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EXECUTIVE SUMMARY 

Rainfall-induced landslides on partially saturated soil slopes cause great damage to 

human lives and infrastructures. Although too many factors can affect the slope stability, rainfall 

is a well-recognized reason behind the instability and failures of slopes. Typically, slopes are 

triggered by wetting for the natural unsaturated state that causes an increase in the moisture 

content and the reduction of suction. This, in turn, leads to a decrease in the shear strength of the 

soil and the development of excessive deformations and mostly failures. Slope failure abatement 

usually entails employing costly mitigation measures include: retaining walls, grading, 

excavation, drainage, pinning, etc. A less costly alternative is an early landslide warning system.  

Development of an early-warning system for rainfall-induced landslides requires 

understanding the influences of geology, topography, hydrological conditions, soil material 

properties, and human action on slope stability. Estimation of rainfall infiltration and 

evapotranspiration related to climatic conditions and characterization of the non-linear hydraulic 

and constitutive properties of the soil are two major challenges among these factors. In this 

study, in order to gain insight into the main factors affecting the landslide problem, an early 

warning system was developed for a 40-foot-high cut slope on the island of Hawaii. 

In terms of soil characterization, in this study, instead of using suction-controlled testing 

apparatuses that are costly and time-consuming, constant water content (CWC) oedometer and 

direct shear tests are used. These tests have two main superiorities over the suction-controlled 

tests those are: (1) it requires minimal modifications to the conventional oedometer and direct 

shear apparatuses, and (2) it takes a concise time to perform a constant water content test (i.e., 

several hours). To measure the suction changes during testing, high-suction tensiometers were 

developed and mounted in the oedometer and direct shear cells. To validate the suitability of 
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constant water content test results for characterizing the unsaturated soils, suction-controlled 

triaxial (SCTX) tests were performed at the University of Hawaii at Manoa. The unsaturated soil 

was characterized using two separate approaches (based on CWC tests and SCTX tets) and, later, 

the results were discussed and compared that demonstrated the suitability of CWC test for 

unsaturated soils characterization.  

A subsurface investigation program was conducted at the slope site. The program 

consisted of two boreholes in which SPT tests were performed. Disturbed and undisturbed 

samples were collected during boring. The collected samples were transported to two 

laboratories (i.e., University of Hawaii at Manoa and Missouri University of Science and 

Technology) for the purpose of testing. The slope site was instrumented for the measurement of 

suction (using tensiometer), water content (using water content sensors), displacement (using 

inclinometers), and precipitation (using rainfall logger). Continuous readings were collected 

from the monitoring instrumentations for the period from July 2017 to January 2018. 

The collected climatic data along with the calibrated hydraulic parameters were used to 

build an infiltration-evapotranspiration numerical model. First, the collected climatic data, from 

the slope site and nearby weather stations, were used to formulate the climate-soil boundary 

conditions. Then, the climate-soil boundary conditions were used to estimate the amount of 

water the soil gains by infiltration (e.g., rainfall) as well as the amount of water it loses by 

evaporation or evapotranspiration. Later, HYDRUS software was used to build the hydraulic 

model. The main advantage of HYDRUS is the ability to consider the hydraulic hysteresis 

behavior of unsaturated soils. The model was validated by comparing the estimated suction and 

water content with the field measurements and showed good agreement. The verified model was 
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then used to determine the pore-water pressure distribution during and after a 500-years return 

storm.  

The slope stability analysis was done by using SLOPE/W software in which the shear 

strength equation for unsaturated soils is implemented. The pore-water pressure distribution, 

calculated using HYDRUS during and after a 500-year storm, was transferred to SLOPE/W and 

used to study the slope stability during and after the storm. Based on a 2D slope stability 

analysis, the slope can survive the 500-year storm with a factor of safety of 1.20. Based on 

HYDRUS and SLOPE/W results, an instrument threshold values were established for water 

content sensors and tensiometers using a traffic-light-based trigger criterion. 

Finally, in this study, a Finite Element Model was built to investigate the capabilities of 

the existing finite element software for studying such complex geotechnical problems. One of the 

most famous software for unsaturated soils is the CODE_BRIGHT. The Barcelona Basic Model 

(BBM) is implemented within the CODE_BRIGHT package. The previously calibrated BBM 

mechanical parameters, as well as the Soil Water Characteristic Curve parameters for the slope 

soil, were used to perform a hydro-mechanical analysis for the slope. However, after several 

trials, it was not viable for the software to capture the slope initial suction and water content 

distributions. This can be mainly attributed to the inability of the software to consider hydraulic 

hysteresis behavior. Therefore, there is room for growth and research in this area. 

 



4 

 

INTRODUCTION 

1.1 Problem Statement 

The failure of soil slopes is a common phenomenon all over the world. Landslides result 

in 25–50 deaths/year and more than $2 billion/year in repair costs in the United States. Although 

landslides can be attributed to many factors, it has been widely recognized that rainfall is one of 

the major causes of slope instability and failure. Many researchers have reported slope failures 

due to rainfall infiltration (Alonso et al. 2003; Au 1998; Chen et al. 2006; Guzzetti et al. 2008; 

Gallage and Uchimura 2010). It is well accepted that failures of slopes are triggered by wetting 

starting from an unsaturated state, as a result of the increase in the moisture content and the 

reduction of suction. This, in turn, leads to a decrease in the shear strength of the soil and the 

development of deformations. For example, the 2014 Oso mudslide in Washington State was a 

rainfall-induced landslide that killed 43 people and led to a total loss of 10 billion dollars (Sun et 

al. 2015). 

An early warning of the failure and instability of slopes can save human lives by allowing 

the evacuation of people living in the area and stopping the operation of roads near the slope. 

Development of such an early-warning system for rainfall-induced landslides requires 

understanding the influences of geology, topography, hydrological conditions, soil material 

properties, and human action on slope stability, and these are very complicated. Estimation of 

rainfall infiltration and evapotranspiration related to climatic conditions and characterization of 

the non-linear hydraulic and constitutive properties of the soil are two major challenges among 

these factors. The former is related to the amount of water entering and leaving the soil, and the 

latter represents the influence of the water content and associated stress change on slope stability. 
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Unsaturated soil gains water through rainfall infiltration and loses water by evaporation 

or by evapotranspiration. By definition, evaporation refers to the process by which water changes 

state from liquid to vapor and escapes from the bare soil surface to the atmosphere. Transpiration 

refers to the process by which water in the soil is absorbed by vegetation roots and transported 

via the xylem to the leaves, where, again, it changes state from liquid to vapor and escapes to the 

atmosphere from the leaf surface. The two processes usually occur simultaneously and are 

therefore referred to by one term, evapotranspiration. Two steps are involved in 

evapotranspiration: water vaporization and vapor removal. Energy is required to change the state 

of the water molecules from liquid to vapor. The principal source of heat energy for 

evapotranspiration is solar radiation from the sun and air temperature. The driving force for the 

water vapor removal process is the difference in relative humidity between the soil surface and 

the surrounding atmosphere. Wind speed also significantly influences the water removal process. 

Other factors such as soil permeability, soil water salinity (which is related to osmotic suction), 

and vegetation characteristics, also significantly influence the evapotranspiration rate. During a 

rainfall event, the amount of water entering the soils depends upon rainfall intensity, duration, 

soil topography, hydrological conditions, soil moisture conditions, and runoff. At present, there 

is no well-established model to directly relate these climatic factors to the possibility of rainfall-

induced landslide. 

In terms of soil characterization, a suction-controlled triaxial testing apparatus has been 

used extensively to characterize unsaturated soils. However, the apparatus is very sophisticated 

and, therefore, expensive. A suction-controlled triaxial testing apparatus typically costs more 

than 60,000 dollars, a price only a few research universities can afford. In addition, due to the 

extremely low permeability of unsaturated soils, it is very time-consuming to perform suction-

controlled triaxial testing on such soils. It is common to take 2-3 months for just one test. 
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Furthermore, the behavior of unsaturated soils is complicated and influenced by many 

factors. Typically more than two dozen tests are needed to fully characterize one unsaturated 

soil. Consequently, 2-3 years are often needed to fully characterize the unsaturated soils at one 

site (e.g. Sivakumar 1993; Sharma 1998; Hoyos 1998). This has been the main obstacle for the 

implementation of unsaturated soil mechanics in engineering practice. Zhang (2016) found that 

the results from the suction-controlled triaxial test apparatus are problematic for unsaturated soil 

characterization. There is a great need for research in these directions. 

1.2 Background 

A slope has been selected as a test site for establishing landslide early warning systems. 

The slope was recently instrumented with tensiometers to measure suction and rainfall recording 

instruments. Data has been collected by a remote, real-time data logger to record transient 

responses during heavy rainstorms. Undisturbed soil specimens have been taken through a 

comprehensive site investigation program performed by the University of Hawaii at Manoa. In 

order to establish effective landslide early warning systems, some key issues must be addressed, 

such as estimation of rainfall infiltration and evapotranspiration related to climatic conditions 

and evaluation of the non-linear hydraulic and constitutive properties of the soil. The research 

team at the Tier 1 Center for Environmentally Sustainable Transportation in Cold Climates 

(CESTiCC) worked closely with researchers from UHM to solve problems in the process of 

developing these early warning systems for rainfall-induced landslides. 

1.3 Objectives 

This project intended to address some key research needs in the development of an early 

warning system for rainfall-induced landslides, such as the necessity of costly and sophisticated 
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equipment and the time-consuming testing process in the characterization of unsaturated soils, 

development of accurate infiltration-evaporation model, and prediction of slope failure under the 

influence of rainfall (climatic) events. 

1.4 Research Methodology 

The proposed research objectives were achieved through equipment development, 

laboratory testing, constitutive modeling, numerical simulation, and validation with field data. 

Specifically, equipment was developed to rapidly measure the soil-water characteristic curve, 

free-shrinkage curve, and stress-strain behavior for unsaturated soils. Laboratory tests were 

performed at both the University of Hawaii at Manoa (UHM) and Missouri University of Science 

and Technology (MST) to characterize unsaturated soils. The test results were compared and 

analyzed to develop advanced constitutive models for the tested soils. Some of the models were 

used in numerical analyses to analyze the slope stability under different rainfall events. The 

analysis results were validated through the field monitoring data. 

The following major tasks were accomplished to achieve the objectives of this study: 

 Task 1:  Literature Review  

 Task 2: Site Description and Field Monitoring 

 Task 3:  Development of Test Apparatus 

 Task 4:  Characterization of Soil Behavior and Constitutive Modelling 

 Task 5: Calibration of the Infiltration-Evapotranspiration Model and 

Implementation 

 Task 6:  Slope Stability Analysis 
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 Task 7:  Draft of Final Report and Recommendations 

Task 1: Literature Review 

The review covered current progress in the characterization of unsaturated soils. The 

emphasize was on (1) suction-controlled tests, undrained compression and shear tests with 

measurement of suction changes, and associated methods for analyzing the tests results for 

constitutive modeling purpose; (2) methods to estimate the evapotranspiration rate using field 

climatic data and an infiltration model for rainfall events; (3) available constitutive models for 

unsaturated soils, and (4) slope stability for unsaturated slopes. This task was accomplished 

through a critical review of technical literature and research in progress. Results from this task 

are presented in Chapter 2. 

Task 2: Site Description and Field Monitoring 

A 12.20m-high slope site in Hawaii was selected for this study. A subsurface 

investigation program was conducted to collect disturbed and undisturbed soil samples for 

testing and characterization. Later, the slope was instrumented with specific instrumentation to 

obtain data to validate the calculations. The field instruments consisted of (a) tensiometers for 

suction measurements, (b) water content sensors for gravimetric water content measurements, (c) 

inclinometers for displacement measurements, and (d) a rainfall gage for precipitation 

measurements. This task was performed by the research team at the University of Hawaii at 

Manoa. The field description and instrumentations are presented in Chapters 3 and 4. 

Task 3: Development of Testing Apparatus 

High suction tensiometers were developed for measuring suction by following the 

methods in the literature of Ridley and Burland (1993) and Tarantino and Mongiovi (2003). 
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Devices were also fabricated to quickly measure the soil-water characteristic curve and free-

shrinkage curves for unsaturated soils. Existing equipment for saturated soils such as oedometer 

tests and direct shear tests were modified to characterize unsaturated soil behavior. Undrained 

soil tests were mainly used to quickly characterize unsaturated soils. This task is presented in 

Chapter 5.  

Task 4: Characterization of Soil Behavior and Constitutive Modelling 

Unsaturated soils specimens retrieved from the slope site in Hawaii were used for the 

systematic testing program. The equipment developed in task 3 was used to rapidly determine 

the soil-water characteristic curve. The developed high suction tensiometers (HST) were used to 

measure the soil suction during testing. The HST along with the modified triaxial, oedometer, 

direct shear, and unconfined compression apparatuses were used to perform undrained (i.e., 

constant water content) testing for the collected samples. Based on the experimental results, the 

unsaturated soil in the field was fully characterized. The test results were compared with the 

results obtained from UHM through suction-controlled triaxial tests for constitutive modeling 

purposes. This task is presented in Chapters 6 and 7. 

Task 5: Calibration of the Infiltration-Evapotranspiration Model and Implementation 

The constitutive model and the infiltration model were developed at UHM. Numerical 

analyses were performed to simulate the evapotranspiration and infiltration processes. Climatic 

conditions at the monitoring site were used as boundary conditions for the numerical simulations. 

The results were compared with the measured suction data to validate the models. UHM took the 

lead in this task with the help of MST. A full description of this task is presented in Chapter 8.  
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Task 6: Slope Stability Analysis 

After the infiltration model was validated, parameter studies were performed to 

investigate different climatic conditions on slope stability. The results, alongside data collected 

from the tensiometers and rainfall recording instruments, plus information on storm duration 

from weather stations, were used to estimate the pore water pressures, changes in mechanical 

stresses and factors of safety during future rainstorms; and, ultimately, to identify the instrument 

threshold values when a landslide will be triggered. The results led to the development of a 

landslide warning system. UHM took the lead in this task with help from MST. This task is 

included in Chapters 9 and 10. 

Task 7: Draft of Final Report and Recommendations 

Upon completion of the aforementioned tasks, a final report was drafted. The report 

included a literature survey and discussion of the results of other researchers, a description of the 

research methods and approach for this project, the test procedures and results, numerical 

simulation validation and results, this project’s findings and limitations, and suggestions for 

further study. The conclusions and recommendations are presented in Chapter 11. 
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LITERATURE REVIEW 

“Landslides are one of the most widespread and effective agents in sculpting the earth’s 

surface” (Eckel 1958). Landslides and other geo-material movements cause approximately 25 to 

50 deaths and from 1 to 2 billion dollars’ worth of damage in the United States annually (Turner 

and Schuster 1996). Landslides can be triggered naturally or by human activities as well. Natural 

triggers include intense precipitation, earthquakes, scouring, and volcanic eruptions. According 

to recent surveys, half of the 40 most destructive worldwide landslides in the past century 

resulted from prolonged or intense rainfall (Sidle and Ochiai 2006). The U.S. Geology Survey 

reported that the most frequent and widespread damaging landslides in the U.S. are induced by 

prolonged or heavy rainfalls. The rainfall-induced landslides are shallow and cause the geo-

material to move (i.e., debris flow) rapidly from upland to downhill. Landslide mitigation 

requires employing costly measures such as grading, excavation, drainage, pining, retaining 

structures, etc. A less costly alternative is an early warning system that is especially suited 

towards slopes that are prone to rainfall-induced landslides. 

The occurrence of debris flows on the island of Oahu has been well-documented in a 

report by the U.S. Geology Survey (Peterson et al., 1993). Due to recent rainfall, the island of 

Oahu, Hawaii has experienced numerous landslides along the state highways and elsewhere. This 

encouraged the University of Hawaii at Manoa and the Center for Environmentally Sustainable 

Transportation in Cold Climates (CESTiCC) to launch a project to develop a site-specific 

landslide warning system for a precarious cut slope adjacent to the main thoroughfare just north 

of the Pali Highway. A site-specific landslide warning system can be developed empirically 

based on correlations between rainfall intensity/duration and previous slide occurrences (e.g., 

Keefer et al. 1987; Wilson 1992; Capparelli and Tiranti 2010; Greco et al. 2013), or 
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mechanistically, based on either principles of limit equilibrium (slope stability analysis; e.g., 

Eichenberger et al. 2013; Thiebes et al. 2014; Baum and Godt 2010; Kanjanakul et al. 2016) or 

based on soil volume change and stress-deformation behavior via a numerical analysis. Since the 

mechanistic approaches are more rational, they form the focus of this work. The development of 

such a mechanistic early-warning system requires understanding the influences of geology, 

topography, hydrological conditions, soil material properties, and human action on slope 

stability. Estimation of rainfall infiltration and evapotranspiration related to climatic conditions 

and characterization of the non-linear hydraulic and constitutive properties of the soil are two 

major challenges among these factors. The former is related to the amount of water entering and 

leaving the soil, and the latter represents the influence of the water content and associated stress 

change on slope stability.  

The most challenging factors for developing an early-warning landslide system are (1) 

fully characterizing the unsaturated soils, (2) estimating the rainfall infiltration and 

evapotranspiration, (3) calibrating a suitable saturated-unsaturated transient flow model that is 

able to estimate the change in stress due to rainfall events, and (4) utilizing the appropriate model 

(slope stability or numerical) for factor of safety predictions and real-time warning. These factors 

are the main focus of this project and in the following section a literature review is provided for 

every factor separately. 

2.1 Unsaturated Soil Testing and Characterization 

Saturated soils are a special case of unsaturated soils in which the soils consist of two 

phases only (i.e., water and solid phases). This makes testing and analyzing saturated soils much 

simpler than unsaturated soils. Even though for saturated soils, there are some laborious tests that 
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take time and effort, such as the consolidated drained (CD) triaxial test which is called the slow 

test. Most of the existing saturated soil testing apparatuses and standards were built upon the 

major assumption that the soil pores are fully occupied by water. This assumption makes 

saturated soil testing and data analysis relatively easy. For saturated soils, the volume changes 

equal to the water volume flow in or out of the sample when the load is applied, which is easy to 

measure during testing using a volume gage. For unsaturated soils, the soil behavior is even more 

complicated due to the simultaneous presence of three phases (i.e., solid, water, and air phases) 

(Kohgo et al. 1993). As a consequence, the sample total volume change is no longer equal to 

water volume change because of the presence of air phase in soil pores. This makes the use of 

the conventional triaxial test insufficient for unsaturated soils. To overcome this limitation, 

Bishop and Donald (1961) adopted the first double-cell suction controlled triaxial apparatus 

(SCTX). Two significant modifications were made to change the conventional triaxial test into 

suction-controlled triaxial apparatus. The first one is the use of double cells to measure the 

volume change of unsaturated soil specimens. The second one is to replace the porous stone at 

the base pedestal with a high air entry (HAE) ceramic disc to control matric suction with the 

axis-translation technique (Hilf 1956).The SCTX is the most popular unsaturated soil testing 

system. Moreover, it allows researchers to control the stress, air, and pore water pressures 

separately to eliminate the complicated coupling effect. Besides, using SCTX test, the soil 

mechanical behavior under specific (pre-selected) stress paths could be investigated. Since the 

1960s the SCTX test has been used by many researchers to study and investigate constitutive 

behaviors of unsaturated soils (Bishop and Blight 1963; Fredlund 1979; Fredlund and 

Morgenstern 1976; Fredlund et al. 1978; Fredlund and Morgenstern 1977; Jennings and Burland 

1962; Matyas and Radhakrishna 1968; and Sivakumar 1993). However, there are many 

limitations for the SCTX test, such as the need for sophisticated equipment and the sensitivity of 
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measurements to temperature changes. Also, the SCTX test is a consolidated drained test. 

Because of large sample dimensions and low permeability of unsaturated soils, the SCTX test is 

very time consuming, laborious and costly. Usually, to fully characterize one unsaturated soil it 

takes several years (Hoyos Jr 1998; Sharma 1998; Sivakumar 1993). 

The SCTX is established based on the divide and conquer approach, which implicitly 

includes an assumption that the unsaturated soil is stress path independent. However, it is well 

established that the unsaturated soil behavior is stress path-dependent (Zhang 2016). One 

significant additional limitation for the SCTX is that the results are theoretically problematic. 

The principals of SCTX were investigated and discussed by Zhang (2016). It was concluded that 

if the soil elastic behavior is stress path independent then the SCTX test results could be 

acceptable. However, the soil plastic behavior is stress path-dependent and the test results are 

only a collection of elastic behaviors of the soil with different pre-consolidation stresses and are 

always lower than the results from the idealized stress path as shown in Figure 1.1. Moreover, 

applying continuous load into the drained unsaturated soil will result in non-uniform suction 

changes within the sample. As a result, the sample cannot be considered as a representative 

elementary volume (REV). In other words, using SCTX test we made a good sample 

representing the field conditions to a non-REV sample. If the soil is not a REV, the test results 

cannot be used for constitutive modeling purposes (Zhang 2016). Because of the limitations 

mentioned above of the SCTX test and the non-availability in most of the universities and 

research centers due to high cost and time-consuming, there was a great need to develop and 

modify simple testing equipment for unsaturated soils to be used for common engineering 

projects. 
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Figure 2.1 Schematic plot of the effects of loading procedure on suction-controlled triaxial test 

results (Zhang 2016). 

 

To overcome the SCTX limitations, modifications were proposed to make the 

conventional saturated soil testing apparatuses (i.e., direct shear and oedometer apparatuses) 

suitable for unsaturated soils. For instance, Gan and Fredlund (1988) proposed the suction-

controlled direct shear test, in which soil suction was controlled using the axis-translation 

technique, to characterize the shear strength of unsaturated soils. By testing different samples at 

different suction levels, the shear strength parameters could be determined based on Fredlund’s 

equation (Fredlund et al. 1978). Later, the suction-controlled direct shear test was successfully 

used by many researchers to investigate unsaturated soils shear strength (De Campos and 

Carrillo 1995; Nam et al. 2011). However, sophisticated modifications are required to transform 

the conventional apparatus to a suction control purpose and are complicated to operate. 

Moreover, to control suction the water shall be allowed to flow in and out from the sample and, 

again, due to the extremely low permeability of unsaturated soils, suction-controlled tests could 

be time-consuming as well. 

Similarly, the oedometer test was modified by several researchers to make it suitable for 

unsaturated soils by introducing a suction control system through axis-translation or vapor 

equilibrium technique (Dineen and Burland 1995; Kassiff and Shalom 1971; Maswoswe 1985; 
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Romero et al. 1995). The suction controlled oedometer test is much cheaper and relatively easier 

to perform compared to the SCTX. However, practically, it requires major modifications to the 

conventional oedometer cell and it takes a fair amount of time to run a test due to the long-time 

required for suction equilibrium. In the past, using the oedometer test results for constitutive 

modeling purposes was restricted due to the lack of any method to calculate the lateral stress. As 

a result, most researchers used the oedometer results for only verify their models, based on two 

assumptions: (a) elastic shear strains are small and negligible and (b) the K0 consolidation line 

shares the same constant slope for saturated and unsaturated soils. Zhang et al. (2016a) 

demonstrated that these assumptions are problematic. Moreover, without any assumptions, they 

derived an explicit formulation for the at-rest coefficient and developed an optimization 

approach for simple and objective identification of the material parameters in elasto-plastic 

models for unsaturated soils using the results from suction-controlled oedometer tests. 

With the recent developments in high-suction tensiometers, the matric suction changes 

can be easily measured. Based on this concept, Zhang et al. (2016b) modified a constant water 

content oedometer cell (CWOD) for unsaturated soils that is schematically presented in Figure 

1.2. The major advantages of the modified cell are (1) no significant modifications are 

introduced to the conventional cell and (2) it takes a short time (only 4 to 7 hours) to run a 

CWOD for unsaturated soils, which is 300 to 400 times less than the time required for an SCTX 

test. In addition to the modified equipment, the method developed by Zhang et al. (2016a) can be 

utilized to identify the material stiffness parameters in elastoplastic models for unsaturated soils. 

Besides the stiffness parameters, the shear strength parameters shall be identified as well. 

However, the shear strength obtained using the approach developed by Zhang et al. (2016a) 

represents an extrapolation of soil shear strength behavior that is inaccurate.  
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In this project, a constant water content direct shear test is developed for the purpose of 

identifying the shear strength parameters for unsaturated soils. Similar to the CWOD, the 

conventional direct shear cell is equipped with a miniature high-suction tensiometer to measure 

suction changes during normal and shear loading. Knowing the suction value at failure, the 

equation proposed by Fredlund et al. (1978) can be used to adopt the unsaturated soil shear 

strength parameters. 

 

Figure 2.2 Modified one-dimensional oedometer cell (Zhang et al. 2016b). 

2.2 Methods to Estimate the Infiltration and Evapotranspiration Rates 

The study of unsaturated natural slopes is a very complicated problem. The climate (i.e., 

water loss or gain) significantly affects the shear strength of unsaturated soils. Water loss could 

be due to evaporation from ground surface or by transpiration from vegetation, which is referred 

as evapotranspiration. Water gain could be due to rainfall or any other form precipitation that 

provides water infiltration to the soil. Thus, weather conditions determine the boundary condition 

at the ground surface. A soil gains water by rainfall infiltration and loses water by 
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evapotranspiration. Although it is easy to find the amount of rainfall infiltration by direct 

measurements, tremendous efforts were aimed at evaluating the evapotranspiration values. Three 

general approaches are used extensively to estimate evapotranspiration: the temperature 

methods, the radiation methods, and the combination methods (Jacobs et al. 2001). The one that 

has gained considerable acceptance in the geotechnical field and is used by many researchers 

(e.g., Baum and Godt 2010, Kanjanakul et al. 2016, Rahardjo et al. 2013, and Zhang et al. 2018) 

is the combined method. The combined method equation was developed by Penman (1948) and 

later modified by Kohler and Parmele (1967). In this project the combined method was also 

utilized to provide an estimate for the evapotranspiration rates. 

2.3 Hydro-Mechanical Constitutive Modeling 

As previously mentioned, studying natural slopes landslides is a very complicated task 

due to the soil-climate interaction that subjects cycles of wetting and drying to the unsaturated 

soils. Hysteresis is a common feature in the mechanical (loading-unloading) behavior of soils in 

general and hydraulic (wetting-drying) behavior of unsaturated soils. Plastic strains may 

cumulate due to load combinations beyond the yield stress or due to hysteretic behavior of 

unsaturated soils. Consequently, slopes are suffering from deteriorations, plastic deformation, 

and, sometimes, failures (Turner and Schuster, 1996; Peterson et al., 1993; Wilson, 1992; 

Eichenberger et al., 2013, Thiebes et al., 2014, Baum and Godt, 2010, and Kanjanakul et al., 

2016). The first elastoplastic model for unsaturated soils was pioneered by Alonso et al. (1990). 

The model was later referred to as the Barcelona Basic Model (BBM) and gained considerable 

acceptance within the unsaturated soils research community. Since then, a number of constitutive 

models have been proposed to simulate the mechanical behavior of unsaturated soils, and 

reviews of these models can be found in Gens (1996), Gens et al. (2006), and Sheng et al. 
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(2008a). However, Wheeler and Karube (1996) pointed out the inconsistency between the 

mechanical and hydraulic behaviors in the BBM that relate to using one simple elastic equation 

to simulate the hydraulic behavior which is inconsistent with the elastoplastic mechanical 

behavior. 

Several models were proposed to simulate the hydraulic behavior of unsaturated soils 

intending to neglect the soil deformation (e.g., Van Genuchten, 1980; and Fredlund and Xing, 

1994). These models described the degree of saturation change with suction and called Soil-

Water Characteristic Curve (SWCC) or Soil-Water Retention Curve (SWRC) that were obtained 

from experimental tests under constant stresses. Since soil deformation was not included, the 

soils are implicitly assumed to be rigid. However, most of these models were developed for 

deformable soils in which the mechanical and hydraulic behaviors are coupled together. 

Hysteresis is a common feature in the hydraulic behavior of unsaturated soils. At a given matric 

suction value, the water content on a drying curve is always higher than that on a wetting curve. 

The hydraulic hysteresis may affect the mechanical behavior of unsaturated soils and vice versa. 

Vaunat et al. (2000) proposed the first coupled hydro-mechanical constitutive model for 

unsaturated soils with the main focus on considering the effect of hydraulic hysteresis on 

mechanical behavior. After that, several models were proposed to simulate the coupled hydro-

mechanical behavior of unsaturated soils with considerable focus on the effect of hydraulic 

hysteresis on mechanical behavior (e.g., Buisson and Wheeler, 2000; Romero and Vaunat, 2014; 

Wheeler et al., 2003; Gallipoli et al., 2003a, 2003b; Simms and Yanful, 2005; Sheng et al. 2004, 

2008; Tamagnini, 2004; Wheeler et al., 2004; Sun et al., 2007a, 2007b, 2010; Zhou and Sheng, 

2009; Nuth and Laloui, 2008; Tarantino 2009; Masin, 2010; Sheng and Zhou, 2011). However, 

most of these models have limitations regarding consistency between hydraulic and mechanical 

behavior, and they require sophisticated experimental testing for unsaturated soil.  
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Recently, Zhang and Lytton (2009a and 2009b) proposed the Modified State Surface 

Approach (MSSA) to study the volume change for unsaturated soils using independent stress 

state variables (i.e., mean net stress and suction). In the MSSA, the void ratio constitutive surface 

was divided into an elastic surface and a plastic surface. The plastic surface is a unique constant 

surface, but the elastic surface is moveable, depending on the occurrence of the plastic 

deformation. The MSSA was used to explain the BBM and many other unsaturated soil 

behaviors. Later on, Zhang and Lytton (2011) extended the MSSA to study the coupled hydro-

mechanical behavior of unsaturated soils. They paid special attention to the compatibility among 

the elastoplastic relations for the three soil phases. The BBM was used, then, to demonstrate how 

to use the MSSA to modify an existing model to simulate the hydro-mechanical behavior of 

unsaturated soils. One of the main challenges to most of the existing models is predicting an 

unsaturated soil behavior under undrained conditions in a consistent way. This challenge was 

addressed and resolved by the MSSA. The soil hysteresis behavior, both mechanical and 

hydraulic, of unsaturated soils was neglected during formulating the MSSA. Since only the BBM 

is implemented in some of the available software (e.g., CODE_BRIGHT and COMSOL), it is 

considered in this project. The BBM along with Van Genuchten (1980) model are used to study 

the hydraulic and mechanical behavior of the concerned slope. 

2.4 Slope Stability for Unsaturated Slopes 

Limit Equilibrium Analysis 

The pore-water pressure calculated from a transient seepage analysis can be easily 

integrated into a slope stability analysis. Limit equilibrium methods (e.g., Bishop 1955; Price and 

Morgenstern 1965; Spencer 1967) that discretize the failure wedge into vertical slices, as shown 
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in Figure 1.3, have been widely utilized to assess the stability of saturated and dry slopes. For 

partially saturated soils slopes, the effect of suction on the shear strength shall be considered. 

Fredlund et al. (1978) proposed an equation for the shear strength of unsaturated soils 

considering the suction effect as an independent stress state variable. This equation is known as 

the extended Mohr-Coulomb failure criterion. By using the extended Mohr-Coulomb failure 

criterion, the conventional limit equilibrium methods can be easily modified for unsaturated soil 

slopes. The moment equilibrium (
mF ) and force equilibrium (

fF ) can be generally expressed as 

(Fredlund and Rahardjo 1993): 
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Figure 2.3 Forces acting on a slice of a failure wedge (modified from Fredlund and 

Rahardjo, 1993). 
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Several commercial software packages were adopted for the combined transient seepage 

and slope stability analysis (e.g., SEEP/W and SLOPE/W) (Ng and Shi 1998; Gasmo et al., 2000; 

Tsaparas et al. 2002; Huat et al., 2006; Rahardjo et al., 2007, 2010; Cascini et al., 2009; Rahimi 

et al., 2010). More specifically, any transient flow software can be used to calculate the pore 

water pressure (
wu ) under a rainfall infiltration. Later, the obtained pore water pressure values 

can be transferred into a slope stability software (e.g., SLOPE/W). In this project, HYDRUS 

software was used to calculate the pore water pressure due to its ability to consider the hydraulic 

hysteresis behavior of unsaturated soils. Then, the obtained pore water pressure was transferred 

to SLOPE/W for slope stability analysis. 

Although limit equilibrium analysis generally leads to satisfactory results for practical 

purposes, the analysis has been criticized for lack of a sound theoretical basis (Chen 2013; Miller 

and Hamilton, 1989; Michalowski, 1995; Yu et al., 1998). For instance, Lu et al. (2012) 

conducted a slope stability analysis and showed that the limit equilibrium method performs well 

if rational failure triggered; however, it may fail to search for the potential shallow slip surface if 

translation failure triggers. 

Finite Element Analysis 

Displacement of soil mass was totally neglected by the limit equilibrium methods 

(Fredlund and Rahardjo 1993). The calculated pore water pressure from transient flow analysis 

can also be integrated into a finite element slope stability analysis. The main advantage of using 

FEM is that the deformation triggered by stress changes is fully taken into account. 

The slope stability global factor of safety can be obtained by using the shear strength 

reduction technique (Cai and Ugai 2004; Griffiths and Lu, 2005; Huang and Jia, 2009; Le et al., 

2015). For a shear strength reduction technique, the soil cohesion (c) and '  are incrementally 
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divided by a strength reduction factor (SRF) until excessive deformations are observed or the 

solution does not converge. The main principles of strength reduction method are: 

'
,  'd d

c
c

SRF SRF


   (Eq. 2.3) 

Alternatively, a local factor of safety (LFS) at one point can be obtained by finite element 

analysis. Lu et al. (2012) defined the LFS as the ratio of the available shear strength to the 

current shear strength at one point. The superiority of local factor of safety approach is that it 

could provide more insight if local failure is more critical (e.g., stress concentration at the toe of 

a vertical cut); however, it could not be used as an index to assess slope stability if global failure 

is more critical. 
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SITE DESCRIPTION, SUBSURFACE INVESTIGATION, AND 

FIELD MONITORING 

3.1 Location 

A natural slope was selected in the state of Hawaii for slope stability analysis and 

developing a site-specific early warning system by the research team at the UHM (Iwamoto 

2018). The 12.20-m-high cut slope is adjacent to Kalanianaole Highway on the southeast side of 

the island of Oahu, Hawaii with Le Jardin Academy lying on the northeast as shown in Figure 

3.1. 

 

 

Figure 3.1 Location of the natural slope on Kalanianaole Highway (Google maps, 2017). 
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The elevation view of the slope is shown in Figure 3.2, where it can be seen that the 

lower and upper portions of the compound slope are 55o and 63o, respectively. 

 

Figure 3.2 Cross-section view for the concerned slope (Iwamoto 2018). 

3.2 Geology and Hydraulic Conditions 

The island of Oahu was formed by the extrusion of basaltic lava from the Waianae and 

Koolau shield volcanoes. The older Waianae Volcano is estimated to be middle to late Pliocene 

in age and forms the western third of Oahu, while the Koolau Volcano is estimated to be late 

Pliocene to early Pleistocene in age and accounts for about the eastern two-thirds of Oahu. The 

Koolau and Waianae volcanos may have grown as separate islands but were eventually joined 

and saddled by the Leilehua Plateau (Hazlett and Hyndman 1996). The Leilehua Plateau and the 

Waianae volcano braced the western flank of the Koolau volcano (Figure 3.3). A portion of the 

steep, unsupported eastern flank eventually slid into the ocean as more and more magma rose 

into the volcano. Known as the Nuuanu slide, this is one of the largest known slides on earth. 

The slope lies within the Koolau caldera as shown in Figure 3.3. Rising hydrothermal fluids and 
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gases emanating from the active volcano has caused intense decomposition of the basaltic lava 

and breccia, and over time, this material has weathered into a saprolite. The slope crest lies about 

50 m above the mean sea level (MSL). The groundwater table was not encountered in any of the 

drilled boreholes. However, according to Engott et al. (2017), the groundwater table at this site is 

about El. 5.80 m, which is 44.20 m below the slope crest. 

 

Figure 3.3 Formation of Oahu by coalescence of the Waianae and Koolau volcanoes 

(Carlquist 1970). 

3.3 Nearby Historical Landslide 

The current Pali Highway lies southeast of the concerned slope site. Since completion in 

the late 1950s, it has experienced a number of landslides, many of which have been documented 

by Torikai and Wilson (1992) and Macdonald et al. (1983). Two maps summarizing some of 

these slides are shown in Figures 3.4 and 3.5. Figure 3.4 from Deb and El-Kadi (2009) presents 

slides occurring before 2006. Figure 3.5 illustrates slope failures taken from a NASA landslide 

database which records globally occurring landslides from 2006 to the present. 
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Figure 3.4 Locations of rainfall-induced shallow landslides from 1940 – 2006 (Deb and El-

Kadi 2009). 

 

Figure 3.5 Map summarizing the locations of recent landslides (20011 – present) on Pali 

Highway and its vicinity (from Kirschbaum et al., 2010). 
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3.4 Geotechnical Investigation 

The subsurface investigation program was provided and supervised by the UHM team 

(for more details refer to Iwamoto, 2018). Two boreholes nominated B2 and B3 were drilled by 

Geolabs, Inc, to a depth of 7.60 m (25 ft) with continuous sampling. Disturbed and undisturbed 

samples were collected through split-spoon and California samplers, respectively. Inclinometers 

casings were then inserted into the boreholes and grouted in-place after reaching the bottom of 

the borings. In-place inclinometers were then installed inside the casings in borings B2 and B3. 

In addition, boreholes were drilled nearby for the tensiometer installation and water content 

tensors. The boreholes, tensiometers and water content sensors locations and the corresponding 

depths are shown in Figure 3.6. 

 

Figure 3.6 Instrumented slope (a) borehole locations, (b) tensiometers, and (c) water 

content sensors (Iwamoto, 2018). 

Split spoon samples were used for index testing to measure the soil grain size 

distribution, atterberg limits, water content, and specific gravity. Soil samples from the 
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California samplers were utilized for shear and stiffness tests as well as to obtain the soil-water 

characteristic curve (SWCC). 

Standard Penetration Test 

Standard penetration tests (SPT) were conducted in both boreholes, and the collected soil 

was classified as red-brown stiff to very stiff uniform elastic silt (MH) or saprolite with more 

than 90% files. Figure 3.7 shows the SPT blow counts corrected for overburden plotted versus 

depth. The average corrected SPT value over the depth for both boreholes B2 and B3 is 

approximately 26 blows/ft. 

Undisturbed Soil Samples 

Modified California samplers were used to obtain relatively undisturbed soil samples 

because Shelby tubes would have likely crimped when pushed into such stiff soil and Picher 

samples were not available at the time of drilling. The modified California sampler is a thick-

wall sampler that is driven into the soil using an SPT falling hammer. Strictly speaking, samples 

from the modified California Sampler are technically “disturbed” due to the large area ratio of 

the sampler and due to hammer advancement of the sampler. However, this was the only option 

provided by the driller to obtain soil samples for strength and stiffness testing. To reduce the 

effects of disturbance, the outer portion of the modified California samples were trimmed down 

from a diameter of 2.8 inches to 2.4 inches for strength testing, and to 2.5 inches for 

consolidation testing. 

Approximately half of the collected undisturbed soil samples were tested at the 

University of Hawaii at Manoa (UHM), and the other half was provided to the MST team for the 

purpose of conducting constant water content consolidation and direct shear tests for calibrating 
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the Barcelona Basic Model (BBM) soil parameters. At the University of Hawaii, isotropic 

compression and constant water content triaxial tests were performed on the other half of 

samples. Simultaneously and independently, the BBM parameters were calibrated using test 

results from both groups (i.e., UHM and MST) to enable comparison of the parameters from both 

approaches to be made. 

 

Figure 3.7 SPT blow counts versus depth (Iwamoto, 2018). 
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FILED INSTRUMENTATIONS 

4.1 Instrumentation Types, Layout and Installation 

The field instrumentation program was designed, installed and monitored by the team at 

the University of Hawaii at Manoa (UHM). However a brief summary of the instrumentation 

activities and results are provided in this chapter (for detailed description refer to Iwamoto, 2018 

Ph.D. thesis). Table 4.1 shows the installed instruments at the slope. The distribution of the 

instrumentations is shown in Figure 3.6. 

Table 4.1 Instrumentation purpose and location. 

Instrument Purpose Make, model and accuracy Location Depth 

Inclinometer 

To measure the 

lateral deflection 

of the slope 

Geokon MEMs 6150-4 

(±0.05 mm/m) 
B2 and B3 

≤7.62 m 

(25 ft) 

Tensiometer 
To measure soil 

suction 

Decagon MPs-6 (±10% 

accuracy) 
T2 and T3 

≤6.1 m 

(20 ft) 

Water content 

sensor 

To measure soil 

water content 

Decagon GS-3 (±3% 

accuracy) 

W2 and 

W3 

≤0.76 m 

(2.5 ft) 

Rain gage 
To measure 

precipitation 

Campbell Scientific 

TE525WS-L tipping rain 

bucket (±1% accuracy) 

Above 

ground 
NA 

 

The inclinometers were embedded down to a depth of 7.6 m (25 ft) below the slope crest, 

which is below the sliding surface for most rainfall-induced landslides (usually between 2 and 4 

m deep according to (Eichenberger et al., 2013). Five tensiometers were installed each in 

boreholes T2 and T3 at depths of 0.15 m (0.5 ft), 1.52 m (5ft), 3.05 m (10 ft), 4.57 m (15 ft) and 

6.1 m (20 ft). The measurable suction of Decagon MPS-6 tensiometers ranges from 9 to 100,000 

kPa. Water content sensors were installed in boreholes W2 and W3 at depths of 0.15 m (0.5 ft) 

and 0.76 m (2.5 ft). Wires from all instruments were connected to two Geokon 16-channel 

multiplexers, which in turn was wired to a GEOKON Micro-1000 datalogger. The datalogger 
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was programmed to collect readings every 4 hours. The whole system was powered by a 12V 

battery charged by a solar panel during the day. A rain gage was housed separately from the 

datalogger and solar panel to minimize obstruction when collecting precipitation. 

4.2 Field Measurements 

This section presents the collected readings from the monitoring instrumentations for the 

period from July 2017 to January 2018. 

Precipitation 

Due to limited resources, only a rain gage was installed at the slope site rather than a 

comprehensive weather station that would provide all the data necessary to estimate the potential 

water evaporation. The rainfall record over the entire monitoring period is shown in Figure 4.1. 

There exists a gap in all the instrument data from 12/2/2016 to 1/27/2017 due to a 12V battery 

that had to be replaced and damage in the tensiometer cables. There were two other times when 

the rainfall data need to be corrected due to rain gage clogging. To correct the rainfall records, 

data from five nearby rain gages were collected and averaged using an inverse-distance-

weighting method. The corrected and adjusted rainfall data shown in Figure 4.2. 
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Figure 4.1 Rainfall record at the slope site (Iwamoto, 2018). 

 

 

Figure 4.2 Corrected and adjusted rainfall data (Iwamoto, 2018). 

Inclinometer 

The inclinometers readings at different depths are shown in Figure 4.2. It is clear that the 

ground deflections were minimal (< 2 mm) during the monitoring period. This amount of 

deflection is probably within the tolerance error of the inclinometer. For all intents and purposes, 

the lateral deflections are considered negligible during the period of this study. 



34 

 

Tensiometer and Water Content Sensors 

Suction is plotted versus time at the shallower tensiometers (≤1.5 m) in Figure 4.3a and 

the deeper tensiometers (≥3.0 m) in Figure 4.3b. From Figure 4.3, it is interesting to note that 

suctions are affected by precipitation mostly at shallow depths (<1.50 m). Beyond this depth, the 

soil suctions are fairly constant. Figure 4.4 shows the suction and water content sensor reading 

plotted in juxtaposition to show the interaction between them. The fact that suction decreases 

when water content increases illustrates that the instruments are responding logically. 

 

(a) 
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(b) 

Figure 4.3 Inclinometer deflection readings at borings (a) B2 and (b) B3 (Iwamoto, 2018). 

 
(a) 
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(b) 

Figure 4.4 Suction versus time for (a) shallow tensiometers (≤1.50 m deep) and (b) deep 

tensiometers (≤3.0 m deep) (Iwamoto, 2018). 

 

(a) 
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(b) 

Figure 4.5 Suction and water content versus time for (a) 0.15 m deep tensiometers and (b) 

1.5 m deep tensiometers (Iwamoto, 2018). 
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DEVELOPMENT OF TEST APPARATUS 

5.1 Introduction 

In this chapter, the work done by the team at MST to develop apparatus for rapid testing 

for unsaturated soils is presented in detail. The work mainly consisted of developing high suction 

tensiometers to be equipped in a modified oedometer cell and direct shear apparatus. Then, the 

modified equipment was used for constant water content oedometer and direct shear tests. These 

modifications were done for the purpose of facilitating unsaturated soil testing. For saturated 

soils, due to the simplicity and equipment availability, the oedometer cell is widely used to 

characterize soil behavior. However, the conventional oedometer cell cannot be directly used for 

unsaturated soil investigation due to difficulties in measuring soil suction. Ridley and Burland 

(1993) developed the first high-suction tensiometer for direct suction measurements. Since then, 

several high-suction tensiometers have been developed and utilized for both laboratory and field 

suction measurements (Meilani et al., 2002; Take and Bolton, 2003; and Lourenço et al., 2006). 

Le et al. (2011) mounted a high-suction tensiometer on a conventional oedometer cell for direct 

suction measurement during undrained testing of unsaturated soils. Similarly, in this chapter, a 

new high-suction tensiometer is fabricated and, then, mounted on a modified oedometer cell and 

used for constant-water content oedometer cell. All details of fabrications and modifications are 

presented in this chapter. 

The direct shear test is usually used to identify the saturated soil shear strength 

parameters. Different from saturated soils, the shear strength of unsaturated soils is significantly 

influenced by the suction value at failure. The shear strength of an unsaturated soil can be 

determined using modified direct shear or suction-controlled triaxial shear equipment (Escario 
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1980, Ho and Fredlund 1982, Gan and Fredlund 1988, Escario et al. 1989, Wheeler and 

Sivakumar 1993, Vanapalli et al. 1996). However, experimental studies related to the 

determination of the shear strength of unsaturated soils are time-consuming and require extensive 

and costly laboratory facilities. For this reason, the application of shear strength studies in 

engineering practice has been limited. In recent years, several semi-empirical shear strength 

functions were proposed to predict the shear strength of unsaturated soils. Vanapalli and Lane 

(2002) proposed a procedure that uses the saturated shear strength parameters (i.e., c’ and φ’) 

along with the soil-water characteristic curve to determine the unsaturated soil shear strength at 

the corresponding suction value. Obviously, this procedure built upon the major assumption that 

the suction value does not change significantly during shearing. However, this assumption is 

problematic because the volumetric changes in soils during shearing (i.e., contraction or dilation) 

will cause suction changes. 

Moreover, the normal load applied during shearing causes suction changes. All the 

mentioned efforts were to eliminate the introduction of significant modifications into the direct 

shear apparatus, however, they made the simple test more complicated and time-consuming. 

Nowadays, using high suction tensiometer, the conventional direct shear test could be used with 

minimal modifications that do not affect the test simplicity and short time advantage. In this 

chapter, to characterize the shear strength of the Hawaii unsaturated soil, a modified direct shear 

apparatus was developed and described in detail. 

5.2 Modified Oedometer cell 

Literature Review 
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Conventional triaxial test apparatus designed to test saturated soils cannot be directly 

utilized for triaxial tests on unsaturated soils due to the difficulties in matric suction and volume 

change measurements. Bishop and Donald (1961) developed the suction-controlled triaxial test 

apparatus to characterize unsaturated soil behaviors. Since then, suction-controlled triaxial test, 

which is drained, has been extensively used to characterize unsaturated soil behaviors (Fredlund 

et al., 1978; Josa et al., 1987; Wheeler, 1988; Sivakumar, 1993; Romero et al., 1995; Ng et al., 

2002; and Thu et al., 2006). However, suction-controlled triaxial tests are too laborious, time-

consuming, and costly, and cannot be justified for routine engineering projects. Moreover, the 

SCTX test results are theoretically incorrect as presented in (Zhang 2016). Usually, it took 

months to years to characterize the stress-strain behavior of one unsaturated soil (Sivakumar 

1993).  

The one-dimensional oedometer compression test was reported to be utilized for 

unsaturated soil behavior investigation (Le et al. 2011). However, in this test, due to the 

unknown confining pressure, the test results cannot be used for soil constitutive behavior 

characterization. In the present study, a similar one-dimensional oedometer compression test 

system was presented to characterize unsaturated soil behaviors. The confining pressure 

generated by the oedometer compression ring was back-calculated based on the assumption that 

there is no lateral deformation during loading. Compared with the conventional suction-

controlled triaxial test, the suction-monitored one-dimensional oedometer compression test 

significantly reduced the time required to characterize an unsaturated soil behavior from years to 

days. 

The suction-monitored one-dimensional oedometer compression test equipment was 

modified based upon a conventional oedometer for a one-dimensional oedometer compression 
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test on saturated soils. Since the one-dimensional oedometer compression test was designed to 

investigate unsaturated soil behavior, under the undrained condition, soil suction would change 

due to the applied vertical stress. Thus, it was required to monitor soil suction change during 

loading. In Le et al. (2011), a high capacity tensiometer was adopted for the matric suction 

measurement. In this project, a newly designed high-suction tensiometer was utilized for the soil 

suction measurement. 

Suction Measurement using High-Suction Tensiometer 

In the past few decades, a great effort has been dedicated to measuring matric suction of 

unsaturated soils. Reviews of conventional suction measurement methods on unsaturated soil can 

be found in Fredlund and Rahardjo (1993), Ridley and Burland (1993), Ridley et al. (2003), and 

Rahardjo and Leong (2006). Based on the literature review on existing high-suction 

tensiometers, a new high-suction tensiometer, as schematically shown in Figure 5.1a, was 

developed based upon an EPXO pressure transducer. Similar to previously developed high-

suction tensiometers (Ridley and Burland, 1993; Meilani et al., 2002; Lourenço et al., 2006), the 

tensiometer developed in this project as shown in Figure 5.1b included three parts: a pressure 

transducer, ceramic disc, and housing. However, unlike the other high-suction tensiometers, the 

ceramic disc was glued to a stainless steel ring (Figure 5.1b) instead of directly glued to the 

housing. To reduce the possibility of water cavitation under negative pressure and provide the 

room for the transducer diaphragm outward deformation, the thickness of the water reservoir was 

designed to be 0.2 mm. Ceramic disc with an air-entry value of 15 bar was used as a filter to 

prevent air from entering the water reservoir. The detailed fabrication process is presented in Li 

and Zhang (2014). 
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Diaphram
Housing

EPXO Pressure

Transducer

Cables

Ceramic Disc Water Reservoir

  
            (a) Tensiometer design                 (b) Tensiometer picture 

Figure 5.1 High-suction tensiometer (Li and Zhang 2014). 

Oedometer cell modification 

Since the one-dimensional oedometer compression test is to be performed on unsaturated 

soils under the undrained condition, the cell wall mounted on the pedestal of the oedometer is no 

longer required. Due to the use of high-suction tensiometers for matric suction measurement, a 

new cell base is required to accommodate the high-suction tensiometers. Oedometer 

modification is presented in Figure 5.2. A new cell base, the schematic design shown in Figure 

5.2, was fabricated with a hole inside to hold the high-suction tensiometer in place. The new cell 

base has two parts. As shown in Figure 5.2, the tensiometer sits on the lower part. The upper part 

is in direct contact with the tested soil sample. The tensiometer is well aligned with the upper 

surface of the cell base to ensure good contact between the tensiometer and soil sample. The 

upper part of the oedometer is firmly fixed to the cell base through threaded rods as shown in 

Figure 5.2. 
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Figure 5.2 Modification on the cell base for a one-dimensional oedometer compression test. 

 

A new cell base was fabricated with a hole inside to hold the high-suction tensiometer 

(Figure 5.3a) in place. The lower part of the new oedometer cell base is shown in Figure 5.3b. As 

shown in Figure 5.2, the tensiometer sits on the lower part which is also shown in Figure 5.3c. 

The upper part of the cell base as shown in Figure 5.3d is in direct contact with the tested soil 

sample. The tensiometer is designed to be aligned with the upper surface of the cell base as 

shown in Figure 5.3d to ensure good contact between the tensiometer and soil sample. An 

unsaturated soil sample inside the oedometer compression ring as typically shown in Figure 5.3e 

sits on the top of the upper part of the cell base. The upper part of the oedometer, which is the 

same as the conventional oedometer (2.5 inches fixed ring oedometer compression cell from 

Humboldt), is then firmly fixed to the cell base through threaded rods as shown in Figure 5.3f. 

The detailed fabrication process is presented in Li et al. (2015) and Zhang et al. (2016b). 

In this project, the used tensiometer was saturated in a triaxial chamber. To achieve an 

accurate measurement, a high-suction tensiometer was calibrated in a positive pressure range 

after saturation. Negative pressure range calibration is based on extrapolation which was also 
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used in Lourenco et al. (2006). The accuracy of the calibration can be checked by the water 

pressure immediately after cavitation, which should be approximate -100 kPa. After saturation 

and calibration, the tensiometer was ready for matric suction measurement. The maximum 

attainable pressure of the high-suction tensiometer was determined to be approximately 1100 kPa 

through a free evaporation test presented by Guan and Fredlund (1997). 

5.3 Modified Direct Shear Apparatus 

Literature Review 

In geotechnical engineering, the soil shear strength parameters are required for the most 

man-made earth structures such as highway embankments, earth dams, and foundations. In these 

man-made earth structures, the compacted unsaturated soils are commonly used. A safe and 

economic slope or foundation design is highly dependent on an accurate determination of the 

unsaturated soil shear strength. The water content plays a crucial role in advancing the 

understanding of unsaturated soil behavior. The influence of water content on the shear strength 

and constitutive behavior of unsaturated soils is found in many research efforts (e.g. Hilf, 1956; 

Fredlund and Morgenstern, 1978; Feddes et al., 1988; Fredlund and Rahardjo, 1993; Fredlund et 

al., 1996; Thu et al., 2006; Li and Zhang 2015a and 2015b). An increase in water content could 

cause a decrease in shear strength of unsaturated soils, one of the primary reasons for the failure 

of man-made earth structures and natural slopes (when induced to rainfalls).  
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(a) High-suction tensiometer 

 
(b) Cell base (lower part) 

 
(c) Cell base with tensiometer 

 
(d) Cell base (lower part) 

 
(e) Unsaturated soil in a 

consolidation ring 
 

(f) Oedometer cell 

Figure 5.3 Assembly for one-dimensional oedometer compression test 
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In the past, the conservative approach considered unsaturated soils as saturated for the 

design of man-made earth structures. However, this design (consider unsaturated soils to be 

saturated) can be over-conservative and wasteful under the following situations: (1) the structure 

is located in arid areas with limited water access; and (2) the structure is equipped with a well-

designed drainage system. On the other hand, studying the stability of natural slopes from 

unsaturated soils requires precisely determining the unsaturated shear strength and evaluating the 

strength loss in case of rainfalls or water leakage. To design reliable and economically efficient 

structures and study natural slopes, the measurement of unsaturated soil shear strength has 

gained increasing attention in the past few decades (e.g., Bishop and Donald, 1961; Gan and 

Fredlund, 1988; and Li and Zhang, 2015a and 2015b). 

Shear Strength of Unsaturated Soils 

According to the Mohr-Coulomb failure criteria for saturated soils, a linear relationship 

exists between the shear strength and the net normal stress applied to the soil. For unsaturated 

soils, besides the net normal stress, the soil suction also plays an important role in the shear 

strength properties and soil failure criterion (Fredlund et al., 1978 and Khalili and Khabbaz, 

1998). Fredlund et al. (1978) reported that besides the normal stress, the shear strength of 

unsaturated soils could be significantly influenced by the soil suction. Subsequently, a new shear 

strength equation was proposed for unsaturated soils using two independent stress state variables 

(net normal stress and matric suction) as shown in Equation 5.1. 

   ' tan ' tan b

f a a wf f
c u u u       

 (Eq. 5.1) 

Where b= angle indicating the rate of change in shear strength relative to changes in 

matric suction. Equation 5.1 was well accepted and widely used to model the shear strength of 
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unsaturated soils (e.g., Escario and Saez, 1986; Gan et al., 1988; Oloo and Fredlund, 1996; 

Vanapalli et al., 1996, Li and Zhang, 2015a; 2015b; Thu et al., 2006). As stated by Hamid and 

Miller (2009), the angle b is approximately equal to ’ while the soil is saturated. However, 

once the air-entry value is exceeded, b tends to decrease with increasing matric suction. As a 

result, the relationship between matric suction and shear stress becomes nonlinear which cannot 

be captured by Equation 5.1. To overcome this limitation, Vanapalli et al. (1996) proposed a 

nonlinear equation to model the shear strength of unsaturated soils (Equation 5.2) as a relation 

with the volumetric water content. The unsaturated soil shear strength prediction models were 

summarized in Garven and Vanapalli (2006). However, Equation 5.1 is more famous for 

practical use because of its simplicity. 

   ' tan ' tan ' r

f a a w

s r

c u u u
 

   
 

  
       

  
 (Eq. 5.2) 

Where θ  is the soil volumetric water content, rθ  is the residual volumetric water 

content, and sθ  is the saturated volumetric water content. 

Existing Tests to Characterize Shear strength of Unsaturated Soils 

There are several well-established tests available for the determination of shear strength 

for a saturated soil in both laboratory and field such as direct shear, triaxial, unconfined 

compression, and vane shear. However, all these conventional methods cannot be directly used 

to determine the shear strength for unsaturated soil due to the difficulties of soil suction 

measurement. Bishop and Donald (1961) proposed the use of a double wall triaxial cell for 

measuring the shear strength of unsaturated soils in which the suction was controlled using axis-

translation technique proposed by Hilf (1956). However, as discussed previously, the suction-

controlled triaxial test is very laborious and time-consuming due to the low permeability of 
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unsaturated soils. Li and Zhang (2015a) proposed a modified unconfined compression system 

that was developed and used to characterize the shear strength behavior of unsaturated soils 

under low net confining stresses through constant water content triaxial tests. In this system, the 

confining load was applied through vacuum pressure. During testing, the soil suction was 

measured through two high-suction tensiometers mounted at the middle height of the unsaturated 

soil sample. The adoption of a constant water content test significantly reduced the time required 

for the unsaturated soil shear strength characterization when compared with the suction-

controlled triaxial test. However, the major disadvantage of this system is that the applied 

confining stress was limited to 100 kPa due to water cavitation when applying confining stress 

through vacuum pressure. Besides using the unconfined compression system, several researchers 

utilized the constant water content triaxial test to characterize the shear strength for unsaturated 

soils (e.g., Thu et al., 2006 and Li and Zhang, 2015b). With this system, the constitutive behavior 

and shear strength of unsaturated soils can both be characterized by the constant water content 

triaxial tests on unsaturated soils with different initial soil suction and confining pressure 

conditions. Besides the triaxial test as discussed above, similar to saturated soils, the shear 

strength properties of unsaturated soils can also be determined through direct shear tests. 

Theoretically, as long as the soil suction at failure is known, both suction-controlled and constant 

water content direct shear tests can be used to characterize the shear strength of unsaturated soils. 

However, the stress paths for two tests are different, both tests are discussed in detail in the 

following sections. 

Suction-Controlled Direct Shear Test 

Gan et al. (1988) developed a suction-controlled direct shear test, as schematically shown 

in Figure 5.4, to characterize the shear strength of unsaturated soils. Similar to the suction-
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controlled triaxial test, the axis-translation technique was also used to control soil suction during 

shearing. An additional chamber was added to the direct shear cell to facilitate the adoption of 

the axis-translation technique. Using this system, the shear strength properties of a glacial till 

were successfully determined. This system was later adopted by Miller and Hamid (2006) and 

Hamid and Miller (2009) for shear strength characterization on different unsaturated soils. The 

soil specimens used in the direct shear tests were thin when compared to those used in the 

triaxial tests. As a result, the time required for direct shear testing was reduced when compared 

with the suction-controlled triaxial test. However, as presented in Gan et al. (1988), this testing 

apparatus required significant modifications to the conventional direct shear apparatus for the 

suction control purpose and was complicated to operate. Besides the experimental methods as 

discussed above, the shear strength properties of unsaturated soils can be predicted theoretically 

by combining the soil shear strength parameters at saturated status with the soil water retention 

curve as proposed by Fredlund et al. (1996). However, this method suffers a significant 

limitation related to the effect of the hysteresis behavior as well as the influence of specific 

volume and loading history. 



50 

 

 

Figure 5.4 Suction-controlled direct shear tests apparatus. 

 

In a typical suction-controlled direct shear test, the soil specimen was required to be 

saturated in the direct shear chamber first as presented in Gan et al. (1988). Then, the specimen 

was conditioned to different target suction levels through the axis-translation technique. After 

this, the direct shear test could be performed. Using the failure plane defined by Equation 5.1 as 

an example, Figure 5.4a shows the stress paths of unsaturated soils during suction-controlled 

direct shear testing. Point A represents a soil specimen with zero all-around stress and suction of 

s1 at the start of a direct shear test. The application of the normal stress, n1, caused the stress state 

to move from A to B on the  - s plane at a constant suction of s1. Then, the direct shear load was 

applied which caused the movement of stress state from B to C and continuous increase of the 

Mohr Circle diameter until touched the failure plane at F1 as shown in Figure 5.4a. The failure 

plane is tangential to the Mohr Circle at the suction of s1. However, only point F1 is not sufficient 

to define a plane. At least two more direct shear tests for soils with different suction (s2 and s3) 
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and normal stress (n2 and n3) levels are required to be performed to define the failure plane. 

With these tests, the corresponding failure points F2, and F3 can then be determined. To increase 

the accuracy of the shear strength parameters (i.e. c’, ’, and b), more direct shear tests are 

encouraged to be performed. With these test results, a linear regression can be easily performed 

to find the best combination of the shear strength parameters through best-fit the failure points 

with a plane represented by Equation 5.1. Once the failure plane is defined (i.e., specified c’, ’, 

and b), the shear strength of the unsaturated soil at any combination of stress and suction can be 

predicted using Equation 5.1. The above process is straightforward. However, suction controlled 

tests are drained tests. As mentioned previously, due to the extremely low permeability of 

unsaturated soils, suction-controlled tests could be time-consuming. 

Constant Water Content Direct Shear Test 

For a constant water content direct shear test, before shearing, the soil specimens were 

conditioned to different water content levels (i.e., suction levels). Different from the suction-

controlled direct shear test, the suction of an unsaturated soil during constant water content test is 

continuously changing with normal and shear load application. Using the failure plane defined 

by Equation 5.1 as an example, Figure 5.4b shows the stress paths during constant water content 

direct shearing testing. Point A represents a soil specimen with zero all-around stress and suction 

of s0 at the initial conditions. The application of the normal stress, n1, caused the movement of 

stress state from A to B on the  - s plane during which the soil suction decreased from s0 to s1. 

Then, the direct shear load was applied, which caused the continuous movement of stress state 

from B to C and then to F1 at the constant normal stress of n1. Meanwhile, the Mohr Circle 

diameter continuously increased until touched the failure plane at F1 as shown in Figure 5.4b. 

Different from the suction-controlled direct shear test, the soil suction continuously varied from 
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s1 to s2 and then to s1F during shear loading. With the results from more direct shear tests at 

different soil suction (s2F and s3F) and normal stress levels (n2 and n3), more failure points such 

as F2 and F3 can be obtained. Then, the shear strength parameters can then be determined 

through the best-fit linear regression on Equation 5.1. As discussed above, the principle for 

unsaturated soil strength measurement using the constant water content direct shear test is very 

simple. However, till now, the constant water content direct shear test has never been reported to 

characterize unsaturated soil shear strength due to lack of a proper sensor for soil suction 

measurement during shearing.  

 
(a) Suction-controlled direct shear test 
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(b) Constant water content direct shear test 

Figure 5.5 Stress paths for direct shear tests on unsaturated soils. 

5.4 A Miniature High-Suction Tensiometer 

The high-suction tensiometer used in the oedometer cell was too big for the direct shear 

cell. As a result, a miniature high-suction tensiometer was developed as shown in Figure 5.5a. 

This high-suction tensiometer comprised (1) a miniature EPB-PW pressure transducer for 

pressure measurement, (2) a 15 Bar high air-entry disc (6.5 mm in diameter and 1 mm in 

thickness) as a filter to prevent the tensiometer from cavitation at low pressures (< -100 kPa), 

and (3) a water reservoir to facilitate the generation of a negative water pressure which is 

detected by the pressure transducer. For the developed miniature high-suction tensiometer, the 

clearance between transducer diaphragm and ceramic disk, where the water reservoir was 

located, was approximately 0.1 mm. Figure 5.5b shows a picture of the miniature high-suction 

tensiometer developed in this project. After fabrication, the miniature high-suction tensiometer 

was saturated in a triaxial chamber through repeatedly applied water pressure of 600 kPa. The 

first saturation usually takes time (approximately a week for the tensiometer developed). The 

time for first saturation can be reduced by applying a higher chamber pressure and more 
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pressurizing cycles. In addition, the saturation method using CO2 presented in Acikel and 

Mancuso (2010) can be used to shorten the saturation process. To prevent any possible damage 

from impact, the miniature high-suction tensiometer was protected by a silicone rubber grommet 

as shown in Figure 5.5b. After saturation, the miniature high-suction tensiometer was calibrated 

in a positive pressure range. Negative pressure range calibration was based on extrapolation, 

which was also used by Li and Zhang (2014) and Lourenço et al. (2006). The accuracy of the 

calibration was examined by the water pressure immediately after cavitation, which should be 

approximate -100 kPa. After calibration, to evaluate tensiometer response time under a pressure 

change, a loading-unloading process was performed for the saturated tensiometer in the triaxial 

cell filled with water applying precise pressures. The scanning interval for the used data logger 

was set to be 2 seconds during data acquisition. Figure 5.5c shows the responses of the high 

suction tensiometer. It can be seen that the pressure measured by the miniature high-suction 

tensiometer was consistent with cell pressure variation with no delay, which means the response 

of the tensiometer was less than 2 seconds or nearly instantaneous. Free evaporation tests as 

suggested by Guan and Fredlund (1997) were also performed to evaluate the maximum 

attainable suction of the new miniature high-suction tensiometer. Figure 5.5d shows the response 

of the tensiometer during the free evaporation test. The maximum attainable suction of the used 

tensiometer was found to be 1235 kPa. After cavitation, the tensiometer pressure quickly reduced 

to nearly -100 kPa as shown in Figure 5.5d which verified that the tensiometer calibration was 

accurate. 
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(a) Fabrication 

 

(b) Saturation 

 

(c) Response time (d) Maximum attainable pressure 

Figure 5.6 A miniature high-suction tensiometer. 

5.5 Direct Shear Apparatus Modification 

In this project, a direct shear cell was modified for a direct shear test on unsaturated soils. 

As shown in Figure 5.6, this new cell comprised three components: (1) a miniature high-suction 

tensiometer for soil suction measurement during direct shearing under the undrained condition, 

(2) a top cap for the application of the normal stress during testing, and (3) two separate stainless 

steel rings to hold the unsaturated soil specimen and create the shear plane. Figure 5.6 shows a 

schematic plot of the new cell for the constant water content direct shear test on unsaturated 
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soils. To achieve more representative soil suction measurement results, the miniature high-

suction tensiometer tip should be located on the failure plane. However, for a real direct shear 

test, the failure plane is usually rough due to the non-uniformity of the soil specimen. As a result, 

in this new cell, the high-suction tensiometer tip was set to be approximately 1 mm above the 

failure plane as shown in Figure 5.6a. The miniature high-suction tensiometer tip should not be 

placed “far” away from the failure plane. Otherwise, the measured soil suction would be less 

representative. The presence of the spring ensured good contact between the soil and the high-

suction tensiometer. This new cell was designed to accommodate the conventional direct shear 

cell. To characterize the shear strength properties of unsaturated soils, this new cell was placed in 

the conventional direct shear cell as shown in Figure 5.6b. With this new cell, the conventional 

direct shear test apparatus could then be performed. 
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(a) Schematic design 

 

(b) New cell in a direct shear box 

Figure 5.7 A new constant water content direct shear test apparatus.  
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EXPERIMENTAL PROGRAM AND RESULTS 

6.1 Introduction 

As mentioned earlier, half of the soil samples were tested at MST, and the other half were 

tested in UHM (Detailed description for UHM testing program and results can be found at 

Iwamoto, 2018). The MST team used the modified oedometer and direct shear test apparatuses 

discussed in the previous chapter to perform constant water content testing for the unsaturated 

soils. The team at UHM ran isotropic compression and constant water content triaxial tests. The 

results from each team were used to simultaneously and independently calibrate the BBM 

parameters. Later, the calibrated parameters from both approaches were calibrated and discussed. 

6.2 MST Team 

Soil Sampling 

The samples were stored in metal or plastic tubes as shown in Figure 6.1. The original 

soil samples were not in good shape especially at both ends as typically shown in Figure 6.1. 

Before testing, the samples were extracted using a hydraulic extruder. To minimize the 

disturbance during extraction, the soil specimens were directly extracted to the rings for 

oedometer compression and direct shear test as shown in Figures 6.2a and 6.2b. Next, the soil 

specimen was cut off from the tube as shown in Figure 6.2c. No obvious disturbance on the 

sample surface was observed after this extraction. Figure 6.2d shows a picture of the soil 

specimen in the ring before the oedometer compression or direct shear test. After extraction, the 

soil specimens were stored in air-tight plastic bags for suction equilibrium or conditioning. The 

soil specimens were conditioned to different moisture contents by controlling the number of 
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exposures to the atmosphere for about 15 min/day. Finally, the soil specimens were sealed in 

plastic bags and stored in a moist room for at least one week to ensure suction equilibrium in the 

entire specimen. 

Oedometer Test 

After suction equilibrium in the unsaturated soil specimen, the constant water content 

oedometer test was then performed. Before testing, the weights of the oedometer compression 

ring and the soil specimen inside, as shown in Figure 6.2d, were accurately determined. Then, 

the saturated high-suction tensiometer was mounted to the oedometer cell base. To avoid 

cavitation during test preparation, the porous ceramic disc of the tensiometer was covered with a 

thin layer of kaolin paste, which was recommended by other researchers (e.g. Ridley, 2002 and 

Le et al., 2011). The unsaturated soil specimen was mounted to the cell base after tensiometer 

installation. Due to the self-weight of the upper part of the modified oedometer and the soil 

specimen, good contact between the tensiometer and the bottom surface of the specimen was 

established. The system setup for the one-dimensional oedometer compression test is shown in 

Figure 6.3. The loading device is exactly the same as the conventional oedometer. Since the 

testing process for the one-dimensional oedometer compression test lasted several hours, water 

evaporation during testing is critical. After system assembling as shown in Figure 6.3, vacuum 

grease was smeared to the places needed to avoid water evaporation during testing. Also, an O-

ring was placed around the loading piston to prevent water evaporation from the top surface of 

the specimen. Then, the displacement transducer and tensiometer used were connected to a 

Datalogger. A computer was required to monitor the soil volume and suction change during 

testing as shown in Figure 6.3. 
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Figure 6.1 Soil samples. 

 

  

  

Figure 6.2 Sampling process. 

 

Usually, before loading, several minutes were required for the high-suction tensiometer 

readings to reach equilibrium. Then, the vertical load was applied to the unsaturated soil 

(a) (b) 

(c) (d) 
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specimen through deadweight come with the oedometer compression system. After each loading 

step, the applied vertical stress was maintained to be constant for a certain time. This is because 

the matric suction in the soil specimen would change due to the applied load and this suction 

change required some time to reach a new equilibrium (Le et al. 2011). The higher the soil 

suction, the more time required for suction equilibrium (Oliveira and Marinho 2007). The 

applied vertical stress gently increased or decreased to a target value and followed by another 

equilibrium period. After reaching equilibrium, the readings of the tensiometer and the local 

displacement transducer were recorded. In this project, the tested soil specimen was gradually 

loaded to vertical stress of 800 kPa and then unloaded to 25 kPa. After testing, the weight of the 

oedometer compression ring, as well as the soil specimen inside after testing, was double-

checked to make sure that there was no water loss during testing.  
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Figure 6.3 One-dimensional oedometer test on an unsaturated soil. 

 

Oedometer Test Results 

The matric suction, water content, and specific volume of the tested soil specimens 

before the oedometer compression test are summarized in Table 6.1. 

Table 6.1 Summary of specimens’ initial conditions for oedometer tests 

Water content ν=1+e 
Initial suction (kPa) 

at 25 kPa normal load 

35.81% 2.28 386.3 

46.04% 2.485 56.3 

34.23% 2.145 136.4 

29.84% 2.081 325.7 

33.56% 2.116 106.5 

30.09% 2.026 224.9 

26.19% 2.085 353.6 

34.64% 2.153 98.2 
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For the constant water content oedometer tests, matric suction and vertical displacement 

were recorded during testing using the high-suction tensiometer and the local displacement 

transducer, respectively. In this project, soil suctions after equalizations were used as the 

representative suctions for soil at different loading steps. Based on soil displacement at different 

loading steps, soil volumes at different loading steps were calculated. Figures 6.4a and 6.4b 

presented the soil volume and suction variations at different loading steps, respectively. Detailed 

oedometer compression test results are summarized in Appendix A. 

As can be seen in Figure 6.4a, soil volume decreased with increasing vertical stress. This 

volume decrease had a mild slope until reaching specific stress (i.e., pre-consolidation stress) 

then the slope became stepper indicating a virgin compression line. During unloading, soil 

volume increased with a decreasing vertical load. This kind of behavior could be attributed to the 

elastoplastic behavior of unsaturated soils. When comparing the soil volume at vertical stress of 

25 kPa at loading and unloading stages, it could be found the unsaturated soil specimens 

experienced a significant volume decrease as shown in Figure 6.3a. During vertical testing, as 

can be seen in Figure 6.3b, soil suction decreased with the increase of vertical stress. It is clear 

from Figure 6.3 that both matric suction and specific volume simultaneously decreased as the 

normal stress increased. During unloading, soil suction increased with decreasing vertical stress. 

However, soil suction was not fully recovered at 25 kPa after unloading due to the plastic 

volumetric deformation. 
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(a) 

 
(b) 

Figure 6.4 Soil volume and suction changes versus applied vertical stress during oedometer 

testing. 

 

 

Direct Shear Test 

After conditioning, the specimens were then used for the direct shear test. The rings for 

the direct shear test, as shown in Figure 6.5a, were 59 mm in diameter and 26 mm in height. 

Also, the saturated miniature high-suction tensiometer was assembled with the top cap as shown 
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in Figure 6.5b. Before the installation of the high-suction tensiometer, a 6.5 mm in diameter and 

12 mm in depth hole was required to be made at the center of the specimen as shown in Figure 

6.5c. To prevent tensiometer cavitation during installation and maintain good contact between 

the high-suction tensiometer and the soil, similar to the oedometer compression test, a thin layer 

of saturated kaolin was also smeared on the surface of the ceramic disk. The analysis of shear 

strength data would not be complete without the volume change behavior during testing. In this 

direct shear test, the soil volume change was monitored through a linear variable differential 

transformer (LVDT) mounted at the top of the soil as shown in Figure 6.5d. After installation of 

soil specimen, high suction tensiometer, and LVDT, deadweight was placed on the yoke to apply 

the normal load on the soil specimen. When the tensiometer reading stabilized, the direct shear 

load could then be applied at a constant loading rate of 0.05 mm/min. The shearing process was 

stopped after the soil specimen reached the failure stage. The soil specimen after the direct shear 

test was then used for moisture content measurement. Figure 6.5e shows a soil specimen after the 

direct shear test. It was found that the tensiometer was exactly located the failure plane. In other 

words, the measured soil suction was representative of the unsaturated soil shear strength 

characterization. 
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Figure 6.5 Constant water content direct shear test on an unsaturated soil. 
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Direct Shear Test Results 

The soil information before the direct shear test and at-failure during shearing are 

summarized in Table 6.2. Direct shear test number (3) was excluded from the direct shear test 

results because of negative suction value. Negative suction value means positive pore water 

pressure was generated which is not expected for unsaturated soil samples. 

Table 6.2 Summary of specimens’ initial and final conditions for direct shear tests 

Test 

No. 

Initial condition Final conditions at failure during shearing 

Wc ν=1+e s (kPa) 
Matric 

suction (kPa) 

Shear strength 

(kPa)
Normal 

stress(kPa)

1 30.21% 2.191 58.7 235 310 463 

2 29.10% 2.209 403 224.70 171.06 139 

3 35.81% 2.132 83.4 -7.0 255.96 463 

4 38.34% 2.204 428.7 128.9 185.59 236 

5 41.38% 2.228 47.9 18.6 80.87 116 

6 41.23% 2.235 87 62.60 79.774 58 

7 44.23% 2.313 18.9 24.2 173 232 

8 32.00% 1.991 649.4 282 356.8 463 

9 32.43% 1.973 81.5 84 132.188 116 

10 33.72% 2.006 144.4 110.80 99.708 58 

 

During the direct shear test, matric suction and soil volume changes of the tested 

specimens during testing were recorded using the miniature high-suction tensiometer and the 

local displacement transducer, respectively. Detailed direct shear test results are summarized in 

Appendix B. The shear stress variations in the soil specimens with different water contents 

during loading under different normal stresses are presented in Figure 6.6. It is clear that as the 

horizontal displacement increased, the shear stress increased until a peak was reached and then 

stabilized or decreased. It could be found that the ultimate shear stresses generally increased with 

increasing normal stress. Besides the shear stress, soil suction, and volume variations versus 
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horizontal displacement during shearing were also extracted and presented in Figures 6.7a and 

6.7b, respectively. 

 

Figure 6.6 Shear stress versus horizontal displacement for samples with different water 

contents. 
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(b) 

Figure 6.7 Soil volume and suction variations during testing. 

As shown in Figure 6.7a, at high initial soil suction levels, the soil suction usually 

decreased with increasing shear load/displacement. In contrast, for soil specimens with initial 

soil suction less than 100 kPa, with increasing shear load/displacement, the soil suctions 

variations were different under different normal stress and water content conditions. At different 

normal stress conditions, most of the soil volumes slightly decreased with horizontal 

displacement indicating a contractive behavior. On the contrary, volumes for specimens with a 

water content of 29.1% and 32.43 were increased indicating a dilative behavior. 

6.3 UHM Team 

Approximately half of the soil samples were provided to the University of Hawaii at 

Manoa for laboratory testing and characterization. Several lab tests were performed at UHM 

including index testing, saturated consolidation test, saturated triaxial test, SWCC, and hydraulic 

conductivity tests, and unsaturated triaxial tests. Detailed description and discussion for the 
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experimental results were provided by Melia K. Iwamoto in her Ph.D. thesis (Iwamoto, 2018). In 

this section a brief summary of experimental results is provided. 

Index Testing 

Index tests performed include grain size distribution, Atterberg limits, natural water 

content, and specific gravity, results of which are summarized as follows. 

Grain size Analysis 

The grain size distribution curves (Figure 6.8) indicated that the soil is fine-grained. 

 

Figure 6.8 Grain size distribution curves (Iwamoto, 2018). 
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Atterberg Limits and Natural Water Content 

Atterberg limits were performed on almost 18 samples from the two boreholes at 

different depths. When plotted on a plasticity chart, it indicated that the soil is high plasticity silt 

(MH) based on the Unified Classification System. The natural water contents were also 

determined for these samples. An average liquidity index (   /LI w PL PI  ) was found to be -0.70 

that indicated less sensitive soil, and the soil consistency may be relatively stiff, which agreed 

with the SPT blow counts. The natural water content was relatively constant with depth and 

averaged approximately 41%.  

Specific Gravity 

The soil specific gravity was determined in accordance with ASTM D84-89 using a 

pycnometer. The average specific gravity was about 2.90 for all the tested samples. 

Saturated Consolidation Test 

One 1 D consolidation test was conducted on a soil sample (0.30 to 0.76 m) in its 

saturated state to estimate the saturated permeability, preconsolidation pressure, and 

compressibility parameters. Results indicated that the soil has a preconsolidation pressure of 160 

kPa corresponding to an over-consolidation ratio (OCR) of 2.0. The coefficient of vertical 

consolidation (
vc ) was estimated using both Taylor (1948) and Casagrande and Fadum's 1940 

methods. The soil saturated hydraulic conductivity was back-calculated from 
vc  and was about 

10e-6 cm/s. 

Multi-Stage Consolidated Drained Triaxial Test on Saturated Sample 

Due to the limited number of samples, multi-stage consolidated drained triaxial test was 

performed on one sample to obtain the saturated shear strength parameters. The sample was first 
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saturated by increasing the confining pressure until a B-value (Skempton’s pore pressure 

parameter) of 0.98 was reached. The confining pressure was then increased to 15 kPa, 30 kPa, 

and 50 kPa, and the sample was sheared at each confining pressure in a drained fashion. At 

confining stresses of 15 and 30 kPa, the axial strain was limited to 2.5% before increasing the 

confining stress to the next stage. At the last stage (50 kPa), the sample was sheared until failure. 

Figure 6.9 shows the multistage triaxial test results. 

Since the sample was consolidated to 3 different values of confining stress prior shearing, 

this implies that the OCRs are different at each confining stress. Therefore, Hvorslev (1937) 

shear strength theory was utilized to identify meaningful shear strength parameters for the soil. 

The calibrated shear strength parameters for this soil are shown in Table 6.3. Based on the 

saturated water content for the soil in field that was 46.5%, shear strength parameters of 28o and 

18 kPa could be recommended for the angle of internal friction and cohesion respectively. 

Table 6.3 Summary of calibrated shear strength at different confining stress. 

Confining stress 

(kPa) 
Void ratio, e 

Water content 

(%) 

Angle of 

internal 

friction, '  

(degree) 

Cohesion, 'c  

(kPa) 

15 1.345 46.5 28 19.2 

30 1.343 46.4 8 22.4 

50 1.341 46.3 28 25.1 

 

Soil-Water Characteristic Curve and Hydraulic Conductivity Function For Unsaturated State 

The soil-water characteristic curve (SWCC) was estimated by running a pressure plate 

(PP) test and Decagon Devices’ Aqua Lab Vapor Sorption Analyzer (VSA). The Pressure plate 

apparatus was used to test a specimen obtained from a modified California sampler to determine 

the SWCC at low suction levels (0 to 500 kPa). The VSA was used to extend the SWCC to 
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higher suction levels (6,000 to 600,000 kPa). Unlike the PP, the sample used for VSA doesn’t 

have to be undisturbed. Wetting and drying cycles were considered in the pressure plate test. 

Figure 6.10 shows the SWCC results from both PP and VSA. It worth notice that the SWCC is 

pressure dependent and the curves are shown in Figure 6.10 were tested under very low pressure 

and are valid only for surficial layers. 

 

Figure 6.9 Multi-stage triaxial test results: (a) deviator stress vs axial strain and (b) volume 

strain vs axial strain curves (Iwamoto, 2018). 
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Figure 6.10 Laboratory measured the soil-water characteristic curve (Iwamoto, 2018). 

 

It is well known that the unsaturated soil permeability significantly decreases with 

decreasing saturation degree. Measuring the unsaturated soil permeability at different degrees of 

saturation is a very laborious and time-consuming proposition. The variation of unsaturated soil 

permeability with suction, known as hydraulic conductivity function (HCF), can be alternatively 

obtained using the SWCC data together with a statistical approach proposed by Kunze et al. 

(1968). The resulting HCF is shown in Figure 6.11 in terms of relative permeability as a function 

of suction. The relative permeability defined as the permeability at a given degree of saturation 

divided by the saturation permeability. 

Constant Water Content Isotropic Compression Test for Unsaturated Soils 

Triaxial tests were performed on three unsaturated soil samples extruded from modified 

California sampler using a GDS automated system. The used GDS equipment uses a Hong Kong 

University of Science and Technology (HKUST) double wall system to measure the unsaturated 

soil volume change (for more details about the system refer to Ng et al., 2007). Figure 6.12 

shows a schematic plot for the HKUST double wall system. 
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Each sample was subjected to constant water content isotropic compression (CWIC) up 

to targeted stress value, then a constant water content shear (CWS) was applied up to failure. 

Table 6.4 shows the initial conditions for each of the three samples used for CWIC test. Figure 

6.13 shows the obtained test results for the three samples. 

 

Figure 6.11 Hydraulic conductivity function derived from SWCC (Iwamoto, 2018). 

Table 6.4 Initial specimen conditions for the CWIC samples. 

Test Sample D0 (mm) H0 (mm) S0 (kPa) e0 S0 Water content 

(%) 

CWIC-1 B3-1-B 58.35 136.90 15.70 1.286 86.0% 34.4% 

CWIC-2 B3-6-M 61.13 127.70 25.70 1.365 91.5% 44.3% 

CWIC-3 B3-3-M 61.00 126.70 42.90 1.348 89.7% 43.7% 
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Figure 6.12 Schematic plot for the HKUST double-wall volume change system (From Ng et 

al., 2007). 

Constant Water Content Triaxial Shear Test for Unsaturated Soils 

Constant water content triaxial test have been performed by several researchers (Bishop 

et al., 1960; Bishop and Donald, 1961; Satija, 1978; Georgetti and Vilar, 2011; Ma et al., 2013; 

Rahardjo et al., 2004; Thu et al., 2006b). Rahardjo et al. (2004) performed consolidated drained 

and constant water content triaxial shear tests on reconstituted residual silt and found that shear 

strength obtained both tests show good agreement. Georgetti and Vilar (2011) observed that 

CWC deviator stress-strain curves more closely resembled saturated CD deviator stress-strain 

curves than those obtained from saturated CU triaxial shear tests. Table 6.5 shows the initial 

conditions for each sample before testing.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 6.13 Constant water content compression test results of (a) measured stress paths, 

(b) specific volume vs net mean stress, (c) saturation vs net mean stress, (d) specific volume 

vs matric suction, and (e) saturation degree vs matric suction (Iwamoto, 2018). 
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The triaxial shear test results for unsaturated soils were compared with that of saturated 

soils to investigate the effect of suction on the shear strength of soils. Table 6.6 summarizes the 

results of the CWC tests. Deviatoric stress versus axial strain plots are shown in Figure 6.14a. 

All tests exhibited post-peak strain softening. The peak deviatoric stress for tests 1, 2, and 3 were 

411 kPa, 236 kPa, and 269 kPa at axial strains of 2.6%, 6.2%, and 3.29%, respectively. For 

saturated and unsaturated tests conducted at the same confining stress, the peak deviatoric stress 

increased with increasing suction. 

The samples were loaded to large strains to reach the critical state. The critical state 

deviatoric stress for CWC tests 1, 2, and 3 were 142 kPa, 163 kPa, and 134.5 kPa at axial strains 

of 13.3%, 17.4%, and 21.2%, respectively. For saturated and unsaturated tests conducted at the 

same confining stress of 50 kPa, the deviatoric stress at critical state decreased with increasing 

suction. This indicates that one or both of the tests have not yet reached critical state. Volume 

change curves are shown in Figure 6.14b. For unsaturated CWC tests, the amount of dilation 

increased with increasing suction and OCR. Suction versus axial strain curves are shown in 

Figure 6.14c. Suctions did not change significantly during shearing. The maximum suction 

difference during tests 1, 2, and 3 were 3.5 kPa, 1.3 kPa, and 6.9 kPa, respectively. The suction 

response during shear was different for all tests. During CWC-1, suctions initially increased to a 

peak of 45.1 kPa then decreased until the peak deviator stress was reached. The suction then 

gradually increased for the remainder of the test. During test CWC-2, there was no significant 

change in suction during shear despite there being two unload-reload cycles. During test CWC-3, 

the suction initially decreased during shear and increased during the unload-reload cycle. During 

reloading, the suction decreased until the peak deviatoric stress was reached and then gradually 

increased for the remainder of the test. Thu et al. (2006b) performed constant water content and 
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drained triaxial shear tests on an MH Malaysian silt and found that the suction response 

decreased as the initial suction value decreased. Our findings agree well with those results. 

Table 6.5 Initial conditions of the specimen before shearing. 

Test Sample 
D0 

(mm) 

H0 

(mm) 

Water 

content 

(%) 

Preconsolidation 

pressure (kPa) 

S0 

(kPa) 
OCR 

CWC-1 B3-1-B 57.3 136.6 38.4 50 44 14 

CWC-2 B3-6-M 60.2 127.7 44.3 30 21 5 

CWC-3 B3-3-M 59.3 125.8 43.7 30 40 11 

CD-15 B2-1-B 59.4 124.6 Sat 15 0 6 

CD-30 B2-1-B 58.9 126.6 Sat 30 0 3 

CD-50 B2-1-B 58.7 128.4 sat 50 0 2 

 

Table 6.6 Triaxial shear test results. 

Test 
Peak Critical state 

p (kPa) s (kPa) q (kPa) a  (%) p (kPa) s (kPa) q (kPa) a  (%) 

CWC-1 189 42 411 2.6 99 42.6 142 13.3 

CWC-2 108 21.5 236 6.2 84 21 163 17.4 

CWC-3 120 40 269 3.3 76 42 135.5 21.2 

CD-15 45 0 91 1.4 1 1 1 1 

CD-30 70 0 120.5 2.1 1 1 1 1 

CD-50 135 0 170 5.7 106 0 170 5.7 

 

 

 

 

 

 

 

 

 

 



79 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.14 Constant water content triaxial test results of (a) deviatoric stress vs axial 

strain, (b) volumetric vs axial strain, and (c) matric suction vs axial strain (Iwamoto, 2018). 
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MECHANICAL CONSTITUTIVE MODEL 

7.1 Introduction 

In this chapter two approaches were used independently to calibrate the BBM parameter. 

The first approach was proposed by the MST team using the constant water content oedometer 

and direct shear test results. The second approach, however, was followed by the UHM team 

using the constant water content isotropic and triaxial shear test results (Iwamoto, 2018). These 

two approaches are demonstrated in detail. Later, the calibrated model parameters are compared 

and critically discussed. 

7.2 MST Team 

Introduction  

Zhang et al. (2016a) derived an explicit formulation for the at-rest coefficient of earth 

pressure, K0, based on the basic definition of the at-rest condition without any assumptions. In 

addition, a procedure was provided to calibrate the BBM parameters under triaxial stress 

conditions using results from the oedometer test only. Later, the same procedure was used Zhang 

et al. (2016b) to successfully calibrate the BBM parameters using constant water content 

oedometer test results. It is worth notice that, since oedometer is not a failure test, Zhang et al. 

(2016a and 2016b) recommended calibrating the BBM shear strength parameters from a soil 

failure test (e.g., direct shear test). In the Hawaii project, the procedure described by Zhang et al. 

(2016a) was used to calibrate BBM stiffness parameters. The BBM strength parameters are 

calibrated using the constant water content direct shear test results. Procedure and calculation 

steps are explained in detail in the following sections. 
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Fredlund’s Shear Strength Parameters 

The shear strength equation proposed by Fredlund et al. (1978), shown in Equation [7.1], 

was utilized in this section to study the stress state at failure (i.e.,  1 a f
u  ,  3 a f

u  , and 

 f a w f
s u u  ) and to further calibrate saturated and unsaturated strength parameters.  

   ' tan tan 'b

f a w af f
c u u u        
 

 (Eq. 7.1) 

Linear regression was performed on the test results to find the best estimation of the shear 

strength parameters. To find out the suitable combination of shear strength parameters 'c , ' , 

and 
b , the below procedure could be followed: 

(a) Assume arbitrary values for the shear strength parameters (i.e., 'c , ' , and 
b ). 

(b) Using Equation [7.1], calculate the shear strength based on the assumed values in step (a). 

(c) Calculate the square of differences between the measured and predicted shear strength based 

on the eq. [7.2]. The predicted values and the squared errors are presented in Table 7.1. 

     
2

1

n

i fm fpi i
i

F x w  


  
   (Eq. 7.2) 

where 
iw  is a weight factor that is equal to one in this case, 

fm  and 
fp is the measured and 

predicted shear strength respectively. 

(d) SOLVER add-in in Microsoft Excel could be used to guess the best-fit parameters to get the 

minimum error. 
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Table 7.1 Predicted shear strength and errors. 

Initial condition At failure during shearing Predicted 

Error2 Wc 

(%) 
v s (kPa) 

sf 

(kPa) 

Shear 

stress (kPa) 

Normal 

stress (kPa) 

Shear stress 

(kPa) 

30.21 2.191 58.7 235 310 463 329.75 390.08 

29.10 2.209 403 224.7 171.06 139 169.78 1.64 

38.34 2.204 428.7 128.9 185.59 236 188.19 6.75 

41.38 2.228 47.9 18.6 80.87 116 97.19 266.35 

41.23 2.235 87 62.6 70 58 82.22 149.40 

44.23 2.313 18.9 24.2 173 232 155.03 322.80 

32.00 1.991 649.4 282 356.8 463 343.76 169.93 

32.43 1.973 81.5 84 132.188 116 116.69 240.17 

33.72 2.006 144.4 110.8 99.708 58 96.59 9.69 

Sum of errors = 1556.81 

 

BBM Shear Strength Parameters 

In this section, the BBM shear strength parameters (i.e. M and K) are calibrated from the 

constant water content direct shear test results (CWDS). Moreover, derivations are provided to 

calculate M and K from the unsaturated soil shear strength properties (i.e. 'c , ' , and 
b ) 

based on c’=0.0 which is assumed by the first author of modified Cam-Clay model (Roscoe and 

Burland 1968) and addressed by Alonso et al., (1990). In the CWDS, the suction at failure was 

measured using miniature HST equipped in the conventional direct shear cell. 

Starting from Fredlund et al. (1978) shear strength Equation [7.1], the suction effect may 

be considered as a cohesion effect and can be added to the saturated cohesion as follows: 

   ' tan tan 'b

f a w af f
c u u u        
   (Eq. 7.3) 

Denoting both suction and cohesion as C, one has 

  tan 'f a f
C u      (Eq. 7.4) 
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The soil shear strength can, also, be derived as a function of the major and minor 

principal stresses as follows: 

    2

1 3

' '
tan 2 tan

4 2 4 2
a af f

u u C
   

 
   

        
   

 (Eq. 7.5) 

The deviatoric and mean net stresses are defined as follows: 

   1 3a aq u u      (Eq. 7.6) 

   1 32

3

a au u
p

   
  (Eq. 7.7) 

Rearranging Equations [7.6] and [7.7], one has  

 1

3 2 2

3 3
a

p q q
u p


     (Eq. 7.8) 

 3

3

3 3
a

p q q
u p


     (Eq. 7.9) 

Substituting Equations [7.8] and [7.9] into Eq. [7.5], 

22 ' '
tan 2 tan

3 3 4 2 4 2f f

q q
p p C

          
            

       
 (Eq. 7.10) 

Inserting  ' tan b

a w f
C c u u     into Eq. [7.10] 

 
2

2 ' tan
3 3

b

p a w pf
f f

q q
p p K c u u K

                  
 (Eq. 7.11) 

where 2 '
tan

4 2
pK

  
  

 
 

Equation [7.11] can be rearranged as follows: 
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   

     

   

 

6 ' tan3 1

2 2

2 ' tan3 1 3 1
                  

2 2 1

2 ' tan3 1
                  

2 1

2 ' tan

1

b

a w pp f

p p

b

a w pp p f

p p p

b

a w pp f

p p

b

a w pf

p

c u u KK
q p

K K

c u u KK K
p

K K K

c u u KK
p

K K

c u u K
M p

K









    
 

 

     
 

  

       
  
 

   
  

 
 

 

 

2 ' tan

1

2 tan 2 '
                     

1 1

b

a w pf

p

b

p p

a w f

p p

c u u K
M p

K

K c K
M p u u

K K





   
    

  
 

 
    

   

(Eq. 7.12) 

where 
 

2

2

'
3 tan 1

3 1 4 2

'2
2 tan

4 2

p

p

K
M

K

 

 

  
      

 
  

  
 

. The soil cohesion is assumed to be zero as suggested by 

Roscoe and Burland (1968). Equation [7.12] can be simplified as follows: 

 
2 tan

1

b

p

a w f

p

K
q M p u u

K

 
   

  

 (Eq. 7.13) 

By comparing Equation [7.13] with the BBM failure equation ( ( )q M p ks  ), the BBM 

shear strength parameters can be related to the conventional shear properties as follows: 

 
2

2

'
3 tan 1

3 1 4 2

'2
2 tan

4 2

p

p

K
M

K

 

 

  
      

 
  

  
 

 (Eq. 7.14) 

2 tan

1

b

p

p

K
k

K





 (Eq. 7.15) 

Using the same criterion described in the previous section (Fredlund’s Shear Strength 

Parameters), the shear strength parameters were re-guessed forcing 'c  to be zero. The 

corresponding shear strength properties, '  and 
b , were 28.13 and 22.26 degrees, respectively. 
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Based on these shear strength parameters, the BBM strength parameters k and M were calculated 

using Equations [7.14] and [7.15] and were 0.74 and 1.13, respectively. The coefficient of 

determination (R-squared) between the measured and predicted shear strength was 94% which 

indicated an acceptable match. 

BBM Stiffness Parameters 

As previously mentioned, Zhang et al. (2016a) proposed an explicit formulation for at-

rest earth pressure coefficient. Later, the procedure was successfully used by Zhang et al. 

(2016b) to calibrate the BBM parameters from a set of six constant water content oedometer test. 

This was achieved by combining a modified state surface approach, recently proposed to model 

the elastoplastic behavior of unsaturated soils under isotropic stress conditions, with the Newton 

or quasi-Newton method to simultaneously determine the BBM parameters. 

Zhang and Lytton (2009a and 2009b) proposed the MSSA to study the mechanical 

behavior of unsaturated soils. In the MSSA, the void ratio was divided into an elastic and a 

plastic surface. The plastic surface is a unique constant surface, but the elastic surface is 

moveable depending on the occurrence of plastic deformations. Zhang and Lytton (2009a) 

derived mathematical expressions for the elastic and plastic surfaces for the BBM and 

successfully used the MSSA to represent many features related to unsaturated soils behavior. The 

BBM surfaces included an elastic surface and a plastic surface. The elastic surface is expressed 

by Equation [7.16]. The mathematical expression for the plastic surface is presented in Equations 

[7.17]. While the elastic surface is easy to determine, the major challenge is to determine the 

eight parameters related to soil plastic behavior, which are   cN(0), λ 0 , β, r, p ,  M, K and  . It 

worth note, Alonso et al. (1990) suggested that   is chosen in such a way that the flow rule 

predicts zero lateral strain for K0 stress state that is corresponding to Jaky’s equation (Jaky, 1944) 
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   0 1 sin ' 6 2 / 6K M M     . Two assumptions are made to derive : (a) the elastic shear 

strains are small and negligible and (b) for saturated and unsaturated conditions, the K0 

consolidation line shares the same slope and is constant. Zhang et al. (2016) found that neither 

assumptions holds true for unsaturated soils and suggested that   be used as an additional 

constant for the BBM.  

 1 ln lns atv C p s p      (Eq. 7.16) 

  
 

2

2
(0) ln ln ln ln cat

sc

at

s pp q
v N s p p

p p M p ks
   

   
                

(Eq. 7.17) 

Where ν= specific volume, p= mean net stress, q= deviatoric stress, s= suction, C1= 

Constant related to initial specific volume of the soil, κ = slope of unloading reloading line in 

the p-e space, sκ = slope of unloading reloading line associated with soil suction, pat = 

atmospheric pressure, pc= reference stress, M= slope of theoretical critical state line, k= 

parameter describing increase in cohesion with suction,  s = slope of virgin expansion line at 

different suction values associated with mean net stress, and (0)N = constant representing virgin 

specific volume at zero suction value and mechanical stress.  

Mathematically, the calibration problem can be described as follows: the calibration of 

the BBM parameters under K0 condition is to find the appropriate combination of

  cN(0), λ 0 , β, r, p ,  M, K and  , which can minimize the overall difference between the 

measured and predicted specific volumes. The eight CWOD tests (water content of 26.19%, 

29.84%, 30.09%, 33.56%, 34.23%, 34.64%, 35.81%, and 46.06%) are used to calibrate the BBM 

model parameters. The procedure proposed by Zhang et al. (2016a) utilized here. The only 

difference is that the shear strength parameters were predefined from the CW direct shear tests 
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results as shown in the previous section. As previously explained in the chapter (6) the samples 

seem to have some disturbance during transportation. This made the initial conditions of 

different samples inconsistent. Therefore, (0)N  had a different value for each test. Practically, 

this is not going to make any significant difference, since the BBM incremental approach is 

going to be used for any further numerical simulations. However, this might make some 

difficulties when the MSSA surfaces need to be generated. Table 7.2 shows the calibrated BBM 

parameters. In order to verify the calibrated parameters, the predicted and measured specific 

volumes for each test are plotted and compared as shown in Figure 7.1. A coefficient of 

determination (R-squared) of 99.70% was reached that indicates a very good match. 

Table 7.2 Calibrated BBM parameters by MST team. 

Parameter Unit Best Fit BBM Parameters 

Test (Wc, %) 26.19% 29.84% 30.09% 33.56% 34.23% 34.64% 35.81% 46.04% 

N(0) --- 2.119 2.131 2.097 2.182 2.155 2.224 2.249 2.507 

s --- 0.0066 

 --- 0.0147 

(0) --- 0.075 

r --- 0.158 

 MPa-1 3.182 

pc MPa 0.046 

 --- 0.802 

M --- 1.130 

k --- 0.740 

 --- 0.350 
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(a) Water content= 34.23% 

 
(b) Water content= 46.04% 

 
(c) Water content= 35.81% 
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(d) Water content= 29.84% 

 
(e) Water content= 33.56% 

 
(f) Water content= 26.19% 
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(g) Water content= 34.64% 

 
(h) Water content= 30.09% 

Figure 7.1 Comparison between predicted and experimental results for oedometer tests at 

different water contents. 

Based on the MSSA, the intercept between elastic and plastic surfaces in the ν-p-q-s 

space is the yield hypersurface. By letting Equation [7.16] equal to Equation [7.17], the yield 

surface expression can be obtained as follows: 

 2

1

0 2

(0) ln( ) ln
exp

( ) ( )

C
s atC

N C pq P
pp P

p ks sM

 

 

   
    

  
 (Eq. 7.18) 

The size of the yield surface is controlled by the value of 1C constant that is changing 

continuously during plastic loading and causes a yield surface to revolution. Figure 7.2 shows the 
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initial shapes of the yield curves for each oedometer test. Deep investigation into Figure 7.2 

indicated that when the mean net stress is greater than 0.1 MPa, suction increases with the 

increase of mean net stress on the yield curves, which is similar to the original BBM assumption 

(Alonso et al. 1990). This behavior explained by Zhang and Lytton (2009b) as a collapsible 

behavior when the mean net stress is greater than 100 kPa 

 

Figure 7.2 Initial yield curves for different samples. 

7.3 University of Hawaii at Manoa Team 

Introduction  

The team at University of Hawaii at Manoa used a combined approach to define the 

BBM parameters (refer to Iwamoto, 2018). The BBM stiffness parameters were calibrated by 

fitting the MSSA elastic and plastic surface equations (Equations [7.16] and [7.17]). On the other 

hand, the BBM strength parameters were calibrated separately by fitting the strength equation,

 q M p ks  , proposed by Alonso et al. (1990). 
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BBM Shear Strength Parameters 

The elastic shear modulus, G, was calculated from the unload-reload portion of CWC-2 

and 3 and the elastic regions of CD-15, -30, -50, and CWC-1. The shear modulus was estimated 

to be 6812 kPa. However, in reality, the shear modulus is pressure dependent as shown in the 

following expression 

  

 
03 1 2 1

2 1

p e
G



 

 



 (Eq. 7.19) 

where  = Poisson’s ratio, 0e = initial void ratio,  = slope of saturated unloading-reloading line, 

and p  = mean net pressure. 

Figure 7.3 shows the CWC and CD test results in p q  space. From this plot, the BBM 

shear parameters (M and k) were determined. A limitation of the multi-stage CD triaxial test 

performed on the saturated sample is that post-peak strains are small for all stages except the 

final stage. Therefore, the CD test results for tests at confining pressures 15 kPa and 30 kPa 

could not be used to obtain the BBM shear parameters. The critical states of the test at 50 kPa 

multi-stage CD triaxial test on the saturated sample (henceforth denoted as CD50), and the three 

CWC tests were used to obtain the BBM parameters M and k. 
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Figure 7.3 Stress paths and measured critical states for different triaxial tests (Iwamoto, 

2018). 

 

An ordinary least-square regression was used to fit the data at critical state of tests CD-

50, CWC-1, CWC-2, CWC-3 to fit the BBM failure plane expressed by the following equation: 

 q M p ks   (Eq. 7.20) 

Where M and k are the BBM shear strength parameters estimated to be 1.34 and 0.34, 

respectively. A coefficient of determination of 87.2% was obtained between the measured and 

predicted deviatoric stresses. The critical state angle of internal friction is related to the M 

parameter by Equation 7.21 and was calculated to be 33.65o. 

'

'

6sin

3 sin

cs

cs

M






 (Eq. 7.20) 

BBM Stiffness Parameters 

BBM stiffness parameters were calibrated using ordinary least square regression of the 

predicted specific volumes (using the MSSA expressions: Equation [7.16] and Equation [7.17]) 
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and the measured values. The calibrated parameters are displayed in Table 7.3. The coefficient of 

determination between measured and predicted specific volumes was 97.80%. 

Table 7.3 Calibrated BBM parameters by UHM team (Iwamoto, 2018). 

Parameter Unit Best Fit 

N(0) --- 1.90 

s --- 0.0039 

 --- 0.0181 

(0) --- 0.13 

r --- 0.01 

 MPa-1 6.22 

pc MPa 3.33 

R2 --- 97.90% 

 

Figure 7.4 presents the LC yield curves for CWIC test and the 1D consolidation test 

calculated using the following expression: 

 

 

0

*

0
0

s
c

c

p
p p

p

 

 



 
  

 
 (Eq. 7.20) 

Where 0p  is the yield stress at different suctions, *

0p  is the pre-consolidation pressure 

at saturation state, 
cp ,  0 , and   are BBM parameters previously defined. The shape of the 

LC yodel curve can be classified as a type-3 based on Zhang (2015). These yield curve shapes 

were first deemed illogical by Alonso et al. (1990). However, Zhang and Lytton (2009b) 

theoretically proved that they are applicable for expansive soils. 
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Figure 7.4 Predicted LC yield curves for different experimental tests (Iwamoto, 2018). 

7.4 Comparison of BBM Parameters Obtained by MST and UHM Teams 

Introduction  

In the previous sections, two sets of parameters for the Barcelona Basic Model (Alonso et 

al., 1990) were calibrated independently by two teams (i.e., MST and UHM) using different 

experimental results. The MST team used the results from constant water content oedometer and 

direct shear tests. On the other hand, the UHM team used results from consolidated drained tests 

for saturated samples and constant water content triaxial tests for unsaturated samples. In this 

section, the calibrated stets of parameters are compared and critically discussed. 

Stiffness Parameters 

Table 7.3 presents the calibrated parameters from both teams. The constants 1C  and 

 0N  are not applicable when using incremental form, therefore the MST team provided values 

for each test rather than a single value. However, to model the field situations a single  0N  
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shall be used. The LC yield curves provided by MST team (Figure 7.2) is type 1 based on Zhang 

(2015). Type 1 LC yield curve indicates a collapsible soil behavior. In contrary, the LC yield 

curves obtained by UHM team (Iwamoto, 2018) indicated a swelling soil behavior (discussed 

earlier, Figure 7.4). For the first glance, these two LC yield curves seem contradictory. Noting 

that Alonso et al. (1990) mentioned that a potentially collapsible soil subjected to a suction 

reduction from a relatively high value have been reported to experience first an expansion and 

then compressive strain (Escario and Saez, 1973; Cox, 1978; Josa et al., 1987). Considering the 

limited range of suction change (less than 100 kPa) applied by team UHM during testing and 

high range of suction changes (around 3500 kPa) applied by MST team during testing. These two 

LC yield curve, in fact, could be complementary not contradictory. To better calibrate the model 

parameters it is recommended to use the experimental results from both teams to determine one 

set of parameters. 

Table 7.4 Calibrated BBM parameters by MST and UHM teams. 

Parameter Unit 
Best Fit 

MST 

Best Fit 

UHM 

N(0) --- Varies 1.90 

s --- 0.0066 0.0039 

 --- 0.0147 0.0181 

(0) --- 0.075 0.13 

r --- 0.158 0.01 

 MPa-1 3.812 6.22 

pc MPa 3.812 3.33 

G MPa 
Changes with 

pressure 
7.85 

  ---- 
0.35 

(assumed) 
0.329 

  ---- 0.802 0.458 

M  ---- 1.13 1.25 

k  ---- 0.74 0.55 
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Shear Strength Parameters 

The BBM contains 10 parameters to model unsaturated soil behavior. Three of those, G, 

M, and k are for modelling the soil behavior during shear (Table 7.2). MST team did not report 

the elastic shear modulus, G, as a BBM parameter. They assumed a Poisson’s ratio of 0.35, 

which theoretically can be used to estimate a pressure dependent G using Equation [7.19]. In 

general, the calibrated strength parameters (M, and k) by both teams match very well as shown in 

Table 7.2. 
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TRANSIENT HYDROLOGICAL FLOW MODEL 

8.1 Introduction 

 The team at UHM calibrated a hydraulic flow model for saturated and unsaturated soils 

(for more details refer to Iwamoto, 2018). A saturated-unsaturated transient hydrological flow 

model was developed and calibrated for the purpose of estimating the suctions/pore water 

pressures in the soil slope during the design storm. As explained in Chapter 1, this model is an 

integral part of the landslide warning system. It has to be first calibrated to determine the 

appropriate parameters to use. Calibration is achieved by adjusting the hydraulic model 

parameters to match the laboratory measured and calculated SWCC and HCF, and to match 

calculated and field-measured suctions and water contents. Once the model is calibrated, then it 

can be used to predict the pore pressures during a storm with a prescribed design return period. 

Return period in transportation infrastructure design is typically based on a 100-year event. 

However, the return period can be justifiably increased depending on the importance of structure 

and consequence of failure. This slope has been in existence for many decades and may have 

already survived a 100-year if not higher storm. In fact, during the approximately three years of 

monitoring, the slope experienced a 200-year return period, 60-day duration storm in from 

8/16/15 – 10/15/15. Since this slope abuts Kalanianaole Highway and the consequence of failure 

is “high”, it was decided to investigate the effects of a storm with a 500-year return period (= 

1/500 or 0.2% annual probability of occurrence) to facilitate selection of threshold values for use 

in the development of a landslide warning system. Elements of this model are presented below. 
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8.2 Hydraulic Model 

Pressure dependency of SWCC curves has been well documented in the literature. Much 

work has been expended to incorporate pressure dependent SWCC in coupled hydro-mechanical 

models either by expressing individual SWCC parameters such as the air entry suction as a 

function of confining stress (Gallipoli et al., 2003b; Huang et al., 1998; Nuth and Laloui, 2008; 

Cabarkapa and Cuccovillo, 2005; Hu et al., 2013; and UPC, 2017), or by expressing the SWCC 

as a function of the soil stress state (Sun et al., 2007b; Masin, 2010; Mbonimpa et al., 2006; and 

Zhou et al., 2012). In HYDRUS, the software used for the transient hydrological flow model, 

hysteretic behavior is only available for the Van Genuchten (1980) model. Therefore, only 

hydraulic models that express the van Genuchten parameters as functions of the stress state of 

the soil are considered. Hu et al., (2013) derived a relationship between the air entry suction and 

void ratio by considering changes in void ratio as a function of pressure. D’onza et al., 2011 and 

UPC (2017) introduced a similar equation to describe the van Genuchten parameters, P and λ, as 

a function of void ratio. 

1

1r
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l r

S S s
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S S p








 

          
  

 (Eq. 8.1) 

 0 0expp p a      (Eq. 8.2) 

where rS  is the residual saturation, lS  is the maximum saturation, s  is the matric 

suction (kPa), p  and   are the van Genuchten parameters,   is the porosity, and 0p  and 

0  are the van Genuchten parameters at a reference porosity, 0 . D’onza et al. (2011) and 
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UPC (2017) expressed the van Genuchten equation in terms of p  and   which can be related 

to the van Genuchten parameters   and n , as follows: 

g
p


  (Eq. 8.3) 

1
1m

n
     (Eq. 8.4) 

where g  is the gravity acceleration. 

Data points during the loading stage were used to calibrate the main wetting branch of the 

pressure-dependent SWCC since suction decreases during compression. Conversely, data points 

during the unloading stage were used to calibrate the main drying branch of the pressure-

dependent SWCC. The parameters, 0 ,b , and 0 , were taken to be equal for both drying and 

wetting. The model parameters ( da , wa , 
0

dp , 
0

wp , b , 0 , and 0 ) were calibrated by 

performing ordinary least squares regression of the measured and predicted saturation and are 

presented in Table 8.1. The resulting coefficient of determination was 0.958 based on CWCIC 

tests 2 and 3 data. Using the parameters in Table 8.1 and Equation [8.1], the pressure dependent 

SWCCs are plotted in Figure 8.1. 

Table 8.1 Calibrated pressure-dependent van Genuchten parameters. 

Parameter Unit Drying Branch Wetting Branch 

0  --- 80.13% 80.13% 

0p  kPa 3.32 0.003 

0  --- 0.13 0.13 

a  --- 14.4 41.36 

b  --- -0.01 -0.01 
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Figure 8.1 Predicted pressure-dependent SWCC (Iwamoto, 2018). 

8.3 Calibration of the Infiltration-Evapotranspiration Model and Implementation 

A soil’s shear strength is governed by the shear strength parameters and the pore water 

pressure in the soil. The pore water pressure can be positive if the soil is below the ground water 

table or negative if it is above the ground water table. Since the ground water table at this site is 

purportedly more than 40 m below the slope crest, the slope is not subject to ground water 

recharge from below, and water can only enter the slope naturally in the form of precipitation. A 

systems analysis of the water balance at the site requires that the precipitation (P), runoff (R), 

evapotranspiration (ET) and surface infiltration (SI) satisfy the following: 

P R ET SI    (Eq. 8.5) 

It worth notice that the slope is relatively barren and for all intents and purposes, 

transpiration can be deemed negligible; i.e.; ET PE = potential evaporation. Thus, only the 

effects of precipitation and potential evaporation need be applied to the top boundaries (ground 
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surface) of the model. The method adopted for estimating PE is explained in the following 

section. 

Potential Evaporation 

While the precipitation is directly measured, potential evaporation at the site can be 

estimated with the aid of the following climatic parameters: 

1. global solar radiation; 

2. wind speed; 

3. air temperature; 

4. relative humidity; 

5. cloud factor; and 

6. albedo (from Giambelluca et al.; 2014),  

Using these parameters, the PE could be estimated by utilizing Kohler and Parmele's 

(1967) modification of Penman's (1948) equation. After a process of trial and error involving 

several other methods of estimating PE, it was found that this method worked best for this site 

and their expression for PE is as follows: 

   

 
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eE w a a
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J L G K v e W
PE

 

  

    


 
 (Eq. 8.5) 

where =slope of saturation vapor-temperature curve=

 
1

2

17.32508.3
exp  

237.3237.3

a

aa

T
kPaK

TT

 
      

, K =net shortwave radiation=  1 globala K , 'L

=adjusted net longwave radiation=   
4

1 273.2s at aT     (after Kohler and Parmele, 1967), 
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G =soil heat flux=  0.2 'K L  (after Fuchs and Hadas, 1972, Idso et al., 1975; and Novak and 

Black, 1983), ' =adjusted psychrometric constant=
 

3
2 273.2

0.622

s aa a

v E w v a

Tc p

K v

 

  


  (after Kohler 

and Parmele, 1967), EK =atmospheric constant=

2

2

0

0.622

ln
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a w
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p z

z



   
  

  

, w =mass density of 

water 
3kgm   , av =measured wind speed 

1ms   , *

ae =saturated vapor pressure  kPa =

17.3
0.611exp

237.3

a

a

T

T

 
 

 
 (after Monteith and Unsworth, 2008), aW =measured relative humidity, 

v =latent heat of vaporization 
1 62.5 10 237 aJkg x T      , aT =measured air temperature 

oC   , 

a =albedo (site-specific monthly values taken from Giambelluca et al., 2014), 
globalK =measured 

global solar radiation 
2Wm   , s =soil emissivity=  min 0.9 0.18 ;1  (after Van Bavel and 

Hillel, 1976),  =Stefan-Boltzmann constant=5.67X10-8 2 4Wm K  , at =atmospheric 

emissivity=

1/7
*

1.27
273.2
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 
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 
 (after Brutsaert, 1975), ac =heat capacity of air=1x10-3 

1 1MJKg K 
,  ap z =atmospheric air pressure at elevation, z [kPa]= 

5.26
293.0065

101.32
293

z 
 
 

 

(after Burman et al., 1987), a =mass density of air= 3 
0.288

a

a

p
kgm

T

 , V =von Karman constant 

typically=0.4 (after Dingman, 2008), mz =height at which air temperature, relative humidity, and 

wind speed were measured=2.0 m, 0z =roughness height=1.1x10-3m for bare soil (after Chow et 

al., 1988), and  =measured volumetric water content near the surface. The calculated PE  was 

plotted versus time and shown in Figure 8.2. 
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Figure 8.2 Potential evaporation estimated using Kohler and Parmele’s (1967) modification 

of Penman’s (1948) equation at the slope site. 

 

It should be noted that global solar radiation, wind speed, air temperature and relative 

humidity were obtained from Hihara and Sugamoto (2017), who are with the University of 

Hawaii’s Department of Mechanical Engineering, and their data cannot be readily accessible by 

the general public. Alternatively, a similar set of such data can be downloaded from a weather 

station on Coconut Island (Hawaii Institute of Marine Biology). However, it was found that for 

the period of this research, the Coconut Island data is sporadic with missing gaps. This is why, 

the Hihara and Sugamoto (2017) data was adopted for this study. 

8.4 Transient Hydrological Flow Model 

Iwamoto (2018) utilized HYDRUS software to simulate the transient hydrological flow. 

This could be justified that HYDRUS is the only software that considers the hydraulic scanning 

behavior for soils. The parameters calibrate for the wetting and drying branches for the pressure 

dependent SWCC in section 8.2 used along with the PE as a boundary condition for a 2D model 
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in HYDRUS software. Figure 8.3 shows the 2D finite element mesh for the flow model. The 

model results were compared against the field suction (from tensiometers) and water content 

(from water content sensors) measurements at different depths as shown in Figures from 8.3 to 

8.6. The model fits the field measurements in a reasonably good manner. This is the best that can 

be obtained with the limited time and resources available, and this model and parameters in 

Table 8.1 was then utilized to determine the pore water pressure/suction profile in the slope after 

a design storm, which is taken to be a 500-year storm. 

 

Figure 8.3 2D HYDRUS finite element mesh (Iwamoto, 2018). 
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(a) Matric suction versus time 

 
(b) Volumetric water content versus time 

Figure 8.4 2D HYDRUS model predictions versus field measurements at depth 0.15m 

(Iwamoto, 2018). 

 

Figure 8.5 2D HYDRUS model water content predictions versus field measurements at 

depth 0.76m (Iwamoto, 2018). 

 

Figure 8.6 2D HYDRUS model matric suction predictions versus field measurements at 

depth 6.10m (Iwamoto, 2018). 
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8.5 Transient Hydrological Flow Model during A Storm With A 500-Year Return Period 

The 500-year-return period precipitation intensity vs duration frequency curve (IDF) for 

the site was downloaded from NOAA’s National Weather Service precipitation frequency data 

server (2018) and used for the slope site. The 500-year return period storm revealed tow critical 

precipitation duration or intensity values. The critical values are 5-minute (622 mm/hr) and 60-

day (1.25 mm/hr) that were used for the 2D HYDRUS analysis. It was found that the longer 

duration low intensity storms are most critical when analyzing slope stability. Two initial 

conditions were considered; one starting at a relatively dry time (May 2, 2015 19:00) and the 

other at a relatively wet time (November 27, 2015 05:00) of the monitoring period.  

The 500-year design storm could occur when the ground is already saturated to begin 

with or when the ground is dry. When the initial conditions are wet to begin with, it would mean 

that the design storm’s actual return period is higher than 500-years. Nevertheless, both sets of 

initial conditions are indeed possible and were utilized to provide good insight into what may 

occur in the field. The HYDRUS analyses were extended for another 60 days beyond the end of 

the 500-year storm as the moisture was still making its way into the soil after the rain event. 

During the 60-day extension, it was assumed that the precipitation ceased and there was no 

evaporation (conservative). Figures 8.7 and 8.8 represent the suction contours at the end of the 

storm and 60 days after the storm. The suction contour plots were then utilized to perform 

stability analyses of the slope, as described in Chapter 9. 
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Figure 8.7 Suction contours for an initially dry slope during 60-day duration 500-year 

return period storm (Iwamoto, 2018). 

 

 

Figure 8.8 Suction contours for an initially wet slope during 60-day duration 500-year 

return period storm (Iwamoto, 2018). 
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SLOPE STABILITY ANALYSIS 

9.1 Introduction 

The slope stability analysis was also performed by Melia K. Iwamoto and results are 

presented in detail in her PhD thesis (Iwamoto 2018). A 2D slope stability analysis for the actual 

slope geometry assuming full saturation was performed as a first step to justify the slope stability 

when fully saturated. This was followed by a 2D slope utilizing the suctions estimated for the 

500-year storm. The software used for this analysis was SLOPE/W (Geo-slope International, 

Ltd., 2012) that is typically used for slope stability analysis in routine geotechnical projects. The 

SLOPE/W has an advantage over most of the existing slope stability software that it allows to 

study unsaturated soils slopes. 

9.2 2D Slope Stability Analysis Assuming Full Saturation 

In this analysis, the calibrated shear strength parameters (Chapter 7) along with the slope 

geometry (Chapter 3) were utilized. The 2D factor of safety for the slope when entirely saturated 

was calculated using the method of slices with the aid of the search routines in SLOPE/W. The 

factors of safety using Bishop's simplified (1955), Price and Morgenstern's (1965), Spencer's 

(1967) and Sarma's (1973) methods were calculated to be 0.520, 0.530, 0.493 and 0.522, 

respectively. Bishop’s simplified method satisfies overall moment equilibrium and force 

equilibrium only in the vertical direction. Even though it does not satisfy force equilibrium in the 

horizontal direction, it is commonly used in the geotechnical profession because it is known to be 

reasonable if the limitations are recognized and overcome. The last three methods satisfy all 

conditions of equilibrium and therefore, should provide factors of safety accurate to within ±5% 
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for any condition (Duncan and Wrigth, 2005). When entirely saturated, the factors of safety 

indicate that the slope is unstable. However in reality, the slope is still standing and is 

unsaturated. This demonstrates the importance of suction in keeping this slope stable since 

suction increases the soil shear strength and also the factor of safety of the slope under normal 

ambient unsaturated soil conditions. 

9.3 2D Slope Stability Analysis during 500-Year Storm 

Suction values from HYDRUS can be imported into SLOPE/W to perform 2D slope 

stability analyses for the 500-year storm. SLOPE/W interpolates between suction values to 

generate equal suction contours, which are then used to estimate the shear strength of the soil. 

When the slope is unsaturated, SLOPE/W estimates the shear strength of the soil at the bottom of 

each slice in accordance with the following equation proposed by Vanapalli et al. (1996b): 

   ' tan ' tan 'a a w ec u u u S         (Eq. 9.1) 

where eS  is the degree of saturation and can be expressed in terms of suction using van 

Genuchten (1980) model, therefore the shear strength equation becomes: 
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 (Eq. 9.1) 

Equation [9.1] implies that the shear strength is expressed in terms of suction stress as follows: 

 ' tan 's

ac u          (Eq. 9.1) 
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To study the slope stability foe unsaturated soil slope, the suction values along with the

  and n  parameters shall be used. The calibrated parameters in Chapter 8 are valid only for 

wetting or drying SWCC branches. However, the soil in field is following a scanning curve. To 

fix this problem, Iwamoto (2018).came up with a solution to calculate the suction stress 

manually as follows: (a) use values of  a wu u  and   from HYDROUS to manually calculate 

the suction stress  s

a w
s

u u


  
  

, (b) input the calculated s  throughout the slope 

geometry as the soil suction ,  a wu u , and assign 1n   , and (c) calculate the slope factor 

of safety. 

The same four methods of analyses used for the saturated case (Bishop’s simplified, 

Morgenstern-Price’s, Spencer’s and Sarma’s methods) were utilized to analyse the unsaturated 

case during the 500-year storm. Summarized in Table 9.1, the results indicate that: 

(a) The 60-day low-intensity storm on an initially dry slope yielded the lowest factors of 

safety. The factors of safety increased as the storms trend toward the shorter duration 

higher-intensity variety. 

(b) Overall, the factors of safety are greater than 1.19 suggesting that the slope will survive a 

500-year storm. For the 60-day low-intensity storm, the lowest factors of safety occur at 

the end of the storm under initially dry conditions. 

(c) There was a delayed response for the initially wet slope. The minimum factor of safety 

occurred three days after the end of the storm. 

(d) The 60-day duration storm is severe enough to decrease the suctions in the deeper layers 

to values lower than at shallower depths. This has never been observed in the field at the 

time of monitoring. 



112 

 

Table 9.1 500-year duration storm 2D factor of safety. 

Analysis method 
Factor of safety 

End of storm 3 days after storm 30 days after storm 

Simplified Bishop 2.28 2.23 2.21 

Morgenstern-Price 2.58 2.40 2.62 

Spencer 2.61 2.40 2.65 

Sarma 2.34 2.24 2.23 

9.4 Threshold Values 

A rainfall-induced landslide warning system essentially involves using the observational 

method (OM) to identify if a slope is rapidly deteriorating. For this particular slope, the “cause” 

of the rapid deterioration is extreme rainfall and the “symptoms” may include elevated 

volumetric water content, reduced suction and/or increasing slope movement. According to 

Nicholson et al. (1999), the observational method is only applicable if the soil behaves in a 

ductile fashion; i.e.; significant displacement is required to mobilize the peak strength. If the soil 

is brittle (i.e.; small displacement to mobilize peak strength which is true for the stiff silt in this 

slope), then Nicholson et al. (1999) stated that the OM is not applicable. With this slope 

however, it can be argued that because the permeability of the soil, k, is quite low (k < ksat = 10-

6 cm/s), there will be ample lead time to forecast whether a slide is impending provided 

continuous monitoring data of suction/volumetric water content is available. Nicholson et al. 

(1999) proposed a traffic-light-based trigger criterion that is useful for establishing instrument 

thresholds as follows: 

(a) Green = safe site condition 

(b) Amber = decision stage 

(c) Red = implement planned modifications 

Iwamoto (2018) followed the same traffic light approach to provide a threshold values for 

this project. For an instrument to be considered a good candidate for use as a threshold indicator, 



113 

 

the response has to be in the correct direction. After deeply investigating the instrumentation 

readings it was found that Tensiometer (T3) and water content sensor W3 are the most suitable 

candidates to be a threshold indicators. Realistically, the tensiometer cannot read suctions less 

than 9 kPa due to the limitation of the sensor. The threshold values have to be selected with 

awareness of this sensor limitation. The HYDRUS analysis for the 500-year, 60-day duration 

low intensity storm tends to under-predict suctions at this depth, and the field measured suctions 

which averaged 115 kPa and with minimum and maximum readings of 94 and 193 kPa. 

Therefore the proposed amber and red thresholds are 70 and 50 kPa accompanied by at least 14 

days of rainfall averaging about 1 inch/day (0.043 inches/hr). Table 9.2 shows the proposed 

threshold values for the various monitoring instruments in the light of the hydraulic and 

mechanical (failure) analysis performed using HYDRUS and SLOPE/W software respectively. 

Table 9.2 500-year duration storm 2D factor of safety. 

Instrument 

Amber 

Threshold 

value 

Red 

Threshold 

value 

Accompanying event for threshold 

W3 at 0.15 m 0.51 0.53 2 day rain averaging about 1 in/day 

W3 at 0.76 m 0.54 0.55 14 days rain averaging 1 in/day 

T3 at 0.15 m 10 kPa --- 2 day rain averaging about 1 in/day 

T3 at 6.1 m 70 kPa 50 kPa 14 days rain averaging 1 in/day 

 

Planned modifications for the amber trigger can consist of placing tarp or geomembrane 

on the slope crest to minimize infiltration into the slope. For the red trigger, closing the lane 

closest to the slope may be prudent until the suctions increase and the water contents decrease. 
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FEM ANALYSIS 

10.1 Introduction 

The original intention for this project was to develop threshold values based on another 

measured symptom, lateral deflection, in addition to suction and volumetric water content. 

However, due to the limitations of the software utilized in this research, it was decided that any 

threshold values of lateral deflection developed based on finite element analyses would be 

difficult to justify with a great deal of confidence. The reasons can be explained by identifying 

the software limitations below. The Team at Missouri University of Science and Technology ran 

several tentative models using CODE-BRIGHT software to justify the software capabilities. 

10.2 CODE_BRIGHT FEM Software 

Introduction 

Code-Bright has been developed at the Department of Geotechnical engineering and 

Geosciences, University of the Polytechnic University of Catalonia (UPC). This code has been 

developed to carry out a simulation of Coupled Deformation Brine, Gas and Heat Transport. 

Code-Bright could be used to solve load-displacement, gas pressure, liquid pressure, and 

inclusion content problems. The code was first developed on the basis of a new general theory 

for saline media (Olivella et al. 1996). After that, the code was generalized for modeling coupled 

thermos-hydro-mechanical processes in geological media. 

The code uses the finite element to discretize the space (geometry) and finite deference 

for time discretization for the partial differential equations. For non-linear iterative scheme, the 

Newton-Raphson method is used. The mass and energy balance equations are used for flow-type 
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problems, while the stress equilibrium equations are used for equilibrium-type problems. The 

program is designed for a wide range of problems from simple uncoupled cases to more 

complicated cases. 

One of the main advantages of Code-Bright is the wide range of material constitutive 

laws included. The constitutive laws in Code-Bright are categorized as hydraulic and thermal 

constitutive models and mechanical models. The hydraulic and thermal constitutive models 

include retention curve intrinsic permeability, liquid and gas phase relative permeability, 

diffusive fluxes of mass, diffusive fluxes of mass and energy constitutive flux of heat. The 

mechanical constitutive models include Elasticity, non-linear elasticity, visco-plasticity for saline 

and granular materials, visco-plasticity for unsaturated soils based on BBM, damage-elasto-

plastic model for argillaceous rocks, a thermo-elasto-plastic model for soils, and CASM’s family 

models. One additional powerful option in the material constitutive models is the new material 

command. The new material command gives the ability to create a new material taking an 

existing material as a base material. The new material will have the same fields as the base 

material. Moreover, the properties of materials could be changed each interval. This gives the 

ability to define any material with time-dependent properties using Code-Bright. The thermos-

hydro-mechanical (THM) ability coupled with material constitutive laws and interval dependent 

material properties make Code-Bright a very powerful tool for numerical simulation of 

unsaturated collapsible and expansive soils as well as frost-heave problems.  

Many researchers used Code-Bright to study and investigate the behavior of unsaturated 

soils and frost heave-problems. Rutqvist et al. (2005) used Code-Bright for coupled thermal-

hydrological-mechanical-chemical analysis. In this research, a multiyear large-scale underground 

heating test was performed to investigate the coupled-thermal-hydrological-chemical behavior of 
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unsaturated fractured and welded tuff in Yucca Mountains, Nevada, USA. Afterwards, the 

experimental results were compared against four different numerical models performed by 

different research teams. In this study, the capability of Code-Bright to perform such 

complicated coupled problems was investigated and verified. Code-Bright was used successfully 

to investigate and study the behavior of expansive unsaturated soils based on the coupling 

between micro and macro structures of the soil (Sánchez et al. 2005). In this study, Code-Bright 

was used to simulate three application cases. Of particular interest is the simulation of an 

accidental overheat took place in a large-scale heating test for 0.64 m thick engineered barrier 

made up of compacted bentonite. 

Code-Bright has the capability to consider the dynamic Evapotranspiration (ET) 

boundary condition coupled with THM analysis. This capability was used by Rodríguez et al. 

(2007) to analysis and study the desiccation of a mining waste. In this test a set of experimental 

results to characterize the mining waste hydraulically and mechanically. Afterwards, a 

theoretical formulation was developed based on the experimental results. Finally, Code-Bright 

was successfully used to simulate the some of the experimental tests considering the ET process 

to predict the time and location of crack initiation. 

Hydro-Mechanical Slope Stability Analysis 

Barcelona Basic Model (BBM) (Alonso et al., 1990) coupled with van Genuchten (1980) 

equation were used to study the hydro-mechanical behavior. Both models are already 

implemented in CODE_BRIGHT. The BBM (Alonso et al., 1990) used for studying the 

mechanical behavior is coupled with a modified form of the van Genuchten (1980) equation 

proposed by Universitat Politecnica de Catalunya (UPC, 2017) for the hydraulic behavior. The 

BBM is an elasto-plastic model that can be considered as state-of-the-art for unsaturated soils at 
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the time of writing. The model was formulated for isotropic and triaxial compression stress 

states. It can model both collapse and expansive responses of unsaturated soils upon wetting. 

When the soil reaches saturation, the BBM defaults to the modified Cam-clay model. The 

Calibrated parameters the BBM by MST team (Chapter 7) along with the calibrated parameters 

for van Genuchten by UHM team (Chapter 8) are used. A significant limitation for the 

CODE_BRIGHT is that it doesn’t consider the hydraulic hysteresis behavior for the SWCC. In 

reality, all the wetting and drying paths in the field are following the scanning curve. Neglecting 

the hydraulic hysteresis behavior, CODE_BRIFGT was used to simulate the soil initial condition 

and to check the suction distribution. Figure 10.1 shows the FEM mesh for CODE_BRIGHT 

simulation. The ground water table was assigned at 30 m depth from the slope crest. A time 

interval for 1 day was utilized for the soil to reach equilibrium. The pore water pressure 

distribution is presented in Figure 10.2. The pore water pressure at the slope crest is negative 

(i.e., suction) and equal to -0.314 MPa. Figure 10.3 shows the initial conditions for the second 

stage in which the slope surface was subjected to a phase of 30 days continuous raining and the 

slope behavior was further investigated. Figure 10.4 shows the liquid pressure distribution at the 

end of the 30 days. Figure 10.5 shows the slope lateral displacement at the end of 30 days. It is 

clear that the maximum slope displacement was 5.23 cm. The lateral movement distribution can 

be used as an additional threshold value when compared with the inclinometer field reading. 

However, it was noticed that the inclinometer readings were very minimal and within the device 

accuracy. Moreover, again, CODE_BROGHT neglects the hydraulic hysteresis and cannot be 

used for these kind of cycles of wetting and drying. This preliminary FEM was just to investigate 

the software capabilities. After extensive use of this software to solve just hydro- or seepage 

problems for the unsaturated slope, it was discovered that agreement between the calculated and 

measured values of suction and volumetric water content was difficult to achieve. When the field 
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suction paths were superimposed on the SWCC, it was realized that the field values of suction 

and water content do not follow the wetting or drying curves in most instances. Instead, they 

scan. Since CODE_BRIGHT does not allow scanning, it was recognized as a major limitation 

that precluded its use to evaluate the slope deformation behavior. 

 

Figure 10.1 FEM mesh for CODE_BRIGHT. 

 

Figure 10.2 Pore water pressure distribution at the initial stage. 
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Figure 10.3 Second stage conditions. 

 

Figure 10.4 Pore water distribution at the end of 30 days. 

S=0.0 MPa 

GWT 
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Figure 10.5 Later displacement at the end of 30 days. 
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SUMMARIES, CONCLUSIONS AND SUGGESTION FOR 

FUTURE RESEARCH 

11.1 Summary and Conclusion 

A landslide warning system was developed for a cut slope along Kalanianaole Highway. 

The project was divided into several phases. The first phase performed a subsurface 

investigation, collected soil samples, and performed laboratory tests and unsaturated soil 

characterization. The second phase related to filed monitoring and collecting data related to soil 

suction, water content, deformation, and climatic changes. The last phase studied the slope 

stability analysis. The stability analysis was done by: (a) developing and calibration a saturated-

unsaturated transient hydraulic model using HYDRUS software, (b) validating HYDRUS model 

by comparing its predictions for pre water pressure with the filed measurements, and (c) 

transferring the pore water pressure to SLOPE/W software for slope stability analysis. 

The collected soil samples were shipped to two different laboratories for testing. The 

testing program at UHM consisted of: (1) consolidated drained triaxial testing for saturated soil 

samples, (2) one oedometer test for saturated sample, (3) pressure plate and Vapor Sorption 

Analyzer device testing for unsaturated soils to define the soil water characteristic curve and 

HCF, and (4) constant water content triaxial and isotropic compression testing for unsaturated 

samples. While the testing program at MST consisted of: (1) constant water content oedometer 

testing, and (2) constant water content direct shear testing. In order to perform constant water 

testing, the MST team developed their own apparatuses. They fabricated large size and miniature 

high-suction tensiometers (HST) to be used for suction measurement. Moreover, they modified 
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the conventional direct shear and oedometer cells. The fabricated HSTs were mounted to the 

modified cells. 

The experimental index tests showed that the soil was a uniform stiff to very stiff high 

plasticity silt. Both UHM and MST teams used different approaches to, independently and 

separately, calibrate two sets of parameters for Barcelona Basic Model. Later, the calibrated sets 

were compared and discussed. The discussion indicated that the calibrated strength parameters 

agreed very well. However, the calibrated stiffness parameters seemed to reveal contradictory 

conclusions. After deeply discussing the parameters in the light of Alonso et al. (1990) it was 

found that, considering the suction change ranges subjected by each team, the two conclusions 

are complementary. The soil may sustain, first, expansive behavior and, later, collapsible 

behavior during wetting from higher suction levels.  

Field instruments installed included tensiometers to measure in situ suction, water content 

sensors to measure volumetric water content, in-place inclinometers to measure lateral ground 

deflections and a rain gage to measure precipitation at the slope site. A saturated-unsaturated 

transient hydrological flow model was developed and calibrated using the field data and the lab 

test data. Calibration was achieved by adjusting the model parameters to match the laboratory 

measured and calculated SWCC and HCF, and to match calculated and field-measured suctions 

and water contents. The following conclusions can be made from this research. 

(1) The field suction path usually runs along a scanning curve except during periods of heavy 

rain or extreme drought when the field suction path could join up and run along the 

wetting or drying branches, respectively. Therefore, it is important for a saturated-

unsaturated transient flow model to allow for scanning in order to predict field behavior 

reliably; 
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(2) If scanning is not allowed, the calculated field suction path will run along the main drying 

or main wetting branches only, depending on which is specified. Doing so will result in 

over-estimated suctions and water contents when the SWCC and HCF are specified for 

the drying branch only. Conversely, use of the wetting branch only will yield under-

predicted suctions and water contents; 

(3) To the author’s knowledge, HYDRUS (Simunek et al. 2006) is the only commercial 

software that allows scanning. HYDRUS requires the analysis to begin on either the main 

drying branch (i.e.; during a period of extreme drought) or the main wetting branch (i.e.; 

during a period of extreme rain). It doesn’t allow an analysis to begin on a scanning 

curve. This limitation governs/pre-determines the initial conditions to use in an analysis; 

(4) Using pressure dependent SWCC is more reliable and provides good match with the field 

measurements; 

(5) When HYDRUS was rerun using pressure-dependent SWCCs, the calculated water 

contents and suctions matched better with the measured values especially deeper; 

(6) HYDRUS was used to estimate suction and volumetric water contents within the slope 

during and after a 500-year storm. These suctions and water contents were transfer to 

SLOPE/W software to run a 2D slope stability analysis. 

(7) Based on 2D slope stability analyses, the calculated factors of safety suggest that the 

slope shall survive the 5-minute-duration, high intensity 500-year storm where the lowest 

factor of safety (> 2.0) occurred about 3 to 30 days after the end of the storm. For the 60-

day-duration, low-intensity 500-year storm, the factors of safety were lower than the 5-

minute, high intensity variety. The lowest factor of safety was 1.3, which occurred at the 

end of the storm; 
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(8) Instrument thresholds were established using a traffic-light-based trigger criterion 

proposed by Nicholson et al. (1999); 

(9) Instrument threshold values were selected in light of whether the HYDRUS prediction 

was trending in the right direction during a storm, in light of sensor limitation (e.g.; 

tensiometers cannot read below 9 kPa), in light of the agreement between calculated and 

predicted sensor responses during calibration, and in light of the field measured average, 

minimum and maximum values. Instrument threshold values could be established for 2 

water content sensors and 2 tensiometers with confidence; 

(10) Instrument threshold values were not established for the inclinometers due to the 

limitations of the software utilized in this research. For instance, CODE_BRIGHT does 

not consider the hydraulic hysteresis behavior. Therefore, it was decided that any 

threshold values for lateral deflection developed based on finite element analyses would 

be difficult to justify with a great deal of confidence. 

11.2 Suggestion for Future Research 

The following are suggestions for future research or suggestions if additional research 

work were to be conducted for this or similar slope site: 

1. “Undisturbed” soil samples were collected using modified California samplers. To 

decrease sample disturbance, Pitcher samplers should be used to collect samples if the 

soils are stiff and where use of Shelby tubes is precluded. 

2. Pressure-dependent SWCC tests should be conducted to validate the UPC (2017) 

porosity-based model used in conjunction with BBM parameters derived from isotropic 

compression test data. 
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3. A fully coupled hydro-mechanical unsaturated soil model that considers both the 

hydraulic and mechanical hysteresis behaviors should be able to better simulate the slope 

behavior. Progress towards this model was done by the team at MST. MST team 

developed a new fully coupled hydro-mechanical model that considers both hydraulic 

and mechanical hysteresis of unsaturated soils. The paper title is “A Modified State 

Surface Approach to Study the  Unsaturated Soil Hysteresis Behavior”. The model 

development was submitted to the TRB 2020 conference and it was tentatively accepted 

for journal publication. The paper in the review phase now. 

4. The model mentioned in the above item shall be implemented to any of the available 

Finite Element Modeling software (e.g., CODE_BRIGHT or COMSOL) and used to 

study the slope behavior. 

5. The variation of permeability with water content of the unsaturated soil should be 

experimentally derived to verify the HCF computed using the method of Kunze et al. 

(1968). 
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APPENDIX A OEDOMETER COMPRESSION TEST RESULTS 

 

Sample 5, Oedometer compression specimen 3, w=26.19% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 25.50 - 2.085 

29.5 25.38 353.6 2.075 

58.9 25.30 349.4 2.069 

117.8 25.25 342 2.064 

235.6 25.10 321.7 2.053 

353.5 24.94 298 2.039 

471.3 24.81 274.5 2.028 

706.9 24.59 237.2 2.010 

942.6 24.38 214.5 1.993 

1178.2 24.18 198.1 1.977 

29.5 24.52 279.3 2.005 

 

Sample 4, Oedometer compression specimen 2, w=29.84% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 25.30 - 2.081 

29.0 25.22 325.7 2.075 

57.9 25.17 300.9 2.070 

115.8 25.04 266.4 2.060 

231.7 24.83 214.5 2.042 

463.3 24.46 140.2 2.012 

926.7 23.46 9.9 1.930 

29.0 23.88 193.7 1.964 
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Sample 5, Oedometer compression specimen 2, w=30.09% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 25.50 - 2.026 

29.5 25.40 224.9 2.018 

58.9 25.34 212.1 2.014 

117.8 25.18 184.4 2.001 

235.6 24.94 135.3 1.982 

353.5 24.76 96.2 1.967 

471.3 24.58 62.5 1.953 

589.1 24.42 31.7 1.941 

706.9 24.28 0 1.929 

29.5 24.57 113.1 1.952 

 

Sample 5, Oedometer compression specimen 1, w=33.56% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 26.00 117.2 2.116 

29.0 25.88 106.5 2.106 

57.9 25.81 100.8 2.101 

115.8 25.66 87.5 2.088 

231.7 25.40 58.3 2.068 

347.5 25.17 38.4 2.049 

463.3 24.95 17.7 2.031 

695.0 24.55 8.8 1.998 

29.0 24.98 49.4 2.033 

 

Sample 4, Oedometer compression specimen 1, w=34.23% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 26.00 155.2 2.145 

29.0 25.60 136.4 2.112 

57.9 25.45 120.2 2.099 

115.8 25.23 94.8 2.082 

231.7 24.90 62.6 2.055 

463.3 24.41 7.6 2.014 

926.7 23.61 0 1.948 

29.0 24.23 81.5 1.999 
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Sample 6, Oedometer compression specimen 1, w=34.64% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 26.00 108.8 2.153 

29.0 25.87 98.2 2.143 

57.9 25.79 90.6 2.136 

115.8 25.66 78.7 2.125 

231.7 25.43 54.3 2.106 

347.5 25.23 31.1 2.090 

463.3 25.04 6.6 2.074 

579.2 24.86 -1 2.059 

29.0 25.24 57.1 2.090 

1.2 26.00 108.8 2.153 

 

Sample 2, Oedometer compression specimen 1, w=35.81% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 24.40 - 2.280 

29.0 24.10 386.3 2.252 

57.9 24.05 361.4 2.247 

115.8 23.92 307.1 2.235 

231.7 23.59 214.6 2.204 

463.3 22.87 94.6 2.137 

926.7 21.58 0.2 2.016 

29.0 21.85 182 2.041 

1.0 21.92 205 2.048 

 

Sample 3, Oedometer compression specimen 1, w=46.04% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 26.00 - 2.485 

29.0 25.93 56.3 2.478 

57.9 25.86 50.3 2.471 

115.8 25.70 40.9 2.456 

231.7 25.34 27.4 2.422 

463.3 24.79 1.68 2.369 

926.7 23.89 0.7 2.283 

29.0 24.46 13 2.337 
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APPENDIX B DIRECT SHEAR TEST RESULTS 

 

Sample 1, direct shear specimen 1, w=30.32%, normal load = 463 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.28 58.7 0 0.0 2.191 

0.25 25.30 58.9 0 0.0 2.193 

0.5 25.30 59.8 15.1 5.5 2.193 

0.75 25.27 62.2 69.7 25.5 2.190 

1 25.26 68.6 157.5 57.6 2.189 

1.25 25.24 75.3 254.5 93.1 2.188 

1.5 25.22 78.4 312.0 114.1 2.186 

1.75 25.21 82.1 372.6 136.3 2.185 

2 25.20 90 454.4 166.2 2.184 

2.25 25.18 98.6 518.0 189.5 2.183 

2.5 25.16 107.3 563.4 206.1 2.181 

2.75 25.14 115 602.8 220.5 2.179 

3 25.11 121 633.1 231.6 2.177 

3.25 25.08 126.2 660.4 241.5 2.174 

3.5 25.04 132 675.5 247.1 2.171 

3.75 25.01 136.4 687.7 251.5 2.167 

4 24.97 140.2 702.8 257.1 2.165 

4.25 24.93 146.8 724.0 264.8 2.161 

4.5 24.89 155.5 742.2 271.5 2.157 

4.75 24.86 164 757.3 277.0 2.155 

5 24.83 171.3 775.5 283.7 2.152 

5.25 24.80 182 787.6 288.1 2.150 

5.5 24.78 197.7 793.7 290.3 2.148 

5.75 24.76 206 802.8 293.6 2.146 

6 24.74 211.5 805.8 294.7 2.144 

6.25 24.71 215.6 808.8 295.8 2.142 

6.5 24.69 222.2 817.9 299.2 2.140 

6.75 24.67 227.5 827.0 302.5 2.138 

7 24.64 230 833.1 304.7 2.136 

7.25 24.62 231.2 839.1 306.9 2.134 

7.5 24.60 233 845.2 309.1 2.132 

7.75 24.58 235.4 845.2 309.1 2.130 

8 24.56 238.9 845.2 309.1 2.128 
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Sample 1, direct shear specimen 2, w=29.10%, normal load = 139 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.48 403 0 0.0 2.209 

0.35 25.48 401.7 36.9 13.5 2.209 

0.7 25.46 392.5 99.2 36.3 2.206 

1.05 25.44 381.5 110.6 40.4 2.205 

1.4 25.44 370.1 148.8 54.4 2.205 

1.75 25.44 357 212.6 77.8 2.205 

2.1 25.45 338.5 266.5 97.5 2.206 

2.45 25.47 318.7 326.0 119.3 2.207 

2.8 25.50 301.7 381.3 139.5 2.210 

3.15 25.50 286.2 428.1 156.6 2.210 

3.5 25.55 276.3 470.6 172.1 2.215 

3.85 25.61 269.8 510.3 186.7 2.220 

4.2 25.71 221.6 484.8 177.3 2.228 

4.55 25.77 224.7 467.8 171.1 2.234 

4.9 25.83 221.6 467.8 171.1 2.239 

 

Sample 2, direct shear specimen 1, w=35.81%, normal load = 463 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 22.82 83.4 0 0.0 2.132 

0.5 22.82 83.2 6.1 2.2 2.132 

1 22.82 83.2 15.1 5.5 2.132 

1.5 22.80 83.1 136.3 49.9 2.131 

2 22.79 82.8 348.4 127.4 2.129 

2.5 22.73 79.3 445.3 162.9 2.124 

3 22.70 71.64 499.8 182.8 2.121 

3.5 22.67 53.7 560.4 205.0 2.118 

4 22.63 24.4 599.8 219.4 2.115 

4.5 22.60 8.12 630.1 230.5 2.111 

5 22.57 -4.7 651.3 238.2 2.109 

5.5 22.54 -13 663.4 242.7 2.106 

6 22.52 -16.7 672.5 246.0 2.104 

6.5 22.50 -17.6 681.6 249.3 2.102 

7 22.49 -17.9 687.7 251.5 2.101 

7.5 22.47 -17 693.7 253.7 2.099 

8 22.45 -7.8 699.8 256.0 2.097 

8.5 22.44 -1.5 699.8 256.0 2.097 

9 22.44 3 696.7 254.8 2.096 
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Sample 2, direct shear specimen 2, w=38.34%, normal load = 236 kPa 

Displacement 

(mm) 
H (mm) Suction (kPa) 

Shear load 

(N) 
Stress (kPa) Specific v 

0 25.45 87.9 0 0.0 2.204 

0.25 25.45 87.9 9.1 3.3 2.204 

0.5 25.45 88.4 42.4 15.5 2.204 

0.75 25.45 91.1 112.1 41.0 2.204 

1 25.44 96.7 227.2 83.1 2.203 

1.25 25.41 100 302.9 110.8 2.200 

1.5 25.37 104.3 360.5 131.9 2.197 

1.75 25.36 113.9 418.0 152.9 2.195 

2 25.34 126.7 463.5 169.5 2.194 

2.25 25.33 134 484.7 177.3 2.193 

2.5 25.32 137.7 499.8 182.8 2.192 

2.75 25.31 132.5 505.9 185.0 2.191 

3 25.29 128.9 507.4 185.6 2.190 

3.25 25.27 130 505.9 185.0 2.188 

3.5 25.25 135.3 502.9 183.9 2.186 

 

Sample 2, direct shear specimen 3, w=41.38%, normal load = 116 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.74 47.9 0 0.0 2.228 

0.25 25.73 47.2 27.3 10.0 2.227 

0.5 25.72 43 72.7 26.6 2.226 

0.75 25.71 33.6 115.1 42.1 2.225 

1 25.69 28.4 154.5 56.5 2.224 

1.25 25.66 22.6 184.8 67.6 2.221 

1.5 25.63 20.4 206.0 75.3 2.219 

1.75 25.62 18.6 215.1 78.7 2.217 

2 25.61 18.6 221.1 80.9 2.216 

2.25 25.60 15.77 221.1 80.9 2.216 

2.5 25.58 11.73 218.1 79.8 2.214 
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Sample 2, direct shear specimen 4, w=41.23%, normal load = 58 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.84 87 0 0.0 2.235 

0.25 25.82 87.2 0.0 0.0 2.233 

0.5 25.81 88.8 27.3 10.0 2.233 

0.75 25.80 94.9 75.7 27.7 2.232 

1 25.80 97.6 136.3 49.9 2.232 

1.25 25.79 87 178.7 65.4 2.231 

1.5 25.79 77.1 209.0 76.5 2.231 

1.75 25.79 73.7 218.1 79.8 2.231 

2 25.79 71.1 212.1 77.6 2.231 

2.25 25.79 62.6 196.9 72.0 2.231 

 

Sample 3, direct shear specimen 1, w=44.23%, normal load = 232 kPa 

Displacement(mm) H (mm) Suction (kPa Shear load (N) Stress (kPa) Specific v 

0 24.21 18.9 0 0.0 2.313 

0.25 24.20 18.4 42.4 15.5 2.312 

0.5 24.18 16.99 136.3 49.9 2.310 

0.75 24.17 16.5 166.6 60.9 2.309 

1 24.16 16.22 227.2 83.1 2.309 

1.25 24.16 16.3 327.2 119.7 2.309 

1.5 24.16 17.2 390.8 142.9 2.309 

1.75 24.17 19 442.3 161.8 2.309 

2 24.17 20.5 466.5 170.6 2.310 

2.25 24.18 22.8 469.5 171.7 2.310 

2.5 24.18 24.2 472.6 172.9 2.310 

2.75 24.18 25.6 469.5 171.7 2.310 
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Sample 3, direct shear specimen 3, w=32.00%, normal load = 463 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.50 649.4 0.0 0.0 1.991 

0.25 25.49 636.3 109.1 39.9 1.990 

0.5 25.47 604.1 239.3 87.5 1.989 

0.75 25.45 573.6 354.4 129.6 1.987 

1 25.43 544 451.4 165.1 1.985 

1.25 25.41 518.7 530.1 193.9 1.984 

1.5 25.41 496 590.7 216.1 1.984 

1.75 25.41 476.1 678.6 248.2 1.984 

2 25.41 456 754.3 275.9 1.984 

2.25 25.41 436 814.9 298.1 1.984 

2.5 25.41 413 863.4 315.8 1.984 

2.75 25.41 393 905.8 331.3 1.984 

3 25.40 371 930.0 340.2 1.983 

3.25 25.39 353 942.1 344.6 1.983 

3.5 25.39 335 948.2 346.8 1.982 

3.75 25.38 322 954.2 349.0 1.982 

4 25.38 310 963.3 352.4 1.981 

4.25 25.36 291 972.4 355.7 1.980 

4.5 25.36 282 975.4 356.8 1.980 

4.75 25.36 300 972.4 355.7 1.980 

 

Sample 4, direct shear specimen 1, w=32.43%, normal load = 116 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 23.94 81.5 0 0.0 1.973 

0.25 23.94 81.9 6.1 2.2 1.973 

0.5 23.92 82.1 48.5 17.7 1.971 

0.75 23.90 82.3 90.9 33.2 1.970 

1 23.88 82.5 136.3 49.9 1.968 

1.25 23.87 82.9 175.7 64.3 1.968 

1.5 23.88 83.1 215.1 78.7 1.968 

1.75 23.85 83.2 257.5 94.2 1.966 

2 23.86 83.6 302.9 110.8 1.966 

2.25 23.89 83.7 345.3 126.3 1.969 

2.5 23.91 83.7 360.5 131.9 1.971 

2.75 23.93 84 369.6 135.2 1.973 

3 23.95 84.6 366.5 134.1 1.974 
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Sample 4, direct shear specimen 2, w=33.72%, normal load = 58 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.50 144.4 0.0 0.0 2.006 

0.25 25.50 144.7 9.1 3.3 2.006 

0.5 25.48 146.2 45.4 16.6 2.005 

0.75 25.47 147.2 112.1 41.0 2.004 

1 25.46 135.3 175.7 64.3 2.003 

1.25 25.45 126.8 218.1 79.8 2.002 

1.5 25.46 127.1 263.5 96.4 2.003 

1.75 25.47 122 272.6 99.7 2.004 

2 25.48 117.2 284.8 104.2 2.005 

2.25 25.49 114 284.8 104.2 2.006 

2.5 25.50 110.8 272.6 99.7 2.006 

2.75 25.50 144.4 0.0 0.0 2.006 

 


