
LABORATORY INVESTIGATION OF INFILTRATION PROCESS OF NON
NEWTONIAN FLUIDS THROUGH POROUS MEDIA IN A NON-ISOTHERMAL FLOW 

REGIME FOR EFFECTIVE REMEDIATION OF ADSORBED CONTAMINANTS

By

Fawad Naseer, B.S.

A Thesis Submitted in Partial Fulfillment for the Degree of

Master of Science

in

Geological Engineering

University of Alaska Fairbanks
December 2019

APPROVED:

Debasmita Misra, Committee Chair
Paul Metz, Committee Member
Obadare Awoleke, Committee Member
Majdi Abou Najm, Committee Member
Tathagata Ghosh, Chair

Department of Mining and Geological Engineering
Bill Schnabel, Dean

College of Engineering and Mines
Michael Castellini, Dean of the Graduate School



Abstract

Contamination of soil and groundwater have serious health implications for man and 

environment. The overall goal of this research is to study a methodology of using non

Newtonian fluids for effective remediation of adsorbed contaminants in porous media under non

isothermal flow regimes. Non-Newtonian fluids (Guar gum and Xanthan gum solutions) provide 

a high viscous solution at low concentration and these fluids adjust their viscosities with applied 

shear rate and change in temperature. Adjustment of viscosity with an applied rate of shear is 

vital for contaminant remediation because non-Newtonian shear thinning fluids can penetrate to 

low permeability zones in subsurface by decreasing their viscosities due to high shear rates 

offered by low permeability zones.

The application of non-Newtonian shear thinning fluids for contaminant remediation 

required the improvement in understanding of rheology and how the factors such as 

concentration, temperature and change in shear rate impacted the rheology of fluids. In order to 

study the rheology, we studied the changes in rheological characteristics (viscosity and contact 

angle) of non-Newtonian fluids of different concentrations (i.e., 0.5g/l, 1g/l, 3g/l, 6g/l and 7g/l) 

at different temperatures ranging from 0 °C to 30 °C. OFITE model 900 viscometer and Tantec 

contact angle meter were used to record the changes in viscosity of fluids for an applied range of 

shear rate (i.e., 17.02 s-1 to 1021.38 s-1) and contact angles, respectively, for different 

concentrations of non-Newtonian fluids.

Understanding the flow characteristic of non-Newtonian fluids under low temperature 

conditions could help in developing methods to effectively remediate contaminants from soils. 

Results of rheological tests manifested an increase in the viscosity of both polymers with 

concentration and decrease in temperature. Mid (i.e., 3g/l) to high (i.e., 6g/l and 7g/l) 

concentrations of polymers manifested higher viscosities compared to 0.5g/l for both polymers. 

Flow of high viscous solutions required more force to pass through a glass-tube-bundle setup 

which represented a synthetic porous media to study the flow characteristic and effectiveness of 

Newtonian and non-Newtonian fluids for contaminant remediation. Low concentrations of 0.5g/l 

were selected for flow and remediation experiments because this concentration can flow through 

porous media easily without application of force. The 0.5g/l of Xanthan gum and de-ionized 

water were used to conduct the infiltration experiments to study the flow characteristics of 

Newtonian and non-Newtonian fluids at 0.6°C, 5°C and 19°C in synthetic porous media.
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Infiltration depth of both Newtonian and non-Newtonian fluids would decrease with the decrease 

in temperature because of the change in their properties like dynamic viscosity, density and angle 

of contact.

The result of comparison of Newtonian and non-Newtonian fluids showed water to be more 

effective in remediating a surrogate adsorbent contaminant (Dichlobenil) from the synthetic 

porous media at 19°C. This result was counter-intuitive to what we began with as our hypothesis. 

However, it was also observed later that 0.5 g/l concentration of Guar gum behaved more like a 

Newtonian fluid and 0.5 g/l concentration of Xanthan gum had not shown strong non-Newtonian 

behavior compared to higher concentrations of Xanthan gum. Hence more analysis needs to be 

done to determine what concentration of non-Newtonian fluid should be more effective for 

remediation.
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Chapter 1 Introduction

Contamination of soil and groundwater by adsorbed contaminants such as phosphates, 

carbon tetrachloride, chlorinated aliphatic hydrocarbons (CAH), certain emerging contaminants 

(e.g., PFAS), or certain heavy metals have been of major concern lately (e.g., Jung et al., 2016; 

Palaniappan et al., 2010; Barnes et al., 2007; Gillham and O'Hannesin, 1994). Quality of water is 

increasingly threatened as human populations grow, industrial and agricultural activities expand, 

and as climate change threatens to cause major alterations of the hydrologic cycle. Inadequately 

treated sewage, industrial and agricultural or food wastes, dissolved metals and many emerging 

contaminants, enter through the soil to pollute the groundwater on a daily basis. Additionally, 

mining, oil and gas exploration and production, industrial and nuclear plants are adding to the 

problem. A lack of understanding of fate and transport of contaminant within soil matrix and 

groundwater makes the situation worse.

Preferential flow of contaminants through soil to groundwater is defying the conceptual 

understanding of flow and transport through porous media. Adding to the complexity are the 

highly adsorbed contaminants that do not travel at a rate proportional to the flux rate of water in 

the porous media. Experimental and field observations show that the infiltration of water does 

not necessarily move downward at a uniform rate in a specific direction. In reality, water and 

contaminant travel in a wide range and at varying velocities. Hence, contaminant remediation 

methods need to be adapted to their distribution within the soil matrix and flow pathways.

Non-Newtonian fluids are gaining interest for contaminant remediation because these fluids 

exhibit viscosity change with change in shear rate. Jung et al. (2016 and references therein) 

provide a comprehensive review of “important characterization and remediation techniques that 

have been developed to deal with the contamination of soils and sediments. Soil remediation 

technologies such as excavation, soil vapor extraction, bioremediation, surfactants enhanced 

remediation, and steam injection have been used for many years. The excavation of 

contaminated soil is a simple solution. However, this method has become less popular owing to 

its high cost and the lack of available landfill sites. Instead, soil flushing methods such as soil 

vapor extraction, surfactant-enhanced remediation, and steam injection have been more popular 

in recent years. Among these, surfactant-enhanced remediation facilitates an enhanced rate of 

remediation by exploiting the low surface tension of the surfactants. Oil-contaminated sites have 
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been remediated by in-situ flushing using biosurfactants (e.g., D'Cunha and Misra; 2005; 

D'Cunha et al., 2009), that is, surface-active substances synthesized by living cells. Biopolymers 

synthesized from plants can also be used instead of biosurfactants as an eco-friendly soil 

remediation method. Biopolymer flushing was originally developed for petroleum-enhanced oil 

recovery, and subsequently, it has been used for the remediation of petroleum waste at 

contaminated sites.”

A biopolymer is a non-Newtonian fluid that has recently experienced growing interest in 

many petroleum and environmental engineering applications. Besides enhanced oil recovery, 

recently, fracturing agents and drilling muds with complex rheologic behavior are being used in 

low permeability formations in the oil and gas industry. This non-Newtonian flow through 

porous media accomplishes fracture cleanup operation that follows hydraulic fracturing during 

oil-well completion (Balhoff and Thompson, 2006). In environmental applications, liquid 

pollutants and wastes such as suspensions, solutions and emulsions of various substances, certain 

asphalts and bitumen, greases, sludges, and slurries may migrate in the subsurface and penetrate 

into underground reservoirs, leading to groundwater contamination. Non-Newtonian fluid 

(biopolymer) flow in porous media is also relevant in soil remediation processes involving the 

removal of liquid pollutants via chemical (often polymerization) reactions (Di Federico et al., 

2010).

The basic principle of biopolymer flushing is that the addition of a biopolymer to the 

flushing water leads to increased viscosity and capillary number, decreased mobility, and contact 

with a larger volume of the reservoir (Lake, 2008). The capillary number of a fluid is related to 

the fluid velocity, fluid viscosity, and surface tension. Mobility is a relative measure of how 

easily a fluid moves through porous media. Apparent mobility is defined as the ratio of the 

effective permeability to the fluid viscosity (Sorbie, 1991). The physical properties of 

biopolymers, such as viscosity, surface tension, and contact angle, are important to determine 

when using biopolymer solutions is feasible for the remediation of contaminated soils (Jung et 

al., 2016).

Biopolymers such as polyacrylamide (PAM) and Xanthan gum have shown great promise 

for enhanced oil recovery (EOR) because they lead to an increase in the viscosity of water, 

decrease in the mobility of water, and contact with a larger volume of the reservoir (Blokker, 

2014; Pollock et al., 1994; Hove et al., 1990). Xanthan gum was tested to deliver remedial 
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amendments (e.g., phosphate, sodium lactate, ethyl lactate) for subsurface remediation (Zhong et 

al., 2013). Xanthan gum is a microbial polysaccharide discovered in the 1950s by the U.S. 

Department of Agriculture with high molecular weight and high solubility. Xanthan gum shows 

viscosity synergy with Guar gum.

The biopolymer Guar gum is also an excellent candidate for remediation of contaminated 

soils (Velimirovic et al., 2014). Guar gum is the natural material obtained from the Guar seeds. It 

is a non-Newtonian shear thinning (viscosity decreases with an increase in stress) fluid (Figure 

1.1). The shear offered by the low permeability zones is high, which allow the shear thinning 

fluid to decrease its viscosity with increase in shear rate. This decrease in viscosity helps 

penetration of shear thinning fluid into hard-to-reach low permeability zones in the subsurface 

porous media. The mixture of Guar gum with water increases the viscosity and allow better 

transportation and suspension of the fluid. Guar gum is naturally biodegradable and thus has 

almost no environmental impacts on the soil. Guar gum and Xanthan gum solutions were used as 

the non-Newtonian fluids in this research.

Figure 1.1. Viscosity vs shear rate relationship for Newtonian and non-Newtonian (shear 
thickening and shear thinning) fluids
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While laboratory and field scale studies including modeling of non-Newtonian fluid flow in 

porous media as a remediation agent has been studied, but such studies have been limited to 

porous media temperatures of approximately 30°C. According to Jung et al. (2016), previous 

work on biopolymers were limited to the evaluation of the shear strength, stiffness, and erosion 

resistance properties of soils saturated with biopolymer solutions. Little is known about the flow 

characteristics of biopolymer solutions through a porous medium, especially at the range of low 

temperatures that are experienced in cold regions such as Alaska.

Complexities associated with the pore structures hinder the flow model development for a 

porous media. The proper understanding of the complex pore structures and flow pattern in the 

media is most important. A knowledge of such complexity will provide an opportunity to study 

and compare the behavior of non-Newtonian fluid and Newtonian fluid under different 

temperature regimes in the soil. It is critical to understand the impact of temperature on the flow 

or rheology of Guar gum and Xanthan gum solutions in soil because the adsorption kinetic of 

each adsorbent contaminant is different. Understanding of the flow characteristic of non

Newtonian fluids will help us to investigate its effectiveness in remediation of adsorbed 

contaminants such as Dichlobenil, Phosphates and Carbon Tetrachloride.

Our hypothesis is that the difference in rheological characteristics between Newtonian and 

non-Newtonian fluids make the latter a better candidate for fluid flow and remediation of 

adsorbed contaminants from soils at different thermal regimes. The major goal of this research is 

to determine a method for effective remediation of adsorbed contaminants in soils of cold 

regions using non-Newtonian fluids. In order to accomplish the goal, we have completed the 

following objectives using a synthetic porous media in laboratory settings.

• Study the effect of temperature on rheological properties of Guar gum and Xanthan gum 

of different concentrations. (Chapter 2)

• Study the flow characteristics of Newtonian and non-Newtonian fluids under different 

thermal regimes. (Chapter 3)

• Comparison of Newtonian and non-Newtonian fluid for remediation of adsorbed 

contaminant. (Chapter 4)
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Chapter 2 Effect of temperature on rheological properties of Guar gum and Xanthan gum of 

different concentrations1

1Naseer et al. Effect of temperature on rheological properties of Guar gum and Xanthan gum of different 
concentrations. Unpublished Manuscript 2019.

Abstract

The overall goal of this research is to study a methodology of using non-Newtonian fluids 

for effective remediation of adsorbed contaminants in porous media under non-isothermal flow 

regimes. Different concentrations of non-Newtonian fluids (Guar gum and Xanthan gum 

solutions) were exposed to temperatures ranging from 0.6 °C to 30.6 °C to study the changes in 

viscosity, contact angle and shear stress with change in shear rate. Separate sample solutions for 

Guar gum and Xanthan gum having concentrations of 0.5g/l, 1g/l, 3g/l, 6g/l, and 7g/l were 

prepared. OFITE model 900 viscometer and Tantec contact angle meter were used to record the 
changes in viscosity and contact angle at 0.6 °C, 5 ° C, 15 °C, 19 °C and 30.6 °C. The range of 

shear rate applied varied from 17.02 s-1 to 1021.38 s-1. It was observed that the sample solutions 

of Xanthan gum behaved as non-Newtonian shear-thinning fluid for the selected range of 

temperature and concentration. Guar gum also displayed non-Newtonian shear thinning behavior 

for mid to high concentrations but was asymptotic to Newtonian behavior for low concentrations. 

Increase in temperature increased the shear thinning behavior of Xanthan gum solutions. At 5 °C 

the addition of salt in low to mid Guar gum concentrations increased the viscosity, whereas, a 

higher concentration of 7g/l exhibited viscosity decrease. With the increase in temperature to 

30.6°C, low to mid Guar gum concentrations also displayed decrease in viscosity. 

Keywords: Non-Newtonian, Rheology, Guar gum, Xanthan gum, Temperature

2.1 Introduction

Soil and groundwater contamination is emerging as a great concern. Soil contamination in 

urban and rural environments maybe caused at industrial sites such as mining heaps, dumps, 

filled natural depressions, and quarries (Meuser, 2010). Mine drainage water contains metals, 

salts, coal and other minerals that may be highly adsorbed to soils and within the saturated 

porous media. According to Palaniappan et al. (2010), there are approximately 500,000 
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abandoned mines alone in the United States. The state of Colorado alone has 23,000 abandoned 

mines that have polluted 2,300 km of streams. Oil and gas industrial processes like hydraulic 

fracturing, oil purification, oil and gas storages, pipelines and oil spills are contributing to soil 

and water contamination (Jung et al., 2016). With such adsorbed contaminants in soils and 

aquifers having a potential of increased prevalence in a rapidly changing climatic environment, it 

is critical that effective remediation measures be tested and developed to clean the soil and 

aquifer environments. The major goal of this research is to determine a method for effective 

remediation of adsorbed contaminants in soils of cold regions using non-Newtonian fluids.

In recent years, use of non-Newtonian fluids are gaining interest for soil and groundwater 

remediation. These fluids exhibit change in viscosity with applied shear rate. Non-Newtonian 

shear thinning fluids are characterized by decrease in viscosity with increase in rate of shear. 

Non-Newtonian shear thinning fluids penetrate into low permeability zone because these zones 

offer higher shear rates to fluid, which results in decrease of fluid viscosity and thus facilitates its 

penetration in low permeability zones (Zhong et al., 2013).

The two most common non-Newtonian fluids are solutions of Guar gum and Xanthan gum. 

Guar gum solution has been investigated for the treatment of drinking water, industrial effluent, 

and transportation of microscale zero-valent iron particles in porous media (Mukherjee et al., 

2017, Gupta and Ako, 2005, Tosco et al., 2014). Xanthan gum solution has been tested to 

deliver remedial amendments (e.g., phosphate, sodium lactate, ethyl lactate) for subsurface 

remediation (Zhong et al., 2013). These industrial applications of polymers are possible due to 

their unique property of producing a high viscous solution with low concentration. Moreover, 

both gums are non-toxic, cheap and biodegradable (Brunchi et al., 2016, Yang et al., 2015). The 

unique property of producing high viscous aqueous solutions of these gums are influenced by 

concentration, temperature, and salt. Thus, it is important to understand how these three factors 

influence rheology to know the potential of these polymers in a variety of engineering 

applications, including remediation of soils.

2.1.1 Chemistry of Guar Gum

The Guar gum solution, as a non-Newtonian fluid, is an excellent candidate for the 

remediation of contaminated soils (Velimirovic et al., 2014). Guar gum is galactomannan 

(mannose backbone with galactose side groups) polysaccharide mainly extracted from the 

Cyamopsis Tetragonolobus (Torres et al., 2014), which is cultivated in the Indian subcontinent 
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from ancient times (Mudgil et al., 2014). These polysaccharides are formed by molecules of 

galactose and mannose. The principal backbone is the chain of (1-4) - β-D-mannopyranosyl units 

with (1-6) α-D-galactopyranosyl units linked to the principal chain (Figure 2.1; McCleary et al., 

1981; Wientjes et al., 2000; KOk et al.,1999). The mannose to galactose ratio in solution is 

temperature dependent (Casas et al., 2000). Guar gum dissolves in a polar solvent by forming 

strong hydrogen bonds. The greater branching of Guar is believed to be responsible for greater 

hydrogen bonding activity. Hydrogen bonding activity of Guar gum is due to the presence of 

hydroxyl group in the Guar gum molecule (Mudgil et al., 2014).

Figure 2.1. Chemical representation of Guar gum molecule, showing the positions of Galactose (G) 
and Mannose (M) on the polysaccharide chain (Ding et al., 2008)

Low concentration of Guar gum that has a higher molecular weight manifests high viscosity, 

which changes with shear rate. Extensive intermolecular entanglement through hydrogen 

bonding and higher molecular weight provides high viscosity of Guar gum solution (Sandolo et 

al., 2009). Variation of molecular weight depends on the chain length of the polysaccharide. As 

mentioned earlier, mannose to galactose ratio in a solution is temperature dependent. Molecules 

with high molecular weight and high galactose to mannose ratio have greater probability of 

solubility when temperature is raised. (Casas et al., 2000).

Guar gum dispersion in water leads to the intermolecular chain entanglement causing the 

viscosity of aqueous solution (Srichamroen, 2007). Higher concentrations enhance the molecular 

entanglement, limiting the length to which the molecules will be extended. The presence of 

entanglement leads to the formation of a gel-like structure (Martin-Alfonso et al., 2018, Torres et 

al., 2014). High viscous solutions exhibit the non-Newtonian shear thinning behavior in which 

the apparent viscosity decreases with the increase in shear rate. This shear-thinning behavior of 
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Guar gum aqueous solution was reported by many researchers (e.g., Torres et al., 2014, Chenlo 

et al., 2010, Bourbon et al., 2010) at temperature above 20°C.

Our experiments revealed that low concentration of Guar gum solution showed 

inconsistency in viscosity with the increase in shear rate, as illustrated in Figure A1. During the 

2017 American Geophysical Union annual meeting (Naseer et al., 2017), it was recommended to 

us that addition of salt to low concentrations of Guar gum may resolve the issue of inconsistence 

changes to viscosity with change in shear rate, as observed in Figures A1a and A1b. Rheological 

experiments were conducted by adding NaCl (10g/l) or KCl (10g/l) separately to Guar gum 

solutions to investigate the effect of salt concentration on viscosity of the polymer solution. 

Reviewing the literature, we found Gittings et al., (2001) reported that the addition of salts 

results in a decrease in viscosity with the possible explanation that presence of salt ions in 

solution disrupts the covering of water molecules around the Guar chain which results in a 

decrease in solubility of Guar gum in water. We have studied the effect of temperature on the 

sheath of water molecules around Guar gum chain for saline Guar gum solutions by conducting 

the rheological experiments at different temperatures.

2.2.2 Chemistry of Xanthan Gum

Xanthan gum is a microbial polysaccharide discovered in the 1950s by the U.S. Department 

of Agriculture. It has a high molecular weight and high solubility. Xanthan gum shows viscosity 

synergy with Guar gum. Primary structure of Xanthan gum consists of β- (1-4) -D-glucose 

(cellulose) backbone that is substituted at every C3 second glucose residues by charged 

trisaccharide side chain namely a D-glucuronic acid unit between two D-mannose units. One D- 

mannose unit is linked to the main chain and contains an acetyl group at position O6 and other 

one contains a pyruvic acid residue linked via keto group to the 4 and 6 positions. Xanthan 

secondary structure of double helix is dependent on temperature, concentration and salinity 
conditions (Figure 2.2; Brunchi et al., 2014; Martin-Alfonso et al., 2018).
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Figure 2.2. Structure of Xanthan gum (Xu et al., 2013)

Similar to Guar gum, Xanthan gum shows non-Newtonian shear thinning behavior resulting 

from molecular entanglement. This molecular entanglement is concentration dependent. Thus, 

higher concentrations would impact the shear thinning behavior of Xanthan gum solution.

In water, the Xanthan backbone is disordered and highly extended due to the electrostatic 

repulsions exhibited between charged groups that belong to the side chains. The high extended 

structure favors the hydrogen bonding and a randomly broken helix is formed (Brunchi et al., 

2014). In temperatures between 25°C to 40°C, Xanthan gum maintained ordered conformation 

stabilized by the hydrogen bonding but destabilized by electrostatic repulsion between negatively 

charged groups (Casas et al., 2000).
2.2.3 Rheology

Rheology is the science of deformation and flow behavior of fluid under applied stress. 

Viscosity is the important rheological term associated with the rheology study which determines 

how the fluid will flow under a variety of conditions, including temperature and shear rate. 

Viscosity of Newtonian fluids does not change with the shear rate. However, viscosity of non

Newtonian fluid changes with change in shear rate. Knowledge of rheological properties of fluid 

and how the factor like temperature and shear rate would affect the rheological properties are 

essential to understand the flow and contaminant remediation in the subsurface porous media. 

For example, temperature affects the viscosity of non-Newtonian fluids, which will impact the 

flow of and the scouring (can be useful in remediation of the residual contaminant from the 

porous media surface) property of the non-Newtonian fluid.
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Many researchers have investigated the rheological properties of Guar gum and Xanthan 

gum. Most of these studies (e.g., Casas et al., 2000; Brunchi et al., 2016; Chenlo et al., 2010) 

were conducted at temperatures above 20°C. Little is known about the impact of low (i-e., 

0.6°C, 5°C, 15°C) temperature, such as those experienced in cold regions soils, on rheological 

properties of these polymers. We are aware of only one study conducted by Srichamroen, (2007) 

for Guar gum at 4°C.

To achieve our broad objective of studying the methodology of non-Newtonian fluids for 

contaminant remediation, it is important to understand the impact of environmental factors (i.e., 

the temperature of porous media (soil), the salinity and shear offered by low and high 

permeability zones) on fluid rheology. Viscosity and contact angle are most important aspects 

associated with non-Newtonian fluids that can affect flow and contaminant remediation in the 

subsurface porous media.

To understand the changes in rheology of non-Newtonian fluids with change in temperature, 

we studied the change in viscosity, contact angle and shear stress with change in shear rate at 0.6 

°C, 5 ° C, 15 °C, 19 °C and 30.6 °C for Guar gum and Xanthan gum solutions. Some questions 

addressed in this research work are as follow:

• How would selected temperature range affect the viscosity of Guar gum and Xanthan gum 

solutions of different concentrations?

• How would the effect of temperature affect the non-Newtonian behavior of these 

polymers?

• How would the addition of salts (10,000 mg/L) impact the rheological properties of Guar 

gum? Does the type of salt (NaCl or KCl) influence the rheological properties differently?

2.2 Methodology

Commercial food grade Guar gum (Derived from Cyamopsis Tetragonolobus) and Xanthan 

gum were used without any further purification. Experimental aqueous solutions were prepared 

for concentrations of 0.5g/l, 1g/l, 3g/l, 6g/l and 7g/l by slowly dispersing defined amounts 

(0.5g, 1g, 3g, 6g, and 7g) of Guar gum or Xanthan gum into a rapidly swirling vortex of one 

liter of distilled water (Patel et al., 1987; Venugopal et al., 2010 ). Sample solutions were 

prepared by using food blender for two minutes to avoid the formation of clumps and later stirred 

at 1000 rpm for thirty minutes at 19°C temperature. Changes in viscosity and contact angles of 

prepared Guar gum and Xanthan gum solutions were recorded at 0.6 °C, 5 ° C, 15 °C, 19 °C and 
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30.6 °C with application of different shear rates. To attain these temperatures, sample solutions 

were kept in a cold chamber for 3 hours. Sodium Chloride (10g/l) and Potassium Chloride 

(10g/l) were added separately to different concentrations of Guar gum to study the impact of 

salinity on change in viscosity of Guar gum solutions with change in applied shear rates. 

Concentration of salts (Swann, 2017) and polymers (Casas et al., 2000; Chenlo et al., 2010; 

Torres et al., 2014; Bradley et al., 1989) were selected based on the specifications provided in 

available literature.

Rheological tests were conducted by using the OFITE model 900 viscometer to record 

changes in viscosity and shear stress of the solutions at different shear rates at a particular 

temperature. Tantec contact angle meter was used to record the contact angle of solutions at 

different temperatures. The sample container was wrapped by insulated material to maintain the 

temperature of the solution during each measurement. The temperature of the sample was 

recorded before and after each rheological test. A maximum of ±2 °C change was observed 

amongst all rheological analyses. A minimum of three replicates were conducted for each test. 

Figure 2.3 provides set up of rheological tests.

Figure 2.3. (a) Samples of different concentration are in Thermotron temperature chamber to attain the 
desired temperature. (b) OFITE Model 900 viscometer used to find the apparent viscosity of Guar gum 

and Xanthan gum samples at different shear rates.
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2.3 Results and Discussion

2.3.1 Rheological Study of Guar Gum

Guar gum solutions of different concentrations were investigated for a change in 

viscosity depending on the level of shear rate. Figure 2.4 summarizes the variation of the 

apparent viscosity with increase in shear rate for Guar gum solutions at different temperatures. 

Mid (i.e., 3g/l) to high (i.e., 6g/l and 7g/l) Guar gum concentrations showed decrease in viscosity 

with an increase in shear rate (Figure 2.4). Temperature had a lesser effect on viscosity change 

when the shear rate was increased. Thus, difference in viscosity is more prominent at low shear 

rates compared to high shear rates. Low concentrations of Guar gum solutions did not show 

decrease in the viscosity with increase in shear rate (Figure 2.5). The viscosity was 

approximately constant at all shear rates for low concentrations.

The temperature of the polymer aqueous solution at which the viscosity was recorded 

influenced the apparent viscosity of the solution. Decrease in the viscosity was observed with an 

increase in temperature for all investigated concentrations (Figure 2.4). According to 

Srichamroen (2007), temperature causes the water molecules to lose their ordering around the 

Guar molecules, thus affecting the conformation and resulting in reduced-viscosity behavior. 

High Guar gum concentrations in solutions resulted in higher viscosity, and the temperature 

effect on viscosity was found to be less prominent (Figures 2.4b and 2.4c), especially at 7g/l 

concentration.
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Figure 2.4. Variation of apparent viscosity of Guar gum solutions with increase in shear rate at 
different temperatures
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Table 2.1 summarizes the percentage decrease in apparent viscosity (i.e., relationship 

between viscosity or the fluid's resistance to flow and the shear rate) for different Guar gum 

solutions when temperature of solutions were increased from 5°C to 30.6°C. Decrease in 

viscosity was observed for all concentrations under consideration.

The decrease in the viscosity at particular shear rate and temperature for different 

concentrations of Guar gum solutions are critical for flow of non-Newtonian fluids in the 

subsurface porous media. Variable temperature and shear rate offered by different permeability 

zones in the subsurface would impact the fluid viscosity, which would result in change in the 

fluid velocity flowing through the porous media. Highly viscous fluids need more force to move 

through the pore space as compared to less viscous fluid. By knowing the percent decrease in the 

viscosity at particular temperature and shear rate, it would be easier to understand the flow of 

non-Newtonian fluid in regions experiencing those conditions of temperature and the porous 

media offering such shear rate.

from 5°C to 30.6 °C.

Table 2.1. Percentage decrease in apparent viscosity of Guar gum solutions when temperature was raised

Shear rate(1∕s)
Guar gum Solutions

0.5g∕l 1g∕l 3g∕l 6g∕l 7g∕l
17.02 -37±16% -25±2% -21±1% -32±0%
34.05 -9±4% -40±4% -22±4% -18±0% -30±0%
51.07 -19±6% -24±6% -20±3% -15±0% -29±0%

102.14 -28±2% -27±3% -21±1% -12±0% -27±0%
170.23 -32±0% -27±4% -20±0% -12±0% -26±0%
340.46 -36±2% -30±5% -23±0% -12±0% -23±1%
510.69 -40±2% -32±3% -25±0% -11±0% -17±1%
1021.38 -37±2% -30±4% -27±0% -14±0% -14±0%

When Guar gum is dispersed in water, the galactose side chain of the molecule interacts 

with the water molecule, leading to inter-molecular chain entanglement of the Guar gum in 

aqueous solutions, rendering viscosity to the solution. With the increase in the concentration of 

Guar gum, the degree of inter-molecular chain interaction or entanglement would be enhanced, 

which would result in increased viscosity (Srichamroen, 2007; Zhang et al., 2005). Figure 2.5 

shows the variation of the apparent viscosity with change in the shear rate at constant 

14



temperatures for different concentrations of Guar gum. Higher concentrations showed high 

viscosity at all temperatures under consideration.

Non-Newtonian shear thinning of Guar gum increases with the increase in concentration. 

Shear thinning was demonstrated by mid to high concentrations at all investigated temperatures 

(Figure 2.5). High Guar gum concentrations showed steep decrease in the apparent viscosity with 

an increase in the shear rate at all investigated temperatures (Figure 2.5). This is evidence of 

strong shear-thinning as reported by Chenlo et al. (2010) and Torres et al. (2014) for high 

concentrations. Mid (3g/l) concentration showed a less steep decrease in viscosity with an 

increase in shear rate. At low concentrations the shear thinning did not respond similar to those 

of mid or high concentration solutions, as is evidenced in Figure 2.5 at any particular 

temperature.
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Here, τ is used for shear stress. The power law consistency index (K) is related to the fluid 

viscosity at low shear rate and is important for field applications. For example, fluid with a 

higher value of K would enhance the hole cleaning and suspension effectiveness of drilling muds 

in petroleum industry (Yang et al., 2010).

The power law index (i.e., n) represents the degree of non-Newtonian behavior over a given 

range of shear rate (i. e. , γ). At n < 1, the fluid is non-Newtonian shear thinning, and at n = 1, the 

fluid is Newtonian. Lower value of n indicates the fluid is more shear thinning. The velocity 

profile of the fluid having lower value of n will be flatter (Figure 2.6). This shear thinning 

behavior of the non-Newtonian fluid increases the fluid velocity over a large area of the annulus 

(Yang et al., 2010) and greatly improves the hole cleaning operations in petroleum industry. 

Better performance of lower n value fluid can be useful in cleaning the contaminants from soils 

as demonstrated using a glass-tube-bundle model (synthetic porous media) in Chapter 4. Power 

law was used to find the degree of shear thinning behavior offered by all solutions of non

Newtonian fluids (Guar gum and Xanthan gum) at different temperatures.
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Figure 2.5. Variation of apparent viscosity of Guar gum solution with an increase in shear rate 
at different concentrations

2.3.2 Non-Newtonian Rheological Model for Guar Gum

Power law model is one of the simplest model used to describe the flow behavior of the non

Newtonian shear-thinning fluids. The non-Newtonian behavior of polymer aqueous solutions 

was quantified by the power law relationship.



Figure 2.6. Effect of power law index (n) on velocity profile of fluid

Figure 2.7 summarizes the consistency curves (shear stress vs shear rate curves) for different 

Guar gum concentrations at different temperatures that are computed using equation 1. Lines 

represent fitting of power law relationship to experimental data. The fitted K and n along with 

coefficient of determination are listed in Table 2.2.
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Figure 2.7. Shear stress and shear rate relationship for different concentrations of Guar 
gum.
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The high coefficient of determination suggests that the Guar gum solutions at different 

temperatures had a good fit with the power law model. Hence, it is evident that they may be 

characterized as non-Newtonian fluids. However, no significant change in n was observed with a 

change in temperature (Table 2.2) at a specific Guar gum concentration. This indicates that the 

temperature effect on non-Newtonian behavior of Guar gum solutions is insignificant. Decrease 

in the value of n was observed with the increase in polymer concentration. This suggests that shear 

thinning of Guar gum solution increased with the increase in concentration.

Table 2.2. Effect of temperature and concentration on non-Newtonian behavior of Guar gum. Fitted K and 
n values according to power law relationship.

Concentration 
g∕∣

Temperature 
°C

Power law 
consistency index, 

K (Pa*sn)

Power Law 
index, n R2

3

0.6 1.793E-01 0.63 0.999
5 1.307E-01 0.66 0.999

15 1.273E-01 0.64 0.998
19 1.022E-01 0.67 0.998

30.6 1.021E-01 0.66 0.995

6

0.6 2.597E+00 0.37 0.999
5 3.028E+00 0.35 0.999

15 2.398E+00 0.37 0.998
19 2.109E+00 0.39 0.998

30.6 2.065E+00 0.38 0.996

7

0.6 4.190E+00 0.33 0.998
5 4.190E+00 0.33 0.998

15 4.190E+00 0.33 0.998
19 4.190E+00 0.33 0.998

30.6 4.190E+00 0.33 0.9981
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Table 2.2 data indicates that concentration had a greater influence on the power law 

consistency index K than change in temperature. K value increases with an increase in 

concentration level under the studied temperature range. A small decrease in K with increase in 

temperature was observed for 3g/l and 6g/l solutions whereas K remained constant for the 7g/l 

solution.
2.3.3 Effect of Salt on Guar Gum

As discussed in section 2.1.1, Low concentration of Guar gum solution showed inconsistency in 

viscosity with the increase in the shear rate as seen in Figure A1. To resolve the inconsistency in 

viscosity salts were added to the separate solutions of Guar gum. We studied the effect of 

increase in ionic strength on viscosity of Guar gum by adding Sodium Chloride and Potassium 

Chloride.

The influence of Sodium Chloride (10g/l) and Potassium Chloride (10g/l) on the viscosity of 

Guar gum at temperatures of 5 °C and 30.6 °C are summarized in Figures 2.8 and 2.9. Figure 2.8 

provides the comparison between salt free and salt containing Guar gum solutions and Figure 

2.9 provides the percent change in viscosity at studied range of shear rate with addition of salt. 

At 5°C, addition of 10g/l of Sodium Chloride resulted in increase in apparent viscosity for low to 

mid concentration of Guar gum solutions (Figures 2.8a and 2.9a). The possible reason for 

increase in viscosity is that the salt disrupts the existing positive-negative charge attractions, 

which allows chain expansion by enhanced solvation (Zhang et al., 2005). The 6g/l Guar gum 

solution revealed no change in the apparent viscosity with the addition of Sodium Chloride 

whereas the 7g/l Guar gum solution manifested a decrease in the apparent viscosity (Figures 2.8a 
and 2.9a).

At 30.6°C, the change in the apparent viscosity was not very prominent with the addition of 

Sodium Chloride (Figures 2.8b and 2.9b) apart from little variation observed at low shear rate for 

the 0.5g/l solution. Magnitude of change is less in apparent viscosity with increase in 

temperature when salt containing Guar gum solutions were compared to salt free Guar gum 

solutions (Figures 2.8a, 2.8b, 2.9a and 2.9b). The highest change in magnitude of viscosity was 

observed at 5 °C and least change in magnitude of viscosity was observed at 30.6 °C. According 
to Srichamroen (2007), at 37 °C the viscosity of 0.25 % (w/w) (i.e., 2.5g/l) Guar gum with Krebs 

bicarbonate (i.e., aqueous mixture of salts having higher concentration of Sodium Chloride) 

decreases compared to Guar gum in water whereas the viscosity of 0.5% (w/w) (i.e., 5g/l) Guar 
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gum with Krebs bicarbonate increases compared to Guar gum in water. The decrease or increase 

in viscosity with addition of Sodium chloride for different concentrations of Guar gum solutions 

would depend on the particular temperature under considerations (Figure 2.8a, 2.8b, 2.9a and 
2.9b).

The addition of 10g/l Potassium Chloride at 5°C resulted in the increase in the apparent 

viscosity for low to mid concentration of Guar gum solutions. This increase in viscosity due to 

addition of Potassium Chloride (Figure 2.8c and 2.9c) was less prominent compared to Sodium 

Chloride's impact on viscosity (Figure 2.8a and 2.9a). Similarly, decrease in viscosity of 7g/l 

Guar gum solution with addition of Potassium Chloride was comparatively less to Sodium 

Chloride decrease in viscosity. Thus, type of salt clearly influenced the amount of viscosity 

change.

It is important to note the behavior of 6g/l Guar gum solution (Figures 2.8 and 2.9). No 

significant change in viscosity was observed regardless of temperature and salt type. A 

concentration less than 6g/l exhibited increase in viscosity at 5°C whereas a concentration 

greater than 6g/l exhibited a decrease in viscosity with the addition of salt (Figures 2.8a, 2.8c, 
2.9a and 2.9c).

These results provide us valuable insight into how the viscosity of Guar gum changed at low 

temperature of 5°C. The addition of the remedial amendments (e.g., phosphate, sodium lactate, 

ethyl lactate for subsurface remediation) in low to mid concentration solution can increase the 

viscosity of solutions which would help in better transportation of amendments to subsurface. 

Similarly, addition of remedial amendments to 6g/l Guar gum solutions are desirable where 

decrease or increase in viscosity is not required.

At 30.6°C addition of Potassium Chloride to Guar gum solutions resulted in a decrease in 

the apparent viscosity for low to mid concentration Guar gum solutions (Figures 2.8d and 2.9d). 

Slight decrease in the viscosity was observed for a higher concentration of Guar gum with the 
addition of Potassium Chloride at both 5°C (Figures 2.8c and 2.9c) and 30.6 °C (Figure 2.8d and 

2.9d). In contrast, at 5°C low to mid Guar concentrations containing Potassium Chloride 

manifested an increase in viscosity whereas at 30.6 °C a decrease in viscosity was observed.
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Figure 2.8. Viscosity vs shear rate for Guar gum solutions and Guar gum saline solutions at 5°C and 30.6°C. 
(a) Different concentrations of Guar gum solutions and Guar gum with 10g/l Sodium Chloride solutions at 5°C 

(b) Different concentrations of Guar gum solutions and Guar gum with 10g/l Sodium Chloride solutions at 
30.6°C (c) Different concentrations of Guar gum solutions and Guar gum with 10g/l Potassium Chloride 
solutions at 5°C (d) Different concentrations of Guar gum solutions and Guar gum with 10g/l Potassium 

Chloride solutions at 30.6°C
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Figure 2.9. Percent change in viscosity of Guar gum with addition of 10g∕l salt at 5°C and 30.6°C. (a) 
Addition of 10g∕l Sodium Chloride at 5°C (b) Addition of 10g∕l Sodium Chloride at 30.6°C (c) Addition of 

10g∕l Potassium Chloride at 5°C (d) Addition of 10g∕l Potassium Chloride at 30.6°C
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The possible explanation for decrease in the viscosity with salt is that the salts are 

hydrophilic molecules that strongly interact with water (Srichamroen, 2007). The presence of salt 

ions in the solution disrupts the covering of water molecules around the Guar chain resulting in 

decreasing solubility of Guar gum (Gittings et al., 2001) and the addition of higher concentration 

of salt reduces the availability of water in the solution preventing expansion of the Guar 

networks, thereby decreasing the viscosity of the solution. The addition of the salt also restricts 

the hydration of Guar gum in solution (Srichamroen, 2007).

Apart from salts, temperature is another important factor that affects the covering of the 

water molecules around the Guar chain, resulting in a reduction of the viscosity. This is evident 

from the results of our experiments summarized in Figure A2 and Table 2.3. All concentration 

levels containing Sodium Chloride showed a decrease in viscosity with an increase in 

temperature from 5°C to 30.6°C (Table 2.3). Low to mid concentrations revealed a much greater 

decrease with increase in temperature as compared to higher concentrations.

Comparison of viscosity decrease by the addition of salts when temperature was increased 

from 5°C to 30.6°C displayed the higher impact of Potassium Chloride on viscosity compared to 

Sodium Chloride as seen in Table 2.3. The possible explanation might be that the bigger ionic 

radius of Potassium has a greater impact compared to that of Sodium. For same temperature 

change (i.e., 5°C to 30.6 °C), all investigated concentrations except 7g/l displayed much higher 

decrease in viscosity with addition of salt compared to salt free solutions. However, salt free 7g/l 

Guar gum solution displayed higher decrease in viscosity compared to Guar gum solutions 

containing salts. This indicates that the addition of salts offset the effect of temperature change 

on 7g/l solutions.
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Table 2.3. Percentage decrease in apparent viscosity of Guar gum saline solutions when temperature was 
increased from 5°C to 30.6 °C

Shear 
rate(1∕s)

Guar gum solutions with NaCl Guar gum solutions with KCl
0.5g∕l 1g∕l 3g∕l 6g∕l 7g∕l 0.5g∕l 1g∕l 3g∕l 6g∕l 7g∕∣

17.02 0±15% -45±4% -55±0% -25±2% -9±0% -67±1% -57±4% -25±0% -28±2%
34.05 -8±9% -45±3% -49±2% -21±1% -8±0% -67±0% -60±2% -21±0% -24±1%
51.07 -8±3% -42±3% -44±1% -19±2% -8±0% -33±31% -63±1% -54±2% -21±0% -24±1%
102.14 -18±2% -38±10% -43±1% -18±1% -8±0% -44±16% -60±2% -46±0% -18±0% -23±1%
170.23 -12±11% -44±5% -40±1% -18±1% -8±0% -57±4% -57±4% -46±0% -17±0% -23±0%
340.46 -42±4% -47±0% -40±0% -18±0% -9±0% -57±2% -50±3% -45±0% -18±0% -23±0%
510.69 -44±3% -42±1% -40±0% -18±0% -9±0% -62±0% -51±4% -43±0% -19±0% -23±0%

1021.38 -48±0% -43±1% -39±0% -21±0% -11±0% -53±2% -46±3% -41±0% -22±0% -25±0%

Figure 2.10 summarizes the shear stress and shear rate relationship for different Guar gum 

solutions with 10g/l salt at 5°C and 30.6°C. The power law model was fitted to consistency 

curves of Guar gum solutions containing salt and fitted parameters are listed in Table 2.4. 

Comparison of Table 2.2 and Table 2.4 revealed little change in the power index with the 

addition of salt to Guar gum solutions. This indicates that fitting parameters were not much 

impacted by the addition of salt, especially for higher concentrations. Which means the addition 

of salt has not changed the shear thinning of the Guar gum solutions.
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Figure 2.10. Shear stress and shear rate relationship for Guar gum with salts. Lines represent the Power 
law model fitting (a) Guar gum with 10g/l Sodium Chloride at 5°C (b) Guar gum with 10g/l Sodium 

Chloride at 30.6°C (c) Guar gum with 10g/l Potassium Chloride at 5°C (d) Guar gum with10g/l 
Potassium Chloride at 30.6°C
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Table 2.4. Effect of salts on non-Newtonian behavior of Guar gum at 5°C and 30.6 °C. Fitting parameters 
K and n are according to power law relationship

Salts Concentration,
g/l

Temperature
°C

Power law
consistency index,

K (Pa*sn)

Power Law 
index, n R2

NaCl 
(10g/l)

3
5

2.545E-01 0.59 0.999
6 2.606E+00 0.37 0.999
7 4.206E+00 0.33 0.999

NaCl
(10g/l)

3
30.6

1.061E-01 0.65 0.993
6 1.955E+00 0.39 0.996
7 3.907E+00 0.33 0.998

KCl
(10g/l)

3
5

1.898E-01 0.62 0.999
6 2.570E+00 0.37 0.999
7 4.979E+00 0.32 0.999

KCl
(10g/l)

3
30.6

6.100E-02 0.71 0.995
6 1.944c+00 0.38 0.995
7 3.624c+00 0.33 0.996

28



2.3.4 Rheological Study of Xanthan Gum

Figure 2.11 displays the effect of temperature on viscosity at different concentrations of 

Xanthan gum. The greatest effect of temperature was visible on 0.5g/l (Figure 2.11a). Highest 

viscosity was shown by the solution at 0.6°C and least at 30.6°C. A minimum of 28% viscosity 

decrease was observed when the temperature of 0.5g/l Xanthan gum solution increased from 5°C 
to 30.6°C.

Similar behavior was observed for 1g/l (Figure 2.11b) but the difference due to temperature 

was not as prominent as in 0.5g/l. The viscosity of 1g/l Xanthan gum solution decreased by 17% 

at a shear rate of 34.05 s-1 to maximum decrease of 30% at a shear rate of 1021.4 s-1 for a 

temperature increase from 5°C to 30.6°C (Table 2.5). The decrease in the viscosity due to 

increase in temperature was observed at all studied shear rates for low (i.e., 0.5g/l and 1g/l) 

concentrations of Xanthan gum.

An increase in viscosity was observed for mid (i.e., 3g/l) to high (i.e., 6g/l and 7g/l) 

concentration Xanthan gum solutions when temperature was increased from 5°C to 30.6°C. 

However, these increases were only limited to shear rates less than 170.23 s-1 while the viscosity 

decreased above this shear rate.
Table 2.5. Percentage change in apparent viscosity of different concentrations of Xanthan gum solutions 

for temperature increase from 5°C to 30.6 °C. Negative sign indicates decrease in viscosity.

Shear 
rate(1∕s) 0.5g∕l 1g∕l 3g∕l 6g∕l 7g∕l

17.02 -35±1% -17±5% 5±2% 9±2% 5±3%

34.05 -34±1% -14±4% 5±2% 8±4% 3±2%

51.07 -35±2% -17±5% 5±2% 6±4% 4±3%

102.14 -35±1% -18±2% 1±1% 4±4% 2±3%

170.23 -35±1% -19±3% -2±1% 1±4% 0±4%

340.46 -28±1% -24±2% -8±1% -4±4% -4±3%

510.69 -31±1% -26±3% -13±0% -8±4% -8±3%

1021.38 -32±2% -30±3% -19±1% -13±3% -13±2%

In terms of viscosity change, mid to high concentrations of Xanthan gum was less affected 

due to change in temperature (Figure 2.11) compared to same concentrations of Guar gum 

solution (Figure 2.4). The effect of temperature was more prominent on viscosity of Guar gum 

solution.
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Xanthan gum aqueous solutions exhibited a shear thinning behavior, the apparent viscosity 

decreased with an increase in the shear rate for all concentrations and temperatures under 

consideration (Figure 2.11). The increase in the polymer concentration resulted in increase in 

viscosity. This increase in the viscosity with an increasing Xanthan gum concentration has been 

attributed to intermolecular interaction or entanglement that increases the effective 

macromolecule dimensions and molecular weight (Zhong et al., 2013).
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Figure 2.11. Variation of apparent viscosity with increase in the shear rate for Xanthan gum solutions at 
different temperatures
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Figure 2.12 summarizes the effect of concentration and temperature on viscosity of both 

polymers. Low concentrations of Xanthan gum have a higher viscosity compared to same 

concentrations of Guar gum. At higher concentrations of polymers, Guar gum solutions 

manifested higher viscosity than Xanthan gum solutions for the temperature range involved in 

experiments. Interestingly, viscosity manifested by 0.5g/l Xanthan gum was greater than 1g/l 

Guar gum solution. Similarly, 6g/l Guar gum displayed much higher viscosity than 7g/l Xanthan 

gum. High coefficient of correlation exists for relationships between temperature and apparent 

viscosity for all investigated concentrations of both polymers except 7g/l.
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Figure 2.12. (a) Apparent viscosity vs concentration for Guar gum and Xanthan gum at shear rate of 102.14s-1 
and 5 °C (b) Apparent viscosity of Guar gum, Guar gum with Sodium Chloride, Guar gum with Potassium 

Chloride and Xanthan gum at shear rate of 102.14s-1 and 5 °C (c) Apparent viscosity vs temperature for low to 
mid concentrations of Guar gum and Xanthan gum at shear rate of 1021.4 s-1 (d) High concentration of Guar 

gum and Xanthan gum at shear rate of 1021.4 s-1.
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The power law was fitted to the consistency curve of Xanthan gum solutions (Figure A4). The 

fitted K and n along with coefficient of determination for Xanthan gum are provided in Table 2.6.

The non-Newtonian shear thinning behavior for Xanthan gum was influenced by both 

concentration and temperature. Higher concentrations exhibited stronger shear thinning behavior 

(Table 2.6). Temperature increase did not affect shear thinning of 0.5g/l as power law index was 

almost constant at all investigated temperatures. However, for all other investigated 

concentrations of Xanthan gum, shear thinning behavior increased with the increase in the 

temperature.

The effect of temperature change on non-Newtonian shearing thinning behavior of Guar 

gum (Table 2.2) was not prominent like Xanthan gum (Table 2.6). Higher concentration of Guar 

gum has not shown any change in non-Newtonian shear thinning compared to Xanthan gum with 

change in temperature. As discussed earlier, strong shear thinning is desirable for hole cleaning 

operations in petroleum industry. Similarly, strong shear thinning can be more effective in 

contaminant remediation. Xanthan gum showed the improvement in shear thinning with increase 

in temperature.
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Table 2.6. Effect of temperature and concentration on non-Newtonian behavior of Xanthan gum. Fitted K 
and n values according to power law relationship.

Concentration, 
g/l

Temperature, 
°C Power law consistency index, K (Pa*sn) Power Law

index, n R2

0.5

0.6 6.947E-02 0.615 0.994
5 4.089E-02 0.696 0.998

15 4.204c-02 0.631 0.999
19 4.745E-02 0.615 0.999

30.6 3.768E-02 0.623 0.996

1

0.6 1.598E-01 0.551 0.991
5 1.573E-01 0.517 0.991

15 1.610E-01 0.488 0.995
19 1.377E-01 0.497 0.994

30.6 1.618E-01 0.479 0.997

3

0.6 7.960E-01 0.371 0.974
5 8.998E-01 0.347 0.976

15 9.526E-01 0.326 0.979
19 9.829E-01 0.314 0.982

30.6 1.088E+00 0.285 0.990

6

0.6 3.356E+00 0.244 0.926
5 3.096E+00 0.255 0.954

15 3.601E+00 0.223 0.952
19 3.641E+00 0.217 0.952

30.6 3.710E+00 0.195 0.951

7

0.6 3.960E+00 0.245 0.959
5 4.268E+00 0.231 0.947

15 4.459E+00 0.215 0.957
19 4.579E+00 0.211 0.966

30.6 4.801E+00 0.186 0.950
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2.3.5 Contact Angle

Wettability impacts the imbibition of liquid in the porous media and its understanding is 

crucial for non-Newtonian fluid flow and contaminant remediation. Contact angle is usually used 

for measurement of wettability. A smaller contact angle for fluid is the indication of better 

wettability, fluid can spread more on the surface compared to fluid with larger contact angle. 

The smaller contact angle allows liquid to establish a strong attraction (adhesive force) with solid 

surface, overcome the cohesive force of fluid, causing it to spread more on surface. For a fluid to 

be wetting, the contact angle between the fluid and solid surface must be less than 90°. Angle 

greater than 90° between the fluid and solid surface is indication of the non-wetting.

For attaining our broader goal of contaminant remediation, it was essential that both the non

Newtonian fluids must be wetting fluids so that they can reach the maximum surface area of 

porous media. The summary of contact angles is presented in Table 2.7 for all concentrations of 

both Guar and Xanthan gum solutions at all studied temperatures. All solutions of both polymers 

including Guar gum solutions containing salts (Table 2.8) have contact angle in wetting range.

At temperatures at or above 5°C, higher concentrations of Xanthan gum demonstrated larger 

contact angles. Low to mid concentrations of Xanthan gum demonstrated decrease in angle of 

contact with an increase in temperature up to 19°C then at 30.6°C increase in contact angle was 
observed. (Table 2.7).

All concentrations of Guar gum demonstrated either increase or decrease in contact angle 

with increase in temperature (Table 2.7) and addition of salts (Table 2.8). However, the pattern 

observed for the change of contact angle in Xanthan gum was missing in Guar gum.
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Table 2.7. Contact angle for Guar gum and Xanthan gum at different temperatures. These contact angles 
were measured for glass.

Temperature Polymer 0.5g∕l 1g∕∣ 3g∕l 6g∕l 7g∕l
0.6 °C

Guar
Gum

31.4° 27.2° 24.6° 33° 26°
5°C 20.8° 20.6° 22.4° 20.8° 25.4°

15°C 19.8° 21.2° 20.8° 22.8° 29.2°
19°C 29° 20° 19.6° 23° 20.8°

30.6°C 21.8° 18.4° 20.8° 27.4° 24.8°
0.6 °C

Xanthan 
Gum

28.4° 28.8° 28° 25.8 27°
5°C 20° 20.4° 21.4° 29 30.2°

15°C 20° 18.2° 20.4° 29.4 29°
19°C 17.4° 20.2° 22° 22.4 29°

30.6°C 27.2° 26.2° 28° 33.4 33.6°

Table 2.8. Contact angle for Guar gum solutions with salts at 5°C and 30.6°C. These contact angles were 
measured for glass.

Temperature Salt 
(10g∕l)

0.5g∕l 1g∕l 3g∕l 6g∕l 7g∕l

5°C
NaCl

25° 20.4° 20.2° 22.2° 22°
30.6°C 18.8° 20.4° 22.4° 31.8° 32°

5°C
KCl

18.8° 19.8° 21.2° 25° 25°
30.6°C 25.6° 20.8° 20.8° 26.8° 30.4°

As mentioned earlier, smaller contact angle would allow the liquid to have greater contact 

with the solid surface which would affect the fluid flow. Greater contact (i.e., smaller contact 

angle) with solid surface would offer greater friction to flowing fluid and more energy is 

required to overcome this friction compared to the smaller contact (i.e., greater contact angle) of 

fluid with solid surface.

Understanding the relationship amongst the Contact angle, Power law parameters (i.e., n and 

k) and viscosity of each solution of Xanthan gum and Guar gum are crucial for flow and 

contaminant remediation (Figures 2.13 and 2.14). Smaller contact angle, low value of n and 

reasonable viscosity (i.e., not very viscous solution which can clog the tubes/pores of synthetic 

porous media) are desirable for fluid solution for contaminant remediation from synthetic porous 

media.
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Figure 2.13. (a) Power law index n versus contact angle for all studied concentrations of 
Xanthan gum. (b) Power law consistency index k versus contact angle for all studied 

concentrations of Xanthan gum
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Figure 2.14. (a) Power law index n versus contact angle for all studied concentrations of Guar gum. 
(b) Power law consistency index k versus contact angle for all studied concentrations of Guar gum.
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2.4 Conclusion

• In terms of viscosity, the effect of temperature change was higher on Guar gum than 

Xanthan gum, especially at mid to high concentrations. Both polymers displayed 

decrease in viscosity with increase in temperature apart from high concentrations of 

Xanthan gum at low shear rates.

• At any temperature used for the experiments, low to mid concentrations of Xanthan gum 

had higher viscosity compared to the same concentrations of Guar gum. However, at high 

concentration Guar gum displayed higher viscosity.

• Xanthan gum behaved as non-Newtonian shear-thinning fluid for all the selected range 

of temperature and concentration. Guar gum also displayed non-Newtonian shear 

thinning behavior only for mid to high concentrations but was asymptotic to Newtonian 

behavior for low concentrations.

• An increase in non-Newtonian shear thinning behavior was observed with increase in 

temperature for mid to high concentrations of Xanthan gum. However, non-Newtonian 

shear thinning behavior of mid to high concentration of Guar gum showed neither 

decrease nor increase with change in temperature. Both polymers displayed improvement 

in shear thinning behavior with increase in concentrations.

• Addition of salt did not significantly change the non-Newtonian shear thinning properties 

of Guar gum solutions.

• The 6g/l Guar gum solution showed no change in viscosity at 5°C and 30.6°C with the 

addition of salt. Guar gum concentrations less than 6g/l displayed an increase in 

viscosity, whereas concentrations greater than 6g/l exhibited decrease in viscosity with 

addition of salt at 5°C.

• Addition of salt offsets the effect of temperature change (i.e., 5°C to 30.6°C) on 7g/l Guar 

gum solution. Salt free 7g/l Guar gum solution displayed higher decrease in viscosity 

compared to Guar gum saline solution for same increase in temperature.

• Low to mid concentrations of Xanthan gum demonstrated decrease in angle of contact 

with an increase in temperature up to 19°C. All concentrations of Guar gum 

demonstrated either increase or decrease in contact angle with increase in temperature 

and addition of salts. However, the pattern observed for the change of contact angle in 

Xanthan gum was different from that of Guar gum, which demonstrated a lack of pattern.
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Chapter 3 Porous Media Flow Characteristics of Newtonian and non-Newtonian Fluids 

under Different Thermal Regimes2

2 Naseer et al. Porous Media Flow Characteristics of Newtonian and non-Newtonian Fluids under Different 
Thermal Regimes. Unpublished Manuscript 2019.

Abstract

Limited understanding exists in the flow characteristic of non-Newtonian fluids in porous 

media under low temperature (< 30°C) regimes such as those experienced in cold regions soils, 

per our knowledge. Most of the understanding has been developed for oil industry applications at 

very high temperature regimes. Understanding the flow characteristic of non-Newtonian fluids 

under low temperature conditions could help in developing methods to effectively remediate 

residual contaminants from soils in cold regions. In order to study the flow characteristic, we 

have studied the changes in rheological characteristics (viscosity and contact angle) of non

Newtonian fluids of different concentrations at low temperatures. The objective of this research 

is to study the flow characteristics of Newtonian and non-Newtonian fluids in porous media at 

0.6°C, 5°C and 19°C. We used a glass-tube-bundle setup as a synthetic porous media to simulate 

an actual pore regime. De-ionized water, 0.5g/l Guar gum solution and 0.5g/l of Xanthan gum 

solution were used for the infiltration experiments carried out in cold room for four sets of 

synthetic porous media. Results obtained from the infiltration experiments using water and non

Newtonian fluid along with rheological parameters of fluids at different temperatures were used 

to obtain the representative radii and their corresponding percent contribution of flow. A 

software developed earlier in a different study was used to analyze the results of simulation in 

terms of maximum displacement distance versus percent flow for different sets of porous media 

at a certain temperature.

Keywords: Porous media, Non-Newtonian Flow, Guar gum, Xanthan gum, Temperature
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3.1 Introduction

Improving spatial and temporal characterization of fluid flow and contaminant transport in 

soils is vital and significant to a wide range of fields including agricultural sciences, 

environmental engineering, hydrology, ecology, geomorphology as well as petroleum, chemical 

engineering. Non-Newtonian fluids are not uncommon to porous media applications, such as soil 

and groundwater remediation, hydraulic fracture, enhance oil recovery and cement injection in 

soils (Abou Najm and Atallah, 2016). Recently, use of non-Newtonian fluids are gaining interest 

for subsurface remediation.

Contamination of soil and groundwater by adsorbed contaminants such as phosphates, 

carbon tetrachloride, chlorinated aliphatic hydrocarbons (CAH), certain emerging contaminants, 

or certain heavy metals have been of major concern lately (e.g., Jung et al., 2016; Palaniappan et 
al., 2010; Barnes et al., 2007; Gillham and O'Hannesin, 1994). Quality of the water is 

increasingly threatened as human populations grow, industrial and agricultural activities expand, 

and as climate change threatens to cause major alterations of the hydrologic cycle. Inadequately 

treated sewage, industrial and agricultural or food wastes, dissolved metals and many emerging 

contaminants, enter through the soil to pollute the groundwater on a daily basis. A lack of 

understanding of fate and transport of contaminant within soil matrix and groundwater makes the 

situation worse. Preferential flow of contaminants through soil to groundwater is complicating 

the conceptual understanding of flow and transport through porous media. Adding to the 

complexity are the highly adsorbed contaminants that do not travel at a rate proportional to the 

flux rate of water in the porous media.

Experimental and field observations show that the infiltration of water does not necessarily 

move downward at a uniform rate. In reality, water and contaminants travel in wide range and at 

varying velocities. Moreover, contaminant trapped in the low permeability zones is difficult to be 

remediated by flushing water through the porous media because water bypasses the low 

permeability zone. These low permeability zones can be accessed by non-Newtonian fluids 

because these fluids exhibit viscosity change with temperature and shear rate. Non-Newtonian 

shear thinning fluid exhibits decrease in viscosity with increase in rate of shear. Low 

permeability zones offer higher shear rates to fluid, which results in decrease of viscosity of non

Newtonian fluids to penetrate in low permeability zones (Zhong et al., 2013) and thus aid in 

removal of the trapped residual contaminant.
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Understanding the flow of non-Newtonian fluids under low temperature conditions could 

help in providing methods to effectively remediate residual contaminants from soils in cold 

regions. In order to study the flow characteristic, we have studied the changes in rheological 

characteristics (viscosity and contact angle) of two non-Newtonian fluids Guar gum and Xanthan 

gum of different concentrations at low temperatures. Prior rheological tests exhibit the ability of 

these polymers to form highly viscous aqueous solution at low concentrations. Rheological 

properties of Guar gum and Xanthan gum for temperature range of 0.6°C to 30.6°C showed 

higher viscosities for mid (i.e.,3g/l) to high (i.e., 6g/l and 7g/l) concentration of both polymers. 

Low (i.e., 0.5g/l) concentration showed relatively low viscosities compared to higher 

concentration for both polymers. This makes low concentrations more ideal to use in porous 

media because higher concentration can clog the porous media, especially low permeability 

zones, at low temperatures. Moreover, viscosity of higher concentrations are least affected by 

temperature, while the impact of temperature on the viscosity of low concentrations for both 

polymers is significant. This will allow the low concentrations to adjust their viscosity according 

to the temperature and shear rate.

From our rheological experiments, it is evident that viscosity and contact angle of non

Newtonian fluids were temperature sensitive. Both these properties are most important aspect 

associated with non-Newtonian fluids that affect flow in porous media. Environmental factors 

like temperature of soils can significantly influence the flow characteristics of fluid. Proper 

understanding of the relationship between the flow characteristics of fluid and temperature could 

help in providing methods to effectively remediate residual contaminants from soils.

Most of the flow understanding of non-Newtonian fluids have been developed at high 

temperature and pressure to fit their application in hydraulic fracturing or hole cleaning for oil 

and gas industry. However, at low temperature and zero applied pressure no such understanding 

has been developed, per our knowledge. To develop a preliminary understanding of low 

temperature effect on the fluid flow in porous media we have conducted infiltration experiments 

by using a glass-tube-bundle setup as synthetic porous media (Figure 3.1) to simulate an ideal 

pore regime. These experiments helped us to attain our objective of studying flow characteristics 

of Newtonian and non-Newtonian fluids in synthetic porous media at low temperatures that are 

experienced in cold region soils. The primary question this research intended to address was, 

how does the temperature impact the flow of Newtonian and non-Newtonian fluid in porous 
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media? The answer to this question is critical to understand for effective design of remedial 

system in soils.

3.2 Method and Material

3.2.1 Design of Synthetic Porous Media

Four sets of synthetic porous media were constructed by using different combinations of 

0.5mm and 0.9mm diameter standard capillary tubes (Table 3.1). Eight 10 cm diameter 

perforated acrylic discs were used for construction of four sets of synthetic porous media. Two 

perforated discs were installed on a single metallic rod separated by a distance of 10 cm. 

Capillary tubes of 10cm length, 0.5mm and 0.9mm diameters were installed between two 

perforated acrylic discs (Figure 3.1). Silicon was used to fix them tightly. Total volume of each 

set of synthetic porous media was 785.40 cm3.
Table 3.1. Synthetic Porous Media Characteristics

Set Radii (cm) Length(cm) Number of
tubes Porosity % of Total 

Porosity

1 0.025 10 53 0.001649 80.35
0.045 4 19.65

2 0.025 10 53 0.001568 84.50
0.045 3 15.50

3 0.025 10 53 0.001487 89.11
0.045 2 10.89

4
0.025

10
53

0.001406
94.24

0.045 1 5.76
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Figure 3.1. Construction of synthetic porous media

3.2.2 Fluids

Fluids used for the experiments were deionized water, 0.5g/l Guar gum solution and 0.5g/l 

Xanthan gum solution. Here, water represented the Newtonian fluid, while Guar gum and 

Xanthan gum solutions were non-Newtonian fluids. Only 0.5 g/l concentration of both polymers 

were used for flow experiments. As stated before, the higher concentration solutions have high 

viscosities that can clog the capillary tubes especially at low temperature and hence were 

determined to be inadequate for characterizing flow in porous media.

Guar gum and Xanthan gum solutions were prepared as described in chapter 2. Three 10ml 

samples were taken from every liter of prepared Guar gum or Xanthan gum solution. Samples 

were dried in the oven at 70°C and their weights were measured to ensure that the required 

amount (i.e., 0.5g) of polymers were dissolved in a liter of deionized water.

3.2.3 Experimental Setup

Each set of the synthetic porous media was installed in a permeameter chamber by using the 

silicone (Figure 3.2) to affix the structure to the wall of the permeameter and to prevent water to 

seep through the wall of the permeameter. Water proofing spray was used to stop any leakages 

and making sure fluids don't bypass the capillary tubes.

Fluids were filled in the reservoir at higher head and allowed to pass through the synthetic 

porous media. Synthetic porous media was completely saturated before recording any reading.
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The outflow of each experiment was collected downstream in a beaker. For different fluid types, 

volumetric flow rate was recorded while maintaining a constant upstream head. A similar 

procedure was deployed for all experiments with each fluid type and each synthetic porous 

media set.

Figure 3.2. Experimental setup at 5°C in cold room

3.2.4 Temperatures

Temperatures selected for the flow experiments were 19°C, 5°C and 0.6°C. The desired 

temperature for experimental setup (Figure 3.2) was attained by keeping it in the cold chamber 

prior to each experiment. Fluids were also kept in the cold chamber to get the desired 

temperature. FLIR (Front Looking Infrared) thermal camera and thermometers were used to 

record the temperatures at different positions of experimental setup (Figures 3.3 and 3.4).
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Despite all efforts to establish a uniform temperature regime, variation in temperature was 

recorded while conducting the experiments.

Figure 3.3. Thermal images displaying the temperature at different positions of experimental setup. Images are 
taken for flow experiment conducted at 0.6 °C. Image (a) covers the entire experimental setup in the cold room 

at 0.6°C /33°F.

51



Figure 3.4. Temperatures at different locations of experimental setup for experiment conducted at 5
°C/41°F.

3.2.5 Background Theory

A theoretical framework presented by Abou Name and Atallah (2016) using combination of 

water and non-Newtonian fluid to estimate the pore structure of porous media was used to 

determine the flow characteristics obtained from our experiments. Their framework is based on 

an analog geometry of parallel capillary tubes that has the same functional behavior of real 

porous media in terms of saturated flow and porosity. The equivalent pore structure is formed by 

transforming the results from N saturated infiltration experiments using water and N-1 non

Newtonian fluids into a system of equations that yields N representative pore radii (Ri) (size 

distribution of tubes) and their corresponding percent contribution (weights) to flow (wi) 

(Atallah, 2015; Abou Najm and Atallah, 2016). Their method used the following three problem 

types to characterize infiltration using a Matlab solver developed by Atallah (2015).

Problem Type 1: Obtaining weight (flow contributions) from pre-defined radii.

In problem type 1, the total number of distinct radii types of tubes are used to determine the 

contribution of flow by each radii type. In our experiments we have used two sizes, viz. 0.5mm 

and 0.9mm radii tubes. Therefore number of distinct radii types, N = 2. This N = 2 information is 
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fed to the Matlab solver (explanation is provided in section 3.2.6), which calculates the percent 

contribution of flow by the tubes of a particular radii type.

Problem Type 2: Obtaining radii from pre-defined weights (flow contributions)

Problem type 2 provides the option of inputting the weights in the Matlab solver for which it 

will generate the radius that has contributed to the percent of flow contribution or weight. 

Through this, the understanding of typical pore structures responsible for flow of any fluid is 

developed.

Problem Type 3: Obtaining both radii and weights (flow contributions) within a pre-defined 

range and minimum inter-radial spacing.

For problem type 3, Matlab solver requires the values of dadj (i.e., minimum ratio between 

the ith and (i+1) th representative radius) and drange (maximum ratio between the largest and 

smallest radius) to calculate both radii and weights. The requirement for problem type 3 is drange 

must be equal to or greater than the dadj(N-1) (we have two radii (N=2) in the synthetic porous 

media which have reduced the dadj(N-1) to dadj ). The ratio of the two radii of the porous media 

would provide the value of dadj to be 1.8 and to satisfy the condition of problem type 3 (drange 

≥ ) 10 was selected for the drange

3.2.6 The Matlab Solver

The Matlab based solver developed by Atallah (2015) was used to solve the three problem 

types, stated in sub-section 3.2.5, at three different temperatures of 19 °C, 5°C and 0.6 °C by 

using L2 norm objective function. The solver required the flow, viscosity and soil inputs to 

generate the simulation results. Flow inputs consist of flow (L3 /T) generated by our infiltration 

experiment, density (M/L3) of the liquid and head gradient. Solver provided the option of 

selecting between power law and cross law model for shear rate vs shear stress relationship of 

the fluids. For our simulation purposes, power law model was used for both water and non

Newtonian fluid. Power law model inputs consist of power law index (i.e., n) and consistency 

index (i.e., K) as provided in Table 2.6. Either Guar gum or Xanthan gum was needed for the 

simulation along with water. Based on prior conducted rheological experiments (Chapter 2), we 

have selected the 0.5g/l Xanthan gum over 0.5g/l Guar gum as low concentration of Xanthan 

gum showed the clear shear thinning behavior while 0.5g/l Guar gum displayed behavior 

asymptotic to Newtonian flow. Prior conducted rheological test of Xanthan gum at different
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temperatures had provided the power model parameters (Table 2.6). Densities for Xanthan gum 

at different temperatures were calculated experimentally (Table 3.2). These densities of Xanthan 

gum along with densities and dynamic viscosities of water were used for simulation.

Table 3.2. Densities of water and Xanthan gum at different temperatures.

Fluid Type Temperature (°C) Density (kg∕m3)
Dynamic Viscosity 

(N.s/m2)
Water 19 998.38 1.03E-03
Water 5 1000 1.52E-03
Water 0.6 999.824 1.78E-03

0.5g∕l Xanthan gum 19 929.75 -
0.5g∕l Xanthan gum 5 941 -
0.5g∕l Xanthan gum 0.6 966 -

Here, Q (m3 /s) is the flow, R (m) is the representative radius, v (m/s2) is the velocity for 

fluid, α is dimensionless exponent (power law index), which for water is 1.0. β is the consistency 

index in Pas.sα. For vertical flow H is given by following equation
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Soil inputs in solver required the porosity, total sample volume and saturated depth. The 

length of the synthetic porous media was 0.1m, same as the saturated soil depth. The solver 

manual and other details may be accessed from Atallah (2015).

Equation 2 represents the flow in a single capillary tube.

Here, ρ (kg/m3) is the density, g (m/s2) is gravitational acceleration and  represents the head 

gradient per unit length.

After solving for three problem types, generated flow through synthetic porous media was 

represented by maximum displacement distance (MDD) in kilometers or meters. The MDD was 

calculated by using the equation Dz =qt. Dz represents the infiltration depth, q is velocity obtained 

by dividing the flow by area and t is time.



3.2.7 Goodness of Fit Tests

The Nash-Sutcliffe efficiency coefficient (NSE), the Absolute percent relative error (APRE) 

and the percent bias (PBIAS) statistics were used to compare the efficiency of the model 

predictability as compared to the theoretically computed MDD. Nash-Sutcliffe efficiency (NSE) 

is a normalized statistic that determines the relative magnitude of the residual variance (“noise”) 

compared to the measured data variance (“information”). NSE indicates how well the plot of 

observed versus simulated data fits. NSE ranges between negative infinity and 1 (optimal value). 

NSE values between 0 and 1 are considered acceptable levels of performance (Moriasi et al., 

2007).

Y.+,- is the ith observation value and Y.-.& is the simulated value. Y&'() is the mean of the 

observed data and n is the total number of observations.

Percent bias measures the average tendency of the simulated data to be larger or smaller than 

their observed counterparts. Zero represents the optimal value for PBIAS. Positive values 

indicate model underestimation bias, and negative values indicate model overestimation bias 

(Moriasi et al., 2007).

3.3 Results and Discussion
3.3.1 Problem Type 1

Maximum displacement distance (MDD) for problem type 1 for the four synthetic porous 

media sets (Table 3.1) were plotted against cumulative percent flow at 0.6 °C, 5 °C and 19°C 

(Figure 3.5). MDD plots were generated for single pore (N=1 model), two representative pores 

(N model) and theoretical infiltration of water at 3600 seconds. The N model used the 

combination of the Newtonian (i.e., water) and a non-Newtonian fluid (0.5g/l Xanthan gum) 

according to the method proposed by Abou Najm and Atallah (2016) to simulate the theoretical 
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Absolute percent relative error measures the total relative error between simulated and 

observed data. The optimal value for the APRE is zero.



infiltration of water in the synthetic porous media. The theoretical infiltration is based on the 

flow obtained for water from equation 3 using radii (0.025 cm and 0.045 cm) of capillary tubes 

involved in synthetic porous media. The N model used the flow obtained for both water and 

0.5g∕l Xanthan gum from the synthetic porous media infiltration experiments conducted at 

different temperatures in cold room. Plots in Figure 3.5 represents the depth of the water 

infiltration in every pore category. Percentage of water contributed by corresponding pore is 

represented by the area under each part of the curve (Atallah, 2015).

Plots for MDD versus percent flow were generated at same radii for N model at 0.6 °C, 5 °C 

and 19°C to compare the effect of temperature on infiltration depth for each of the four synthetic 

porous media sets (Table 3.3 and Figure 3.5). For problem type 1, Matlab solver provides the 

option of selecting the radius (pores), for which it will generate the weights (contribution to 

flow) and number of pores (Table 3.3). The infiltration depth of two representative pores (N 

model) increases with the increase in the temperature (Figure 3.5). This observation was noticed 

for all the synthetic porous media set involved in the experiment.
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Table 3.3. Result summary of problem type 1 at different temperatures. Weights and number of pores are 
the results of simulation solved for the given inputted radii.

N Temperature (°C) Set Radii(m) weights Number of
pores

2 19

1
2.20E-04 0.593 64.58
4.40E-04 0.407 2.77

2
1.80E-04 0.470 95.88
5.00E-04 0.530 1.82

3
2.00E-04 0.645 73.18
4.60E-04 0.355 1.44

4
1.80E-04 0.620 84.32
4.10E-04 0.380 1.92

1 19

1 2.49E-04 1.000 66.64
2 2.34E-04 1.000 71.73
3 2.21E-04 1.000 76.12
4 2.02E-04 1.000 86.51

2 5

1
2.20E-04 0.552 66.40
4.40E-04 0.448 3.37

2
1.80E-04 0.443 97.90
5.00E-04 0.557 2.07

3
2.00E-04 0.633 77.04
4.60E-04 0.367 1.60

4
1.80E-04 0.611 89.12
4.10E-04 0.389 2.11

1 5

1 2.61E-04 1.000 60.30
2 2.43E-04 1.000 66.21
3 2.29E-04 1.000 70.93
4 2.09E-04 1.000 80.63

2 0.6

1
2.20E-04 0.474 63.47
4.40E-04 0.526 4.40

2
1.80E-04 0.378 96.46
5.00E-04 0.622 2.67

3
2.00E-04 0.532 74.15
4.60E-04 0.468 2.33

4
1.80E-04 0.506 84.83
4.10E-04 0.495 3.08

1 0.6

1 2.76E-04 1.000 54.21
2 2.62E-04 1.000 57.33
3 2.45E-04 1.000 62.02
4 2.24E-04 1.000 70.14
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Results of APRE, NSE and PBIAS statistical tests were conducted on the MDD of single 

pore model and N model for each plot of problem type 1 and are summarized in Table 3.4. 

Results of statistical tests depict that there was no significant effect on the N model (two 

representative pores) performance at different temperatures. Each statistical test has more or less 

same value at all three studied temperatures.

Comparison of the two models demonstrates better performance of N model at all three 

studied temperatures with PBIAS of N model being 8% , -6% , 5% and 24% for synthetic porous 

media set 1, set 2, set 3 and set 4, respectively. While for N=1 model, PBIAS ranged between 

42% to 69%. In term of NSE, only the value of set 01 at 0.6°C and 5°C and set 02 at 0.6°C 

resides under the acceptable range of NSE for N=1 model. While for N model NSE values for all 

four sets at all three temperature resides in the acceptable range of 0 to 1. Similarly, in terms of 

APRE, N model outperform the N=1 model for all synthetic porous media sets at all three 

studied temperatures. Even the worst performance of N model which was for set 04 performed 

better compared to the single pore (N=1) model.
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Figure 3.5. Maximum displacement distance versus percent flow for problem type 1 at 0.6 °C (1st 
Column), 5 °C (2nd Column) and 19°C (3rd Column) for four synthetic porous media sets 

at t = 3600 secs.
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Table 3.4. Statistical test on MDD for Problem type 1

Problem Type 1

Model Temperature 
(Celsius)

Statistical
Measure Set 01 Set 02 Set 03 Set 04

N (2radii)

0.6
PBIAS (%) 8.63 -6.63 5.00 24.30

NSE 0.97 0.68 0.94 0.79
APRE (%) 8.63 29.33 11.96 24.30

5
PBIAS (%) 8.68 -6.43 5.18 24.44

NSE 0.97 0.68 0.94 0.78
APRE (%) 8.68 29.17 11.84 24.44

19
PBIAS (%) 8.68 -6.57 5.06 24.34

NSE 0.97 0.68 0.94 0.79
APRE (%) 8.68 29.28 11.92 24.34

N=1 (Single 
pore)

0.6
PBIAS (%) 42.58 48.36 54.74 62.16

NSE -0.65 -0.84 -1.07 -1.38
APRE (%) 52.83 52.83 54.74 62.16

5
PBIAS (%) 48.41 55.37 60.49 67.14

NSE -0.84 -1.10 -1.31 -1.62
APRE (%) 52.83 55.37 60.49 67.14

19
PBIAS (%) 53.31 58.75 63.14 69.33

NSE -1.02 -1.24 -1.43 -1.72
APRE (%) 53.31 58.75 63.14 69.33

Experimental flow rates obtained from the infiltration experiments at different temperatures 

were used to plot the maximum displacement distance against the percent flow for deionized 

water, 0.5g/l Xanthan gum solution and 0.5g/l Guar gum solution at 900 seconds (Figure 3.6). 

At 19°C, all fluids have greatest infiltration depth in comparison to same fluid type at 0.6°C and 

5 °C. This can be explained by considering the viscosity for each fluid type at particular 

temperature. For example, viscosity of Xanthan gum is higher than both water and Guar gum at 

all studied temperature. This results in lesser infiltration of Xanthan gum compared to Guar gum 

and water.

Prior experiments conducted for contact angle showed 0.5g/l Xanthan gum has lower angle 

of contact compared to 0.5g/l Guar gum solution at all the three studied temperatures, which 

means Xanthan gum solution has better wettability compared to Guar gum solution. The larger 

area of contact of Xanthan gum with solid surface also contributed to lesser infiltration by 

offering higher resistance to flow.
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Figure 3.6. Infiltration depth of the water, Xanthan gum and Guar gum at 0.6°C, 5°C and 19°C for 
synthetic soil set 1 (a) and set 2
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3.3.2 Problem Types 2 and 3

Maximum displacement distance (MDD) for problem type 2 (Figure 3.7) and problem type 

3 (Figure 3.8) for the four synthetic porous media sets were plotted against cumulative percent 

flow at 0.6 °C, 5 °C and 19°C. For both problem types the result of the simulation (N model) 

was not representative of the theoretical infiltration of water. This observation was noticed for all 

sets of synthetic porous media at all studied temperatures.

To further investigate the causes of difference between the simulated N model and 

theoretical flow, FLIR thermal camera was used to record the temperature of experimental setup 

(Figure 3.3 and Figure 3.4). Thermal images showed that there was significant variation of 

temperature at different position of the experimental setup. Perhaps, this variation in temperature 

is the cause of the difference between the simulated N model and theoretical infiltration.

The variation in temperature at different position of the experimental setup would impact the 

flow (i.e., Q) of the infiltration experiments. To test this assumption, we have simulated N model 

using two different flows (Figure 3.9), simulation N (Exp) used the flow (i.e., Q) obtained from 

the infiltration experiments conducted in the cold room for both Newtonian and non-Newtonian 

fluid at 0.6°C and 19°C and simulation N (Est) used the flow obtained by using the equation (3) 

for both Newtonian and non-Newtonian fluid. Parameters (density, dynamic viscosity, etc.) 

required in the equation (3) were used according to the temperature at which the flow was 

calculated.

The performance of the simulation N (Est) was much better than N (Exp). The results 

obtained from N (Est) were much closer to the theoretical infiltration and thus bolsters our 

assumption that the values of N (Exp) were affected by the variation in temperature within the 

flow set up that affected the simulation results as shown in Figures 3.7 and 3.8.
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Figure 3.7. Maximum displacement distance versus percent flow for problem type 2 at 0.6 °C (1st 
Column), 5 °C (2nd Column) and 19°C (3rd Column) for four synthetic porous media sets 

at t = 3600 secs
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Figure 3.8. Maximum displacement distance versus percent flow for problem type 3 at 0.6 °C (1st 
Column), 5 °C (2nd Column) and 19°C (3rd Column) for four synthetic porous media sets at 

t = 3600 secs
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Figure 3.9. MDD versus percent flow for problem type 2 and 3 for set 1 at 3600s
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Once variation of temperature was noted at different position of experimental setup (Figures 

3.3 and 3.4), efforts were made to bring the entire experimental setup to uniform temperature. 

Despite all the efforts to maintain constant temperature, solid surfaces (Figures 3.3d, 3.3e and 

3.4d), flowing fluid (Figures 3.3b, 3.3c, 3.4b and 3.4c) and ambient air (Figures 3.3a and 3.4a) 

are at different temperatures. It was observed during experiments that even handling of the 

experimental setup and flowing fluid would impact the temperature change. The difference in 

temperature between the solid surface, flowing fluid and ambient air would cause heat transfer 

by convection in the presence of moving fluid and by conduction in the absence of motion. The 

rate of heat transfer in a moving fluid is much higher by convection than by conduction and 

convection process is greatly influenced by fluid properties such as dynamic viscosity, density, 

thermal conductivity, and fluid velocity (Cengel, 2004). These fluid properties including the 

contact of fluid with solid surfaces (contact angle) are temperature sensitive and would be 

impacted by heat transfer, which would influence fluid flow through tubes resulting in difference 

between theoretical flow and experimental flow, N (Exp).

The temperature difference between the flowing fluid (Newtonian or non-Newtonian), solid 

surfaces (pipes and tubes) and ambient air would cause heat transfer until both bodies (liquid and 

solid or liquid and air) attain the same temperature at the point of contact. Despite keeping the 

experimental setup and fluids in the cold room for longer duration of time. This thermal 

equilibrium was never achieved because for experimental setup shown in Figure 3.2 it was very 

difficult to completely achieve the thermal equilibrium. The reason was moving fluid kept on 

changing the contact from ambient air at reservoir to tubes in synthetic porous media, both 

ambient air and tubes were at different temperatures, thus changing the reference temperature 

(i.e., temperature of ambient air or tubes) for flowing fluid to achieve.

Additionally, the concept of thermal profile is also important to consider. The difference in 

the temperature between flowing fluid and wall of the tubes would develop the thermal boundary 

layer (Cengel, 2004). The fluid particles near to the surface of the tube would get the energy 

from it. These fluid particles would exchange the energy with the particles in the adjoining fluid 

layer and particles in the adjoining fluid layer would pass it to the particles of the next layer. As a 

result, the temperature profile would be established in the flow field. Flow region over the 

surface of the tubes in which the temperature varies in the direction normal to the surface is the 

thermal boundary layer. The thermal boundary layer would impact the convective heat transfer 
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as the convective heat transfer rate along the surface depends on the temperature gradient at that 

location. (Cengel, 2004).

Fluid flowing through tubes would generate velocity and thermal profile. Velocity profile 

would generate in the hydrodynamic entrance length due to viscous forces arising between the 

layers of the flowing fluid. The velocity of the particles in the fluid layer close to the surface of 

the tube becomes zero because of the no-slip condition. Hydrodynamic entrance length is the 

minimum distance required to generate fully developed velocity profile for laminar flow and is 

dependent on the Reynolds number. Similarly, thermal entrance length is the minimum distance 

required to fully develop the thermal profile and is dependent on both Reynold number and 

Prandtl number (ratio of kinematic viscosity (dynamic viscosity/density) to thermal diffusivity).

For the fluids having Prandtl (Pr) number greater than 1.0, e.g., water has Pr number of 

7.237 at 19°C, 11.2 at 5°C and 13.6 at 0.6°C, the hydrodynamic entrance length would be less 

than the thermal entrance length. Length of the capillary tubes used for construction of synthetic 

porous media is 10 cm, this length is sufficient for development of velocity profile. However, 

for fully developed stable thermal profile the length of the capillary tubes used in the synthetic 

porous media was not sufficient to meet the thermal entrance length requirement for 0.045 cm 

radius tubes.

No establishment of stable thermal profile and non-achievement of thermal equilibrium may 

be the cause of the error between experimental flow and theoretical flow. This needs to be 

investigated further by using longer insulated tubes of different diameters or lower than specified 

temperatures selected to achieve the maximum temperature level of that specified temperature in 

the experimental set up. Other factors that may be considered is using non-Newtonian fluids of 

slightly larger concentration, such as 1.0 g/l or 1.5 g/l.

3.4 Conclusion

• Infiltration depth of both Newtonian and non-Newtonian fluids would decrease with the 

decrease in temperature because of the change in their properties like dynamic viscosity, 

density and angle of contact. Infiltration of Xanthan gum solution is less compared to the 

Guar gum solution and water at a concentration of 0.5 g/l.

• Establishment of stable thermal profile and thermal equilibrium are critical for flow in 

synthetic porous media in non-isothermal flow conditions.
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Chapter 4 Comparison of Newtonian and non-Newtonian fluid for Remediation of Adsorbed 

Contaminant3

3 Naseer et al. Comparison of Newtonian and non-Newtonian fluid for Remediation of Adsorbed Contaminant. 
Unpublished Manuscript 2019.

Abstract

The goal of this research was to compare the effectiveness of Newtonian and non

Newtonian fluids for effective remediation of adsorbed contaminant in porous media under non

isothermal flow regimes. Non-Newtonian fluids can adjust their viscosity according to the 

applied shear rate. This was useful parameter that was considered in contaminant remediation 

from the glass-tube-bundle setup, which acted as a synthetic porous media. Synthetic porous 

media consist of varying numbers and different diameters of standard capillary tubes. Small 

diameter capillary tubes behaved as low permeability zone and offered higher shear rate. This 

higher shear rate offered a decrease in the viscosity of non-Newtonian fluids, which facilitated 

fluid penetration through smaller diameter capillary tubes. Dichlobenil was used as a candidate 

contaminant, which was injected into the capillary tubes of the synthetic porous media until it 

filled all the pores. After that water, 0.5g∕l Guar gum solution and 0.5g∕l Xanthan gum solution 

were allowed to pass in separate experiments through the synthetic porous media to remediate 

Dichlobenil. Gas Chromatography-mass spectrometry (GCMS) analysis was conducted to find 

the amount of Dichlobenil removed by each fluid type from the porous media. Limited 

experiments conducted at 19°C showed water was the most effective fluid in remediating the 

contaminant from porous media in comparison to Guar gum and Xanthan gum. 

Keywords: Guar gum, Xanthan gum, Contaminant remediation

4.1 Introduction

Contamination of soil and groundwater caused by human activities is turning into a major global 

problem. Contamination such as those caused by heavy metals through mining activities, use of 

pesticides in agricultural fields to enhance crop growth, industrial effluents from factories, and 

oil and gas spills are some diverse sources, which are adversely impacting soils and aquifers 

around the world. The impact of contaminant is not limited to human beings but has detrimental 

impacts on environment including wildlife and marine life. Growing population and climate 

change would worsen the problem of contamination. It is need of the hour to test and develop 

alternate and effective contaminant remediation techniques.
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Non-Newtonian fluids are gaining interest in recent years for subsurface remediation. Guar 

gum solution was investigated for the treatment of drinking water, industrial effluent, and 

transportation of microscale zero-valent iron particles in porous media (Mukherjee et al., 2017, 

Gupta and Ako, 2005, Tosco et al., 2014). Xanthan gum solution was tested to deliver remedial 

amendments (e.g., phosphate, sodium lactate, ethyl lactate) for subsurface remediation (Zhong et 

al., 2013). Non-Newtonian shear thinning fluid viscosity decreases with increase in shear rate, 

which facilities the penetration of these fluids into low permeability zones as shear rate offered 

by low permeability zone is high. Through this attribute, non-Newtonian fluids offer effective 

remediation of contaminants from low permeable zones that would otherwise be bypassed by 

water. Additionally, these polymers are non-toxic, cheap and benign to environment. We have 

used two most common non-Newtonian shear thinning fluids, Guar gum and Xanthan gum, for 

studying their remediation capability of Dichlobenil as a candidate contaminant.

Dichlobenil was selected as a contaminant because it is less harmful when used in laboratory 

for experiments. Dichlobenil is herbicide used to control weeds and grass growth in agricultural 

and residential areas, it is commercially available in root killer products. Dichlobenil is strongly 

adsorbed to soils (Porazzi et al., 2005) and is also persistent in water (Cox, 1997).

A synthetic porous media was developed by using varying number and different diameter 

capillary tubes. Use of different diameter tubes (represents pores) offered different shear rate to 

fluid flow in the same synthetic porous media. Large diameter capillary tubes offered low shear 

rates and small diameter capillary tubes offered high shear rates to the flowing fluid. The non

Newtonian fluid flow might be uniform through the different diameter capillary tubes as fluid 

can adjust viscosity according to the applied shear rate. This can be useful in remediating the 

contaminant uniformly from both small and large tubes simultaneously.

The objective of this research work is to compare the effectiveness of water, 0.5g/l of Guar 

gum and 0.5g/l Xanthan gum for remediation of Dichlobenil (2,6-Dichlorobenzonitrile) 

surrogate contaminant from the synthetic porous media.

4.2 Methodology

Three hundred milligram of commercially available Roebic root killer with 0.55% active 

Dichlobenil (2, 6-Dichlorobenzonitrile) was dissolved in 100ml of water at 19°C to generate 16.5 

ppm solution. The prepared contaminant solution was injected in the capillary tubes of synthetic 

porous media with the help of 10 microliter injections (Figure 4.1a). The total volume injected in 
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the synthetic porous media was 0.75ml. The total pore volume of synthetic porous media was 

1.29 ml.

Fluids used for the contaminant remediation from porous media were deionized water, 0.5g/l 

Guar gum solution and 0.5g/l Xanthan gum solution at 19°C. Each fluid type was filled in the 

reservoir at higher head and allowed to pass through the synthetic porous media (already 

installed in a permeameter chamber) containing 0.75ml of contaminant (Figure 4.1b). For each 

experiment, 0.75ml of contaminant was first injected into the porous media and then each fluid 

type was allowed to pass through the porous media to collect the downstream effluent in separate 

beakers. The effluents were collected in three intervals 38.75 pore volume (PV, first 50ml), 
38.75 PV (next 50ml), and 77.5 PV (last 100ml).

Ten grams of Sodium Chloride was added to the 38.75 PV (Twenty grams of Sodium 

chloride was added to 77.5 PV outflow) outflow generated from the experiments in the 

separatory funnel (Figure 4.1c). After the dissolution of Sodium Chloride in 38.75 PV outflow, 

15ml of Methylene Chloride (Dichloromethane) was added to the funnel (Figure 4.1d). After 

mild shaking, the Methylene Chloride layer from the funnel was collected in the beaker (Figure 

4.1 e). Addition of 15ml of Methylene Chloride to 38.75 PV outflow (water or Guar gum or 

Xanthan gum) in separatory funnel was repeated thrice for maximum extraction of Dichlobenil 

from outflow. Addition of Methylene Chloride facilitated the separation of Dichlobenil from 

effluent (water or Guar gum or Xanthan gum) inside separatory funnel. The 1ml of collected 

Methylene Chloride containing Dichlobenil from beaker was transferred to vials for Gas 

Chromatography-Mass Spectrometry (GC-MS) analysis (Figure 4.1f). Dichlobenil standard for 

GC-MS was also prepared in Methylene Chloride. To check the variability caused during the 

process of GC-MS analysis 10 microliters of Nitrobenzene-d5 was added to vials of samples and 

standard.
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Figure 4.1. (a) Injection of Dichlobenil in capillary tubes of synthetic porous media. (b) Experimental 
set up (c) Separatory funnel containing salt and outflow (water or Guar gum or Xanthan gum (d) 

Addition of 15ml Methylene Chloride to separatory funnel (e) Layering of Methylene Chloride and 
outflow in separatory funnel (f) 1ml vials for GCMS analysis
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To investigate the effectiveness of remediation of contaminant from the synthetic porous 

media using Newtonian and non-Newtonian fluids at 0.6°C and 5°C, 16.5 ppm Dichlobenil 

solution prepared at 19°C (Figure 4.2a) was cooled down to 8°C (Figure 4.2b). Cooling of the 

16.5ppm Dichlobenil solution results in the precipitation of the Dichlobenil (Figure 4.2b). As a 

result of precipitation, the concentration of Dichlobenil solution was not sufficient for 

quantification. Less concentrated solution of the Dichlobenil was also prepared to conduct 

experiments at low temperature but after the extraction of Dichlobenil using Methylene Chloride 

in separatory funnel, final concentration of Dichlobenil was not sufficient for quantification.
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4.3 Results

The GC-MS analysis of the samples collected from experiments conducted at 19°C showed 

the effectiveness of water, 0.5g/l Guar gum solution and 0.5g/l Xanthan gum solution for 

remediation of the surrogate contaminant, Dichlobenil, from the synthetic porous media (Figure 

4.3). The part per billion concentrations of Dichlobenil were obtained from the chromatographs 

of water (Figures 4.4 and 4.5), 0.5g/l Guar gum (Figures 4.6 and 4.7) and 0.5g/l Xanthan gum 

(Figures 4.8 and 4.9). Result of the GC-MS analysis showed that water was the most effective 

fluid in remediating the herbicide from the capillary tubes of the synthetic porous media, as can 

be seen in Figure 4.3.

Remediation of Dichlobenil from the synthetic porous media using Guar gum was 33%, 
41% and 53 % less than water for 1st 38.75PV, 2nd 38.75PV and 3rd 77.5 PV of effluent, 

respectively. Similarly, Xanthan gum remediated 58 %, 63 % and 59 % less Dichlobenil 
compared to water for 1st 38.75PV, 2nd 38.75PV and 3rd 77.5 PV of effluent, respectively. The 

least removal of herbicide from the synthetic porous media was observed for the Xanthan gum. 

Comparison between the two polymers showed the Xanthan gum remediation of contaminant 
was 37%, 38% and 14% less than Guar gum for 1st 38.75PV, 2nd 38.75PV and 3rd 77.5 PV of 

effluent, respectively. The total herbicide removed by all the fluids from porous media 

demonstrated the highest contribution of water (51 %), than Guar gum (28 %) and lastly Xanthan 

gum (20%). From our rheological experiments, we know the 0.5g/l Xanthan gum have the 

highest viscosity compared to 0.5g/l Guar gum and water having the least viscosity. This 

comparison showed that the fluid having highest viscosity is least effective for contaminant 

remediation from the synthetic porous media.

Water might have removed the contaminant from the large diameter tubes. This is because 

water flow through the path of least resistance and larger diameter tubes offer least resistance to 

flow of water compared to small diameter tubes. This might have prevented the water to remove 

the contaminant from small diameter tubes. On the other hand, Guar gum and Xanthan gum 

might have removed the contaminant from both diameter tubes simultaneously. This needs to be 

further investigated by modifying the methodology of experiments to keep track of contaminant 

removal from each tube of specific diameter for each fluid type.

The use of higher concentration of polymers and longer tubes in synthetic porous media 

would be important for the remediation experiments. Higher concentration would provide the 
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better shear thinning and higher viscosity (better scouring). Both these properties are desirable 

for contaminant remediation from capillary tubes. Longer tubes in the synthetic porous media not 

only hold more contaminant for quantification purposes but also helps to observe the 

effectiveness of shear thinning of non-Newtonian fluids in removing contaminant from small 

diameter tubes.

Figure 4.3. Comparison of water, Guar gum and Xanthan gum for removal of 2, 6- 
Dichlorobenzonitrile from synthetic porous media.

Chromatographs of deionized water (Figures 4.3 and 4.4), 0.5g/l Guar gum (Figures 4.5 and

4.6) and 0.5g/l Xanthan gum (Figures 4.7 and 4.8) showed multiples peaks. The peaks before 

and at 6 minutes represented Nitrobenzene-d5 that was added to the samples to check the 

variability caused in detection during the process of analysis. Peaks close to 8 minutes 

represented detection of 2, 6-Dichlorobenzonitrile in samples.
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Figure 4.4. Time is in minutes and abundance is in counts. (a) Chromatograph for first 38.75PV (i.e., 
50ml) of water outflow. (b) Chromatograph for second 38.75PV (i.e., 50ml) of water outflow.
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Abundance

Figure 4.5. Chromatograph for third 77.5PV (i.e., 100ml) of water outflow
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Figure 4.6. (a) Chromatograph for first 38.75PV of Guar gum outflow. (b) Chromatograph for 
second 38.75PV of Guar gum outflow.
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Figure 4.7. Chromatograph for third 77.5PV of Guar gum outflow
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Figure 4.8. (a) Chromatograph for first 38.75PV of Xanthan gum outflow. (b) Chromatograph for 
second 38.75PV of Xanthan gum outflow.
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4.4 Conclusion

With the limited set of experiments conducted at 19°C, water was most effective in 

remediating the 2, 6-Dichlorobenzonitrile from synthetic porous media in comparison to 0.5g∕l 

Guar gum and 0.5g∕l Xanthan gum.
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Chapter 5 Conclusion

Rheological Analysis Results

• In terms of viscosity, the effect of temperature change was higher on Guar gum than 

Xanthan gum, especially at mid to high concentrations. At any temperature used for the 

experiments, low to mid concentrations of Xanthan gum have higher viscosity compared 

to same concentrations of Guar gum. However, at high concentration Guar gum displayed 

higher viscosity.

• Xanthan gum behaved as non-Newtonian shear-thinning fluid for all the selected range 

of temperature and concentration. Guar gum also displayed non-Newtonian shear 

thinning behavior only for mid to high concentrations with an approximation to 

Newtonian behavior for low concentrations.

• An increase in non-Newtonian shear thinning behavior was observed with increase in 

temperature for mid to high concentrations of Xanthan gum. However, non-Newtonian 

shear thinning behavior of mid to high concentration of Guar gum showed neither 

decrease nor increase with change in temperature. Both polymers displayed improvement 

in shear thinning behavior with increase in concentrations.

Flow Experiments results

• Infiltration depth of both Newtonian and non-Newtonian fluids would decrease with the 

decrease in the temperature because of the change in their properties like dynamic 

viscosity, density and angle of contact. Infiltration of Xanthan gum solution is less 

compared to the Guar gum solution and water.

• Establishment of stable thermal profile and thermal equilibrium are critical for flow in 

synthetic porous media in non-isothermal flow conditions.

Contaminant remediation result

• With the limited set of experiments conducted at 19°C, water was most effective in 

remediating the 2, 6-Dichlorobenzonitrile from synthetic porous media in comparison to 

0.5g/l Guar gum and 0.5g/l Xanthan gum.
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Future Work

• Flow experiments in tight temperature-controlled chamber with low heat transfer material 

needs to be investigated. Other factors that may be considered is using non-Newtonian 

fluids of slightly larger concentration, such as 1.0 g/l. Use of Xanthan gum as a non-

Newtonian fluid needs to be considered because of its less sensitivity towards the change 

in temperature.

• Contaminant remediation at different temperatures from hierarchical porous media using 

higher concentration of polymer needs to be investigated. Non-Newtonian fluids having 

higher concentration of polymers provide better shear thinning (lower value of n) and 

higher viscosity (better scouring). The hierarchical porous media must be constructed 

using longer tubes of different diameters. Longer length tubes not only hold higher 

quantity of contaminant in each tube for quantification purposes but also assist in 

observing the effectiveness of shear thinning of non-Newtonian fluid in remediating 

contaminant from smaller diameter tubes.

Comparison of effectiveness of non-Newtonian fluid with water may be done by 

observing the amount of contaminant removed from each tube of specific diameter. For 

example, for first 200 pore volume water may remove the contaminant faster from larger 

diameter tubes compare to smaller tubes. Whereas, non-Newtonian fluid may remove 

contaminant simultaneously from both larger and smaller tubes. Comparison of residual 

contaminant in each tube may provide the effectiveness of each fluid type in remediating 

the contaminant from smaller diameter tubes.

84



References

Balhoff, M.T., and K.E. Thompson. 2006. A macroscopic model for shear thinning flow in 

packed beds based on network modeling. Chem. Eng. Sci. 61(2):698-719. 
doi:10.1016/j.ces.2005.04.030.

Barnes, D.L., W. Rhodes, S. Frutiger, R. Ranft. 2007. Persistence of Herbicides in a Subarctic 

Environment. In proceedings of the 8th International Symposium on Cold Regions 

Development, Tampere, Finland, September 25-27.

Blokker, N., 2014. Analysis of Alginate-Like Exopolysaccharides for the Application in 

Enhanced Oil Recovery. Master Thesis, Delft University of Technology, Delft, The 
Netherlands, 18 September 2014.

D'Cunha, N.J., and D. Misra, 2005: A Review of Enhanced Remediation Methods for 

Subsurface Dense Non-aqueous Phase Liquid Spills Employing Permeability 

Modification, World Journal of Engineering, 2(1): 69-80.

D'Cunha, N.J., D. Misra and A. Thompson, 2009: An Investigation into the Applications of 

Natural Freezing and Curdlan Biopolymer for Permeability Modification to Remediate 

DNAPL Contaminated Aquifers in Alaska, Cold Regions Science and Technology, 
DOI: 10.1016/j.coldregions.2009.05.005, 59:42-50.

Di Federico, V., Pinelli, M., and Ugarelli, R., 2010. Estimates of Effective Permeability for non

Newtonian Fluid Flow in Randomly Heterogeneous Porous Media, Stoch Envirn Res Risk 
Assess, 24: 1067-1076.

Gillham, R.W., and O'Hannesin, S.F., 1994. Enhanced degradation of halogenated aliphatics by 

zerovalent iron. Ground Water 32, 958-971.

Hove, K.; Pedersen, O.; Garmo, T.H.; Hansen, H.S.; Staaland, H. Fungi, 1990. A major source of 

radiocesium contamination of grazing ruminants in Norway. Health Phys., 59, 189-192.

Jung, J., Jang, J., and Ahn, J., 2016. Characterization of a Polyacrylamide Solution Used for 

Remediation of Petroleum Contaminated Soils, Materials, 9, 16: 1 - 13.

Lake, P.S., 2008. Flow-Generated disturbances and Ecological Responses: Floods and Droughts. 

In Hydroecology and Ecohydrology: Past, Present and Future; Wiley Press: New York, NY, 
USA; pp. 75-92.

85



Palaniappan, M., Gleick, P.H., Allen, L., Cohen, M.J., Christian-Smith, J., and Smith, C., 2010. 

Clearing the Waters: A Focus on Water Quality Solutions, United Nations Environmental 

Programme Publication, Nairobi, Kenya, pp. 89.
Pollock, T.J.; Thorne, L.; Yamazaki, M.; Mikolajczak, M.J.; Armentrout, R.W., 1994. 

Mechanism of bacitracin resistance in gram-negative bacteria that synthesize 

exopolysaccharides. J. Bacteriol., 176, 6229-6237.

Sorbie, K., 1991. Polymer-Improved Oil Recovery; Springer Science Business Media: Berlin, 

Germany, 1991; Chapter 1; pp. 1-5.

Velimirovic, M., Tosco, T., Uyttebroek, M., Luna, M., Gastone, F., De Boer, C., Klaas, N., 

Sapion, H., Eisenmann, H., Lassson, P., Braun, J., Sethi, R., and Bastiaens, L., 2014. Field 

Assessment of Guar Gum Stabilized Microscale Zerovalent Iron Particles for In-situ 

Remediation of 1,1,1-Trichloroethane, Journal of Contaminant Hydrology, 164: 88 - 99.

Zhong, L., Oostrom, M., Truex, M.J., Vermeul, V.R., Szecsody, J.E., 2013. Rheological 

behavior of Xanthan gum solution related to shear thinning fluid delivery for 

subsurface remediation. Journal of Hazardous Material 244-245, 160-170.

86



Appendix

Figure A1. Viscosity vs Shear rate for Guar gum concentrations of 0.5g∕l (a) and 1g/l (b).
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Figure A2. Viscosity vs shear rate for Guar gum with salts at 5°C and 30.6°C. (a) Different concentrations of 
Guar gum with 10g/l Sodium Chloride at 5°C (b) Different concentrations of Guar gum with 10g/l Sodium 

Chloride at 30.6°C (c) Different concentrations of Guar gum with 10g/l Potassium Chloride at 5°C (d) 
Different concentrations of Guar gum with 10g/l Potassium Chloride at 30.6°C
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Figure A3. Variation of apparent viscosity with the increase in shear rate for different concentrations of 
Xanthan gum at different temperatures
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Figure A4. Consistency curves for different concentration of Xanthan gum at different temperatures
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