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Abstract

By considering the Bredon analogue of complete cohomology of a group, we show that every
group in the class LHFF of type Bredon-FP∞ admits a finite dimensional model for EFG.
We also show that abelian-by-infinite cyclic groups admit a 3-dimensional model for the classifying
space for the family of virtually nilpotent subgroups. This allows us to prove that for F, the class
of virtually cyclic groups, the class of LHFF-groups contains all locally virtually soluble groups
and all linear groups over C of integral characteristic.

1. Introduction

Classifying spaces with isotropy in a family have been the subject of intensive research, with
a large proportion focussing on EG, the classifying space with finite isotropy [19–21]. Classes
of groups admitting a finite dimensional model for EG abound, such as elementary amenable
groups of finite Hirsch length [9, 14], hyperbolic groups [28], mapping class groups [21] and
Out(Fn) [31]. Finding manageable models for EG, the classifying space for virtually cyclic
isotropy, has been shown to be much more elusive. So far manageable models have been found
for crystallographic groups [17], polycyclic-by-finite groups [24], hyperbolic groups [12], certain
HNN-extensions [10], elementary amenable groups of finite Hirsch length [5, 6, 11] and groups
acting isometrically with discrete orbits on separable complete CAT(0)-spaces [7, 22].
Let F be a family of subgroups of a given group and denote by EFG the classifying space with
isotropy in F. In this note we propose a method to decide whether a group has a finite dimensional
model for EFG without actually providing a bound. This is closely related to Kropholler’s Theorem
that a torsion-free group in LHF of type FP∞ has finite integral cohomological dimension [15]. To
do this we consider groups belonging to the class LHFF, a class recently considered in [8]:
Let F be a class of groups closed under taking subgroups. Let G be a group and set F∩G = {H ≤
G | H is isomorphic to a subgroup in F}. Let X be a class of groups. Then HFX is defined as the
smallest class of groups containing the class X with the property that if a group G acts cellularly
on a finite dimensional CW-complex X with all isotropy subgroups in HFX, and such that for each
subgroup F ∈ F∩G the fixed point set XF is contractible, then G is in HFX. The class LHFX is
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defined to be the class of groups that are locally HFX-groups.
In this definition and throughout the paper, we always assume that a cellular action of group
on a CW-complex is admissible. That is, if an element of group stabilises a cell, then it fixes it
pointwise.
We generalise complete cohomology of a group to the Bredon setting and verify that some of the
main results hold in this new context. This allows us to establish:

Theorem A. Let G be group in LHFF of type Bredon-FP∞. Then G admits a finite dimensional
model for EFG.

We consider the class LHFX, especially when F= X is either the class of all finite groups or the
class of all virtually cyclic groups. Note, that if F contains the trivial group only, then LHFX is
exactly Kropholler’s class LHX. If F is the class of all finite groups, then LHFF also turns out to be
quite large. It contains all elementary amenable groups and all linear groups over a field of arbitrary
characteristic (see [7], [8]). It is also closed under extensions, taking subgroups, amalgamated
products, HNN-extensions, and countable directed unions. Here we show that similar closure
operations hold when F is the class of virtually cyclic groups.
In [8], it was shown that when F is the class of finite groups, then LHFF contains all elementary
amenable groups. We show that when F= Fvc, the class of virtually cyclic groups, then LHFvcFvc

contains all locally virtually soluble groups. We also show that any countable subgroup of a
general linear group GLn(C) of integral characteristic lies in HFvcFvc. Both of these results rely
on the following:

Theorem B. Let G be a semi-direct product AoZ where A is a countable abelian group. Define
H to be the family of all virtually nilpotent subgroups of G. Then there exists a 3-dimensional
model for EHG.

Another consequence of Theorem B is that any semi-direct product AoZ where A is a countable
abelian group lies in HFvc

3 Fvc.

2. Background on Bredon cohomology

In this note, a family F of subgroups of a group G is closed under conjugation and taking
subgroups. The families most frequently considered are the family Ffin(G) of all finite subgroups
of G and the family Fvc(G) of all virtually cyclic subgroups of G.
For a subgroup K ≤ G we consider:

F∩K = {H ∩K | H ∈ F}.

Bredon cohomology has been introduced for finite groups by Bredon [3] and later generalised to
arbitrary groups by Lück [19].
The orbit category OFG is defined as follows: objects are the transitive G-sets G/H with H ≤ G
and H ∈ F; morphisms of OFG are all G-maps G/H→ G/K, where H,K ∈ F.

An OFG-module, or Bredon module, is a contravariant functor M: OFG→ Ab from the orbit
category to the category of abelian groups. A natural transformation f : M→ N between two
OFG-modules is called a morphism of OFG-modules.
The trivial OFG-module is denoted by ZF. It is given by ZF(G/H) = Z and ZF(ϕ) = id for all
objects and morphisms ϕ of OFG.
The category of OFG-modules, denoted Mod-OFG, is a functor category and therefore inherits
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properties from the category Ab. For example, a sequence L→ M → N of Bredon modules
is exact if and only if, when evaluated at every G/H ∈ OFG, we obtain an exact sequence
L(G/H)→M(G/H)→ N(G/H) of abelian groups.
Since Ab has enough projectives, so does Mod-OFG, and we can define homology functors in
Mod-OFG analogously to ordinary cohomology, using projective resolutions.

There now follow the basic properties of free and projective OFG-modules as described in
[19, 9.16, 9.17]. An F-set ∆ is a collection of sets {∆K |K ∈ F}. For any two F-sets ∆ and Ω,
an F-map is a family of maps {∆K →ΩK |K ∈ F}. Hence we have a forgetful functor from the
category of OFG-modules to the category of F-sets. One defines the free functor as the left adjoint
to this forgetful functor. This satisfies the usual universal property.
There is a more constructive description of free Bredon-modules as follows: Consider the right
Bredon-module: Z[−,G/K]F with K ∈ F. When evaluated at G/H we obtain the free abelian
group Z[G/H,G/K]F on the set [G/H,G/K]F of G-maps G/H→ G/K. These modules are free,
cf. [19, p. 167], and can be viewed as the building blocks of the free right Bredon-modules.
Generally, a free module is one of the form Z[−,∆]F, where ∆ is a G-set with isotropy in F.

Projectives are now defined to be direct summands of frees.

Given a covariant functor F : OF1G1 → OF2G2 between orbit categories, one can now define
induction and restriction functors along F , see [19, p. 166]:

IndF : OF1G1 → OF2G2

M(−) 7→ M(−)⊗F1 [−−,F(−)]F2

and
ResF : OF2G2 → OF1G1

M(−−) 7→ M ◦F(−−)

Since these functors are adjoint to each others, IndF commutes with arbitrary colimits [26,
pp. 118f.] and preserves free and projective Bredon modules [19, p. 169]. The case of particular
interest is when F is given by inclusion of a subgroup of G.
For subgroup K of G we consider the following functor

ιG
K : OF∩KK → OFG

K/H 7→ G/H.

and denote the corresponding induction and restriction functors by IndG
K and ResG

K respectively.

LEMMA 2·1. [30, Lemma 2.9] Let K be a subgroup of G. Then IndG
K is an exact functor.

Symmond’s [30] methods also yields; for a short account see also the proof of Lemma 3.5 in [14]:

LEMMA 2·2. Let K ≤ H ≤ G be subgroups. Then

IndG
K ZF

∼= Z[−,G/K]F,

and

IndG
H Z[−,H/K]F∩H ∼= Z[−,G/K]F.

The Bredon cohomological dimension cdF G of a group G with respect to the family F of
subgroups is the projective dimension pdFZF of the trivial OFG-module ZF. The cellular chain
complex of a model for EFG yields a free resolution of the trivial OFG-module ZF [19, pp. 151f.].
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In particular, this implies that for the Bredon geometric dimension gdF G, the minimal dimension
of a model for EFG, we have

cdF G≤ gdF G.

Furthermore, one always has:

PROPOSITION 2·3. [23, Theorem 0.1 (i)] Let G be a group. Then

gdF G≤max(3,cdF G).

Next, suppose T and H are families of subgroups of a group G where T⊆ H. In Section 5, we
will need to adapt a model for ETG to obtain a model for EHG. For this we will use a general
construction of Lück and Weiermann (see [24, §2]). We recall the basics of this construction:
Suppose that there exists an equivalence relation ∼ on the set S = HrT that satisfies the
following properties:

• ∀H,K ∈S : H ⊆ K⇒ H ∼ K;

• ∀H,K ∈S ,∀x ∈ G : H ∼ K⇔ Hx ∼ Kx.

An equivalence relation that satisfies these properties is called a strong equivalence relation. Let
[H] be an equivalence class represented by H ∈S and denote the set of equivalence classes by
[S ]. The group G acts on [S ] via conjugation, and the stabiliser group of an equivalence class
[H] is

NG[H] = {x ∈ Γ | Hx ∼ H}.

Note that NG[H] contains H as a subgroup. Let I be a complete set of representatives [H] of the
orbits of the conjugation action of G on [S ]. Define for each [H] ∈I the family

T[H] = {K ≤ NG[H] |K ∈S ,K ∼ H}∪
(

NG[H]∩T
)

of subgroups of NG[H].

PROPOSITION 2·4 (Lück-Weiermann, [24, 2.5]). Let T ⊆ H be two families of subgroups of a
group G such that S = HrT is equipped with a strong equivalence relation. Denote the set of
equivalence classes by [S ] and let I be a complete set of representatives [H] of the orbits of the
conjugation action of G on [S ]. If there exists a natural number d such that gdT∩NG[H](NG[H])≤
d−1 and gdT[H](NG[H])≤ d for each [H] ∈I , and such that gdT(G)≤ d, then gdH(G)≤ d.

3. Complete Bredon cohomology

Since Mod-OFG is an abelian category, we can just follow the approaches of Mislin [29] and
Benson-Carlson [2]. We will, however, include the main steps of the construction. We will begin
by describing the Satellite construction due to Mislin [29]. The methods used there can be carried
over to the Bredon-setting by applying [25, XII.7-8.].
Let M be an OFG-module and denote by FM the free OFG-module on the underlying F-set of
M. Let ΩM = ker(FM � M), and inductively ΩnM = Ω(Ωn−1M). Let T be an additive functor
from Mod-OFG to the category of abelian groups. Then the left satellite of T is defined as

S−1T (M) = ker(T (ΩM)→ T (FM)).

Furthermore, S−nT (M) = S−1(S−n+1T (M)), and the family {S−n |n ≥ 0} forms a connected
sequence of functors where S−nT (P) = 0 for all projective OFG-modules P and n≥ 1. Following
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the approach in [29] further, we call a connected sequence of additive functors T ∗ = {T n |n ∈ Z}
from Mod-OFG to the category of abelian groups a (−∞,+∞)-Bredon-cohomological functor, if
for every short exact sequence M′� M � M′′ of OFG-modules the associated sequence

· · · → T nM′→ T nM→ T nM′′→ T n+1M′→ ···

is exact. Obviously, Bredon-cohomology H∗F(G,−) is such a functor with the convention that
Hn
F(G,−) = 0 whenever n < 0.

DEFINITION 3·1. A (−∞,+∞)-Bredon-cohomological functor T ∗ = {T n |n ∈ Z} is called P-
complete if T n(P) = 0 for all n ∈ Z and every projective OFG-module P.
A morphism ϕ∗ : U∗→V ∗ of (−∞,+∞)-Bredon-cohomological functors is called a P-completion,
if V ∗ is P-complete and if every morphism U∗ → T ∗ into a P-complete (−∞,+∞)-Bredon-
cohomological functor T ∗ factors uniquely through ϕ∗ : U∗→V ∗.

The following theorem is now the exact analogue to [29, Theorem 2.2].

THEOREM 3·2. Every (−∞,+∞)-Bredon-cohomological functor T ∗ admits a unique P-completion
T̂ ∗ given by

T̂ j(M) = lim−→
k≥0

S−kT j+k(M)

for any M ∈Mod-OFG.

In particular, we have, for every OFG-module M that

Êxt
j
F(M,−) = lim−→

k≥0
S−k Ext j+k

F (M,−).

We have immediately:

LEMMA 3·3. Let M and N be OFG-modules. If either of these has finite projective dimension,
then

Êxt
∗
F(M,N) = 0.

We can also mimic Benson and Carlson’s approach [2]. For any two OFG-modules we denote by
[M,N]F the quotient of HomF(M,N) by the subgroup of those homomorphisms factoring through
a projective module. Then it follows that there is a homomorphism [M,N]F→ [ΩM,ΩN]F and it
can be shown analogously to [29, Theorem 4.4] that

Êxt
n
F(M,M) = lim−→

k,k+n≥0
[Ωk+nM,ΩkN]F.

This now allows us to deduce the following Lemma, which is an analogue to [15, 4.2].

LEMMA 3·4. Êxt
0
F(M,M) = 0 if and only if M has finite projective dimension. In particular,

Ĥ
0
F(G,ZF) = 0 ⇐⇒ cdF G < ∞.

4. Proof of Theorem A

The proof of Theorem A is analogous to the proof of the main result in [15]. We begin by recording
two easy lemmas, which have their analogues in [15, 3.1] and [15, 4.1] respectively.
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LEMMA 4·1. Let

0→Mn→Mn−1→ ...→M1→M0→ L→ 0

be an exact sequence of OFG-modules and i be an integer such that Hi
F(G,L) 6= 0. Then there

exists an integer 0≤ j ≤ n−1 such that H j+i
F (G,M j) 6= 0..

Proof. This is an easy dimension shifting argument.

LEMMA 4·2. Let G be a group such that Hk
F(G,−) commutes with direct limits for infinitely

many k, then Ĥ
k
F(G,−) commutes for all k ∈ Z.

Proof. This follows from the fact that direct limits commute with each other.

The proof of Theorem A now relies on the fact that one can hierarchically decompose the class
HFF in exactly the same way as Kropholler’s decomposition, see [8, 15]:

• HF
0 F= F;

• For an ordinal α > 0, we let HF
αF be the class of groups acting cellularly on a finite

dimensional complex X such that each stabiliser subgroup lies in HF
β
F for some β < α

and such that XK is contractible for all K ∈ F.

A group G now lies in HFF if and only if it lies in some HF
αF for some ordinal α.

In particular, HFF is subgroup closed.

LEMMA 4·3. Let G be a group and Gλ , λ ∈ Λ its finitely generated subgroups. Then we have the
following isomorphism:

lim−→
λ∈Λ

Z[−,G/Gλ ]F∩Gλ

∼= ZF.

Proof. This follows directly from Lemma 2·2.

THEOREM 4·4. Let G be a group in LHFF and suppose that Ĥ
∗
F(G,−) commutes with direct

limits. Then cdF G < ∞.

Proof. We prove this by contradiction and suppose that cdF G = ∞. Hence, by Lemma 3·4, we

have that Ĥ
0
F(G,ZF) 6= 0. We claim that then there exists a group H ∈ F and an integer i ≥ 0

such that Ĥ
i
F(G, IndG

H ZF∩H) 6= 0. By Lemma 2·2, we have IndG
H ZF∩H ∼= Z[−,G/H], which is

projective, giving us the desired contradiction.
It now remains to prove the claim: Let S be the set of ordinals β such there exists a i≥ 0 and
H ≤ G lying in HF

β
F and such that Hi

F(G, IndG
H ZF∩H) 6= 0. If we can prove that 0 ∈S , we are

done.
(1) We show that S is not empty: Let {Gλ |λ ∈ Λ} be the family of all finitely generated
subgroups of G. Hence, applying Lemma 4·3 and the fact that Ĥ

∗
F(G,−) commutes with direct

limits, we get

Ĥ
0
F(G,ZF)∼= Ĥ

0
F(G, lim−→

λ∈Λ

Z[−,G/Gλ ]F∩Gλ
)∼= lim−→

λ∈Λ

Ĥ
0
F(G,Z[−,G/Gλ ]F∩Gλ

).

Since Ĥ
0
F(G,ZF) 6= 0, there exists a finitely generated subgroup Gλ such that, see also Lemma

2·2,

Ĥ
0
F(G,Z[−,G/Gλ ]F∩Gλ

)∼= Ĥ
0
F(G, IndG

Gλ
ZF∩Gλ

) 6= 0.
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Since G ∈ LHFF, and HFF is subgroup closed, Gλ ∈ HFF and in particular, there is an ordinal β

such that Gλ ∈ HF
β
F. Hence β ∈S .

(2) We now show that, if 0 6= β ∈ S , then there is an ordinal γ < β such that γ ∈ S : Let
0 6= β ∈S . Then there is a H ∈ G and i≥ 0 such that H ∈ HF

β
F and

Ĥ
i
F(G, IndG

H ZF∩H) 6= 0.

Hence H acts cellularly on a finite dimensional contractible space X such that each isotropy group
lies in some HF

γ F for γ < β and such that XK is contractible if K ∈ F. Hence we have an exact
sequence of free OFH-modules:

0→Cn(X (−))→Cn−1(X (−))→ ... C1(X (−))→C0(X (−))→ ZF∩H → 0.

Each

Ck(X (−))∼= Z[−,
⊕

σk∈∆k

H/Hσk ],

where ∆k is the set of orbit representatives for the k-cells of X . Furthermore, by Lemma 2·2, upon
induction, we obtain an exact sequence of OFG-modules as follows:

0→
⊕

σn∈∆n

IndG
Hσn

ZF∩Hσn
→ ...→

⊕
σ1∈∆1

IndG
Hσ1

ZF∩Hσ1
→

⊕
σ0∈∆0

IndG
Hσ0

ZF∩Hσ0
→ IndG

H ZF∩H→ 0.

Now, by Lemma 4·1, there is a k ≥ 0 such that

Ĥ
j+k
F (G,

⊕
σk∈∆k

IndG
Hσk

ZF∩Hσk
) 6= 0.

Since Ĥ
j+k
F (G,−) commutes, in particular, with direct sums, there is a σk ∈ ∆k such that

Ĥ
j+k
F (G, IndG

Hσk
ZF∩Hσk

) 6= 0,

thus proving the claim.

COROLLARY 4·5. Let G be a group in HFF and suppose that Ĥ
∗
F(G,−) commutes with direct

sums. Then cdF G < ∞.

Proof. The proof is analogous to the proof of Theorem 4·4. To show that S is not empty, we can
use the fact that G ∈ HF

β
F for some β . Then follow step (2) as above.

Theorem A now follows directly from Theorem 4·4, as, for groups of type Bredon-FP∞ it follows
that Ĥ

∗
F(G,−) commutes with direct limits, see Lemma 4·2 and [27, Theorem 5.3].

5. Some properties of LHFF

We consider containment and closure properties of the class LHFX especially when F either the
class of finite groups or the class of virtually cyclic groups.

Let A be an abelian group and Z= 〈t〉. Consider the semi-direct product G = AoZ with t acting
on A by conjugation. To shorten the notation, wherever necessary, we will identify A with its
image in G. Fix an arbitrary integer k > 0. For each integer i≥ 0, we define the subgroups Pk

i of
A inductively as follows:
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• Pk
0 = 〈1〉,

• Pk
i+1 = {x ∈ A | tk(x)x−1 ∈ Pk

i } for i≥ 0.

An easy induction on i shows that each Pk
i is a normal subgroup of G. We set Pk = ∪i≥0Pk

i . Note
that Pk is also a normal subgroup of G and it has the property that if tk(x)x−1 ∈ Pk and x ∈ A then
x ∈ Pk. In fact, Pk can be defined as the smallest subgroup of G with this property.

LEMMA 5·1. Let a ∈ A. For each i ≥ 0, consider the subgroup Gk
i = 〈Pk

i ,(a, t
k)〉 of G. Then

Pk
i = Gk

i ∩A and Gk
i is nilpotent of nilpotency class at most i+1.

Proof. For the first part one only needs to check that Gk
i ∩A is in Pk

i as the reverse inclusion is
trivially satisfied. But this follows immediately from the fact that Gk

i
∼= Pk

i o 〈(a, tk)〉.
For the second claim, note that [Gk

i ,G
k
i ] lies in A. Let 0 ≤ m ≤ i. The only possibly nontrivial

m-fold commutators starting with an element x ∈ Pk
i are of the form

ym = [(a1, tkn1), [(a2, tkn2), . . . [(am, tknm),x] . . . ]]

for a1, . . . ,am ∈ Pk
i where we denote y0 = x. We claim that ym is in Pk

i−m. Assuming the claim, we
have that yi is trivial and hence Gk

i is nilpotent of nilpotency class at most i+1.
To prove the claim we use induction on m. The case m = 0 is trivially satisfied. Now, suppose
m > 0. Then, by induction, the (m−1)-fold commutator

z = [(a2, tkn2), . . . [(am, tknm),x] . . . ] ∈ Pk
i−m+1.

But then

ym = [(a1, tkn1),z] = tkn1(z)z−1 ∈ Pk
i−m

because z ∈ Pk
i−m+1. This finishes the claim.

LEMMA 5·2. For a given integer i > 0, let N be a nilpotent subgroup of G of nilpotency class i,
which is not contained in A. Then N = 〈B,(a, tk)〉 where B = Pk

i ∩N for some a ∈ A and k > 0. In
particular, N is contained in Gk

i = 〈Pk
i ,(a, t

k)〉.

Proof. Clearly, N = 〈B,(a, tk)〉 where B = A∩N for some a ∈ A and k > 0. It is left to show that
B≤ Pk

i . Let 0≤ m≤ i and consider (i−m)-fold commutator

y(i−m) = [(a, tk), [(a, tk), . . . [(a, tk),x] . . . ]]

where we denote y0 = x ∈ B. We will prove by induction that y(i−m) ∈ Pk
m. Since N has nilpotency

class i, yi = 1 ∈ Pk
0 . So, assume m > 0. Consider z = [(a, tk),y(i−m)]. By induction, z ∈ Pk

m−1. But
z = tk(y(i−m))y

−1
(i−m)

. So, by the definition of Pk
m, we have y(i−m) ∈ Pk

m.

Now, taking m = i, gives us that each x ∈ B lies in Pk
i .

PROPOSITION 5·3. Define P = ∪k>0Pk in A. Then

(a) P is a normal subgroup of G.

(b) P is the smallest subgroup of G defined by the property that if tk(x)x−1 ∈ P for some k > 0
and x ∈ A, then x ∈ P.

(c) Let N = 〈B,(a, t l)〉 where B≤ P, a ∈ A and l ≥ 1. Then N is locally virtually nilpotent.

(d) Let N be a locally nilpotent subgroup of G not contained in A. Then N∩A is contained in
P.
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Proof. (a). Given any integers k1,k2 > 0 such that k1 divides k2, it follows that Pk1 ⊆ Pk2 . This
shows that the set P is a subgroup of A. Since each Pk is a normal subgroup of G, their union P is
also a normal in G.
(b). Let P′ be the smallest subgroup of G defined by the property stated in (b); denote this property
by (∗). Note that P = ∪i≥0Pi where the subgroups Pi are defined inductively by:

• P0 = 〈1〉,
• Pi+1 = {x ∈ A | ∃k > 0, tk(x)x−1 ∈ Pi} for i≥ 0.

An easy induction on i shows that each Pi is a subgroup of P′. Hence, P≤ P′. But since P has the
property (∗) and P′ is the smallest subgroup of G with the property (∗), we deduce that P = P′.
(c). Let H = 〈b1, . . . ,bs,(a, t l)〉, for some b1, . . . ,bs ∈ P, a ∈ A, and l,s ≥ 1. It suffices to show
that H is virtually nilpotent. Since P = ∪i,k>0Pk

i , we conclude that for each j ∈ {1, ...,s}, we have

b j ∈ P
k j
i j

for some i j,k j > 0. Set k = ∏
s
j=1 ki j and i = sup{i j | 1≤ j ≤ s}. It follows that the group

H ′ = 〈b1, . . . ,bs,(a, t l)k〉 is a finite index subgroup of H, and H ′ ≤ 〈Pkl
i ,(a, t l)k〉. So, by Lemma

5·1, H ′ is nilpotent.
(d). This is a direct consequence of Lemma 5·2.

THEOREM 5·4. Let G be a semi-direct product AoZ where A is a countable abelian group.
Define H to be the family of all virtually nilpotent subgroups of G. Then there exists a 3-dimensional
model for EHG.

Proof. Let T be the subfamily of H consisting of all countable subgroups of A. We will use the
construction of Lück and Weiermann that adapts the model for ETG to a model for the larger
family H.
First, we need a strong equivalence relation on the set

S = HrT= {H ≤ G | H 6≤ A and H is virtually nilpotent}.

Let : G→ G/P denote the quotient homomorphism. By Proposition 5·3, we have that if H ∈ H,
then H is virtually cyclic.
Now, for H,S ∈ S , we say that there is a relation H ∼ S if |H ∩ S| = ∞. It is not difficult to
show that this indeed defines a strong equivalence relation on the set S . Our group G acts by
conjugation on the set of equivalence classes [S ] and the stabiliser of an equivalence class [H] is

NG[H] = {x ∈ G | Hx ∼ H}.

Note that H ∼ Z if Z = 〈h〉, h ∈ H, h /∈ A. Hence NG[H] = NG[Z]. Clearly, Z is a subgroup of
NG[Z] and NG[Z] = 〈B,Z〉 for some subgroup B≤ A. But for each b ∈ B, we have Zb ∼ Z. Writing
h = (a, tk) for some a ∈ A and k > 0, this implies that b−1(a, tk)nb = (a, tk)n in G/P for some
nonzero integer n. A quick computation then shows that tkn(b) = b in G/P. This means that
tkn(b)b−1 ∈ P. Then, by Proposition 5·3(b), b ∈ P. Hence, by part (c) of Proposition 5·3, we have
that every finitely generated subgroup K of NG[Z] that contains Z is virtually nilpotent. Thus
K ∈S and K ∼ Z and hence it is in the family

T[H] = {K ≤ NG[H] |K ∈S ,K ∼ H}∪
(

NG[H]∩T
)

of subgroups of NG[H]. It follows that NG[H] is a countable directed union of subgroups that are
in T[H] but are not in NG[H]∩T. Denote by T the tree on which NG[H] acts with stabilisers as
such subgroups. Note that the action of G on R via the natural projection of G onto Z makes R
into a model for ETG. Restricting this action to NG[H] and considering the induced action on the
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join T ∗R gives us a 3-dimensional model for ET[H]NG[H]. Invoking Proposition 2·4 entails a
3-dimensional model for EHG, as was required to prove.

REMARK 5·5. Since finitely generated nilpotent groups lie HFvc
1 Fvc, it follows that countable

virtually nilpotent groups are in HFvc
2 Fvc. We obtain that the group G = AoZ ∈ HFvc

3 Fvc.

REMARK 5·6. In the statement of Theorem 5·4, one could enlarge H to be the family of all locally
virtually nilpotent subgroups of G. Then its proof together with Proposition 5·3(c)-(d) would
imply that NG[H] is T[H]. So, a point with the trivial action of NG[H] would then be a model for
ET[H]NG[H] for each H ∈S . Applying Proposition 2·4 would give us a 2-dimensional model for
EHG.

In the next example, we illustrate that the family H of all virtually nilpotent subgroups of G can
contain nilpotent subgroups of G of arbitrarily high nilpotency class.

EXAMPLE 5·7. Consider the unrestricted wreath product W = Z oZ. Rewriting this group as a
semi-direct product, we have that W = AoZ where A = ∏i∈ZZ and the standard infinite cyclic
subgroup of W is generated by t and acts on A by translations. Define G to be the subgroup of W
given by G = PoZ. For each k > 0, note that Pk

1 is the subgroup of A of all k-periodic sequences
of integers and hence Pk

1
∼= Zk. Since P1 = ∪k>0Pk

1 , it is countable of infinite rank. Similarly, one
can argue that P2/P1 is countable of infinite rank and hence P2 is also countable. Continuing in
this manner, one obtains that Pi is countable for each i > 0 and since P is a countable union of
these groups it is itself countable. This shows that the group G satisfies the hypothesis of Theorem
5·4.
Now, it is not difficult to see, that for each i> 0, the subgroup P1

i oZ of G is nilpotent of nilpotency
class i.

THEOREM 5·8. Let F be a class of subgroups of finitely generated groups. Then HFF is closed
under countable directed unions. If F is the class of all virtually cyclic groups, then HFF is closed
under finite extensions and under extensions with virtually soluble kernels. In particular, LHFF

contains all locally virtually soluble groups.

Proof. The proof of the first fact is the same as for the class of finite groups F given in Proposition
5.5 in [8]. That is, let G be a countable directed union of groups that are in HFF. Then G acts on a
tree with stabilisers exactly the subgroups that comprise this union. It is now easy to see that the
action of G on the tree satisfies the stabiliser and the fixed-point set conditions of the definition of
HFF-groups. This shows that G is in HFF.
For the second part, first note that by the Serre’s Construction, HFF is closed under finite extensions
(see the proof of [20, 2.3(2)]).
Let G be a countable group that fits into an extension K � G � Q such that K is virtually soluble
and Q ∈ HFF. Suppose K is finite. Then an easy transfinite induction on the ordinal associated to
the class containing Q shows G lies in HFF. In general, since K is virtually soluble, it contains a
soluble characteristic subgroup of finite index, which must be normal in G. In view of these facts,
without loss of generality, we can assume that K is soluble.
Next, we proceed by the induction on the derived length of K to prove that G ∈ HFF. When K
is the trivial group, then G = Q ∈ HFF. Suppose K is nontrivial. Since [K,K] is a characteristic
subgroup of K, it is a normal subgroup of G. So, there are extensions

[K,K]� G � G/[K,K] and K/[K,K]� G/[K,K]� Q.
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We claim that G/[K,K] ∈ HFF. Then by induction applied to the first extension G ∈ HFF. Let us
now prove the claim.
In view of the second extension, it suffices to show that given an extension

A � S � Q

where A is abelian and Q ∈ HF
α
F, then S ∈ HFF. We use transfinite induction on the ordinal α .

When α = 0, then S is virtually a semi-direct product AoZ. Hence, by Theorem 5·4, it is in HFF.
Suppose α > 0, then there is a finite dimensional Q-CW-complex X such that each stabiliser
subgroup lies in HF

β
F for some β < α and such that XH is contractible for all H ∈ F. The group S

also acts on X via the projection onto Q. Each stabiliser of this action is abelian-by-HF
β
F and hence

by transfinite induction is in HFF. Therefore, S ∈ HFF. This finishes the claim and the proof.

Recall that a subgroup G of GLn(C) is said to be of integral characteristic if the coefficients of
the characteristic polynomial of every element of G are algebraic integers. It follows that G has
integral characteristic if and only if the characteristic roots of every element of G are algebraic
integers (see [1, §2]).

THEOREM 5·9. Let G be a countable subgroup of some GLn(C) of integral characteristic. Then
G lies in HFvcFvc.

Proof. Since the class HFvcFvc is closed under countable directed unions, it is enough to prove
the claim when G is finitely generated. Note that under a standard embedding of GLn(C) into
SLn+1(C) the image of G is still of integral characteristic. So, we can assume that G is a subgroup
of SLn(C) of integral characteristic. Let A be the finitely generated subring of C generated by
the matrix entries of a finite set of generators of G and their inverses. Then G is a subgroup of
SLn(A).
Let F denote the quotient field of A. Proceeding as in the proof of Theorem 3.3 of [1], there is an
epimorphism ρ : G→ H1×·· ·×Hr such that the kernel U of ρ is a unipotent subgroup of G and
for each 1≤ i≤ r, Hi is a subgroup of some GLni(A) of integral characteristic where the canonical
action of Hi on Fni is irreducible and ∑ni = n. So, by the proof of Theorem B in [4], each group
Hi admits a finite dimensional model for EFvc∩HiHi. Applying [24, 5.6], one immediately sees
that the product Q = H1×·· ·×Hr admits a finite dimensional model for EFvc∩QQ. So, Q is in
HFvc

1 Fvc. By Theorem 5·8, it follows that G lies in HFvcFvc.

COROLLARY 5·10. Let F be either the class of all finite groups or the class of all virtually cyclic
groups and let G be a group such that Ĥ∗F(G,−) commutes with direct limits. If G is a subgroup
of some GLn(C) of integral characteristic or if G is a subgroup of some GLn(F) where F is a field
of positive characteristic, then cdF(G)< ∞.

Proof. Suppose H is a finitely generated subgroup of G. If G is a subgroup of GLn(C) of integral
characteristic, then by [1] when F is the class of finite groups or or by the previous theorem when
F is the class of virtually cyclic groups, we know that H in HFF. If G embeds into GLn(F) for
some field F of positive characteristic, then by [7, Corollary 5], H has finite Bredon cohomological
dimension and hence it is in HFF. This shows that G is in LHFF. The result now follows from
Theorem 4·4.

6. Change of family

In this section we discuss the question when the functor Ĥ
∗
F(G,−) commutes with direct limits.

By the above, it is obvious that groups of finite Bredon cohomological dimension as well as
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groups of Bredon-type FP∞ satisfy this condition. It would be interesting to see whether there are
groups a priori satisfying neither, that also have continuous Ĥ

∗
F(G,−).

Considering Lemma 4·2, we see that it is enough to require that Hk
F(G,−) commutes with direct

limits for infinitely many k. This, for example holds for groups, for which the trivial Bredon-
module ZF has a Bredon-projective resolution, which is finitely generated from a certain point
onwards.
As mentioned in the introduction, the families of greatest interest are the families Ffin of finite
subgroups and Fvc of virtually finite subgroups. In light of Juan-Pineda and Leary’s conjecture
[12], which asserts that no non-virtually cyclic group is of type FP

∞
, the question above is of

particular interest for the family Fvc.

Let us begin with the following:

QUESTION 6·1. Does Ĥ
∗
(G,−) being continuous imply that Ĥ

∗
Ffin

(G,−) is continuous?

The converse of this question is obviously not true. Take any group G with cdFfin G < ∞, which is
not of type FP∞ and which has no bound on the orders of the finite subgroups. It follows from
[15] that groups with cdQ G < ∞ and continuous Ĥ

∗
(G,−) have a bound on the orders of their

finite subgroups. Locally finite groups and Houghton’s groups satisfy this condition. On the other
hand [16, Theorem 2.7], any group G in LHF, for which Ĥ

∗
(G,−) is continuous has finite cdFfin G,

hence Ĥ
∗
Ffin

(G,−) is continuous.
Also note that there are examples of groups of type FP∞, which are not of type Bredon-FP∞ for the
class of finite subgroups [18]. These groups, however, satisfy cdFfin G < ∞, hence have continuous
Ĥ
∗
Ffin

(G,−).

QUESTION 6·2. Is Ĥ
∗
Ffin

(G,−) being continuous equivalent to Ĥ
∗
Fvc(G,−) being continuous?

Any group of type FP
∞

is of type FP∞ (see [13]) and any group with cdFvc G < ∞ also has
cdFfin G < ∞ (see [24]). Hence we may ask:

QUESTION 6·3. Suppose cdFfin G < ∞. Does this imply that Ĥ
∗
Fvc(G,−) is continuous?

If this question has a positive answer, Theorem A would imply that any group in LHFvcFvc with
cdFfin G < ∞ satisfies cdFvc G < ∞.

We end with two questions on the family LHFvcFvc.

QUESTION 6·4. Is the class LHFvcFvc closed under extensions?

This reduces to asking whether an infinite cyclic extension of group in LHFvcFvc is also in LHFvcFvc.

QUESTION 6·5. Does the class LHFvcFvc contain all elementary amenable groups?

Note that a positive answer to Question 6·4 implies a positive answer to this question.
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