
Parameterizations of Test Cover with Bounded

Test Sizes

R. Crowston, G. Gutin, M. Jones and G. Muciaccia
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
{robert|gutin|markj|G.Muciaccia}@cs.rhul.ac.uk

A. Yeo
Singapore University of Technology and Design

20 Dover Drive, 138682 Singapore and
University of Johannesburg

Auckland Park, 2006 South Africa
andersyeo@gmail.com

September 25, 2014

Abstract

In the Test Cover problem we are given a hypergraph H = (V, E)
with |V | = n, |E| = m, and we assume that E is a test cover, i.e. for every
pair of vertices xi, xj , there exists an edge e ∈ E such that |{xi, xj}∩e| = 1.
The objective is to find a minimum subset of E which is a test cover.
The problem is used for identification across many areas, and is NP-
complete. From a parameterized complexity standpoint, many natural
parameterizations of Test Cover are either W [1]-complete or have no
polynomial kernel unless coNP ⊆ NP/poly, and thus are unlikely to be
solveable efficiently.

However, in practice the size of the edges is often bounded. In this pa-
per we study the parameterized complexity of Test-r-Cover, the restric-
tion of Test Cover in which each edge contains at most r ≥ 2 vertices. In
contrast to the unbounded case, we show that the following below-bound
parameterizations of Test-r-Cover are fixed-parameter tractable with
a polynomial kernel: (1) Decide whether there exists a test cover of size
n−k, and (2) decide whether there exists a test cover of size m−k, where

k is the parameter. In addition, we prove a new lower bound d 2(n−1)
r+1

e on
the minimum size of a test cover when the size of each edge is bounded
by r. Test-r-Cover parameterized above this bound is unlikely to be
fixed-parameter tractable; in fact, we show that it is para-NP-complete,
as it is NP-hard to decide whether an instance of Test-r-Cover has a
test cover of size exactly 2(n−1)

r+1
.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The input to the Test Cover problem consists of a hypergraph H = (V, E),
with vertex set V = {x1, . . . , xn} and edge set E = {e1, . . . , em} 1. We say that
an edge eq separates a pair of vertices xi, xj if |{xi, xj}∩eq| = 1. A subcollection
T ⊆ E is a test cover if each pair of distinct vertices xi, xj is separated by an
edge in T . The objective is to find a test cover of minimum size, if one exists.
Since it is easy to decide, in polynomial time, whether the collection E itself is
a test cover, henceforth we will assume that E is a test cover.

Test Cover arises naturally in the following general setting of identification
problems: Given a set of items (which corresponds to the set of vertices) and a
set of binary attributes that may or may not occur in each item, the aim is to
find the minimum size subset of attributes (corresponding to a minimum test
cover) such that each item can be uniquely identified from the list of attributes it
has from this subset. Test Cover arises in fault analysis, medical diagnostics,
pattern recognition and biological identification (see, e.g., [18, 19, 23]).

The Test Cover problem has also been studied extensively from an al-
gorithmic viewpoint. The problem is NP-hard, as was shown by Garey and
Johnson [15]. There is an O(log n)-approximation algorithm for the problem
[23] and there is no o(log n)-approximation algorithm unless P=NP [18]. Often,
in practice, the sizes of all edges are bounded from above by a constant r ≥ 2
[10, 18]. For such cases the problem remains NP-hard, even when r = 2, but
the approximation guarantee can be improved to O(log r) [18].

Initially, research in parameterized algorithmics2 considered mainly standard
parameterizations, where the parameter is the size of the solution. In the last
decade, this situation has changed: many papers deal with structural parameters
such as treewidth or parameterizations above and below tight bounds. Research
on parameterizations above and below tight bounds was initiated by Mahajan
and Raman [21], but the systematic study of such parameterizations started
only after the publication of [22]. This resulted in new methods and approaches,
solving most of the open problems stated in [21] and [22], see, e.g., [1, 5, 7, 8, 16].

The complexity of the following four parameterizations of Test Cover were
first studied in [6, 17], in all of which k is the parameter:

TestCover(k): Is there a test cover with at most k edges?

TestCover(n− k): Is there a test cover with at most n− k edges?

TestCover(m− k): Is there a test cover with at most m− k edges?

TestCover(log n + k): Is there a test cover with at most log n + k edges?

Whilst TestCover(k) is a standard parameterization, TestCover(n−k) and
TestCover(m−k) are parameterizations below tight upper bounds: clearly m
is a tight upper bound on the minimum size of a test cover and it is not hard to

1Notice that, in the literature, the vertices are also called items and the edges tests. We
provide basic terminology and notation on hypergraphs in Section 2.

2We provide basic notions on parameterized algorithmics in the end of this section.

2

prove that n−1 is another tight upper bound [4] (see also Corollary 1). Finally,
TestCover(log n+ k) is a parameterization above a tight lower bound dlog ne
on the minimum size of a test cover [18].

It is clear that TestCover(k) is fixed-parameter tractable; it follows im-
mediately from the tight lower bound dlog ne. It was first proved in [6] that
TestCover(n − k) is fixed-parameter tractable, and the result was later im-

proved in [2], where an algorithm which solves the problem in O(2O(k2)(m +
n)O(1)) time is described. It is also proved in [6] that TestCover(m− k) and
TestCover(log n+k) are W[1]-hard. Since TestCover(k) and TestCover(n−
k) are fixed-parameter tractable, it is natural to ask whether they admit polynomial-
size kernels. The authors of [17] answered this question by proving that, unless
coNP ⊆ NP/poly, neither TestCover(k) nor TestCover(n − k) admits a
polynomial-size kernel.

Thus, papers [6, 17] demonstrated that the four parameterizations of Test
Cover are not easy to solve: even those of them which are fixed-parameter
tractable do not admit polynomial-size kernels. This gives another theoretical
explanation of the fact that Test Cover is not easy to solve in practice [9, 13].
Thus, it is natural to study important special cases of Test Cover. It turns
out that often the sizes of all edges are bounded from above by a constant r:
De Bontridder et al. [10] observed that “this is the common restriction” for
the problem and provide, as an example, protein identification. A question
is whether the parameterizations of Test Cover become easier in this case.
Already [17] indicated that this can be true by proving that TestCover(k) does
admit a polynomial-size kernel if r is a constant. We will denote the special cases
of the four parameterizations by Test-r-Cover(k), Test-r-Cover(n − k),
Test-r-Cover(m− k), and Test-r-Cover(log n + k). Since the case r = 1 is
trivial, henceforth we will assume r ≥ 2.

In this paper we will prove that not only is Test-r-Cover(m − k) fixed-
parameter tractable, but Test-r-Cover(m − k) and Test-r-Cover(n − k)
also admit polynomial-size kernels. There is no interest in studying Test-r-
Cover(log n+k) as dlog ne is no longer a tight lower bound. Instead, we prove

that d 2(n−1)r+1 e is a tight lower bound and study the parameterization Test-r-

Cover(2(n−1)
r+1 + k): Is there a test cover with at most 2(n−1)

r+1 + k edges, where
k is the parameter? We prove that it is NP-hard even to decide whether there

is a test cover of size 2(n−1)
r+1 . It follows that Test-r-Cover(2(n−1)

r+1 + k) is
para-NP-complete. Note that lower bounds play a key role in designing branch-
and-bound algorithms for Test Cover [9, 13] and so our new lower bound may
be of interest for practical solutions of Test-r-Cover.

The rest of the paper is organized as follows. In the remainder of this
section we provide necessary basic terminology on parameterized algorithmics.
In Section 2, we provide necessary terminology on hypergraphs and prove some

preliminary results. In Section 3, we show that d 2(n−1)r+1 e is a tight lower bound

and that Test-r-Cover(2(n−1)
r+1 + k) is para-NP-complete. In Section 4, we

give a short proof that Test-r-Cover(m− k) is fixed-parameter tractable. In
Sections 5 and 6, we prove that Test-r-Cover(m−k) and Test-r-Cover(n−

3

k) admit polynomial-size kernels. In Section 7, we discuss open problems.
Basics on Parameterized Complexity. A parameterized problem Π can

be considered as a set of pairs (I, k) where I is the problem instance and k
(usually a nonnegative integer) is the parameter. Π is called fixed-parameter
tractable (fpt) if membership of (I, k) in Π can be decided by an algorithm of
runtime O(f(k)|I|c), where |I| is the size of I, f(k) is an arbitrary function of
the parameter k only, and c is a constant independent from k and I. Let Π
and Π′ be parameterized problems with parameters k and k′, respectively. An
fpt-reduction R from Π to Π′ is a many-to-one transformation from Π to Π′ that
maps an instance (I, k) of Π to an instance (I ′, k′) of Π′, such that (i) (I, k) ∈ Π
if and only if (I ′, k′) ∈ Π′ with k′ ≤ g(k) for a fixed function g, and (ii) R is of
complexity O(f(k)|I|c).

Π is in para-NP if membership of (I, k) in Π can be decided by a nondeter-
ministic Turing machine in time O(f(k)|I|c), where |I| is the size of I, f(k) is an
arbitrary function of the parameter k only, and c is a constant independent from
k and I. A parameterized problem Π′ is para-NP-complete if it is in para-NP
and for any parameterized problem Π in para-NP there is an fpt-reduction from
Π to Π′. It is well-known that a parameterized problem Π belonging to para-NP
is para-NP-complete if there exists a polynomial-time many-one reduction from
an NP-complete problem to the subproblem of Π when the parameter is equal
to some constant [14].

Given a parameterized problem Π, a kernelization of Π is a polynomial-time
algorithm that maps an instance (I, k) to an instance (I ′, k′) (the kernel) such
that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π, and (ii) |I ′| + k′ ≤ g(k) for
some function g of k only. We call g(k) the size of the kernel. It is well-known
[12, 14] that a decidable parameterized problem Π is fixed-parameter tractable
if and only if it has a kernel. Polynomial-size kernels are of main interest, due
to applications [12, 14, 24], but unfortunately, many fixed-parameter tractable
problems were shown not to have polynomial kernels under the widely believed
hypothesis coNP*NP/poly, see, e.g., [3, 11].

2 Additional terminology, notation and prelim-
inaries

We use usual hypergraph terminology. Let H = (V, E) be a hypergraph. The
degree of a vertex x is the cardinality of {e ∈ E : x ∈ e}. A vertex of degree
zero is an isolated vertex. Given X ⊆ V , define the neighborhood N1(X) =
{u ∈ V \ X : ∃e ∈ E ∃x ∈ X such that {x, u} ⊆ e}, N1[X] = N1(X) ∪ X and
Nj [X] = N1[Nj−1[X]]. Given F ⊆ E , define the neighborhood N1(F) = {e ∈
E \ F : ∃f ∈ F , f ∩ e 6= ∅}, N1[F] = N1(F) ∪ F and Nj [F] = N1[Nj−1[F]].
For F ⊆ E , H[F] is the hypergraph with vertex set V (H[F]) = {x ∈ V : ∃e ∈
F such that x ∈ e} and edge set E(H[F]) = F . Similarly, given a set of vertices
X ⊆ V , H[X] is the hypergraph with vertex set V (H[X]) = X and edge set
E(H[X]) = {e ∩X : e ∈ E , e ∩X 6= ∅}.

4

We reuse some terminology from [6]. For a subset T ⊆ E , the classes induced
by T are the maximal subsets Ci of V such that no pair of vertices in Ci is
separated by an edge in T . Observe that the classes induced by T form a
partition of V .

We say that E separates X ⊆ V and Y ⊆ V , X ∩ Y = ∅, if for every pair
(x, y), with x ∈ X and y ∈ Y , x and y are separated by an edge of E . We say
that E isolates X ⊆ V if it separates X and V \ X. We say an edge e cuts
X ⊆ V if X ∩ e 6= ∅ and X \ e 6= ∅.

For an integer t, we use [t] to denote the set {1, 2, . . . , t}.

Lemma 1. If E induces t ≥ 2 classes in a hypergraph H = (V, E) and i ∈ [t−1]
then there is a subset F of E with i edges that induces at least i + 1 classes.

Proof. By induction on i ∈ [t − 1]. To see that the lemma holds for i = 1 set
F = {e}, where e is any edge of E with less than |V | vertices. Let F be a subset
of E with i−1 edges that induces at least i classes, let x, y be vertices separated
by E not separated by F , and let e be an edge separating x and y. It only
remains to observe that F ∪ {e} induces at least i + 1 classes.

Observe that E is a test cover if and only if it induces n classes. This and
the lemma above imply the following:

Corollary 1. [4] If E is a test cover in a hypergraph H = (V, E) then there is
a subset F of E with at most n− 1 edges which is also a test cover.

Corollary 2. In a hypergraph H = (V, E), let X,Y ⊆ V be such that X∩Y = ∅
and E separates X and Y . Then there is a subset F of E that separates X and
Y and has at most tX + tY − 1 edges, where tX (tY) is the number of classes
induced by E that intersect X (Y).

Proof. Apply Lemma 1 to H[X ∪ Y] and then extend the obtained edges of
H[X ∪ Y] beyond X ∪ Y such that they correspond to edges of H.

3 Test-r-Cover
(

2(n−1)
r+1 + k

)
Proposition 3. If the size of every edge is at most r, then every test cover has

at least
⌈
2(n−1)
r+1

⌉
edges. This lower bound on the size of a test cover is tight.

Proof. We first prove that
⌈
2(n−1)
r+1

⌉
is indeed a lower bound. Given a test cover

of size m′, observe that at most one vertex may be contained in no edges. For
each of the m′ edges, at most one vertex is contained in only that edge and every

other vertex is contained in at least two edges. Hence n ≤ 1 + m′ + m′(r−1)
2 ,

which implies m′ ≥ 2(n−1)
r+1 .

To see that this bound is tight, consider a set V = {xi,j : i, j ∈ [r]} of
vertices, and a set E = {eq : q ∈ [r − 1]} ∪ {e′s : s ∈ [r − 1]} of edges, where
eq = {xq,j : j ∈ [r]}, e′s = {xi,s : i ∈ [r]} (see Figure 1). Since n = r2, we have

5

|E| = 2(r − 1) = 2(n−1)
r+1 . Consider two vertices xi,j and xi′,j′ . If i 6= i′, then

xi,j and xi′,j′ are separated by emin{i,i′} and if j 6= j′, then xi,j and xi′,j′ are
separated by e′min{j,j′}. Thus, E is a test cover of minimum possible size. By

using multiple copies of this construction (except for xr,r), one can see that the
bound is tight for arbitrarily large n.

. . .

. . .

. . .

. . .

...
...

...
...

. . .

x1,r−1

x2,r−1

xr−1,1 xr−1,2 xr−1,r−1

x1,r

x2,r

xr−1,r

xr,1 xr,2 xr,r−1 xr,r

e1

e2

er−1

e′1 e′2 e′r−1

x1,1

x2,1

x1,2

x2,2

Figure 1: Illustration of the hypergraph (V, E) in Proposition 3. Vertices of
degree two are labelled in black, vertices of degree one in gray and the vertex
of degree zero in white.

Corollary 4. If there is a test cover of size exactly 2(n−1)
r+1 (note that in this

case, 2(n−1) is divisible by r+1), there must be exactly one vertex contained in
no edges, each edge must contain one vertex of degree 1, and every other vertex
must be of degree 2.

Proof. We will use the notation in the proof of Proposition 3. Observe that

m′ = 2(n−1)
r+1 implies n = 1 +m′+m′(r−1)/2 but if every vertex is contained in

an edge then n ≤ m′+m′(r−1)/2, a contradiction. Thus, there must be exactly
one vertex contained in no edges, and similarly, n = 1+m′+m′(r−1)/2 implies
that each edge must contain one vertex of degree 1, and every other vertex must
be of degree 2.

6

From the lower bound of Proposition 3, a kernel for Test-r-Cover(k), with
fewer vertices than in [17], immediately follows:

Corollary 5. Test-r-Cover(k) admits a kernel with at most k(r + 1)/2 + 1
vertices.

To prove the next lemma we give a reduction from the r-Dimensional
Matching problem, which is one of Karp’s 21 NP-complete problems [20], for
each r ≥ 3. To state the problem, we will give the following definitions. A
collection E of edges of a hypergraph H is called a matching if no two edges of E
have a common vertex. A matching is perfect if every vertex of H belongs to an
edge of the matching. A hypergraph H is r-partite r-uniform if the vertex set
V (H) of H can be partitioned into r sets X1, . . . , Xr such that each edge of H
has exactly one vertex from each Xi. In r-Dimensional Matching, given an
r-partite r-uniform hypergraph H, the aim is to decide whether H has a perfect
matching.

Lemma 2. Test-r-Cover(2(n−1)
r+1 + k) is NP-hard for k = 0 and r ≥ 3.

Proof. We give a reduction from r-Dimensional Matching to

Test-r-Cover(2(n−1)
r+1 + k) for k = 0. We assume we have an instance of r-

Dimensional Matching given by an r-partite r-uniform hypergraph G with
vertex set V (G) = {xi,j : i ∈ [r], j ∈ [n′]}, where Xi = {xi,j : j ∈ [n′]} form the
partition of V (G), i.e. each edge has exactly one vertex in each Xi. (We may
assume all Xi have the same size, as otherwise there is no perfect matching.)
The edge set of G will be denoted by E(G). Additionally, we may assume that
n′ is divisible3 by r − 1.

We now give the construction of (V, E), the Test-r-Cover instance. Let
the vertex set V = V (G) ∪ Y , and the edge set E = E(G) ∪ E ′, where Y and E ′
are defined as follows:

Y = {yi,j : i ∈ [r − 1], j ∈ {(r − 1), 2(r − 1), ..., n′}} ∪ {y0}

E ′ = {ei,p : i ∈ [r − 1], p ∈ {(r − 1), 2(r − 1), ..., n′}}

where ei,p = {xi,p−r+2, xi,p−r+3, . . . , xi,p, yi,p} (see Figure 2). Note that n =

|V | = rn′ + n′ + 1 and observe that 2(n−1)
r+1 is integral (this will allow us to use

Corollary 4).
We first show that if E ′′ ⊆ E(G) is a perfect matching in G, then E ′ ∪E ′′ is a

test cover of size 2(n−1)
r+1 . For any pair xi,j , xi′,j′ ∈ V (G), if i = i′ then xi,j , xi′,j′

appear in different edges in E ′′ and are separated, if i < i′ they are separated
by ei,(r−1)d j

r−1 e
, and if i > i′ they are separated by e

i′,(r−1)d j′
r−1 e

. Any pair

yi,j , yi′,j′ ∈ Y is separated by ei,j . As E ′′ covers V (G), every xi,j ∈ V (G) is
separated from every yi′,j′ ∈ Y . Finally, y0 is separated from every other vertex

3If n′ is not divisible by r − 1, add r − 1 − n′mod(r − 1) new vertices to each of the
Xi’s and the same number of new pairwise disjoint edges which together contain each of the
new vertices exactly once. Observe that this produces an instance which is equivalent to the
original one.

7

as it is the only vertex not covered by E ′ ∪ E ′′. Thus, E ′ ∪ E ′′ is a test cover.
Since |E ′ ∪ E ′′| = 2n′ and n = rn′ + n′ + 1, we have that E ′ ∪ E ′′ is a test cover

of size 2(n−1)
r+1 .

It remains to show that if (V, E) has a test cover of size 2(n−1)
r+1 , then G has

a perfect matching. Firstly, observe that to separate y0 from yi,p, every edge
ei,p must be in the test cover. Hence E ′ is contained in any test cover for (V, E).
So a test cover is a set E ′ ∪ E ′′, where E ′′ ⊆ E(G). Next, observe that for every
vertex xi,j , there must exist an edge in E ′′ containing xi,j , as otherwise there
would be no edge separating xi,j from yi,(r−1)d j

r−1 e
.

We may also observe that no two edges in E ′′ intersect. Suppose two edges
intersected, but not in partite set Xr. Then there is another edge in E ′ also
intersecting these edges at the same vertex. But we know from Corollary 4

that in a test cover of size 2(n−1)
r+1 , at most two edges intersect at any vertex, so

this cannot happen. Suppose instead, that edges e and e′ intersect in partite
set Xr. Then e also intersects an edge in E ′ in each of the other partitions, so
every vertex in e is of degree 2. But we also know that in a test cover of size
2(n−1)
r+1 , one vertex in each edge has degree 1, so this case is also not possible.

Therefore, E ′′ is a perfect matching in G, and this shows that a test cover with
2(n−1)
r+1 edges for (V, E) gives a perfect matching in G.

.

.

.

...
. . .

...

x1,1 x1,r−1 x1,n′−r+2 x1,n′

xr−1,1 xr−1,r−1 xr−1,n′−r+2 xr−1,n′

xr,1 xr,r−1 xr,n′−r+2 xr,n′

y1,r−1 y1,n′

yr−1,r−1 yr−1,n′

y0

X1

Xr−1

Xr

e1,r−1 e1,n′

er−1,r−1 er−1,n′

Figure 2: Illustration of the edge set E ′ in Lemma 2. Edges of E ′ are in black.
The sets X1, . . . Xr are in gray. Edges of E(G) (not depicted) contain one vertex
from each of X1, . . . Xr.

8

Lemma 3. Test-2-Cover(2(n− 1)/3 + k) is NP-complete for k = 0.

Proof. We will show NP-completeness of our problem by reduction from the
P3-packing problem, which asks, given a graph G with n vertices, n divisible by
3, whether G has n/3 vertex-disjoint copies of P3. The problem is NP-complete
[15]. Consider the graph H obtained from G by adding to it an isolated vertex
x. We will view H as an instance of Test-2-Cover and we will prove that G
is a Yes-instance of the P3-packing problem if and only if H has a test cover
of size 2n/3. If G contains a set of edges F forming n/3 disjoint copies of P3,
then observe that F forms a test cover in H of size 2n/3. Now assume that
H has a test cover F of size 2n/3. We will prove that G is a Yes-instance of
the P3-packing problem. Observe that every vertex of G has positive degree in
G[F] and, by Corollary 4, every edge of F contains one vertex of degree 1 and
one of degree 2. Hence, the set of edges in F forms n/3 vertex-disjoint copies
of P3.

The next theorem follows from the straightforward fact that Test-r-Cover(2(n−1)
r+1 +

k) is in para-NP and the previous two lemmas.

Theorem 6. Test-r-Cover(2(n−1)
r+1 + k) is para-NP-complete for each fixed

r ≥ 2.

4 A short FPT proof for Test-r-Cover(m− k)

In this section, we show that Test-r-Cover(m−k) is fixed-parameter tractable.
The proof is short but does not lead to a polynomial kernel; this requires more
work, and is the subject of the next section.

Theorem 7. There is an algorithm for Test-r-Cover(m − k) that runs in
time (r2 + 1)k(n + m)O(1).

Proof. We first need to guess whether there will be a vertex not contained in
any edge in the solution, and if so, which vertex it will be. If there already
exists a vertex y0 not in any edge in E , then we are done. Otherwise, either
pick a vertex x or guess that every vertex in V will be covered by the solution.
If a vertex x is picked, delete all the edges containing x, and reduce k by the
number of deleted edges. If it is guessed that every vertex in V will be covered
by the solution, add a new vertex y0 which is not in any edge. Observe that this
does not change the solution to the problem. By doing this we have split the
problem into n+1 separate instances, with each instance containing an isolated
vertex. Thus we may now assume that there exists a vertex y0 which is not
contained in any edge in E .

Consider an edge e ∈ E , and suppose that E \ {e} is a test cover. Let B0
be a minimal set of edges in E \ {e} which covers e. Note that such a set must
exist, as otherwise x is not separated from y0 in E \ {e} for some x ∈ e, and so
E \ {e} is not a test cover. Furthermore, we may assume |B0| ≤ |e| ≤ r. Now
for each b ∈ B0, let Bb be a minimal set of edges in E \ {e} separating every

9

vertex in b \ e from every vertex in b ∩ e. By Corollary 2, we may assume that
|Bb| ≤ r − 1.

Now let B = B0 ∪ (
⋃

b∈B0
Bb), and observe that B isolates the vertex set of

e. Thus, in any solution with minimum number of edges, at least one edge from
B ∪ {e} will be missing. Note that |B| ≤ r + r(r − 1) = r2.

We now describe a depth-bounded search tree algorithm for Test-r-Cover(m−
k). If E is not a test cover, return No. Otherwise if k = 0 return Yes. Other-
wise, for each edge e ∈ E check whether E \ {e} is a test cover. If for all e ∈ E ,
E \ {e} is not a test cover, then a test cover must contain all m edges and so we
return No. Otherwise, let e be an edge such that E \ {e} is a test cover, and
construct the set B as described above. Then we may assume one of B ∪ {e}
is not in the solution. Thus we may pick one edge from B ∪ {e}, delete it, and
reduce k by 1. So we split into r2 + 1 instances with reduced parameter.

We therefore have a search tree with at most (r2 + 1)k leaves. As every
internal node has at least 2 children, the total number of nodes is at most
2(r2 + 1)k − 1. Note also that guessing the isolated vertex at the start split the
problem into n+1 instances, so there are at most (n+1)(2(r2+1)k−1) nodes to
compute in total. As each node in the tree takes polynomial time to compute,
we have an algorithm with total running time (r2 + 1)k(n + m)O(1).

5 Polynomial Kernel for Test-r-Cover(m− k)

In this section, we show that Test-r-Cover(m−k) admits a polynomial kernel.
It will be useful to consider a slight generalization of Test-r-Cover(m − k),
which we call Subset-Test-r-Cover(m − k). In this problem, we are given
a special subset B ⊆ E of edges which are required to be in the solution. For
convenience we will say these edges are colored black.

We begin with the following reduction rules, which must be applied whenever
possible:

Reduction Rule 1. Given a vertex x of degree 1 and a black edge b which
contains only x, delete b from B and E , delete x and leave k the same.

Reduction Rule 2. Given a black edge b, if there exists any other edge e such
that b ⊂ e, then replace e with e \ b. If there exists a black edge b′ such that b
cuts b′ and b′ cuts b, delete b and b′ and add black edges b \ b′, b′ \ b and b ∩ b′.
Leave k the same.

Lemma 4. Let (V ′, E ′,B′, k) be an instance of Subset-Test-r-Cover(m−k)
derived from (V, E ,B, k) by an application of Rule 1 or 2. Then (V ′, E ′,B′, k) is
a Yes-instance if and only if (V, E ,B, k) is a Yes-instance.

Proof. We will show for each rule that for any t, (V, E ,B, k) has a solution of
size |E| − k if and only if (V ′, E ′,B′, k) has a solution of size |E ′| − k.

Rule 1: Suppose (V ′, E ′,B′, k) is a Yes-instance, with solution T ′. Then
observe that T = T ′ ∪ {b} is a solution for (V, E ,B, k). Conversely, if T is

10

a solution for (V, E ,B, k) then T must contain b, and T \{b} is a solution for
(V ′, E ′,B′, k).

Rule 2: First consider the case when b ⊂ e for some other edge e. It is
sufficient to show that for any T ⊆ E containing e and b, T is a test cover if
and only if (T \ {e}) ∪ {e \ b} is a test cover. To see this, observe that for any
x ∈ e, y /∈ e, x and y are separated either by b or e \ b, and for any x ∈ e \ b,
y /∈ e \ b, x and y are separated either by b or e.

Now consider the case when b, b′ are intersecting black edges. Similar to
the previous case, if x and y are separated by one of b, b′ then they are also
separated by at least one of b \ b′, b′ \ b, b∩ b′, and if they are separated by one
of b \ b′, b′ \ b, b ∩ b′ then they are also separated by at least one of b, b′.

Lemma 5. Let (V, E ,B, k) be an instance irreducible by Rules 1 and 2. The
instance can be reduced, in polynomial time, to an equivalent instance such that
every vertex has degree at most kr2.

Proof. Assume that there exists a vertex x with degree in E greater than kr2.
We will be able to produce an equivalent instance in which either k or the degree
of x is reduced. Clearly this reduction can only take place a polynomial number
of times, so in polynomial time we will reduce to an instance in which every
vertex has degree bounded by kr2.

We produce a special set X̃, such that X̃ is still isolated when at most k
edges are deleted, according to the following algorithm.

Set Ẽ = E , i = 1, X = {x}, j = 1;
while i ≤ k + 1 do

if Ẽ isolates X then

Let ei be an edge containing X, and construct a set Ei ⊆ Ẽ such
that Ei ∪ {ei} isolates X and |Ei| ≤ r − 1;

Set Ẽ = Ẽ \ (Ei ∪ {ei}) ;
Set i = i + 1;

else

Let X ′ be the class induced by Ẽ containing X;
Set X = X ′, i = 1, j = j + 1;

end

end

Set X̃ = X.

Observe that throughout the algorithm, by construction any edge in Ẽ which
contains x also contains X as a subset, |X| ≥ j and Ẽ ⊆ E . Notice that if the
algorithm ever sets j = r + 1, then at that point at most kr2 edges have been
deleted from Ẽ , and as |X| ≥ r + 1, no remaining edges in Ẽ contain x. But
this is a contradiction as the degree of x is greater than kr2. Therefore we
may assume the algorithm never reaches j = r + 1. Hence the algorithm must
terminate for some j ≤ r.

11

We now show that we can always find ei and Ei for i ≤ k + 1. Since x
has degree greater than kr2 and at most kr(r − 1) edges are removed from Ẽ
earlier in the algorithm, we can always find an edge ei containing x and therefore
containing X. To see that Ei can be constructed using at most r − 1 edges,
apply Corollary 2 to X and ei \X.

Now consider the set X̃ formed by the algorithm. When the algorithm
terminated, ei and Ei were found for all i ≤ k + 1. If we remove k arbitrary
edges from E , it is still possible to find i such that no edges in Ei ∪ {ei} have

been deleted. This means that as long as we delete at most k edges, X̃ is still
isolated.

Therefore if X̃ is an edge in E , for any solution T ⊆ E which contains exactly
|E| − k edges, (T \ {X̃}) ∪ {e} is a solution for every e ∈ E \ T . Hence, we can

delete X̃ and reduce k by 1: note that X̃ cannot be a black edge, as it is
contained in at least two distinct edges and the graph is reduced by Rule 2. If
X̃ is not an edge in E , add a new black edge X̃ to E and B, keeping k the same,
and let (V, E ′,B′, k) be the new instance. Observe that a set T ′ of |E ′|−k edges

is a solution for the new instance if and only if T ′ \ {X̃} is a solution for the

original instance. To conclude the reduction, apply Rule 1 and 2. Since X̃ was
properly contained in at least two edges before the black edge was added, this
will decrease the degree of every vertex in X̃.

Now assume that (V, E ,B, k) is reduced by Rules 1 and 2 and that every
vertex has degree at most kr2. We will color the uncolored edges in E as follows.
For every edge e which is not black, if E \ {e} is not a test cover, color e black,
adding it to B (and apply Rules 1 and 2). If E \{e} is a test cover and e contains
a degree one vertex, color e orange. Otherwise, color e green.

Remark 1. Notice that an edge is colored orange only if there is no isolated
vertex.

Lemma 6. If G is a set of green edges such that, for every pair g1, g2 ∈ G,
N1[{g1}] ∩N1[{g2}] is empty, then E \G is a test cover.

Proof. We proceed by induction on |G|. If |G| = 1 this is obviously true. If
|G| = j + 1, delete the first j edges and consider the last one, denoted g.
The only problem that could occur removing g is that a vertex x ∈ g may
no longer be separated from another vertex y. For any h ∈ G \ {g}, we have
N1[{h}] ∩N1[{g}] = ∅, and so x is not contained in any edge in G \ {g}. If y is
not in one of the edges in G \ {g} either, then x and y are not separated even
by E \ {g}, which is a contradiction since g is green. Therefore, denote by g′

the edge in G which contains y. The degree of y is at least 2, hence there exists
an edge different from g′ which contains y; this edge, which is clearly not in G,
cannot contain x too, or N1[{g}] ∩N1[{g′}] would not be empty. This ensures
that x and y are separated by E \G.

Reduction Rule 3. Given an orange edge o, if N2[{o}] contains no green edges,
delete o and decrease k by 1. (Notice that this creates an isolated vertex, which
means that every other orange edge will become black.)

12

Lemma 7. Let (V, E ′,B′, k−1) be an instance of Subset-Test-r-Cover(m−k)
derived from (V, E ,B, k) by an application of Rule 3. Then (V, E ′,B′, k− 1) is a
Yes-instance if and only if (V, E ,B, k) is a Yes-instance.

Proof. Let (V, E ,B, k) be a Yes-instance, and suppose there is an orange edge
o such that N2[{o}] contains no green edges. It is sufficient to prove that there
exists a solution that does not include o.

Suppose T ⊆ E is a solution and suppose it contains o. If there is a vertex x
which is not contained in any edge of T , consider an edge e ∈ E which contains
it (which exists by Remark 1). If the isolated vertex x does not exist, take any
edge e from E \ T .

Consider T ′ = (T \ {o}) ∪ {e}. We claim that T ′ is still a test cover.
First of all, note that there can be at most one orange edge in E \T . If there

is such an orange edge o′ ∈ E \ T , this edge must be e: removing o′ creates an
isolated vertex and o′ is the only edge containing that vertex, which means that
o′ is the edge that we add to make T ′. Therefore, every edge in E \ (T ∪ {e}) is
green. It follows that (N2[{o}] \ {o}) ⊆ T ′.

Suppose that T ′ is not a test cover. This can happen only if T ′ does not
separate a vertex x ∈ o and a vertex y ∈ V \ o. Vertices x and y must be
separated by some other edge in E \ T ′ as o is not black; furthermore this edge
must contain y and not x, as any other edge containing x is in (N2[{o}]\{o}) ⊆
T ′. Let this edge be ẽ.

If x is the degree 1 vertex, then it is now the only isolated vertex and therefore
it is separated from any other vertex. If x is a vertex of degree at least 2, then
there is an edge õ (different from o) containing it. Note that õ cannot contain
any vertices of ẽ, because otherwise ẽ ∈ N2[{o}], and in particular õ does not
contain y. Moreover, since õ ∈ N2[{o}] \ {o}, we have õ ∈ T ′. This shows that
x and y are separated by T ′, which is a contradiction to our assumption that
they were not. Therefore, T ′ is a test cover.

Lemma 8. Let (V, E ,B, k) be an instance irreducible by Rules 1, 2 and 3, and
let x be a non-isolated vertex. Then x ∈ N3[g] for some green edge g.

Proof. If x is contained in a green edge, we are done. If x is contained in an
orange edge o, Rule 3 implies that there exists a green edge g in N2[{o}], which
means that x ∈ N2[g] ⊆ N3[g]. If, finally, x is contained in a black edge b, this
edge must intersect one other edge, that can be either green or orange (due to
Rules 1 and 2). In both cases, x ∈ N3[g] for some green edge g.

Theorem 8. There is a kernel for Subset-Test-r-Cover(m− k) with |V | ≤
(k − 1)k5r16 + 1 and |E| ≤ (k − 1)k5r16 + k. This gives a kernel for Test-r-
Cover(m− k) with |V | ≤ 5(k− 1)k5r16 + 4k + 1 and |E| ≤ 3(k− 1)k5r16 + 3k.

Proof. Let (V, E ,B, k) be an instance irreducible by Rules 1, 2 and 3. Construct
greedily a set G of green edges which satisfy the hypothesis of Lemma 6. If |G| ≥
k, we answer Yes using Lemma 6. Otherwise, |G| ≤ k− 1 and every green edge
which is not in G must be in N2[G]. By Lemma 8, this means that every vertex
(except the one of degree zero, if it exists) must be in V (N3[N2[G]]) = V (N5[G]).

13

However, |V (N5[G])| ≤ r|N5[G]| and, given F ⊆ E , |N1[F]| ≤ |F|(r)(kr2)
(by Lemma 5), which means that |N5[G]| ≤ |G|(kr3)5. To sum up, |V (N5[G])| ≤
(k − 1)k5r16, which gives us the required bound on the number of vertices.

To bound the number of edges, we show that there is a solution of size
at most |V |. First let T be the set of black edges. By Rule 2, the black
edges are disjoint and therefore |T | ≤ |V | and T induces at least |T | classes.
Now if T is not a test cover, add an edge to T that increases the number of
induced classes. Then eventually we have that |T | ≤ |V | and T induces |V |
classes as required. Therefore if |E| − k ≥ |V |, the answer is Yes. Hence
|E| ≤ |V | + k − 1 ≤ (k − 1)k5r16 + k, proving the kernel for Subset-Test-r-
Cover(m− k).

We now prove the kernel for Test-r-Cover(m − k). First transform an
instance (V, E , k) into an equivalent instance (V, E ,B, k) of Subset-Test-r-
Cover(m − k), by letting B = ∅. Then reduce this instance to a kernel
(V ′, E ′,B′, k′). Now we reduce (V ′, E ′,B′, k′) to an instance (V ′′, E ′′, k′′) of
Test-r-Cover(m − k), completing the proof. If an edge b is colored black,
and E \ {b} is not a test cover, then uncolor b. Otherwise, observe that black
edge b such that E \ {b} is a test cover can be created only by Rule 2 or the
algorithm of Lemma 5. In the former case, b was a proper subset of some other
edge, while in the latter b was a proper subset of at least k′′ + 1 other edges.
In both cases, b contains at most r − 1 vertices. We will replace b with a small
gadget that is ‘equivalent’ to b.

To make the gadget, add vertices x1, x2, x3, x4 to the instance, replace b with
b ∪ {x1} and add edges e′ = {x1, x2, x3} and e′′ = {x3, x4}. Observe edge e′ is
necessary to separate x3 from x4, e′′ is necessary to separate x2 from x3 and
b∪{x1} is necessary to separate x1 from x2. Hence all three edges must be in a
test cover. Hence, in any test cover solution for the new instance, if we replace
the gadget with b, we obtain a test cover solution for the original instance.
Furthermore, such a solution will contain b. In this sense, the problems are
equivalent.

Finally observe that for each original black edge we added at most four new
vertices and at most two new edges. Hence |V ′′| ≤ |V ′|+4|E ′| ≤ 5(k−1)k5r16 +
4k + 1 and |E ′′| ≤ |E ′|+ 2|E ′| ≤ 3(k − 1)k5r16 + 3k.

6 Polynomial kernel for Test-r-Cover(n− k)

In this section, we show that Test-r-Cover(n − k) admits a kernel which is
polynomial in the number of vertices. We may assume that k ≥ 2 as the answer
to Test-r-Cover(n− k) for k ≤ 1 is always positive.

We reuse some terminology from [6]. We say T ⊆ E is a k-mini test cover if
|T | ≤ 2k and the number of classes induced by T is at least |T |+ k.

The following result is a consequence of Lemma 1 and Theorem 2 of [6].

Lemma 9. Assume E is a test cover of V . Then the following are equivalent:

1. E contains a test cover of size at most n− k.

14

2. There exists T ⊆ E such that the number of classes induced by T is at
least |T |+ k.

3. E contains a k-mini test cover.

The following result follows from Lemma 1 and the proof of Theorem 2 in
[6].

Lemma 10. In polynomial time, we may either find a k-mini test cover, or
find an F ⊆ E such that:

1. |F| < 2k

2. F induces less than |F|+ k classes.

3. Each edge in E cuts at most one class induced by F .

4. For any e, e′ ∈ E and any class K induced by F ,at least one of (e∩e′)∩K,
(e\e′) ∩K, (e\e′) ∩K and K\(e ∪ e′) is empty.

Now assume we have found such an F and let C1, . . . , Cl, G be the classes
induced by F (where G is the class of vertices which are not contained in any
edge of F and l < 3k). Let C be the set of classes C1, . . . , Cl, and let C be the
set of vertices contained in such classes. Let G be the set of edges that intersect
G. For each edge e ∈ G, we say e ∩ G is the G-portion of e. A subset Γ of G
is a component if Γ is the G-portion of an edge e ∈ G and Γ 6⊂ e′ ∩ G for any
edge e′ ∈ G. Notice that the number of vertices in C is bounded by (2k − 1)r
because these vertices are contained in edges of F and every edge contains at
most r vertices. Also notice that every component of G has at most r vertices.

Theorem 9. Given an instance (V, E , k), it is possible to reduce it in polynomial
time to an equivalent instance with at most 18k3r vertices and (18k3r)r edges.

Proof. We may assume that |V | > (7k+2)r as otherwise our instance is already
a kernel (every edge has at most r vertices and so the number of edges is at most
((7k + 2)r)r). Observe that if there exists an edge e such that |e ∩ G| ≥ |G|/2
then |G| ≤ 2|e| ≤ 2r, and we conclude that |V | ≤ |C| + 2r ≤ (2k + 1)r, a
contradiction. Therefore, |e∩G| < |G|/2, and so by Part 4 of Lemma 10 if X,Y
are different G-portions then either X ⊂ Y , Y ⊂ X or X ∩ Y = ∅.

Apply the following algorithm:

Step 1: For each pair (Ci, Cj) (i 6= j) in turn, mark 2k unmarked compo-
nents of G which contain the G-portion of an edge containing Ci and having
empty intersection with Cj (mark these edges too). If there are less than 2k
such components, mark them all. Let Ei,j denote the set of marked edges.

For each Ci in turn, mark 2k + 1 unmarked components of G which contain
the G-portion of an edge containing Ci (mark these edges too). If there are
less than 2k + 1 such components, mark them all. Let Ei denote the set of
marked edges.

15

Step 2: Delete every edge in G whose G-portion is not contained in a
marked component of G. Delete every vertex which is not contained in any
edge anymore, except one vertex y (if it exists).

Let E ′ be the set of edges which have not been deleted by this algorithm.
Notice that the number of marked components in G is at most (3k − 1)(3k −
2)(2k) + (3k− 1)(2k+ 1) < (3k− 1)2(2k+ 1) = 18k3− 3k2− 4k+ 1 < 18k3− 2k
(here we use the assumption that k ≥ 2). Let G′ be the set of vertices of G
which have not been deleted by the algorithm. Notice that |G′| ≤ (18k3− 2k)r.

In the instance which is produced, |V ′| = |C|+ |G′| ≤ 18k3r, and since each
edge contains at most r vertices, |E ′| ≤ (18k3r)r. Hence it is sufficient to show
that (V ′, E ′, k) admits a k-mini test cover if and only if (V, E , k) admits one.

Obviously, if (V ′, E ′, k) admits a k-mini test cover, this is a k-mini test cover
for (V, E , k) too. For the other direction, suppose T is a k-mini test cover for
(V, E , k) such that T \ E ′ is as small as possible. For the sake of contradiction,
suppose that there is at least one edge e in T \ E ′. We claim that it is possible
to construct a set T ′′′ ⊆ E which induces at least |T ′′′| + k classes, such that
T ′′′ \E ′ = (T \E ′)\{e}. By applying Lemma 9 to the hypergraph H ′ with edge
set T ′′′, and vertex set formed by identifying the vertices in each class induced
by T ′′′, observe that there exists a k-mini test cover in H ′. Observe that the
edges of this k-mini test cover in H ′ also form a k-mini test cover in the original
instance, and this k-mini test cover is a subcollection of T ′′′. Since this k-mini
test cover contains fewer edges from E \E ′ than T does, we have a contradiction.

Start with T ′ = T \ {e}. Since e is not in E ′, e must be in G, and the
G-portion of e must not be contained in any marked component. Furthermore,
for each Ci, Cj ∈ C with Ci ⊆ e and e ∩ Cj = ∅ we note that Ei,j must contain
2k edges, as otherwise e would be in E ′. Similarly, for each Ci contained in e
we note that Ei must contain 2k + 1 edges. For any i, j such that |Ei,j | = 2k,
let ei,j be an edge in Ei,j whose G-portion is disjoint from any edge in T ′. This
must exist as |T ′| ≤ 2k − 1 (note that there is at most one marked edge in one
component of G, and therefore no edge in E can contain the G-portions of two
marked edges).

For any i such that |Ei| = 2k + 1 let ei, e
′
i be edges in Ei whose G-portions

are disjoint from any edge in T ′. These edges must exist as |T ′| ≤ 2k − 1.
Let C∗0 be the class induced by T ′ that consists of all vertices not in any

edge in T ′ (which exists by Claim C below). We will need the following claims.

Claim A: There is at most one class C∗G induced by T ′, such that G∩(C∗G∩e) 6=
∅ and G ∩ (C∗G \ e) 6= ∅.
Proof of Claim A: For the sake of contradiction assume that there are
two such classes C ′G and C ′′G. This implies that there exist vertices x′ ∈
G∩ (C ′G ∩ e), y′ ∈ G∩ (C ′G \ e), x′′ ∈ G∩ (C ′′G ∩ e) and y′′ ∈ G∩ (C ′′G \ e).
Some edge e′ ∈ T ′ separates C ′G and C ′′G. Note that adding e′ and e to
F separates x′, y′, x′′ and y′′ into different classes, contradicting Part 4
of Lemma 10 (with K = G). This contradiction completes the proof of
Claim A.

16

Claim B: For each edge e′ that cuts G and every Ci we have Ci ⊆ e′ or
Ci ∩ e′ = ∅. In particular, Ci ⊆ e or Ci ∩ e = ∅.
Proof of Claim B: If Claim B is false then F does not satisfy Part 3 in
Lemma 10, as there exists an edge e′ which cuts both G and Ci for some
i.

Claim C: C∗0 exists and |G ∩ C∗0 | ≥ (3k + 2)r.

Proof of Claim C: If C∗0 does not exist then every vertex of V belongs
to some edge in T ′, which implies that |V | ≤ 2kr, so C∗0 does exist. If
|G∩C∗0 | < (3k+2)r, then the following holds and we have a contradiction
to the assumption on |V | in the beginning of the proof:

|V | ≤ 2kr+|C∗0 | ≤ 2kr+(|C|+|G∩C∗0 |) < 2kr+2kr+(3k+2)r = (7k+2)r.

Let C∗1 , . . . , C
∗
t be all classes induced by T ′, different from C∗G and C∗0 , that

are cut by e. Note that t ≤ 3k, as T ′ contains less than 2k edges and is not a
k-mini test cover. Each C∗s , (1 ≤ s ≤ t), must be contained in an edge, say e∗s,
in T ′ and contain vertices from C, by the definitions on C∗G and C∗0 . We are
going to create a collection of edges T ′′ such that each C∗s is cut by an edge in
T ′′ and also T ′′ induces |T ′′| extra classes in C∗0 . Initially let T ′′ = ∅. For each
s ∈ [t] in turn, consider the following two cases.

Case 1: C∗s ∩ e and C∗s \ e both contain vertices from C.
In this case, by Claim B there exist i, j with i 6= j, such that e contains Ci

but not Cj and Ci ∩ C∗s 6= ∅ 6= Cj ∩ C∗s . Hence, it holds that |Ei,j | = 2k, as
otherwise e would be marked. Then add the edge ei,j to T ′′, if ei,j is not in T ′′
already. Note that ei,j separates Ci from Cj and therefore cuts C∗s .

Case 2: Case 1 does not hold. That is, C ∩ C∗s ⊆ e or (C ∩ C∗s) ∩ e = ∅.
Recall that there exists a Ci such that C∗s contains vertices from Ci and,

since e cuts C∗s , we have C∗s ∩ G 6= ∅. Suppose e does not contain Ci. Then
(C ∩ C∗s) ∩ e = ∅ and, since e cuts C∗s , it must contain vertices from C∗s ∩G ⊆
e∗s ∩ G. Then e∗s cuts G and the G-portion of e∗s is in the same component as
the G-portion of e, and therefore e∗s is an unmarked edge. Furthermore since
e∗s cuts G it does not cut Ci, and therefore Ci ⊆ e∗s. Thus, we have that either
e or e∗s is an unmarked edge containing Ci, and therefore |Ei| = 2k + 1. Then
add ei to T ′′, if ei is not already in T ′′. Observe that ei cuts C∗s as it contains
vertices in Ci ∩ C∗s but no vertex from C∗s ∩G.

This completes Case 1 and Case 2. Note that the G-portions of the edges
in T ′′ are all contained in C∗0 , as they are vertex disjoint from the G-portions
of the edges in T ′ by construction. In addition, they all are vertex disjoint, as
they are contained in different marked components. Hence, adding T ′′ to T ′
creates |T ′′| extra classes in C∗0 .

We now consider Case (i) and Case (ii) below, which will complete the proof.

Case (i): C∗G does not exist or is equal to C∗0 or e does not cut C∗0 .
In this case e cuts at most t + 1 classes induced by T ′. Note that if we add

the edges from T ′′ to T ′, |T ′′| extra classes are created in C∗0 and for every

17

s ∈ [t] some edge in T ′′ cuts C∗s . Let T ′′′ = T ′∪T ′′ = (T \e)∪T ′′. Removing e
from T decreases the number of classes by at most t+1 and adding T ′′ increases
the number of classes by at least t+ |T ′′|. So by increasing the number of edges
by |T ′′| − 1 we have increased the number of classes by at least |T ′′| − 1 and
therefore we still have at least k more classes than edges.

Case (ii): Case (i) does not hold. That is, C∗G exists and is distinct from C∗0
and e cuts both C∗G and C∗0 .

By Claim A, we note that e either contains all of C∗0 ∩G or none of C∗0 ∩G.
By Claim C, e must contain none of C∗0 ∩ G. As e cuts C∗0 we must have
C ∩ e ∩ C∗0 6= ∅. Therefore there exists Ci such that e contains vertices from
Ci ∩ C∗0 , and so |Ei| = 2k + 1. Add ei and e′i to T ′′ (unless ei is already in T ′,
in which case just add e′i to T ′′). Observe that the G-portions of ei and e′i are
vertex disjoint by construction, and so the G-portions of all edges in T ′′ are still
vertex disjoint.

Note that adding ei and e′i to T ′ creates three new classes in C∗0 (C∗0 now
being split into the class C∗0 ∩ ei ∩ e′i which contains vertices from Ci, the G-
portion of ei, the G-portion of e′i and the class of vertices not in any edge).
Adding each other edge from T ′′ to T ′ increases the number of classes in C∗0 by
one (as by Claim C we note that some vertex in G∩C∗0 is not contained in any
edge in T ′′). Also note that for every s ∈ [t] some edge in T ′′ cuts C∗s .

So let T ′′′ = T ′ ∪ T ′′ = (T \ e) ∪ T ′′. Removing e from T decreases the
number of classes by t+ 2 and adding T ′′ increases the number of classes by at
least t + |T ′′| + 1. So by increasing the number of edges by |T ′′| − 1 we have
increased the number of classes by at least |T ′′| − 1 and therefore we still have
at least k more classes than edges.

7 Discussion

The two main results proved in this paper are the existence of polynomial-size
kernels for Test-r-Cover(m−k) and Test-r-Cover(n−k). In fact, our result
for TestCover(m− k) is stronger: TestCover(m− k) has a polynomial-size
kernel for the parameter k + r. It would be interesting to find out whether
TestCover(n − k) has a polynomial-size kernel for the parameter k + r. In
addition, Theorem 7 gives an algorithm for TestCover(m − k) with running
time (f(r))O(k)(n + m)O(1); it would be interesting to see if an algorithm with
similar running time can be found for TestCover(n− k).

8 Acknowledgments

We are very grateful to one of the referees for numerous suggestions which
allowed us to improve the presentation. We are also grateful to Manu Basavaraju
and Mathew Francis for carefully reading an earlier version of this paper and
informing us of a subtle flaw in Theorem 9 which led us to changing the proof
substantially.

18

References

[1] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo, Solving MAX-r-SAT
above a tight lower bound. Algorithmica 61, 638–655 (2011)

[2] M. Basavaraju, M.C. Francis, M.S. Ramanujan, and S. Saurabh. Partially
Polynomial Kernels for Set Cover and Test Cover. In: FSTTCS. LIPIcs, vol.
24, pp. 67–78 (2013)

[3] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin, On prob-
lems without polynomial kernels, J. Comput. Syst. Sci. 75(8), 423–434 (2009)

[4] J.A. Bondy, Induced subsets. J. Combinatorial Theory, Ser. B 12, 201–202
(1972)

[5] R. Crowston, M. Fellows, G. Gutin, M. Jones, E.J. Kim, F. Rosamond, I.Z.
Ruzsa, S. Thomassé and A. Yeo, Satisfying More Than Half of a System of
Linear Equations Over GF(2): A Multivariate Approach. J. Comput. Syst.
Sci. 80, 687–696 (2014)

[6] R. Crowston, G. Gutin, M. Jones, S. Saurabh, and A. Yeo, Parameterized
Study of the Test Cover Problem. In: MFCS 2012, Lect. Notes Comput. Sci.
7464, 283–295 (2012)

[7] R. Crowston, G. Gutin, M. Jones, and A. Yeo, A new lower bound on
the maximum number of satisfied clauses in Max-SAT and its algorithmic
applications. Algorithmica 64, 56–68 (2012)

[8] R. Crowston, M. Jones, and M. Mnich, Max-Cut Parameterized above the
Edwards-Erdős Bound, In: ICALP 2012, Lect. Notes Comput. Sci. 7391,
242–253 (2012)

[9] K.M.J. De Bontridder, B.J. Lageweg, J.K. Lenstra, J.B. Orlin, and L.
Stougie, Branch and bound algorithms for the test-cover problem. In: ESA
2002, Lect. Notes Comput. Sci. 2461, 223–233 (2002)

[10] K.M.J. De Bontridder, B.V. Halldórsson, M.M. Halldórsson, C.A.J.
Hurkens, J.K. Lenstra, R. Ravi, and L. Stougie, Approximation algorithms
for the test cover problem, Math. Programming-B 98(1–3), 477–491 (2003)

[11] M. Dom, D. Lokshtanov, and S. Saurabh, Incompressibility through Colors
and IDs, In: 36th ICALP, Part I, Lect. Notes Comput. Sci. 5555, 378–389
(2009)

[12] R. G. Downey and M.R. Fellows, Fundamentals of Parameterized Com-
plexity, Springer (2013)

[13] T. Fahle and K. Tiemann, A faster branch-and-bound algorithm for the
test-cover problem based on set-covering techniques, J. Experimental Algo-
rithmics 11, 2.2 (2007)

19

[14] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer (2006)

[15] M.R. Garey and D.S. Johnson, Computers and Intractability. A guide to
the theory of NP-completeness, Freeman (1979)

[16] G. Gutin, E.J. Kim, M. Mnich, and A. Yeo, Betweenness Parameterized
Above Tight Lower Bound. J. Comput. Syst. Sci. 76, 872–878 (2010)

[17] G. Gutin, G. Muciaccia, and A. Yeo, (Non-)existence of Polynomial Kernels
for the Test Cover Problem. Inform. Proc. Lett. 113, 123–126 (2013)

[18] B.V. Halldórsson, M.M. Halldórsson, and R. Ravi, On the approximabil-
ity of the Minimum Test Collection problem. In: ESA 2001, Lect. Notes
Comput. Sci. 2161, 158–169 (2001)

[19] B.V. Halldórsson, J.S. Minden, and R. Ravi, PIER: Protein identification
by epitope recognition. In: Currents in Computational Molecular Biology
2001, 109–110 (2001)

[20] R.M. Karp. Reducibility among combinatorial problems, In: R.E. Miller
and J.W. Thatcher (editors), Complexity of Computer Computations, pp.
85–103. Plenum Press (1972)

[21] M. Mahajan and V. Raman, Parameterizing above guaranteed values:
MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

[22] M. Mahajan, V. Raman, and S. Sikdar, Parameterizing above or below
guaranteed values. J. Comput. Sys. Sci. 75(2), 137–153 (2009)

[23] B.M.E. Moret and H.D. Shapiro, On minimizing a set of tests, SIAM J.
Scientific & Statistical Comput. 6, 983–1003 (1985)

[24] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Univer-
sity Press (2006)

20

