
Brief Announcement:
Consistency and Complexity Tradeoffs
for Highly-Available Multi-cloud Store

Gregory Chockler1, Dan Dobre2, and Alexander Shraer3

1 Royal Holloway, University of London
Gregory.Chockler@rhul.ac.uk

2 NEC Labs Europe, Heidelberg, Germany
dan.dobre@neclab.eu

3 Google, Inc.
shralex@google.com

1 Introduction

Cloud storage services are becoming increasingly popular due to their flexible deploy-
ment, convenient pay-per-use model, and little (if any) administrative overhead. Today
they are being offered by ever growing number of Internet companies, such as Amazon,
Google, Microsoft as well as numerous smaller providers, such as Rackspace, Nirvanix
and many others.

Although cloud storage providers make tremendous investments into ensuring
reliability and security of the service they offer, most of them have suffered from well-
publicized outages where the integrity and/or availability of data have been compro-
mised for prolonged periods of time. In addition, even in the absence of outages, the
customers can still lose access to their data due to connectivity problems, or unexpected
alterations in the service contract (data lock-in).

To address these concerns, multi-cloud storage systems whereupon data is replicated
across multiple cloud storage services have become a hot topic in the systems com-
munity. Despite the significant progress in building practical multi-cloud storage sys-
tems (see e.g., [1]), as of today, little is known about their fundamental capabilities
and limitations. The primary challenge lies in a wide variety of the storage interfaces
and consistency semantics offered by different cloud providers to their external users.
For example, whereas Amazon S3 supports a simple read/write interface, other stor-
age services also expose a selection of more advanced transactional primitives, such as
conditional writes.

In this paper, we outline the results of our recent study [2] that explored the space
and time complexity of building reliable multi-cloud storage services.

2 Overview of the Results
Space Bound for Multi-Writer Register Emulations. Our first result establishes a lower
bound on the space overhead associated with reliably storing a single data item, such
as a single key/value pair in a key-value store, supporting basic put and get operations.
For this lower bound we assume underlying storage services exposing put, get, and

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 565–567, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

566 G. Chockler, D. Dobre, and A. Shraer

list primitives (such as those supported by Amazon S3), which we model as multi-
writer/multi-reader (MWMR) atomic snapshot objects. We formalize this setting using
the fault-prone shared memory model [4], and prove the following [2]:

Theorem 1. Let A be a t-tolerant emulation of a wait-free k-writer/1-reader safe regis-
ter, supporting a set of values V , |V | > k, out of a set of n > t wait-free atomic MWMR
snapshot objects which can store vectors of length m > 0. Then, k ≤ �(nm− t−1)/t�.

Our proof constructs a failure and contention-free run α in which all k writers take
turns writing into the emulated register each leaving t low-level writes “hanging” on t
distinct snapshot objects. We then show that α cannot be extended with another write W
as the hung writes may terminate at any time, and in particular, after W returns, erasing
all traces of W from the system. Thus, the emulation space overhead is not adaptive
to contention. Our result explains the space overheads incurred by recently published
practical implementations of reliable multi-cloud stores (e.g., [1]). Their worst-case
space complexity is proportional to the total number of writers in the system, which
matches our lower bound.

Space-Efficient Emulations Using Conditional Writes. We next turn to emulating reli-
able registers over storage services supporting transactional update primitives. First, it
is well known that a constant number of read-modify-write objects is indeed sufficient
to reliably emulate multi-writer atomic register [5]. However, the read-modify-write
objects employed by the existing implementations are too specialized to be exposed by
the commodity cloud storage interfaces. Instead, the cloud storage providers typically
expose general purpose read-modify-write primitives which are variants of conditional
writes, and therefore, essentially equivalent to compare-and-swap (CAS).

In [2], we show that there exist reliable constant space implementations of (i) multi-
writer atomic register, which requires the underlying clouds to only support a single
CAS object per stored value, is adaptive to point contention, and tolerates up to a mi-
nority of cloud failures and (ii) Ranked Register [3] using a single fault-prone CAS ob-
ject. A collection of such Ranked Registers can be used to construct a reliable Ranked
Register, from which agreement is built [3]. Our construction thus can be leveraged
to implement a multi-cloud state machine replication capable of supporting infinitely
many clients with constant space.

Our work opens several avenues for future research. For example, the step complex-
ity of our atomic register implementation is quadratic in point contention. Is this opti-
mal? Interestingly, if this question can be answered in the affirmative, this would imply
that there is a time complexity separation between CAS and generic read-modify-write
primitive, which have been previously thought to be equivalent (e.g., in terms of their
power to implement consensus).

Furthermore, our space bound in [2] does not rule out constant space algorithms
in which all writers are correct. Since the writer reliability can be enforced in many
practical settings, it will be interesting to see whether a constant memory algorithm
can be constructed under the assumption of reliable writers, or the space bound can be
further strengthened to also apply in this case.

Brief Announcement: Consistency and Complexity Tradeoffs 567

References

1. Basescu, C., Cachin, C., Eyal, I., Haas, R., Sorniotti, A., Vukolic, M., Zachevsky, I.: Robust
Data Sharing with Key-Value Stores. In: DSN, pp. 1–12 (2012)

2. Chockler, G., Dobre, D., Shraer, A.: Consistency and Complexity Tradeoffs for Highly-
Available Multi-Cloud Store (2013)

3. Chockler, G., Malkhi, D.: Active Disk Paxos with infinitely many processes. Distrib. Com-
put. 18(1), 73–84 (2005)

4. Jayanti, P., et al.: Fault-tolerant wait-free shared objects. Journal of the ACM 45(3) (1998)
5. Gilbert, S., et al.: Rambo: a robust, reconfigurable atomic memory service for dynamic net-

works. Distrib. Comput. 23(4), 225–272 (2010)

	Brief Announcement: Consistency and Complexity Tradeoffs for Highly-Available Multi-cloud Store
	Introduction
	Overview of the Results

