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Abstract

Recursive algorithms for the estimation of mixtures of densities have attracted

a lot of attention in the last ten years. Here an algorithm for recursive estimation

is studied. It complements existing approaches in the literature, as it is based on

conditions that are usually very weak. For example, the parameter space over which

the mixture is taken does not need to be necessarily bounded. The essence of

the procedure is to combine density estimation via empirical characteristic function

together with an iterative Hilbert space approximation algorithm. The conditions

for consistency of the estimator are veri�ed for three important statistical problems.

A simulation study is also included.

Key Words: Boosting, Copula, Elliptic Distribution, Empirical Characteristic

Function, Hilbert Space, Location Model, Recursive Algorithm.

1 Introduction

Modelling by mixtures is an old problem dating back to Pearson (1894). Typical ap-
proaches are based on EM algorithms (implying a discrete mixture model, e.g., Wu,
1983, for asymptotic results), greedy and recursive estimation techniques (e.g., Li and
Barron, 2000, Klemela, 2007) and nonparametric Bayesian techniques (e.g., Ghosh and
Ramamoorthi, 2003). Greedy and recursive estimation algorithms tend to be much faster
and more computationally feasible than other approaches (e.g., see remarks in Tokdar
et al., 2009). For this reason, study of fast algorithms somehow in the same vein of
boosting should be welcomed and their statistical properties should be understood. This
paper proposes a greedy algorithm for estimating mixtures of densities and shows that
the resulting density estimator is strongly consistent. Moreover, it is also shown that
the estimated characteristic function converges in probability to the true one, under a
modi�ed L2 norm, at the optimal parametric rate.

The consistency of mixture of densities algorithms often relies - either explicitly or
implicitly - on a bounded support for the mixing distribution (e.g., Wu, 1983, Li and
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Barron, 2000, Ghosal and van der Vaart, 2001, Rakhlin, 2005, Tokdar et al., 2009); Lijoi
et al. (2005) is an exception in this respect in the Bayesian context. The restriction on
the support of the mixing law is usually needed to avoid divergence to in�nity between
elements in the same class.

To retain the simplicity of recursive algorithms and also allow for a possibly unbounded
support for the mixing law, this paper combines density estimation via empirical char-
acteristic function (Feuerverger and McDunnough, 1981a, 1981b, Carrasco and Florens,
2002, and Yu, 2004, for a review) together with an iterative Hilbert space approximation
algorithm (Li and Barron, 2000, Barron, 1993, Jones, 1992). The recursive aspect of
the algorithm used here is also similar to the L2 algorithm studied in Klemela (2007).
Using the L2 distance between densities, Klemela (2007) controls the estimation error
via an entropy integral that might be di�cult to bound unless the parameter space is
bounded. Here, the stagewise optimization is carried out in the frequency domain. This
allows to use implicitly weaker conditions. The consistency bound in this paper - though
in the frequency domain - is shown to hold with the same convergence rate as Klemela
(2007, Corollary 1), but almost surely rather than in L2. Moreover, it is shown that in
probability, one can achieve the parametric rate of convergence between characteristic
functions.

It is well known that the set of densities with bounded support is dense in L1 (e.g.,
Devroye and Gyor�, 2002, Lemma 5.1). Hence, weakening the conditions to allow for
an unbounded support for the mixing distribution might be considered of little practical
importance. However, unless the procedure is consistent for the support of the mixing
distribution going to in�nity, it is impossible to justify such approximation asymptotically.
Hence, approximating a distribution with unbounded support with one with bounded
support may have implications on the convergence rates, leading to possibly suboptimal
results in practice.

Estimation via characteristic function is not new. It has often been used for �nite di-
mensional parameter estimation (Feuerverger and McDunnough, 1981a, 1981b, Carrasco
and Florens, 2002, and Yu, 2004, for a review). The main motivation, within the �nite
dimensional parameter estimation literature, is tractability of characteristic function in
cases when the likelihood might be intractable. Here, the motivation is that the charac-
teristic function is usually a well behaved object, being bounded and allowing to easily
deal with important models found in the literature, including scale and location mixture
models. Some examples can be found in Section 3.3.

Section 2 describes the algorithm and the consistency results. Section 3 provides a
discussion of the conditions used and the results. The conditions are veri�ed for elliptic
densities with the consistency property (Kano, 1994) and elliptic copulae that are nearly
tail dependent (Manner and Segers 2011, Hua and Joe, 2011) as well as to the stan-
dard Gaussian location mixture model. The �rst two applications require the support of
the mixing law to be unbounded, hence, cannot be dealt with by most of the existing
procedures. Remarks on the quantities used to derive the estimator, such as number of
iterations can also be found in Section 3. Finally, some simulation results are reported
in order to highlight both pros and cons of the present estimator. In these simulations,
the estimator is compared to Klemela's stagewise optimization, the Newton's recursive
estimator, kernel density and the scale location mixture estimator by the EM algorithm.
Proofs are deferred to Section 4.
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1.1 Statement of the Problem

Let X := (Xj)j>0 be a sequence of independent identically distributed observations with

values in RK (or a subset of it) and with density function∫
Θ

κθ (x) dP (θ) , (1)

where {κθ (x) : θ ∈ Θ} is a class of densities and Θ is a Euclidean set. The mixing law P
is unknown. Interest lies in estimating (1). To this end, a method based on the empirical
characteristic function will be used.

Let fθ (t) be the characteristic function corresponding to the density κθ (x). The
empirical characteristic function of X, for a sample size n, is

fn (t) =
1

n

n∑
j=1

exp {i 〈t,Xj〉} ,

where 〈•, •〉 is the inner product between two vectors. By the properties of the empirical
characteristic function,

Efn (t) =

∫
Θ

fθ (t) dP (θ) ,

=: fP (t)

with the de�nition on the r.h.s. used throughout to represent the true characteristic
function of the data. Also, write fG when using G as mixing law rather than the true
P . The above functions of t will be treated as elements in a liner vector space, so that,
more generally, 〈fn, fθ〉 =

∫
RK fn (t) fθ (t)dt, and similarly for related quantities. Here

and elsewhere, f denotes the complex conjugate of f . For a linear operator W , let

〈f, g〉W = 〈f,Wg〉, so that |f − g|W := 〈f − g, f − g〉1/2W is a metric when W is positive
de�nite.

We shall minimize the following objective function

|fn − fG|2W = 〈fn − fG, fn − fG〉W (2)

with respect to some mixing law G, where W is a positive de�nite operator.

2 An Algorithm to Approximate Mixture of Densities

The optimization in (2) is solved by the greedy algorithm in Table 1.

TABLE 1

Set

J > 0

j = 1;

F0 := 0

3



While j < J

θ̂ (j) = arg inf
θ∈Θ

∣∣∣∣fn − j − 1

j
Fj−1 −

1

j
fθ

∣∣∣∣2
W

Fj =
j − 1

j
Fj−1 +

1

j
fθ̂(j)

j = j + 1,

End

The algorithm is based on the ideas of Barron (1993), and - mutatis mutandis - the
weighting scheme can be deduced from the proof of Theorem 1 in Li and Barron (2000).
Suppose the following:

Condition 1 For each ε > 0, there exists a set Θε with cardinality N (ε) <∞ such that

inf
θ(2),θ(4)∈Θε

sup
θ(1),θ(3)∈Θ

〈
fθ(1) − fθ(2), fθ(3) − fθ(4)

〉
W
≤ ε.

Condition 2 The operator W is strictly positive de�nite and such that its kernel (also
denoted by W throughout the paper) satis�es

∫ ∫
|W (s, t)| ≤ 1.

Then, the estimation algorithm used here satis�es the following approximation bound:

Theorem 1 Let FJ =
∑J
j=1 fθ̂(j)/J , where

{
θ̂ (j) : j ≤ J

}
is the output of the algorithm

in Table 1. Then, under Conditions 1 and 2, for J ≥ 2,

|fn − FJ |2W ≤ inf
G∈G
|fn − fG|2W +

4 lnJ

J
,

where G is the set of all laws with support in Θ.

Theorem 1 together with control of the estimation error leads to the following consis-
tency result:

Theorem 2 Let FJ =
∑J
j=1 fθ̂(j)/J be as in Theorem 1. Under Conditions 1-2, when

N (ε) = O
(
ε−V

)
for some �nite V ,

|fP − FJ |2W = Oa.s.

(√
lnn

n
+

ln J

J

)
,

If J/ ln J ≥ cn, for some (any) c > 0,

|fP − FJ |2W = Op

(
1

n

)
.

Moreover,

1

J

J∑
j=1

κθ̂(j) (x)→
∫

Θ

κθ (x) dP (θ)

a.s., almost everywhere in x.
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3 Discussion

3.1 Remarks on Conditions

Condition 1 is used to control the complexity of the model. It says that there is an ε-
net for the model (fθ)θ∈Θ under the norm induced by 〈•, •〉W , and that the cardinality
is equal to N(ε). Then, Theorem 2 restricts the growth of N (ε) (as ε → 0) to be
exponential with exponent V . This exponent is proportional to the V-C dimension of
(fθ)θ∈Θ (under 〈•, •〉W ) (e.g., van der Vaart and Wellner, 2000). The V-C dimension is
also used in the bounds of Klemela (2005) for the L2 stagewise algorithm. Under the
L2 norm, the Gaussian scale/location mixture model has V-C dimension that does not
seem simple/possible to bound by a �nite number, unless the parameter space for both
location and scale are assumed to be bounded (e.g., Ghosal and van der Vaart, 2001).

Condition 2 is not innocuous, as it makes the estimator possibly ine�cient. It is known
that the choice of kernel W that leads to estimation as e�cient as maximum likelihood
is not in L1 (e.g., Feuerverger and McDunnough, 1981a, 1981b, Carrasco and Florens,
2002). Section 3.5 provides details and insights to better understand the role of W in the
estimation and the implications of minimizing the norm |•|W .

3.2 Remarks on Results

Mutatis mutandis, Klemela (2007) uses a similar updating approach via minimization of
the L2 distance between densities and where the weights of each component are inde-
pendent of the sample, e.g., equal weights, as here. Using a likelihood based approach,
Li and Barron (2000) allow each component to be added to the model to have a weight
di�erent than j−1. At the cost of increased computational complexity, one can conjecture
that the results presented here are also valid when we also optimize with respect to the
mixing weights.

Theorem 2 gives a non-optimal bound which holds a.s. as well as a parametric rate
that holds in probability. Rakhlin et al. (2005) show that a parametric convergence rate
holds for the Li and Barron (2000) estimator, under the Kullback-Leibler divergence - a
stronger criterion than the one used here- but at the cost of putting extra restrictions
on the estimated model. Klemela (2007) derives a convergence rate which is essentially

O
(√

n−1 lnn
)
in many practical situations (Klemela, 2007, Corollary 3). The same rate

holds here, almost surely, but for |•|2W in the frequency domain. This norm is weaker than
the L2 distance between densities, but the restrictions on the model tend to be weaker. In
fact, implicitly, Klemela's results may impose restrictions on the model - e.g., Θ bounded
- in order to derive a bound for an entropy integral under the L2 norm.

The convergence of the characteristic functions under |•|W leads to pointwise density
convergence. Under suitable conditions, the pointwise convergence can be turned into
L1 convergence by dominated convergence and to almost uniform convergence by Ergov's
Theorem.

As shown by Rakhlin et al. (2005), the upper bound for the estimation error does not
depend on the number of components in the mixtures, but only on the structure of the set
Θ. Intuitively, the extremes of the estimation error in a mixture is reached at the edges
of the simplex. Hence, as long as we choose J of at least the same order of magnitude
as n then the error in Theorem 1 can be kept as small as possible in order of magnitude.
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Adding extra terms may not improve the estimation, but does not not lead to a diverging
estimation error. Mutatis mutandis, the simulations in Klemela (2007) highlight this
feature in a �nite sample and simulations carried out by the author, but not reported
here also con�rm this feature. Hence, the estimator is resilient to over�tting, but may
require many discrete support points. This contrasts with the usual recommendations in
the literature of having fewest support points (e.g., Priebe, 1994). Nevertheless, in �nite
sample, it is still desirable to �nd ways to choose the number of iterations in an optimal
way. Section 3.6 provides further remarks in this respect.

The equal weighting given to the components has a simple intuitive explanation.
Rather than trying to cover the set Θ with many little balls, we instead cover the range of
P with equal intervals of size J−1. This is the way the Lebesgue integral is constructed as
opposed to the Riemann integral. This �Lebesgue integral� approach using equal weights
leads to considerable simpli�cation and faster estimation.

By Theorem 2, for large n, FJ ' Efn so that the objective function in the estimation
is an asymptotically degenerate V -statistic of order 2 (see the proof of Lemma 3 in Section
4.2). If κθ (x) is smooth for any θ ∈ Θ, one may conjecture that the asymptotic distribu-

tion of
∑J
j=1 κθ̂(j) (x) /J turns out to be a weighted sum of chi-square random variables

with weights depending on unknown quantities (e.g., Ser�ing, 1980). Unfortunately, di-

rect control of
∑J
j=1 κθ̂(j) (x) /J is not simple as the estimator is derived recursively. Of

course, even if possible, the asymptotic distribution would depend on unknown quanti-
ties and the bootstrap for U and V statistics would be needed to construct con�dence
intervals (Arcones and Giné, 1992).

3.3 Applications

The following applications use the results in the previous section to show how practical
problems can be solved by the current algorithm. Common assumptions used to derive
consistency of the estimator are not necessarily satis�ed by two of the problems discussed
next, as the mixing law does not have bounded support.

Conditions for the validity of the results in Section 2 are stated for each application.
For the �rst two applications, the domain of the kernel W is RK × RK (for some �nite
K) and Condition 2 needs to be strengthened to

∫
RK

∫
RK
|W (s, t)|

∑
k,l

|sksl|

∑
k,l

|tktl|

 dsdt ≤ 1, (3)

where sk is the kth element in s. The third and �nal example does not require any
additional condition.

3.3.1 Elliptic Densities with the Consistency Property

Elliptic densities such that their marginals have all the same generator are said to satisfy
the consistency property. Examples are the Gaussian and student's t density. The power
exponential distribution is elliptic but does not satisfy such property (Kano, 1994). From
Theorem 1 in Kano (1994), deduce that an elliptic density satisfying the consistency
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property has the following representation∫
Θ

φ (x|θΣ)P (dθ) (4)

where φ (x|θΣ) is the centered K dimensional Gaussian density with covariance matrix
θΣ, θ being a positive real number and P a law with support on the positive real line.

Veri�cation of the conditions in Theorem 2 gives the following.

Corollary 1 Consider the model in (4). Suppose Σ is positive de�nite and has bounded
entries, and W satis�es 3. Then, Theorem 2 holds.

By continuity w.r.t. Σ, the results hold when Σ is replaced by a root-n consistent esti-
mator. For example, one may replace Σ with the empirical covariance function (assuming
K/n = O

(
n−1

)
).

Many of the existing methods cannot be used to estimate this model directly. Re-
stricting P to have bounded support would rule out common examples like (4) being a
t-density. For this example, eq. 5 in the recursive method in Li and Barron (2000) is
not satis�ed, as well as Condition A5 in Tokdar et al. (2009). As an illustration, we can
compare the result for the Gaussian scale model to the results in Klemela (2007). For
simplicity, consider the one dimensional case, so that Σ = 1. To apply the results in that
paper we needed to �nd an ε-net in L2, with �nite cardinality for each ε > 0, for the class
of functions (φ (x|θ))θ≥0, where φ (x|θ) is the univariate Gaussian density with variance
θ. This means that we need to verify the following: for each ε > 0, there is a set Θε with
�nite cardinality N (ε) such that

inf
θ′∈Θε

sup
θ∈[0,∞)

∫
R
|φ (x|θ)− φ (x|θ′)|2 dx ≤ ε.

However, for θ → 0 or θ → ∞, it does not seem possible to bound the display by
arbitrary ε > 0. For example, Ghosal and van der Vaart (2001) derive entropy rates for
scale location mixtures, but require the scale parameter θ to be in a compact interval
bounded away from zero and in�nity.

3.3.2 Nearly Tail Dependent Elliptic Copulae

Manner and Segers (2011) and Hua and Joe (2011) discuss the family of elliptic copulae
that just fail to exhibit tail dependence. These authors use the Ledford and Tawn (1996)
coe�cient of tail dependence to continuously interpolate tail dependence with tail inde-
pendence. In the case of a K dimensional copula C, the framework of Ledford and Tawn
(1996) is, as u→ 0+,

C (u1K) = uτ l (u) (1 + o (u)) ,

where u is a scalar τ ≥ 1 and l (u) is a slowly varying function at u→ 0+ (e.g., Bingham
et al., 1989). Note that in Ledford and Tawn (1996), η = τ−1 is used instead in their
eq. 5.3. Lower tail dependence occurs when τ = 1 and limu→0+ l (u) > 0. Upper tail
dependence can be de�ned similarly (e.g., Hua and Joe, 2011). The intermediate case
with τ = 1 and limu→0+ l (u) = 0 shall be called near tail dependence: the η Ledford
and Tawn coe�cient is still equal to 1. Let Cρ be a K dimensional Gaussian copula with
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correlation matrix Σ with o� diagonal entries all equal to ρ ∈ [0, 1). For any law P with
support [0, 1), ∫ 1

0

Cρ (u1K) dP (ρ) = ul (u) (1 + o (u))

as u→ 0+. To see this, following Hua and Joe (2011) and applying similar arguments as
in Manner and Segers (2011, Proposition 4), letting 1K be the K dimensional vector of
ones, ∫ 1

0

Cρ (u1K) dP (ρ) ≥ Cρ̄ (u1K)P (ρ ∈ [ρ̄, 1)) = uτ(ρ̄)P (ρ ∈ [ρ̄, 1))

where τ (ρ) =
〈
1K ,Σ

−11K
〉

= K/ [1 + (K − 1) ρ] (Hua and Joe, 2011). Hence, for any
ε > 0 we can �nd ρ̄ < 1 such that

uτ(ρ̄) (1− F (ρ̄)) /u1+ε →∞.

This implies that
∫ 1

0
Cρ (u1K) dP (ρ) is of larger order than u1+ε for any ε > 0, but also

of smaller order than u when ρ < 1.
The scaling matrix needs to be positive de�nite with diagonal equal to 1. An obvious

representation to impose these constraints is

Σkl =
δkl +

∑L
r=1BkrBlrθr√

1 +
∑L
r=1B

2
krθr

√
1 +

∑L
r=1B

2
lrθr

(5)

where δ is Kronecker's delta, and we can interpret Bkr as factor loadings in R and θr as
the rth factor variance, so that Θ only needs to be restricted to the positive orthant for
the restrictions on Σ (θ) to hold. For L = K, the above is clearly dense in the space of
positive semi-de�nite matrices. The matrix becomes singular as soon as θr →∞ for any r
if BkrBlr 6= 0 for some k 6= l. Sancetta and Satchell (2007) studied the above correlation
structure when one puts a distribution on θ and derived several implications for portfolio
diversi�cation failure.

Using the above representation,

C (u|B,P ) :=

∫
C (u|B, θ) dP (θ) (6)

where C (u|B, θ) is a Gaussian copula with scaling matrix Σ parametrized as in (5) and
P is a law with support in [0,∞)L (the L dimensional positive orthant). Near tail
dependence is satis�ed as long as P has support [0,∞)L. Once again, most common
procedures cannot cope with the case of unbounded support. On the other hand, the
following holds.

Corollary 2 Consider the model in (6) with Σ as in (5). Suppose B has bounded entries
and W satis�es (3). Then, Theorem 2 holds.

3.3.3 Location Model

The above examples justify the procedure for having a scale model with unbounded
scale parameter set. However, a very common model used to approximate densities is
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the mixture of Gaussian location models (e.g., Lindsay, 1995, Ghosal and van der Vaart,
2001, and references therein). Here, it is shown that this important class of approximating
models does satisfy Condition 1. Consider the following mixture∫

Θ

φ (x− θ)P (dθ) (7)

where φ (x) is the standard Gaussian density and Θ ⊆ R. This model has good approx-
imating properties even when Θ is a strict compact subset of R. However, even if Θ
were unbounded, Condition 1 would be satis�ed and Theorem 2 be true under minimal
conditions.

Corollary 3 Consider the model in (7). Suppose Condition 2 holds. Then, Theorem 2
holds.

3.4 Estimation in the Presence of Nuisance Parameters

The empirical characteristic function approach was �rst proposed in the context of pa-
rameter estimation. Hence, it is no surprise that it can be still be used when the kernel
κθ,γ (x) depends on a nuisance parameter γ ∈ Γ for some compact parameter space Γ.
For notational simplicity, assume Γ ⊂ R. The characteristic function of the kernel is now
denoted by fθ,γ (x). The objective function becomes∣∣∣∣fn − ∫

Θ

fθ,γdG (θ)

∣∣∣∣2
W

and the �rst order condition w.r.t. γ, under regularity conditions, is〈
fn −

∫
Θ

fθ,γdG (θ) ,

∫
Θ

dfθ,γ
dγ

dG (θ)

〉
W

= 0.

Hence, if a guess solution for the optimal γ is given, G can be estimated using the guess
solution. Having estimated G, we can then plug G in the objective function and re-
estimate γ and so on, until convergence of γ, up to a tolerance level. This procedure
is costly and alternatives should be welcome. For results in this direction, using an
approximate Bayesian framework, see Martin and Tokdar (2011).

3.5 Isometric Relations and Choice of W

As usual, there is a relation between convergence in the frequency domain and in the
original space of functions. For simplicity, in the sequel, suppose that g and g′ are two
univariate densities with support in the reals and with characteristic function f and f ′,
respectively. By Parseval's Theorem,∫

|g (x)− g′ (x)|2 dx =
1

2π

∫
|f (t)− f ′ (t)|2 dt,

which is 〈f − f ′, f − f ′〉W when W (s, t) = (2π)
−1
δ (s− t), where δ (t) is the Dirac delta

function. This choice of W does not satisfy Condition 2, as
∫ ∫

δ (s− t) dsdt = ∞. In
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general, by de�nition of the characteristic function and Fubini's Theorem,

|f − f ′|2W =

∫ ∫
W (s, t) (f (s)− f ′ (s)) (f (t)− f ′ (t)) dsdt

=

∫ ∫
W (s, t)

∫
eixs (g (x)− g′ (x)) dx

×
∫
e−iyt (g (y)− g′ (y)) dydsdt

=

∫ ∫ (∫ ∫
eixse−iytW (s, t) dsdt

)
× (g (x)− g′ (x)) (g (y)− g′ (y)) dxdy. (8)

Now note that by Mercer's Theorem, the kernel of a positive de�nite operator can be
written as

W (s, t) =

∞∑
k=1

ρkϕk (s)ϕk (t) ,

where ρk ≥ ρk+1 > 0 are the eigenvalues of the kernel and the ϕk (t)'s are the orthonormal
eigenfunctions. It follows that

M (x, y) :=

∫ ∫
W (s, t) eixse−iytdsdt

is also positive de�nite and real if W is real. This last remark together with (8) shows
that

|f − f ′|2W = |g − g′|2M
and convergence to zero implies convergence of the density under |•|M , which in turn
implies convergence almost everywhere, and also L1 convergence by the dominated con-
vergence theorem if a function dominating the estimated density exists. (The latter may
actually impose restrictions that are equivalent to a mixing law with bounded support.)
The space of densities with �nite norm |•|M forms an Hilbert space under the inner prod-
uct 〈•, •〉M , but the topology induced by |•|M is weaker than the one induced by the
usual L2distance.

The choice of kernel W a�ects the weight that is given to di�erent frequencies of the
original density. A kernel that has representation with eigenvalues ρk's decaying fast
will give less weight to high frequency components of g − g′, i.e. implicitly smoothing
out irregularities, and noise if the elements are estimators. However, as long as W has
support on R×R, convergence under |•|2W does imply convergence of all the frequencies.

In the numerical results presented below,

W (s, t) = δ (s− t) exp

(
−
∣∣∣∣s+ t

2

∣∣∣∣2
)

(9)

so that, by direct calculation using the functional form of the characteristic function of a
Gaussian kernel,

M (x, y) � exp

{
−
(
x− y

2

)2
}
.

Convergence using this Gaussian kernel does not require the densities to be in L2.
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3.6 Number of Greedy Iterations J and Computational Cost

The total number of greedy steps J is a function of the sample size n. This makes sure
that the approximation error as given in Theorem 1 is of the same order of magnitude as
the estimation error.

The actual value of J is only speci�ed in order of magnitude. For example, J/ ln J = cn
and �ne tuning c can lead to improved performance. Choice of c could be based on
crossvalidation. For example, de�ne an estimation sample of size nE and validation
sample of size nV (n = nE + nV , and the two samples are non-overlapping). Use the
estimation sample to estimate the mixture for di�erent values of c, say FJ(c). Use the
validation to compute the empirical characteristic function, say fnV . Then choose J = ĉn,
where

ĉ := arg min
c

∣∣fnE − FJ(c)

∣∣2
W
.

One may conjecture that Theorem 2 implies that for a �nite mixture with only a
few support points the estimated θ̂ (j)'s may cluster around the true support points.
Experiments conducted on the Gaussian scale mixture, but not reported here, showed
that this is not necessarily the case. At present, the author is unable to furnish a de�nite
answer to this. However, it is most likely due to the fact that the objective function may
have multiple local minima leading to estimated support points that are not necessary the
same as the true ones. Mutatis mutandis, this is the same issue encountered in practice
when maximizing the likelihood of Gaussian mixtures.

Because of the optimization step of θ over Θ, the current algorithm is not a proper
one. The computational cost depends on the optimization procedure used. The present
approach is similar to the one in Klemela (2007), the main di�erence is the objective
function that is minimized at each step. Hence, the same remarks for the stagewise algo-
rithm in Klemela (2007) directly apply to the present problem. Klemela (2007, Remark
3) looks at the computational cost of the brute force optimization, where θ is chosen to
minimize the objective function over a �nite set, say {θ (1) , θ (2) , ..., θ (N)}. In this case,
the computational cost is O (J ×N × EvalCost), where EvalCost is the cost required
to evaluate the objective function. It is worth noting that N grows exponentially with
the dimension of Θ, and so the computational cost. In practice optimization of a smooth
function is not carried out discretizing the parameter set, but by standard gradient based
methods reducing considerably the computational cost, but increasing the possibility of
�nding only local minima.

3.7 Simulation

To highlight the small sample behaviour of the estimator, a set of simulations are carried
out. Consider the model ∫

Θ

φ (x|θ) dP (θ) ,

where φ (x|θ) is the univariate centered Gaussian density with variance θ. Two cases
are contemplated. In the �rst, P is the law of an inverse chi-square random variable
divided by v, where v are the degrees of freedom. Hence, the mixture is just a Student t-
density with v degrees of freedom. In the second case, following Friedman (2001), amongst
others, simulations are also carried out from a random model. This is done to reduce the
dependence of the results on the Monte Carlo. In particular, in each simulation, P is a
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realization from a Dirichlet process with parameter αQ, where Q is the law corresponding
to an exponential density with mean 1. Realizations of P are derived by stick breaking
construction, so that any distribution can be approximated weakly by P constructed in
such a way (e.g., Sethuraman, 1994, for details).

The sample size is n = 10, 50, 100, 500 and the number of simulations are N = 250.
The estimator is computed replacing integrals with Monte Carlo integration, using im-
portance sampling and restricting W (s, t) to the diagonal t = s, i.e.

1

1000

∑
s∈N

∣∣∣∣fn (s)−
∫

Θ

fθ (s) dGn (θ)

∣∣∣∣2
where N is a set of 1000 iid mean zero normally distributed random variables with
variance 1/2, and Gn is the estimated mixing law. This corresponds to the Monte Carlo
importance sampling version of (2) with W (s, t) as in (9). For simplicity, the number of
iterations was not made data dependent, but just set to J = 200.

The estimator is then evaluated based on the L1 distance,∫
R

∣∣∣∣∫ ∞
0

φ (x|θ) dP (θ)−
∫ ∞

0

φ (x|θ) dGn (θ)

∣∣∣∣ dx.
The integration over R is replaced by its Riemann approximation over a large enough
interval. Results using Monte Carlo integration via importance sampling were similar
but in some cases a bit unstable and required some care. To reduce the level of discretion
in the evaluation process, these are not reported.

For comparison purposes, the following estimators are also computed: Klemela (2007)
stagewise estimator, Newton (2002) recursive estimator of the mixing law, which is then
used to compute the mixture, the Gaussian kernel density estimator and the Gaussian
location and scale mixture estimated using the EM algorithm.

In particular, for the Newton's algorithm a uniform density with support [0, 50] is used
as �rst guess. The size of support seemed to have non-negligible impact on the estimator.
The bandwidth for the Gaussian kernel is chosen as the one that minimizes the ex post L1

distance over a �xed set of bandwidths. The EM algorithm is estimated using the Matlab
function <gmdistribution> and BIC for selecting the number of mixing components.
In implementing these competing models, some subjective judgment was used in the
selection of additional parameters. This may a�ect the estimation performance. The goal
of the simulations is to verify if the present estimator can be competitive at estimating a
mixture of densities. It is not to demonstrate superiority of a method against another, as
this depends on many factors, including Monte Carlo design, choice of tuning parameters
etc.

Some of the methods considered in the simulations were actually devised with the
speci�c goal of estimating the mixing law consistently and not with the focus on estimation
of the corresponding mixture of densities (e.g., the Newton's method). Conversely, the
algorithm discussed in this paper focuses on estimation of the mixture of densities and not
the mixing law for which it can provide poor estimates (e.g., Section 3.6). Hence, due to
di�erent goals and scopes of the methods, one should be cautious in drawing comparisons
and conclusions.
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3.7.1 Student-t Density

For the Student density, data were simulated for the following choices of degrees of freedom
v = 4, 8, 16. For economy of space, Figure 1 and 2 only report the boxplot for the L1

distance for v = 4 and n = 10, 500, as other results are consistent with the reported ones.
Figure 1. Boxplots: Student v = 4 df, n = 10

Figure 2. Boxplots: Student v = 4 df, n = 500

3.7.2 Random Model

In the stick breaking construction, the following choices for the dispersion parameter
where chosen α = 1, 4, 8. For economy of space, Figure 3 and 4 only report the boxplot
for the L1 distance for α = 4 and n = 10, 500. In this simulation, the dominating
measure in the mixing distribution used in the Newton's algorithm is still uniform, i.e.
continuous. However, the true one is a Dirichlet mixing law, which is a.s. discrete. This
miss-speci�cation negatively a�ects the resulting estimated mixture (Martin and Ghosh,
2008, and Martin, 2013, for discussions and a remedy).

Figure 3. Boxplots: Dirichlet α = 4, n = 10

Figure 4. Boxplots: Dirichlet α = 4, n = 500

4 Proofs

4.1 Proof of Theorem 1

The proof makes use of the following lemma that shows that the true mixing law P can
be approximated by an atomic law under a suitable topology.

Lemma 1 Suppose P is a law with support in Θ. If Condition 1 and 2 hold, then, there
is a purely atomic law G such that∣∣∣∣∫

Θ

fθd (P (θ)−G (θ))

∣∣∣∣2
W

≤ ε.

Proof. Let (As)s∈N be a cover for Θ. Let G (θ) =
∑
s∈N

(∫
As
dP (θ)

)
δθ(s) (θ), where

δθ(s) is the point mass at θ (s) ∈ As. Then,∫
Θ

fθd (P (θ)−G (θ)) =
∑
s∈N

∫
As

(
fθ − fθ(s)

)
dP (θ)

and substituting in the objective function〈∫
Θ

fθd (P (θ)−G (θ)) ,

∫
Θ

fθd (P (θ)−G (θ))

〉
W
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=
∑
r∈N

∑
s∈N

∫
Ar

∫
As

〈
fθ − fθ(r), fθ′ − fθ(s)

〉
W
dP (θ) dP (θ′)

[by linearity of the inner product]

≤ max
r,s∈N

sup
θ∈Ar,θ′∈As

〈
fθ − fθ(r), fθ′ − fθ(s)

〉
W

∑
r∈N

∑
s∈N

∫
Ar

∫
As

dP (θ) dP (θ′) ,

and the result follows by integration together with Condition 1 choosing θ (s) ∈ As
appropriately for all s.

Proof. [Theorem 1] The proof is a modi�cation of the proof of Theorem 5 in Barron
(1993), eq. 51-55, in particular. By Condition 1,

inf
θ′∈Θε

sup
θ∈Θ
|fθ − fθ′ |2W ≤ ε, (10)

and applying Lemma 1, there are weights λj 's (positive and summing to one), and pa-
rameter values θ′ (j)'s, j = 1, ..., N , such that∣∣∣∣∣∣

N∑
j=1

λjfθ′(j) − Efn

∣∣∣∣∣∣
2

W

≤ ε. (11)

De�ning

f̃ :=

N∑
j=1

λjfθ′(j), (12)

after some algebra,

aj := |fn − Fj |2W −

∣∣∣∣∣∣fn −
N∑
j=1

λjfθ′(j)

∣∣∣∣∣∣
2

W

= −2
〈
fn, Fj − f̃

〉
W

+ |Fj |2W −
∣∣∣f̃ ∣∣∣2

W
.

By de�nition of Fj ,

aj = inf
θ∈Θ

{
−2

〈
fn,

(
1− 1

j

)
Fj−1 +

1

j
fθ − f̃

〉
W

+

∣∣∣∣(1− 1

j

)
Fj−1 +

1

j
fθ

∣∣∣∣2
W

−
∣∣∣f̃ ∣∣∣2

W

}

=

(
1− 1

j

)[
−2
〈
fn, Fj−1 − f̃

〉
W

+ |Fj−1|2W −
∣∣∣f̃ ∣∣∣2

W

]
− 1

j

[∣∣∣f̃ ∣∣∣2
W

+

(
1− 1

j

)
|Fj−1|2W

]
+

1

j
inf
θ∈Θ

{
−2
〈
fn, fθ − f̃

〉
W

+ 2

(
1− 1

j

)
〈Fj−1, fθ〉W +

1

j
|fθ|2W

}
.

By the same argument in Jones (1992) and Barron (1993), for λj 's as in (12),

inf
θ∈Θ

{
−2
〈
fn, fθ − f̃

〉
W

+ 2

(
1− 1

j

)
〈Fj−1, fθ〉W +

1

j
|fθ|2W

}
≤

N∑
j=1

λj

{
−2
〈
fn, fθ′(j) − f̃

〉
W

+ 2

(
1− 1

j

)〈
Fj−1, fθ′(j)

〉
W

+
1

j

∣∣fθ′(j)∣∣2W}

= 2

(
1− 1

j

)〈
Fj−1, f̃

〉
W

+
1

j

N∑
j=1

λj
∣∣fθ′(j)∣∣2W ,
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by de�nition of f̃ in (12). Noting the de�nition of aj , and substituting the last display in
aj ,

aj ≤
(

1− 1

j

)
aj−1 −

1

j

[∣∣∣f̃ ∣∣∣2
W

+

(
1− 1

j

)
|Fj−1|2W

]
+2

1

j

(
1− 1

j

)〈
Fj−1, f̃

〉
W

+
1

j2

N∑
j=1

λj
∣∣fθ′(j)∣∣2W

≤
(

1− 1

j

)
aj−1 −

1

j

(
1− 1

j

) ∣∣∣Fj−1 − f̃
∣∣∣2
W

+
1

j2

N∑
j=1

λj
∣∣fθ′(j)∣∣2W

≤
(

1− 1

j

)
aj−1 +

1

j2
sup
θ∈Θ
|fθ|2W ,

where the second inequality follows by noting that −
∣∣∣f̃ ∣∣∣2

W
≤ −

(
1− j−1

) ∣∣∣f̃ ∣∣∣2
W

and then

completing the square. By Condition 2, for any characteristic function f , |f |2W ≤ 1.
Then,

a1 : = inf
θ∈Θ
|fn − fθ|2W −

∣∣∣∣∣∣fn −
N∑
j=1

λjfθ′(j)

∣∣∣∣∣∣
2

W

≤ inf
θ∈Θ
|fn − fθ|2W

≤ |fn|2W
≤ 1.

By the above display, and the fact that supθ∈Θ |fθ|
2
W ≤ 1, the recursion becomes

a1 ≤ 1

aj ≤
(
j − 1

j

)
aj−1 +

1

j2
,

for j > 1, This is then bounded by Lemma 2.

Lemma 2 Suppose (aj)j≥1 is a sequence of non-negative numbers such that a1 ≤ A and

aj =

(
1− 1

j

)
aj−1 +

A

j2
.

Then, for J ≥ 2,

aJ ≤
4A ln J

J
.

Proof. To �nd the order of magnitude of the recursion, iterate to �nd

aJ ≤
J∏
j=2

(
j − 1

j

)
a1 +A

J∑
j=2

1

j2

J−j∏
s=1

(
J − s

J + 1− s

)
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where the empty product
∏0
s=1 is set to one. The products are seen to telescope as follows

J∏
j=2

(
j − 1

j

)
=

1

J
,

J−j∏
s=1

(
J − s

J + 1− s

)
=
j

J
,

so that

aJ ≤
(

1

J

)
a1 +A

J∑
j=2

1

j2

j

J
≤
(

1

J

)
a1 +

A

J
(1 + ln J)

and the result follows if a1 ≤ A, noting that 2 + ln J < 4 lnJ when J ≥ 2.

4.2 Proof of Theorem 2

The proof shall make use of some technical lemmata. The reader can directly go to the
proof of Theorem 2 and refer to them, as needed.

The following allows to control the �rst two moments of the objective function using
V and U statistics.

Lemma 3 Let f be a characteristic function on RK and suppose Condition 2 holds. If
Efn = f ,

E 〈(fn − f) , (fn − f)〉W = O
(
n−1

)
,

V ar (〈(fn − f) , (fn − f)〉W ) = O
(
n−2

)
,

if Efn 6= f ,
V ar (〈(fn − f) , (fn − f)〉W ) = O

(
n−1

)
.

Moreover, for any characteristic function f ,

E 〈fn − f, fn − f〉W = 〈Efn − f,Efn − f〉W +O
(
n−1

)
.

Proof. Write

〈(fn − f) , (fn − f)〉W

=

∫
RK

∫
RK

 1

n

n∑
j=1

exp {i 〈s,Xj〉} − f (s)

 1

n

n∑
j=1

exp {−i 〈t,Xj〉} − f (t)

W (s, t) dsdt

=
1

n2

n∑
j1,j2=1

g (Xj1 , Xj2) =
1

n2

∑
j1 6=j2

g (Xj1 , Xj2) +
1

n2

n∑
j=1

g (Xj , Xj)

=: I1 + I2,

where

g (Xj1 , Xj2) :=

∫
RK

∫
RK

(exp {i 〈s,Xj1〉} − f (s))
(

exp {−i 〈t,Xj2〉} − f (t)
)
W (s, t) dsdt.
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The above is a decomposition of a V -statistic in terms of two uncorrelated U -statistics, of
order 2 and 1 respectively. If Efn = f , g (Xj1 , Xj2) is a degenerate kernel, i.e. Eg (x,Xj) =
0. Then, EI1 = 0, while EI2 . n−1. Moreover, by the variance of U -statistics for
degenerate kernels (e.g., Ser�ing, 1980), V ar (I1) . n−2, implying

V ar (〈(fn − f) , (fn − f)〉W ) = V ar (I1) + V ar (I2)

. n−2,

as the two U -statistics are uncorrelated by degeneracy of the kernel, and because V ar (I2) .
n−3, as I2 is the sum of n uncorrelated terms divided by n−2. On the other hand, if
Efn 6= f , the U -statistic is not degenerate and we have the second result for the variance.
The last result follows using the fact that g (Xj1 , Xj2) is a degenerate kernel (j1 6= j2), so
after some algebra,

E 〈fn − f, fn − f〉W
−〈Efn − f,Efn − f〉W

=
1

n2

n∑
j=1

∫
RK

∫
RK

Cov
(

exp {i 〈s,Xj〉} − f (s) , exp {−i 〈t,Xj〉} − f (t)
)
W (s, t) dsdt

.
1

n
.

Control of the estimation error (a.s.) requires a strong uniform law of large numbers
with rates of convergence.

Lemma 4 Let G be the set of all laws with support in Θ. If Condition 1 and 2 hold with
N (ε) = O

(
ε−V

)
for some �nite V , then,

sup
G∈G

∣∣∣∣∣(1− E)

∣∣∣∣fn − ∫
Θ

fθdG (θ)

∣∣∣∣2
W

∣∣∣∣∣ = Oa.s.

(√
lnn

n

)
.

Proof. De�ne

g (Xn
1 |G) := (1− E)

〈
fn −

∫
Θ

fθdG (θ) , fn −
∫

Θ

fθdG (θ)

〉
W

,

and
g (Xn

1 |θ, θ′) := (1− E) 〈fn − fθ, fn − fθ′〉W ,

where Xn
1 := (X1, ..., Xn). Note that

g (Xn
1 |G) =

∫
Θ

∫
Θ

g (Xn
1 |θ, θ′) dG (θ) dG (θ′)

Let
Xn

1 (j) =
(
X1, ..., Xj−1, X

′
j , Xj+1, ...., Xn

)
be just as Xn

1 but with the jth observation replaced by an independent copy X ′j of Xj .
Suppose that there is a �nite absolute constant C such that

E

 n∑
j=1

|g (Xn
1 |G)− g (Xn

1 (j) |G)|2 |Xn
1

 ≤ C

n
. (13)
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Then, Corollary 3 in Boucheron et al. (2003) gives

Pr (|g (Xn
1 |G)| ≥ x) ≤ 2 exp

{
−nx

2

4C

}
, (14)

implying sub-Gaussian tails. To verify (13), let

fnj (t) :=
1

n

exp
{
i exp

{
i
〈
t,X ′j

〉}}
+
∑
s6=j

exp {i exp {i 〈t,Xs〉}}

 , (15)

i.e. fn computed using Xn
1 (j) rather than Xn

1 . Then, by de�nition of g (•|G)

n∑
j=1

|g (Xn
1 |G)− g (Xn

1 (j) |G)|2

=

n∑
j=1

[
(1− E)

(∣∣∣∣fn − ∫
Θ

fθdG (θ)

∣∣∣∣2
W

−
∣∣∣∣fnj − ∫

Θ

fθdG (θ)

∣∣∣∣2
W

)]2

.
n∑
j=1

[∣∣∣∣fn − ∫
Θ

fθdG (θ)

∣∣∣∣2
W

−
∣∣∣∣fnj − ∫

Θ

fθdG (θ)

∣∣∣∣2
W

]2

=

n∑
j=1

[(〈
fn −

∫
Θ

fθdG (θ) , fn −
∫

Θ

fθdG (θ)

〉
W

−
〈
fnj −

∫
Θ

fθdG (θ) , fn −
∫

Θ

fθdG (θ)

〉
W

)

+

(〈
fnj −

∫
Θ

fθdG (θ) , fn −
∫

Θ

fθdG (θ)

〉
W

−
〈
fnj −

∫
Θ

fθdG (θ) , fnj −
∫

Θ

fθdG (θ)

〉
W

)]2

=:

n∑
j=1

[I1j + I2j ]
2
.

By linearity of the inner product, given that characteristic functions are bounded by 1,
and that, using (15),

|fn (t)− fnj (t)| =
1

n

∣∣exp
{
i
〈
t,X ′j

〉}
− exp {i 〈t,Xj〉}

∣∣
≤ 2

n
,

one �nds

I1j =

〈
fn − fnj , fn −

∫
Θ

fθdG (θ)

〉
W

.
1

n
.

The same bound holds for I2j . Hence,

n∑
j=1

[I1j + I2j ]
2 .

n∑
j=1

1

n2

=
1

n
,
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implying that (13), hence (14) holds.
As remarked in Rakhlin et al. (2005, p. 225),

max
G∈G
|g (Xn

1 |G)| = max
θ,θ′∈Θ

|g (Xn
1 |θ, θ′)| (16)

because the maximum is achieved at one of the edges of the convex hull. By Condition 1,
there is a set Θε of N = N (ε) points in Θ such that for any two points θ (1) , θ (3) ∈ Θ one
can �nd two point θ (2) , θ (4) ∈ Θε, satisfying

∣∣fθ(1) − fθ(2)

∣∣
W
≤ ε1/2, and similarly for

θ (3) and θ (4). By direct algebra, the Cauchy�Schwarz inequality, and the aforementioned
remark, 〈

fn − fθ(1), fn − fθ(3)

〉
W

=
〈
fn − fθ(1), fn − fθ(3)

〉
W
−
〈
fn − fθ(2), fn − fθ(3)

〉
W

+
〈
fn − fθ(2), fn − fθ(3)

〉
W
−
〈
fn − fθ(2), fn − fθ(4)

〉
W

+
〈
fn − fθ(2), fn − fθ(4)

〉
W

≤
〈
fn − fθ(2), fn − fθ(4)

〉
W

+
∣∣fθ(2) − fθ(1)

∣∣
W

∣∣fn − fθ(3)

∣∣
W

+
∣∣fθ(4) − fθ(3)

∣∣
W

∣∣fn − fθ(2)

∣∣
W

≤
〈
fn − fθ(2), fn − fθ(4)

〉
W

+ 4ε1/2.

Hence, (16) and the previous display give

sup
G∈G
|g (Xn

1 |G)|1/2 ≤ max
θ,θ′∈Θε

|g (Xn
1 |θ, θ′)|+ 4ε1/2. (17)

By the union bound, and (16), it also follows that

Pr

(
max
θ,θ′∈Θε

|g (Xn
1 |θ, θ′)| ≥ x

)
≤ 2N exp

{
−nx

2

4C

}
.

By the conditions of the lemma, there exists a �nite absolute constant a, depending on

V , such that lnN (ε) ≤ a lnn when ε = n−1. Hence, for x & [3a (4C lnn) /n]
1/2

, the
above display is summable in n, implying a.s. convergence by the Borel-Cantelli Lemma.
Substituting in (17), when ε = n−1 gives the result.

The following local uniform control is needed to derive sharp rates of convergence, in
probability, for the estimator.

Lemma 5 For any δ > 0 under Condition 2,

E sup
|fG−fG′ |W≤δ

∣∣∣|fn − fG|2W − |fn − fG′ |2W −
(
|Efn − fG|2W − |Efn − fG|

2
W

)∣∣∣
.

δ√
n
.

Proof. By algebraic manipulation,

|fn − fG|2W − |fn − fG′ |2W
= 〈fG′ − fG, fn − fG〉W + 〈fn − fG′ , fG′ − fG〉W
= 2 〈fG′ − fG, fn − fG〉W − 〈fG′ − fG, fG′ − fG〉W ,
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where the �rst equality follows from the de�nition of |•|2W and then adding and subtracting
〈fn − fG′ , fn − fG〉W . Similar calculations give

|Efn − fG|2W − |Efn − fG′ |2W = 2 〈fG′ − fG,Efn − fG〉W − 〈fG′ − fG, fG′ − fG〉W .

The above displays imply

E sup
|fG−fG′ |W≤δ

∣∣∣|fn − fG|2W − |fn − fG′ |2W −
(
|Efn − fG|2W − |Efn − fG|

2
W

)∣∣∣
= 2E sup

|fG−fG′ |W≤δ
|〈fG′ − fG, fn − Efn〉W |

≤ 2 sup
|fG−fG′ |W≤δ

|fG′ − fG|W E |(1− E) fn|W

= 2δ
(
E |(1− E) fn|2W

)1/2

. δn−1/2,

by Lemma 3.
Equipped with the above technical tools, Theorem 2 can be proved.
Proof. [Theorem 2] De�ne Gn (•) =

∑J
j=1 δθ̂(j) (•) /J where δθ̂(j) (•) is the point

mass at θ̂ (j), where θ̂ (j) is as de�ned in the algorithm in Table 1. Then,

1

J

J∑
j=1

fθ̂(j) =

∫
Θ

fθdGn (θ) .

Noting that Efn = fP because the empirical characteristic function is unbiased, decom-
pose ∣∣∣∣Efn − ∫

Θ

fθdGn (θ)

∣∣∣∣2
W

=

5∑
s=1

Ts,

where

T1 :=

∣∣∣∣Efn − ∫
Θ

fθdGn (θ)

∣∣∣∣2
W

−E
∣∣∣∣fn − ∫

Θ

fθdGn (θ)

∣∣∣∣2
W

T2 := (E− 1)

∣∣∣∣fn − ∫
Θ

fθdGn (θ)

∣∣∣∣2
W

T3 :=

∣∣∣∣fn − ∫
Θ

fθdGn (θ)

∣∣∣∣2
W

−
∣∣∣∣fn − ∫

Θ

fθdP (θ)

∣∣∣∣2
W

T4 := (1− E)

∣∣∣∣fn − ∫
Θ

fθdP (θ)

∣∣∣∣2
W
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T5 := E
∣∣∣∣fn − ∫

Θ

fθdP (θ)

∣∣∣∣2
W

−
∣∣∣∣Efn − ∫

Θ

fθdP (θ)

∣∣∣∣2
W

T6 :=

∣∣∣∣Efn − ∫
Θ

fθdP (θ)

∣∣∣∣2
W

.

Now, T1 = O
(
n−1

)
, by Lemma 3;

T2 ≤ sup
G∈G

∣∣∣∣(1− E)

〈
fn −

∫
Θ

fθdG (θ) , fn −
∫

Θ

fθdG (θ)

〉
W

∣∣∣∣
= Oa.s.

(√
lnn

n

)
by Lemma 4;

T3 = O (ln J/J) by Theorem 1;

T4 = Oa.s.

(√
lnn/n

)
by Lemma 4;

T5 = O
(
n−1

)
by Lemma 3;

T6 = 0, as Efn =
∫

Θ
fθdP (θ).

To show the rate in the convergence in probability, it is enough to verify the conditions
of Theorem 3.4.1 in van der Vaart and Wellner (2000). In the present context, Problem
3.4.5 in van der Vaart and Wellner (2000) says that for any G such that∣∣∣∣∫

Θ

fθd (Gn (θ)−G (θ))

∣∣∣∣
W

≥ 4

∣∣∣∣∫
Θ

fθd (P (θ)−G (θ))

∣∣∣∣
W

, (18)

then,

E
∣∣∣∣fn − ∫

Θ

fθdGn (θ)

∣∣∣∣2
W

− E
∣∣∣∣fn − ∫

Θ

fθdG (θ)

∣∣∣∣2
W

≥ 1

4

∣∣∣∣∫
Θ

fθd (Gn (θ)−G (θ))

∣∣∣∣
W

.

Suppose, for the moment that (18) holds. Then, the above display satis�es the �rst
condition in Theorem 3.4.1 in van der Vaart and Wellner (2000). The second condition
in the same theorem is satis�ed using Lemma 5. The third condition in that theorem
requires to �nd a diverging sequence rn such that, in this speci�c context,∣∣∣∣∫

Θ

fθd (P (θ)−G (θ))

∣∣∣∣
W

. r−1
n

and rn ≤ n1/2. The sequence also needs to satisfy∣∣∣∣fn − ∫
Θ

fθdGn (θ)

∣∣∣∣2
W

≤ inf
G∈G

∣∣∣∣fn − ∫
Θ

fθdG (θ)

∣∣∣∣2
W

+Op
(
r−2
n

)
,

where G is as in Theorem 1. Hence, by Theorem 1, when J/ ln J & n, one can choose
rn = n1/2. The above two display also imply that (18) is true. Hence, Theorem 3.4.1
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in van der Vaart and Wellner (2000) states that r−1
n is the resulting convergence rate in

probability.
Finally, the last part of the theorem follows from the fact that convergence under |•|W

with W satisfying Condition 2 implies convergence of the density function for almost all
x's.

4.3 Proof of Corollaries

Corollaries 1, 2 and 3 are a consequence of Theorem 2 and the following three lemmata
used to verify Condition 1 for each application.

Lemma 6 Consider Corollary 1 and suppose its conditions hold. There is a cover (Ar)r≤N
for Θ, with lnN = O (ln (1/ε)), such that〈

fθ(1) − fθ(2), fθ(3) − fθ(4)

〉
W
≤ ε

for θ (1) , θ (1) ∈ Ar , θ (3) , θ (4) ∈ As for any r, s ≤ N .

Proof. LetB (ε) :=
{
t ∈ RK : |tk| ≤ ε, k = 1, 2, ...,K

}
. Since fθ (t) = exp (−θ 〈t,Σt〉 /2) ≤

1 , by (3), 〈(
fθ(1) − fθ(2)

)
B (ε) ,

(
fθ(3) − fθ(4)

)
B (ε)

〉
W

+
〈(
fθ(1) − fθ(2)

)
B (ε) ,

(
fθ(3) − fθ(4)

)〉
W

+
〈(
fθ(1) − fθ(2)

)
,
(
fθ(3) − fθ(4)

)
B (ε)

〉
W

. ε

so that we only need to �nd a cover for〈(
fθ(1) − fθ(2)

)
Bc (ε) ,

(
fθ(3) − fθ(4)

)
Bc (ε)

〉
W

where Bc (ε) is the complement of B (ε). Since Σ is positive de�nite, there is a constant
τ > 0 such that 〈1K ,Σ1K〉 ≥ τ . For �xed ε > 0, de�ne θ̄ = θ̄ (ε) such that exp

(
−θ̄τ ε/2

)
≤

ε, e.g., τ θ̄ = −ε−1 ln ε. Note that on B (ε), 〈t,Σt〉 ≥ ε 〈1K ,Σ1K〉 ≥ ετ . This implies that
for θ (1) , θ (2) ≥ θ̄, and unrestricted θ (3) , θ (4), by linearity of the inner product and the
integrability condition on W ,〈(

fθ(1) − fθ(2)

)
Bc (ε) ,

(
fθ(3) − fθ(4)

)
Bc (ε)

〉
W

. ε.

Hence, it is su�cient to �nd a cover for θ < θ̄. By the mean value theorem, for θ∗ in the
convex hull of {θ (1) , θ (2)},

fθ(1) (t)− fθ(2) (t) = −1

2
exp

(
−θ∗ 〈t,Σt〉

2

)
〈t,Σt〉 (θ (1)− θ (2)) . (19)

Hence, by linearity, letting θ∗∗ be in the convex hull of {θ (3) , θ (4)}, using (19),〈(
fθ(1) − fθ(2)

)
Bc (ε) ,

(
fθ(3) − fθ(4)

)
Bc (ε)

〉
W

=

∫
Bc(ε)

∫
Bc(ε)

(
fθ(1) (s)− fθ(1) (s)

) (
fθ(3) (t)− fθ(4) (t)

)
W (s, t) dsdt
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=
1

4

∫
Bc(ε)

∫
Bc(ε)

W (s, t) exp

(
−θ∗ 〈s,Σs〉

2

)
exp

(
−θ∗ 〈t,Σt〉

2

)
〈s,Σs〉 〈t,Σt〉 dsdt

× |θ (1)− θ (2)| |θ (3)− θ (4)|
. |θ (1)− θ (2)| |θ (3)− θ (4)| ,

by the condition of the Theorem using the fact that the entries in Σ are bounded. Hence,
we can deduce that there is a cover of cardinality N = O

(
θ̄/ε1/2

)
= O

(
ln (1/ε) /ε3/2

)
so

that lnN = O (ln (1/ε)) and the Lemma is proved.

Lemma 7 Consider Corollary 2 and suppose its conditions hold. Suppose Σkl (θ) is as
in (5). There is a cover (Ar)r≤N for Θ, with N = O

(
ε−L

)
, depending on B only, such

that 〈
fθ(1) − fθ(2), fθ(3) − fθ(4)

〉
W
≤ ε

for θ (1) , θ (1) ∈ Ar , θ (3) , θ (4) ∈ As for any r, s ≤ N .

Proof. By change of variables, the Gaussian copula C (u|B, θ) corresponds to a
Gaussian density φ (x|Σ) which has mean zero and covariance matrix Σ := Σ (θ) as in
(5). The change of variables does not change the mixing law P . With abuse of notation,
let

fΣ (t) := exp

(
−〈t,Σt〉

2

)
be the characteristic function of φ (x|Σ). Then, by the mean value theorem,

fΣ(1) (t)− fΣ(2) (t) = −1

2
exp

(
−〈t,Σ

∗t〉
2

)∑
k,l

tktlΣ
∗
kl (Σkl (1)− Σkl (2)) , (20)

for covariance matrices Σ (1) and Σ (2) and Σ∗ in the convex hull of {Σ (1) ,Σ (2)}.
Since Σ is a correlation matrix, all the entries are in [−1, 1]. Hence, an ε-cover for

[−1, 1]
K

is an ε-cover for the set of covariance matrices. Such a cover, say Ar, r =

1, 2, ..., N , is of cardinality N = (2ε)
−K

. Also, (20) and (3) imply that

sup
Σ(1),Σ(2)∈Ar,Σ(3),Σ(4)∈As

〈
fΣ(1) − fΣ(2), fΣ(3) − fΣ(4)

〉
W

. ε2. (21)

Pick up a unique point in each Ar, r = 1, 2, ..., N , (the cover of [−1, 1]
K
) and identify a

(possibly non-unique) point in Θ, to generate a �nite set with cardinality N = (2ε)
−K

,
say Θε. Then, from (21)

inf
θ(2),θ(4)∈Θε

sup
θ(1),θ(3)∈Θ

〈
fθ(1) − fθ(2), fθ(3) − fθ(4)

〉
W

. ε2 ≤ ε,

as required.

Lemma 8 Consider Corollary 3 and suppose its conditions hold. There is a cover (Ar)r≤N
for Θ, with N = O

(
ε−L

)
, such that〈

fθ(1) − fθ(2), fθ(3) − fθ(4)

〉
W
≤ ε

for θ (1) , θ (1) ∈ Ar , θ (3) , θ (4) ∈ As for any r, s ≤ N .
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Proof. The characteristic function of φ (x− θ) is fθ (t) = exp
{
iθt−

(
t2/2

)}
. By

Euler's formula,

exp {iθ (1) t}− exp {iθ (2) t} = cos (θ (1) t)− cos (θ (2) t) + i [sin ((θ (1) t))− sin ((θ (2) t))] .

Since

Real
(
fθ(1) (t)− fθ(2) (t)

)
≤ |cos (θ (1) t)− cos (θ (2) t)| exp

{
−t2/2

}
≤ t exp

{
−t2/2

}
|θ (1)− θ (2)|

. |θ (1)− θ (2)| ,

and similarly for the complex part (i.e. the complex sine),

〈(
fθ(1) − fθ(2)

)
,
(
fθ(3) − fθ(4)

)〉
W

.
∫
R

∫
R
W (s, t) dsdt |θ (1)− θ (2)| |θ (3)− θ (4)|

. |θ (1)− θ (2)| |θ (3)− θ (4)| .

Since Θ = R is not compact, it is necessary to trim the sides of Θ and show that the
supremum over the trimmed version is the same as over Θ. To this end, de�ne B (ε) :=
{t ∈ R : |t| ≤ ε/8}. Then,∫

B(ε)

∣∣exp
{
iθt−

(
t2/2

)}∣∣ dt ≤ ∫
B(ε)

dt

≤ ε/4

implying
sup

θ(1),θ(2),θ(3),θ(4)

〈(
fθ(1) − fθ(2)

)
,
(
fθ(3) − fθ(4)

)
B (ε)

〉
W
≤ ε. (22)

Now, note that for any θ (1) ∈ Θ and t ∈ R, there is a θ (2) ∈ [0, 2π/t] such that
exp {iθ (1) t} − exp {iθ (2) t} = 0. By the aforementioned remark and (22) let t = ε/8 so
that [0, 2π/t] becomes

[
0, 16πε−1

]
. De�ne Θε := {θ′ (1) , θ′ (2) , ..., θ′ (N)} where θ′ (j) =

jε and N = 16πε−1. Then,

inf
θ(2),θ(4)∈Θε

sup
θ(1),θ(3)∈Θ

〈(
fθ(1) − fθ(2)

)
Bc (ε) ,

(
fθ(3) − fθ(4)

)
Bc (ε)

〉
W

≤ ε.

Rede�ning ε = ε/3 shows that Condition 1 holds.
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