatisfiable.

A refutation algorithm for random kCNFs is an algorithm that re-
ceives a kCNF (with sufficiently large clause density) and outputs either
“unsatisfiable” or “don’t know”; if the algorithm answers “unsatisfiable”
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then the kCNF is required to be indeed unsatisfiable; moreover, the algorithm
should output “unsatisfiable” with high probability (namely, with probability
1− o(1) over the input kCNFs).

We can view the problem of determining the complexity of (deterministic)
refutation algorithms as an average-case version of the P vs. coNP problem:
a polynomial-time refutation algorithm for random kCNFs (for a small enough
clause density) can be interpreted as showing that “P = coNP in the average-
case”; while a polynomial-time nondeterministic refutation algorithm (again,
for a small enough clause density) can be interpreted as “NP = coNP in the
average-case”.

Refutation algorithms for random kCNFs were investigated in Goerdt and
Krivelevich [15] and subsequent works by Goerdt and Lanka [16], Friedman,
Goerdt and Krivelevich [14], Feige and Ofek [13], Feige [11] and Coja-Oghlan
et al. [8] (among other works). For random 3CNFs, the best (with respect to
the clause density) polynomial-time refutation algorithm to date works for for-
mulas with at least Ω(n1.5) clauses [13]. On the other hand, Feige, Kim and
Ofek [12] considered efficient nondeterministic refutation algorithms; namely,
short witnesses for unsatisfiability of 3CNFs that can be checked for correctness
in polynomial-time. They established the current best (again, with respect to
the clause density) efficient, alas nondeterministic, refutation procedure: they
showed that with probability converging to 1 a random 3CNF with n variables
and Ω(n1.4) clauses has a witness of size polynomial in n.

Since the current state of the art random 3CNF refutation algorithm works
for Ω(n1.5) clauses, while the best nondeterministic refutation algorithm works
already for O(n1.4), determining whether a deterministic polynomial-time (or
even a quasipolynomial-time) refutation algorithm for random 3CNFs with n
variables and Ω(n1.4) clauses exists is to a certain extent the frontier open prob-
lem in the area of efficient refutation algorithms.

1.1 Results

In this work we reduce the problem of devising an efficient deterministic refu-
tation algorithm for random 3CNFs with Ω(n1.4) clauses to the interpolation
problem in propositional proof complexity. For a refutation system P , the in-
terpolation problem for P is the problem that asks, given a P-refutation of an
unsatisfiable formula A(x, y) ∧ B(x, z), for x, y, z mutually disjoint sets of vari-
ables, and an assignment α for x, to return 0 or 1, such that if the answer is 0
then A(α, y) is unsatisfiable and if the answer is 1 then B(α, z) is unsatisfiable.
If the interpolation problem for a refutation system P is solvable in time T (n)
we say that P has interpolation in time T (n).1 When T (n) is a polynomial we
say that P has feasible interpolation. The notion of feasible interpolation was
proposed in [18] and developed further in [27,6,19].

1 We do not distinguish in this paper between proofs and refutations: proof systems
prove tautologies and refutation systems refute unsatisfiable formulas (or, equiva-
lently prove the negation of unsatisfiable formulas).
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We present a family of unsatisfiable propositional formulas, denoted Υn and
called the 3XOR principle formulas, expressing a combinatorial principle, such
that for any given refutation system P that admits short refutations of Υn, solv-
ing efficiently the interpolation problem for P provides an efficient deterministic
refutation algorithm for random 3CNFs with Ω(n1.4) clauses. In other words,
we have the following:

Theorem 1. If there exists a propositional proof system P that has interpola-
tion in time T (n) and that admits s(n)-size refutations of Υn, then there is a
deterministic refutation algorithm for random 3CNF formulas with n variables
and Ω(n1.4) clauses that runs in time T (s(n)). In particular, if P has feasible
interpolation and admits polynomial-size refutations of Υn then the refutation
algorithm runs in polynomial-time.

The argument is based on the following: we show that the computationally
hard part of the Feige, Kim and Ofek nondeterministic refutation algorithm
(namely, the part we do not know how to efficiently compute deterministically)
corresponds to a disjoint NP-pair. Informally, the pair (A,B) of disjoint NP
sets is the following: A is the set of 3CNFs that have a certain combinatorial
property, that is, they contain a collection of sufficiently many inconsistent even
k-tuples, as defined by Feige et al. (see Definition 2); and B is the set of 3CNFs
with m clauses for which there exists an assignment that satisfies more than
m− ` clauses as 3XORs (for ` a certain function of the number of variables n).

Theorem 1 then follows from the known relation between disjoint NP-pairs
and feasible interpolation [26,24]: in short, if A and B are two disjoint NP sets
and A(x, y) and B(x, z) are the two polynomial-size Boolean formulas corre-
sponding to A and B, respectively (i.e., for all x, there exists a short y such
that A(x, y) = 1 iff x ∈ A; and similarly for B), then short refutations of
A(x, y) ∧ B(x, z) imply a polynomial-size algorithm that separates A from B.
For more on the relation between disjoint NP-pairs and propositional proof
complexity see, e.g., [24,3].

In general, we observe that every efficient refutation algorithm (deterministic
or not) corresponds directly to a disjoint NP-pair as follows: every efficient
refutation algorithm is based on some property P of CNFs that can be witnessed
(or better, found) in polynomial-time. Thus, every efficient refutation algorithm
corresponds to a family of formulas P (x)→¬SAT(x), expressing that if the input
CNF has the property P then x is unsatisfiable; thus, P (x) and SAT(x) are two
disjoint NP predicates. In the case of the refutation algorithm of Feige, Kim
and Ofek, P (x) expresses simply that the 3CNF x has the Feige et al. witness.
However, the disjoint NP-pair (A,B) we work with is not of this type. Namely,
A is not the predicate P (x) for the full Feige, Kim and Ofek witnesses, rather
a specific combinatorial predicate (mentioned above) that is only one ingredient
in the definition of the Feige et al. witness; and B is not SAT(x). This saves us
the trouble to formalize and prove in a weak propositional proof system the full
Feige et al. argument (such a formalization was done recently in [22]; see Sec. 1.2
for a comparison with [22]).
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In the second part of this paper we reduce the problem of determinizing the
Feige et al. nondeterministic refutation algorithm to the interpolation problem of
a concrete and apparently weak refutation system. Specifically, we demonstrate
polynomial-size refutations for Υn in a refutation system denoted R(quad) that
extends both cutting planes with small coefficients2 (cf. [9,6,23]) and Res(2)
(for any natural k, the system Res(k) is resolution that operates with kDNFs
instead of clauses, introduced by Kraj́ıček [20]). We note also that R(quad) is a
subsystem of TC0-Frege.

An R(quad) refutation (see full version [28] for the definition) over the vari-
ables {x1, . . . , xn} operates with disjunctions of quadratic equations, where each
quadratic equation is of the form:

∑

i,j∈[n]

cijxixj +
∑

i∈[n]

cixi + c0 = a,

in which all ci, cij and a are integers written in unary. The system R(quad) has
the following derivation rule, which can be viewed as a generalized resolution
rule: from two disjunctions of quadratic equations

∨
i Li ∨ (L = a) and

∨
j Lj ∨

(L′ = b) one can derive:
∨

i

Li ∨
∨

j

Lj ∨ (L− L′ = a− b).

We also add axioms that force our variables to be 0, 1. An R(quad) refutation
of an unsatisfiable set S of disjunctions of quadratic equations is a sequence
of disjunctions of quadratic equations (called proof-lines) that terminates with
1 = 0, and such that every proof-line is either an axiom, or appears in S, or is
derived from previous lines by the derivation rules.

We show the following:

Theorem 2. R(quad) admits polynomial-size refutations of the 3XOR principle
formulas Υn.

This polynomial upper bound on the refutation size of the 3XOR principle is
non-trivial because the encoding of the 3XOR formula is complicated in itself
and further the refutation system is very restrictive.

By Theorem 1, we get the reduction from determinizing Feige et al. work to
the interpolation problem for R(quad). In other words:

Corollary 1. If R(quad) has feasible interpolation then there is a deterministic
polynomial-time refutation algorithm for random 3CNFs with n variables and
Ω(n1.4) clauses.

Next we reduce the problem of determinizing the Feige et al. refutation al-
gorithm to the weak automatizability of a weaker system than R(quad), namely
R(lin), as explained in what follows.

2 A refutation in cutting planes with small coefficients is a restriction of cutting planes
in which all intermediate inequalities are required to have coefficients bounded in
value by a polynomial in n, where n is the size of the formula to be refuted (see [6]).
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The concept of automatizability, introduced by Bonet, Pitassi and Raz [7]
(following the work of [21]), is central to proof-search algorithms. The proof-
search problem for a refutation system P asks, given an unsatisfiable formula τ ,
to find a P-refutation of τ . A refutation system P is automatizable if for any
unsatisfiable τ the proof-search problem for P is solvable in time polynomial in
the smallest P-refutation of τ (or equivalently, if there exists a polynomial-time
algorithm that on input τ and a number m in unary, outputs a P-refutation of
τ of size at most m, in case such a refutation exists). Following Atserias and
Bonet [3], we say that a refutation system P is weakly automatizable if there
exists an automatizable refutation system P ′ that polynomially simulates P .
Note that if P is not automatizable, it does not necessarily follow that also P ′

is not automatizable. Hence, from the perspective of proof-search algorithms,
weak automatizability is a more natural notion than automatizability (see [24]
on this).

In [25], the system R(lin) was introduced which is similar to R(quad), ex-
cept that all equations are linear instead of quadratic. In other words, R(lin) is
resolution over linear equations with small coefficients. We show the following:

Theorem 3. R(quad) is weakly automatizable iff R(lin) is weakly automatiz-
able.

The proof of this theorem follows a similar argument to Pudlák [24]. Since weak
automatizability of a proof system implies that the proof system has feasible
interpolation [7,24], we obtain the following:

Corollary 2. If R(lin) is weakly automatizable then there is a deterministic
refutation algorithm for random 3CNFs with n variables and Ω(n1.4) clauses.

1.2 Consequences and relations to previous work

The key point of this work is the relation between constructing an efficient
refutation algorithm for the clause density Ω(n0.4) and proving upper bounds in
weak enough propositional proof systems for the 3XOR principle (namely, proof
systems possessing feasible interpolation); as well as establishing such upper
bounds in relatively weak proof systems.

There are two ways to view our results: either as (i) proposing an approach to
improve the current state of the art in refutation algorithms via proof complexity
upper bounds; or conversely as (ii) providing a new kind of important computa-
tional consequences that will follow from feasible interpolation and weak autom-
atizability of weak proof systems. Indeed, the consequence that we provide is of a
different kind from the group of important recently discovered algorithmic-game-
theoretic consequences shown by Atserias and Maneva [4], Huang and Pitassi [17]
and Beckmann, Pudlák and Thapen [5]. In what follows we explain these two
views in more details.

(i) Our results show that by proving that R(quad) has feasible interpolation
or by demonstrating a short refutation of the 3XOR principle in some refutation
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system that admits feasible interpolation, one can advance the state of the art
in refutation algorithms. We can hope that if feasible interpolation of R(quad)
does not hold, perhaps interpolation in quasipolynomial-time holds (either for
R(quad) or for any other system admitting short refutations of the 3XOR princi-
ple), which would already improve exponentially the running time of the current
best deterministic refutation algorithm for 3CNFs with Ω(n1.4) clauses, since
the current algorithm works in time 2O(n0.2 log n) [12].

As mentioned above, R(quad) is a common extension of Res(2) and cutting
planes with small coefficients (though it is apparently not the weakest such com-
mon extension because already R(lin) polynomially simulates both Res(2) and
cutting planes with small coefficients). Whether Res(2) has feasible interpolation
(let alone, interpolation in quasi-polynomial time) is open and there is no con-
clusive evidence for or against it. Note that by Atserias and Bonet [3], Res(2)
has feasible interpolation iff resolution is weakly automatizable. However this
does not necessarily constitute strong evidence against the feasible interpolation
of Res(2), because the question of whether resolution is weakly automatizable is
itself open, and there is no strong evidence ruling out a positive answer to this
question.3 Similarly, there is no strong evidence that rules out the possibility
that cutting planes is weakly automatizable.

(ii) Even if our suggested approach is not expected to lead to an improve-
ment in refutation algorithms, it is still interesting in the following sense. The
fact that R(quad) has short refutations of the 3XOR principle provides new evi-
dence that (weak extensions of) Res(2) and cutting planes with small coefficients
may not have feasible interpolation, or at least that it would be highly non-trivial
to prove they do have feasible interpolation; the reason for this is that estab-
lishing feasible interpolation for such proof systems would entail quite strong
algorithmic consequences, namely, a highly non-trivial improvement in refuta-
tion algorithms. This algorithmic consequence adds to other recently discovered
and important algorithmic-game-theoretic consequences that would follow from
feasible interpolation of weak proof systems.

Specifically, in recent years several groups of researchers discovered connec-
tions between feasible interpolation and weak automatizability of small depth
Frege systems to certain game-theoretic algorithms: Atserias and Maneva [4]
showed that solving mean payoff games is reducible to the weak automatizability
of depth-2 Frege (equivalently, Res(n)) systems and to the feasible interpolation
of depth-3 Frege systems (actually, depth-3 Frege where the bottom fan-in of
formulas is at most two). Subsequently, Huang and Pitassi [17] showed that if
depth-3 Frege system is weakly automatizable, then simple stochastic games are
solvable in polynomial time. Finally, Beckmann, Pudlák and Thapen [5] showed
that weak automatizability of resolution implies a polynomial-time algorithm for
the parity game.

3 It is known that, based on reasonable hardness assumptions from parameterized
complexity, resolution is not automatizable by Alekhnovich and Razborov [2], which
is, as the name indicates, a stronger property than weak automatizability.
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Comparison with Müller and Tzameret [22]. In [22] a polynomial-size TC0-
Frege proof of the correctness of the Feige et al. witnesses was shown. However
the goal of [22] was different from the current paper. In [22] the goal was to
construct short propositional refutations for random 3CNFs (with sufficiently
small clause density). Accordingly, the connection to the interpolation problem
was not made in [22]; and further, it is known by [7] that TC0-Frege does not
admit feasible interpolation (under cryptographical assumptions). On the other
hand, the current paper aims to demonstrate that certain short refutations will
have algorithmic consequences (for refutation algorithms). Indeed, since we are
not interested here to prove the correctness of the full Feige et al. witnesses,
we are isolating the computationally hard part of the witnesses from the easy
(polytime computable) parts, and formalize the former part (i.e., the 3XOR
principle) as a propositional formula in a way that is suitable for the reduction
to the interpolation problem.

One advantage of this work over [22] is that Theorem 2 gives a more concrete
logical characterization of parts of the Feige et al. witnesses (because the proofs in
[22] were conducted indirectly, via a general translation from first-order proofs
in bounded arithmetic), and this characterization is possibly tighter (because
R(quad) is apparently strictly weaker than TC0-Frege).

Organization of the extended abstract. In the preliminaries we review some nec-
essary background from proof complexity and refutation algorithms. In Sec. 3
we describe the connection between feasible interpolation and refutations algo-
rithms. Due to lack of space, readers who wish to read the full details involved in
the short R(quad) refutations of the 3XOR principle, as well as the reduction to
weak automatizability of R(lin), are referred to the full version available on-line
[28].

2 Preliminaries

We usually assume that a 3CNF has n variables X = {x1, . . . , xn} and m clauses.

2.1 Disjoint NP-pairs and feasible interpolation of propositional
proofs

A disjoint NP-pair is simply a pair of languages in NP that are disjoint. Let
L,N be a disjoint NP-pair such that R(x, y) is the corresponding relation for L
and Q(x, z) is the corresponding relation for N ; namely, there exists polynomials
p, q such that R(x, y) and Q(x, z) are polynomial-time relations where x ∈ L iff
∃y, |y| ≤ p(|x|) ∧R(x, y) = true and x ∈ N iff ∃z, |z| ≤ q(|x|) ∧Q(x, z) = true.

Since both polynomial-time relations R(x, y) and Q(x, z) can be converted
into a family of polynomial-size Boolean circuits, they can be written as a family
of polynomial-size (in n) CNF formulas. Thus, let An(x, y) be a polynomial-size
CNF in the variables x = (x1, . . . , xn) and y = (y1, . . . , y`), that is true iff
R(x, y) is true, and let Bn(x, z) be a polynomial-size CNF in the variables x
and z = (z1, . . . , zm), that is true iff Q(x, z) is true (for some `,m that are
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polynomial in n). For every n ∈ N, we define the following unsatisfiable CNF
formula in three mutually disjoint vectors of variables x, y, z:

Fn := An(x, y) ∧Bn(x, z). (1)

Note that because y and z are disjoint vectors of variables and An(x, y)∧Bn(x, z)
is unsatisfiable, it must be that given any x ∈ {0, 1}n, either An(x, y) or Bn(x, z)
is unsatisfiable (or both).

A propositional proof system P is a polynomial-time relation V (π, τ ) such
that for every propositional formula τ , τ is a tautology iff there exists a binary
string π with V (π, τ ) = true. A propositional proof system P polynomially-
simulates another propositional proof system Q if there is a polynomial-time
computable function f that maps Q-proofs to P-proofs of the same tautologies.

Consider a family of unsatisfiable formulas Fn := An(x, y) ∧Bn(x, z), i ∈ N,
in mutually disjoint vectors of variables, as in (1). We say that the Boolean
function f(x) is the interpolant of Fn if for every n and every assignment α to
x:

f(α) = 1 =⇒ An(α, y) is unsatisfiable; and
f(α) = 0 =⇒ Bn(α, z) is unsatisfiable.

(2)

Note that L (as defined above) is precisely the set of those assignments α
for which A(α, y) is satisfiable, and N is precisely the set of those assignments
α for which B(α, z) is satisfiable, and L and N are disjoint by assumption, and
so f(x) separates L from N .

Definition 1 (Interpolation property). A propositional proof system P is
said to have the interpolation property in time T (n) if the existence of a size s(n)
P-refutation of a family Fn as in (1) above implies the existence of an algorithm
computing f(x) in T (s(n)) time. When a proof system P has the interpolation
property in time poly(n) we say that P has the feasible interpolation property,
or simply that P has feasible interpolation.

Definition 2 (Inconsistent even k-tuple (Feige et al. [12]). An even k-
tuple is a tuple of k many 3-clauses in which every variable appears an even
number of times. An inconsistent even k-tuple is an even k-tuple in which the
total number of negative literals is odd.

Note that for any even k-tuple, k must be an even number (since by assump-
tion the total number of variable occurrences 3k is even). The following is the
combinatorial principle, due to Feige et al. [12] that we consider in this work:

The 3XOR Principle 1 Let K be a 3CNF over the variables X. Let S be t
inconsistent even k-tuples from K, such that every clause from K appears in at
most d inconsistent even k-tuples in S. Then, given any Boolean assignment to
the variables X, the number of clauses in K that are unsatisfied by the assignment
as 3XOR is at least dt/de.

The correctness of the 3XOR principle follows directly from the following
proposition (the proof of which follows by counting modulo 2) and the fact that
every clause in K appears in at most d even k-tuples in S:
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Proposition 1 ([12]). For any inconsistent even k-tuple (over the variables X)
and any Boolean assignment A to X, there must be a clause in the k-tuple that
is unsatisfied as 3XOR.

3 From short proofs to refutation algorithms

In this section we demonstrate that polynomial-size proofs of (encodings of the)
3XOR principle in a proof system that has the feasible interpolation property
yield deterministic polynomial-time refutation algorithms for random 3CNF for-
mulas with Ω(n1.4) clauses.

3.1 The witness for unsatisfiability

The Feige, Kim and Ofek nondeterministic refutation algorithm [12] is based
on the existence of a polynomial-size witness of unsatisfiability for most 3CNF
formulas with sufficiently large clause to variable ratio. The witness has several
parts, but as already observed in [12], apart from the t inconsistent even k-
tuples (Def. 2), all the other parts of the witness are known to be computable
in polynomial-time. In what follows we define the witnesses for unsatisfiability.

Let K be a 3CNF with n variables x1, . . . , xn and m clauses. The imbalance
of a variable xi is the absolute value of the difference between the number of its
positive occurrences and the number of its negative occurrences. The imbalance
of K is the sum over the imbalances of all variables, in K, denoted I(K). We
define M(K) to be an n× n rational matrix M as follows: let i, j ∈ [n], and let
d be the number of clauses in K where xi and xj appear with different signs
and s be the number of clauses where xi and xj appear with the same sign.
Then Mij := 1

2 (d − s). In other words, for each clause in K in which xi and
xj appear with the same sign we add 1

2 to Mij and for each clause in K in
which xi and xj appear with different signs we subtract 1

2 from Mij . Let λ be a
rational approximation of the biggest eigenvalue of M(K). We shall assume that
the additive error of the approximation is 1/nc for a constant c independent of
n; i.e., |λ− λ′| ≤ 1/nc, for λ′ the biggest eigenvalue of M(K); see [22].

Definition 3 (FKO witness). Given a 3CNF K, the FKO witness for the
unsatisfiability of K is defined to be the following collection:

1. the imbalance I(K);
2. the matrix M(K) and the (polynomially good) rational approximation λ of

its largest eigenvalue;
3. a collection S consisting of t < n2 inconsistent even k-tuples such that every

clause in K appears in at most d many even k-tuples, for some positive
natural k;

4. the inequality t > d·(I(K)+λn)
2 + o(1) holds.

(The o(1) above stands for a specific rational number b/nc, for c and b constants
independent of n).
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Theorem 4 ([12]). There are constants c0, c1 such that for a random 3CNF K
with n variables and Ω(n1.4) clauses, with probability converging to 1 as n tends
to infinity there exist natural numbers k, t, d such that t = Ω(n1.4) and

k ≤ c0 · n
0.2 and t < n2 and d ≤ c1 · n

0.2, (3)

and K has a witness for unsatisfiability as in Definition 3.

Inspecting the argument in [12], it is not hard to see that it is sufficient to
replace part 3 in the witness with a witness for the following:

3’. No assignment can satisfy more than m− dt/de − 1 clauses in K as
3XORs.

Therefore, since I(K), M(K) and λ are all polynomial-time computable (see
[12] for this), in order to determinize the nondeterministic refutation algorithm
of [12] it is sufficient to provide an algorithm that almost surely determines
(correctly) that part 3’ above holds (when also t and d are such that part 4 in
the witness holds). In other words, in order to construct an efficient refutation
algorithm for random 3CNFs (with Ω(n1.4) clauses) it is sufficient to have a
deterministic algorithm A that on every input 3CNF (and for t and d such
that part 4 in the witness holds) answers either “condition 3’ is correct”
or “don’t know”, such that A is never wrong (i.e., if it says “condition 3’ is
correct” then condition 3’ holds) and with probability 1 − o(1) over the input
3CNFs A answers “condition 3’ is correct”. Note that we do not need to
actually find the Feige et al. witness nor do we need to decide if it exists or not (it
is possible that condition 3’ holds but condition 3 does not, meaning that there
is no Feige et al. witness). The relation between unsatisfiability and bounding
the number of clauses that can be satisfied as 3XOR in a 3CNF was introduced
by Feige in [10] (and used in [13] as well as in [12]).

3.2 The disjoint NP-pair corresponding to the 3XOR principle

We define the corresponding 3XOR principle disjoint NP-pair as the pair of
languages (L,N), where k, t, d are natural numbers given in unary :

L := {〈X, k, t, d〉
∣
∣ X is a 3CNF with n variables and Equation (3) holds

for k, t, d and there exist t inconsistent even k-tuples such that

each clause of X appears in no more than d many k-tuples},

N :=
{
〈X, k, t, d〉

∣
∣ X is a 3CNF with n variables and m clauses and

Equation (3) holds for k, t, d and there exists an assignment

that satisfies at least m− dt/de clauses in X as 3XOR
}
.

It is easy to verify that both L and N are indeed NP sets and that, by the
3XOR principle, L ∩N = ∅.

Using the same notation as in Section 2.1, we denote by R(x, y) and Q(x, z)
the polynomial-time relations for L and N, respectively. Further, for every n ∈
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N, there exists an unsatisfiable CNF formula in three mutually disjoint sets of
variables x, y, z:

Υn := An(x, y) ∧Bn(x, z), (4)

where An(x, y) and Bn(x, z) are the CNF formulas expressing that R(x, y) and
Q(x, z) are true for x of length n, respectively.

Theorem 1. Assume that there exists a propositional proof system that has
interpolation in time T (n) and that admits size s(n) refutations of Υn. Then,
there is a deterministic refutation algorithm for random 3CNF formulas with
Ω(n1.4) clauses running in time T (s(n)).

Proof. By the assumption, and by the definition of the feasible interpolation
property, there exists a deterministic polynomial-time interpolant algorithm A
that on input a 3CNF K and three natural numbers k, t, d given in unary, if
A(K, k, t, d) = 1 then 〈K, k, t, d〉 6∈ L and if A(K, k, t, d) = 0 then 〈K, k, t, d〉 6∈ N .

The desired refutation algorithm works as follows: it receives the 3CNF K
and for each 3-tuple of natural numbers 〈k, t, d〉 for which Equation (3) holds
it runs A(K, k, t, d). Note there are only O(n3) such 3-tuples. If for one of these
runs A(K, k, t, d) = 0 then we know that 〈K, k, t, d〉 6∈ N ; in this case we check (in
polynomial-time) that the inequality in Part 4 of the FKO witness (Definition 3)
holds, and if it does, we answer “unsatisfiable”. Otherwise, we answer “don’t
know”.

The correctness of this algorithm stems from the following two points:
(i) If we answered “unsatisfiable”, then there exist k, t, d such that
〈K, k, t, d〉 6∈ N and Part 4 in the FKO witness holds, and so Condition 3’ (from
Section 3.1) is correct, and hence, by the discussion in 3.1, K is unsatisfiable.

(ii) For almost all 3CNFs we will answer “unsatisfiable”. This is because
almost all of them will have an FKO witness (by Theorem 4), which means that
〈K, k, t, d〉 ∈ L for some choice of t < n2, d, k (in the prescribed ranges) and
hence the interpolant algorithm A must output 0 in at least one of these cases
(because A(K, k, t, d) = 1 means that 〈K, k, t, d〉 6∈ L).
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